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Resumo 
 Os materiais bidimensionais, caracterizados pela espessura atômica e baixa dimensionalidade 

ao longo do eixo z, são materiais que mostram grande promessa para o futuro, com grande potencial de 

aplicação em áreas como microeletrônica, sensores de gás, fotodetectores, catalisadores e outros. Dentre 

os materiais bidimensionais, podemos destacar a família dos dicalcogenetos de metais de transição, que 

são materiais lamelares cuja camada mais fina é formada de uma folha de um metal de transição 

localizada entre duas folhas de átomos da família dos calcogênios. Esses materiais possuem uma grande 

gama de propriedades eletrônicas, variando desde metálicos e semimetálicos até semicondutores com 

bandgap óptico no infravermelho e visível que pode ser direto ou indireto dependo do número de 

camadas.  

 A presença do gap na região do visível e infravermelho próximo faz com que técnicas ópticas 

sejam de fundamental importância no estudo de propriedades físicas desses materiais. Entre essas 

técnicas destaca-se a espectroscopia Raman que é a medida da luz espalhada inelasticamente por um 

material devido à interação entre luz e a matéria, que cria ou aniquila um quanta de vibração. Quando a 

luz incidente ou espalhada está em ressonância com um nível eletrônico do material temos o fenômeno 

de espalhamento Raman ressonante, onde a eficiência do processo é extremamente amplificada, o que 

permite obter informações sobre os estados eletrônicos a partir das suas interações com os fônons, assim 

como observar o fenômeno de espalhamento por dois ou mais fônons do material.  

 Neste trabalho, buscamos entender os processos de combinações de fônons no espectro Raman 

de Dicalcogenetos de metais de transição semicondutores, assim como os processos de interação 

éxciton-fônon nesses materiais. Para isso foram realizadas medidas de espalhamento Raman ressonante 

com variação da energia do laser de excitação e variação insitu da temperatura da amostra. Como técnica 

complementar foram realizadas também medidas de fotoluminescência com variação da temperatura da 

amostra.  Foi mostrado como a variação de temperatura afeta a energia dos níveis eletrônicos e como 

essa variação pode sintonizar a ressonância dos processos de combinação de dois fônons. Mostramos 

também como a temperatura pode afetar a interação entre camadas em heteroestruturas formada pela 

combinação de dois Dicalcogenetos de metais de transição. Neste caso, foi possível observar a partir 

dos experimentos processos de interação éxciton-fônon e fônon-fônon entre camadas. A partir desse 

trabalho, conseguimos extrair informações sobre as propriedades optoeletrônicas desses materiais, 

importantes para futuras aplicações tecnológicas. 

Palavras-chave: Dicalcogenetos de metais de transição, espectroscopia Raman, dupla ressonância, 

temperatura. 





 

Abstract 
  

  

Two-dimensional materials, characterized by their atomic thickness and low dimensionality 

along the � axis, are materials that show great promise for the future, with great potential for application 

in areas such as microelectronics, gas sensors, photodetectors, catalysts, and others. Among the two-

dimensional materials, we can highlight the family of transition metal dichalcogenides, which are 

lamellar materials whose thinner layer is formed of a transition metal sheet sandwiched by two sheets 

of chalcogen. These materials have a wide range of properties, ranging from metallic and semi-metallic 

materials to semiconductors with an optical bandgap in infrared and visible regions that is temperature-

dependent. 

Raman spectroscopy is the measurement of light inelastically scattered by a material due to the 

interaction between light, or laser, and matter, which generates or annihilates a quantum of vibration, a 

phonon, in the material and causes the incident photon to lose or gain energy. Due to the nature of the 

scattering process, the Raman process is inefficient, except when the energy of the laser used resonates 

with the material's electronic levels, increasing the likelihood that the Raman process will occur. When 

the laser resonates with the electronic level, however, the Raman process can involve more than one 

phonon, and the scattering of light by two phonons becomes more likely. In this context, there are 

selection rules that filter out possible phonon combinations for the Raman process, which must even 

depend on the temperature at which the measurement is made.  

In this work, we seek to understand the processes of phonon combinations in the Raman 

spectrum of semiconducting transition metal dichalcogenides, both as a function of the laser energy used 

and as a function of the sample temperature, in which we explore the laser resonances with the energy 

of the electronic transitions of each sample. We show how the temperature variation affects the energy 

of electronic levels and how this variation can tune the resonance of the two-phonon combination 

processes. We also show how temperature can affect the interaction between layers in the heterostructure 

formed by the combination of two transition metal dichalcogenides. From this work, we are able to 

extract information about the properties of these materials, which allow their applications in future 

technologies. 

 

 

 

Keywords: Transition metal dichalcogenides, Raman spectroscopy, double-resonance, temperature. 
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1. Introduction 

 The development of the production and utilization of silicon in large scale as a standard 

for the use in semiconducting based devices was one of the biggest advances for the 

miniaturization and consequent global distribution of electronic devices. Some of these devices 

are part of media players, televisions, smartphones, computers, refrigerators, microwave ovens, 

among so many others that make use of the transistors, like the MOSFET (Metal-Oxide-

Semiconductor field-effect transistor) in special. Transistors are frequently used to amplify or 

interrupt electric signals in a circuit and are used for the logic operations in modern 

microprocessors. The first processor developed by Intel could run on a clock of 740 kHz while 

performing up to 93 thousand instructions, meaning that in about 11 microseconds, it could 

make simple addition, subtraction, multiplication and division calculations very fast. However, 

computers nowadays are used for much more than simple calculations, where they deal with 

different user interfaces, data processing software, graphical content creation, and reproduction, 

and of course, much more complex calculations than the ones allowed by the use of a CPU 

made in the 1970s.  

 The advances brought by the development of the technology of the microdevices also 

allowed the integration of several electronic devices into the smartphone, such as video cameras 

capable of photographing and recording videos in ultra-high definition, GPS, messaging, all 

sorts of communication methods, and simple chores, that needed to be done in a full desktop 

computer before and can be done in a device that fits into the hand today. Most of these 

advances come from enhancements in the production and application of semiconducting 

technologies.  

 That is one of the motivations for the study and research of materials, which will present 

alternatives for materials better suited for a variety of applications in the near future. In special, 

we want to see how new types of materials, such as the two-dimensional materials, can be 

explored for future technologies. 

 Two-dimensional (2D) materials are characterized by the breaking of the translational 

symmetry of the crystal in the ᵅ� axis, leading to atomically thin materials extending in the ᵅ�ᵅ� 

plane. Therefore, crystal lattices composed of layered structures are good candidates for the 

production of 2D materials. The first 2D materials isolated was graphene, which was exfoliated 

from a highly oriented pyrolytic graphite with the help of Scotch tape [1]. Before graphene, it 

was thought that 2D materials could not be made due to instabilities in the material properties 

that would come from thermal fluctuations [2]. However, after graphene, several other 2D 
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materials were reported in the literature as theoretically stable [2–4] and with very different 

properties as well [5]. 

 Among the 2D materials, one very interesting group is the family of the transition metal 

dichalcogenides (TMDs) [6]. They come in a variety of electronic properties, and can also 

present interesting possibilities of applications [7] due to the strong spin-orbit interaction 

presented by them. Among the application possibilities, we can highlight flexible electronics 

and wearables, photodetectors, light-emitting diodes, gas sensors, hydrogen evolution catalysis, 

spintronics and many other applications [8,9,18–27,10,28–37,11,38–42,12–17]. 

 The possibility of stacking 2D materials also offers a tremendous advantage to these 

materials, since we could now use their individual properties in the coverage same area, opening 

the possibility of creating multiple devices in the same stack. 

 However, it is necessary to understand the behavior and characteristics of these 

materials under different types of environments and loads. One way of obtaining reliable 

information about the properties of a material is to study its interaction with light, which can 

originate several processes in the material interface, such as the emission and scattering of light. 

In both cases, it is possible to obtain important pieces of information regarding the electronic 

structure and the vibrational structure of the material. 

 The emission of light by the material is related to the recombination of electrons in the 

conduction band minimum and holes in the valence band maximum, such that the optical 

bandgap of the material can be extracted. The inelastic scattering of light by the material can 

be used to probe the interaction between electrons and the lattice vibrations, called phonons. 

Both phenomena allow us to obtain important information about optical, electronic and 

structural properties of the material investigated. The knowledge of these properties is 

fundamental to assert the right applications of a determined material. Finally, we are also 

interested in observing how heterostructures formed by the stacking of different 2D materials 

can change the inelastic light scattering phenomenon. 

 In this work, we explore the optical properties of transition metal dichalcogenides by 

measuring the Raman and photoluminescence spectra of monolayers, bilayers, and bulk 

materials, as well as the heterostructures formed by the stacking of two transition metal 

dichalcogenides. 

 In chapter 2, we begin introducing the basic properties of TMDs, both electronic and 

vibrational, and how the number of layers can affect the basic properties of these materials. We 

also introduce the optical techniques used in this work to characterize the properties of these 

materials as well, where we cover the basic information needed to understand the information 
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provided by each technique. In chapter 3, we review the resonance Raman spectra for 2D 

materials, where we discuss the effects of resonance in the Raman spectra of TMDs and the 

observation of bands resulting from the combination of phonons. In chapter 4, we introduce the 

experimental methods used in our work, where we discuss sample preparation methods, the 

experimental setup for the collection of the Raman and PL spectra and the optical 

characterization of the samples used in our work. In chapter 5 we focus on the experimental 

results obtained for the MoS2 samples, where we show how the thermal effects can affect the 

Raman spectrum of the monolayer and bulk samples. In chapter 6 we present the experimental 

results of the monolayers of WS2 and MoSe2 monolayers along with the results from the 

heterostructure formed by the stack of these two materials. In chapter 7 we present the 

conclusions of our works.





 

 

2.  Transition Metal Dichalcogenides 

2.1 Crystal structure and symmetry considerations of monolayer, few-

layers and bulk transition metal dichalcogenides 

 Transition metal dichalcogenides (TMDs) are layered materials analogous to graphite. 

Due to the weak bonding between the layers (van der Waals), they can be exfoliated until the 

monolayer regime. The monolayer consists of three atomic layers, a layer of transition metals 

(M) such as molybdenum or tungsten arranged in a triangular lattice, sandwiched between two 

chalcogen layers, again in a triangular lattice. Transition metals and chalcogens are bonded by 

covalent bonding, and most TMDs are very stable in a monolayer regime even in standard 

laboratory environmental conditions [3]. Some phases are more stable though, and easier to 

explore than others. The monolayer phase of a given TMD can be one of three: (i) H in which 

the top of bottom chalcogen layers are aligned and the top view of the structure resembles the 

honeycomb structure of graphene (Figure 2.1(a)); (ii) T in which the bottom chalcogen layer is 

rotated by 30° with respect to the top layer (Figure 2.1(b)); (iii) T’ which is similar to T phase, 

but with interactions between the metals, leading to a deformation in the structure (Figure 

2.1(c)) [43]. Just a simple observation from Figure 2.1(a), (b) and (c) can uncover that each 

phase has completely different symmetry operations, with the symmetry decreasing from (a) to 

(c). 

 The different structures with the same atomic composition can lead to different 

properties. MoS2, for instance, is a semiconductor in the H phase, while it is semi-metallic in 

the T phase [44]. The T’ phase can be even more interesting presenting a conductance that varies 

according to the orientation of the crystal [45]. Other combinations of atoms and the formation 

Figure 2.1. Possible phases for the honeycomb-like structure of TMDs, where the red balls represent 

the transition metals and the yellow balls represent the chalcogens. (a) The H phase, (b) the T phase and 

(c) the T’ phase. Adapted from ref. [43]. 
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of alloys can help tune the electronic properties of these materials to suit the needs of different 

applications. 

 Although the properties of monolayers such as those presented above will be extremely 

important for the development of the electronics field, monolayers are not found in nature. 

These crystals are found naturally in their bulk form, with several thousands of layers piled one 

on top of the other in an organized fashion. Following the H phase of the monolayer, the piling 

of the monolayers can take one of two forms: (i) 2H with two monolayers forming a unit cell; 

(ii) 3R with three monolayers forming a unit cell.  

 The 2H bulk phase (Figure 2.2(a)) consists of two monolayers stacked with the bottom 

layer rotated by 60° with respect to the top layer. They are stacked in such a way that the metals 

in the top layer are on top of the chalcogens in the bottom layer and vice versa. This 

configuration is repeated through the entire crystal, forming the bulk arrangement of the 2H 

phase. The 3R phase (Figure 2.2(b)) is a configuration in which three monolayers are stacked 

and it is such that the bottom layer is displaced with respect to the middle layer, which is again 

displaced with respect to the top layer. This is repeated through the entire lattice. The bulk 

phase is important for the characterization of the material since different bulk phases will 

present different vibrational properties and possibly different electronic properties as well [46]. 

In this work, we will explore monolayer, few-layers and bulk 2H-MX2, with M = Mo 

and W and X = S and Se. We introduce the concepts of the monolayer, few-layers and bulk 

phases to talk about symmetry operation and group theory applied to the crystal phase relevant 

to our problems. A monolayer H-MX2 like the one presented in Figure 2.1(a) belongs to the 

 

Figure 2.2. Bulk phases of TMDs, where the blue balls represent chalcogens and the orange balls represent 
transition metals. (a) 2H phase and (b) 3R phase. Adapted from ref. [46]. 



 

7 

point group D3h, with a C3 located at the center of a hexagon in Figure 2.1(a), and the horizontal 

mirror applied to the ᵅ�ᵅ� plane that inverts the top and bottom chalcogen layers. If we slowly 

increase the number of layers and observe the applicable symmetry operations, we can see that 

a bilayer MX2 with a stacking similar to a bulk crystal, named AB, belongs to D3d, with a C3 

rotation axis and an inversion operation instead of a horizontal mirror plane. A trilayer MX2 

recovers the D3h symmetry, but a tetralayer recovers the D3d symmetry, and thus we conclude 

that following the 2H stacking order, for an odd number of layers the point group representing 

the crystal has D3h symmetry, while for an even number of layers the crystal has D3d symmetry. 

Some of the vibrational and optical properties of these materials are affected by this change in 

the crystal symmetry, such as the number of Raman active modes [46–48] and also second 

harmonic generation [49–51]. Bulk 2H-MX2, on the other hand, has D6h symmetry, containing 

both horizontal plane mirror and inversion symmetries. 

Since the crystal structure of TMDs is honeycomb-like, similar to the case of graphene, 

its reciprocal space is also similar to that of graphene. Therefore, the high symmetry points in 

the reciprocal space are also the same, and the first Brillouin zone for TMDs is presented in 

Figure 2.3. Thus, there is a point with the highest symmetry of the unit cell, the Γ point, at the 

center of the Brillouin zone (q = 0). At the edges of the Brillouin zone are located the other 

high symmetry points, at the vertexes of the hexagon, the K and K’ points, and between the 

vertexes, the M point. Another important point for our consideration is the one point 

approximately mid-range between the K (K’) and the Γ points, which we will call Q point. The 

other low symmetry points will be considered further in the text. 

 

Figure 2.3. First Brillouin zone of a two-dimensional hexagonal lattice, where the main high symmetry points can 

be observed. 
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With these considerations in mind, we begin exploring the electronic and optical 

properties of TMDs. We will use here MoS2 as the main example since it is the most studied  

TMD, but all the physics from this material can be extrapolated to the other H-MX2 materials 

presented here. 

