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Resumo

À medida que o uso de veículos aéreos não tripulados (VANTs) vem aumentando, novas

técnicas de planejamento de movimento, navegação e controle são desenvolvidas. Aplicações

militares e civis geralmente requerem que um VANT seja capaz de estimar sua própria pose,

processar as informações fornecidas pelo ambiente e seguir uma determinada trajetória de

forma autônoma. Além disso, algumas tarefas como vigilância, mapeamento de terreno

e proteção de comboio exigem uma longa vida útil em termos de consumo de energia.

Nestas situações, o uso de um VANT de asa-fixa é altamente recomendado devido à sua

maior autonomia quando comparado aos VANTs de asa rotativa. Este trabalho apresenta

uma solução para o problema de guiar e controlar um VANT de asa-fixa para seguir uma

curva fechada enquanto desvia de obstáculos dinâmicos.

A estratégia proposta pode ser dividida em duas partes. Em uma camada superior é

utilizada uma estratégia de campos vetoriais que alterna entre duas formas: um campo

vetorial para convergir e circular a curva alvo, e um para desviar dos obstáculos no caminho

do VANT. Para a camada inferior é proposto um controle de linearização por realimentação,

onde a lei de controle auxiliar é projetada através de um MPC (Model Predictive Control)

linear para fazer com o que o VANT siga as referências fornecidas pelos campos vetoriais.

Simulações utilizando Matlab e o modelo completo do VANT, com 6 graus de

liberdade e 12 estados, demonstram a eficiência da estratégia proposta para diferentes

cenários. Resultados obtidos utilizando um sistema computacional embarcado demonstram

que a estratégia proposta é factível de implementação em uma plataforma física.
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Abstract

As the use of unmanned aerial vehicles (UAVs) is increasing, new techniques for motion

planning, navigation and control are being developed. Both military and civilian applica-

tions usually require a UAV to be able to estimate its own pose, process the information

provided by the environment, and follow a given trajectory autonomously. Besides, some

tasks such as surveillance, terrain mapping and convoy protection require long endurance.

For those tasks, the use of a fixed-wing UAV is highly recommended due to its greater

endurance when compared to rotary-wing UAVs. This work presents a strategy for solving

the problem of guiding and controlling a UAV to follow a closed curve while avoiding

dynamic obstacles.

The proposed strategy can be divided into two parts. In a top layer, a vector field

strategy is used which alternates between two forms: a vector field to converge to and

circulate the target curve, and one to avoid obstacles along the UAV path. For a lower

layer, a feedback linearization controller is proposed, in which a linear Model Predictive

Control (MPC) is used as the auxiliary control law to make the UAV follow the references

provided by the vector fields.

Simulations using Matlab and the entire UAV model, with 6 degrees of freedom

and 12 states, demonstrate the efficiency of the proposed strategy for different scenarios.

Results obtained using an embedded computational system demonstrate that the proposed

strategy is feasible to be implemented on a physical platform.
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1
Introduction

1.1 Motivation

The field of robotics has experienced a substantial growth in the last decades. In particular,

Unmanned Aerial Vehicles (UAVs) have been used in many civilian and military applica-

tions, as they are becoming cheaper and more practical than their manned counterpart.

For instance, airline companies have been using UAVs for aircraft maintenance and visual

inspections (Novák et al., 2020). Moreover, recent works have shown the effectiveness of

UAVs in forest fire detection and monitoring (Yuan et al., 2015; Sherstjuk et al., 2018),

search and rescue (Alotaibi et al., 2019), and many others applications (Shakhatreh et al.,

2019).

Two of the main types of commercial UAVs are fixed-wings and rotary-wings, and

both have their advantages according to their missions. For instance, fixed-wing UAVs

have a few benefits over rotary-wings: i) they can fly faster and at higher altitudes; ii)

they can fly over longer periods of time; iii) they are safer in the event of motor failure;

iv) they are usually more stable in high winds. Due to these advantages, they have been

extensively applied in surveillance, terrain mapping, and protection tasks. In contrast,

rotary-wings provide more maneuverability, are easier to fly, and are usually cheaper.

Practical applications of rotary-wings include 3D structure mapping, side inspections in

buildings, and aerial photography. Figure 1.1 shows an example of a rotary-wing UAV,

and Figure 1.2 of a fixed-wing one.

1





1.3. RELATED WORKS 3

1.3.1 Task and motion planning

Over the past years, researchers have been proposing multiple solutions for a broad class

of motion planning problems. Some key issues when dealing with motion planning are

obstacle avoidance, kinodynamic planning, optimality, and uncertainty. Since the robot

motion field is broad, in this review we focus on vector fields, sampling-based algorithms,

and Dubins paths, which are well-known, suited strategies for fixed-wing UAVs. Moreover,

we recommend the reading of Yang et al. (2014) for a survey on path planning algorithms

for fixed-wing UAVs.

Sampling-based algorithms

Sampling-based algorithms sample a set of nodes in the configuration space and aim

to connect those points until a path is obtained. An important characteristic of these

algorithms is that they might achieve probabilistic completeness, in the case of random

uniform sampling, or resolution completeness, if using grid sampling. Thus, in these cases,

if a solution path exists, the planner will eventually find it.

Classical algorithms such as the Probabilistic Roadmap (PRM) are well-defined and

extensively used in literature. The basic PRM algorithm, described in Choset et al.

(2005), divides planning into two tasks: learning and query. The first phase captures the

connectivity of the free configuration space, while the second one tries to connect user-

defined configurations. In Bohlin & Kavraki (2000) the authors present a lazy approach

to a PRM planner. Different from the basic algorithm, the proposed strategy initially

assumes that all nodes and edges in the roadmap are collision-free, removing them as they

are checked, thus, enabling the algorithm to run in less time.

In Akbaripour & Masehian (2017) the authors propose a semi-lazy PRM (SLPRM)

for motion planning of an industrial manipulator. The strategy differs from the previous

ones by only performing collision checking of random nodes for n links of the manipulator;

therefore, it can be seen as a tradeoff between the basic PRM and the lazy PRM. The

results show that, because the SLPRM performs fewer collision checks, it is more time-

efficient than the basic PRM. Also, since it provides a better initial roadmap, the query

time is also reduced when compared with the lazy PRM.

As an alternative to the PRM algorithm, LaValle (1998) proposes the Rapidly-Exploring

Random Trees (RRTs), a randomized data structure suited for a broad class of motion

planning problems, which can be directly applied to nonholonomic and kinodynamic

planning. Besides that, RRTs have many other advantages: i) the expansion can be biased

towards desired regions, for instance, borders and unexplored portions of space; ii) the

RRT algorithm is relatively simple; iii) it can be adapted to generate optimal paths, as

in the RRT∗ algorithm (Karaman & Frazzoli, 2011). Figure 1.3 shows an example of the

RRT algorithm applied to a cluttered environment, the obstacles are represented by the
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gray polygons, the target by the green dot, and the starting point by the black dot.

Figure 1.3: RRT in a cluttered environment.

Due to their advantages, RRTs are widely used in fixed-wing UAVs motion planning. In

Lu et al. (2016), the authors propose a dynamic RRT algorithm to calculate a collision-free

trajectory in an environment with dynamic obstacles. The proposed strategy uses B-splines

to smooth the trajectories and adopts constraints on turning angle, diving angle, flight

distance, and route leg in order to provide feasible, optimal paths.

Spline-based RRTs are also proposed in Lee & Shim (2016) and Zhang et al. (2020).

The former uses the optimal bidirectional RRT∗ algorithm. The proposed strategy is able

to respect aerodynamic characteristics such as thrust-to-weight ratio, load factor, and

direction constraints. The latter proposes a real-time RRT to calculate collision-free paths

in the presence of high-speed dynamic obstacles, with a growth strategy that uses the

optimal reciprocal collision avoidance algorithm (ORCA), which under specific conditions

ensures that the obstacle and the aircraft will never collide.

Furthermore, Ge et al. (2020) combine a kinodynamic motion planning RRT∗ algorithm

based on the linear state space model of a fixed-wing UAV obtained by applying the

feedback linearization technique. The computed trajectory is post-processed using the

Gauss-Kruger projection method to obtain waypoints that can be tracked by an autopilot.

Differently from the previous strategies, Zogopoulos-Papaliakos & Kyriakopoulos (2020)

propose a sampling-based algorithm for determining the Trim Flight Envelope for a fixed-

wing UAV. The strategy ensures that for each point inside the envelope, there exists a

control input that keeps the UAV inside of it. Also, since the flight envelope is constructed

using convex intersections of half-spaces, it can be incorporated as convex constraints in

MPC formulations.
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Vector fields

Vector field based strategies have been extensively used in UAV guidance. One of the

main advantages of vector fields oversampling algorithms relies on the fact that it provides

implicit trajectories, instead of a path to be followed. In addition, it integrates the solutions

to three problems in one approach (Rimon & Koditschek, 1992): path planning, trajectory

planning, and control. Figure 1.4 shows an example of a vector field, in blue, to allow

convergence and circulation of a desired curve, in red.

Figure 1.4: Vector field, in blue, and target curve in red.

In Gonçalves et al. (2010), the authors propose a methodology for the computation of

artificial vector fields in n-dimensions, using n−1 implicit functions whose intersection define

the desired curve. The proposed vector field is based on the sum of three components: i) a

convergence term, which guarantees that a controlled robot approaches the desired curve;

ii) a tangent term, which makes the robot circulate the desired curve; iii) a feedforward

term to compensate for the time-varying nature of the curve. The main advantages of the

proposed strategy are related to the implicit-function formulation and the inclusion of the

correction terms.

An obstacle avoidance strategy, based on vector fields, is proposed in Yao et al. (2019).

In that work, the authors propose a static composite vector field, which uses bump curves

to deviate from static obstacles in real-time. The use of bump functions significantly

reduces the overlapping effect caused by the combination of two vector fields, besides

guaranteeing the existence and uniqueness of solutions. Different from them, this work

considers moving obstacles and an online switching strategy.

An integration of vector fields and sampling based techniques is used in Jahn &

de Araújo Pimenta (2016) to find a feasible path in a 3D workspace with static obstacles for

a Dubins airplane model. Simulation results show that the proposed strategy outperforms
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pure sampling based methods. Similarly, in Pereira et al. (2016) the authors propose an

algorithm that integrates high level vector fields, responsible for convergence to a target

path, and an RRT∗ as a local planner, responsible for avoiding obstacles and no-fly zones.

Dubins paths

Dubins paths were originally proposed in Dubins (1957). The author uses a car-like robot

to show that any initial and final configuration can be connected using three path segments,

called motion primitives. These motion primitives are represented by left turns (L), right

turns (R), and straight lines (S). Thus, there are six possible combinations

(

LRL LSR LSL RLR RSR RSL
)

.

One of the main advantages of dubins path is the possibility of including minimum turning

radius, and climb (or dive) angle constraints in the formulation. One approach used when

computing dubins paths for fixed-wing UAVs is to decompose the problem into two 2D

paths, one for the horizontal plane, and one for the vertical plane. This approach is used

in Váňa et al. (2020), where the authors develop a strategy for solving the problem of

finding cost-efficient three-dimensional paths that satisfy the maximum allowed curvature

and the pitch angle of the vehicle. The proposed strategy showed to provide paths with

fewer turns than others, making them easier to be followed by the controller.

Alternatively, dubins paths can also be adapted to fixed-wing UAVs by assuming fixed

altitude, as presented in Lugo-Cárdenas et al. (2014), or by using a modified vehicle

model for 3D workspaces, called Dubins airplane. The latter was used in McLain et al.

(2014), where the authors include rate-of-climb, airspeed, flight-path angle, and bank angle

equations in order to make the model more consistent with fixed-wing UAVs. Also, a

strategy to solve the problem of infinite solutions, when the altitude falls under specific

conditions, is provided.

Furthermore, Song & Hu (2017) propose an integration of Dubins paths and A∗

algorithm, (Hart et al., 1968), to generate a safe, flyable path. The strategy consists of

implementing the A∗ algorithm in a weighted graph, which is constructed using the Dubins

paths. Finally, Ismail et al. (2018) show that for many search missions, the original Dubins

curve can be reduced to a curve with only two components: straight lines and left or

right turns. The authors provide an approach for calculating those components using

elementary geometry.

1.3.2 Fixed-Wing Control

Fixed-wing UAVs impose big challenges on control design. Their nonlinear behavior,

mechanical constraints, and coupling between lateral and longitudinal dynamics are





8 CHAPTER 1. INTRODUCTION

UAV fly towards the path and one that makes the UAV follow the path. The strategy

takes advantage of the fact that summing unit-quaternions representing rotation yields

averaged or blended rotations.

In Jesus et al. (2013), a reference model, which uses the desired speed, altitude, and

heading angle as inputs, is applied in an inner-outer loop design to coordinate a team of

n UAVs. The outer loop consists of a three-stage distributed controller responsible for

making the UAVs converge to a final configuration, in which they are evenly distributed

along a circle, performing uniform circular motion.

The same reference model is also used in Olavo et al. (2018) and Rezende et al. (2018).

The former deals with the problem of circulating a fixed target on the ground using a

robust guidance strategy with global stability. The latter develops a guidance vector-field

strategy to converge to and circulate a desired, generic curve in R
3. The proposed strategy

considers model uncertainties and field singularities. The authors show that asymptotic

stability is guaranteed for a bounded region.

Furthermore, Beard et al. (2014) propose a guidance law for tracking straight lines and

circular orbits. The control strategy makes use of the theory of nested saturations to satisfy

roll and flight path angle constraints. Specific conditions on wind speed, where the guidance

strategy ensures asymptotic tracking, are derived. The authors provide conditions for

when a simple switching strategy can be used to guarantee global asymptotic convergence

to the orbit.

Backstepping

The main idea behind backstepping controllers can be defined as Sepulchre et al. (2012):

Apply a passivation design to a small part of the system, and then reapply it step-by-step

by augmenting the subsystem at each step. One of the advantages of backstepping is that

it may reduce the problem complexity, since the design is split into steps. Also, its ability

to deal with nonlinearities makes it a suitable strategy for UAV control. In Sartori et al.

