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“Probability is expectation founded upon partial knowledge. A perfect acquaintance

with all the circumstances affecting the occurrence of an event would change

expectation into certainty, and leave neither room nor demand for a theory of

probabilities.”

(George Boole)
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Resumo

Tensores incertos codificam o quanto são satisfeitos predicados n-ários. Por exemplo,

o tempo que usuários gastam em diferentes sites da web em cada semana podem ser

transformados em graus de interesse que os usuários (1a dimensão) tem pelos sites (2a

dimensão) durante as semanas (3a dimensão). No resultante tensor incerto tridimen-

sional, sub-tensores que são grandes e densos frequentemente são interessantes para um

analista. Eles representam usuários que têm mostrado muito interesse nos mesmos sites

durante as mesmas semanas. Mirkin and Kramarenko propuseram um modelo disjun-

tivo de box cluster (disjunctive box cluster model), que é um modelo de regressão onde

os padrões são variáveis explicativas dos valores no tensor incerto. Nesta dissertação,

duas abordagens são propostas de acordo com tal modelo. Fragmentos dos padrões de

interesse são primeiramente providos por algoritmos completos. Estes fragmentos são

então crescidos, na primeira abordagem, usando um procedimento conhecido como hill-

climbing. Em cada iteração deste procedimento, um problema de programação linear

inteira é resolvido para encontrar um padrão maior. Já na segunda abordagem, os frag-

mentos são hierárquicamente aglomerados. Em ambas abordagens, pré-processamentos

são propostos para acelerar a subsequente computação. Finalmente, uma técnica de

regressão gradual, forward selection, seleciona entre os padrões descobertos, um sub-

conjunto não redundante que melhor descreve o tensor sem causar overfit. Experimen-

tos em ambos tensores sintéticos e reais mostram que as propostas descobrem padrões

de alta qualidade em tensores incertos e superam o estado da arte quando aplicados a

tensores 0/1, um caso específico.

Palavras-chave: Mineração de padrões, tensores incertos, disjunctive box cluster

model, hill-climbing, programação linear inteira, aglomeração hierárquica, algoritmos

de seleção.
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Abstract

Uncertain tensors encode to what extent n-ary predicates are satisfied. For instance,

the times users spent on different websites week after week can be turned into degrees

of interest of the users (1st dimension) for the sites (2nd dimension) during the weeks

(3rd dimension). In the resulting 3-way uncertain tensor, sub-tensors that are both

large and dense are often interesting to an analyst. They are users who all showed

much interest for the same sites during the same weeks. Mirkin and Kramarenko

proposed the disjunctive box cluster model, a regression model where such patterns are

explanatory variables for the values in the uncertain tensor. In this dissertation, two

approaches are proposed to fit a disjunctive box cluster model to an uncertain tensor.

A complete algorithm first provides fragments of the desired patterns. In the first

approach, a hill-climbing procedure individually grows them. At every iteration of that

procedure, integer linear programming is used to compute the larger pattern. In the

second approach, the input fragments are hierarchically agglomerated. In both cases,

greedy pre-processes are proposed to speed up the subsequent computation. Finally,

a stepwise regression technique, the forward selection, chooses among the discovered

patterns a non-redundant subset that fits, but does not overfit, the tensor. Experiments

on both synthetic and real-world tensors show the proposals discovers high-quality

patterns in uncertain tensors and outperforms state-of-the-art approaches when applied

to 0/1 tensors, a special case.

Keywords: Pattern mining, uncertain tensor, disjunctive box cluster model, hill-

climbing, integer linear programming, hierarchical agglomeration, forward selection

xvii





List of Figures

1.1 Proposed workflow for discovering patterns from an uncertain tensor. The

dashed boxes are optional steps. There are two ways to discover patterns,

with either Bigfoot or PAF. . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 PAF dendrogram result. The two patterns of the chocolate sales tensor

discovered by the proposals of this work are highlighted in gray cells. . . . 8

2.1 Boolean rank-r CP decomposition of a 3-way tensor T . T is decomposed

into three factors, i. e., three 0/1 matrices A1, A2 and A3. . . . . . . . . . . 14

3.1 Hill-climbing maximization of g : X 7→ |X|λ2
X in the space of the number

of elements (S1, S2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 The logistic function chosen to turn normalized numbers of retweets into

influence degrees: 10 normalized retweets is “moderately influential”. . . . . 38

6.2 Run time of PAF and its pre-process in function of
√
m varying from 1 to

105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 The first four patterns discovered by PAF in the Vélo’v tensor. . . . . . . 44

6.4 Inverses of cumulative beta distributions used to noise a membership degree

at 0 in a “perfect” tensor. More “correct observations” mean less noise. . . 45

6.5 Qualities of the patterns discovered by the different methods in function of

the number of correct observations (the noise increases from left to right). 47

6.6 Numbers of patterns discovered by the different methods in function of the

number of correct observations (the noise increases from left to right). . . . 48

6.7 Run times (in seconds) of the different methods in function of the

number of correct observations (the noise increases from left to right).

mutidupehack’s execution is included in the times reported for PAF,

Bigfoot and Bigfoot-lr+Bigfoot. . . . . . . . . . . . . . . . . . . . . . 49

xix



6.8 Qualities of the patterns discovered in the 3-way rounded tensors by the

different methods in function of the number of correct observations (the

noise increases from left to right). . . . . . . . . . . . . . . . . . . . . . . . 50

6.9 Number of patterns discovered in the 3-way rounded tensors by the differ-

ent methods in function of the number of correct observations (the noise

increases from left to right). . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.10 Running times of the the different methods in the 3-way rounded tensors

in function of the number of correct observations (the noise increases from

left to right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xx



List of Tables

1.1 Chocolate sales uncertain matrix, with two patterns highlighted in gray and

dark gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Six small and redundant patterns, their their areas and their densities. . . 4

1.3 Cells of the uncertain matrix that the six patterns in Table 1.2 cover. For

clarity, the first three patterns are shown in the top matrix, whereas the last

three patterns are shown in the bottom matrix. The gray scale represents

the pattern density, darker meaning denser. . . . . . . . . . . . . . . . . . 4

1.4 0/1 matrix obtained by rounding every value in the uncertain matrix in

Table 1.1 and two patterns (highlighted in gray and dark gray) discovered

in this 0/1 matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 A rank-2 CP decomposition of the 0/1 matrix in Table 1.4. Each of the

two factors relates to each of the two dimensions of the matrix. The

outer product of the first column of each of the two factors gives the first

pattern, {South, Southest, North, Northest} × {bitter, milky, sweet}.
Analogously, the second pattern is {Southest, North, West− Center} ×
{bitter, crunchy, semi− sweet, white}. . . . . . . . . . . . . . . . . . . 14

3.1 Three iterations of hill-climbing may grow a (2 × 2)-fragment F1 (darker

cells) into a (3× 4)-pattern P1 (all dark cells), which is constrained to be a

super-pattern of F1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 (4 × 4)-pattern P2 (all grayed cells) with the highest area times squared

density among the 30 super-patterns of F1 (darker cells) of size 4 × 4 or

3× 5. An iteration of Bigfoot’s hill-climbing goes from P1 in Table 3.1 to

P2, whereas TriclusterBox ’s hill-climbing terminates at P1. . . . . . . . . . 20

6.1 The three sets of initial fragments. The γ is the minimal size constraint

where ǫ is the noise tolerated by slice, both respectively for the user, team

and week. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xxi



6.2 The six patterns discovered by Bigfoot and PAF in the 170, 670× 12× 29

Retweet Tensor. PAF returns as well 44 sub-patterns of those six patterns. 39

xxii



Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 Overview of the Techniques Used in this Dissertation . . . . . . . . . . 9

1.2 Basic Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 11

2.1 Complete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 0/1 Matrix Mining . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 0/1 Tensor Mining . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Uncertain Tensor Mining . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Heuristic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Agglomerating Patterns . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Directly Mining 0/1 Tensors . . . . . . . . . . . . . . . . . . . . 13

2.3 Disjunctive Box Cluster Model . . . . . . . . . . . . . . . . . . . . . . . 15

3 Bigfoot 19

3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 ILP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Bigfoot-lr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 PAF 27

xxiii



4.1 Similarity Between Patterns . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Hierarchical Agglomeration . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Growing the Pattern Fragments before the Agglomeration . . . . . . . 31

5 Forward Selection 33

5.1 The Forward Selection Algorithm . . . . . . . . . . . . . . . . . . . . . 33

5.2 Computation of argminX∈X RSST (Y ∪ {X}) . . . . . . . . . . . . . . . 34

6 Experimental Validation 37

6.1 Real-World Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Retweets Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.2 Vélo’v Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Synthetic Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Conclusion 53

Bibliography 55

xxiv



Chapter 1

Introduction

Suppose an analyst wants to correlate the types of chocolate Brazilian consumers like

with the regions they live in. She can have a table (or matrix) where each row repre-

sents one Brazilian region, each column represents one type of chocolate and every cell

contains the amount of chocolate of the type in column that were sold in the region

in row. To use the sale data as a proxy to how much Brazilian consumers in different

regions like the different types of chocolate, the analyst can turn the numerical data

at her disposal into discrete values. To do so, she can define intervals of sales and

map these intervals to “hates”, “likes a little”, “likes”, and “loves”. However, discretiz-

ing is losing information: after such a process there is no way to recover the original

numerical value and two values in a same interval cannot be distinguished anymore.

To avoid that, the analyst needs a bijection between the sale data and [0, 1], where 0

stands for “absolutely hating”, 1 for “absolutely loving”, and values in between express,

in a continuous way, all degrees of “liking”. She can normalize the data and choose

any function, for example a logistic function, i. e., defining its two parameters (what is

“moderately liking” and how sharp the transition from “hating” to “loving”), and use

it to transform every numerical value in the matrix into a value in [0, 1]. The result-

ing matrix, with values in [0, 1], is said uncertain because it quantifies the certainty

the analyst has that the consumers in the different regions like the different types of

chocolates.

Table 1.1 shows an uncertain matrix our analyst may end up with. Large

sub-matrices with values close to 1 are of interest: they indicate subsets of regions

(the rows of a sub-matrix) that all like a subset of the types of chocolate (the

columns of a sub-matrix). Table 1.1 emphasizes two such interesting sub-matrices.

The first one (darker cells) means that consumers in the South, Southeast and

Northeast regions like milky, sweet and white chocolates. Its area is 9 and its

1



2 Chapter 1. Introduction
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South 0.29 0.05 0.89 0.04 0.94 0.89
Southeast 0.69 0.76 0.83 0.84 0.98 0.87

North 0.82 0.96 0.15 0.49 0.87 0.51
Northeast 0.52 0.09 0.86 0.07 0.94 0.48

West-Center 0.91 0.81 0.05 0.73 0.33 0.39

Table 1.1: Chocolate sales uncertain matrix, with two patterns highlighted in gray and
dark gray.

density (i. e., the average value in it) is 7.68
9
≈ 0.85. The second one (grayed cells) is

{Southeast,North,West-Center} × {bitter,crunchy, semisweet,sweet} of area 12

and density 9.19
12
≈ 0.77.

This dissertation deals with the discovery of such large and dense sub-matrices.

In fact, it considers a broader setting: the uncertain tensor. The patterns of interest

therefore become large and dense sub-tensors. Not only every discovered pattern should

be of interest but, as a whole, these patterns should make a good summary of the

uncertain tensor, i. e., a small number of patterns should be returned (hence, a possible

human interpretation), that altogether allow an approximate reconstruction of the

uncertain tensor.

The classical data mining tasks deal with the discovery of either global patterns or

local patterns. A clustering, a classification function or a regression function are exam-

ples of global patterns, i. e., of patterns that organize an entire dataset (by partitioning

the objects in the case of clustering, by explaining a target attribute as a function of

the other attributes in the case of classification/regression). Frequent patterns such

as frequent itemsets and association rules, which support the discovery of correlations

between multiple attributes in a transactional dataset, are examples of local patterns,

i. e., of patterns that emphasize interesting portions of the dataset. Searching for a few

local patterns that altogether sum up a dataset is building a global pattern from local

patterns. This dissertation therefore faces difficulties coming from both world.

In the local pattern world, time complexity is a significant issue. The number of

candidate patterns (here sub-tensors) is exponential in the size of the dataset. That

is why enumerating all possible patterns and testing whether they are interesting is

intractable. The uncertain matrix in Table 1.1 being 5×6, it contains (25−1)×(26−1) =
1, 953 non-empty sub-matrices because any non-empty subset of row associated with

any non-empty subset of columns defines a sub-matrix. In a slightly larger sub-matrix,
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of size 20× 20, the number of candidate patterns exceeds one trillion. Yet, by defining

the patterns of interest in a rather constrained way, there are algorithms that manage

to list them all in large datasets. Those constrained definitions have downside. First

of all, the number of patterns may still be exponential in the size of the dataset. It

is not even uncommon to compute a collection of patterns that is larger than the

dataset. Then, the definitions mainly (if not only) deal with the portion of the dataset

that the pattern covers. That entails much redundancy of information in the returned

collection of patterns, nothing preventing the patterns from overlapping a lot. Finally,

real-life datasets are noisy. In our example, deriving “liking degrees” from the sale

data is imperfect. For instance, discounts influence the sales but not the tastes. The

varying costs of the involved commodities too. When combined with the necessity of

strong constraints (e. g., a minimal density, minimal sizes, etc.) on the patterns, to

get reasonable running times, the noise effectively prevents complete algorithms (i. e.,

algorithms listing all patterns satisfying the chosen definition) from discovering large

patterns. Only fragments of them are discovered.