2.1 Electronic properties of transition metal dichalcogenides 

 The 2H-MX2 family with M = Mo, W and X = S, Se are predominantly semiconducting, 

with a bandgap that reduces as the mass of the chalcogen is increased. Close to the bandgap, 

the electronic structure can be described by a Tight binding approach that considers the atomic 

orbital basis as a combination of d orbitals from the transition metals and p orbitals from 

chalcogens [54]. Far from the bandgap, a more accurate approach is needed, such as density 

functional theory (DFT) calculations that can correctly reproduce the shape of the band 

structure [55]. The electronic band structure of monolayer MoS2 is shown in Figure 2.4(a), 

which also reveals the presence of a direct bandgap located at the K point. This is also true for 

all the other monolayer H-MX2. When we leave the monolayer regime, however, an indirect 
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Figure 2.4. Electronic structure of TMDs. (a) The electronic structure of MoS2 calculated by DFT. The top valence 

band has been colored to show the spin-orbit split. Adapted from ref. [52]. (b) Band structure of monolayer (1 L), 

bilayer (2 L) and bulk MoS2 along the K-Γ path, showing the direct to indirect bandgap transition from monolayer 

to bulk MoS2. The bands in the bilayer and bulk are displaced to show the comparison between monolayer, bilayer 

and bulk, where the original 0 corresponding the Fermi energy should be located at the maximum of the valence 

band. The indirect bandgap of bulk is illustrated as the arrow labeled Iᵀ�. Adapted from ref. [53]. 
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bandgap appears, connecting the top of the valence band at the Γ point to the bottom of the 

conduction at the Q point. The indirect bandgap decreases in energy for an increasing number 

of layers. The indirect bandgap for monolayer, bilayer and bulk MoS2 can be seen in Figure 

2.4(b). 

The contributions of atomic orbitals near the bandgap are mostly due to the d orbitals 

from the transition metal, while the contributions from the chalcogens are more apparent closer 

to the Γ point, along with equal contributions from the transition metal as well [56]. These 

contributions will help understand the exciton-phonon interactions for these materials.  

Due to the massive transition metals, strong spin-orbit interactions are observed for MX2 

TMDs [58]. The spin-orbit interaction splits the top valence band close to the K and K’ points 

according to the spin projection of the electron. For monolayer MoS2, the valence band spin-

orbit split is approximately 160 meV.  For massive crystals like WSe2, however, the spin-orbit 

coupling can reach almost 500 meV [6,57,66–75,58,76,59–65]. The conduction band is also 

affected, but in a much lower degree, allowing us to neglect the spin-orbit interaction in the 

conduction band. The values of the spin-orbit splits for each TMD are presented in Figure 2.5, 
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Figure 2.5. Spin-Orbit coupling for the various monolayer and bulk (Mo, W) (S, Se, Te)2 compounds. Light 

absorption and reflectivity in bulk crystals were obtained from [6]. Kramers-Kronig analysis of reflectivity in bulk 

crystals was done by [57]. Angle-resolved ultraviolet photoemission spectroscopy (ARUPS) was studied by [58]. 

Resonant Raman in 1L-MoS2, 1L-MoSe2 and 1L-WS2 was done by [59], [60] and [61], respectively, while in bulk-

WSe2 it was done by [62]. The data from monolayer reflectance were obtained by [63]. Photocurrent experiments 

were carried by [64]. Photoluminescence Excitation (PLE) was done in 1L-MoS2, 1L-MoSe2 and 1L-MoTe2, and 

1L-WS2 and 1L-WSe2 by [65], [66] and [67], respectively. The theoretical data can be found in references [68–

73]. 
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where both theoretical and experimental data obtained by different methods can be seen. The 

experimental data are presented in the shape of columns and the theoretical values are presented 

as gray squares. The general trend of increased spin-orbit coupling can be easily observed as 

the masses of the constituent transition metal and chalcogens increase. The spin-orbit coupling 

can also be tuned by temperature [76] or by a suitable combination of chalcogens and transition 

metals [71,75,77]. 

The main contributions to the optical bandgap, or the measured value of the first 

electronic transition by light absorption, comes from many-body interactions due to the 

presence of excitonic transitions. Excitons are formed when the material is excited from the 

valence band to the conduction band by a photon with energy equal or higher than the bandgap 

energy. The excited electron leaves a hole in the valence band, which acts as a positively 

charged particle. The electron and hole are attracted via a coulomb-like potential, similar to a 

hydrogen atom. The attractive force between electron and hole is in contrast to the repulsive 

forces from the surrounding electrons in the valence band, which provides a balance between 

the forces, creating a stable state. The Hamiltonian that describes the electron-hole interaction 

is given by 

 
ᵀ� =

ᵅ�ᵀ�
2

2ᵅ�ᵀ�
∗ +

ᵅ�ℎ
2

2ᵅ�ℎ
∗ −

ᵅ�2

ᵪ�ᵅ�||ᵅ�ᵅ� − ᵅ�ᵅ�||
 (2.1), 

Where ᵅ�ᵀ�(ℎ) and ᵅ�ᵀ�(ℎ)
∗  are the momentum and effective mass of the electron (hole), ᵪ�ᵅ� is the 

relative permittivity of the material and ᵅ� is the electron charge. We rewrite the Hamiltonian in 

terms of the relative motion of the electron and hole, defining a new variable ᵅ� = ᵅ�ᵅ� − ᵅ�ᵅ� for 

the distance between the electron and hole pair and using the coordinate of the center of 

mass ᵫ� = �ᵅ�ᵀ�
∗ᵅ�ᵅ�+ᵅ�ℎ

∗ᵅ�ᵅ��
�ᵅ�ᵀ�

∗+ᵅ�ℎ
∗�

 

 
ᵀ� =

ᵅ�ᵪ�
2

2�||ᵅ�ᵀ�
∗|| + ||ᵅ�ℎ

∗||�
+

ᵅ�ᵅ�
2

2µ∗ −
ᵅ�2

ᵪ�ᵅ�|ᵅ�|
  , 1

µ∗ = 1
ᵅ�ᵀ�

∗ + 1
ᵅ�ℎ

∗  (2.2). 

We define the new momentum of the relative motion of the electron and hole, ᵅ�ᵅ�, and 

the new momentum of the center of mass, ᵅ�ᵪ�. We now treat the total wavefunction as a product 

of two wavefunctions for (i) the motion of the center of mass of the electron-hole pair and (ii) 

the relative motion between electron and hole. (i) will have the solution 
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ᵀ�(ᵅ�) = ħ2ᵀ�2

2�||ᵅ�ᵀ�
∗|| + ||ᵅ�ℎ

∗||�
 (2.3), 

with ᵅ� being a wavevector pertaining to the first Brillouin zone of the material. This solution 

implies that electron and hole will move together in the band structure of the material. The 

relative motion between electron and hole, (ii), will present a discrete energy dispersion similar 

to the hydrogen problem 

 
ᵀ�(ᵅ�) =

−µ∗

ᵅ�ᵀ�ᵪ�ᵅ�
2

ᵀ�ᵀ�

ᵅ�2 ≡ −
ᵀ�ᵀ�

ᵅ�2  (2.4), 

where ᵅ� is the principal quantum state number and ᵀ�ᵀ� = (ᵅ�ᵀ�ᵅ�4)/(64ᵪ�3ᵪ�0
2ħ3ᵀ�) is the Rydberg 

constant. We also define the value of the exciton binding energy, ᵀ�ᵀ� = −µ∗

ᵅ�ᵀ�ᵪ�ᵅ�
2 ᵀ�ᵀ�, which is the 

difference between the n = 1 state and the n → ∞ case, or the difference between the discrete 

energy spectrum and the continuum energy spectrum. One could also calculate the Bohr radius, 

ᵅ�(ᵅ�) associated with the exciton as well through the relation ᵀ�(ᵅ�) = �
ᵅ�ᵀ�ᵪ�ᵅ�

µ � ᵀ�ᵀ�ᵅ�2 ≡ ᵀ�ᵀ�ᵅ�2, where 

ᵀ�ᵀ� is the hydrogen Bohr radius. For hydrogen, the value of ᵀ�ᵀ� is known to be approximately 

-13.6 eV, the required energy to dissociate the electron from the proton. For bulk 

semiconductors like GaAs, for example, the exciton binding energy is approximately 4.2 meV, 

about 3000 times lower than that of the hydrogen level. This low binding energy is due to the 

fact that bulk materials present large dielectric constants and small effective masses. Therefore, 

it is extremely difficult to observe the excitonic effects at room temperature, where the 

difference between the electronic bandgap and the excitonic transition is of a few meV, smaller 

than the energy associated with the particles at room temperature of approximately 25 meV. 

 When the dimensionality of the system is reduced, quantum confinement becomes 

relevant along with the reduction on the dielectric constant. These factors change the binding 

energy of the exciton leading to an increase of almost 6 to 8 times [78,79]. Since TMDs are 

layered materials with a strong in-plane bond and only a weak van der Waals connecting each 

layer, there is a strong binding energy of the excitonic transitions in these materials. The binding 

energy is big enough that even at room temperature the excitonic transitions can be 

observed [6]. While bulk MoS2 has an exciton binding energy near 50 meV [6], recent reports 

indicate that monolayer MoS2 has an exciton binding energy of more than 400 meV [80]. 
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 Figure 2.6 shows the reflectance spectra of TMDs [63]. In thin films, the reflectance 

spectra will be directly proportional to the extinction coefficient [81], and thus, Figure 2.6 

reveals a series of excitonic peaks. The three main features, frequently called in the literature 

of A, B and C excitons, are easily distinguished in the spectra, and the D exciton can also be 

observed in the case of WSe2. They are important components of the optical response of these 

materials and are relevant to the observation of their photoluminescence and Raman spectra. 

The A and B excitonic transitions occur close to the direct bandgap of the TMDs at the 

K or K’ points (see Figure 2.4(a)) [55]. Due to the split in the valence band induced by the 

strong spin-orbit coupling, the A and B excitons are formed, with the difference that the first 

one, with lower absorption energy, comes from the transition from the top valence band (red 

curve in Figure 2.4(a)), while the second one, with higher energy, comes from the bottom top 

(blue curve in Figure 2.4(a)). The C exciton comes from vertical transitions close to the Γ point, 
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Figure 2.6. Reflectance spectra of the TMDs that are the focus of this work. Data obtained from reference [63]. 
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and therefore, it is heavily affected by the number of layers, which can be observed in Figure 

2.4(b) [55]. 

 Since the electronic transitions related to these excitons occur at points in the electronic 

band where different orbitals are relevant, the character of the exciton may change as well. 

 Besides the excitonic features described above, there are other excitonic complexes in 

these materials as well, comprised of charged excitons like the trion or a combination of 

excitons such as the biexciton. They are identifiable by low-temperature spectra 

measurements [76,82–89], chemically treated samples [90–93], gated devices  [82,94–101], 

defective samples [102–104], and the simple control of the excitation laser power on the 

sample [84,96,97,99,105,106]. These excitonic complexes have even smaller binding energy 

than that of the excitonic transitions, appearing very close to the excitonic transition itself, as 

will be presented further in the text. Also, when the sample is defective, there is the contribution 

of bound excitons, which appear as a very broad band below the contributions from the 

excitonic complexes at lower temperatures [87,91,104]. Figure 2.7 presents a simple 

representation of the multi-excitonic transitions and bound excitons in the bandgap of the 

material, along with a representative density of states for each transition, where RX is the exciton 

binding energy, defined in equation 2.4, RT, RB, and BX are the trion, biexciton, and bound 

exciton binding energies, respectively. 

We finish this section commenting that the hydrogen-like treatment of the excitonic 

transitions is qualitatively good, but the model is wrong for small ᵅ� [107,108]. That is, for the 

excitonic levels with a small radius, there is a big difference between the expected behavior and 

the measured value. This is due to the fact that the ᵅ� = 1 and ᵅ� = 2 transitions present a strong 

dielectric screening from the sample, whereas for bigger ᵅ� the screening is mostly due to the 

surrounding environment [107]. A simple way to correct this is to consider a correction to the 

electron-hole interaction [107]. But this is beyond the scope of this text since we will only focus 

on the ᵅ� = 1 transition. 

2.2 Vibrational properties of TMDs from monolayer to bulk 

Although we frequently assume that the atoms forming the crystal lattice in any material 

are static, they are actually moving in the lattice in a periodic motion formed by the combination 

of all the normal vibrational modes of the material. The vibrational motion of the crystal is 

responsible for most of its mechanical and thermal properties and also some of its electronic 

properties as well, as it will be discussed later. In order to start the discussion about vibrational 

properties, we will employ the adiabatic approximation, where the motion of the ions 
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composing the crystal is much slower than the motion of electrons. In fact, the velocity of the 

electrons is in the order of 108 cm/s, while the ions move at approximately 105 cm/s [109]. 

Thus, the energy spectra related to vibration and electronic energies can be considered 

separately in a first approximation. 

 Since the total number of atoms in the unit cell of an H or T phase TMD is 3, the 

resulting number of vibrational modes will be 9. Among the vibrational modes, 3 branches are 

acoustic, representing the x, y and z displacement of the crystal, and 6 modes are optic. The 

phonon dispersion for monolayer MoS2 is presented in Figure 2.8(a), where we see the six optic 

branches and the three acoustic branches. At the high symmetry points Γ, K, and M, we observe 

local maxima or minima in the phonon branches, and thus the high symmetry points are also 

critical points to the dispersion relation. As such, the phonon density of states (pDOS) for 

monolayer and bulk MoS2 in Figure 2.8(d) and (e) will present local maxima related to the 

phonon branch at the critical points.  

 Monolayer H phase TMDs belong to the D3h symmetry group and from group theory, 

the representation of the vibrational modes at the Γ point is described in irreducible 

representations by [110] 
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Figure 2.8. Calculated phonon dispersions for (a) monolayer, (b) bilayer and (c) bulk MoS2. (d) and (e) are the 

phonon density of states for monolayer and bulk MoS2 respectively. Adapted from refs. [52,53]. 
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 Γᵅ�ᵅ�ᵀ� = Γᵀ�ᵅ� ⊗ Γᵅ�ᵀ�ᵀ� = ᵀ�1
′ ⊕ 2ᵀ�′ ⊕ 2ᵀ�′′2 ⊕ E'',  

Where Γᵀ�ᵅ� is the equivalence representation of the atomic sites and Γᵅ�ᵀ�ᵀ� is the representation 

for the ᵅ�, ᵅ�, and ᵅ� real space vectors. From the nine phonon branches we see in Figure 2.8(a), 

at the Γ point, six will be two-fold degenerate optical branches, two will be degenerate at the Γ 

point, with irreducible representations E’ and E”, and the other three branches will have 

irreducible representations A1’ and A2”. From these, the A2” and E’ representations are IR 

active, while the A1’, E’ and E” representations are Raman active. During Raman scattering 

experiments in a backscattering configuration, only the irreducible representations with square 

base functions involving ᵅ� and ᵅ� components will be active. Therefore, only the A1’ and E’ 

modes will be observable in the back-scattering configuration, which are the generally observed 

Raman modes for monolayer and few-layers TMDs. 

 The A1’ mode corresponds to the out-of-plane vibrational motion in which the 

chalcogen planes move in opposite directions while the metal plane remains static. This motion 

can be approximated by a spring-mass system, where the entire chalcogen plane is a single mass 
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Figure 2.9. Fitting of the square of the A1’ vibrational mode frequency as a function of the chalcogen mass for the 

H-MoX2 and H-WX2 families. The right axis presents the value of ᵪ�. The inset depicts the eigenvector of the A1’ 

mode in the unit cell, and how it is comparable to the spring-mass problem. mX stands for the chalcogen mass, 

while mM stands for the transition metal mass. WSe2 values are taken from [111], MoTe2 values are taken 

from [112] and WTe2 theoretical values are taken from [113]. 
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while the metal plane would work as a wall. Therefore, we can use the simple harmonic motion 

equation to relate the mass of the chalcogen in the TMD to the A1’ frequency mode, shown in 

Figure 2.9. Figure 2.9 presents the square of the frequency of the A1’ mode, ᵪ�ᵀ�1′
2 , as a function 

of the inverse of chalcogen mass, 1
ᵅ�ᵀ�

, for the H-MoX2 and H-WX2 families of TMDs. Since 

ᵪ�ᵀ�1′
2 = ᵅ�

ᵅ�ᵀ�
, the linear fit of the data presented in Figure 2.9 gives the spring constant ᵅ�, which 

is related to the lattice bonding strength of the vibrational mode. Since in our model the metal 

sheet should behave like a wall, it would be reasonable that ᵅ� should be independent of the 

metal mass, which is in reasonable accordance with the observed results of 5.74 and 6.13 x 106 

cm-2Da-1 for MoX2 and WX2 compounds, respectively. Since H-WTe2 is not found in nature, 

we use the calculated phonon dispersion as a reference for the frequency of the A1’ and E’ 

modes [113]. 