(2013), a backstepping-based autopilot is applied to stabilize the fast attitude inner-loop,

while PID controls are responsible for the navigation loop. The proposed strategy ensures

simultaneous control of both longitudinal and latero-directional planes.

In Espinoza et al. (2014), the authors provide an extensive comparative analysis of

five different designs based on backstepping and sliding mode in order to compare which

has the best performance regarding altitude, yaw, and roll angles control. The results

show that by using backstepping with high order sliding mode it is possible to remove

the well-known chattering of the sliding mode and to obtain smoother control inputs as

compared to the other controllers.

Furthermore, Jung & Tsiotras (2008) adopt a simplified kinematic model of the UAV

and apply a backstepping controller to compute roll angle commands given a desired

heading rate. A parameter adaptation technique is used to increase the robustness of the
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system against inaccurate time constants of the roll loop. The proposed control offers the

advantage of following parametric references with less rigorous initial conditions. Similarly,

Ren & Atkins (2005) use a reference model with desired speed, roll angle, and altitude as

command inputs to employ backstepping techniques, obtaining separated control laws for

each input.

Model Predictive Control

Due to its advantages, Model Predictive Control (MPC) has become an attractive method

for fixed-wing UAV control. It has a straightforward formulation, with explicit handling

of states and control constraints and well understood tuning parameters. Also, it can be

applied to both linear and nonlinear systems. However, its computational burden poses a

big challenge.

A common strategy to overcome this drawback is to simplify the model before applying

the MPC, as seen in Oettershagen et al. (2014). In that work, the authors decouple

the UAV lateral and longitudinal dynamics and design a linear MPC to control the

attitude of the UAV, along with an L1-navigation logic that provides attitude reference

commands. The designed controller ensures accurate steering while respecting state and

input constraints.

Tube-based strategies can also provide more efficient implementations, as some of the

calculations are made offline. In Mammarella & Capello (2018), a robust tube-based MPC

is proposed as an autopilot system to control both longitudinal and lateral dynamics

of a UAV. The control law focuses on computational efficiency and robustness to both

parametric uncertainties and bounded noises.

In contrast, using a Nonlinear MPC (NMPC) can make the formulation more intuitive,

as the constraints and cost functional are more flexible. In Kang & Hedrick (2009), the

authors use a simplified 2D reference model to design a higher-level tracking controller.

A stability analysis for the initial conditions that assure closed-loop stability is provided.

Similarly, Quintero et al. (2015) use an approximated Dubins vehicle model to design an

output-feedback MPC to make two UAVs track an evasive ground target.

Furthermore, Mathisen et al. (2015) focus on the longitudinal dynamics of the UAV to

design an NMPC to guide the model into a deep stall to land at minimum speed and fixed

path angle. The results show that the UAV is able to perform precision landing at small

places like the deck of a ship, with low speed in an accurately controlled deep stall.

Also, Yang et al. (2013) propose an adaptive NMPC to solve a reference tracking task.

Instead of using a fixed horizon, the adaptive strategy changes the horizon based on the

path curvature profile. Therefore, smoother paths lead to smaller horizons, which reduces

the computational burden and can also improve tracking performance, as it may diminish

the corner cut behavior, which happens when the cost to track the curve is higher than

the cost of cutting it, by following a path close to it.
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Moreover, MPC can also be used as a auxiliary control law of a Feedback Linearization

(FL) controller. In Zhao & Go (2014), the authors employ this FL + MPC scheme to

individual quadcopters in order to keep the leader-follower formations and avoid obstacles

during flight. Also, Schnelle & Eberhard (2015) applies this strategy to a serial manipulator

with a passive joint, in order to track reference trajectories. A variable constraint mapping

method is used to predict future states and coherent constraints.

This design is also discussed in Deng et al. (2009) and Simon et al. (2013). In the

former, the authors propose a technique for handling input constraints based on simple

affine transformations of the feasible area. In the latter, the authors propose a method for

handling nonlinear constraints using dynamic local polytopic approximations.

1.4 Contributions

The main contribution of this work regards a unifying solution to the problem of guiding and

controlling a fixed-wind UAV to converge and circulate a closed curve, in an environment

with previously unknown obstacles. At a higher level, we use a vector field switching

strategy as a motion planner to compute velocity references for the UAV. The strategy is

composed of two behaviors, described as follows: i) converge to and circulate a desired

curve; ii) circulate the closest obstacle if it is in the UAV path. Also, we propose a

transition strategy, based on the Tangent Bug algorithm presented in Choset et al. (2005),

which provides a smooth switching between these two behaviors.

In the lower level, we propose a control strategy to make the UAV follow the references

of the vector field strategy. First, in order to obtain a linear model of the UAV, a feedback

linearization controller is applied using the generalized forces and moments as virtual

control inputs. Afterwards, the auxiliary control law is performed by using a linear MPC

based on the resulting chain of integrators to solve both the trajectory tracking and control

allocation problems, ensuring feasible mapping between the virtual control inputs and the

applied ones. A common strategy in the literature that uses MPC and deals with obstacle

avoidance is to include collision constraints in the MPC formulation (Hagen et al., 2018;

Zhao & Go, 2010). These are usually nonlinear quadratic constraints, which can make

real-time implementation impractical due to the computational effort. In this work, we

consider the vector field guidance law as responsible for the obstacle avoidance, which

allows us to remove the collision constraints from the MPC formulation. Because of that,

together with the fact that the formulated MPC is linear, the proposed strategy is able to

run in less than 10ms, thus, making it amenable to implementation in real systems.

Figure 1.7 shows the proposed structure. The blocks inside the red dashed lines

correspond to the control strategy, and the one inside the blue dashed lines represents the

motion planning strategy. The UAV Dynamics block corresponds to the airplane model.

The Control Mapping block represents the mapping from the virtual control inputs to the
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UAV control signals, and the State Estimation block corresponds to the Extended Kalman

Filter used in this work to estimate the UAV states.

Vector Field
Strategy

Model Predictive
Control

Feedback
Linearization Control Mapping UAV Dynamics

State Estimation

Figure 1.7: Diagram of the proposed solution.

Simulation results using the MATLAB software considering the 6DOF UAV model,

wind disturbances, and sensor noise, are provided to validate the proposed strategies. We

also present a computational effort analysis using an embedded computational system to

validate the possibility of implementing the strategy in a real platform.

1.4.1 Publications

This dissertation originated two works: first, a publication at the Congresso Brasileiro de

Automática (CBA), entitled MPC Based Feedback-Linearization Strategy of a Fixed-Wing

UAV (Pereira et al., 2020). The publication is associated with the first control strategy

presented in this dissertation.

Second, a work in the International Conference on Robotics and Automation (ICRA

2021), accepted for publication, entitled Collision-free vector field guidance and MPC for

a fixed-wing UAV. This work is associated with the second control strategy, and with the

motion planning strategy presented in this dissertation.

1.5 Dissertation structure

This dissertation is organized as follows: Chapter 2 anticipate some of the tools and

concepts present in the text. Chapter 3 presents the vector field strategy for motion

planning. Chapter 4 presents the fixed-wing control strategies. Chapter 5 presents the

simulation results and finally, Chapter 6 concludes this dissertation.
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2
Background

This chapter intends to present some of the tools and concepts employed throughout this

dissertation. First, we introduce the fixed-wing UAV model, followed by a review of the

control techniques used in this work and on the Extended Kalman Filter.

2.1 Fixed-wing model

In this section, we present a brief review of the UAV dynamics and the multiple coordinate

frames used in this work. For a more detailed development of the UAV dynamics, we

suggest the reading of Beard & McLain (2012) and Stevens et al. (2015).

2.1.1 Coordinate frames

To present the UAV equations of motion, we first need to define the coordinate frames

in which they are expressed. The need for multiple coordinate frames arises from several

reasons (Beard & McLain, 2012), among which the following stand out:

• Forces and moments actuating on the UAV are generally described in the body-fixed

reference frame;

• Trajectory references are usually specified in the inertial frame;

• Sensors can provide measurements with respect to the body-fixed frame, for instance,

accelerometers and gyroscopes, or with respect to the inertial frame, like GPS and

13
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This way, we can also define the UAV body frame airspeed components ur, vr, and wr as
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, (2.5)

where the subscript r indicates that we express the state variables with respect to the

surrounding air mass.

Finally, fx, fy, fz and l, m, n are the generalized forces and moments actuating on

the UAV. These inputs comprehend the ones whose origin is related to the UAV fixed

surfaces, for instance, the wings and the fuselage, and the ones that originated from the

UAV control surfaces.

The navigation equations describe the UAV translational behavior in the NED frame.

They are achieved by kinematics, in which the airspeed components and the wind velocity

sums up as follows
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The force equations correspond to the dynamics of the UAV airspeed, and are given by
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. (2.7)

The attitude equations represent the derivatives of the angular positions in terms of the

UAV angular velocities, measured in the body frame, and the angular positions themselves,

given by
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. (2.8)

One should note that the transformation is not a rotation matrix, like the one in (2.6).

This is due to the fact that the angular positions are expressed with respect to three

different frames, whereas the body angular velocities are expressed in the body frame.

Finally, the moment equations describe the dynamics of the UAV angular rates,
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measured in the body frame, as follows
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Moreover, the generalized forces and moments are given by

fx =
1

2
ρairv

2
tS

(

CX(α) + CXq(α)
cq

2vt
+ CXδeδe

)

+
1

2
ρairSpropCprop (k2

motorδ
2
t − v2

t ) , (2.10)

fy =
1

2
ρairv

2
tS

(

CY 0 + CY ββ + CY p
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2vt
+ CY r
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2vt
+ CY δaδa + CY δrδr
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, (2.11)

fz =
1

2
ρairv

2
tS

(

CZ(α) + CZq(α)
cq

2vt
+ CZδeδe

)

, (2.12)

l =
1

2
ρairv

2
tSb

(

Cl0 + Clββ + Clp
bp

2vt
+ Clr

br

2vt
+ Clδaδa + Clδrδr

)

− kTpk2
ωδ

2
t , (2.13)

m =
1

2
ρairv

2
tSc

(

Cm0 + Cmαα+ Cmq
cq

2vt
+ Cmδeδe

)

, (2.14)

n =
1

2
ρairv

2
tSb

(

Cn0 + Cnββ + Cnp
bp

2vt
+ Cnr

br

2vt
+ Cnδaδa + Cnδrδr

)

, (2.15)

where the control surfaces are represented by the ailerons δa, the elevators δe, the rudder

δr and throttle δt. Also, ρair is the air density, S the wing area, b the wingspan, c the

mean chord, Sprop is the area swept by the propeller, kωδt is the propeller speed and kmotor

specifies the motor efficiency. Furthermore, we have

CX(α) = −CD(α) cos(α) + CL(α) sin(α)

CXq(α) = −CDq cos(α)− CLq sin(α)

CXδe(α) = −CDδe cos(α)− CLδe sin(α)

CZ(α) = −CD(α) sin(α)− CL(α) cos(α)

CZq(α) = −CDq(α) sin(α)− CLq(α) cos(α)

CZδe(α) = −CDδe(α) sin(α)− CLδe(α) cos(α),

with

CD(α) = CDp +
(CL0 + CLαα)

2

πeAR

CL(α) = (1− σ) (CL0 + CLαα) + σ [2sign(α) sin(α)2 cos(α)] ,

σ =
1 + e−M(α−α0) + eM(α+α0)

(1− e−M(α+α0)) (1 + eM(α+α0))
,

where M and α0 are positive constants, AR = b2/S is the wing aspect ratio, and e is the

Oswald efficiency factor. The aerodynamic coefficients C(·) are detailed in Appendix A.1.

In addition, we formally define the aerodynamic angles α, β and the UAV true speed
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vt as

α = arctan2 (wr, ur) , (2.16)

β = arcsin

(
vr
vt

)

, (2.17)

vt =
√

u2
r + v2

r + w2
r . (2.18)

Finally, according to Beard & McLain (2012), the wind vector can be divided into two

components: a constant vector, representing the steady wind (ws) in the vehicle frame, and

a gust wind vector (wg) representing atmospheric disturbances in the UAV body frame,

yielding

wv = ws + Rv

b(φ, θ, ψ)wg.

In this work we do not deal with the problem of measuring the wind, instead, we assume

that the UAV is able to measure the steady wind vector whereas the gust wind component

will be treated as an unmeasured disturbance. In practice, the steady wind could be

estimated by using anemometers, as shown in Suomi & Vihma (2018).

2.2 Input-Output linearization

When dealing with tracking problems the control design can become complicated, due to

the nonlinearity of the system equations. However, by using a state feedback law, we can

linearize the input-output map of the system model and solve the tracking problem with

linear control theory.

In this work, we use an input-output linearization strategy based on Khalil & Grizzle

(2002), which we briefly review in this section. First, assume that a nonlinear system can

be written in the following form







ẋ = f(x) +
∑m

i=1 gi(x)ui,

y = h(x),
(2.19)

where x is the state vector, y is the output vector, u =
[

u1 u2 · · · um

]T

is the input

vector, f : D 7→ R
n, gi : D 7→ R

n and h : D 7→ R
j are sufficiently smooth on a domain

D ⊂ Rn.

Now, consider the following definition (Choset et al., 2005):

Definition 1 (Diffeomorphism). A function f(x) that maps one differential manifold into

another is said to be a diffeomorphism if f(x) is bijective and both f(x) and its inverse,

f−1(x), are smooth.

The system (2.19) is said to be linearizable if there exists a diffeomorphism T : D 7→ R
ρ
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such that the change of variables z = T (x) transforms (2.19) into the normal form







η̇ = f0(η, ξ)

ξ̇ = Aξ + BΛ(x) (u− λ(x))

y = Cξ

, (2.20)

where ξ ∈ R
ρ determines the external dynamics, η ∈ R

n−ρ determines the internal dy-

namics, (A,B) is controllable, λ : Rn 7→ R
m, Λ : Rn 7→ R

ρ×m, and ρ is the relative degree.