In the global pattern world, the optimal pattern may be defined but the related

algorithms, e. g., to cluster objects or search for a classification/regression function,

rely on heuristics and do not guarantee they will find this optimum. Again, the reason

is the exponential time complexity of the exact problems. The quality of a global

pattern does not only depend on how accurately it fits the data. It must be simple too.

For instance, defining one cluster per object minimizes k-means’ objective function

but is not a good clustering. Taking into account all explanatory variables to build a

regression function minimizes the residuals but is not a good model of the data either.

Not only a complicated global pattern is harder to interpret but it captures the noise

in the data.

The idea of building global models from local patterns, as in this dissertation, is

not new. In particular, associative classification is about building a classifier from a

set of association rules concluding on a class attribute. Processing such local patterns

rather than or in complement with the original dataset is postponing the use of lossy

heuristics, what hopefully results in a global model that is more trustworthy. However,

that also means dealing with the problems listed earlier: many small and redundant

local patterns must be turned into a simple model. In this dissertation, the global

model being a set of patterns, the smaller the cardinality of this set, the simpler the

model. The discovery of the two patterns in Table 1.1 followed the local-to-global

approach. They were grown from the small and redundant patterns that Table 1.2 lists

and that a complete algorithm returned. Table 1.3 highlights those smaller patterns in

the uncertain matrix. Because they carry redundant information (i. e., overlap a lot),
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F Pattern Area Density

F1 {Southeast, West-Center} × {crunchy, semisweet} 4 0.7850
F2 {Southeast, North, West-Center} × {bitter, crunchy} 6 0.8250
F3 {South, Southeast, Northeast} × {milky, sweet} 6 0.9067
F4 {Southeast, West-Center} × {bitter, semisweet} 4 0.7925
F5 {Southeast, North} × {bitter, crunchy, sweet} 6 0.8467
F6 {South, Southeast} × {milky, sweet, white} 6 0.9000

Table 1.2: Six small and redundant patterns, their their areas and their densities.
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South 0.29 0.05 0.89 0.04 0.94 0.89
Southeast 0.69 0.76 0.83 0.84 0.98 0.87

North 0.82 0.96 0.15 0.49 0.87 0.51
Northeast 0.52 0.09 0.86 0.07 0.94 0.48

West-Center 0.91 0.81 0.05 0.73 0.33 0.39

South 0.29 0.05 0.89 0.04 0.94 0.89
Southeast 0.69 0.76 0.83 0.84 0.98 0.87

North 0.82 0.96 0.15 0.49 0.87 0.51
Northeast 0.52 0.09 0.86 0.07 0.94 0.48

West-Center 0.91 0.81 0.05 0.73 0.33 0.39

Table 1.3: Cells of the uncertain matrix that the six patterns in Table 1.2 cover.
For clarity, the first three patterns are shown in the top matrix, whereas the last three
patterns are shown in the bottom matrix. The gray scale represents the pattern density,
darker meaning denser.

the patterns are shown three by three.

Since the patterns that complete algorithms can discover in a reasonable time

are usually fragments of the desired patterns, the problem looks like a “jigsaw

puzzle”, whose pieces are overlapping. Several works [Sylvain Blachon et al., 2007;

Gunjan K. Gupta and Ghosh, 1999; Hannu Toivonen et al., 1995; Wong and Li., 2008;

Zhao and Zaki., 2005; Cerf et al., 2009b] tried to solve that puzzle when the tensor

(usually, only matrices) is 0/1 and the pieces of the puzzle are sub-tensors full of 1.

In that same context, the recent literature largely abandoned the local-to-global ap-

proach due to the exponential number of fragments to summarize and tried to directly

and heuristically discover the global patterns in the tensor. That problem is known

under the name Boolean Tensor Factorization (BTF) because the elements of the pat-
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South 0 0 1 0 1 1
Southeast 1 1 1 1 1 1

North 1 1 1 0 1 1
Northeast 1 0 1 0 1 0

West-Center 1 1 0 1 0 0

Table 1.4: 0/1 matrix obtained by rounding every value in the uncertain matrix in
Table 1.1 and two patterns (highlighted in gray and dark gray) discovered in this 0/1
matrix.

terns (its rows and the columns if the 0/1 tensor is actually a matrix) can be encoded

in Boolean matrices (one per dimension of the dataset) whose outer product should

approximately reconstruct the 0/1 tensor.

To the best of our knowledge, this dissertation details the first algorithms to

summarize uncertain tensors with patterns. 0/1 tensors (and matrices) are a special

case. As exemplified earlier with the chocolate sale data, being able to handle uncertain

data allows to avoid a lossy pre-processing step in applications where the original data

is numeric and the patterns of interest are sub-tensors with high (or low) values. In

other terms, rounding to either 0 or 1 the values, in [0, 1], of an uncertain tensor harms

the ability to discover the pattern in the original dataset. For example, rounding every

value in the uncertain matrix in Table 1.1 results in the 0/1 matrix in Table 1.4. Two

large and dense patterns are discovered in that 0/1 matrix but they differ from those

discovered in the uncertain matrix; Looking at the original data, they are worse.

In 2011, Mirkin and Kramarenko [2011] defined a regression model

whose explanatory variables are patterns and the tensor (which is 0/1 in

Mirkin and Kramarenko [2011]) is the target variable. More precisely, that model

predicts that every value in the tensor is the density of the densest pattern covering

it. In that framework, the best single pattern is the one with the largest product of

its area with the square of the average value in it (i. e., the squared density). Mirkin

and Kramarenko propose hill-climbing to search for patterns locally maximizing that

objective function.

This dissertation proposes two algorithms to discover patterns that are candi-

date explanatory variables for Mirkin and Kramarenko’s regression model. Figure 1.1

shows the proposed workflow to summarize uncertain tensors within that model.

Starting from an uncertain tensor, a set of fragments are mined in a complete way
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Uncertain
Tensor

Complete
Algorithm
(multidupehack)

Bigfoot-lr Bigfoot

PP (PAF’s
pre-

processing)
PAF

Forward
Selection

Patterns
of Interest

Figure 1.1: Proposed workflow for discovering patterns from an uncertain tensor. The
dashed boxes are optional steps. There are two ways to discover patterns, with either
Bigfoot or PAF.

(multidupehack [Cerf and Meira Jr., 2014] is strongly suggested). Next, there are two

options of algorithms which this dissertation proposes, both of them including an op-

tional step to reduce the set of fragments with pre-processing procedures. At end a

stepwise regression algorithm is also proposed to select over the mined patterns, the

explanatory variables for the model.

The first algorithm, Bigfoot1, is the closest to Mirkin and Kramarenko’s pro-

posal. It relies as well on hill-climbing, but in a different parameter space, to grow

every small pattern at its input into a pattern with a locally maximal area times den-

sity squared. The second algorithm, PAF2, grows as well small patterns that a complete

algorithm typically returns but does so by hierarchical agglomeration. Figure 1.2 shows

the dendrogram resulting from the hierarchical agglomeration of the six small pattern,

the leaves of the dendrogram, in Table 1.2. Contrary to Bigfoot, PAF can discover

nested patterns, i. e., large patterns that contain smaller but denser patterns. Once the

candidate patterns built, either by Bigfoot or by PAF, this dissertation proposes to

use a stepwise regression technique, the forward selection, to compose the final model.

1Bigfoot is a recursive acronym. It stands for Bigfoot Is Growing Fragments Out Of Tensors.

It did not exist in nature. We designed it.
2PAF stands for “Papas At Farm”, which is, itself, an acronym for “PAF Agglomerates Patterns

And Selects Agglomerates To Fit A Regression Model”.
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It selects a small number of candidate patterns that fit but do not overfit the uncertain

tensor. Any of the two algorithms in addition to the stepwise regression technique can

be used to summarize uncertain tensors.

After an overview of the techniques used in this dissertation, in Section 1.1, and

a few basic definitions in Section 1.2, Chapter 2 presents Mirkin and Kramarenko’s

regression model and other related works. Chapter 3 presents the Bigfoot algorithm,

detailing its hill-climbing in the pattern dimension space. Bigfoot solves an Integer

Linear Programming problem (or its relaxation) at every iteration of the hill-climbing

procedure. Chapter 4 deals with PAF. A similarity non-metric measure between pat-

terns is defined and PAF’s hierarchical agglomeration is detailed. A pre-process is

proposed as well in that chapter. It upper-bounds PAF’s space complexity, decreases

its time requirements but does not affect much the quality of the patterns that are built.

Chapter 5 details the forward selection of the final model: a small set of patterns, among

those that Bigfoot or PAF discovers, that fits but not overfits the uncertain tensor.

Experiments in Chapter 6 compare Bigfoot and PAF with state-of-art algorithms.

Using real-world uncertain tensors, it shows as well that both approaches can quickly

turn tens of thousands of small patterns, with much redundancy of information, into a

few large patterns that summarize the uncertain tensor. Finally, Chapter 7 concludes

the dissertation and discusses future work.
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{Southeast, West-Center}
×

{crunchy, semisweet}

λF1
= 0.7850

{Southeast, West-Center}
×

{bitter, semisweet}

λF4
= 0.7925

{Southeast, North,
West-Center}×

{bitter, crunchy}

λF2
= 0.8250

{South, Southeast}
×

{milky, sweet, white}

λF6
= 0.9000

{South, Southeast,
Northeast}×

{milky, sweet}

λF3
= 0.9067

{Southeast, North}
×

{bitter, crunchy, sweet}

λF5
= 0.8467

{Southeast, West-Center}

×{bitter, crunchy,

semisweet}

λF1⊔F4
= 0.7900

{Southeast, North,

West-Center} × {bitter,

crunchy, semisweet}

λF1⊔F4⊔F2
= 0.7789 {South, Southeast,

Northeast} × {milky,

sweet, white}

λF6⊔F3
= 0.8533

{Southeast, North,

West-Center} × {bitter,

crunchy, semisweet,

sweet}

λF1⊔F4⊔F2⊔F5
= 0.7658

Tensor

λT = 0.6017

Figure 1.2: PAF dendrogram result. The two patterns of the chocolate sales tensor discovered by the proposals of this work are
highlighted in gray cells.
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1.1 Overview of the Techniques Used in this

Dissertation

Integer programming aims to optimize a function under a set of constraints whose

variables are integers. In an Integer Linear Programming (ILP) problem, the objec-

tive function and the constraints are linear [Schrijver, 1998]. Integer programming is

NP-hard [Nemhauser and Wolsey, 1988]. An ILP problem can be seen as finding a

point x ∈ R
n inside an convex hyper-polyhedron (given by the union of the all half-

hyperspaces defined by the constraints) such that x maximizes the objective function.

Many algorithms solve ILP problems [Erwin Abbink, 2017]. The most popular ones are

the exact methods. The cutting-plane methods solve relaxations of linear programming

problems whose variables can become real numbers. They create a new constraint to

reduce the hyper-polyhedron into a smaller one until the optimal solution of the re-

laxation is also integer. Constraint separation is a generalization of the cutting-plane

method for ILP problems with an exponential number of constraints, whereas the col-

umn generation method deals with ILP problems where the number of variables is

exponential. There are methods that use the “divide and conquer” paradigm to ex-

plore the set of feasible solutions: branch-and-bound, cut-and-branch, branch-and-cut

and branch-and-price. Those methods use lower and upper bounds to make signifi-

cantly cuts in the solution space. The CPLEX optimizer [Meindl and Templ, 2013] is

one of the faster solvers. It implements all those methods (and more) to quickly solve

ILP problems. Despite the theoretical exponential time, CPLEX’s computation takes

almost polynomial time to solve any ILP instance [Bixby et al., 1988].

Hierarchical clustering is a data mining method to build a hierarchy of clusters, i. e.,

a dendrogram as in Figure 1.2. A cluster is simply a set of objects that are similar. The

choice of the similarity measure therefore has a fundamental impact on the obtained

clustering. There are two types of hierarchical clustering [Rokach and Maimon, 2005].

The hierarchical agglomeration is a bottom-up hierarchical clustering: every object

is initially alone in a cluster, and clusters are greedily merged pairwise until only one

cluster remains. On the contrary, the hierarchical division initially considers that all the

objects are in one single cluster and, iteratively, the largest cluster is greedily split until

there is one cluster per object. In this dissertation, PAF hierarchically agglomerates

the small patterns at its input, i. e., the “objects” are these patterns.
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1.2 Basic Definitions and Notations

Given n ∈ N dimensions (i. e., n finite sets, assumed disjoint without loss of generality)

D1, . . . , Dn, an uncertain tensor T maps any n-tuple t ∈ ∏n

i=1 Di (where
∏

denotes

the Cartesian product) to a value Tt ∈ [0, 1], called membership degree of t. In this

dissertation, a pattern in T is the Cartesian product of subsets of each of the n dimen-

sions. Formally, a set of n-tuples X ⊆ ∏n

i=1 Di is a pattern if and only if there exists

X1 ⊆ D1, . . . , Xn ⊆ Dn such that X =
∏n

i=1 Xi. Given two patterns X and Y , X is a

sub-pattern of Y and Y is a super-pattern of X if and only if X ⊆ Y . Agglomerating

X =
∏n

i=1 Xi and Y =
∏n

i=1 Yi results in the smallest pattern including both X and

Y , i. e.,
∏n

i=1 Xi ∪ Yi. It is denoted X ⊔ Y .

Given an n-tuple t ∈ ∏n

i=1 Di and i ∈ {1, . . . , n}, ti denotes the ith component

of t, hence an element of Di. Given a pattern X ⊆ ∏n

i=1 Di and an element e ∈ Di,

{t ∈ X | ti = e} is called a slice of X. For instance, if n = 2, the slices of a pattern

are its rows and columns.