 For the in-plane E’ mode, the chalcogens move in one direction, while the metal goes 

in the opposite direction. This motion can be approximated by two masses connected by a 

spring, where one mass will be equal to two chalcogen masses while the other mass will be 

equal to the mass of the metal. Again, this is a simple mechanics problem, and the vibrational 
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Figure 2.10. Square of the E’ frequency as a function of ᵪ�−1, as it is defined in the text for the H-MoX2 and H-

WX2 families. The inset shows the eigenvector of the E’ vibration represented in the unit cell, and how it is 

comparable to a problem of two masses connected by a spring. WSe2 values are taken from [111], MoTe2 values 

are taken from [112] and WTe2 theoretical values are taken from [113]. 
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frequency of the system will be connected to masses of chalcogen and metal via ᵪ�ᵀ�′
2 = ᵅ�

ᵪ�, where 

ᵪ� = 2ᵅ�ᵀ�ᵅ�ᵀ�
2ᵅ�ᵀ�+ᵅ�ᵀ�

. Figure 2.10 shows the square of the frequency of the E’ mode as a function of ᵪ�−1 

for the H-MoX2 and H-WX2 compounds. Again, we obtain a relatively reasonable fit for both 

families, with ᵅ� = 7.8 and 7.4 x 106 cm-2Da-1 for MoX2 and WX2 compounds, respectively. The 

reason this simple spring model works so well is due to the fact that we are analyzing zone-

center phonons. Otherwise, due to the distortion of the band structure, the model does not work 

so well. 

 As we have already discussed, when the number of layers is odd, the point group to 

which the crystal belongs is the D3h. When the number of layers is even (for a 2H-like stack), 

the point group will be the D3d, and for a bilayer, the number of branches doubles in comparison 

with a monolayer since the number of atoms in the unit cell is also doubled. The phonon 

dispersion for a bilayer MoS2 is shown in Figure 2.8(b), and we see some similarities between 

the phonon dispersion for monolayer and bilayer MoS2. The critical points will still be the same, 

and the pDOS is also similar. From group theory, we can again predict the representation of the 

vibrational modes at the Γ point, given by the irreducible representations [110] 

 Γᵅ�ᵅ�ᵀ� = Γᵀ�ᵅ� ⊗ Γᵅ�ᵀ�ᵀ� = 3�ᵀ�1ᵀ� ⊕ ᵀ�ᵀ� ⊕ ᵀ�2ᵅ� ⊕ ᵀ�ᵅ��.  

The total number of vibrational modes will be 18 since the number of atoms in the unit cell has 

doubled, but the number of acoustic modes is still 3, giving 15 optical branches. Among the 15 

optical branches, 3 are of A1g irreducible representation (totally symmetric out-of-plane 

vibrations), 3 are of Eg representation (in-plane vibrations), 2 are of Eu representation (in-plane 

vibrations) and the remaining 2 are of A2u representations (out-of-plane vibrations). Of these 

irreducible representations, the A1g and Eg representations are Raman-active, while the others 

are IR-active. 

 The increasing number of layers introduces the quasi-acoustic branches, modes with 

low frequency representing the vibrations between layers (interlayer vibrations). Since these 

modes are related to the weak van der Waals bonding between layers, the expected frequencies 

are small, especially compared to the frequency of the intralayer vibrations, around 40 to 60 

cm-1 as can be seen in Figure 2.8(b) at the Γ point. Although the quasi-acoustic vibrations 

present a big difference at the Γ point, such difference drops very fast for the rest of the 

vibrational structure, where the difference is mostly in the order of a few wavenumbers. The 

optical branches present a small shift compared to a monolayer though, which can be easily 

measured by Raman spectroscopy. Increasing the number of layers to three returns the system 
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to a D3h symmetry, and increases the number of branches to 27, and increasing the number of 

layers to 4 returns to a D3d symmetry, with 36 branches, and so on when the number of layers 

is alternating between odd and even. We can summarize the number of phonon branches in the 

phonon dispersion for the ᵅ�-layers problem by using the relations in Table 2.1 [110]. 

 When the number of layers is big enough, we can consider a bulk  2H crystal, where the 

unit cell is similar to the unit cell of a bilayer stack and a translational symmetry along the ᵅ� 

axis appears. The translational symmetry along the ᵅ� axis will introduce another symmetry 

operation, the screw axis ᵀ�6
ᵪ� , where the unit cell can be recovered for a 60° rotation followed 

by a translation of ᵀ�
2 ᵅ�� = ᵪ�. Therefore, the system will belong to a D6h symmetry, and we can 

use group theory, again, to predict the irreducible representations of the vibrational modes at 

the Γ point, presented in table 1, where a total of 18 vibrational modes are expected, as can be 

seen in Figure 2.8(c). From the 18 phonon branches, three correspond to the acoustic modes, 

with representations A2u and E1u. There are two IR active modes with representations A2u and 

E1u, and four Raman-active modes with representations A1g, E1g, and two E2g. The remaining 

phonon branches do not present light activity. In the backscattering configuration, only the A1g 

and E2g modes will be observed, and they correspond to the out-of-plane intralayer vibration 

(A1g) and the intralayer and interlayer shear modes (E2g). 

 One of the interesting observations of the vibrations in TMDs is that the frequency of 

the intralayer out-of-plane A1g (for simplicity, we use the irreducible representation of bulk) 

mode increases as the number of layers increases, while the in-plane E2g mode decreases in 

frequency [114–121]. For the A1g mode, the frequency increase with the number of layers can 

be thought of as a consequence of an increasing force coming from effective springs connecting 

the layers due to the van der Waals force that increases the strength of the out-of-plane 

vibration. The in-plane E2g modes are affected by the dielectric screening from the chalcogens 

interfacing in the layers, which decreases the vibrational strength of this mode [114]. 

Table 2.1. Irreducible representations for the vibrational modes at the Γ point for ᵅ�-layers 
and bulk. 

ᵅ� odd Γᵅ�ᵅ�ᵀ� = �
3ᵅ� − 1

2 � (ᵀ�1′ ⊕ ᵀ�") + �
3ᵅ� + 1

2 � (ᵀ�′ ⊕ ᵀ�2") 

ᵅ� even Γᵅ�ᵅ�ᵀ� = �
3ᵅ�
2 � �ᵀ�1ᵀ� ⊕ ᵀ�ᵀ� ⊕ ᵀ�2ᵅ� ⊕ ᵀ�ᵅ�� 

bulk Γᵅ�ᵅ�ᵀ� = ᵀ�1ᵀ� ⊕ 2ᵀ�2ᵀ� ⊕ ᵀ�1ᵀ� ⊕ 2ᵀ�2ᵀ� ⊕ 2ᵀ�2ᵅ� ⊕ ᵀ�1ᵅ� ⊕ 2ᵀ�1ᵅ� ⊕ ᵀ�2ᵅ� 
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Here, we comment that although the decoupling of the electronic and atomic motions in 

the crystal is a good approximation, it does not account for the electron-phonon interactions, 

which are extremely relevant for the thermal dependence of the electronic transitions, as we 

will discuss further. We also comment that the harmonic approximation is still a flawed model, 

which is not able to explain the thermal expansion of a material. At room temperature, we are 

near the Debye temperature of the TMDs (between 200 and 300 K) and thermal effects become 

more relevant. Considering a simple harmonic oscillator as an example, as the temperature of 

the system is raised, the thermal agitation increases, and the harmonic approximation would not 

be sufficient to explain the thermal expansion for instance, which can be thought of as a change 

in the equilibrium position of the oscillator. Thus, the anharmonic effects that are responsible 

for these phenomena must be considered in the full picture, especially since these effects are 

responsible for the softening of the vibrational modes, which will be discussed further in this 

text. In the following sections, we will discuss the techniques that enable the observation of the 

optical features in TMDs, such as photoluminescence and Raman spectroscopies, and their 

impact on the characterization and investigation of fundamental properties of TMDs. 

2.3 Optical techniques for the characterization of TMDs 

When treating the optical properties of a material, that means, its interaction with visible 

(400 to 700 nm), near-infrared (NIR) (700 to 1400 nm) or near-ultraviolet (UV) (300 to 400 

nm) radiation, few approximations must be considered in order to simplify the treatment and 

modeling of the experimental data.  

The first is regarding the momentum carried by light, that is proportional to its 

wavevector (inversely proportional to the wavelength of light) and is in the order of 106 to 107 

m-1 for the visible, NIR and UV ranges. An electron subject to the periodic potential of a crystal 

will carry the momentum of the crystal. Therefore, the electron wavevector can range from the 

Brillouin zone center to the zone edges and will be inversely proportional to the distance 

between the ions forming the crystal. In the case of TMDs, that distance is about 3.2 Å and the 

electron wavevector in the edges of the Brillouin zone will be of order 3 x 109 m-1, which is 

about 100 to 1000 times bigger than the wavevector of light. In consequence, for excitations 

near the visible, NIR and UV ranges the crystal electron can only be excited vertically, which 

means that the initial and final states of the electron must have almost the same wavevector, or 

ᵅ�ᵅ� ≈ ᵅ�ᵀ�. This approximation is known as the electric dipole approximation and it has some 

interesting implications for absorption, photoluminescence and Raman spectroscopies. 
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Consider an electron in a periodic lattice potential where there is an incident 

monochromatic electromagnetic wave. The Hamiltonian for this system can be written as (using 

the Coulomb gauge and neglecting ||ᵅ�||ᵼ� terms) 

 
ᵀ� =

ᵀ�2

2ᵅ�ᵀ�
+ ᵀ�(ᵅ�) −

ᵅ�
ᵅ�ᵀ�ᵀ�

ᵀ� ∙ ᵀ� + ᵀ�ᵀ�−ᵅ�ℎ + ᵀ�ᵅ�ℎ−ᵅ�ℎ … (2.5). 

The first two terms refer to the unperturbed Hamiltonian, including the periodic lattice potential. 

The third term is related to the electron-radiation interaction term which can be extracted from 

classical electromagnet theory, where ᵀ� is the magnetic potential vector. The fourth and fifth 

terms are related to the interaction between the electron and the lattice and the interaction of 

the lattice with itself. The last term is related to anharmonic effects. In this section, we treat just 

the third term to describe optical absorption. The following terms are discussed in the next 

sections. They will be relevant for the photoluminescence and Raman scattering phenomena. 

2.3.1 Optical absorption by 2D materials with excitonic complexes 

We explore light absorption first due to its simplicity compared to the other optical 

processes, and we use the simple approach proposed in ref. [122]. To describe the light 

absorption by a photon, we need to consider Fermi’s Golden rule for the transition rate between 

all states in the electronic structure of the material. The transition rate, Wi→f, is given by 

 ᵀ�ᵅ�→ᵀ� = 2ᵪ�
ħ ||�ᵀ� ||ᵀ�

′
|| ᵅ��||

2ᵪ�(ħᵪ�) (2.6), 

where ||�ᵀ� ||ᵀ�
′
|| ᵅ��||

2
 is the matrix element of the perturbation Hamiltonian  ᵀ�′ = − ᵅ� ᵅ�ᵀ�ᵀ�⁄ ᵀ� ∙ ᵀ�, 

i and f denote the ground state and excited state, and ᵪ�(ħᵪ�) is the joint density of states (jDOS) 

for a photon of energy ħᵪ� between the conduction and valence bands. If we write the vector 

potential ᵀ� as ᵀ�ᵀ��ᵀ�−ᵅ�ᵪ�ᵅ�, using the dipole approximation, the term ||⟨ᵀ� ||(− ᵅ� ᵅ�ᵀ�ᵀ�⁄ ᵀ� ∙ ᵀ� || ᵅ�⟩||2 can be 

reduced to (ᵅ�ᵀ� ᵅ�ᵀ�ᵀ�⁄ )2||⟨ᵀ� || ᵀ�� ∙ ᵀ� || ᵅ�⟩||
2
. This approximation means that we need to consider light 

polarization for absorption, which is extremely important for some materials that present 

anisotropic properties. 

 Monolayer TMDs can be described as 2D parabolic band direct bandgap semiconductor, 

and the jDOS can be calculated considering the energy of an electron with wavevector ᵅ� excited 

from the valence band to the conduction band by a photon with energy ħᵪ�. We can write 
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ħᵪ� = ħ2ᵅ�2

2ᵅ�ᵀ�
∗ + ᵀ�ᵀ� − ħ2ᵅ�2

2ᵅ�ℎ
∗ = ħ2ᵅ�2

2µ∗ + ᵀ�ᵀ�, (2.7), 

where the µ* term represents the reduced mass of the effective masses of the electron, ᵅ�ᵀ�
∗, and 

hole, ᵅ�ℎ
∗ , and ᵀ�ᵀ� is the bandgap. Thus, the jDOS will be given by 

 

ᵪ�(ᵀ�)ᵀ�ᵀ� =

�
�
�
�
�

2 1
(2ᵪ�)2 (2ᵪ�ᵅ�)ᵀ�ᵅ� =

(2µ∗)
1
2

2ᵪ�ħ
ᵀ�ᵀ�, when ᵀ� ≥ ᵀ�ᵀ�

0, when ᵀ� < ᵀ�ᵀ�

 (2.8), 

which leads to the transition rate 

 
ᵀ�ᵅ�→ᵀ� =

(2µ∗)
1
2

ħ2  �
ᵅ�ᵀ�
ᵅ�ᵀ�ᵀ��

2

||⟨ᵀ� || ᵅ�� ∙ ᵅ� || ᵅ�⟩||2 (2.9), 

meaning that for photon energies above the bandgap of the material, the transition rate is 

constant. 

The extinction coefficient is taken as the energy of the photon times the number of 

transitions per unit volume per unit time, given by ᵀ�ᵅ�→ᵀ�, over the incident electromagnetic 

flux. The electromagnetic flux is given by the absolute value of the Poynting vector, which is 

conveniently found for a non-magnetic material as: 

 
ᵀ� =

ᵪ�2ᵀ�ᵪ�0ᵅ�
2

ᵀ�2 (2.10), 

where ᵅ� is the real part of the complex index of refraction. Combining the definition of the 

extinction coefficient with equations (2.9) and (2.10) yields: 

 

ᵪ�(ħᵪ�) =

�
�
�
�
�(8µ∗)

1
2

ħᵪ�ᵀ�3ᵅ� �
ᵀ�

ᵅ�ᵀ��

2
||⟨ᵀ�||ᵅ�||ᵅ�⟩||2 ≡ ᵪ�2ᵀ�(ħᵪ�), when ᵀ� ≥ ᵀ�ᵀ�

0, when ᵀ� < ᵀ�ᵀ�

 (2.11). 

 Equation (2.11) means that the absorption should increase as a function of the photon 

energy right after the energy of the photon becomes bigger than the energy of the bandgap. The 

presence of excitonic transitions with strong binding energy affects the extinction coefficient 

greatly, and strong absorption peaks are observed experimentally at specific photon energies. 