Furthermore, it is assumed that Λ(x) is nonsingular for all x ∈ D.

According to Khalil & Grizzle (2002), for a system in the form of (2.19), each output

yk is said to have relative degree ρk in a region Do ⊂ D if

LgL
i−1
f hk(x) = 0, i = 1, 2, ..., ρk; LgL

ρk−1

f hk(x) 6= 0, ∀x ∈ D0

where Lfhk(x) = ∂h(x)

∂x
f(x) is the Lie derivative of hk(x), with respect to f throughout f .

Therefore, for a system with j outputs, the total relative degree will be the sum of

each relative degree as follows

ρ =
j∑

k=1

ρk.

The relative degree ρk can also be seen as the number of times needed to differentiate yk
with respect to time, so that at least one input ui explicitly appears in the derivative.

If ρ ≤ n, then for all x0 ∈ D, there is a neighborhood N , and n − ρ scalar functions

Φ1(x),Φ2(x), ...,Φn−ρ(x) such that

LgΦi(x) = 0, 1 ≤ i ≤ n− ρ, ∀x ∈ N,

and the mapping

z = T (x) =


















Φ1(x)
...

Φn−ρ(x)

h(x)
...

Lρ−1
f h(x)


















=




η

ξ



 , (2.21)

restricted in N , is a diffeomorphism in N . Then, it is clear that the external dynamics can

be linearized by using the state feedback control law

u = λ(x) + Λ(x)−1ν, (2.22)
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thus, obtaining







η̇ = f0(η, ξ),

ξ̇ = Aξ + Bν,

y = Cξ,

(2.23)

where ν is the auxiliary control variable. Furthermore, Λ and λ are given by

Λ =








Lg1
Lρ−1
f h1(x) · · · LgmL

ρ−1
f h1(x)

...
. . .

...

Lg1
Lρ−1
f hj(x) · · · LgmL

ρ−1
f hj(x)







, λ = −Λ−1








Lρfh1(x)
...

Lρfhj(x)







. (2.24)

For the special case where ρ = n, the internal dynamics is removed, z = ξ, and (2.23) is

reduced to






ξ̇ = Aξ + Bν,

y = Cξ.

2.3 Optimal control

In this section, we aim to provide a brief introduction to optimal control theory. One

should have in mind that the field of optimal control is broad, so we focus this introduction

on linear optimal control with a quadratic cost.

2.3.1 Optimization problem

An optimization problem is a problem of finding the best solution, according to some

criterion, from a set of feasible solutions (Borrelli et al., 2017). For instance, suppose that

we want to minimize a function f , the optimization problem can be formulated as

minz f(z),

s.t. G(z) ≤ 0,

E(z) = 0,

(2.25)

where f : Rn 7→ R is the objective function, z is the vector of decision variables, G(z) ≤ 0

are the inequality constraints, E(z) = 0 are the equality constraints, and 0 are zero vectors

of appropriate size.

Solving (2.25) means finding the optimal value f ∗ = f(z∗), corresponding to the optimal

solutions z∗, such that

f(z) ≥ f(z∗), ∀z ∈ {z ∈ R
n : G(z) ≤ 0, E(z) = 0}.
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If the solution to (2.25) does not exist, we say that the problem is unfeasible. If for all

z ∈ R
n, both G(z) ≤ 0 and E(z) = 0, the problem is said to be unconstrained. Also, if

f ∗ = ±∞ the problem is said to be unbounded. Furthermore, note that (2.25) can be

written in the compact form

minz∈Z f(z), (2.26)

where Z ⊂ R
n is the set of feasible solutions, in other words

Z = {z ∈ R
n : G(z) ≤ 0, E(z) = 0}.

Convex optimization

A set Z ⊂ R
n is said to be convex if:

σz1 + (1− σ)z2 ∈ Z, ∀z1, z2 ∈ Z and σ ∈ [0, 1]. (2.27)

A function f : Z 7→ R is said to be convex if

f(σz1 + (1− σ)z2) ≤ σf(z1) + (1− σ)f(z2), ∀z1, z2 ∈ Z and σ ∈ [0, 1]. (2.28)

Thus, the optimization problem (2.26) is said to be convex if (2.27) and (2.28) are met. A

fundamental property of convex optimization problems is that local optimal solutions are

also global optimal. We suggest the reading of Borrelli et al. (2017) for a proof.

Quadratic optimization

Quadratic optimization is one of the most well-known classes of convex optimization

problems. Its popularity comes from the fact that many problems can be formulated and

efficiently solved using this approach.

A problem in the form of (2.26) is said to be quadratic if the constraint functions are

affine and the cost function is a convex quadratic function. A convex quadratic function

can be defined as

f(z) = zTHz + 2qTz + r, (2.29)

where HT = H � 0 ∈ R
n×n, q ∈ Rn and r ∈ R. An illustration of the level curves of (2.29)

is presented in Figure 2.4 by the dashed lines and the feasible solution set Z is represented

by the blue polygon. The interior point indicates the optimal solution z∗
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where P is the solution of the associated Algebraic Riccati Equation

P = ATPA + Q−ATPB (BTPB + R)
−1

BTPA.

Note that in (2.33) we have an optimal control law, instead of a control sequence. This

controller is also referred to as the Linear Quadratic Regulator (LQR). For the proof of

(2.33), we suggest the reading of Kirk (2004) and Borrelli et al. (2017).

Now, suppose that we want to solve problem (2.32) from k = 0 to k = N , with N ∈ Z.

This way, we can rewrite the OCP as

J∗
0 (x0, û) = min~u xTNPxN +

∑N−1

i=0 xTi Qxi + uTi Rui,

s.t. xk ∈ X , ∀k ∈ {1, ..., N − 1},
uk ∈ U , ∀k ∈ {1, ..., N − 1},
xN ∈ Xf ,
xk+1 = Axk + Buk, ∀k ∈ {1, ..., N − 1},

(2.34)

where P is the terminal weighting matrix, and Xf is the terminal set, or terminal region,

that we want the states to reach at the end of the horizon N . The addition of a terminal

set is mandatory in order to ensure closed-loop stability (Limón et al., 2008; Mayne et al.,

2000). Typically, the terminal region is chosen as the maximum invariant set of the system.

To solve problem (2.34), we will use an alternative approach and explicitly write it as

a function of the future inputs by using successive substitutions, as follows











x1

x2

...

xN











=











A

A2

...

AN











x0 +











B 0 · · · 0

AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B





















u0

u1

...

uN−1











, (2.35)

which can be reduced to

x = Tx0 + Sû.

This way, the cost functional can be expressed as

J0(x0, û) = ûTHû + 2xT0 F û + xT0 Y x0,

where

H = ST Q̄S + R̄,

F = T T Q̄S,

Y = T T Q̄T .
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Moreover, Q̄ = blkdiag

N
︷ ︸︸ ︷

(Q, Q, ..., P ) and R̄ = blkdiag

N
︷ ︸︸ ︷

(R, R, ..., R). Therefore, the

optimal control problem resumes to

J∗
0 (x0, û) = minû ûTHû + 2xT0 F û + xT0 Y x0,

s.t. G(û) ≤ 0,

E(û) = 0.

(2.36)

The optimal solution û∗ is achieved by solving (2.36). Note that the term xT0 Y x0 does

not affect the result, as it does not depend on û, therefore it can be removed from the

problem. Furthermore, if the restrictions E(û) = 0 and G(û) ≤ 0 are affine, they can be

written in the compact form

Aeqû = beq,

Aineqû ≤ bineq.

We will use this compact notation throughout the text.

2.3.3 Receding Horizon Control

In the previous section, we presented the solution of a constrained, finite time optimal

control problem. Here we seek to propose a different approach, using the Receding Horizon

Control (RHC) formulation. For that, an optimal control problem with a finite horizon is

solved at the initial time k = 0. Then, the first component of the optimal control sequence

u∗
0 is applied to the system during the interval [k∆t, (k + 1) ∆t), where ∆t is the sampling

period. At the next time step, k + 1, the initial states are updated, and we solve a new

optimal control problem over a shifted horizon, and we keep repeating this procedure. An

RHC, where the optimal control sequences are computed online, is called Model Predictive

Control (MPC).

2.4 Extended Kalman Filter

One of the main challenges in UAV control is the state measurement. Generally, a UAV is

equipped with onboard sensors to measure some of its states, however, some of the UAV

states cannot be directly measured, and the ones we can measure can be subjected to

noise and uncertainty. One solution to this problem is to use the available sensors and an

observer to estimate the UAV states. A well-known observer is the Kalman Filter (KF),

also known as the Linear Quadratic Estimator (LQE), (Kalman et al., 1960). The KF is

an algorithm that produces estimates of unknown variables from a series of measurements

by estimating a joint probability distribution for each time frame. For nonlinear systems,
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it is common to use the Extended Kalman Filter (EKF), which we briefly discuss in this

section.

For that let Γp and Γo be the process noise and the observation noise covariance

matrices, and Γe the predicted covariance estimate. Moreover, let a nonlinear system be

defined as 





ẋ = f(x,u) + w,

y = h(x),
(2.37)

where x is the state vector, y the output vector, u is the input vector, w is the noise

vector, and f , h are differentiable functions. Thus, assuming that both f and h are a good

approximation of the real model, we can use them to compute the predicted state from

previous estimates.

The EKF algorithm may then be defined in two steps: prediction and correction. In

the prediction step, we estimate the UAV states using the sensors readings as inputs of

the model, and update the covariance matrix, Γe. In the correction step, we compare the

estimated outputs with the data provided by another set of sensors to update the state

estimates and Γe. Algorithm 1 resumes this procedure, which was modified from Beard

& McLain (2012). The function SensorData() returns the data from the sensors used to

correct the estimates. Furthermore, x̃ are the state estimates, ũ the sensor inputs, ∆tEKF

is the sensor sampling time, used to discretize (2.37), and I is the identity matrix.

Algorithm 1: Extended Kalman Filter algorithm.
1 while True do

2 if Sensor data for prediction available then

3 x̃← x̃ + f(x̃, ũ)∆tEKF ; . Predict step

4 F ← ∂f

∂x
(x̃, ũ) ;

5 Γe ← Γe + ∆tEKF (FΓe + ΓeF
T + Γp) ;

6 if Sensor data for correction available then

7 SD← SensorData() ; . Correction step

8 H ← ∂h

∂x
(x̃, ũ);

9 L← ΓeHT

Γo+HΓeHT ;
10 Γe ← (I−LH)Γe ;
11 x̃← x̃ + L (SD− h(x̃)) ;



3
Motion planning strategy

In this chapter, we present the development of the proposed guidance strategy. Although

we apply it on a fixed-wing UAV, the proposed strategy can also be used in the guidance

of a broad class of mobile robots.

3.1 Problem formulation

In this work, we consider the task of guiding a fixed-wing UAV to converge to and circulate

a closed curve C(t) ∈ R
3 while deviating from moving obstacles.

Assumption 1. The obstacles can be represented as rigid vertical cylinders that can

move only in the horizontal plane, with velocities bounded below by the UAV stall speed,

vstall.

Let O(t) be the set of cylindrical obstacles, indexed by i,O(t) = {O1(t), O2(t), ...}, that

can be represented by their position in the horizontal plane, which can be time varying,

and by the radius Oi,r of a corresponding circumscribed cylinder.

Assumption 2. The moving obstacles have some intelligence, so that two obstacles Oi
and Oj do not move towards each other when inside a collision range.

Assumption 1 is needed to ensure that an obstacle will not move faster than the UAV,

so it can be circulated. Assumption 2 ensures that obstacles will not collide with each

other and, once the UAV starts circulating an obstacle, it will have space to finish the

27
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maneuver. Furthermore, in this work we do not consider the problem of detecting the

obstacles, thus we also have the following assumption:

Assumption 3. For each obstacle Oi ∈ O within a given range din from the UAV, both

position and velocity of Oi are known.

In practice, the obstacle position and velocity could be estimated using a camera, as

shown in Pester & Schrittesser (2019); Ali & Ragb (2019). If they are robots, they can

also communicate this information. With these assumptions, we can formally define the

motion planning problem as follows:

Problem 1. Given a target curve C(t) and a set of obstacles O, find a vector field F (x, t)

to guide the UAV to converge to and circulate C while avoiding the obstacles in O under

Assumptions 1, 2 and 3.

In order to find a solution to Problem 1, we will first divide it into minor problems, or

steps. This way, we are able to develop the solution to each one separately. The three

minor problems are defined as follows:

• Find a vector field Fc(x, t) to converge to and circulate the target curve C;

• Find a vector field Fo(x, t) to converge to and circulate any obstacle Oi ∈ O;

• Find a switching law to combine Fc(x, t) and Fo(x, t) in order to solve Problem 1.

3.2 Curve field

In this section, we present the solution for the first step of Problem 1. The proposed

solution relies on the implementation of a vector field strategy, initially proposed in

Gonçalves et al. (2010) for n dimensions. Since we are dealing with a three dimensional

workspace, we will briefly recall the strategy using n = 3.

First, consider a robot represented by a configuration vector x = [x1 x2 x3]
T . Note

that x ∈ R
3 is the trajectory position, and can be related to the NED coordinate system.

Moreover, we initially consider that the configuration space is collision-free. Also, we

assume that the robot can be modeled as a single integrator, ẋ = ux, where ux is the

control input.

Now, let κi(x, t) : R4 → R, i = 1, 2 be scalar functions with bounded second-partial

derivatives and with linearly independent gradients at the target curve. With that, we

can formally define the target curve C(t) as

C = {[x1 x2 x3 t]
T ∈ R

4 : κi(x1, x2, x3, t) = 0, i = 1, 2} .
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Figure 3.1: Target curve, in black, and zero sets of κ1(x, t) = −x3 + x2
1 + 2 = 0, in blue, and

κ2(x, t) = 4x2
1 + x2

2 − 5 = 0 in red.