Taking the uncertain tensor in Table 1.1, n = 2 and the two dimensions are:

Dregions = {South, Southeast, North, Northeast, West-Center};

Dchocolates = {bitter, crunchy, milky, semisweet, sweet, white}.

The two patterns emphasized in Table 1.1 are:

P1 = {South, Southeast, Northeast} × {milky, sweet, white};

P2 = {Southeast,North,West-Center} × {bitter,crunchy, semisweet,sweet}.

The agglomeration of those two patterns is:

X1 ⊔X2 = {South, Southeast, Northeast, North, West-Center} ×
{bitter, crunchy, milky, semisweet, sweet, white}.

The slice e = South of X1 is {South} × {milky, sweet, white}. Given the 2-tuple

t = (South, milky), t1 = South and t2 = milky.



Chapter 2

Related Work

The definition in Section 1.2 of a pattern is purely syntactical. To be semantically

relevant, a pattern must contain a “large” number of tuples and their membership de-

grees must be “high”. The data mining literature on pattern mining in 0/1 or uncertain

tensors formalizes and fulfills those objectives in different ways.

2.1 Complete Algorithms

2.1.1 0/1 Matrix Mining

This work focuses on mining tensors. A few exceptions are made here for

algorithms that only handle 0/1 matrices but technically relate to Bigfoot.

AC-Close [Cheng et al., 2006] lists closed patterns with dense rows and dense columns

(two lower-bounds are specified) by growing small patterns whose tuples all have mem-

bership degrees equal to 1: the frequent closed itemsets. Poernomo and Gopalkrish-

nan use ILP to output complete collections of patterns with upper-bounded numbers

[Poernomo and Gopalkrishnan, 2007] or proportions [Poernomo and Gopalkrishnan,

2009] of tuples having null membership degrees.

2.1.2 0/1 Tensor Mining

Given a 0/1 tensor, several algorithms, notably Data-Peeler [Cerf et al., 2009a],

list the closed patterns whose n-tuples all have membership degrees equal to 1.

Ignatov et al. [2015] survey relaxations of that definition. RMiner [Spyropoulou et al.,

2014] does not relax Data-Peeler’s definition but generalizes it to a multi-relational

context: 0/1 tensors sharing dimensions. To tolerate tuples with null membership de-

11
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grees, A-RMiner [Spyropoulou and Bie, 2014] grows intermediary patterns that RMiner

computes and that still only includes tuples with membership degrees equal to 1. Ev-

ery output pattern is a minimal pattern that contains all RMiner’s patterns shar-

ing such a common fragment. Given prior beliefs, Spyropoulou et al. [2014] and

Spyropoulou and Bie [2014] deem a pattern interesting if the ratio between its in-

formation content, which grows with its number of tuples, and its description length,

which grows with its number of elements in all dimensions, is high.

2.1.3 Uncertain Tensor Mining

multidupehack [Cerf and Meira Jr., 2014] generalizes Data-Peeler so that uncer-

tain tensors can be mined: n bounds (ǫ1, . . . , ǫn) ∈ R
n
+ specify how much the total

membership degree of the n-tuples in every slice of a pattern can deviate from the

sum that would be obtained if these membership degrees were all 1. Formally, a

pattern X =
∏n

i=1 Xi output by multidupehack satisfies ∀i ∈ {1, . . . , n}, ∀e ∈ Xi,
∑

t∈X s.t. ti=e(1 − Tt) ≤ ǫi. multidupehack, like Data-Peeler, enforces as well a

closedness constraint, which discards all strict sub-patterns of a valid pattern, and

handles additional relevance constraints that prune the search of the patterns satisfy-

ing them. The minimal size constraint — “involving at least γi ∈ N elements of Di” —

and the minimal area constraint — “having at least ν ∈ N n-tuples” — are examples of

constraints that force every output pattern to be large enough and that greatly shorten

the run time. multidupehack actually computed the patterns in Table 1.2. They are,

in the uncertain matrix in Table 1.1, all the patterns with at least two regions and

two types of chocolate (γ1 = γ2 = 2) when the tolerance to noise is ǫ1 = ǫ2 = 0.6. A

consequence of the definition of a pattern and of the chosen threshold is that every row

and every column of a minimally-sized (i. e., 2 × 2) pattern has at least a 2−0.6
2

= 0.7

density.

To the best of our knowledge, DCE [Georgii et al., 2011] is the only other complete

algorithm to mine uncertain tensors. Using synthetic datasets, Cerf and Meira Jr.

[2014] show that DCE’s definition of a valid pattern tends to catch patterns that go

over the edges of the patterns that were planted, whereas multidupehack’s patterns do

not, unless the tensor is very noisy. Moreover, multidupehack scales better than DCE.

Yet, increasing its bounds (ǫ1, . . . , ǫn) still exponentially influences the run time: given

a reasonable time budget, multidupehack can only return many overlapping fragments

of a large and noisy pattern to discover.
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2.2 Heuristic Algorithms

2.2.1 Agglomerating Patterns

triCluster [Zhao and Zaki, 2005] can optionally post-process the patterns it mines

in 3-way tensors. It can merge two overlapping patterns X and Y into X⊔Y . That hap-

pens when |X∪Y |
|X⊔Y |−|X∪Y |

is large enough. That process ignores the membership degrees.

In contrast, Alpha [Cerf et al., 2009b] takes into account the membership degrees of

the n-tuples in X ⊔ Y to define the similarity between the patterns X and Y in a 0/1

tensor T . That similarity is minn
i=1 mine∈Xi∪Yi

∑
t∈X⊔Y s.t. ti=e Tt

|{t∈X⊔Y s.t. ti=e}|
, i. e., the smallest den-

sity among those of the “slices” of X ⊔ Y . Alpha hierarchically agglomerates patterns

according to that similarity. It then selects a pattern in the dendrogram if it is distant

from its parent and close to only having n-tuples with membership degrees equal to 1.

A difference combines the two criteria. triCluster’s and Alpha’s similarities lack

theoretical grounds.

Wong and Li [2008] propose to hierarchically agglomerate patterns in 0/1 ma-

trices. The distance between two patterns X and Y is a sum of normalized entropy

in the two rectangular regions of (X ⊔ Y ) \ (X ∪ Y ), weighted by their respective ar-

eas. That computation sees the elements in one of the two dimensions as independent

probabilistic events and the distance between two patterns depends on the choice of

this dimension, i. e., the distance between X and Y is different if the 0/1 matrix is

transposed. It therefore is unclear how the distance could be generalized to patterns

in 0/1 tensors.

2.2.2 Directly Mining 0/1 Tensors

Several algorithms [Leenen et al., 1999; Miettinen, 2011; Bĕlohlávek et al., 2013;

Erdös and Miettinen, 2013; Metzler and Miettinen, 2015; Park et al., 2017] approxi-

mately factorize n-way 0/1 tensors. To be easily interpreted as r patterns, the n factors

of the rank-r CANDECOMP/PARAFAC (CP) decomposition are forced to be 0/1 too.

More precisely, the Boolean rank-r CP decomposition of a tensor T ∈ {0, 1}D1×···×Dn

aims to discover n matrices A1 ∈ {0, 1}|D1|×r, . . . , An ∈ {0, 1}|Dn|×r that minimize

‖T −maxrk=1 A
1
:k ⊗ · · · ⊗ An

:k‖, where Ai
:k denotes the kth column of Ai, ⊗ is the outer

product, ‖.‖ is the Frobenius norm [Dummit and Foote, 2003], and maxrk=1 returns a

tensor where the membership degree of an n-tuple is 1 if it is 1 in at least one of r

tensors, otherwise 0. In each of those r tensors, the pattern is the set of n-tuples with

value 1, i. e., A1
:k ⊗ A2

:k ⊗ A3
:k, where k ∈ {1, . . . , r} identifies the pattern. Figure 2.1

illustrates the CP decomposition of a 3-way 0/1 tensor T . The outer product of the
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Figure 2.1: Boolean rank-r CP decomposition of a 3-way tensor T . T is decomposed
into three factors, i. e., three 0/1 matrices A1, A2 and A3.

X1 X2

South 1 0
Southeast 1 1

North 1 1
Northeast 1 0

West-Center 0 1

X1 X2

bitter 1 1
crunchy 0 1

milky 1 0
semisweet 0 1

sweet 1 0
white 0 1

Table 2.1: A rank-2 CP decomposition of the 0/1 matrix in Table 1.4. Each
of the two factors relates to each of the two dimensions of the matrix.
The outer product of the first column of each of the two factors gives the
first pattern, {South, Southest, North, Northest} × {bitter, milky, sweet}.
Analogously, the second pattern is {Southest, North, West− Center} ×
{bitter, crunchy, semi− sweet, white}.

three 0/1 factors is a 0/1 tensor that aims to be as close as possible (w.r.t. the Frobe-

nius distance) to the original tensor T (top figure). Intuitively, that product plants

in a null tensor, having the same sizes as T , r patterns, i. e., r (possibly overlapping)

sub-tensors full of 1 (bottom figure). The kth such pattern (k ∈ {1, . . . , r}) is the outer

product of the kth column of each of the three factors. The r patterns minimizing the

objective function are usually large and dense.

BCP_ALS [Miettinen, 2011] heuristically seeks them by Alternating Least Squares,

a method that heuristically solves in quadratic time the non-convex optimization prob-
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lem of the CP decomposition by alternatively fixing n − 1 factors and computing the

remaining one. DBTF [Park et al., 2017] distributes that method on the Spark frame-

work and exhibits near-linear scalability with respect to the size of the 0/1 tensor, its

density, the rank r (a parameter) of the factorization and the number of machines.

Table 2.1 presents the two factors, with r = 2, that DBTF computes from the rounded

matrix in Table 1.4.

Walk’n’Merge [Erdös and Miettinen, 2013] discovers patterns through succes-

sive random walks in a graph: its vertices stand for the n-tuples with membership

degrees at 1 and its edges link n-tuples that differ in one single dimension. The dense-

enough patterns are completed with Data-Peeler-like patterns. Pairs of patterns

are merged if the result is sufficiently dense. Finally, the best patterns are output,

starting with those that most decrease the objective function, a greedy process that

stops when the model would overfit the data according to the Minimal Description

Length principle, a formalization of Occam’s razor in which the best model (and its

parameters) for a given set of data is the one that leads to the best compression of

the data [Grünwald, 2007]. The membership degrees in an uncertain tensor must be

rounded to 0/1 before applying any algorithm cited in this section. Non-negative tensor

factorization directly applies to an uncertain tensor but is inappropriate: the values in

the tensor reconstructed from the factors are not constrained to be at most 1. Besides,

because such a decomposition weights elements (not whole patterns), it is harder to

interpret than a disjunctive box cluster model.

2.3 Disjunctive Box Cluster Model

Mirkin and Kramarenko [2011] map pattern mining in 0/1 tensors to a regression prob-

lem: the set X of relevant patterns explains the membership degrees in the tensor T .

More precisely, a parameter λX ∈ R is estimated for every pattern X ∈ X and the

regression model, called disjunctive box cluster model, predicts that Tt is:

T̂t =







max
X∈X s.t. t∈X

λX + λ0 if ∃X ∈ X s.t. t ∈ X

λ0 otherwise
(2.1)

The analyst fixes the intercept λ0 ∈ [0, 1] of the model. A greater λ0 favors the discovery

of a model with more, smaller, and denser patterns. The average membership degree

in T minimizing RSST (∅), it should be considered the default value of λ0. From a

biclustering point of view, the uncertain matrix can be seen as a similarity matrix and
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λ0 becomes a similarity shift, i. e., a constant that is subtracted to every similarity.

Model 2.2 predicts that Tt − λ0 is a value that is independent from λ0:

T̂t − λ0 =







max
X∈X s.t. t∈X

λX if ∃X ∈ X s.t. t ∈ X

0 otherwise
(2.2)

Ordinary least squares guide the selection of the model, i. e., the model aims to

minimize the residual sum of squares, denoted RSST :

RSST (X ) =
∑

t∈
∏n

i=1
Di

(Tt − T̂t)
2 (2.3)

Encoding X in the Boolean factors A1, . . . , An of a rank-|X | Boolean CP de-

composition (see Section 2.2), RSST (X ) can be rewritten as: RSST (A
1, . . . , An) =

‖T − λ01−max
|X |
k=1 λkA

1
:k ⊗ · · · ⊗An

:k‖2. With λ0 set to 0, the Boolean CP decomposi-

tion of a tensor therefore aims to minimize RSST with ∀k ∈ {1, . . . , |X |}, λk = 1. In

contrast, those are parameters in the disjunctive box cluster model: they are estimated

so that RSST is minimized.

The TriclusterBox algorithm [Mirkin and Kramarenko, 2011] repeatedly searches

for one single pattern X that locally minimizes X 7→ RSST ({X}). In that framework,

breaking the residual sum of squares into a sum over the n-tuples t ∈ X, where T̂t =

λX + λ0, and a sum over the n-tuples t /∈ X, where T̂t = λ0:

RSST ({X}) =
∑

t∈X

(Tt − λX − λ0)
2 +

∑

t∈(
∏n

i=1
Di)\X

(Tt − λ0)
2

=
∑

t∈X

(

(Tt − λ0)
2 − 2λX(Tt − λ0) + λ2

X

)

+
∑

t∈(
∏n

i=1
Di)\X

(Tt − λ0)
2

=
∑

t∈
∏n

i=1
Di

(Tt − λ0)
2 − 2λX

∑

t∈X

(Tt − λ0) + |X|λ2
X

Given an arbitrary pattern X, λX must minimize λX 7→ RSST ({X}):

∂RSST ({X})
∂λX

= 0

−2
∑

t∈X

(Tt − λ0) + 2|X|λX = 0

λX =

∑

t∈X(Tt − λ0)

|X|
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Translated into English, λX is simply the density of the pattern X after the similarity

shift, a value that the analyst easily interprets.