In this case, we should correct equation (2.8) to include the contributions from the excitonic 

transitions. We will do so via the inclusion of a δ function, such that: 
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ᵪ�(ᵀ�)ᵀ�ᵀ� =

(2µ∗)
1
2

2ᵪ�ħ �1 + ᵪ� �ħᵪ� − �ᵀ�ᵀ� −
ᵀ�ᵀ�

ᵅ�2 ��� ᵀ�ᵀ� (2.12), 

leading to a new extinction coefficient: 

 
ᵪ�(ħᵪ�) =

(2µ∗)
1
2

ħᵪ�
8ᵪ�
ᵀ�ᵅ�∗ �

ᵀ�
ᵅ�ᵀ��

2
||⟨ᵀ�||ᵅ�||ᵅ�⟩||2 �1 + ᵪ� �ħᵪ� − �ᵀ�ᵀ� −

ᵀ�ᵀ�

ᵅ�2 ���

= ᵪ�2ᵀ�(ħᵪ�) �1 + ᵪ� �ħᵪ� − �ᵀ�ᵀ� −
ᵀ�ᵀ�

ᵅ�2 ��� 

(2.13). 

 A finite lifetime has to be included as well, which can be done by means of the definition 

of the δ function as a Lorentzian: 

 ᵪ�(ħᵪ�) = ᵪ�2ᵀ�(ħᵪ�) +
ᵪ�2ᵀ�(ħᵪ�)ᵀ�ᵅ�

��ħᵪ� − �ᵀ�ᵀ� − ᵀ�ᵀ�
ᵅ�2 ��

2
+ �

ᵪ�
2�

2
�

 
(2.14), 

where the constant ᵀ�ᵅ� is introduced as a fitting parameter for the oscillator strength of the n-th 

transition and ᵪ� is the full width at half-maximum. Therefore, we expect a small background 

contribution together with the contributions from the excitons in the absorption spectra. 

Equation (2.14) also reveals that it is possible to observe the higher valued n, though their 

oscillator strength is extremely reduced when compared to the n = 1 case. 

 For TMDs, there are also excitonic transitions above the bandgap identified as the C and 

D excitons observed in Figure 2.6 for MoS2, WS2, MoSe2, and WSe2. But the treatment we’ll 

use in this text regards the excitonic contribution below the bandgap for the optical properties 

since the other excitonic transitions are beyond the scope of this work. 

2.3.2 Photoluminescence spectroscopy and its application to the transition metal 

dichalcogenides 

The photoluminescence is known as the spontaneous emission of light by a material, 

where the electron decays from the minimum in the conduction band to the maximum in the 

valence band. Thus, photoluminescence provides a direct measurement of the optical band-gag 

of a material. 

When a semiconductor with a direct bandgap Eg is illuminated by a photon with energy 

above Eg, an electron-hole pair is created and the electron is promoted to the conduction band 

above the minimum. Through non-radiative decays, by the emission of phonons and other 

lattice processes, the electron and hole pair are scattered to the minimum of the conduction 
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band and maximum of the valence band. The electron-hole pair recombines, with the emission 

of a photon corresponding to the bandgap. A simple sketch of this process is depicted in Figure 

2.11(a). 

When the material possesses an indirect bandgap, however, the process of emission is 

slightly different, as it is illustrated in Figure 2.11(b), because light does not carry enough 

momentum to promote the recombination of the electron-hole pair. Thus, a phonon with large 

momentum and small energy is required to allow the recombination between the electron-hole 

pair. Since this process depends on the available population of phonons, its intensity is heavily 

influenced by the material temperature. The intensity is also very weak compared to the 

emission of a direct bandgap material since there must be a correction to the transition rate 

which accounts for the electron-phonon interaction, which is much weaker than the electron-

radiation term. 

 Since monolayer TMDs are direct bandgap semiconductors, the emission is a very 

efficient process where the quantum yield reaches almost 100% in some specific cases [123]. 

From bilayers up to bulk, the TMDs present an indirect bandgap, similar to the one shown in 

Figure 2.4(b), and the emission efficiency reduces drastically. A comparison between the 

photoluminescence of monolayer MoS2 and bilayer MoS2 is presented in Figure 2.12(a) [124]. 

Bulk TMDs present almost no emission in the region of the direct bandgap, thus, most of its 

emission comes from the indirect bandgap at approximately 1.3 eV. The indirect bandgap 

K

Eg

(a) Direct band-gap

ħωPL

(b) Indirect band-gap

phonon

QK

Eg

phonon

ħωL

ħωLħωPL

Figure 2.11. Sketch of the photoluminescence process for (a) Direct bandgap and (b) indirect bandgap 

semiconductors. The high symmetry points are those of TMDs. 
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energy and consequently the emission energy decreases for an increasing number of layers, as 

can be observed in Figure 2.12(b) [124].  

For a monolayer TMD, the PL intensity and lineshape are affected by several factors 

such as the power used [97,106], the density of carriers [82,84,94,95,97,98,105], 

defects [103,125] and also temperature [87]. Resonances with the electronic transitions are also 

incredibly relevant to the emission of these materials, influencing the observed intensity by up 

to 2 orders of magnitude. The study of the PL intensity as a function of the laser energy is 

known as photoluminescence excitation (PLE), and it has been used in the study of TMDs for 

the characterization of their energy levels [65,108]. We also add here that due to strong exciton-

phonon coupling in TMDs, their PL presents strong resonances with phonon levels, especially 

the acoustic phonons [126,127]. 

2.3.3 Raman spectroscopy 

 Among the possible processes of light-matter interaction, one of the most interesting is 

the scattering of light, which can be either elastic or inelastic. Elastic scattering is the 

phenomenon responsible for the blue color of the sky and also the white color of the clouds. 

Light scattering plays an important role in the way we see the world and also in its applications 

for the characterization of materials. Here, we will present a quick overview of the topic of 

inelastic scattering of light by a crystal. 

 

Figure 2.12. (a) Comparison between the PL from a monolayer MoS2 and a bilayer MoS2. The inset shows how 

the quantum yield varies with the number of layers. (b) Normalized PL from a monolayer up to six layers MoS2. 

The peak marked by I is the indirect bandgap and the peaks marked by A and B are the A and B excitons. Adapted 

from ref. [124]. 
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 Suppose a coherent monochromatic light source of frequency ᵪ�  with an electric field 

component ᵅ�(ᵅ�)described by ᵅ�(ᵅ�) = ᵅ�0 cos(ᵪ�ᵅ�), interacts with a crystal. The light electric field 

will induce a polarization ᵅ�  in the crystal such that 

 ᵅ� = ᵪ�ᵅ� = ᵪ�ᵅ�0 cos(ᵪ�ᵅ�) (2.15), 

where ᵪ� is the electric susceptibility of the crystal. The electric susceptibility can be expanded 

in terms of the normal vibrational modes of the crystal, ᵅ�ᵅ�, such that 

 
ᵪ� = ᵪ�0 + � �

ᵪ�ᵪ�
ᵪ�ᵅ�ᵅ��0

ᵅ�ᵅ�
ᵅ�

+ ⋯ (2.16), 

where the under script 0 means at ᵅ�ᵅ� = 0. Since the normal vibrational coordinates describe the 

approximate harmonic vibrational motion of the crystal, ᵅ�ᵅ� can be rewritten as ᵅ�ᵅ� cos(ᵪ�ᵅ�ᵅ�), with 

ᵪ�ᵅ� being the frequency of vibration of this mode. After some minor changes, the combination 

of 2.15 and 2.16 yields 

 
ᵅ� = ᵪ�0ᵅ�0 cos(ᵪ�ᵅ�) + � �

ᵪ�ᵪ�
ᵪ�ᵅ�ᵅ��0

ᵅ�0ᵅ�ᵅ�
2ᵅ�

�cos(ᵪ�ᵅ� − ᵪ�ᵅ�ᵅ�) + cos(ᵪ�ᵅ� + ᵪ�ᵅ�ᵅ�)� (2.17). 

Since the observed intensity is proportional to the square of ᵅ�, we expect to see three 

different scattering phenomena: (i) the elastic scattering of light, the first term in the right-hand-

side of equation 2.17; (ii) the Stokes inelastic scattering of light, where the scattered light loses 

energy via an interaction with the material; (iii) the anti-Stokes inelastic scattering of light, 

where the scattered light gains energy via the interaction with the material. The elastic scattering 

of light is called the Rayleigh scattering, named after Rayleigh first introduced the theory for 

the elastic scattering of light. The inelastic scattering of light is called Raman scattering after 

C. V. Raman first observed the inelastic scattering of light in molecules in 1928. 

In the classical treatment of light scattering, the intensity of this process is proportional 

to the fourth power of the light frequency (or inversely proportional to the fourth power of the 

wavelength), thus, for light with high frequency such as blue or violet, the probability of 

scattering is much higher than that of red or yellow light. The scattering intensity is still very 

low compared to other processes such as reflection or even the emission of light by a crystal. 

The inelastic scattering of light is even weaker than the elastic scattering. Thus, a very sensitive 

setup along with high-intensity coherent light sources are better suited for the detection of the 

Raman scattering of materials. 
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Out of resonance with the excitonic transitions, the Raman spectra of TMDs is generally 

composed of two main peaks in the backscattering configuration. One peak corresponds to the 

totally symmetric vibrational out-of-plane optical mode, and the other corresponds to the 

doubly degenerate in-plane longitudinal and transverse optical modes. As we discussed before 

in section 2.2, the number of layers in the crystal affects the frequency of the vibrational modes 

due to the interlayer interactions. Raman spectroscopy can measure the shifts due to the 

interlayer interactions of the Raman active vibrational modes, which we show in Figure 2.13(a) 

for a monolayer, few-layers, and bulk of MoS2. 

 To finish this chapter, we comment that although the classical treatment is correct for 

the case where the laser energy is less energetic than the electronic transition energy, it is wrong 

for the case of the laser energy matching the electronic transition energy. When the laser energy 

is close to the transition energy, also called a resonance with the electronic transition, the overall 

intensity of the Raman process is increased by many folds, and also higher-order scattering 

processes appear as well. In TMDs specifically, the proximity of the resonance with the A and 

B excitons strongly affects the intensity of the bands resulting from combinations of acoustic 

phonons, like the 2LA and b bands in Figure 2.13(b). To properly understand the mechanism 

behind these two bands, we treat the resonance Raman processes in chapter 3, where we review 

the resonances with the excitonic levels for the H-MX2 family. We’ll see how the resonances 

with different excitons can affect the intensities of the Raman bands involving one phonon, and 

also the processes involving two phonons. 

 

Figure 2.13. (a) Raman spectra of a monolayer (1L) up to six-layers (6L) and the bulk of MoS2 measured with a 

2.41 eV laser. Adapted from ref. [114]. (b) Raman spectra of monolayer MoS2 collected with a 2.41 eV laser (top) 

and a 1.96 eV laser (bottom). 



 

 

3. The resonance Raman scattering process in 2D 
materials 

3.1 Raman spectroscopy and 2D materials 

 In the last years, Raman spectroscopy has presented itself as a key tool to obtain 

information about the structure and physical properties of 2D materials. It can provide a better 

understanding of the electronic and vibrational properties in several types of 2D systems such 

as graphene [128–130], black phosphorus [131], hexagonal boron nitride [132–134] and 

transition metal dichalcogenides (TMDs) [135,136]. The analysis of the first-order Raman 

spectrum of TMDs, for instance, allows us to gather information about the interlayer 

interactions [137], exciton-phonon interactions [60,61,138], as well as dependence of the 

phonon frequencies with the number of layers [48,114,115,117,118,121,139,140], among many 

other relevant characteristics that are fundamental to unveil the underlying physics in these 

systems [137,141–144]. The second-order and double resonance bands have been used in the 

literature to obtain important information from III-V group semiconductors [145–147], 

Cadmium Telluride alloy [148], graphite and graphene [129,130,157–159,149–156], and 

extensive studies from bulk to monolayer regimes of TMDs as well [53,60,164–

172,74,117,119,121,160–163]. The double resonance process arises from the intervalley or 

intravalley scattering where two phonons or one phonon and one defect participate in the 

scattering of the excited electron. The double resonance bands can help us characterize both the 

electronic and vibrational properties of these materials. These contributions can aid the 

understanding of changes in basic properties brought by defects, which could, in turn, allow the 

application of 2D materials to new relevant technologies [173,174]. 

 In the electric dipole approximation, the first-order Raman scattering only allows the 

observation of phonons at the Brillouin zone center (the Γ point).  This is justified by the fact 

that the momentum carried by light is much smaller than the size of the Brillouin zone and, 

consequently, much smaller than the momentum required to reach phonons away from the  

point.  Therefore, optical transitions can be regarded as strictly vertical [175]. 

 The full equation that describes the first-order Raman scattering process can be deduced 

from third-order time-dependent perturbation theory [175], but in the interest of simplicity, we 

use the Feynman diagrams in order to deduce the Raman intensity equation, proportional to the 

transition rate. The terms composing the transition rate equation take into account that the 
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numerator represents the product of interaction terms and the denominators come from 

corrections to the energy states of the system due to the transitions. 

 Figure 3.1(a) displays the Feynman diagram for the first-order Raman process, which 

involves one phonon. First, a photon with energy ħωᵅ� interacts with the material, promoting an 

electron from the valence band to the conduction band and leaving a hole in the valence band. 

Second, the electron-hole pair, or the exciton, will interact with the crystal lattice, creating a 

phonon with energy ħωᵅ�ℎ. Finally, the exciton will decay, emitting a photon with energy ħωᵀ�.  

 In order to construct the equation, we need to travel back in time to analyze the 

interaction vertexes that integrate the equation. We also use the band structure diagram in 

Figure 3.2(a) to help visualize the construction. The final term reflects the exciton-photon 

interaction, which takes place during the recombination of the electron-hole pair. This 

interaction will contribute a matrix element of the form ⟨ᵀ�||ᵀ�ᵀ�−ᵀ�||ᵀ�⟩ to the transition rate, where 

ᵀ� is the final state and ᵀ� is an intermediate state (see Figure 3.2(a)). The second term comes 

from the exciton-phonon interaction, that creates a vibration due to the interaction of exciton 

and crystal lattice, which will contribute a matrix element of the form ⟨ᵀ�||ᵀ�ᵀ�−ᵀ�ℎ||ᵀ�⟩, where ᵀ� is 

another intermediate state (see Figure 3.2(a)). The final term in the numerator comes from the 

creation of the exciton, which contributes a term of the form ⟨ᵀ�||ᵀ�ᵀ�−ᵀ�||ᵅ�⟩, where ᵅ� is the ground 

state. 

 The term in the denominator comes from the correction to the energy of each state after 

the transitions. The first transition connects the ground state ᵅ� to the intermediate state ᵀ�, and 

the correction to the energy will have the form�ħωᵅ� − (ᵀ�ᵀ�− + ᵀ�ℎ+)�, where ᵀ�ᵀ�− is the energy of 

the electron in the conduction band and ᵀ�ℎ+ is the energy of the hole in the valence band. The 

second transition connects the intermediate states ᵀ� and ᵀ�, and the correction will have the 

Figure 3.1. Feynman diagrams for the Raman scattering process involving (a) one phonon and (b) two phonons. 
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form�ħωᵅ� − (ᵀ�ᵀ�− + ᵀ�ℎ+) − ħωᵅ�ℎ�. The third and last term does not have a correction, but we 

use the total energy to construct the joint density of states, ᵀ��ωᵀ�� = ᵀ��ħωᵅ� − (ᵀ�ᵀ�− + ᵀ�ℎ+) −

ħωᵅ�ℎ�. Combining every term, we can reach 

 
ᵀ�ωᵀ�

(ω) = ᵀ�ᵪ�4

||
||
�

⟨ᵀ�||ᵀ�ᵀ�−ᵀ�||ᵀ�⟩⟨ᵀ�||ᵀ�ᵀ�−ᵀ�ℎ||ᵀ�⟩⟨ᵀ�||ᵀ�ᵀ�−ᵀ�||ᵅ�⟩

�ħωᵅ� − (ᵀ�ᵀ�− + ᵀ�ℎ+)��ħωᵅ� − (ᵀ�ᵀ�− + ᵀ�ℎ+) − ħωᵅ�ℎ�ᵀ�,ᵀ� ||
||
2

× ᵀ��ħωᵅ� − (ᵀ�ᵀ�− + ᵀ�ℎ+) − ħωᵅ�ℎ�. 