Figure 3.1 shows an example of a target curve, in black, defined by the zero level sets of

the respective κi(x, t) functions.

With those definitions, we can decompose the vector field in three components: one

which converges to the curve, one to circulate it, and one to compensate for the time-

varying behavior. Now, let V (κ1, κ2) : R4 → R be a differentiable positive-definite function,

such that V = ∇V = 0 ⇐⇒ κ1 = κ2 = 0. Therefore, by setting V = ∇V = 0 we ensure

convergence. Furthermore, we have that V̇ is given by

dV

dt
= ∇V T ẋ +

∂V

∂t
= ∇V Tux +

∂V

∂t
, (3.1)

where ∇ is the gradient with respect to x. Thus, we can set

ux = G(x1, x2, x3, t)∇V + Ff , (3.2)

where G(x1, x2, x3, t) : R4 → R is a non-positive scalar function, with possible null value

only when ∇V = 0, and with bounded partial derivatives. Also, Ff is the time-varying

compensation component. It should be mentioned that in the case of a static curve, we can

set Ff = 0. Otherwise, according to Gonçalves et al. (2010), it must satisfy the following

equality:

∇κTi Ff = −∂κi
∂t

, i = 1, 2. (3.3)
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We can rewrite (3.3) in matrix form as




∇κT1
∇κT2





︸ ︷︷ ︸

M∗

Ff = −




∂κ1
∂t

∂κ2
∂t





︸ ︷︷ ︸

a∗

. (3.4)

Therefore, as long as (3.4) is ensured, the time-varying nature of the curve will be

compensated. Moving on, by replacing (3.2) and (3.4) in (3.1) we obtain

dV

dt
= G‖∇V ‖2.

Since G is negative when ∇V 6= 0, then V → 0 and the convergence to the curve is ensured.

Suppose now that x has converged to the desired curve. Thus, we have ∇V = 0 and (3.2)

reduces to ux = Ff , which will only maintain the robot in the curve. Therefore we need a

third therm Fr to make it circulate C.

For that, it is necessary to ensure ‖Fr‖ 6= 0 and that κ̇1 = κ̇2 = 0. Thus, we need

dκi
dt

= ∇κTi (Fr + Ff) +
∂κi
∂t

= 0, i = 1, 2. (3.5)

With (3.3) and (3.4) we can rewrite (3.5) as

M
∗
Fr = 0,

where M∗ is a 2 × 3 matrix, such that the i-th row is given by ∇κTi . If M∗ has full row

rank, then there is only one solution to Fr, which we define as

Fr = H(x1, x2, x3, t) (∇κ1 ×∇κ2) , (3.6)

where H(x1, x2, x3, t) : R4 7→ R is a continuous, strictly positive or negative, scalar function.

Thus, the sign of H will define the circulation direction.

Finally, note that as C is time varying, it may have a tangent velocity component,

which would imply that both Ff and Fr could contribute to guide the system in the tangent

direction of C. In order to avoid that behavior, (3.4) is modified to ensure that Fr and Ff

are orthogonal, thus obtaining








∇κT1
∇κT2

(∇κ1 ×∇κ2)
T








︸ ︷︷ ︸

Mc

Ff = −








∂κ1
∂t

∂κ2
∂t

0








︸ ︷︷ ︸

ac

→ Ff = −M−1
c ac.

With that, circulation can be ensured by choosing a proper H, so that ‖Fr‖ is greater than
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any tangent velocity component. Therefore, we can define ux as

ux = G∇V +H(∇κ1 ×∇κ2)−M−1
c ac. (3.7)

Proof of convergence and circulation for (3.7) can be found in Gonçalves et al. (2010).

Furthermore, in this work, we desire to converge to and circulate C with a speed close

to a given reference speed ϑ. For that, we define the vector field to the target curve

Fc(x1, x2, x3, t) as

Fc(x1, x2, x3, t) = ϑG
∇V
‖∇V ‖ + ϑH

∇κ1 ×∇κ2

‖∇κ1 ×∇κ2‖
−M−1

c ac, (3.8)

with G and H defined as

G = − 2

π
arctan(V ), (3.9)

H =
√

1−G2, (3.10)

V = K1κ
2
1 +K2κ

2
2, (3.11)

where K1 and K2 are positive constants. Moreover, note that in (3.8) we do not normalize

the feedforward component, as by doing it, the time varying component of the curve may

not be compensated.

3.3 Obstacle avoidance

With the vector field to converge to and circulate the pre-defined curve, we can now move

on to the obstacle avoidance problem. As mentioned before, we consider that each obstacle

Oi ∈ O can be fully represented by the position in the horizontal plane, denoted by Oi,x1
(t)

and Oi,x2
(t), and by the radius Oi,r of a corresponding cylinder circumscribing it. Figure

3.2 shows an example of a triangular obstacle, in red, and its corresponding cylinder, in

blue.

It should be noted that though we are able to extend the method to a broad class of

objects, for some shapes, this strategy can be very conservative, as shown in the example

above. However, this approach allows us to reduce the dimension of the problem from R
3

to R
2. It is also important to mention that in some scenarios it is not interesting to allow

maneuvers above or under a dynamic obstacle.

Note that since we are considering obstacles represented by cylinders, we can define

a target circle around the i-th obstacle, such that by following this circle the UAV will

circulate the obstacle. Moreover, since circulating the obstacle at any height does not

affect avoidance, we can reduce our problem to a two dimensional one. This way, for each
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Figure 3.2: Example of an obstacle, in red, and its corresponding circumscribed cylinder,
in blue.

obstacle Oi, we can define a correspondent scalar function Oi,κ(x1, x2, t) as

Oi,κ(x1, x2, t) =
(

x1 −Oi,x1
(t)
)2

+
(

x2 −Oi,x2
(t)
)2 −O2

i,R. (3.12)

Note that Oi,κ(x1, x2, t) defines the target circle Ci, of radius Oi,R, around the i-th obstacle.

Also, it should be noted that Oi,R must be greater than Oi,r, otherwise by following (3.12)

the UAV could hit the obstacle.

We can now use the same strategy presented in Section 3.2 to define the vector field

Fo(x, t, i, s) that leads to the avoidance of the i-th obstacle, where s is the circulation

direction. First, let us define an auxiliary, bidimensional vector field F̄o(x, t, i, s) which

only converges to and circulates Ci. For the convergence component, we can use the Oi,κ
functions to define

Vi = Oi,κ.

As for the circulation component, we need to find a suitable Fr such that the following

equality is satisfied:
[
∂Oi,κ
∂x1

∂Oi,κ
∂x2

]

Fr = 0.

An evident choice is the Hamiltonian Gradient ∇H of Oi,κ, given by

∇HOi,κ =
[

− ∂Oi,κ
∂x2

∂Oi,κ
∂x1

]T

.

With that, we can set Mo and ao to

Mo =
[

∇Oi,κ ∇HOi,κ
]T

, ao = −
[
∂Oi,κ
∂t

0
]T

.

This way, we ensure that Fr and Ff are orthogonal. Now, we can define the obstacle
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circulation field as

F̄o(x, t, i, s) = ϑGi

∇Oi,κ
‖∇Oi,κ‖

+ sϑHi

∇HOi,κ
‖∇HOi,κ‖

−M−1
o ao, (3.13)

with Gi and Hi given by

Gi(x1, x2, t) = − 2

π
arctan(KGi

Vi), (3.14)

Hi(x1, x2, t) =
√

1−Gi(x1, x2, t)2, (3.15)

where KGi
is a positive constant. Furthermore, as following Fc is the main task, s is chosen

in order to generate the smallest field’s change:

s =







1, x3(ri × Fc(x, t)) ≤ 0,

−1, otherwise.
(3.16)

x3 =
[

0 0 1
]

,

with ri being the vector that points from the UAV to the i-th obstacle center.

Now, as mentioned before, since the x3 component does not affect the avoidance

behavior, we can combine (3.13) and (3.8) to obtain Fo(x, t, i, s) as

Fo(x, t, i, s) =




ϑ′Gi

∇Oi,κ
‖∇Oi,κ‖ + sϑ′Hi

∇HOi,κ
‖∇HOi,κ‖

x3Fc(x, t)



−



M−1

o ao

0



 , (3.17)

with ϑ′ given by

ϑ′ =
√

ϑ2 − ‖x3Fc(x, t)‖2.

With (3.17) we obtain a vector field that circulates the i-th obstacle while following the x3

reference of Fc(x, t). Also, note that by multiplying only the x1 and x2 component of Fo
by ϑ′ we are able to maintain the norm of the field close to ϑ. Note also that though we

multiply the feedforward component of Fc, it will not affect the obstacle avoidance, given

that we keep the feedforward component of Fo unchanged.

3.4 Composite vector field

Now, in order to provide a soft transition between the vector field behaviors, we need to

define a transition law. For that, consider that each transition lasts for Tγ seconds. Also,

let tγ be the time during transition, and γ a function that maps the interval [0, Tγ] into

[0, 1], for instance γ = tγT
−1
γ . This way, we can define the composite vector field F (x, t, i, s)
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as a convex combination of Fo and Fc by setting

F (x, t, i, s) = ϑ̄
F̄ (x, t, i, s)

‖F̄ (x, t, i, s)‖
, (3.18)

where ϑ̄ and F̄ (x, t, i, s) are given by

ϑ̄ = (1− γ̄)‖Fc(x, t)‖+ γ̄‖Fo(x, t, i, s)‖ (3.19)

F̄ (x, t, i, s) = (1− γ̄)Fc(x, t) + γ̄Fo(x, t, i, s), (3.20)

γ̄(γ) = 3γ2 − 2γ3. (3.21)

Note that in (3.19) and (3.20) we consider the transition from Fc to Fo. If considering

the opposite scenario Fc and Fo must be exchanged. Also, for γ ∈ [0, 1], the function γ̄(γ)

ensures a smooth transition between the vector fields, since ˙̄γ(0) = ˙̄γ(1) = 0. We also use

this transition to perform a convex combination of the norms of the field, (3.19). This is

necessary to ensure continuity of the norm of F , since ‖Fo‖ 6= ϑ when Oi is moving.

Lemma 1. A sufficient condition to ensure that the trajectory will not reach the obstacles

is that

Tγ <
din − (Oi,R −Oi,r)

ϑ̄max
, (3.22)

where ϑ̄max is the maximum norm of the vector field.

Proof. In the beginning of the transition phase, the distance from the UAV to Ci will be

din − (Oi,R −Oi,r). In the worst hypothetical scenario, the UAV will be moving towards it

with speed ϑ̄max. Therefore it will take din−(Oi,R−Oi,r)

ϑ̄max
seconds to reach Ci. Thus, if (3.22) is

respected, the transition will be completed before UAV reaches Ci. Also, by continuing to

follow Fo, the UAV will reach Ci from the outside and thus will not reach the obstacle.

Therefore, when no obstacles are detected, the vector field F (x, t, s, i) will be the one

to the curve, Fc(x, t), as shown in Figure 3.3. The robot is represented by the blue dot,

the obstacle by the brown disk, with the target circle in yellow, din in green, and the

target curve in black. When an obstacle Oi is detected inside the perception range din,

and Fc(x, t) points in a direction that decreases the distance to the obstacle, a transition

from Fc to Fo is initiated. This transition is shown in Figure 3.4, where the curve field, Fc,

is represented in blue, the obstacle field, Fo, in red, and the composite field, F , in dark

green. The transition will last for Tγ seconds. After that, the vector field F (x, t, s, i) will

be the one to circulate the obstacle, Fo(x, t, s, i), as illustrated in Figure 3.5. This behavior

lasts until Fc(x, t) starts to point in a direction that increases the distance from Oi. At

this moment, a transition from Fo to Fc begins, as depicted in Figure 3.6.
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Algorithm 2: Online Switching Vector Field
1 state← follow_curve . Initial state

2 while True do

3 i← ClosestObstacle(t,O)

4 switch state do

5 case follow_curve
6 F (x, t, s, i)← Fc(x, t)

7 if rTi Fc(x, t) > 0 then

8 state← transition_to_obstacle
9 s← getCircDir(x, t, i)

10 γ ← 0

11 case transition_to_obstacle
12 γ̄ ← 3γ2 − 2γ3

13 ϑ̄← (1− γ̄)‖Fc(x, t)‖+ γ̄‖Fo(x, t, s, i)‖
14 F (x, t, s, i)← (1− γ̄)Fc(x, t) + γ̄Fo(x, t, s, i)

15 F (x, t, s, i)← ϑ̄F (x, t, s, i)‖F (x, t, s, i)‖−1

16 γ ← γ + T−1
γ ∆t

17 if γ ≥ 1 then

18 state← circulate_obstacle
19 case circulate_obstacle
20 F (x, t, s, i)← Fo(x, t, s, i)

21 if rTi Fc(x, t) < 0 then

22 state← transition_to_curve
23 γ ← 0

24 case transition_to_curve
25 γ̄ ← 3γ2 − 2γ3

26 ϑ̄← (1− γ̄)‖Fo(x, t, s, i)‖+ γ̄‖Fc(x, t)‖
27 F (x, t, s, i)← (1− γ̄)Fo(x, t, s, i) + γ̄Fc(x, t)

28 F (x, t, s, i)← ϑ̄F (x, t, s, i)‖F (x, t, s, i)‖−1

29 γ ← γ + T−1
γ ∆t

30 if γ ≥ 1 then

31 state← follow_curve
32 t← t+ ∆t



4
Control

In this chapter, we detail the development of the control strategies proposed in this work.

The proposed strategies enable the UAV to follow the references given by the guidance

strategy developed in Chapter 3.

4.1 Problem definition

First, let us formally define the control problem addressed in this work as:

Problem 2. Find an control law to make a fixed-wing UAV, modeled by (2.6)-(2.9),

converge to the references provided by the solution of Problem 1, assuming that it exists.

In this chapter, we propose two solutions to Problem 2. First, we will use the linear

velocities in the NED frame and the time derivative of the Euler angles as outputs of

the system. With this approach, we intend to directly compare the vector field velocity

references with the controlled outputs in the controller. In the second approach, we

maintain the time derivative of the Euler angles but we exchange the linear velocities for

the aerodynamic angles and true speed. This change allows us to impose linear constraints

on the UAV’s true speed and on the angle-of-attack.