Given that optimal λX for any pattern X, the pattern that minimizes X 7→
RSST ({X}) is as well the pattern that maximizes the function g : X 7→ |X|λ2

X , i. e.,

after the similarity shift, the area times the density squared:

argmin
X

RSST ({X}) = argmin
X

∑

t∈
∏n

i=1
Di

(Tt − λ0)
2 − 2λX

∑

t∈X

(Tt − λ0) + |X|λ2
X

= argmin
X

−2λX

∑

t∈X

(Tt − λ0) + |X|λ2
X

= argmin
X

−2λX |X|λX + |X|λ2
X

= argmin
X

−|X|λ2
X

= argmax
X

|X|λ2
X

= argmax g

TriclusterBox searches for patterns that locally maximize g. It starts with pat-

terns that involve one single element in the n−1 first dimensions. In the nth dimension,

an initial pattern involves all elements such that it only includes n-tuples with mem-

bership degrees equal to 1. Each of those
∏n−1

i=1 |Di| patterns is the starting point of

a hill-climbing procedure: every iteration leads to a pattern that involves one more or

one less element, chosen so that that g increases as much as possible. Once g cannot

increase, hill-climbing stops and the current pattern is added to the set X to return.
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Bigfoot

The Bigfoot algorithm aims to grow small patterns, e. g., computed by

multidupehack, into more relevant patterns (patterns that are larger and denser).

From now on, the small patterns at the input of Bigfoot (and, in the next chap-

ter, PAF) are called fragments. Like TriclusterBox [Mirkin and Kramarenko, 2011],

Bigfoot uses hill-climbing to repeatedly search for one pattern that locally mini-

mizes the residual sum of squares (2.3) of the regression model (2.2), i. e., that locally

maximizes g : X 7→ |X|λ2
X with λX =

∑
t∈X(Tt−λ0)

|X|
. However, the locality is differ-

ently defined. TriclusterBox [Mirkin and Kramarenko, 2011] considers two patterns

X =
∏n

i=1 Xi and Y =
∏n

i=1 Yi neighbors (i. e., an iteration of TriclusterBox can go

from X to Y ) if and only if |(∪n
i=1Xi)∆(∪n

i=1Yi)| = 1, where ∆ denotes the symmet-

ric difference. In contrast, in this section, X and Y are neighbors (i. e., an iteration

of Bigfoot can go from X to Y ) if and only if they both include the input pattern

fragment to grow and | ∪n
i=1 Xi| − | ∪n

i=1 Yi| = ±1. Unless X is the pattern fragment to

grow, X therefore has more neighbors: Bigfoot more thoroughly explores the pattern

space than TriclusterBox and usually discovers patterns with higher g values.

Table 3.1 illustrates the difference between TriclusterBox ’s hill-climbing and

Bigfoot’s. Suppose that the first three iterations of hill-climbing grow the (2 × 2)-

fragment F1 (darker cells), with |F1|λ2
F1

= 4
(

4
4

)2
= 4, into the (3 × 4)-pattern P1 (all

gray cells), with |P1|λ2
P1

= 12
(

10
12

)2 ≈ 8.333. Bigfoot’s next iteration searches for a

pattern of size 4× 4 or 3× 5 that contains F1, whereas TriclusterBox ’s next iteration

searches for a pattern (of size 4 × 4 or 3 × 5 too) that contains P1 or for a pattern

(of size 2 × 4 or 3 × 3) that is contained in P1. Given the size of the whole matrix,

Bigfoot therefore considers 30 candidate patterns to find the one with the greatest

area times density squared, whereas TriclusterBox only considers 11 candidate pat-

terns, one candidate per element in D1 ∪ D2. Table 3.2 depicts the pattern P2 that

19
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c1 c2 c3 c4 c5 c6

r1 0 0 1 1 1 1
r2 0 0 1 0 1 1
r3 0 1 1 1 0 1
r4 1 0 1 1 1 0
r5 1 1 1 1 0 0

Table 3.1: Three iterations of hill-climbing may grow a (2 × 2)-fragment F1 (darker
cells) into a (3×4)-pattern P1 (all dark cells), which is constrained to be a super-pattern
of F1.

c1 c2 c3 c4 c5 c6

r1 0 0 1 1 1 1
r2 0 0 1 0 1 1
r3 0 1 1 1 0 1
r4 1 0 1 1 1 0
r5 1 1 1 1 0 0

Table 3.2: (4×4)-pattern P2 (all grayed cells) with the highest area times squared den-
sity among the 30 super-patterns of F1 (darker cells) of size 4×4 or 3×5. An iteration
of Bigfoot’s hill-climbing goes from P1 in Table 3.1 to P2, whereas TriclusterBox ’s
hill-climbing terminates at P1.

Bigfoot finds. Among the 30 candidate super-patterns of F1, P2 maximizes the ob-

jective function: |P2|λ2
P2

= 16
(

13
16

)2 ≈ 10.563. In contrast, none of the 11 candidate

patterns, that TriclusterBox considers, has an area times density squared that exceeds

that of P1, i. e., 8.333. TriclusterBox ’s hill-climbing therefore stops and returns P1.

That example shows that Bigfoot more thoroughly explores the pattern space, what

allows the discover of higher local maximums of g. On the negative side, Bigfoot’s

hill-climbing iterations take more time than TriclusterBox ’s.

Section 3.1 presents the Bigfoot algorithm, its pseudo-code, and the function

it maximizes. Section 3.2 defines the ILP problems solved during the hill-climbing.

Finally, Section 3.3 presents Bigfoot-lr, which solves linear relaxation of Bigfoot’s

ILP problems.

3.1 Algorithm

Algorithm 1 gives a big picture of Bigfoot. Every iteration of Bigfoot starts with the

selection of a fragment that no previously discovered pattern, in X , includes (line 18).

Line 4 chooses that fragment as the one that, added to X , minimizes RSST . It is indeed
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the most promising fragment to grow. At the first iteration, it actually is the fragment

with the greatest g. In the subsequent iterations, fragments that largely overlap with

the previously discovered patterns are usually deemed less promising. Section 5.2 is

dedicated to the efficient computation of argminG∈F RSST (X ∪ {G}).

Algorithm 1: Bigfoot

Input: uncertain tensor T , set of fragments F
Output: set of patterns X fitting T through model (2.2)

1 X ← ∅
2 F∪ ← ∪F∈FF
3 while F 6= ∅ do

4 F ← argminG∈F RSST (X ∪ {G})
5 Xmax ← F
6 intermediary ← true

7 while intermediary do

8 intermediary ← false

9 (S1, . . . , Sn)← (|Xmax
1 |, . . . , |Xmax

n |)
10 for i = 1→ n do

11 Si ← Si + 1
12 X ← f(T,F∪, F, g(X

max), S1, . . . , Sn)
13 if g(X) > g(Xmax) then

14 Xmax ← X
15 intermediary ← true

16 Si ← Si − 1

17 X ← X ∪ {Xmax}
18 F ← {F ∈ F | F 6⊆ Xmax}
19 return X

Once the fragment F chosen, Bigfoot searches for a pattern Xmax ⊇ F that

locally maximizes g, in the sense specified at the beginning of this chapter. Starting

with F (line 5), lines 5–16 implement a hill-climbing maximization of g in the space

of the number of elements (S1, . . . , Sn) ∈ N
n that the super-patterns of F involve, in

each of the n dimensions. Any of those numbers (line 10) can be incremented (line 11)

during the search. Among super-patterns X =
∏n

i=1 Xi of F with |X1|, . . . , |Xn|
matching the last n arguments of the function f (line 12), called n times per iteration

of the hill-climbing, f returns the one maximizing g.

Figure 3.1 illustrates the hill-climbing maximization of the non-linear function

g : X 7→ |X|λ2
X when Bigfoot grows the fragment F2, in Table 1.2. That fragment,

which involves 3 regions and 2 chocolate types, must first grow into a pattern of sizes

either 4 × 2 (one more region) or 3 × 3 (one more chocolate type). In that case,
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Figure 3.1: Hill-climbing maximization of g : X 7→ |X|λ2
X in the space of the number

of elements (S1, S2).

the super-pattern of F2 that maximizes g is the one (denoted F ′
2 in the figure) that

involves one more chocolate type: sweet. The subsequent iteration of the hill-climbing

procedure is, here, the last one. It results in the discovery of the pattern X2, which

locally maximizes g. Notice that the hill-climbing procedure terminates before the

discovery of g’s global maximum, which is, in this example, obtained for the pattern

that includes all the 2-tuples of the uncertain matrix. That illustrates two potential

problems:

1. Hill-climbing may prematurely terminate: given a fragment F to grow, this op-

timization technique does not necessarily return the super-pattern of F that

globally maximizes g. Only a local maximum of g is guaranteed to be discovered.

2. When n = 2, i. e., for patterns in uncertain matrices, maximizing g : X 7→ |X|λ2
X

apparently favors too large patterns, which go over the edges of the “desired”

patterns. Consider, for instance, two patterns X and Y that have the same
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density, involve the same number of elements in each of the n dimensions and do

not share any element. Then, |X ⊔ Y | = 2n|X| and λ|X⊔Y | ≥
2|X|λX

2n|X| =
λX

2n−1
.

As a consequence, g(X ⊔ Y ) ≥ g(X)

2n−2
. If n = 2, g(X ⊔ Y ) ≥ g(X), i. e., X ⊔ Y

is preferred over X (and Y ), whatever the values Tt for t ∈ (X ⊔ Y ) \ (X ∪ Y ),

which can possibly be all null. Since g(X ⊔ Y ) exponentially decreases when n

increases, this problem is quite unusual for n ≥ 3.

Assuming that every pattern of interest contains at least one fragment that no

other pattern contains and there is no fragments of non-interesting patterns, the both

problems are hopefully solved. Growing each fragment gives all interesting patterns

except the (too) large ones, since there is no fragment that leads to the local (or

optimal) maximum of g related to them. In case of chocolates sales tensor, there is no

fragment that leads to the top-right corner in figure 3.1.

3.2 ILP Model

Here is the Integer Linear Programming (ILP) problem that f solves:

Maximize
∑

t∈F∪

wt(Tt − λ0) (3.1)

under the following constraints:

∀t ∈ F∪, 0 ≤
n
∑

i=1

xti − nwt ≤ n− 1 (3.2)

∀t ∈ F , ∀i ∈ {1, . . . , n}, xti = 1 (3.3)

∀i ∈ {1, . . . , n},
∑

e∈{ti|t∈F∪}

xe = Si (3.4)

∀t ∈ F∪, wt ∈ {0, 1} (3.5)

∀e ∈ ∪n
i=1{ti | t ∈ F∪}, xe ∈ {0, 1} (3.6)

Constraints 3.5 and 3.6 force all variables wt and xe to be either 0 or 1. wt = 1

indicates that t is in the returned pattern. xe = 1 indicates that at least one of

those n-tuples, with wt = 1, involves the element e. f therefore returns the pattern

X =
∏n

i=1{e ∈ Di | xe = 1}. As detailed later, Constraint 3.2 forces the values

of all variables wt and xe to be coherent with the syntactic definition of a pattern

(see Section 1.2). Constraint 3.3 forces the returned pattern X to be a super-pattern
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of the grown fragment F , i. e., X ⊇ F . Constraint 3.4 forces the returned pattern

X =
∏n

i=1 Xi to have ∀i ∈ {1, . . . , n}, |Xi| = Si. Given those constant cardinalities, |X|
is constant too. It is

∏n

i=1 Si. That is why maximizing g(X) = |X|λ2
X =

(
∑

t∈X(Tt−λ0))2

|X|

amounts to maximizing
∑

t∈X(Tt − λ0).

Note that f maximizes
∑

t∈F∪
wt(Tt − λ0), which is slightly different from

∑

t∈X(Tt − λ0): n-tuples that are not in F∪ (i. e., not found in any fragment) are

missing. f therefore assumes that ∀t /∈ F∪, Tt = λ0. Hopefully, the fragments include

all the n-tuples in the desired patterns, i. e., ∪X∈XX ⊆ F∪. If so, the assumption is

perfectly coherent with Model (2.2), which predicts ∀t /∈ ∪X∈XX, T̂t = λ0. However

the fragments do not need to include all the n-tuples in the patterns of interest. In

particular, f returns
∏n

i=1{e ∈ Di | xe = 1} (and not {t ∈ F∪ | wt = 1}), which can

include n-tuples that are not in F∪.

Even if the assumption “Tt = λ0 if t /∈ F∪” is coherent with Model (2.2), its mere

presence requires a justification. It is simple: for f ’s computation to be fast, the number

of variables in the ILP problem ought to be small. Thanks to the assumption, there are

“only” |F∪| variables wt (Constraint 3.5) and |{ti | t ∈ F∪}| variables xe (Constraint 3.6)

rather than, respectively,
∏n

i=1 |Di| and
∑n

i=1 |Di| without the assumption. A smaller

number of xe variables is particularly interesting. Indeed, Constraint 3.2 is equivalent

to:

∀t ∈ F∪, wt = 1⇔ ∀i ∈ {1, . . . , n}, xti = 1 .