(3.1) 

 The summation is made over all possible intermediate states. Since ᵀ�ᵀ�− + ᵀ�ℎ+ = ᵀ�ᵀ� +

ħ2ᵅ�2

2μ∗ ,  we see right away that for states where ħωᵅ� ≪ ᵀ�ᵀ�, we recover the classical behavior of 

the intensity. For ħωᵅ� ≫ ᵀ�ᵀ�, the behavior is also recovered, since the terms in the denominator 

will be very large. When ħωᵅ� ≈ ᵀ�ᵀ�, we would need to consider the resonance with the electronic 

level, especially when ħωᵅ� = ᵀ�ᵀ�, where the photon energy matches the electronic transition 

energy, and equation 3.1 would diverge. Since we are dealing with physical quantities, the 

transition between the levels have finite lifetimes, therefore, a constant must be introduced in 

equation 3.1 to correct the lifetime of the electronic levels. Combining the results of section 

2.3.1 with equation 3.1, yields 

 

Figure 3.2. The first and second-order Raman scattering processes illustrated in a parabolic band semiconductor. 

(a) First-order Raman scattering. (b) Intervalley two-phonon electron-electron double-resonance scattering 

process. (c) Intravalley two-phonon electron-electron double-resonance scattering process. (d) Intervalley phonon-

defect electron-electron double-resonance scattering process. (e) Intravalley phonon-defect electron-electron 

double-resonance scattering process. Adapted from ref. [176]. 
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2
. (3.2) 

Where ᵀ�ᵀ� is the measured optical bandgap, or for TMDs, the exciton transition energy and ᵅ�ᵪ� 

is the product between the pure imaginary number and damping constant related to the lifetime 

of the Raman process. We neglected the jDOS term because its purpose is mainly to give the 

lineshape of the photon distribution. Since the only phonons that can be accessed are the optical 

phonons at the zone center, the expected distribution would be similar to a Dirac delta function. 

However, since there are anharmonic effects, and also due to the dampening, the expected 

lineshape of the Raman peaks will be Lorentzian. 

 A closer look into equation 3.2 reveals a very important selection rule for the scattering 

of a photon by a phonon, the fact that the parity of the wavefunction must be conserved at the 

end of the process. Since the Raman process involves two dipole transitions, the parity of the 

wavefunction changes during the first transition, but it changes again after the second transition. 

In the end, the parity is conserved through the scattering. The Raman scattering is different 

from infrared (IR) absorption, where there is only one dipole transition. Therefore, in order to 

observe the Raman scattering via a specific phonon, the irreducible representation of said 

phonon must transform as a quadratic function. For the IR absorption, however, the irreducible 

representations of the phonon must transform as a linear function. 

 Semiconducting monolayer TMDs such as MoS2, with trigonal prismatic symmetry, 

belongs to the D3h point group which predicts two Raman active modes, A1’ and E’, in the 

backscattering configuration [136]. Thus, only two peaks can be seen in their first-order Raman 

spectrum. Bilayer MoS2 would present six Raman active modes, 3 A1g, and 3 Eg. Trilayers 

would present eight Raman active modes, 4 A1’ and 4 E’’ modes, and bulk presents three Raman 

active modes, A1g, and 2 E2g. 

 The two-phonon Raman bands obey different selection rules, which do not only 

consider vertical transitions but also the scattering of the excited electron throughout the entire 

reciprocal lattice as long as momentum conservation is achieved [53,128,149]. The intensity of 

the two-phonon bands can be described by the following equation 
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Notice the presence of a second electron-phonon interaction and a third intermediate state, ||ᵀ�⟩, 

due to the creation of a second phonon with energy ħᵪ�ᵀ�ℎ’, in contrast with Equation 3.2. We 

can construct equation 3.3 using the same principles used for equation 3.2, and the Feynman 

diagram present in Figure 3.1(b). Figure 3.2(a) illustrates a two-phonon process. First, similar 

to the first-order process, the electron is promoted from the valence band (state ||ᵅ�⟩) to the 

conduction band (state ||ᵀ�⟩) and it interacts with the lattice to create a phonon with energy ħᵪ�ᵀ�ℎ 

(state ||ᵀ�⟩). However now, instead of a zone center phonon, the emitted phonon has enough 

momentum to scatter the electron from one point in the Brillouin zone to another (K to K’ in 

our example). To guarantee momentum conservation, the electron at K’ must emit another 

phonon with the same amount of momentum that the first phonon had and energy ħᵪ�ᵀ�ℎ’ (state 

||ᵀ�⟩). Finally, the excited electron-hole pair recombine and a photon with energy equal to ħᵪ� −

 ħᵪ�ᵀ�ℎ  −  ħᵪ�ᵀ�ℎ’ is emitted. Due to the scattering of the electron from one valley to the other, 

this process is frequently called intervalley scattering [53]. Another example of a two-phonon 

process could be the intravalley scattering, where instead of the electron being scattered from 

the K valley to the K’ valley, the electron is scattered in the same valley, following the same 

trajectory as Figure 3.2(b). The same procedures from the intervalley process can be applied, 

just the length of the wavevector changes.  

 The following question is how would defects change the Raman process. Figure 3.2(d) 

and Figure 3.2(e) present the defect induced Raman process expected for a low-defective 

material (a material with a defect density low enough that its basic properties are not very 

affected by defects). In this case, the same process for intervalley and intravalley scatterings 

occur, but the transition from state ||ᵀ�⟩ to state ||ᵀ�⟩ is carried by a defect instead of a phonon. 

Then, the energy of the scattered photon will be ħᵪ� −  ħᵪ�ᵀ�ℎ, like in the case of the first order 

bands, but the phonon participating in the Raman process is not a zone center phonon. The 

intensity of this process can be explained by means of Equation (2) as well [159], after some 

minor changes to include the electron-defect interaction. 

 The processes illustrated in Figure 3.2(b-d) have only shown the scattering of the 

electron from one point to another in the electronic structure. As a matter of fact, the electron 

is not the only entity that can be scattered, but the hole in the valence band can be scattered as 

well [74,155]. For the case where the electron is the only entity scattered in an intervalley or 

intravalley process, we call it electron-electron scattering. If both electron and hole are 

scattered, we call it electron-hole scattering and the case where just the hole is scattered can be 

called hole-hole scattering. 
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 Unfortunately, the two-phonon or the phonon-defect bands have a very low probability 

of happening, such that their intensity is much smaller than that of first-order modes. 

Nevertheless, when the incoming laser energy reaches resonance with the electronic transition 

of the material, or when the defect density is high enough in a defect induced process, the 

intensity becomes comparable or even higher than that of the first-order 

modes [53,156,177,178]. When it happens, the bands approach a resonant behavior like that of 

the first-order modes. But, since the choices are not limited to the zone center phonons, other 

terms in the denominator of Equation 3.3 can be null at the same time. That is why these bands 

are called double-resonance bands or even triple-resonance bands in some cases [53,179]. 

 In this chapter, we present some of the recent advances in the resonance Raman process 

in transition metal dichalcogenides and make a comparison with graphene. We also discuss 

some information that can be obtained from the analysis of the double resonance Raman bands 

and its applications, e.g. investigation of defects in 2D materials. 

3.2 First-order resonance Raman process in transition metal 

dichalcogenides 

 In this section, we present a quick overview of the resonance Raman process involving 

only the zone center phonons of TMDs. As discussed in the last section, the first order Raman-

active modes of TMDs have representations belonging to the totally symmetric irreducible 

representations A1’ or A1g, or the degenerate E’, Eg or E2g irreducible representations for the 

Raman spectrum measured in the backscattering configuration. The totally symmetric 

irreducible representations A1’ or A1g represent the out of plane vibration where the chalcogen 

sheets vibrate in opposite directions maintaining the metal sheet fixed. The degenerate E’, Eg 

and E2g representations represent the LO and TO vibrations where the chalcogen sheets vibrate 

in one direction while the metal sheet vibrates in a different direction. In this section, we use 

the irreducible representations of bulk, A1g, and E2g, for simplicity. 

 Considering only the transition energy in equation 3.2, we would expect that the 

enhancement observed for the Raman bands associated with the A1g and E2g modes would be 

equal as a function of the laser energy, except for a constant. Figure 3.3(a) shows the Raman 

spectrum of monolayer (1L), bilayer (2L), trilayer (3L) and bulk MoS2 collected under several 

laser energies, where it can be observed that for the laser energies close to the A and B excitons, 

1.92 and 2.18 eV, the intensity of the A1g band is stronger than the intensity of the E2g band. In 

the meanwhile, for laser energies closer to the C exciton, at 2.71 and 2.81 eV, the intensities of 

both A1g and E2g bands are similar. Figure 3.4(a) shows the intensity of the A1g and E2g bands 
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as a function of the laser energy, where the resonance with the A and B excitons around 1.9 and 

2.1 eV is clear for the A1g band, while the resonance with the C exciton affects both A1g and 

E2g bands. The observed behavior also affects the other TMDs, as it was observed in several 

works in the literature [60–62,118,162,164,180,181]. 

 The explanation for such anomalous behavior comes from the interaction between the 

vibrational modes and the atomic orbitals involved in the electronic transition. For the A and B 

excitons, the transitions are around the direct bandgap at the K point.  

 As we discussed before, the atomic orbitals around the direct bandgap are mostly 

constituted by the ᵀ� orbitals of the transition metal [55,182,183]. The ᵀ� orbitals, in turn, have a 

similar character to the vibrational motion of the out-of-plane A1g mode, which couples with 

this electronic transition very well, increasing the intensity of this mode [180]. The C and D 

excitons come from transitions close to the Γ point, where both ᵀ� orbitals from transition metals 

and ᵅ� orbitals from the chalcogens are present. In this case, the zone center phonons are highly 

enhanced, and the intensities of both A1g and E2g bands are enhanced [60,61,118,180]. 

 

Figure 3.3. The Raman spectrum of a monolayer (1L), bilayer (2L), trilayer (3L) and bulk MoS2 collected under 

the laser energies ranging from 1.92 to 2.81 eV. Adapted from ref. [180]. 
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 One important implication of the enhancement of the just the A1g mode around the 

excitonic levels is the fact that we can use the intensity of the E2g mode as a standard for 

calibration since it will not couple with the A and B excitons. Therefore, around the A and B 

excitons, we may use the intensity ratio between the A1g and E2g modes to observe these 

excitonic transitions, which is illustrated in Figure 3.4(b). However, this reasoning only applies 

in the proximity of the A and B excitonic transitions, because at the C exciton level the intensity 

of both A1g and E2g bands is enhanced. 

3.3 Double Resonance Raman Process 

 The appearance of double resonance Raman bands can be originated from an intervalley 

or intravalley scattering of the excited electron by a combination of two phonons of the same 

wavevectors but with opposite signs. The Raman process is resonant if at least one of the states 

accessed by the electron is a real electronic state. However, the double resonance process is 

characterized by two real states connecting each other [129,151]. It can be either a band state 

in the conduction band, such as in the case of graphene (see appendix B), or it can be an 

excitonic state, such as in the case of TMDs. The phonons that participate in the process will 

be limited to those with wavevectors that can connect states with similar energy of the excited 

Figure 3.4. (a) The Raman intensity for the A1g (solid triangles) and E2g (empty squares) bands as a function of 

the laser energy for 1L, 2L, 3L, and bulk. Adapted from ref. [180] (b) The intensity ratio of the A1g and E2g bands 

as a function of the laser energy. The intensity is displayed on a logarithmic scale. Adapted from ref. [180]. 
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electron [129,151]. Such is the case for the 2D band in the Raman spectrum of graphene (see 

Figure 3.5(a)), which arises from the contributions of the TO branch around the K point. In the 

case of the MoS2, a semiconducting TMD, it has been recently demonstrated that the double 

resonance band in the material has contributions from the longitudinal acoustic (LA) and 

transversal acoustic (TA) phonon branches in the vicinities of the K and M points (see Figure 

3.5(b)) [8,49]. The aforementioned considerations help us to understand some rules regarding 

the double resonance process and, the information that it can provide, such as the electron or 

phonon velocity along a certain region in the electron or phonon dispersion [130]. 

 Before discussing the double-resonance process for TMDs, we make some important 

considerations here about graphene as they will act as a guide for the other materials. A 

complete review of the double and triple-resonance processes in graphene is presented in 

Appendix B, where we discuss the important features observed and their attributions to the 

phonon dispersion. The most intense feature in the Raman spectra of monolayer graphene is 

the 2D band (Figure 3.5(a)). From the process introduced before, we can infer that not only the 

triple resonance due to Equation 3.1 is important, but also a strong interaction between electron 

and phonons can play a big role in the probability of the process. In fact, the electron-phonon 

interaction has been found to be twice as strong for LO phonons close to the K point than for 

phonons close to the Γ point [159]. This relatively small difference becomes rather strong when 

we remember that Equation 3.1 has a product of two electron-phonon interaction terms that are 

squared. Thus, an intensity difference of at least eight times can be expected from the 2D and 

 

Figure 3.5. The two-phonon Raman bands originated from the double-resonance intervalley scattering in (a) 

graphene and (b) monolayer MoS2. Adapted from ref [135]. 



36 

2D’ bands [159], which are originated from the same phonon branch at the K and Γ points, 

respectively. Graphene can be considered a semimetal, meaning that it has electronic states 

available everywhere, except at ᵀ� =  0. Looking at Equation 3.1, we realize that there is a term 

for the electronic transition energy, which is null for graphene. This means that while the linear 

behavior of the electronic structure is satisfied, graphene is always in resonance, which is true 

for the NIR and visible spectral regions. This fact also remotes to another important point in 

the characteristics of the double or triple resonance process, the fact that it is coupled with the 

position of the electron in the electronic band. Finally, the phonons that participate in the 

process must conserve momentum, as we have previously mentioned. But, as long as 

momentum is conserved, any combination of phonons is possible, though the final intensity 

varies due to the electron-phonon interaction.  

3.3.1 Transition metal dichalcogenides 

 As discussed before, the non-resonant Raman spectrum of semiconducting TMDs, 

collected in the backscattering configuration, are mostly restricted to first-order modes, which 

are known in the literature as the out-of-plane A1’ (A1g for bulk) and the in-plane degenerate E’ 

(E2g for bulk) mode [135,136] (see top of Figure 3.6(a)). On the other hand, when the incoming 

laser energy closely matches the A and B excitonic transitions, new contributions arise in the 

Raman spectrum of the material (see bottom of Figure 3.6(a)). The new features can be 

associated with the intervalley scattering mediated by acoustic 

phonons [53,74,160,165,168,169,172,184]. For instance, in MoS2, two bands are mainly 

observed in its resonant Raman spectrum: a band at approximately 420 cm-1 commonly known 

in the literature as “b” band [53,160,172], and a broad and asymmetric band at approximately 

460 cm-1 which is related to two LA phonons (Figure 2.8) [53,161,164,166,185,186]. A detailed 

discussion about the origin of these bands will be presented in the sequence. 

 Before that, to understand the physical meaning of the double resonance bands 

involving the acoustic phonons, it is necessary to separate the simple second-order Raman 

process and double resonance process that overlap in a resonant Raman spectrum of TMDs. 