The proposed solutions act in two stages: i) first, a Feedback Linearization controller is

applied to the UAV model (2.6)-(2.9) using the generalized forces and moments as virtual

control inputs; ii) after, the auxiliary control law is designed using a Model Predict Control

37
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to efficiently solve the reference tracking and the control mapping problems simultaneously,

ensuring feasible transformations between the virtual control inputs and the applied ones.

4.2 Control using the linear velocities

In this section, we present the first control strategy. In this approach, we seek to control

the UAV linear velocities in the NED frame and the Euler angles derivatives, as mentioned

before. With that, we are able to compare the velocities references from the vector field

strategy presented in Section 3.1 with the controlled outputs directly in the controller.

First, note that in (2.10)-(2.15) we can isolate the forces and moments that originated

from the UAV control surfaces and the ones that originated from the UAV fixed surfaces,

obtaining

fx = fxu + fxs,

...

n = nu + ns,

where the subscripts u and s indicate where the forces or moments are originated from

the control surfaces or from the fixed surfaces, respectively. For the ones that originated

from the control surfaces, we can summarize them as

fxu =
1

2
ρv2

tSCXδeδe +
1

2
ρSpropCpropk

2
motorδ

2
t , (4.1)

fyu =
1

2
ρv2

tS (CY δaδa + CY δrδr) , (4.2)

fzu =
1

2
ρv2

tSCZδeδe, (4.3)

lu =
1

2
ρv2

tSb (Clδaδa + Clδrδr)− kTpk2
ωδ

2
t , (4.4)

mu =
1

2
ρv2

tScCmδeδe, (4.5)

nu =
1

2
ρv2

tSb (Cnδaδa + Cnδrδr) . (4.6)

Note that both (4.1) and (4.4) are nonlinear with respect to δt. However, we can linearize

those equations around a given input δ̂t by applying the following transformation

δ2
t = δ̂2

t + 2δ̂t(δt − δ̂t) = 2δ̂tδt − δ̂2
t . (4.7)
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This way, by replacing (4.7) in (4.1) and (4.4) we obtain

fxu =
1

2
ρv2

tSCXδeδe + ρSpropCpropk
2
motorδ̂tδt −

1

2
ρSpropCpropk

2
motorδ̂

2
t , (4.8)

lu =
1

2
ρv2

tSb (Clδaδa + Clδrδr)− 2kTpk
2
ωδ̂tδt + kTpk

2
ωδ̂

2
t . (4.9)

Now, note that the terms multiplying δ̂2
t in (4.8) and (4.9) are constant. Therefore, since

we are interested only in the terms multiplying the throttle input, we can move these

terms to fxs and ls, obtaining

fxu =
1

2
ρv2

tSCXδeδe + ρSpropCpropk
2
motorδ̂tδt, (4.10)

lu =
1

2
ρv2

tSb (Clδaδa + Clδrδr)− 2kTpk
2
ωδ̂tδt. (4.11)

This way, we are able to obtain a relationship between the virtual control inputs and the

applied ones, given by

ū = Muu, (4.12)

with

Mu =
1

2
ρv2

tS

















0 CXδe 0
SpropCprop

v2
t
S

k2
motorδ̂t

CY δa 0 CY δr 0

0 CZδe 0 0

bClδa 0 bClδr − 4kTp
k2
ωδ̂t

ρv2
t
S

0 cCmδe 0 0

bCnδa 0 bCnδr 0

















.

ū =
[

fxu fyu fzu mu lu nu

]T

,

u =
[

δa δe δr δt

]T

,

Note that Mu contains the aerodynamic coefficients of the control surfaces. With (4.12),

we are able to map restrictions of the applied inputs into the virtual ones.

Now, in order to apply a linear MPC to track the desired references, initially, we will

use the input-output linearization technique presented in Chapter 2.2 with the generalized

forces and moments vector ū as virtual control inputs. Furthermore, we define the state

vector x and the output vector y as follows

x =
[

ur vr wr φ θ ψ p q r
]T

,

y =
[

ṗn ṗe ṗd φ̇ θ̇ ψ̇
]T

.

From (2.7)-(2.9) it is straightforward to see that at least one virtual control input appears

in the first derivative of each output yk, thus ρk = 1, ∀k ∈ {1, ..., 6}, and ρ = 6. This way,
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by applying the feedback linearization technique presented in Chapter 2, we can use the

control law

ū = λ(x) + Λ(x)−1ν, (4.13)

to obtain a partially linearized system in the following normal form







η̇ = f0(η, ξ)

ξ̇ = Aξ + Bν

y = Cξ

, (4.14)

with

η =
[

φ θ ψ
]T

,

ξ =
[

ṗn ṗe ṗd φ̇ θ̇ ψ̇
]T

,

A = 0, B = I, C = I,

where 0 and I are appropriate sized zero and identity matrices. Note that here we do not

include the UAV position in the dynamics, as it is controlled in an external loop by the

vector field strategy.

Furthermore, Λ and λ are given by

Λ =








Lg1h1(x) · · · Lg6h1(x)
...

. . .
...

Lg1h6(x) · · · Lg6h6(x)







, λ = −Λ−1








Lfh1(x)
...

Lfh6(x)







. (4.15)

For the complete version of these matrices please refer to Appendix B.1.

By computing Λ in (4.15) we find that det(Λ) 6= 0 if, and only if, cos(θ) 6= 0, thus

implying θ 6= ±0.5π. Therefore, for the proposed feedback linearization control law to be

feasible, we first need to ensure that: i) the pitch angle θ will be such that |θ| < π

2
; and ii)

the mapping between the virtual control inputs and the applied ones is invertible, and

therefore, feasible. To solve both problems, besides the tracking problem, we propose to

use a linear Model Predictive Control.

Initially, let k be the discrete sampling instant. Then, by discretizing the external

dynamics of (4.14) using the Euler method, we obtain







ξ+ = Adξk + Bdνk

yk = Cξk

, (4.16)

where ξ+ = ξk+1. Now, by augmenting (4.16) using the control increments ∆νk = νk − νk−1
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as inputs, yields











ξ+

ν+






︸ ︷︷ ︸

z+

=






Ad Bd

0 I






︸ ︷︷ ︸

A






ξk

νk−1






︸ ︷︷ ︸

z

+






Bd

I






︸ ︷︷ ︸

B

∆νk,

yk =

[

C 0

]

︸ ︷︷ ︸

C

z.

(4.17)

This Incremental MPC Framework is discussed in Borrelli et al. (2017); Rossiter (2003).

In order to incorporate the control allocation problem into the optimal control problem

of the MPC, the virtual and applied control inputs should also be discretized. For that,

consider that λ0 = λ|k=0 and Λ0 = Λ|k=0, with λ and Λ from (4.15), are kept constant

during the entire prediction horizon. This way, with (4.12) and (4.13), we can define

ūk = λ0 + Λ
−1
0 νk,

∆ūk = ūk − ūk−1 = λ0 − λ0 + Λ
−1
0 (νk − νk−1) = Λ

−1
0 ∆νk,

∆uk = uk − uk−1 = M+
u (ūk − ūk−1) = M+

u ∆ūk,

where M+
u is the left pseudo-inverse of Mu, also computed at k = 0 and kept constant. It

should be noted that by by doing that, we also avoid nonlinear constraints. Now, suppose

that for a given input ∆νk, there is an increment in the applied controls given by

∆uk = M+
u ∆ūk = M+

u Λ
−1
0 ∆νk. (4.18)

Since M+
u only gives the minimum squared error for ∆uk, the actual incremental inputs

applied are

∆ν ′
k = Λ0Mu∆uk = Λ0MuM

+
u Λ

−1
0 ∆νk. (4.19)

However, the valid solution must ensure that ∆ν ′
k = ∆νk. For that, we can reorganize

(4.19) to obtain

(I−MuM
+
u )Λ−1

0 ∆νk = 0. (4.20)

Therefore, as long as ∆νk is in the null space of (I−MuM
+
u )Λ−1

0 , there is a feasible mapping

between the virtual inputs ū and the applied ones u. Thus, we can formally define the

control mapping restriction as

(I−MuM
+
u )Λ−1

0 ∆νk = 0, ∀k ∈ {0, ..., nu}, (4.21)

where nu is the control horizon.

Furthermore, given that the control surfaces have physical and rating limits, we need

to impose constraints so that ∆νk will respect those. For that, let u0 be the value of u at
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k = 0. Then, we can use the relationship found in (4.18) to obtain

∆umin ≤M+
u Λ

−1
0 ∆νk ≤ ∆umax, ∀k ∈ {0, ..., nu}, (4.22)

and






umin ≤ u0 + M+
u Λ

−1
0

∑k

j=0 ∆νj ≤ umax, ∀k ∈ {0, ..., nu},

umin ≤ u0 + M+
u Λ

−1
0

(
∑nu

j=0 ∆νj + (k − nu)∆νnu

)

≤ umax, ∀k ∈ {nu + 1, ..., np},
(4.23)

where np is the prediction horizon, umax and umin are the upper and lower bounds of u,

and ∆umax and ∆umin are the rating bounds. Thus, given that (4.22) and (4.23) are met,

then ∆νk will respect the control surfaces amplitude limits and rating limits.

Moreover, we need to ensure that the feedback linearization control law is always

feasible. For that, we need to ensure that |θ| < π

2
. Assume for now that θ can be measured,

and it is available to the controller at any instant k. Now, given that θk+1 = θk + θ̇k∆t,

where ∆t is the sampling time, we can write the following constraint on θ̇

− π

2
< θ0 +

k∑

j=1

θ̇j∆t <
π

2
, ∀k ∈ {1, ..., np}. (4.24)

One should note that a strict restriction cannot be solved by using numeric methods,

therefore, it must be approximated as follows

− π

2 + ε
≤ θ0 +

k∑

j=1

θ̇j∆t ≤
π

2 + ε
, ∀k ∈ {1, ..., np}, (4.25)

where ε is a small, positive constant.

Furthermore, the UAV must fly above a minimum speed, denoted vstall. Thus, consider

the following constraint

ṗ2
nk

+ ṗ2
ek

+ ṗ2
dk
≥ v2

stall. (4.26)

Note that (4.26) is a nonlinear restriction. Therefore, we modify it in order to use a linear

constraint in the MPC formulation. For that, consider that the UAV speed at time k+ i is

given by

ṗnk+i
= ṗnk + ∆t

i−1∑

j=0

p̈nk+j
,

ṗek+i
= ṗek + ∆t

i−1∑

j=0

p̈ek+j
,

ṗdk+i
= ṗdk + ∆t

i−1∑

j=0

p̈dk+j
.
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Replacing the above equations in (4.26) we obtain

ṗ2
nk

+ ṗ2
ek

+ ṗ2
dk

+∆t2

[(
i−1∑

j=0

p̈nj

)2

+

(
i−1∑

j=0

p̈ej

)2

+

(
i−1∑

j=0

p̈dj

)2]

+

2∆t
i−1∑

j=0

(

p̈nk+j
ṗnk + p̈ek+j

ṗek + p̈dk+j
ṗdk

)

≥ v2
stall, ∀i ∈ {1, ..., np}. (4.27)

Now, since the term multiplying ∆t2 in (4.27) is positive, we can remove it to obtain

ϑ0 + 2∆t
i−1∑

j=0

(

p̈nk+j
ṗnk + p̈ek+j

ṗek + p̈dk+j
ṗdk

)

≥ v2
stall, ∀i ∈ {1, ..., np}, (4.28)

where

ϑ0 = ṗ2
nk

+ ṗ2
ek

+ ṗ2
dk
.

Since ṗnk , ṗek and ṗdk are known, (4.28) is a convex, linear constraint. Moreover, from

(4.17), we have that p̈nk , p̈ek and p̈dk can be replaced by the respective desired accelerations,

composing the first three elements of νk. Finally, the solution of (4.28) is also a solution to

(4.27). However, it should be noted that by using this conservative constraint, the feasible

solution set can be drastically reduced. This concludes the formulation of the constraints

for the controller.

Now, let yr be a given desired reference, yet to be defined. By defining the tracking

error as ȳ = yr − y = yr −Cz we can define the cost functional as

J(∆ν, ȳ) = min
∆ν

nu∑

i=0

∆νTi R∆νi +

np−1
∑

j=0

ȳTj Qȳj + ȳTnpP ȳnp , (4.29)

where Q and R are the control and output weighting matrices, and P is the terminal cost.

Note that yk can be written as an explicit function of the initial state z0 and the future

inputs ∆ν0, ∆ν1, ..., ∆νnu−1, as follows

yk = CAkz0 + C
k−1∑

i=0

AiB∆νi. (4.30)

Therefore, by defining nu and np, we follow a similar approach to the one presented in

Chapter 2.3 to write (4.30) in the compact form

~y = Tzo + S∆~ν, (4.31)
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with

~y =
[

yT1 yT2 · · · yTnp

]T

,

∆~ν =
[

∆νT0 ∆νT1 · · · ∆νTnu−1

]T

,

T =











CA
CA2

...

CAnp











, S =











CB 0 · · · 0

CAB CB · · · 0

...
...

. . .
...

CAnp−1B CAnp−2B · · · C∑np−nu
i=1 AiB











.

Differently from the notation used in Chapter 2.3, here we are obtaining the future outputs,

instead of future states. Moreover, the cost functional can now be rewritten as

J(∆~ν, z0) = ∆~νTH∆~ν + F T∆~ν + Y , (4.32)

with

H = R̄ + ST Q̄S,

F = 2 (Tz0 − ~yr)
T
Q̄S,

Y = (~yr − Tz0)
T Q̄(~yr − Tz0),

where ~yr is the reference output vector, Q̄ = blockdiag

np
︷ ︸︸ ︷

(Q, ...,Q,P ) and R̄ = blockdiag

nu
︷ ︸︸ ︷

(R, ...,R).