A valuation of the xe variables therefore implies a unique valuation of the wt variables,

and reciprocally. Thanks to that, the ILP solver only needs to branch on the xe

variables, which usually are far less numerous: | ∪n
i=1 {ti | t ∈ F∪}| of xe variables vs.

|F∪| of wt variables.

Although g(Xmax) is an argument of f , it does not appear in the ILP model

above. One constraint is indeed added to fasten the resolution of the ILP problem

without altering Algorithm 1’s output:

∑

t∈T∪

wt(Tt − λ0) >

√

√

√

√g(Xmax)
n
∏

i=1

Si (3.7)

∏n

i=1 Si is the area of the pattern X that f will return, i. e., |X|. Under the assumption

“Tt = λ0 if t /∈ F∪”, Constraint 3.7 therefore is equivalent to g(X) > g(Xmax). Since

f ’s output only matters if the test at line 13 of Algorithm 1 passes, Constraint 3.7

safely prunes the search space. It enforces a lower-bound on the values of g that are

acceptable, what prevents the ILP solver (which uses a branch-and-cut algorithm) from
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considering patterns that are worse than the best pattern found so far, at the previous

iteration of the hill-climbing procedure.

3.3 Bigfoot-lr

To solve the ILP problem above, f may take exponential time. For a polynomial time

complexity, that problem can be linearly relaxed, i. e., Constraint 3.5 is substituted by:

∀t ∈ F∪, wt ∈ R .

To maximize
∑

t∈F∪
wtTt (Problem 3.1) while satisfying the first inequality of Con-

straint 3.2 (the only constraint involving the wt variables), wt is easily computed for

all t ∈ F∪. It simply is
∑n

i=1
xti

n
. The problem can therefore be rewritten as the maxi-

mization of:
∑

t∈F∪

∑n

i=1 xti

n
(Tt − λ0) =

1

n

n
∑

i=1

∑

t∈F∪

xti(Tt − λ0) .

The n-tuples in F∪ can be taken slice per slice (definition in Section 1.2), i. e.,

the linearly relaxed problem is:

Maximize
1

n

n
∑

i=1

∑

e∈Di

(

xe

∑

t∈F∪ s.t. ti=e

(Tt − λ0)

)

(3.8)

The innermost sums are constants. They only need to be computed once, at the

beginning of Algorithm 1. Solving Problem 3.8 under the (remaining) constraints 3.3,

3.4 and 3.6 is trivial. Constraint 3.3 forces xe = 1 for all elements e involved in the

grown fragment and additional xe variables are set to 1 until Constraint 3.3 is satisfied:

the variables xe with e in the proper dimension and the greatest
∑

t∈F∪ s.t. ti=e(Tt−λ0).

Algorithm 2 gives the pseudo-code of that solution. It runs in O(
∑n

i=1 Si) time.

Algorithm 2: f with the linear relaxation

Input: D1, . . . , Dn ordered w.r.t.
∑

t∈F∪ s.t. ti=e

(Tt − λ0), fragment F , numbers

of elements (S1, . . . , Sn)
Output: Pattern X, solution to the constrained Prob. 3.8

1 for i = 1→ n do

2 Xi ← {ti | t ∈ F}
3 Xi ← Xi ∪ {last Si − |Xi| elements in Di \Xi}
4 return

∏n

i=1 Xi
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Bigfoot-lr is the name given to Algorithm 1 when f greedily solves the linearly

relaxed problem. Only growing the fragments with n-tuples in the densest slices of F∪

is naive. Section 6 shows that Bigfoot-lr poorly performs: its hill-climbing searches

terminate after a few iterations and it returns patterns that are only slightly larger

fragments of the interesting patterns. However Bigfoot can achieve the work, i. e., it

can further grow the patterns that Bigfoot-lr outputs. Being larger than the initial

fragments, Bigfoot-lr’s patterns save some iterations of Bigfoot’s hill-climbing. On

the other hand, Bigfoot-lr’s patterns, taken altogether, include more n-tuples than

the initial fragments. As a consequence, solving the individual ILP problems takes

more time. TriclusterBox [Mirkin and Kramarenko, 2011], discussed in Section 2.2, is

less naive than Bigfoot-lr. However, it cannot provide “larger fragments” to Bigfoot.

Indeed, those fragments would not grow because they locally maximize g.
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PAF

Papas At Farm or simply PAF hierarchically agglomerates the fragments it is given

to construct candidate explanatory variables for the disjunctive box cluster model.

Those candidate variables are the patterns at the nodes of the built dendrogram (see

Figure 1.2). As for Bigfoot, a complete algorithm can provide the initial set of frag-

ments, the leaves of the dendrogram. Being a clustering algorithm, PAF relies on a

similarity measure, here a similarity between patterns. It agglomerates, iteration after

iteration, the two most similar patterns, what results in the smallest pattern contain-

ing both. Section 4.1 defines and justifies the designed similarity measure that PAF

uses. Section 4.2 gives PAF’s pseudo-code and illustrates its execution on a small set of

fragments. Finally, Section 4.3 presents a pre-processing step, which drastically speeds

up the subsequent execution of PAF and allows to sum up large uncertain tensors, in

which many fragments were mined.

4.1 Similarity Between Patterns

Besides the agglomeration operator ⊔, defined in Section 1.2, a hierarchical agglomer-

ation only requires the definition of a similarity. Here, the hierarchical agglomeration

aims to generate patterns that are good candidate variables for the final disjunctive

box cluster model (2.2). To measure the similarity between two patterns X and Y , it

therefore makes sense to contrast the residual sum of squares (2.3) of a model involving

X and Y with that of the model where X ⊔ Y substitutes X and Y . The distance1

1The term distance is here abused. dT only is a similarity measure, smaller values meaning more

similar.

27
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dT (X, Y ) between X and Y is here defined as

dT (X, Y ) = RSST ({X ⊔ Y })−RSST ({X, Y,X ⊔ Y }). (4.1)

Both models, {X ⊔Y } and {X, Y,X ⊔Y }, only depend on X and Y . Indeed, although

all pattern fragments to agglomerate are known and some agglomerates may have

already been generated, they will not necessarily be part of the final model. Like

in TriclusterBox [Mirkin and Kramarenko, 2011] and in Bigfoot, λP =
∑

t∈P (Tt−λ0)

|P |
,

for all pattern P in the tensor T . As explained earlier, that value, which minimizes

RSST ({P}), is easy to interpret: it is the density of P after the similarity shift by λ0.

Contrasting the residual sum of squares of the models {X ⊔ Y } and {X, Y }
(instead of {X, Y,X ⊔ Y }) may look more natural. Nevertheless, it would amount

to adding
∑

t∈(X⊔Y )\(X∪Y )

(

(Tt − λX⊔Y )
2 − (Tt − λ0)

2
)

to dT (X, Y ) and the similarity

between X and Y would increase with |(X⊔Y )\(X∪Y )|. As a consequence, PAF would

favor the agglomeration of patterns with smaller intersections to directly construct

large agglomerates, possibly missing intermediary denser patterns that could be more

relevant for the final model.

If λX and λY are both greater than λX⊔Y (agglomerating two patterns usu-

ally gives a sparser pattern), then, using the inclusion-exclusion principle (to rewrite

dT (X, Y ) with three sums over X, Y and X ∩ Y ) and the equality
∑

t∈P (Tt − λ0) =

|P |λP , Equation (4.1) becomes:

|X|(λX − λX⊔Y )
2 + |Y |(λY − λX⊔Y )

2

+ |X ∩ Y |(min(λX , λY )
2 − λ2

X⊔Y )

− 2(min(λX , λY )− λX⊔Y )
∑

t∈X∩Y (Tt − λ0).

If only λX (resp. λY ) is greater than λX⊔Y , dT (X, Y ) is |X|(λX⊔Y − λX)
2 (resp.

|Y |(λX⊔Y − λY )
2). If both are lesser than λX⊔Y , dT (X, Y ) = 0. The following ma-

trix gives the distances between the fragments in Table 1.3:

dT (F ,F) =

F2 F3 F4 F5 F6
































F1 0.003 0.169 10−5 0.010 0.115

F2 0.107 0.003 0.007 0.093

F3 0.125 0.086 0.005

F4 0.011 0.100

F5 0.059

(4.2)
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Each value is the distance between the fragment in row and the fragment in column.

Here, the two closest fragments are F1 and F4, with dt(F1, F4) = 10−5.

4.2 Hierarchical Agglomeration

Algorithm 3 describes PAF’s hierarchical agglomeration of the input pattern fragments.

Lines 2–3 insert in a set C of candidates for agglomeration every subset of two input

fragments. Line 5 takes in C the patterns X and Y that minimize dT . X ⊔Y is output

(line 6) because it enters the dendrogram. More precisely, X⊔Y substitutes all its sub-

patterns in the frontier F of the dendrogram (line 7 and 11). Every pair of candidates

that involves at least one of the patterns that X⊔Y substituted is not a candidate pair

anymore (line 8). On the contrary, X ⊔ Y and every other pattern in F form a new

candidate pair (lines 9-10). A new iteration starts (line 5 takes in C the two patterns

that minimize dT , etc.), unless the hierarchical agglomeration is over (C = ∅ at line 4).

Algorithm 3: PAF

Input: uncertain tensor T , set of fragments F
Output: patterns (variables for Model (2.2))

1 C ← ∅ /* a self-balancing binary search tree */

2 forall {X, Y } ⊆ F do

3 insert {X, Y } in C with key dT (X, Y )

4 while C 6= ∅ do

5 {X, Y } ← first element in C
6 output X ⊔ Y
7 F ← {F ∈ F | F 6⊆ X ⊔ Y }
8 C ← {{A,B} ∈ C | {A,B} ⊆ F}
9 forall F ∈ F do

10 insert {F,X ⊔ Y } in C with key dT (F,X ⊔ Y )

11 F ← F ∪ {X ⊔ Y }

To not have to search in C the candidate pair that minimizes dT , C is maintained

ordered by increasing dT . To efficiently compute those distances (formulas at the end

of Section 4.1), the elements in a dimension are arbitrarily ordered (for linear time

intersections/unions), T − λ01 is stored in a trie, any pattern X =
∏n

i=1 Xi in F is

stored as (X1, . . . , Xn) along its area |X| and
∑

t∈X(Tt − λ0), and so is a candidate

agglomerate. Finally, every pattern in F is linked to the pairs in C that include it so

that line 8 is efficiently computed.

In the running example, PAF starts with the agglomeration of F1 and

F4, which are the two closest fragments. The resulting pattern, F1 ⊔ F4 =
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{Southest, West− Center} × {bitter, crunchy, semisweet}, substitutes F1 and F4

in the frontier of the built dendrogram. The other patterns, F2, F3, F5 and F5, not

being included in F1 ⊔ F4, they stay in the frontier and their distances to F1 ⊔ F4 are

computed. At the beginning of the second iteration of the hierarchical agglomeration,

the distances between the patterns in the frontier are:

F3 F5 F6 F1 ⊔ F4




















F2 0.107 0.007 0.093 0.003

F3 0.086 0.005 0.015

F5 0.059 0.010

F6 0.107

(Iteration 2)

F2 and F1 ⊔ F4 being the two closest patterns, their agglomeration, F1 ⊔ F4 ⊔F2,

enters the frontier of the dendrogram. It substitutes F2 and F1 ⊔ F4. The considered

distances at the beginning of the third iteration are:

F5 F6 F1 ⊔ F4 ⊔ F2












F3 0.086 0.005 0.120

F5 0.059 0.008

F6 0.010

(Iteration 3)

This time, F3 and F6 are the two closest patterns. After the related update of

the dendrogram frontier, the distances between its patterns are:

F1 ⊔ F4 ⊔ F2 F3 ⊔ F6
( )

F5 0.008 0.062

F1 ⊔ F4 ⊔ F2 0.099
(Iteration 4)

The process goes on with the agglomeration of F5 and F1 ⊔ F4 ⊔ F2 and, finally,

with the agglomeration of F1 ⊔ F4 ⊔ F2 ⊔ F5 and F3 ⊔ F6, which are 0.041-distant from

each other. In that example, the agglomeration of all input fragments, the root of the

dendrogram, contains all the tuples in the uncertain matrix. It is not the case when

some element is not be involved in any fragment. Figure 1.2, at the end of Chapter 1,

depicts the built dendrogram. The nodes of the dendrogram are then candidates to

explanatory variables for Mirkin and Kramarenko’s regression model regardless of their

hierarchical structure.
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4.3 Growing the Pattern Fragments before the

Agglomeration

PAF computes a number of distances that depends on the square of the number of

pattern fragments it is given. PAF’s memory consumption, dominated by the storage

of C, depends on |F|2 too. Those computational costs may be prohibitive. To have a

constant m ∈ N upper bound |C|, Algorithm 3 must be given at most
√
m patterns to

agglomerate. Algorithm 4 does so. It takes the fragments at input, grows them, and

returns at most
√
m patterns.

Algorithm 4: PAF’s pre-processing

Input: uncertain tensor T , fragments F , m ∈ N

Output: patterns (variables for Model (2.2))
1 C ← ∅ /* a self-balancing binary search tree */

2 H ← ∅ /* a hash set */

3 forall X =
∏n

i=1 Xi ∈ F do

4 output X
5 e← argmaxf∈∪n

i=1
Di\Xi

λX∪{f}

6 insert (X, e) in C with key dT (X,X∪{e})

7 while |C| > √m do

8 (X, e)← C’s first entry taken out of C
9 X ← X∪{e}

10 output X =
∏n

i=1 Xi

11 e← argmaxf∈∪n
i=1

Di\Xi
λX∪{f}

12 if X∪{e} /∈ H then

13 H ← H ∪ {X∪{e}}
14 insert (X, e) in C with key dT (X,X∪{e})

15 return {X | (X, e) ∈ C}

It greedily adds one element to one of the n dimensions of a pattern X =
∏n

i=1 Xi.