 Second-order bands are present in the Raman spectrum of several materials, and their 

main characteristic is the fact that they are the reflection of the phonon density of states of the 

material with twice the original frequency. This means that their position does not change with 

the laser energy in contrast to double-resonance bands. Recent theoretical work for silicon has 

shown that the Raman intensity of the second-order bands is highly affected by the many-body 

effects that come into play [187]. Thus, the second-order bands are greatly enhanced when the 
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laser energy matches the electronic transition of the material. The difference between second-

order and double resonance bands, however, can be observed when several laser lines are 

employed to measure the Raman spectra close to the electronic transition, revealing the pattern 

where the dispersion of the bands can be observed. 

 Several works have reported the study of the double resonance process in 

TMDs [53,168,169,178,184,188,189]. These reports show that the double resonance bands 

observed in TMDs are mostly due to intervalley scattering. As it can be seen in Figure 3.6(b), 

the peak at around 460 cm-1 associated with a double resonance band is asymmetric and its 

shape strongly depends on the excitation laser energy and the number of layers, thus more than 

one process may be participating in this band [130,156,159]. 

 

Figure 3.6. The Raman scattering process MoS2. (a) Raman spectra of monolayer MoS2 off-resonance (top) and 

on-resonance (bottom) with the excitonic transition. (b) Raman spectra of monolayer MoS2 collected at different 

laser energies across the A and B excitons. (c) Frequencies of the LA+TA (~K) band and the components of the 

2LA band: singularity, 2LA(~K) and 2LA(~M) as a function of the laser energy. Adapted from refs. [53]

and [176]. 
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 The first observation of a double resonance band in bulk MoS2 was reported by Sekine 

et al., where the authors observed a dispersive Raman feature named as “b”  band located at 

approximately 420 cm-1 [160]. This feature presented a high dispersion of 82 cm-1/eV with the 

laser energy close to the A and B excitons. To explain such high dispersion, the authors proposed 

a mechanism considering a two-phonon scattering of one quasi-acoustic phonon and an optical 

phonon, parallel to the c axis of the crystal [160]. A similar mechanism was later proposed for 

the “b”  band by taking into account the explanation of the anti-stokes process [165]. However, 

these models were not compatible with the observed resonant Raman spectrum of a monolayer 

MoS2, which had a similar band but lacked a quasi-acoustic phonon branch. Additionally, Chen 

et al. and later Stacy et al. reported another band in the resonant Raman spectrum of bulk MoS2 

located at 460 cm-1, the intensity, and shape of which strongly changes as the excitation energy 

is tuned [161,185]. This band has been attributed to a combination of two LA phonons at the 

M point. Henceforth, few other works have tried to associate this band to different combinations 

of phonons [186,190], but none of these works presented a satisfactory explanation of the origin 

of this band.  

 Using graphene as a starting point (appendix B), we can start to propose a better 

explanation based not only on the rules observed but also on other known features of the TMDs, 

such as their phonon dispersion and electronic structure. Considering an electron-electron two-

phonon intervalley scattering from K to K’ in the conduction band of MoS2, we can ask which 

phonons could participate in such a process. Since, from graphene, the phonons must present 

strong interaction with the electron, we can suppose that the phonons involved in the intervalley 

scattering must be acoustic phonons, due to the strong correlation between the excitonic 

transitions in MoS2 and the acoustic phonons [191–194]. This is especially true since the 

phonon energy that we observe experimentally is very close to double the frequencies of the 

LA phonons in the K and M points (Figure 2.8). This means that there could be a double 

resonance process occurring that actually involves those phonons. 

 Using the train of thought above, it was proposed in ref. [53] a model based on 

theoretical and experimental results to explain the origin of both b and 2LA bands (see Figure 

3.6(b) and (c)) [53]. The authors have performed resonant Raman measurements across the A 

and B excitons levels on monolayer and bulk MoS2. By tracking the behavior on frequency and 

intensity of the b and 2LA Raman bands and calculating the on-resonance electrons and 

phonons that participate in the scattering process, it was shown that the b band could be 

associated with a combination of phonons from the LA and TA phonon branches around the K 

point due to a double-resonance electron-electron intervalley scattering process, i.e. 
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LA+TA(~K). This process is analogous to the D+D’’ band in graphene (see Appendix B), 

where two different phonons with the same wavevector participate in the electron scattering 

process. 

 For the 2LA band, the authors deconvoluted this broad and asymmetric band by a set of 

Lorentzian peaks and showed that it is composed of at least three components that can be 

assigned as two double resonance bands and one second-order band (see Figure 3.6(b)). The 

two double resonance features are associated with the electron scattering by two LA phonons 

at the proximities of the K and M points, which were assigned as 2LA(~K) and 2LA(~M) 

located around 460 cm-1 and 470 cm-1, respectively. The second-order band is located at 452 

cm-1 related to a singularity in the phonon density of states present due to a saddle point in the 

LA phonon branch between the K and M points. The above assignment was proposed due to 

the analysis of the observed difference in intensity band from bulk to monolayer, where the 

2LA(~M) phonon has a higher contribution in the few-layers and bulk samples than in a 

monolayer sample since this process is mediated by the indirect bandgap [49,56]. 

 The wavenumber of 2LA(~K) and 2LA(~M) decreases as the laser energy increases, 

this negative dispersive behavior is contrary to the observed for the 2D band of graphene but 

resembles the behavior of the D+D” band. The negative dispersion is a result of the wavevectors 

that are accessed by the excited electron as it is scattered from K to K’. The frequency of the 

LA branch decreases for wavevectors further from the K or M points (Figure 2.8), which will 

both contribute to the double resonance bands, hence resulting in a negative dispersion. To this 

date, the dispersive behavior in TMDs has only been reported for semiconducting MoS2 [53]. 

 Some works have reported the study of the Raman spectrum of MoS2 in the UV range 

to gain further information about other high-order resonance processes. Sun et al. observed that 

the Raman spectrum of MoS2 in bulk, mono-, bi- and tri-layer samples, collected with an 

excitation energy of 3.81 eV (see Figure 3.7(a)), present three strong bands in the 750 to 840 

cm-1 spectral range, which were associated to combinations of E2g and A1g modes [74]. It was 

proposed that these bands are originated by a triple-resonant hole-hole Raman scattering 

process, where the hole would be scattered from the bottom of the spin-orbit split at the valence 

band to the top valence band and later recombines with the electron (see Figure 3.7(b)). Liu et 

al. have observed the presence of several new peaks between 560-820 cm-1 spectral range in 

the Raman spectrum of monolayer MoS2 collected with a 3.50 eV laser energy [168] (see Figure 

3.7(c)). The observed bands were related to intervalley scatterings between points at halfway 

from Γ to K, where the absorption of this laser energy is strongest according to the theoretical 

calculations reported (see inset of Figure 3.7(c) and Figure 3.7(d)). The observed phonons were 
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associated with their correct wavevectors in the phonon dispersion (see Figure 3.7(e)) [168]. A 

similar study has also been done recently for WS2 [189]. 

 Guo et al. investigated the Raman spectra of MoTe2 using three laser lines of energy 

1.58, 1.96 and 2.33 eV [169] (see Figure 3.7(f)). A set of new Raman bands were observed and 

associated with intervalley scattering between the proximities of M point (see Figure 3.7(g)). 

The contribution of each laser energy to the observed bands was calculated, and connected to 

their correct wavevectors (see Figure 3.7(h)). Although these works are promising, they are still 

 

Figure 3.7. Double-resonance Raman bands above the excitonic transitions. (a) Raman spectrum of monolayer, 

bilayer, trilayer and bulk MoS2 collected with a UV laser of 3.81 eV and (b) Proposed triple-resonance process. 

(c) Raman spectrum of monolayer MoS2 collected with a UV laser of 3.50 eV. The inset shows the calculated 

absorption probability for this laser energy. (d) Proposed scattering process near the Γ point responsible for the 

observed Raman bands in (c). (e) Complete phonon dispersion of MoS2 with the different contributions of the 

double-resonance bands in (c) and (d) ascribed to their respective points in the Brillouin zone. (f) Raman spectra 

of monolayer MoTe2 collected with three different laser energies. (g) Proposed electron scattering near the M

points for a laser energy of 1.96 eV. (h) Phonon dispersion of MoTe2 with observed contributions to the Raman 

spectra from the three laser energies ascribed to their respective points in the Brillouin zone. Adapted from 

ref. [176]. 
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in infancy since further probe by tuning the excitation laser energy and the number of layers 

(that helps to unveil the Raman scattering process) need to the performed for the 2D family.   

 Most of the works in the literature investigate the Raman spectrum of TMDs by tuning 

the excitation laser energy to probe the resonance effects. However, a closer inspection at the 

Raman intensity equations (see Equations 3.2 and 3.3) can provide more insightful thoughts 

regarding the Raman scattering process. The intensity can be tuned not only by changing the 

excitation laser energy but also by changes in the excitonic transition energy itself. Such 

changes in the excitonic transition energy can be achieved, for example, by in-situ variation of 

the sample’s temperature or pressure. For instance, tuning the exciton energy for bulk MoS2, 

either by temperature or pressure changes, affects the double resonance processes just as if the 

excitation laser energy is being tuned [165].  

 Recent works on monolayer MoS2 have shown that under temperature variation the 

frequency position of the double resonance LA+TA(~K)  band (i.e. the b band), shifts by a rate 

of (Δω/ΔT)b = -0.035 cm-1/K, while the first-order A’
1 mode shifts (Δω/ΔT)A’1 = -0.008 cm-

1/K [172]. This represents a dispersive rate ratio of around 4.4 times between the double 

resonance and first-order bands, which is a good indicator of changes in the excitonic effects 

leading to the strongly dispersive behavior of the b band. 

 We end this section reminding that the strong enhancement of the double resonance 

Raman bands in MoS2-like TMDs comes from resonance with the excitonic transitions. 

Therefore, out of resonance, the Raman bands should show little intensity, and would barely be 

observable, which is the case shown in Figure 3.6(a), where we compare the spectra of 

monolayer MoS2 at a laser far from resonance (2.41 eV) and a laser very close to resonance 

with the A exciton (1.96 eV). These are important considerations since in the next section we 

will discuss defects in 2D systems, and resonance with the electronic levels of the material is 

fundamental to measure the contributions of defect induced bands to the Raman spectra. 

3.3.2 Defective 2D material production 

 Controlling defects in materials is of utmost importance for the development of 

technology due to its role on tuning the doping concentration or carrier types, reducing contact 

resistance in electronic devices, and improving the responsivity, speed and operation 

wavelength of photodetectors in novel optoelectronic devices, such as photodetectors and 

LEDs [174]. Therefore, a quantitative way to control the density of defects in 2D materials is a 

key ingredient for the development of 2D materials technology. In this aspect, Raman 
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spectroscopy is a simple and non-destructive tool that allows the characterization and 

quantification of defects in 2D materials. 

 Defects can be generated either during (in-situ defects) or after (ex-situ defects) the 

synthesis process [173], where the latter is extended to exfoliated samples. Several kinds of in-

situ defects can be generated such as vacancies of chalcogens and metals (usually accompanied 

by their bonds) in TMDs, anti-sites, grain boundaries, edges and line defects [195]. These in-

situ defects are not controllable. However, ex-situ defects can be created in a controllable way 

due to the improvement of defect engineering in 2D materials. For example, electron beam 

irradiation [196,197] and ion (Mn+ and Ar+) bombardment [103,177] have been used to create 

chalcogen vacancies in TMDs, where the distance among vacancies can be controlled by the 

beam dosage. The same approach can also be used to create MoS2 nanocrystallites [198]. 

Additionally, the introduction of vacancies by electron irradiation can be followed by 

doping [199]. Indeed, oxygen substitution of chalcogenides may occur in normal ambient 

conditions despite the slow rate of the reaction and difficulties to be controlled [200]. However, 

oxygen passivation of chalcogen vacancies using laser annealing has been performed in WSe2 

as an alternative, improving its conductivity and photoconductivity [200]. Besides, doping by 

potassium [201] was achieved before theoretical studies for alkali metals (Li, K, and Cs) doping 

in TMDs [202] while lithium doping has been recently done [203]. This brief defect production 

discussion highlights the importance of probing defects in 2D materials and how the presence 

of defects impacts the Raman spectra of TMDs. 

 Before we dive into the analysis of the defect induced processes in TMDs, we define a 

way to quantify the number of defects in the sample, since the Raman spectrum is affected by 

the number of defects present in the sample. We can use the defect density related to the fluence 

of ions into the samples (in order of 1011 to 1014) [204], but most works in the literature quantify 

the amounts of defects by the average defect distance, ᵀ�ᵀ� = 1
√ᵪ�

 where ᵪ� is the defect 

density [130,156,159,177,205–207].  

3.3.3 Defect-induced Raman processes in TMDs 

 The presence of defects can impact the Raman spectrum of TMDs, but the observed 

impact in TMDs is far less sensitive than those observed for graphene (appendix B). For 

graphene, the D band can be directly observed in the Raman spectrum with LD up to 25 

nm [156,206]. Graphene is always in resonance on the NIR and the visible range, thus, most of 

the double resonance processes involving defects are fairly strong, in special when LD is low 

enough that we can expect a big enhancement of the defect induced bands. For semiconducting 
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TMDs, unless the sample is resonantly excited [53,170] across the excitonic transitions, the 

disorder-induced bands can be barely observed. These bands are associated with the acoustic 

branches and can only be observed when a small LD is reached, meaning a high defect 

density [170,177,198].  

 As the size of the analyzed crystal decreases, the selection rule for zone center phonons 

can be dropped. Therefore, a new domain size where LD needs to be taken into account must be 

considered for confinement effects. The uncertainty principle states that the momentum 

uncertainty of the electron will be proportional to (LD)-1, which will involve phonons away from 

the Γ point. As a result, the shape of the Raman bands changes from a regular Lorentzian, 

related to a forced damped harmonic oscillator, to a broader and asymmetric shape. This new 

shape can be described by a weighted sum over all the phonons in the Brillouin zone within a 

Gaussian distribution related to the mean defect distance [177,198] 
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 (3.4). 

 The ᵪ� parameter is a constant that relates the mean defect distance to the phonon 

confinement length by defects or microcrystalline size, ᵪ�ᵀ�ℎ(ᵅ�) is the phonon branch frequency 

and ᵪ� is a broadening factor that increases as the defect mean distance decreases. This model 

can be used to describe the disorder in several systems other than TMDs, as it has already been 

used for graphene and graphite [204,205], silicon [208,209] and GaAs [210].  

 The first-order bands are also affected by increasing the disorder density. The effects 

observed are frequency shifts and an increased broadening in contrast to pristine samples. 

Figure 3.8(a) shows the non-resonant Raman spectrum of semiconducting MoS2 monolayers 

with different LD. We can clearly observe how the first order E’ and A1
’ modes are altered. A 

new peak associated with the defect induced LA-mode is also observed [163,164]. This defect 

induced peak is located at around 230 cm-1, half the frequency of the 2LA band [163,164].  

 The shift and increased broadening observed in the Raman spectrum of MoS2 are related 

to a smaller phonon correlation length LC, which is a measure of the phonon confinement by 

defects or microcrystallite size, and it is proportional to the LD parameter. 

 In order to relate LD with the intensity ratio between the LA band and the first-order E’ 

band, it was used a formula based on the works done on defective graphene [177] (see Appendix 

B): 
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 Where ᵀ��ᵀ�′� is a fitting parameter equal to 1.11±0.08 nm2. Similar to graphene, the intensity 

ratio of the disorder-induced LA band and the first-order modes A1’ and E’, i.e. ᵀ�(ᵀ�ᵀ�)
ᵀ��ᵀ�′�

 and ᵀ�(ᵀ�ᵀ�)
ᵀ��ᵀ�1

′�
, 

can provide a way to quantify the amounts of defects (see Figure 3.8(b)) [177]. This has also 

been observed by Li-doped MoS2 monolayer samples, where the LA band is rapidly intensified 

for increasing lithium exposure time [203]. 