Thus, (4.32) is a quadratic convex function of ∆~ν and z0.

To write the constraint in the compact form, we can follow a similar procedure. Starting

with the constraints on the pitch angle, let zθ and Zθ be defined as

zθ =
[

0 0 0 0 ∆t 0 · · · 0
]

,

Zθ =











zθ 0 · · · 0

zθ zθ · · · 0

...
...

. . .
...

zθ zθ · · · zθ











. (4.33)

With that, we can rewrite (4.24) in the compact form




ZθS

−ZθS



∆~ν ≤



[θmax]×np

− [θmin]×np



+




− [θ0]×np

[θ0]×np



+




−ZθTzo

ZθTzo



 , (4.34)

with

θmax = −θmin =
π

2 + ε
.
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Moreover, the operator [·]×n means that we stack the variable n times, for instance

[θ0]×np =

np
︷ ︸︸ ︷
[

θ0 · · · θ0

]
T .

Now, for the speed constraint (4.28), we have

−ZϑS∆~ν ≤ [ϑ0]×np − [v 2
stall]×np + ZϑTz0, (4.35)

where

zϑ = 2∆t
[

0 0 · · · ṗnk ṗek ṗdk 0 0 0
]

,

Zϑ =











zϑ 0 · · · 0

zϑ zϑ · · · 0

...
...

. . .
...

zϑ zϑ · · · zϑ











.

Similarly, (4.22) and (4.23) can be written in the compact form




Urate

−Urate



∆~ν ≤



[∆umax]×nu

− [∆umin]×nu



 , (4.36)




Usum

−Usum



∆~ν ≤



[umax]×np

− [umin]×np



+




− [u0]×np

[u0]×np



 , (4.37)

where Urate and Usum are matrices such that

Urate =











M+
u Λ

−1
0 0 · · · 0

0 M+
u Λ

−1
0 · · · 0

...
...

. . .
...

0 0 · · · M+
u Λ

−1
0











,

Usum =


















M+
u Λ

−1
0 0 · · · 0

M+
u Λ

−1
0 M+

u Λ
−1
0 · · · 0

...
...

. . .
...

M+
u Λ

−1
0 M+

u Λ
−1
0 · · · M+

u Λ
−1
0

...
...

...
...

M+
u Λ

−1
0 M+

u Λ
−1
0 · · · (np − nu + 1)M+

u Λ
−1
0


















.

Since all the constraints and the cost functional are explicit functions of ∆~ν, we can
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formally define the optimal control problem as

J(∆~ν) = min
∆~ν

∆~νTH∆~ν + F T∆~ν, (4.38)

s.t. Aeq∆~ν = 0,

Aineq1∆~ν ≤ bineq1,

where the matrices Aeq and Aineq1, and the vector bineq1 are given by

Aeq =











(I−MuM
+
u )Λ−1

0 0 · · · 0

0 (I−MuM
+
u )Λ−1

0 · · · 0

...
...

. . . · · ·
0 0 · · · (I−MuM

+
u )Λ−1

0











,

Aineq1 =




















ZθS

−ZθS

−ZϑS

Urate

−Urate

Usum

−Usum




















, bineq1 =




















~θmax − ~θ0 −ZθTzo

−~θmin + ~θ0 + ZθTzo

~ϑ0 −~v 2
stall + ZϑTz0

∆~umax

−∆~umin

~umax − ~u0

−~umin + ~u0




















.

Moreover, the OCP has (6× nu) equality constraints, and (11× np + 4× nu) inequality

constraints. Note that in (4.38) we do not include the term Y from (4.32), as it does not

contributes to the solution of the problem. Therefore, given the optimal control sequence

∆~ν ∗, resulting from (4.38), the applied control inputs will be given by

u = u0 + M+
u Λ

−1
0 ∆ν∗

0 . (4.39)

4.3 Control using the aerodynamic states

In this section, we present an alternative approach to solve Problem 2, using the aerody-

namics angles and the UAV’s true speed in place of the linear velocities expressed in the

NED frame. This will allow us to replace the conservative constraints (4.28) with more

direct ones. First, let the derivative of those new states be given by

v̇t =
uru̇r + vrv̇r + wrẇr

vt
, (4.40)

α̇ =
urẇr − wru̇r
u2
r + w2

r

, (4.41)

β̇ =
vtv̇r − vrv̇t
vt
√
u2
r + w2

r

, (4.42)
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in which u̇r, v̇r, ẇr and v̇t are obtained from (2.7). Therefore, by choosing

y =
[

vt α β φ̇ θ̇ ψ̇
]T

,

and applying the same feedback linearization procedure as in the first strategy, we obtain

a partially linearized system in the form of (4.14) with

η =
[

φ θ ψ
]T

,

ξ =
[

vt α β φ̇ θ̇ ψ̇
]T

,

A = 0, B = I, C = I.

With (4.40)-(4.42) we find that ρk = 1 ∀k ∈ 1, ..., 6 and ρ = 6. Therefore, λ and Λ are given

in the same form as in (4.15). However, in this case, by computing Λ we find out that

det(Λ) 6= 0 ⇐⇒ cos(θ) 6= 0, v2
t > 0, cos(β) 6= 0. (4.43)

Therefore, we need two additional conditions in the MPC formulation. Note that v2
t > 0

can be replaced with vt > vstall in (4.43) without loss of generality, given that vstall > 0.

This way, we will be limiting the UAV velocity by its stall speed. Therefore, we can

directly set the restrictions on vt as

−Zvt
S∆~ν ≤ − [vstall]×np + Zvt

Tz0, (4.44)

with S and T given by (4.31), and

zvt =
[

1 0 · · · 0
]

,

Zvt
=











zvt 0 · · · 0

0 zvt · · · 0

...
...

. . .
...

0 0 · · · zvt











.

Then, we can remove (4.28) from the MPC problem. As for the restriction cos(β) 6= 0 we

can set



ZβS

−ZβS



∆~ν ≤



[βmax]×np

− [βmin]×np



+




−ZβTz0

ZβTz0



 , (4.45)
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where

zβ =
[

0 0 1 · · · 0
]

,

Zβ =











zβ 0 · · · 0

0 zβ · · · 0

...
...

. . .
...

0 0 · · · zβ











.

Moreover, since we are controlling α, we can impose constraints on it in order to avoid

stall situations, which are given by




ZαS

−ZαS



∆~ν ≤



[αmax]×np

− [αmin]×np



+




−ZαTz0

ZαTz0



 , (4.46)

where αmin and αmax are constructive parameters, and Zα is given by

zα =
[

0 1 0 · · · 0
]

,

Zα =











zα 0 · · · 0

0 zα · · · 0

...
...

. . .
...

0 0 · · · zα











.

Thus, the optimal control problem is posed as

J(∆~ν) = min
∆~ν

∆~νTH∆~ν + F T∆~ν (4.47)

s.t. Aeq∆~ν = 0

Aineq2∆~ν ≤ bineq2,
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where

Aineq2 =
































ZθS

−ZθS

−Zvt
S

ZβS

−ZβS

ZαS

−ZαS

Urate

−Urate

Usum

−Usum
































, bineq2 =
































~θmax − ~θ0 −ZθTzo

−~θmin + ~θ0 + ZθTzo

−~vstall + Zvt
Tz0

~βmax −ZβTz0

−~βmin + ZβTz0

~αmax −ZαTz0

−~αmin + ZαTz0

∆~umax

−∆~umin

~umax − ~u0

−~umin + ~u0
































.

Note that here we only change the inequality matrices, while Aeq is the same as in the

first strategy. Moreover, the OCP has (6× nu) equality constraints, and (15× np + 4× nu)
inequality constraints.

Similarly to the first controller, given the optimal control sequence ∆~ν ∗, resulting from

(4.47), the applied control inputs will be given by

u = u0 + M+
u Λ

−1
0 ∆ν∗

0 . (4.48)

4.4 Internal dynamics

For both presented controllers, the chosen output vectors lead to a relative degree less

than the number of states. In this case, the input-output map is linearized, but the state

equations are only partially linearized. Because of that, we are not able to eliminate the

internal dynamics, which, for both strategies, is represented by the state vector

η =
[

φ θ ψ
]

.

As η is not observable from the controller, we need to analyze it in order to know its

behavior. From Khalil & Grizzle (2002), we have that if η̇ has an asymptotically stable

equilibrium point, then the system is said to be minimum phase.

Thus, assuming that the proposed MPC controllers are able to stabilize the external

dynamics, then φ̇, θ̇ and ψ̇ converge to zero. Consequently, we have η̇ = f0(η,0) = 0 and

the system is minimum phase for both cases.
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with K1,φ and K2,φ > 0. Moreover, in Beard & McLain (2012), the authors show that (4.55)

also holds in presence of wind. Therefore, we can define the reference trajectory for the

first controller as

yr0 =
[

Fx1
Fx2

Fx3
φ̇r θ̇r ψ̇r

]T

. (4.56)

As for the second controller, we still need to define references for the aerodynamic angles.

Let αsw be the value of α at trimmed, steady-wing flight with null wind and sideslip. Then,

we can set αr = αsw. Now, since flying at slip can be aerodynamically inefficient, as the

lift-to-drag ratio is reduced. Then, we can define βr = 0. This way, the reference vector for

the second controller can be defined as

yr0 =
[

vrt αr βr φ̇r θ̇r ψ̇r
]T

. (4.57)

With both (4.56) and (4.57) defined, we calculate yr0 using the UAV position at k = 0 and

integrate the vector field to obtain yrk for k = 1, ..., np.



5
Results

In this chapter, we present the results obtained with the proposed control and guidance

strategies. We provide different simulation scenarios using an Aerosonde UAV in order to

evaluate the proposed strategies. In the first two scenarios, we use two different target

curves. In the third and fourth scenarios, we have added external disturbances and noisy

sensor measurements to evaluate the robustness of the control strategies. Moreover, we also

provide the simulation results for a Zagi UAV, so we can evaluate the proposed strategy

in different UAVs.

The simulations were executed in MatLab using a simulation frequency of 1kHz and

a control frequency of 100Hz. A time analysis is provided at the end of this chapter to

evaluate the feasibility of practical implementation. Furthermore, we provide a video of

the UAV performing the path following and obstacle avoidance tasks for each scenario.

The video is available at https://youtu.be/_w8dxKzam8Q.

5.1 Aerosonde UAV

The Aerosonde is a small UAV designed by Insitu1 to collect weather data over remote

areas. Its aerodynamic coefficients can be found in Appendix A.1. The stall speed and the

angle-of-attack limits are estimated using the lift curve of the UAV, presented in Figure

5.1.

In Figure 5.1 the blue line represents the dimensionless lift coefficient of the UAV, and

1https://www.insitu.com/
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Oi,r = 50m, thus, we set Oi,R = 75m, ∀Oi ∈ O .

5.2 Noiseless scenarios

In this first case, we removed external disturbances and assumed that the UAV states are

available to the controller. With that, we aim to test the effectiveness of the strategy. The

target curve for the first scenario is defined implicitly by the functions







κ1 = x3 − 100 + 50 (x1+2t)2

6002 ,

κ2 =
x2

1
6002 +

x2
2

4002 − 1.
(5.1)

Also, for this curve, we have set the gains in (3.11) to K1 = 4.5 × 10−5 and K2 = 3. In

this scenario, the curve is moving in the x1 axis with a speed of −2m/s. Moreover, the

obstacles move with the curve.

The target curve is represented by the black line in Figure 5.2. Furthermore, the

obstacles are represented by the most internal cylinders, in black, the yellow cylinders

give an extended 3D representation of the circulation curves Oi,κ, and the green cylinders

represent the perception distance din.

Figure 5.2: Target curve and obstacles represented at two time instants. On the left, we
have the curve at t = 0s. On the right, we have the representation at t = 200s.

The UAV trajectory is shown in Figure 5.3. The obstacles are shown in the position they

were at the time they were being circulated. Moreover, the UAV trajectory is represented

by the blue lines when it is following the curve, by the red line when it is circulating the

obstacle, and by the purple lines when it is in transition between behaviors. On the left,

we have the results of the first control strategy, and on the right, the results of the second

strategy. It can be seen that both strategies were efficient in leading the UAV to converge

to and circulate the curve while avoiding the obstacles.

The convergence to the field can be seen in Figure 5.4. On top, we have the vector

field orientation reference, in orange, and the UAV heading, in blue. On the bottom, we

have the vector field velocity reference, in orange, and the UAV speed, in blue. From this

figure, we can see that the second control strategy converges slightly better to the reference

velocity than the first approach. This is also an effect of the conservative restriction used
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Figure 5.3: Trajectory executed by the UAV in the first scenario. In the left, the results
for the first control strategy, on the right, the results for the second control strategy. The
target curve is represented in black and the obstacles by the most internal cylinders.

in the first control strategy, when the UAV acceleration has to increase, or decrease, in

order to keep the states inside the feasible solution set. However, both strategies were

equally effective in tracking the heading reference. The convergence is also detailed in

Figure 5.5, where each component of the reference velocities are represented by the orange

lines, and the UAV speed is shown in blue.

Figure 5.4: Heading tracking, on top, and velocity tracking, on bottom for the first scenario.
The reference values are showed by the dashed lines, and the UAV states by the solid lines.

From both Figures 5.4 and 5.5, we can see that even though there is a small deviation

in the x3 component, the UAV still converges to the references. This deviation occurs

when the derivative of ψr increases and the UAV has to perform a sharp turn. For the

first controller, the mean absolute error was 3.15deg for the heading tracking and 0.10m/s

for the velocity tracking, as for the second, we obtained 4.3deg and 0.003m/s.

Moreover, Figure 5.6 shows the applied control inputs and the corresponding bounds,
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Figure 5.5: Vector field references, in orange, and UAV speed, in blue, for the first scenario.
From top to bottom, we have: north, east and down velocities.

represented by the red, dashed lines. We can see that the ailerons and the rudder are

the most demanded control surfaces due to constant changes in roll and yaw, especially

when maneuvering around an obstacle. Also, the control inputs for both strategies are

very similar, with a small difference at the beginning of the simulation.