If that element e is taken in the jth dimension (i. e., e ∈ Dj \ Xj), then X∪{e} =

(
∏j−1

i=1 Xi)×(Xj∪{e})×(
∏n

i=j+1 Xi) is obtained. Using the rationale in Section 4.1, the

best element e to add to a dimension of X minimizes dT (X,X∪{e}). Here, X ⊔X∪{e} =

X∪{e} and dT (X,X∪{e}) = RSST ({X∪{e}}) − RSST ({X,X∪{e}}). X∪{e} is usually

sparser than X, i. e., λX∪{e} < λX . If so, dT (X,X∪{e}) = |X|(λX∪{e} − λX)
2. If not,

dT (X,X∪{e}) = 0. In both cases, the element e that maximizes λX∪{e} minimizes

dT (X,X∪{e}).

That is why lines 5 and 11 associate to a pattern X the element e =

argmaxf∈∪n
i=1

Di\Xi
λX∪{f} . At line 5, X is an input fragment and (X, e) is inserted
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in a set C of candidates to grow (line 6). At line 11, X is a pattern that has just grown

(line 9). It was chosen for minimizing the distance (line 8). Line 14 does not insert in

C every candidate constructed from a recently grown pattern. Indeed, line 12 imposes

a condition: no previous iteration must have inserted (line 13) that same candidate.

Since complete algorithms provide many overlapping fragments of every large pattern

to ultimately discover in the uncertain tensor T , many of the input fragments quickly

grow into a same pattern and the number of candidates decreases. Once there are less

than
√
m candidates (line 7), Algorithm 4 terminates. Those candidates are not grown

(line 15). They are returned: PAF will hierarchically agglomerate them. Lines 4 and

10 output all the patterns that are candidates to grow. They are indeed explanatory

variables that can be selected in the final disjunctive box cluster model (2.2).

The time the growing pre-process takes to get at most
√
m larger fragments

depends on how much the input fragments overlap. The minimal number of iterations

to grow two fragments X =
∏n

i=1 Xi and Y =
∏n

i=1 Yi into a same larger fragment

corresponds to the case where this larger fragment is X ⊔ Y . The related number of

iterations is
∑n

i=1 |Xi \ Yi|+ |Yi \Xi| =
∑n

i=1 |Xi∆Yi|, where ∆ denotes the symmetric

difference. For an efficient pre-process, only fragments of a single large pattern (which

may enter the final disjunctive box cluster model) should grow into a same larger

fragment. For that, m must be larger than the (unknown) number of large patterns.

On the other hand, the motivation behind the pre-process is to reduce the number of

fragments that PAF hierarchically agglomerates. In particular, the (known) available

memory must be enough to store the m candidate patterns that line 3 of Algorithm 3

generates. For that, m must be small enough. Since the available memory is known

and the number of large patterns is not, m is, in practice, fixed to a large value that

still allows PAF to not require more than the available memory.
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Forward Selection

5.1 The Forward Selection Algorithm

The disjunctive box cluster model composed of all the patterns that Bigfoot,

Bigfoot-lr, Bigfoot-lr+Bigfoot or PAF (and its pre-process) outputs is hard to

interpret (too much information) and it overfits the uncertain tensor. A well-chosen

subset of those patterns often makes a better model of the data. Forward selection, a

stepwise regression technique, is a solution. Instead of minimizing the residual sum of

squares (2.3), it aims to minimize a measure that penalizes the use of too many ex-

planatory variables, i. e., of too many patterns in Model (2.2). The Akaike information

criterion (AIC) [Akaike, 1974] is such a measure. Assuming that, for any subset Y
of the output patterns, the residuals Tt − T̂t follow an independent identical normal

distribution with zero mean, AICT (Y) is:

AICT (Y) = 2|Y|+ | ∪X∈X X| ln(RSS{t 7→Tt|t∈∪X∈XX}(Y)) .

The first term penalizes a too complex regression model: it grows with the number

of patterns (the explanatory variables) in the model. The second term favors more

accurate predictions of the membership degrees: it decreases with the residual sum of

squares of the model. That residual sum of squares is here restricted to the n-tuples

t ∈ ∪X∈XX for which at least one model, among those that the forward selection can

select (the subsets of X ), can predict T̂t 6= λ0. That number of n-tuples weights the

logarithm of residual sum of square: the more membership degrees to predict, the

more complex the model is allowed to be. More precisely, a model with one additional

pattern is preferred if that additional pattern decreases the second term by at least 2.

Another reason for AICT to only consider the n-tuples in ∪X∈XX is that ∪X∈XX is

33
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often only a small part of all the n-tuples,
∏n

i=1 Di. In that situation, the assumption

behind the formula above would be clearly violated unless λ0 is chosen as the average

membership degree of the n-tuples in
∏n

i=1 Di \∪X∈XX. Those same arguments stand

when it comes to assess the quality of the selected model Y ⊆ X , i. e., AICT should

disregard an n-tuple t /∈ ∪Y ∈YY . That is why the stepwise regression ought to be

recursive, executed until Y = X , a fixed point.

Algorithm 5 formalizes the recursive forward selection (the chosen stepwise re-

gression technique) of the disjunctive box cluster model Y ⊆ X . At every iteration,

line 3 in selects the pattern in X that, added to Y , minimizes RSST (and AICT ), i. e.,

that best complements the current model. At the first iteration, it is the pattern with

the greatest g. In the subsequent iterations, patterns that largely overlap with the

previously discovered patterns are usually deemed less interesting. Indeed, according

to Model (2.2), the prediction for the membership degree of an n-tuple in previously

selected patterns can only marginally improve if they all are less dense than the newly

considered pattern. If adding to Y any more pattern, taken in X , would increase AICT

(line 4), the selected patterns become the candidate patterns of a new forward selection

(line 5). The recursion terminates when all candidate patterns are selected (line 2).

Line 7 returns them.

Algorithm 5: Forward selection

Input: uncertain tensor T , set of candidate patterns X
Output: set of patterns Y ⊆ X fitting T through Model (2.2)

1 Y ← ∅
2 while Y 6= X do

3 Y ← argminX∈X RSST (Y ∪ {X})
4 if AICT (Y ∪ {Y }) > AICT (Y) then

5 return forward-select(T,Y)
6 Y ← Y ∪ {Y }
7 return Y

5.2 Computation of arg minX∈X RSST (Y ∪ {X})
Given two sets of patterns X and Y , line 4 in Algorithm 1 and line 3 in Algorithm 5

select the pattern argminX∈X RSST (Y ∪ {X}), i. e., the pattern in X that best com-

plements the current model Y . Naively computing argminX∈X RSST (Y ∪ {X}) has

a O(|X |∏n

i=1 |Di|) time complexity, to be multiplied by the number of iterations of

Algorithms 1 and 5. That cost can be significantly lowered.
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At a given iteration, RSST (Y) is a constant. Consequently, computing

argminX∈X RSST (Y∪{X}) is equivalent to computing argminX∈X (RSST (Y∪{X})−
RSST (Y)). For any pattern X ∈ X , RSST (Y ∪ {X}) − RSST (Y) only depends on

the values Tt and T̂t for t ∈ X. Indeed, the models Y and Y ∪ {X} predict the same

membership degree T̂t for t /∈ X and the difference of the quadratic residuals over these

n-tuples is null. Considering all patterns X ∈ X , only reading the values Tt and T̂t

for t ∈ X lowers the time complexity of computing argminX∈X RSST (Y ∪ {X}) to

O(
∑

X∈X |X|).

Algorithm 6: argminX∈X RSST (Y ∪ {X})
Input: uncertain tensor T , tensor T̂ predicted by Y , set X of patterns

ordered by increasing lower-bound
Output: argminX∈X RSST (Y ∪ {X})

1 (min, U)← (+∞, ∅)
2 while X 6= ∅ ∧ first lower-bound in X < min do

3 (lower-bound , X)← X ’s first entry taken out of X
4 (lower-bound , sum)← (0, 0)

5 forall t ∈ X s.t. T̂t < λX do

6 term ← (λX − Tt)
2 − (T̂t − Tt)

2

7 if term < 0 then

8 lower-bound ← lower-bound + term

9 sum ← sum + term

10 U ← U ∪ {(lower-bound , X)}
11 if sum < min then

12 (min, argmin)← (sum, X)

13 forall (lower-bound, X) ∈ U s.t. X 6= argmin do

14 insert (lower-bound , X) in X respecting the order

15 return argmin

However, the worst patterns in X need not even be considered if information

computed in previous iterations is kept in memory. The idea is to store along every

pattern X ∈ X , a lower-bound of RSST (Y ′∪{X})−RSST (Y ′), where Y ′ is any model

that can be obtained at any future iteration. In this way, at any future iteration, if the

lower-bound associated with a pattern X ∈ X exceeds the smallest difference of RSST

found so far, X cannot be the pattern to select. Given (2.2) and (2.3), if T̂ ′
t is the

membership degree that the future model Y ′ predicts for t ∈ X, RSST (Y ′ ∪ {X}) −
RSST (Y ′) is:

∑

t∈X

[

(max(T̂ ′
t , λX)− Tt)

2 − (T̂ ′
t − Tt)

2
]

.
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A lower-bound of that sum is the sum of its negative terms. The term relating to t ∈ X

is negative if and only if:

|max(T̂ ′
t , λX)− Tt| < |T̂ ′

t − Tt| ⇔ T̂ ′
t < λX < 2Tt − T̂ ′

t .

The smaller T̂ ′
t is, the weaker the condition. As a consequence, the number of negative

terms is maximal when every T̂ ′
t is minimal. Moreover, a minimal T̂ ′

t minimizes the

negative term, (λX−Tt)
2− (T̂ ′

t −Tt)
2. Indeed, a consequence of the inequality above is

T̂ ′
t < Tt. Algorithms 1 and 5 never remove patterns that were previously added to the

model. That is why Y ′ necessarily is a superset of the model at the current iteration

and, given (2.2), ∀t ∈ X, T̂ ′
t ≥ T̂t, where T̂t is the membership degree that the current

model predicts for the n-tuple t. A lower-bound of RSST (Y ′ ∪ {X}) − RSST (Y ′) at

the current iteration therefore is:

∑

t∈X s.t. T̂t<λX<2Tt−T̂t

[

(λX − Tt)
2 − (T̂t − Tt)

2
]

.

That lower-bound is tight. It is reached when future iterations add to the model

patterns at least as dense as X that altogether include every t ∈ X such that λX >

2Tt − T̂t and no pattern that modifies the prediction T̂t of the membership degree of

any t ∈ X such that T̂t < λX < 2Tt − T̂t.

The patterns in X are stored in a self-balancing binary

search tree ordered by increasing lower-bound. The initial bounds,
∑

t∈X s.t. λ0<λX<2Tt−λ0
[(λX − Tt)

2 − (λ0 − Tt)
2] for X ∈ X , are computed be-

fore the first iteration of Algorithm 1 or Algorithm 5. Algorithm 6 computes

argminX∈X RSST (Y ∪ {X}). Every iteration starts by taking the first pattern X out

of X (line 3). Lines 4–9 compute RSST (Y ∪ {X}) − RSST (Y) and the lower-bound

associated with X, given the current model Y . Iterations stop (line 2) when X is

empty or, more commonly, when its first pattern is associated with a lower-bound than

is larger than the smallest difference of RSST found so far (lines 11–12). Lines 13–14

reinsert in X the patterns that were taken out of it and whose lower-bounds were

updated, except the returned pattern.



Chapter 6

Experimental Validation

multidupehack [Cerf and Meira Jr., 2014], Bigfoot, Bigfoot-lr, PAF and Tri-

clusterBox [Mirkin and Kramarenko, 2011] are free software, distributed under the

terms of the GNU GPLv3, implemented in C++ and compiled by GCC 5.4.1 with

the O2 optimizations. Pauli Miettinen’s implementation in C of Walk’n’Merge

[Erdös and Miettinen, 2013] bears no license. DBTF [Park et al., 2017] is only dis-

tributed in binary form. All experiments were performed on a GNU/Linux
TM

sys-

tem running on top of 2.4 GHz cores, 12 MB of cache and 32 GB of RAM.

To solve the ILP problems, Bigfoot uses the IBM ILOG CPLEX Optimizer

v12.6.0 [Bixby et al., 1988]. https://gitlab.com/lucasmaciel82/Bigfoot and

https://gitlab.com/lucasmaciel82/PAF hosts the datasets, the source codes (in-

cluding for the generation of synthetic tensors) and the scripts to run all experiments.

6.1 Real-World Tensor

6.1.1 Retweets Tensor

The first real-world uncertain tensor used in this experimental chapter is 3-way. It in-

dicates how influential the messages that a Twitter user (among 170,670) wrote about a

Brazilian soccer team (among 29, identified by supervised classification) during a week

(among 12 in 2014, from January 13th to April 6th). The influence (i. e., the mem-

bership degree) is here defined from how many times the messages were “retweeted”

(i. e., republished by other users) and from the overall popularity of the team. More

precisely, the numbers of retweets for a given team are multiplied by a constant defined

so that the sum of the normalized numbers becomes the average number of retweets

per team; a logistic function, with a growth rate of 0.5 and centered on 10 normalized

37
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Logistic Function: 1 / (1 + exp(.5 * (10 - x)))

Figure 6.1: The logistic function chosen to turn normalized numbers of retweets into
influence degrees: 10 normalized retweets is “moderately influential”.