 One important remark is that the disorder-induced LA band is composed of at least three 

components: LA(~K), LA(~M) and a band associated with a singularity from the phonon 

density of states (Figure 3.8(c)). The peak position of these Raman bands presents half the 

frequency of the bands composing the 2LA band. Therefore, the LA(~K) and LA(~M) modes 

 

Figure 3.8. Phonon-defect Raman spectrum of monolayer MoS2. (a) Raman spectrum of monolayer MoS2 for 

different values of ᵀ�ᵀ� collected with a 2.41 eV laser. (b) Intensity ratio between the LA band and the A’ and E’

bands as a function of ᵀ�ᵀ�. The observed line is a fit with a curve proportional to (ᵀ�ᵀ�)−2. Deconvolution of the 

defective LA band in monolayer MoS2. (d) Frequencies of the LA band components in (c) as a function of the 

laser energy. Adapted from ref. [176].  
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also present a dispersive behavior with the excitation laser energy, following a similar trend as 

the dispersive two-phonon features composing the 2LA band [53]. The observation of these 

three components in the defect induced LA band, and the fact that these components present 

half of the calculated dispersion of the 2LA(~K) and 2LA(~M) bands, further strengthens the 

intervalley double resonance scattering model claim proposed in ref. [53] for semiconducting 

MoS2 (see Figure 3.8(d)). 

 To the best of our knowledge, such a detailed analysis of the double resonance process 

in defective TMDs sample was only explored for the MoS2. Recently, however, it was reported 

the presence of two new bands in the tip-enhanced Raman spectrum of a defective WS2 sample, 

called D and D’ [211]. The appearance of these new bands was related to an increased number 

of sulfur vacancies, and the D band was associated with the A1’ phonon branch. The D’ band 

was associated with the infrared active A2” [211]. This study, however, was a single laser line 

study of the Raman spectrum of WS2, and the only one so far about this material where defect 

induced bands appear. 

 There are a few other works that have measured the contribution of the defect induced 

bands in the Raman spectrum of semiconducting TMDs [170,177,198]. These works reported 

changes to the observed spectra related to different wavevectors accessed by the high density 

of defects present the samples. More importantly, they have observed mainly changes around 

the first-order modes, which means that the main contributions are related to optical phonons. 

 In this chapter, we have discussed the double resonance Raman bands in 2D materials. 

We have focused on the state-of-art among the 2D materials, semiconducting MoS2. We have 

explained the most pronounced bands that arise from the electron-electron, electron-hole and 

hole-hole Intra and Intervalley scattering process. These scattering processes allow phonons at 

the Brillouin zone edge to participate in the scattering where the momentum conservation is 

preserved by a two-phonons or phonon-defect processes. Such processes allow the observation 

of the D, D’, D+D”, 2D and 2D’ Raman bands of graphene mediated by phonons at the vicinity 

of the K and Γ points (appendix B). Whereas the electron-electron intervalley scattering allows 

the observation of the LA, b and 2LA Raman bands in MoS2 mediated by phonons near the K 

and M Brillouin zone edge points.  

 There are other few works on the study of the double resonance Raman bands in other 

TMDs providing insights on the scattering process. However, up to this date, the detailed 

analysis of the double resonance Raman process has been described only for the 

semiconducting MoS2. The latter has shown that a more in-depth resonant Raman study for the 

other materials is still needed to properly observe the possible double resonance contributions 
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in the Raman spectrum of the other TMDs. In particular, the study of other classes of TMDs is 

lacking, especially those with high anisotropic optical properties such as ReS2 and 

ReSe2 [212,213]. It could be very interesting to observe the possible behavior of double 

resonance bands of these materials, even though their optical transitions are very far from the 

most common lasers used in the collection of the Raman spectrum at 1.3 to 1.5 eV [212,213].  

 A recent study of bulk black phosphorous has observed the presence of several small 

intensity bands that were ascribed to two-phonon bands [214]. The intensity of these bands 

reaches a maximum close to a laser excitation energy of 2.4 eV, indicating the presence of an 

electronic transition [214]. It remains to be seen whether the same effect will be visible in a 

single layer, or even few-layers samples. One study has observed the presence of new bands in 

defective mono and few-layers of black phosphorus which were assigned to phonon-defect 

intravalley processes [215]. Although, in comparison with graphene, more works should be 

done in order to asses some other possible effects that could be present. 

 The emerging of new 2D materials shows that the field on double-resonant Raman 

process is still in progress and more work needs to be done for a deeper understanding of the 

underlying physics of the double resonance process in other materials. The double resonance 

Raman mechanism provides important information for the understanding of the photo-physics 

of 2D materials, the quantification of defects and to describe the inter- and intra-valley 

scattering of electrons essential for the development of the spintronics and valleytronics. 

 In chapter 5, we deal with the double resonance processes in TMDs changing both the 

laser and temperature, where the resonance with the excitonic transition is tuned in order to 

observe a similar phenomenon as the laser tuning. We also observe how the excitonic transition 

affects the double resonance processes and how the defect induced bands in TMDs are severely 

affected by temperature. 



 

 

4. Sample production methods and experimental 
setup for spectroscopic measurements 

 In this chapter, we present the experimental methods for the development of this thesis 

including the sample preparation methods and details about the optical measurements. We 

begin with a brief explanation of the micromechanical exfoliation and chemical vapor 

deposition processes and move to describe the experimental setups used for the resonant Raman 

and photoluminescence experiments. We finish this chapter with the optical characterization of 

the samples investigated in this work. 

4.1 Production of TMDs via micromechanical exfoliation and chemical 

vapor deposition 

 Samples used in the experiments carried in our work were produced by two different 

methods, micromechanical exfoliation and chemical vapor deposition (CVD). From the two 

possible sample fabrication processes, we start with micromechanical exfoliation since it 

provides the samples with the best quality possible, and there is the possibility of observing 

samples with more than one layer. The disadvantage of micromechanical exfoliation is the size 

of the samples obtained by this method, which are generally no bigger than a few tens of 

micrometers. 

 Starting from a bulk crystal, an adhesive tape is used to remove a thinner piece from the 

crystal, which is still much thicker than a single layer from the TMDs and can be considered a 

bulk crystal. The thin crystal stays in the adhesive tape due to the weak van der Waals binding 

energy between the layers composing the crystal. Afterward, the piece of the crystal in the 

adhesive tape is subjected to several cycles like the one presented in Figure 4.1(a), where the 

tape is used continuously glued to the thin crystal to further exfoliate the layers. After some 

cycles, some few-layers can be isolated from the thin crystal, such as it is represented in Figure 

4.1(b). The few-layers are glued to a suitable substrate, like silicon with a 300 nm silicon oxide 

layer, which is presented in Figure 4.1(c). After the tape is removed from the substrate, a single 

layer can be isolated and the sample is ready for optical characterization and applications. 

Figure 4.1(d) presents an exfoliated sample of WS2, where we see that a small portion of the 

exfoliated sample is actually the monolayer, while the biggest portion of the exfoliated sample 

is a multilayer crystal that behaves similarly to a bulk crystal. Samples produced via this method 

present properties compared to pristine bulk crystals, since they come directly from a bulk 

crystal. However, the samples are small for large scale applications, about tens of micrometers, 
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since the interaction between TMDs and substrates like silicon with silicon oxide is not as 

strong as it is for graphene, for instance [216]. Going to other substrates like gold can improve 

the size of the exfoliated monolayers greatly though [217,218], but the method is not as easily 

available as the adhesive tapes generally used. 

 The CVD method, on the other hand, can produce monolayers of an average size above 

50 µm, but the crystals produced are not of as good quality as the ones obtained via 

micromechanical exfoliation. There are several methods for the CVD growth of TMDs [220–

226], but they are generally based on the same process, where a transition metal precursor is 

reacted with a chalcogen precursor in the surface of a substrate to produce atomically thin 

TMDs.  

 We illustrate in Figure 4.2 the processes used for the sample growth procedures in this 

work. First, the transition metal source is placed in a substrate, either in a powder form, 

molybdenum (MoO) or tungsten oxides (WO), or as a small drop of a solution made with a 

water-soluble precursor, ammonium Heptamolybdate (AHM) or ammonium Metatungstate 

(AMT), such as it is shown in Figure 4.2(a). The solution-based method also involves an 

additional step where the substrate is first covered in a growth promoter solution of a sodium-

based surfactant such as sodium cholate (SC) or sodium dodecyl sulfate. The substrate is loaded 

 

Figure 4.1. Micromechanical exfoliation from a bulk crystal. (a) A thin crystal is placed in adhesive tape, and the 

tape is continuously glued on top of the crystal in order to exfoliate the thin further, until a single layer from the 

crystal is isolated, like it is shown in (b). (c) The isolated crystal in (b) is transferred to the silicon substrate with 

a 300 nm thick SiO2 layer and we are left with a single layer on top of the Si/SiO2 substrate. (d) Representative 

exfoliated sample of WS2, where the dotted square is a monolayer, while the yellow crystal would be a multi-layer 

sample, comparable to a bulk crystal. (d) is adapted from ref. [219]. 
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in an alumina boat, which is placed in the center of a quartz tube with approximately 2 cm of 

diameter, which is loaded in a furnace, such that the alumina boat is centered in the furnace hot 

zone. At this stage, the chalcogen precursor is placed near the edge of the quartz tube, which is 

sealed from both sides in order to be purged with an inert gas such as argon or nitrogen. Finally, 

both the substrate and the chalcogen precursor are heated, in order to allow the reaction between 

the transition metal and the chalcogen, which is transported via the gas flow, which is illustrated 

in Figure 4.2(b). The temperatures reached by the substrate and the chalcogen vary according 

to each case, as we will discuss further on. In the end, triangles of the TMDs are grown with 

random orientations as it is illustrated in Figure 4.2(c), and the lateral sizes of the triangles 

depend on a diversity of parameters that are beyond the scope of this work. Figure 4.2(d) shows 

triangles of WS2 grown by a CVD method, where the lateral size of the sample is about ten 

times bigger than the lateral size of the monolayer sample obtained by micromechanical 

exfoliation Figure 4.1(d). 

Figure 4.2. CVD growth methods used in this work. (a) The silicon with a 300 nm silicon oxide layer can be 

covered with SC, and then a small amount of an AHM or AMT solution may be dropped on it, or a solid precursor 

can be placed onto the substrate directly. (b) Following the substrate preparations, the substrate is loaded into a 

quartz tube, which is placed in a furnace such that the substrate is located in the hot zone of the furnace. The 

chalcogen precursor is placed at the edge of the quartz tube, and it is transported toward the substrate as it 

sublimates during heating. (c) After the heating phase, the triangles are formed in the substrate with different sizes 

and orientations. (d) Representative image of a CVD growth of WS2 monolayers. (d) is adapted from ref. [227]. 
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 The CVD method allows us to obtain grains, or flakes, much bigger than the ones we 

would be able to obtain via micromechanical exfoliation. Recent works have even made it 

possible to cover whole silicon wafers 2.5 to 10 cm in diameter [228–230]. 

4.2 Spectroscopic setup 

 In order to measure the Raman and photoluminescence spectrum of our samples, we 

need to use a spectrometer since the Raman, PL and elastic scattering signals are all mixed, as 

it is illustrated in Figure 4.3(a). The spectrometer will divide the signal coming from the sample 

due to the elastic scattering of the laser used, from the PL emission and Raman scattering. We 

used either a Horiba T64000 or a LabRAM HR spectrometers, where the T64000 spectrometer 

can be set up to work in either single grating or triple grating configurations. We briefly explain 

the mechanism behind the spectrometer operation. 

Figure 4.3. The functioning mechanism for a spectrometer. (a) The light emission coming from a sample 

illuminated with a high energy laser will generate three signals, mostly, the elastic and Raman scatterings and the 

PL emission from the sample. The signals are mixed and need to be separated in order to be analyzed. (b) Single 

grating configuration, where the light coming from the sample is filtered with either an edge filter or a notch filter 

to remove the elastic scattering of light, and it is directed to the diffraction grating. (c) Triple grating configuration, 

which is used in the case where the laser line cannot be filtered with an edge or notch filter. 
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 In the single grating configuration, illustrated in Figure 4.3(b) the light goes from the 

sample directly to the grating before the CCD, called the spectrograph. The signal that reaches 

the CCD detector in this configuration is stronger than in a triple grating configuration but edge 

filters are necessary to reduce the excitation laser due to the reflection and elastically 

backscattered light from the sample, much stronger effects than the signal emitted by the 

sample. Therefore, the single grating configuration limits the use of any laser available to only 

those that have appropriate edge filters. There is also the commitment to the low-frequency 

range of measurements since the edge filter will also filter a small range of wavelengths bigger 

than the excitation wavelength. The anti-stokes range is also affected since it is not possible to 

cut only the laser line with edge filters. An alternative to edge filters would be the super notch 

filters, which can cut only the laser wavelength and work at up to a 5 cm-1 frequency range, 

which was used in the LabRAM HR spectrometer for a He-Ne laser. But it is a very expensive 

filter not available for every laser. 

 In order to filter the light near the excitation laser for any laser that does not have an 

edge filter, the most reliable way is to use a triple grating setup, illustrated in Figure 4.3(c). In 

this case, the two gratings are used to separate the light coming from the sample, which is 

filtered spacially via slits present in the spectrometer, in such a way that the excitation laser is 

filtered by these gratings. In a triple grating configuration, we can use any available laser 

without any compromises to the low-frequency range or anti-Stokes scattering. The intensity 

will be affected though, which will increase the time required to measure the Raman spectrum. 

Thus, we use the available edge filters when convenient, especially with the Ar-Kr laser, and 

in case it is not possible, such as the tunable lasers, we use a triple grating configuration. 

 The type of gratings used for each experiment also varies from case to case. In order to 

measure the Raman spectrum, we want the best possible resolution. The resolution of a 

spectrometer, ᵪ�ᵪ�, can be defined in terms of the following equation 

 ᵪ�ᵪ� = ᵀ� × ᵀ�
ᵀ�

 (4.1), 

Where ᵀ� is the pixel size in the detector which is about 26 µm, ᵀ� is the distance between two 

consecutive grooves and ᵀ� is the focal length of the spectrometer. Since the entrance slits of the 

T64000 and LabRAM HR spectrometers are the same, about 100 µm, the only difference 

between them will be the focal distance and the gratings used in each one. The T64000 

spectrometer has a 64 cm focal length, while the LabRAM HR spectrometer has an 80 cm focal 

length. A bigger focal length will increase the distance that light travels in order to reach the 
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CCD, increasing the line separation due to diffraction. Thus, the LabRAM HR spectrometer 

provides a better resolution than the T64000 spectrometer for the same grating. The gratings 

used in our work have a groove density of 600 gr/mm and 1800 gr/mm, translating to about a 

0.07 and 0.02 nm resolution, respectively, for the T64000 spectrometer. The resolution is 

slightly better for the LabRAM HR spectrometer since the focal length is also bigger. These 

resolutions in the wavelength domain can be translated to a resolution of about 2.8 cm-1 and 0.8 

cm-1 for a laser wavelength of 500 nm in the frequency domain for the 600 and 1800 gratings, 

respectively. The advantage of using 600 gr/mm grating is the spectral range covered by the 

grating compared to the 1800 gr/mm grating, which should be about 3 times bigger. Therefore, 

for experiments where a high spectral coverage is needed while the spectral resolution is not a 

priority, such as PL measurements, the 600 grooves/mm is a better choice than the 1800 

grooves/mm. On the other hand, if a high spectral resolution is necessary, such as Raman 

spectroscopy, the 1800 grooves/mm grating is the obvious choice. Therefore, except where we 

explicitly indicate, the PL measurements were carried with the 600 grooves/mm grating while 

Raman experiments were carried with the 1800 grooves/mm. 