Figure 5.6: Applied control signals for the first scenario. From top to bottom, we have:
the throttle fraction, aileron and rudder deflection and elevator deflection.

In the second scenario, we have selected the target curve defined implicitly by the
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functions






κ1 = (x2 + y2)2 − 4004

−600 cos
(

2πt

400

)

(y3 − 3x2y)

+600 sin
(

2πt

400

)

(x3 − 3xy2),

κ2 = x3 − 200− x2
1+x2

2
104 .

(5.2)

With the gains in (3.11) set to K1 = 0.5× 10−15, K2 = 50 and Kp = 3.5× 10−3. The target

curve and the obstacles are represented in Figure 5.7. In this scenario, the curve is rotating

around the x3 axis, with angular speed of 0.15deg/s. Once again, the obstacles move with

the curve.

Figure 5.7: Target curve and obstacles represented at two time instants. On the left, we
have the curve at t = 0s. On the right, we have the representation at t = 200s.

Figure 5.8 shows the UAV trajectory, for both strategies. In this scenario, we can

see the effect of the GetCircDir() function, when one of the obstacles is circulated in a

different direction in relation to the others. Moreover, note that the two obstacles at the

top are the same, but they were circulated at different times.

Figure 5.8: Trajectory executed by the UAV in the second scenario. In the left, the results
for the first control strategy, on the right, the results for the second control strategy. The
target curve is represented in black and the obstacles by the most internal cylinders.

The convergence for the second scenario is shown in Figure 5.10, and it can be seen in

detail in Figure 5.9. As in the first scenario, the second controller converges to the speed
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references slightly better than the first. In this scenario, the first controller had a mean

absolute error of 3.46deg for the heading tracking and 0.11m/s for the velocity tracking, as

for the second, we obtained 4.91deg and 0.006m/s.

Figure 5.9: Heading tracking, on top, and velocity tracking, on bottom for the second
scenario. The reference values are showed by the dashed lines, and the UAV states by the
solid lines.

Figure 5.10: Vector field references, in orange, and UAV speed, in blue for the second
scenario. From top to bottom, we have: north, east and down velocities.

Figure 5.11 shows the control inputs. We can see that this scenario demands more

from the rudder, as the UAV has to change its orientation more often. As in the first case,

both controllers produce almost the same control inputs.
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Figure 5.11: Applied control signals for the second scenario. From top to bottom, we have:
the throttle fraction, aileron and rudder deflection and elevator deflection.

From these scenarios, we can see that the guidance strategy is effective in leading the

UAV to converge to and circulate the target curve while avoiding the obstacles in the

path. Furthermore, the proposed control laws efficiently drove the UAV to the vector field

references, while respecting the state and control constraints.

5.3 Realistic scenarios

In order to provide more realistic results, we performed simulations in the presence of

disturbances originated from sensor measurements and atmospheric disturbances. For the

atmospheric disturbances, we based on Beard & McLain (2012) to consider the following

Dryden model for gust wind

Hu(s) = σu

√

2ϑ

Lu

1

s+ ϑ

Lu

, (5.3)

Hv(s) = σv

√

3ϑ

Lv

s+ ϑ√
3Lv

(

s+ ϑ

Lv

)2 , (5.4)

Hw(s) = σw

√

3ϑ

Lw

s+ ϑ√
3Lw

(

s+ ϑ

Lw

)2 , (5.5)

which represent filters, Lu, Lv and Lw are spatial wavelengths, σu, σv and σw represent the

turbulence intensities along the UAV body, frame and ϑ is the reference speed. The wind

gust components are obtained by passing white noise through the filters (5.3)-(5.5). For

this work, we have set Lu = Lv = 200, Lw = 50, σu = σv = 1.06, σw = 0.7, which are the
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parameters for low altitude, light turbulence wind (Beard & McLain, 2012). One should

have in mind that the differences in the u axis from the v and w axis comes

Furthermore, we have set the steady wind to

ws =
[

3m/s 1m/s −0.5m/s
]T

.

As for the sensor measurements, in this work we assume that the following sensors are

available: i) a Global Positioning System (GPS), providing the position of the UAV with

respect to the inertial frame along axes x1 and x2; ii) a barometer, providing the position of

the UAV with respect to the inertial frame along axis x3; iii) an accelerometer, providing

the UAV accelerations in the body frame; iv) a gyroscope, providing the UAV angular

rates in the body frame.

With these sensors, we have implemented an EKF following the guidelines presented

in Chapter 2. For that, we have used the accelerometer and gyroscope measurements as

inputs in the prediction step, and the ground truth data from the GPS and barometer in

the correction step. For the covariance matrices, please refer to Appendix B.2.

Table 5.1 provides the parameters of sensors used in the experiment, based on Beard

& McLain (2012) and Rego & Raffo (2019). The noises have a Gaussian distribution

truncated within three times the standard deviation.

Table 5.1: Sensors parameters

Sensor Noise Bounds Sampling Time
Accelerometer ± 7.5×10−3

g 10ms

Gyroscope ± 0.43deg/s 10ms

GPS ± 0.15m 120ms

Barometer ± 0.6m 120ms

In the third scenario, we have used the curve defined by (5.1). The UAV trajectory

is shown in Figure 5.12. Note that from the 3D trajectory, the UAV trajectory is very

similar to the noise-free scenario.

Figure 5.13 shows the convergence to the vector field references. Observe that there is

a small deviation from the references, when compared to the noiseless scenarios. Moreover,

from Figure 5.14, we can note that the down component of the speed is the most affected

by the disturbances. For the first controller, the mean absolute error was 5.41deg for the

heading tracking and 0.17m/s for the velocity tracking, as for the second, we obtained

4.95deg and 0.16m/s. Note that for the second strategy, the average speed error increased

more, indicating a greater sensitivity to disturbances.

From Figures 5.13 and 5.14, we can observe that, even in the presence of disturbances,

the UAV was able to converge to the vector field references. Moreover, it should be noted

that the references provided by the guidance strategy are almost equal to the ones obtained

in the noiseless scenarios, thus showing the robustness of the strategy against noise.
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Figure 5.12: Trajectory executed by the UAV in the third scenario. In the left, the results
for the first control strategy, on the right, the results for the second control strategy. The
target curve is represented in black and the obstacles by the most internal cylinders.

Figure 5.13: Heading tracking, on top, and velocity tracking, on bottom for the third
scenario. The reference values are showed by the dashed lines, and the UAV states by the
solid lines.

The control inputs for this scenario are depicted in Figure 5.15. Here, we can note the

effects of the applied disturbances as a small chattering behavior, which can be easily seen

in the aileron and rudder signals. Moreover, the chattering is slightly reduced when using

the first control strategy.
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Figure 5.14: Vector field references, in orange, and UAV speed, in blue for the third
scenario. From top to bottom, we have: north, east and down velocities.

Figure 5.15: Applied control signals for the third scenario. From top to bottom, we have:
the throttle fraction, aileron and rudder deflection and elevator deflection.

In the last scenario, we have used the target curve defined in (5.2). The UAV trajectory

can be seen on Figure 5.16. From these two scenarios, we can observe that the disturbances

have not affected the avoidance behavior, either the direction from which the obstacle

circulation happens.

Similarly to the corresponding noiseless scenario, the UAV is able to converge to the

references, as shown in Figures 5.17 and 5.18. For the first controller, the mean absolute

error was 5.81deg for the heading tracking and 0.20m/s for the velocity tracking, as for the
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Figure 5.16: Trajectory executed by the UAV in the fourth scenario. In the left, the results
for the first control strategy, on the right, the results for the second control strategy. The
target curve is represented in black and the obstacles by the most internal cylinders.

second, we obtained 4.98deg and 0.18m/s.

Figure 5.17: Heading tracking, on top, and velocity tracking, on bottom for the fourth
scenario. The reference values are showed by the dashed lines, and the UAV states by the
solid lines.

Figure 5.19 shows the control inputs. In this case, we can see that the rudder is the most

demanded control surface, and the optimization problem kept it inside the boundaries.

From these two scenarios, it can be seen that despite the disturbances, the UAV is still

able to converge to the references. The noise effect can be seen in the control inputs, as a

small chattering, especially in the ailerons and elevators. Moreover, we can see that the

first control strategy has a better behavior when dealing with the disturbances.
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Figure 5.18: Vector field references, in orange, and UAV speed, in blue for the fourth
scenario. From top to bottom, we have: north, east and down velocities.

Figure 5.19: Applied control signals for the fourth scenario. From top to bottom, we have:
the throttle fraction, aileron and rudder deflection and elevator deflection.

5.4 Zagi UAV

In order to test the efficiency of the strategy in different UAVs, we have simulated a

scenario using a Zagi UAV. Different from the Aerosonde, the Zagi does not have ailerons,

elevators, and rudder. Instead, it just has elevons, which are responsible for pitching,

rolling, and yawing the UAV. The Zagi UAV can be seen on Figure 5.20.

Despite having different control surfaces, we can relate the elevons to the aileron-elevator
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Figure 5.20: The Zagi UAV (Source: https: // zagi. com/ product/ thl/ ).

signals with



δe

δa



 =




1 1

−1 1








δer

δel



 , (5.6)

where δer is the right elevon deflection, and δel is the left elevon deflection. Therefore,

we can use the same model for the forces and moments derived in Chapter 2. Also, by

removing the rudder from the input vector, we obtain a relationship between the virtual

control inputs, and the UAV control surfaces as follows

ū = M ∗
uu

∗, (5.7)

with

M ∗
u =

1

2
ρv2

tS
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.

ū =
[

fxu fyu fzu mu lu nu

]T

,

u∗ =
[

δa δe δt

]T

,

For this UAV, we have used the target curve defined in (5.1) and set the reference speed
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ϑ = 15m/s. Moreover, we set the steady wind to

ws =
[

0.5m/s 1.5m/s 0.25m/s
]T

.

For the first controller, we set the gains to

Q = diag
([

0.1 0.1 0.1 5 5 5 0 0 0 0 0 0
])

,

R = diag
([

1 1 1 1 1 1
])

.

As for the second controller, we set

Q = diag
([

1 1 1 10 10 10 0 0 0 0 0 0
])

,

R = diag
([

1 1 1 1 1 1
])

.

The UAV trajectory can be observed in Figure 5.21. Note that the trajectory is similar

to the one obtained with the Aerosonde UAV, with the difference that the Zagi takes

longer to complete a loop around the target curve.

Figure 5.21: Trajectory executed by the UAV in the Zagi UAV scenario. In the left, the
results for the first control strategy, on the right, the results for the second control strategy.
The target curve is represented in black and the obstacles by the most internal cylinders.

The UAV convergence is presented in Figures 5.22 and 5.23. We can note that the

UAV converges to both vector field references, with a small chattering in the speed due to

the unmeasured disturbances. However, it can be noted that the UAV has some difficulty

following the down velocity component reference. This is due to the lack of control surfaces.

As the Zagi has only two deflection surfaces, it can only control two angles simultaneously.

For the first controller, the mean absolute error was 6.87deg for the heading tracking and

0.089m/s for the velocity tracking, as for the second, we obtained 2.11deg and 0.055m/s.
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Figure 5.22: Heading tracking, on top, and velocity tracking, on bottom for the Zagi UAV
scenario. The reference values are showed by the dashed lines, and the UAV states by the
solid lines.

Figure 5.23: Vector field references, in orange, and UAV speed, in blue for the Zagi UAV
scenario. From top to bottom, we have: north, east and down velocities.

Figure 5.24 shows the control inputs. Note that for this UAV, the throttle command is

the most demanded. Also, notice that the elevons signals are almost symmetrical. This

happens when the demand for rotational torque around the ibody axis exceeds the demand

for torque in the jbody axis. In this situation, the elevons are acting as ailerons, producing

rolling moment.
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Figure 5.24: Applied control signals for the Zagi UAV scenario. From top to bottom, we
have: the throttle fraction, left elevon and right elevon deflection.

5.5 Computational Effort

In this section, we assess the computational effort of the proposed control strategies,

in order to evaluate the feasibility of a practical implementation. We have tested both

strategies in an embedded hardware NVIDIA Jetson Nano Quad-core ARM A57 @1.43GHz

4 GB LPDDR4. Moreover, in order to generate a compatible software with the target

hardware, we have used the MATLAB Coder Toolbox® to convert the entire simulation

to the C++ language.

We have performed 2× 104 executions of the control loop for each strategy. Table 5.2

shows the results for both strategies. In the first column, we have the maximum time, in

seconds, taken to perform a control loop. We can note that the maximum execution time

was smaller than the controller sampling time (10ms). Therefore, given that the control

sampling time is greater than the maximum time, we conclude that the proposed strategy

is feasible for practical implementation.

Max Time (ms) Mean Time (ms) Standard Deviation (ms)
First Strategy 3.58 0.43 0.031

Second Strategy 3.25 0.31 0.021

Table 5.2: Timing analysis for both control strategies.
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5.6 Comments on the results

Regarding the vector field strategy, it was shown that the strategy is able to produce a

reference path that leads the UAV to converge to and circulate the target curves while

avoiding the obstacles. Moreover, by using the proposed switching strategy, we were able

to achieve continuity between the vector field behaviors, and therefore, we avoid abrupt

changes in the references.

As for the control strategies, the FL+MPC scheme efficiently drove the UAV to the

references provided by the vector field. In the first approach, the controller showed to be

smoother than the second strategy. This happens because of the output vector selection.

In the first approach, we were able to directly use the vector field references for the linear

velocities in the NED frame. However, if we were to directly map these reference velocities

into the UAV true speed and aerodynamic angles we could obtain undesirable references

for α. To overcome this issue, we have set the reference to this angle as a fixed value. In

addition, we have set the reference of β to zero, which in the presence of wind requires a

bigger control effort. Because of that, the controller is more aggressive than the one used

in the first approach.