First Set Second Set Third Set
(γusers, γweeks, γteams) (8, 3, 4) (8, 2, 4) (2, 4, 3)
(ǫusers, ǫweeks, ǫteams) (3, 8, 6) (0.5, 2, 1) (4, 2, 3)
Run time (s) 47.4 1.1 147.3
|F| 1, 183, 653 359 187, 617

Table 6.1: The three sets of initial fragments. The γ is the minimal size constraint
where ǫ is the noise tolerated by slice, both respectively for the user, team and week.

retweets (as shown in Figure 6.1), then gives the membership degrees. The resulting

170, 670 × 29 × 12 uncertain tensor can be said “sparse”: the sum of all its member-

ship degrees is 40, 167.3, i. e., 40,167.3
170,670×29×12

≈ 0.0006 times the maximal possible value

(every membership degree at 1). Since λ0 = 0.0006 minimizes RSST (∅), 0.0006 can be

considered the default value for λ0, the intercept of the model.

Three different sets of fragments are mined in that tensor.

multidupehack [Cerf and Meira Jr., 2014] provides them using different min-

imal size constraints (γusers, γweeks, γteams) ∈ N
3 and different upper-bounds

(ǫusers, ǫweeks, ǫteams) ∈ R+ (see Section 2.1). Table 6.1 lists those parameters as

well as the number of fragments multidupehack discovers in these settings and the

time it takes to do so. The three upper-bounds ǫusers, ǫweeks and ǫteams are here

actually chosen so that any slice of any minimally-sized fragment has a same minimal

density (again, see Section 2.1). For instance, in the First Set, that minimal density is
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|Xuser| |Xweeks| Xteams State λX

{Botafogo, Flamengo,

31 12 Fluminense, Vasco} Rio de Janeiro 0.702
28 11 {Corinthians, Palmeiras, Santos} São Paulo 0.754
14 10 {Avaí, Figueirense} Santa Catarina 0.864
17 7 {Grêmio, Internacional} Rio Grande do Sul 0.859
15 11 {Flamengo, Fluminense} Rio de Janeiro 0.792
17 12 {Flamengo, Vasco} Rio de Janeiro 0.801

Table 6.2: The six patterns discovered by Bigfoot and PAF in the 170, 670× 12× 29
Retweet Tensor. PAF returns as well 44 sub-patterns of those six patterns.

1− 3
3×4

= 1− 8
8×4

= 1− 6
8×3

= 0.75.

Given that First Set, Bigfoot-lr takes 140.4 seconds to turn the 1, 183, 653

fragments into only 44 distinct patterns. The high degree of overlap between

multidupehack’s patterns explains why that number is so small. Feeding Bigfoot

with those 44 larger fragments and waiting 52 additional seconds allows to discover

two patterns. The first pattern is large and rather dense: λX = 0.81. It involves all

12 weeks, 110 influential supporters and journalists (most of them from TV networks)

and 13 famous teams, most of them from the Southeast region of Brazil (Corinthians,

Flamengo, Cruzeiro, etc.): a total of 17, 160 3-tuples. The second pattern is much

smaller: it contains 150 3-tuples. It is denser though: λX = 0.85. It only involves

teams and supporters from the South region of Brazil. Bigfoot alone cannot process

the 1, 183, 653 fragments in a reasonable time. It was aborted after ten hours of un-

finished computation. The pre-process and PAF cannot deal with so many fragments

and run out of memory.

However, Bigfoot and PAF can directly process the Second Set of fragments.

By reducing the minimal number of teams in a fragment to two but forcing these

fragments to be denser, Bigfoot and the forward selection, within 117 minutes, turn

those fragments into six patterns. Since there are only 359 fragments, PAF’s pre-

process is not required. PAF directly agglomerates them. It takes 3.1 seconds to

build a dendrogram containing 695 patterns. The forward selection then takes 4.5

seconds to select the same six patterns that Bigfoot finds plus 44 sub-patterns of

them, that Bigfoot cannot find. Table 6.2 lists the six large patterns (first three

columns). The fourth column maps the teams involved in the patterns with the state

they are in. Indeed, every discovered pattern only involves teams from one single

state. The explanation is simple: who is influential when writing about a given team

is likely influential when writing about its rivals, in the same state. The last columns

of Table 6.2 give the densities of the patterns. The patterns are large and dense.

Table 6.2 lists the patterns in the order they are output, i. e., from the pattern
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that most reduces RSST to the one that contributes the least to the model. The

first four patterns do not intersect, a property favored by the forward selection. They

support the discovery of users who were influential when they are writing about all

the major teams in a state during most of the weeks. The last two patterns deal

with Rio de Janeiro’s soccer, which is the most commented. They intersect with each

other and with the first pattern in the table. Yet, their addition to the disjunctive box

cluster model makes it significantly more accurate (smaller AICT ). The identifiable

users involved in a given pattern are either journalists, who are indeed influential, or

supporters of one of the teams in the pattern (Twitter logins including the name or

a nickname of the team). The AIC of the model found by Bigfoot is 120, 156. It is

worse than the model that additionally involve the 44 sub-patterns that PAF returns

as well (AICT = 118, 434). PAF is much faster than Bigfoot too: 4.5 seconds vs.

117 minutes. That is because PAF’s time complexity only depends on the number of

fragments at input, whereas Bigfoot’s run time depends on the number of tuples in

the 46 larger fragments that Bigfoot-lr computes.

The fragments in the Third Set involve at least 4 teams. In compensation, the

other minimal size constraints are weakened in comparison with the previous settings:

at least 2 users and 3 weeks. The fragments in that Third Set tolerate more noise:

a minimal possible density of 0.667. With m = 107, PAF’s pre-process grows the

187, 617 fragments into
√
m = 3, 162 within 20 minutes and 52s. PAF’s run time is

95s. PAF outputs 3, 335 patterns. The forward selection takes 48s and keeps 31 of

them, i. e., 6052 times less than the number of initial fragments. The first six patterns

are, in average, smaller than those in Tab. 6.2. Many patterns only involve a few

weeks. Besides patterns involving rival teams in a same state, four out of the six first

patterns stand for teams that played against each other during the weeks in the second

dimensions of the patterns. Both Bigfoot and Bigfoot-lr+Bigfoot cannot process

the Third Set of fragments in reasonable time.

Since competing algorithms — TriclusterBox [Mirkin and Kramarenko, 2011],

Walk’n’Merge [Erdös and Miettinen, 2013] and DBTF [Park et al., 2017] — only

handle 0/1 tensors, every membership degree in the uncertain tensor is rounded to

0 or 1. Processing that tensor, TriclusterBox times out: within ten hours, it grows

one single pattern out of 29 × 12 = 348 (see Section 2.2). Despite many attempts

with different minimal size and density parameters, Walk’n’Merge only outputs two

patterns within 139 minutes (average run time over the attempts): one very large and

sparse pattern involving all weeks, 597 users and 24 teams, and one very dense pattern

of size 2 × 2 × 2. DBTF’s configuration includes the number of patterns it should

discover. However, even when 30 patterns are asked for, DBTF does not find any: it
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Figure 6.2: Run time of PAF and its pre-process in function of
√
m varying from 1 to

105.

either crashes or returns a factorization of the 0/1 tensor where one of the factor is

null.

Influence of m on PAF’s performances PAF’s pre-process grows the input frag-

ments into at most
√
m larger fragments. PAF agglomerates them in O(m) time and

space. In this section, the parameter m is set to 107 (
√
m ≈ 3, 162). A larger value

would make PAF require more than the available 32 GB of RAM. Setting m to a smaller

value increases the time and space requirements of the the pre-process, as explained in

Section 4.3. Figure 6.2 shows the time PAF and its pre-process take in function of
√
m,

varying from 1 to 105. The Third Set of fragments (in Table 6.1) is processed here.

The AIC of the disjunctive box cluster model obtained with
√
m ≈ 3, 162 is 322, 503.

That configuration provides the lowest total run time among all those that are tested.

With
√
m ≤ 1000, PAF almost instantly executes but the pre-process requires more

time. Moreover, those longer executions return worse models: AICT = 333, 760 for
√
m = 1, AICT = 331, 686 for

√
m = 10, AICT = 327, 949 for

√
m = 100, and

AICT = 326, 787 for
√
m = 1000. Overall, the model obtained with

√
m = 104 is the

best (AICT = 320, 875). On the negative side, it comes at a high computational cost.

PAF’s agglomeration of
√
m = 105 fragments was aborted after ten hours of unfinished

computation.
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6.1.2 Vélo’v Tensor

The second real-world application deals with the usage of the bicycle sharing network

in Lyon, France. That network consists of 327 stations where bicycles can be rented

and returned. The riding behaviors evolve along the day and depend on the day of the

week. That is why 7× 24 directed graphs (one per day of the week and per one-hour

period) are built from a two-year log of the system. Their edges are labeled with the

numbers of rides between every ordered pair of stations. Those numbers are normalized

so that every directed graph has a same total weight. Finally, a logistic function turns

every normalized number of rides into a membership degree. The resulting 4-way tensor

has a 0.005 density. The intercept of the model, λ0, is set to that value.

To discover days of the week and periods of these days, during which many

users ride between stations in one single set, the departure and arrival stations in a

pattern must be constrained to be the same. multidupehack can enforce that con-

straint [Cerf and Meira Jr., 2014]. To have Bigfoot explore that same restricted pat-

tern space, one additional constraint is added to the ILP problem that f solves at

line 12 of Algorithm 1:

∀t ∈ F∪, xtdeparture
= xtarrival (6.1)

The hill-climbing procedure has to be modified too: at line 10 of Algorithm 1, one

single index stands for both the departure and the arrival stations, i. e., whenever the

algorithm considers the addition of a station, it increments both the number of depar-

ture and of arrival stations. Those easy changes, which demonstrate the adaptability

of the proposal, reduce the time requirements because the pattern spaces explored by

hill-climbing and to solve the ILP problem both become smaller. The same modifica-

tions are made in PAF’s pre-process, at lines 6 and 14. Algorithm 3 doesn’t need any

modification: given two patterns X and Y that satisfy the constraint 6.1, X⊔Y always

satisfies that same constraint. Although that particular constraint triggers less modi-

fications in PAF’s algorithm than in Bigfoot’s, the reverse is usually true: modifying

the Integer Linear Programming problem and the hill-climbing procedure to enforce a

general constraint is usually easier than modifying PAF’s agglomeration.

With ǫdeparture = ǫarrival = ǫhour = 5.4 and ǫday = 8.1, multidupehack takes 3

minutes and 24s to return 31, 509 maximal cross-graph quasi-cliques (i. e., constrained

as 6.1) with at least two days, three one-hour periods and three stations (hence a

minimal possible density of 0.7). With m = 107, PAf’s pre-process, PAF itself and

the forward-selection turn them into 184 patterns within 8 minutes and 24 seconds.



6.2. Synthetic Tensors 43

Figures 6.3a, 6.3b, 6.3c and 6.3d show the geographic positions of the stations involved

in the first four patterns that are selected, i. e., the four patterns that contribute the

most to the model. The captions report the associated days of the week and periods

of the day. Background knowledge explaining the patterns is provided as well.

Bigfoot and Bigfoot-lr+Bigfoot cannot process the same 31, 509 fragments

in reasonable time. However, Bigfoot can grow a smaller set of fragments, which

cover less 4-tuples: 5, 462 fragments, still computed by multidupehack with a minimal

density of 0.7, but further constrained to involve at least four stations, six one-hour

periods and three days. multidupehack takes 2 minutes and 44 seconds to return

them. Bigfoot grows them into two patterns within 1 hour and 48 minutes. The first

pattern is similar to the pattern in Figure 6.3a, whereas the second pattern is similar

to the one in Figure 6.3d. Together, they make a worse disjunctive box cluster model

of the Vélo’v uncertain tensor than the 184 patterns that PAF returns. The available

implementations of TriclusterBox, Walk’n’Merge and DBTF being restricted to

mining 3-way 0/1 tensors, they cannot be used here.

6.2 Synthetic Tensors

The actual patterns to discover in real-world tensors are unknown. To assess to what

extent PAF, Bigfoot and its variations can recover patterns, this section uses syn-

thetic tensors affected by controlled levels of noise. Four “perfect” patterns (i. e., only

containing n-tuples with membership degrees equal to 1) of sizes 8×8 (resp. 6×6×6)

are randomly planted in a null tensor of size 64× 64 (resp. 32× 32× 32). With those

settings, the patterns often overlap, what happens in real-world contexts too, e. g., in

Table 6.2 or in Figure 6.3.

Every 0 or 1 in a “perfect” tensor is then noised by inverse transform sampling.

To do so, 0 and 1 are considered the output of a Bernoulli variable with parameter

p, the probability of a 1. The posterior distribution of p is the beta distribution of

parameters α and β. Those two parameters have a meaningful interpretation: after

observing, for a same n-tuple, α− 1 membership degrees at 1 and β − 1 at 0, the beta

distribution is the distribution of p, the parameter of the Bernoulli variable providing

such an output. Choosing a number of correct observations (α − 1 when noising a 0,

β−1 when noising a 1) and a number of incorrect observations (β−1 when noising a 0,

α−1 when noising a 1) therefore defines the level of noise applied by inverse transform

sampling. In these experiments, the number of incorrect observations is always set to

0, i. e., only the number of correct observations tunes the level of noise. The greater the
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(a) Seventeen large stations in the working districts of Lyon.
They exchange many bicycles everyday from midday to 8pm.
|X| = 16184 and λX = 0.239.

(b) Nine large stations at the main avenue of Lyon. Everyday,
from 8am to 9am and from midday to 9pm, many users ride
between those stations. |X| = 5670 and λX = 0.373.

(c) Seven stations in the commercial districts of Lyon. Users
may exchange bicycles everyday, from 8am to 8pm, except on
Sundays, when the shops are closed. |X| = 3234 and λX =
0.460.

(d) Nine large stations around the main squares of Lyon, in
its historical center. Everyday, from 10am to 9pm, many users
ride between those stations. |X| = 6237 and λX = 0.259.

Figure 6.3: The first four patterns discovered by PAF in the Vélo’v tensor.



6.2. Synthetic Tensors 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

no
is

y 
ve

rs
io

n 
of

 th
e 

0 
m

em
be

rs
hi

p 
de

gr
ee

value obtained from a uniformly random draw

nb of correct observations = 1
nb of correct observations = 2
nb of correct observations = 4
nb of correct observations = 8

nb of correct observations = 16

Figure 6.4: Inverses of cumulative beta distributions used to noise a membership degree
at 0 in a “perfect” tensor. More “correct observations” mean less noise.

number of correct observations, the less noisy the resulting membership degree, i. e., the

closer to the value in the “perfect” tensor. Figure 6.4 plots the inverses of cumulative

beta distributions that are used to noise a 0 in a “perfect” tensor: a uniformly random

abscissa is drawn in [0, 1] and the related ordinate is read on the curve whose number

of correct observations provides the desired level of noise. That ordinate is the noisy

version of the 0 in the “perfect” tensor.

Given a planted pattern P and a pattern X at the output of a method, the

Jaccard index J(P,X) measures their similarity:

J(P,X) =
|P ∩X|
|P ∪X| .

Given P , the planted patterns, and X , the patterns discovered in the related uncertain

tensor, the quality of X is computed in this way:

|⋃P∈P(P ∩ argmaxX∈X J(P,X))|
|⋃P∈P P ∪⋃X∈X X| .

That quality measure, in [0, 1], is a ratio between numbers of n-tuples. At the numer-

ator, the true positive n-tuples are both in a planted pattern and in the pattern of X
that is the most similar. The denominator is the number of n-tuples in the planted

patterns or in the discovered patterns. The quality measure penalizes both the ab-
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sence from X of patterns that are similar to the planted ones and the discovery of

patterns including n-tuples out of the planted patterns. It does not take into account

the possible redundancy of information in X , i. e., does not penalize the discovery of

supernumerary overlapping patterns. That is why the following experimental results

report as well the number of patterns that are discovered, |X |.
Figures 6.5, 6.6 and 6.7 respectively plot the quality of the discovered patterns,

their numbers, and the run times in function of the level of noise in the uncertain tensor.

For a given level of noise, all results are averages over eight randomly generated tensors.

multidupehack [Cerf and Meira Jr., 2014] provides the initial fragments, with at least

four elements of every dimension (respectively three elements in 3-way tensors), i. e.,

n minimal size constraints are enforced. Different upper-bounds (ǫ1, . . . , ǫn) are tested

so that the initial fragments can be more or less dense. The upper-bound is always the

same whatever the dimension: ∃ǫ ∈ R+ | ∀i ∈ {1, . . . , n}, ǫi = ǫ. That upper-bound ǫ

relates to µ, given at the top of the figures: ǫ = γn−1(1− µ). For instance, for n = 3,

γ = 3 and µ = 0.6 (bottom-right plots), multidupehack’s upper-bounds are set to

(3.6, 3.6, 3.6). Given multidupehack’s definition of a fragment and the minimal size

constraints, µ = 1 − ǫ
γn−1 is the minimal possible density for any slice of a fragment.

Here, the intercept λ0 is always set to 0. Forward selection (see Chapter 5) is used

to simplify the output of all methods but multidupehack’s, so that the overall gains

can be observed. Whatever the post-processed method, the forward selection takes a

negligible time, improves the quality and, of course, decreases the number of patterns.

multidupehack returns large collections of fragments (Figure 6.6) that poorly

match the planted patterns (Figure 6.5), unless the level of noise is low (16 correct

observations). Nevertheless, PAF, Bigfoot and Bigfoot-lr+Bigfoot, which both

process multidupehack’s outputs, reach significantly higher qualities after the forward

selection that keeps numbers of patterns that are close to four, the number of planted

patterns. PAF is almost always the best performer, followed by Bigfoot. That is,

when it is actually given fragments (µ = 0.8 is too high for multidupehack to return

any fragment in the noisiest tensors) and when it is not given too many fragments,

what makes its run time the chosen timeout, 1 hour. That happens when processing

the sparse fragments (µ = 0.6) in the noisiest matrices (n = 2. In that setting, PAF

times out as well. The differences between the two proposals are clearer when they

are applied on uncertain matrices (n = 2). In that context, Bigfoot more often

finds patterns that go over edges of the planted patterns, as explained at the end of

Section 3.1. When PAF processes the fragments obtained from the 3-way tensors with

µ = 0.7, it almost always ends up returning the four patterns that were planted. It

takes less than 10 seconds (including the run time of the pre-process; m is here set to
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Figure 6.5: Qualities of the patterns discovered by the different methods in function of the number of correct observations (the
noise increases from left to right).



48
C

h
a
p
t
e
r

6
.

E
x
p
e
r
im

e
n
t
a
l

V
a
l
id

a
t
io

n

PP+PAF Bigfoot Bigfoot-lr+Bigfoot multidupehack

Planted patterns  

µ = 0.8 µ = 0.7 µ = 0.6

n
=

2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16
 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16
 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16

n
=

3

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16
 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16
 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16

Figure 6.6: Numbers of patterns discovered by the different methods in function of the number of correct observations (the noise
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Figure 6.7: Run times (in seconds) of the different methods in function of the number of correct observations (the noise increases
from left to right). mutidupehack’s execution is included in the times reported for PAF, Bigfoot and Bigfoot-lr+Bigfoot.
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Figure 6.8: Qualities of the patterns discovered in the 3-way rounded tensors by the
different methods in function of the number of correct observations (the noise increases
from left to right).

106) to do so.

Bigfoot-lr+Bigfoot’s patterns are of high quality too. They are not as good as

PAF and Bigfoot’s though. Bigfoot-lr+Bigfoot usually runs faster than Bigfoot,

sometimes much faster. It is the case when processing fragments of low density (µ =

0.6) in the matrices that were synthesized. However, Bigfoot-lr+Bigfoot can be

slower than Bigfoot too, as explained in Section 3.3. It happens for instance in tensors

with 2 correct observations when processing fragments obtained with µ = 0.8.

How dense the fragments, provided by multidupehack, alters not only the run

times of the algorithms but also the qualities of the disjunctive box cluster model they

return. The best results are here observed with µ = 0.7. With µ = 0.6, multidupehack

returns many fragments and, in the noisiest uncertain tensors, some of them go over

edges of the planted patterns. On the contrary, with µ = 0.8, there are too few

fragments: they do not include all the n-tuples in the planted patterns.

PAF and Bigfoot (and its variations) handle n-way uncertain tensors, whereas

the state-of-art only deals with 3-way 0/1 tensors. In that context, Figures 6.8, 6.9 and

6.10 show the qualities, the numbers of patterns and the run times of PAF, Bigfoot,

Bigfoot-lr+Bigfoot, TriclusterBox, Walk’n’Merge and DBTF. multidupehack

provides the fragments, still with at least three elements per dimension, that PAF’s
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Figure 6.9: Number of patterns discovered in the 3-way rounded tensors by the different
methods in function of the number of correct observations (the noise increases from
left to right).
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Figure 6.10: Running times of the the different methods in the 3-way rounded tensors
in function of the number of correct observations (the noise increases from left to right).
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pre-process, Bigfoot and Bigfoot-lr+Bigfoot grow. Its upper-bounds (ǫ1, ǫ2, ǫ3) are

set to (3, 3, 3), i. e., any slice of any fragment contains at most three 3-tuple with a

null membership degree. That corresponds to µ = 0.7 in the previous experiments. In

Figure 6.8, PAF and Bigfoot reach qualities that are consistently lower than those in

Figure 6.5 with n = 3 and µ = 0.7: rounding the membership degrees really harms

the ability to recover the planted patterns. Despite the damage that rounding causes,

PAF, Bigfoot and, to a lesser extent, Bigfoot-lr+Bigfoot, are clearly better than

TriclusterBox, Walk’n’Merge and DBTF at recovering the planted patterns from

the noisy 0/1 tensors. Walk’n’Merge’s minimal density is set to 0.7 and all other

parameters are set to their default values. Other configurations were tested but they

did not yield better results. Contrary to Walk’n’Merge, which uses the Minimal

Description Principle to not overfit the tensor, TriclusterBox includes no such mecha-

nism. The forward selection, described in Chapter 5, always improves TriclusterBox ’s

output. Its results in Figures 6.8, 6.9 and 6.10 include that step. The number of pat-

terns DBTF should discover is part of its configuration. Although that number is set

to the number of planted patterns, four, DBTF usually returns less patterns. DBTF’s

authors denying access to its source code, that bug could not be fixed.

The experiments on synthetic tensors confirm what those on real-world tensors

(in Section 6.1) suggest: PAF, with its pre-process, is the best algorithm to summarize

uncertain tensors with patterns and their densities. Not only the returned disjunctive

box cluster models are high-quality, even when the tensor is rather noisy, but the

parameter m allows to quite easily tune the run time and the memory consumption.

Bigfoot sorely lacks that second property. Its run time depends on the (unpredictable)

number of iterations the hill-climbing procedures require to reach the local maximums

of g and the times to solve the ILP problems may exponentially grow with these

numbers of iterations. Although Bigfoot (and Bigfoot-lr+Bigfoot) have poorer

performance than PAF, the disjunctive box cluster models they return are almost good

as those computed with PAF. Not only, the current state-of-art algorithms cannot mine

uncertain tensors but the experiments show they are clearly worse than the proposal

in this dissertation when it comes to recovering patterns in noisy 0/1 tensors.



Chapter 7

Conclusion

Discovering a disjunctive box cluster model is a problem that generalizes the Boolean

CP tensor factorization: every pattern (rank-1 tensor) is weighted by a parameter to

estimate. Searching for patterns one by one, the optimal weights simply are their

densities. Such a disjunctive box cluster model therefore is more informative than a

Boolean CP factorization but it remains easy to interpret. Moreover, it suits uncertain

tensors and not only 0/1 tensors.

This work has presented two solutions to decompose uncertain tensors into pat-

terns. Both of them include an optional step to reduce the set of fragments with

pre-processing procedures. PAF’s pre-processing grows each fragment using the RSST

difference while Bigfoot-lr uses a relaxation of the ILP model. After, Bigfoot grows

each fragment by hill-climbing while PAF agglomerates them building a dendrogram

that summarizes the tensor in a better structured way. Finally, forward selection com-

poses the returned model, a subset of the discovered patterns, by greedily minimizing

the AIC. Experiments have shown that the methods successfully recover patterns in

noisy synthetic tensors. They even outperform state-of-the-art approaches when the

tensor is 0/1, a special case. Relevant patterns have been found in two real-world

uncertain tensors with tens of millions of values.

The contributions of this work are not limited to the results of the proposals,

but on proposals itself. Some unusual techniques in pattern mining as integer linear

programming are explored and showed be useful and promising. The integer linear

model defined for Bigfoot enabled maximizing the integer non-linear function of the

disjunctive box cluster model by maximizing multiple times a much easier integer linear

function. Its relaxation was introduced as well. Future improvement on Bigfoot is

changing the solver to a more specific one, mixing a branch-and-cut technique with

the hill-climbing. The idea is to use the branch-and-cut to maximize the integer linear

53
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model proposed and grow the cardinalities of the pattern dimensions when reach to a

local maximum in the linear function.

The output of PP+PAF (PAF and its pre-processing procedure), which have

shown the highest quality results and performance, can be better explored and visual-

ized as well. The dendrogram carries more information from the tensor than just the

patterns that can be useful for an analyst. However, showing a tree as in Figure 1.2 is

unpractical since the dendrogram can be large, although, a better solution should be

proposed in a future work.

Both Bigfoot and PAF (actually, the PAF’s pre-processing) could have their run

times significantly reduced if we distribute their computation. In case of Bigfoot,

a branch-and-cut method is easy to parallelize since each branch could be computed

separately. PAF’s pre-processing as well as Bigfoot can be computed in parallel:

dividing the initial set of fragments in portions and computing PAF’s pre-processing

in each of them. However it may produce a different output since it would change the

growing order of each fragment. Other distributed algorithms can be proposed to pre-

processing the fragments. To assert the performance and the quality of the distributed

methods suggested, new experiments are demanded in the next future works.

A big contribution to pattern mining is creating a framework and makes it avail-

able to everyone. Within multidupehack, PAF, Bigfoot, and the forward selection

the framework should receive any uncertain tensor and return the patterns of interest

the analyst (user) is looking for. Since multidupehack requires a previous knowledge

of the user from the dataset to set correctly the minimum size and density constraints,

a future improvement is to use the Minimum Description Length principle techniques

to predicts the set of multidupehack’s parameters that makes it find a good initial

set of fragments. This feature will make the framework even more transparent and

accessible. A robust version of the framework could have a better visualization of the

patterns and the distributed version of the algorithms as suggested in the previous

paragraphs. Finally, all other approaches that deal with uncertain tensors, numeric

tensors or 0/1 tensors distributed under the terms of the GNU GPLv3 can be part of

the framework.
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