On the other hand, the first approach uses a conservative constraint on the UAV linear

velocities, which could lead to infeasibility of the solution. In the simulations, the OCP

became unfeasible when the UAV speed was below 25m/s, which corresponds to an increase

of approximately 60% when comparing to the UAV stall speed. This issue is solved in the

second approach, by using the UAV true speed as output. Nonetheless, both strategies

efficiently solved the control problem.

In addition, the computational effort analysis using an embedded computational system

showed that both strategies can run faster than the controller sampling time. This is

possible because the higher level vector field guidance controller is the one responsible for

generating safe reference velocities, thus, we were able to remove the collision constraints

from the MPC formulation. With that, together with the fact that the formulated MPC is

linear thanks to the application of a feedback linearization scheme, we achieved reasonable

execution time (less than 10ms), making it amenable to implementation in real systems.



6
Conclusion

This work dealt with the problem of guiding and controlling a fixed-wing UAV to converge

to and circulate a desired curve, while avoiding obstacles in the path. The solution was

divided into two steps: guidance and control. The guidance strategy acts at a higher level,

providing a collision-free reference path for the UAV to converge to and circulate a desired

curve. For that, we developed a vector-field strategy that switches between two behaviors:

i) converge to and circulate the curve; and ii) circulate the nearest obstacle. Regarding

the control strategy, we used the generalized forces and moments that originated from

the UAV control surfaces as virtual control inputs. With that, we were able to apply a

Feedback Linearization controller to transform the nonlinear UAV model into a linear one.

This linear model is then used in an Incremental MPC framework which is responsible for

driving the UAV states to the vector field references.

Simulations were performed in MatLab using the full 6DOF UAV model to show the

efficiency of the proposed strategy. In addition, we also provide simulation results in the

presence of external disturbances and noisy sensor measurements. In all scenarios, both

strategies were able to guide the UAV to the reference curve and avoid the obstacles.

Furthermore, a computational effort analysis showed that the proposed strategy is feasible

for practical implementation.

From the simulation results, we could observe that each strategy has its own advantages

and issues. In the first control strategy, the controller is less aggressive, however, since

we are using a conservative restriction, the feasible solutions set is reduced. The second

controller overcomes this issue by using the UAV true speed as output for the system.

71
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Nonetheless, it is more sensitive to disturbances.

6.1 Future works

Regarding the guidance strategy, we intend to extend it to a more general class of obstacle

avoidance problems. One future contribution would be to remove the cylinders around the

obstacles, thus allowing the avoidance to occur in any direction. Also, we intend to deal

with the case where the obstacles may move closer to each other. With that, the strategy

could be extended to the guidance of multiple UAVs, by representing each UAV as an

obstacle for the remaining other UAVs. Moreover, a study on new vector field strategies is

already under development, in which we intend to use parametric curves.

As for the control problem, we intend to develop a stability proof for the proposed

controllers. Furthermore, we intend to implement a tube-based strategy to improve the

robustness of the strategy. Moreover, given that the execution time is feasible for practical

implementation, we intend to implement it in a real platform. Finally, the online detection

of the obstacles by real sensors would be a future contribution to the project.
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A
UAV parameters

A.1 Aerodynamic coefficients

In this section, we detail the aerodynamic coefficients presented in Section 2.1. Each

coefficient represents the gain of a respective state or control into a determined force or

moment. For instance, CLδe represents the gain from the elevators to the Lift force. The

parameters for both UAV were taken from Beard & McLain (2012).

Aerosonde UAV

Parameter Value Forces

Coefficients

Value Moments

Coefficients

value

m 13.5kg CD0
0.03 Cl0 0

Jxx 0.8244kg · m2 CDα
0.3 Clβ −0.12

Jyy 1.135kg · m2 CDq
0 Clr 0.14

Jzz 1.759kg · m2 CDp
0.0437 Clp −0.26

Jxz 0.1204kg · m2 CDδe
0 Clδa

0.08

S 0.55m2 CL0
0.28 Clδr

0.105

b 2.8956m CLα
3.45 Cm0

−0.02338

c 0.18994m CLq
0 Cmα −0.38

Sprop 0.2027m2 CLδe
−0.36 Cmq −3.6

ρ 1.2682kg/m3 CY0
0 Cmδe

−0.5

kmotor 80 CYβ
−0.98 Cn0

0

kTp
0 CYr

0 Cnβ
0.25

kΩ 0 CYp
0 Cnr −0.35

e 0.9 CYδa
0 Cnp 0.022

Cprop 1 CYδr
−0.17 Cnδr

−0.032

α0 0.4712 Cnδa
0.06

M 50
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ε 0.1592

Table A.1: Aerodynamic coefficients and parameters for the Aerosonde UAV.

Zagi UAV

Parameter Value Forces

Coefficients

Value Moments

Coefficients

value

m 1.56kg CD0
0.01631 Cl0 0

Jxx 0.1147kg · m2 CDα
0.2108 Clβ −0.02854

Jyy 0.0576kg · m2 CDq
0 Clr 0.03066

Jzz 0.1712kg · m2 CDp
0.0254 Clp −0.3209

Jxz 0.0015kg · m2 CDδe
0.3045 Clδa

0.1682

S 0.2589m2 CL0
0.09167 Cm0

−0.02338

b 1.4224m CLα
3.5016 Cmα −0.5675

c 0.3302m CLq
2.8932 Cmq −1.3990

Sprop 0.0314m2 CLδe
0.2724 Cmδe

−0.3254

ρ 1.2682kg/m3 CY0
0 Cn0

0

kmotor 20 CYβ
−0.07359 Cnβ

−0.00040

kTp
0 CYr

0 Cnr −0.00434

kΩ 0 CYp
0 Cnp −0.01297

e 0.9 CYδa
0 Cnδa

−0.00328

Cprop 1

α0 0.4712

M 50

ε 0.1592

Table A.2: Aerodynamic coefficients and parameters for the Zagi UAV.

It should be noted that though the Zagi UAV has elevons instead of ailerons and elevators,

the coefficients are expressed in terms of the latter.



B
Control matrices

In this chapter, we present the matrices used in the development of the control strategies

proposed in this work.

B.1 Feedback Linearization matrices

In this section, we seek to present the feedback linearization matrices Λ(x) and λ(x) for

both controllers. For both cases, we have that f(x) is defined as

f(x) =




































urcψcθ + vr (cψsθsφ − sψcφ) + wr (cψsθcφ + sψsψ) + wn

urcθsψ + vr (cψcφ + sψsθsφ) + wr (sψsθcφ − cψsφ) + we

−ursθ + vrcθsφ + wrcθcφ + wd

vrr − wrq − gsθ + fxs

m

− cψcθẇn−sψcθẇe+sθẇd

wrp−urr+gsφcθ+
fys

m

− (cψsθsφ−sψcφ) ẇn− (cψcφ+sψsθsφ) ẇe−cθsφẇd

urq−vrp+gcφcθ+
fzs

m

− (sψsφ+cψsθcφ) wn− (sψsθcφ−cψsφ) we−cθcφwd

p+ qsφ tan θ + cφ tan θ

qcφ − rsφ
qsφ

cθ
+

rcφ

cθ
Jxz(Jxx−Jyy+Jzz)pq−(Jzz(Jzz−Jyy)+J2

xz)qr+Jzz ls+Jxz ls

JxxJzz−J2
xz

(Jzz−Jxx)pr−Jxz(p2−r2)+ms

Jyy

Jxz(Jxx−Jyy+Jzz)qr−(Jxx(Jxx−Jyy)+J2
xz)pq+Jxz ls+Jxxns

JxxJzz−J2
xz




































(B.1)
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Moreover, the vectors gi are given by

g1 =
[

0 0 0 m
−1 0 0 0 0 0 0 0 0

]T

,

g2 =
[

0 0 0 0 m
−1 0 0 0 0 0 0 0

]T

,

g3 =
[

0 0 0 0 0 m
−1 0 0 0 0 0 0

]T

,

g4 =
[

0 0 0 0 0 0 0 0 0 Jzz

JxxJzz−J2
xz

0 Jxz

JxxJzz−J2
xz

]T

,

g5 =
[

0 0 0 0 0 0 0 0 0 0 1

Jyy
0
]T

,

g6 =
[

0 0 0 0 0 0 0 0 0 Jxz

JxxJzz−J2
xz

0 Jxx

JxxJzz−J2
xz

]T

.

First controller

For the first controller, we have that Λ(x) is given by

Λ(x) =

















cψcθ

m

cψsθsφ−sψcφ
m

sψsφ+cψsθcφ

m

0 0 0
sψcθ

m

cψcφ+sψsθsφ

m

sψsθcφ−cψsφ
m

0 0 0
−sθ

m

cθsφ

m

cθcφ

m

0 0 0

0.0 0.0 0.0
−sφJxz

JxxJzz−J2
xz

cφ

Jyy

−sφJxx
JxxJzz−J2

xz

0.0 0.0 0.0
−sφJxz

JxxJzz−J2
xz

cφ

Jyy

−sφJxx
JxxJzz−J2

xz

0.0 0.0 0.0
cφJxz

cθ(JxxJzz−J2
xz)

sφ

Jyycθ

cφJxx

cθ(JxxJzz−J2
xz)

















. (B.2)

As for λ(x) we have
















mgsθ − fxs

−mgsφcθ − fys

−mgcφcθ − fzs

λ4

λ5

λ6

















, (B.3)

where λ4, λ5 and λ6 are given by

λ4 =

(
−2qrJxxc

2
φ − Jxxsφ(q − r)(q + r)cφ + r(Jxx − Jyy + Jzz)q − ls)cθ

)

cθ
+

(
2rqc3

φ + sφ(q
2 − r2)c2

φ + q2sφ
)
Jxzsθ

cθ
, (B.4)

λ5 =
(−Jxzr2 + p(Jxx + Jyy − Jzz)r + Jxzp

2 −ms) cθ
cθ

+

Jyysθ
(
(q2 − r2)c3

φ − 2qrsφc
2
φ + (−q2 + 2r2)cφ + 2qrsφ

)

cθ
, (B.5)

λ6 =

(
2qrJxzc

2
φ + sφJxz(q − r)(q + r)cφ − p(Jxx − Jyy + Jzz)q − ns)cθ

)

cθ
+

−2sθJzz
(
qrc3

θ + 0.5sφc
2
φ(q

r − r2) + 0.5q2sφ
)

cθ
. (B.6)
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Second controller

For the second controller only the first block of Λ(x) changes, thus, we have

Λ(x) =


















−wr
(u2
r+w2

r)m

0.0 ur

(u2
r+w2

r)m

0.0 0.0 0.0

−vrur
v3
t

mcβ

u2
r+w2

r

v3
t

mcβ

vrwr

v3
t

mcβ
0.0 0.0 0.0

ur

mvt

vr

mvt

wr

mvt
0.0 0.0 0.0

0.0 0.0 0.0
−sφJxz

JxxJzz−J2
xz

cφ

Jyy

−sφJxx
JxxJzz−J2

xz

0.0 0.0 0.0
−sφJxz

JxxJzz−J2
xz

cφ

Jyy

−sφJxx
JxxJzz−J2

xz

0.0 0.0 0.0
cφJxz

cθ(JxxJzz−J2
xz)

sφ

Jyycθ

cφJxx

cθ(JxxJzz−J2
xz)


















. (B.7)

For the vector λ the same logic applies

λ(x) =

















mgsθ + mqwr −mrvr − fxs

−mgsφcθ −mpw + r + mrur − fys

−mgcφcθ + mpvr −mgqur − fzs

λ4

λ5

λ6

















, (B.8)

where λ4, λ5 and λ6 are given by (B.4)-(B.6).

B.2 EKF matrices

In this section we present the covariance matrix used in the EKF filter applied in this

work. For the process covariance matrix Γp, we have

Γp =








Γp1
0 0

0 Γp2
0

0 0 Γp3







,

Γp1
= diag

([

0 0 0
])

,

Γp2
= diag

([

6.25× 10−6
g

2 6.25× 10−6
g

2 6.25× 10−6
g

2

])

,

Γp3
= diag

([

6.76× 10−6 6.76× 10−6 6.76× 10−6

])

.

For the observation noise covariance matrix, we have

Γo = diag
([

0.05 0.05 0.2
])

.
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Finally, the covariance matrix Γe is obtained by exhaustively iterating the EKF algorithm
until the desired converge is obtained. In this work, we iterated 104 times to obtain

Γe =
















7.49e − 3 −9.17e − 4 3.33e − 3 4.12e − 3 −2.70e − 3 −7.75e − 4 −5.35e − 5 −1.16e − 4 −1.70e − 6

−9.17e − 4 1.04e − 2 1.00e − 3 1.44e − 3 7.88e − 3 −9.46e − 4 1.97e − 4 −4.19e − 5 3.77e − 5

3.33e − 3 1.00e − 3 2.35e − 2 4.38e − 3 1.27e − 3 2.59e − 3 −2.81e − 6 −3.32e − 4 −3.82e − 5

4.12e − 3 1.44e − 3 4.38e − 3 4.35e − 3 1.35e − 3 −1.29e − 3 1.89e − 5 −1.67e − 4 −3.92e − 5

−2.70e − 3 7.88e − 3 1.27e − 3 1.35e − 3 5.70e − 2 −4.90e − 3 8.80e − 4 −5.16e − 5 −1.46e − 3

−7.75e − 4 −9.46e − 4 2.59e − 3 −1.29e − 3 −4.90e − 3 3.37e − 3 −7.12e − 5 4.95e − 5 1.35e − 4

−5.35e − 5 1.97e − 4 −2.81e − 6 1.89e − 5 8.80e − 4 −7.12e − 5 3.12e − 5 −6.57e − 7 −1.68e − 5

−1.16e − 4 −4.19e − 5 −3.32e − 4 −1.67e − 4 −5.16e − 5 4.95e − 5 −6.57e − 7 1.48e − 5 1.53e − 6

−1.70e − 6 3.77e − 5 −3.82e − 5 −3.92e − 5 −1.46e − 3 1.35e − 4 −1.68e − 5 1.53e − 6 5.03e − 5
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