Table 4.1. Laser sources with the models in parenthesis and the respective wavelengths used. 

We also convert the laser wavelengths into energy, which we use in the following chapters. 

Laser source Wavelength (nm) Energy (eV) 

Ar-Kr 

(Coherent Innova 70C) 

647.1 1.92 

568.2 2.18 

530.9 2.34 

514.5 2.41 

488 2.54 

457.9 2.71 

He-Ne 

(REO) 
632.8 1.96 

He-Cd 

(Kimmon IK5751I-G) 
441.2 2.81 

Coherent 899 ring Dye laser 
(DCM) 

640 - 628 1.94 - 1.97 

Coherent 899 ring Dye laser 
(Rhodamine 6G) 

610 - 562 2.03 - 2.21 

Ti-Sapphire 

(Spectra-Physics model 3900S) 
747 1.66 
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 The laser energies that were used in this work vary from 1.66 eV to 2.81 eV, 

corresponding to wavelengths of 747 to 441.6 nm. Thus, we use several laser sources listed in 

table 4.1. The Coherent Innova 70C Ar-Kr laser provides a wide range of laser energies from 

1.92 to 2.73 eV. The REO He-Ne laser provides a 632.8 nm laser line. The Kimmon IK5751I-

G He-Cd provides the 441.6 and 325 nm laser lines. We also use a Coherent 899 ring dye laser 

optically pumped with a Coherent Verdi V6 laser emitting at 532 nm with 6 W, that can be 

combined with solutions based in the DCM and Rhodamine 6G dyes to provides a continuum 

selection of lasers ranging from 650 to 560 nm, which depends on the dye solution used. A 

Spectra-Physics model 3900S Ti-Sapphire laser pumped by a Verdi G with 10 W is also used 

for an IR emission. 

 In order to change the sample temperature, we used a Linkam THMS600, which uses 

liquid nitrogen as a cooling source. The samples were placed on top of a silver ceramic holder, 

which is cooled by the liquid nitrogen flow due to a pump, cooling the sample on top. In order 

to remove the humidity around the sample, the sample container is purged using nitrogen that 

comes from the liquid nitrogen pump, in such a way that the sample is under a nitrogen 

atmosphere during the low-temperature measurements. 

 For the intensity calibration of the Raman spectrum of the samples, we use two possible 

procedures. The first procedure used for MoS2 is to normalize the intensity of the Raman spectra 

obtained at different laser energies and temperatures with the intensity of the E’ or the E2g band. 

This procedure is validated since we are only concerned with laser energies close to the energy 

of the A and B excitonic transitions, that only couple with the A1’ band and show no intensity 

enhancement for the E’ band in MoS2, as we discussed in section 3.2. The second procedure, 

that we use for the other samples, is to normalize the spectra by the intensity of the silicon peak 

at 521 cm-1. The intensity of this mode was previously studied under the illumination of several 

laser energies in the range between 1.58 and 2.81 eV, and it was found that its intensity increases 

at a rate different from the expected ω4 [231]. In fact, the intensity of the first-order silicon peak 

increases following the increasing value of the dielectric constant, which has a peak at 3.4 eV 

according to the values presented in ref. [232], but it was found at slightly smaller energy, at 

3.35 eV, in ref. [231]. Nonetheless, the absolute cross-section of the first-order Raman peak of 

silicon was measured in this range. It can be used as a standard for calibration by normalizing 

the spectra acquired by the intensity of the silicon Raman peak, followed by the multiplication 

of the intensity by the absolute Raman cross-section obtained by ref. [231]. 
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4.3 Optical characterization of the samples 

 The samples used in this work were first characterized by optical images, PL and Raman 

spectroscopy, which are usual techniques for the optical characterization of monolayers of 

TMDs. We present a brief characterization section of the samples used in this work. 

4.3.1 Micromechanical exfoliation of MoS2 

 For the sample obtained via micromechanical exfoliation, we proceded with the optical 

characterizations via Raman and PL spectroscopies. The samples of exfoliated MoS2, 

monolayer, few-layers and bulk were provided in collaboration with the Laboratory of 

Nanomaterials and were produced by the student Andreij Gadelha. 

 Our monolayer samples were prepared via mechanical exfoliation from bulk MoS2 

crystals and transferred to silicon substrates with a 285 nm oxide layer. The monolayer is 

confirmed due to the separation of 19 cm-1 between the A1’ and E’ Raman bands located at 406 

and 387 cm-1, in contrast to the separation of 22 cm-1 observed in bilayers, where the A1’ and 

E’ bands are located at 408 and 385 cm-1, observed in Figure 4.4(a). The strong PL signal, 

observed in Figure 4.4(b), also confirms the monolayer attribution. An optical image of the 

exfoliated monolayer can be observed in the inset of Figure 4.4(b), where the position of our 

measurements is marked by the black dot. 

380 400 420 1.8 1.9 2.0 2.1 2.2

2L

1L

In
te

n
si

ty

Wavenumber (cm-1)

(a)

19 cm-1

22 cm-1

XB

2L

Energy (eV)

(b)
1L

XA

 

Figure 4.4. (a) Raman spectrum of the monolayer MoS2 measured in this work (1L) in comparison with the 

spectrum of a bilayer MoS2 (2L) obtained with a 2.41 eV laser. (b) PL spectrum obtained with a 2.41 eV laser and 

optical image (inset) of the exfoliated monolayer (1L) and bilayer (2L) samples. Both measurements were carried  

at room temperature and standard laboratory conditions. 
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 Our few-layers and bulk samples were exfoliated from bulk crystals of MoS2 to flakes 

approximately 50 nm high in adhesive tape and transferred to silicon substrates with 285 nm 

oxide layers. 

4.3.2 CVD grown MoS2 samples by the sodium cholate assisted method 

 The CVD grown MoS2 monolayers of MoS2 used in this work were produced during 

my sandwich internship period in the Pennsylvania University in collaboration with the 

Terrones Group.  

 The CVD growth procedure for our MoS2 samples consists of spin-coating the substrate 

(1 cm x 1 cm silicon with 300 nm oxide layer) with a 2% wt sodium cholate solution at 

approximately 3000 RPMs. Following, 3 µL of a 60 µM solution of ammonium 

Heptamolybdate is dropped at the corner of the substrate. The substrate is put in the middle of 

a quartz tube with a boat containing approximately 300 mg of sulfur at the edge. The tube is 

then placed in a furnace and a sealed to permit argon flow through the tube for approximately 

15 minutes. Afterward, the furnace is set to heat to 800 °C, for approximately 30 minutes, 

heating the substrate, while the boat containing sulfur is set to reach 220 °C. Following the 30 

minutes, the furnace is set to cool down to room temperature. We end up with MoS2 flakes 

varying in diameter between 10 to 60 µm, as presented in Figure 4.5(a). 

 Figure 4.5(a) presents the PL measured of one of the flakes grown with the method 

above. A sharp and strong peak centered around 1.82 eV can be observed. Figure 4.5(b) presents 
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Figure 4.5. (a) PL measurement of one of the grown CVD MoS2 flakes. The inset is an optical image of the sample

in the same Si/SiO2 substrate used for growth. (b) Raman spectrum of the monolayer measured in (a). The inset is 

the signal from the LA band. Both measurements were carried under a 2.41 eV laser illumination. 
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the Raman spectra of the monolayer sample measured in Figure 4.5(a) collected with a laser 

excitation energy of 2.41 eV. We observe two strong peaks centered around 386 and 406 cm-1,  

corresponding to the E’ and A1’ bands of a monolayer. We also observe a small LA band around 

230 cm-1. We can extract the approximate value of ᵀ�ᵀ� using the relation [177] 

 

ᵀ�ᵀ� = �ᵀ��ᵀ�′�
ᵀ��ᵀ�′�
ᵀ�(ᵀ�ᵀ�)

 (4.2) 

Where ᵀ��ᵀ�′� and ᵀ�(ᵀ�ᵀ�) correspond to the intensities of the E’ and LA bands, respectively, and 

ᵀ��ᵀ�′� = 1.11 ± 0.08 ᵅ�ᵅ�2 is a fitting parameter obtained in reference [177] for the 2.33 eV laser 

at room temperature. Using equation 4.2, and the intensity ratio of approximately 60, we arrive 

at ᵀ�ᵀ� = 8.6 ± 0.6 ᵅ�ᵅ�, which is a small value considering the results from Figure 3.8(a) [177], 

where a sample with ᵀ�ᵀ� = 7 ᵅ�ᵅ� is very similar to a pristine sample, considering the measured 

Raman spectrum in both cases. 

4.3.3 CVD grown WS2 and MoSe2 samples 

 The CVD grown WS2 and MoSe2 samples were provided in collaboration with the 

Terrones group from the Pennsylvania University and were produced by the former student 

Bruno Ricardo Carvalho. 

 Triangular monolayers of WS2 were grown by chemical vapor deposition (CVD) at 

atmospheric pressure at 700 °C on a Si substrate with a 300 nm oxide layer. 10 mg of WO3 

(Alfa Aesar, 99.998%) was placed directly onto a SiO2 substrate, and another substrate was 

placed directly on top of the first one and then placed inside of a quartz tube with 2 cm diameter. 

400 mg of sulfur (Alfa Aesar, 99.5%) was placed on an alumina boat at the edge of the quartz 

tube, where it was heated independently. The substrates at the center of the quartz tube were 

heated to 700 °C, while the sulfur boat was heated to 250 °C. The quartz tube was kept sealed 

and under argon flow at 200 standard cubic centimeters per minute (sccm) as a carrier gas. 

Monolayer WS2 samples grew on both the bottom and top substrates [233]. Monolayers MoSe2 

were also grown by CVD at atmospheric pressure at 750 °C using selenium pellets (99.9%, 

Sigma Aldrich) and molybdenum oxide (99%, Sigma Aldrich) powder placed into the same 

alumina boat. A constant flow of 50 sccm of a mixture of argon and hydrogen was used as the 

carrier gas and reducing atmosphere [234]. The as-grown WS2 flakes on a SiO2/Si substrate 

were transferred onto CVD grown monolayer MoSe2 on SiO2/Si substrate by 

polymethylmethacrylate-assisted wet transfer [235]. Then, the WS2/MoSe2 heterostructure 
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sample was annealed at 700 °C for 3h in an Ar atmosphere to enhance the interlayer 

coupling [236,237]. 

 Figure 4.6 shows the optical characterization of the individual WS2 and MoSe2 

monolayers at room temperature using a 2.71 eV laser. In Figure 4.6(a), we see the big MoSe2 

flake, purple-colored, with the WS2 flakes on top, in a light blue color. Figure 4.6(b) shows a 

region of the heterostructure where we can see a separate region for the single WS2 and MoSe2 

flakes, indicated by the arrows.  

 Figure 4.6(c) and (d) show the PL of WS2 and MoSe2, respectively. For WS2, we can 

clearly observe the excitonic transition corresponding to the A exciton (XA) at approximately 

2.00 eV, while for MoSe2, XA can be observed at 1.52 eV, which is in clear agreement with the 

values observed in the literature for these two materials grown under these experimental 

conditions [233,234].  

 Figure 4.6(e) and (f) show the Raman spectra of WS2 and MoSe2, respectively, where 

the first-order Raman bands can be observed. As we have discussed before in section 2.1, the 

frequency of the first-order out-of-plane A1’ band depends mostly on the inverse of the mass of 

the chalcogen atom composing the TMD, since the vibrational motion can be reduced to a 

spring-mass system connected to a wall. Therefore, the A1’ band frequency for WS2 is more 

energetic than for MoSe2. The first order E’ band depends on the mass of both transition metal 

and chalcogen, where we reduced the crystal motion to that of two masses connected by a 

spring, meaning that both the transition metal and chalcogen are significant for the frequency 
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Figure 4.6. Optical characterization of the WS2/MoSe2 heterostructure. Optical image taken with (a) a 10x 

objective and (b) a 100x objective. PL spectra of (c) WS2 and (d) MoSe2. Raman spectra of (e) WS2 and (f) MoSe2.
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of the E’ mode, proportional to the inverse of the reduced mass of the components. Therefore, 

the E’ mode for WS2 is still more energetic than the E’ mode for MoSe2. 

 



 

 

5. Temperature dependent Resonant Raman 
measurements in MoS2 

 In this chapter, we begin exploring the experimental results obtained in this work for 

monolayer, few-layers and bulk MoS2. We introduce the results obtained for MoS2, which has 

already been explored in many works and forms the basis for other similar 2D materials. First, 

we explore the double resonance process tuned by the laser energy and temperature in 

monolayer. We apply the same analysis to bulk, comparing the results for both monolayer and 

bulk MoS2. In the bulk section, we also explore the subject of the other Raman bands observed, 

focusing mainly on the dispersive bands. We finish by approaching the effects of defect induced 

Raman bands and how temperature is of the utmost importance for its observation.  

5.1 Monolayer MoS2 

 The Raman spectrum of TMDs can be strongly affected by temperature. In fact, since 

the temperature will affect the excitonic transitions present in these materials, the resonance 

conditions observed by a certain laser energy will shift when the temperature is changed. Thus, 

there can be a strong effect on the spectrum of TMDs due to the resonance window shifts 

because of temperature effects [165]. Here, we explore this subject in depth for monolayer 

MoS2.  

5.1.1 First-order, second-order and Double-resonance Raman bands 

 Figure 5.1(a) shows the Raman spectra of monolayer MoS2 at different temperatures 

and excited by a laser with an energy of 2.03 eV, in the spectral range between 350 and 485 

cm-1. At 93 K, the first-order modes A1’ and E’ appear at 408 and 388 cm-1, respectively, and 

they are indicated by arrows. The other bands observed in the range 420-480 cm-1, and the band 

at 380 cm-1 are originated from combinations of the longitudinal and transversal acoustic (LA 

and TA) phonons near the zone edges, as it will be explained afterward. 

 Figure 5.1(b) shows the Raman spectra of monolayer MoS2 at T = 80 K, but now using 

different laser excitation energies. The frequency of the first-order E’ and A1’ modes for 

monolayer samples do not depend on the laser energy. On the other hand, the position and shape 

of the other features in the range 420-480 cm-1 are strongly dependent on the laser excitation 

energy. The dependence of band wavenumbers on the laser excitation energy is a signature of 

a double-resonance (DR) Raman process, due to the selectivity of phonon wavevectors that 

satisfy the DR condition [53,160,185]. Besides, there are also second-order peaks in Figure 
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5.1(b) whose wavenumbers do not depend on the laser excitation energy. These peaks come 

from overtones of maxima in the phonon density of states (pDOS) and overlap with the double-

resonance bands, preventing a clear distinction when we use just one laser line. The analysis of 

the Raman features recorded with different laser excitation lines allows the distinction between 

the normal second-order and the double-resonance bands [53]. Figure 5.1(c) shows the 

spectrum at T = 80 K using the laser energy of 2.03 eV and Figure 5.1(d) shows the spectrum 

of the same sample at T = 298 K using the laser energy of 1.97 eV. Notice the shapes of the 

double-resonance bands are similar, despite the fact that they were obtained with different laser 

lines and at different temperatures. 
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Figure 5.1. (a) Raman spectra of MoS2 in the spectral range between 350 and 485 cm-1 at a laser energy of 2.03 

eV for various temperatures. (b) Raman spectra of MoS2 at a temperature of 80 K for various laser energies. (c) 

and (d) Similar Raman spectra obtained at two different laser energies and temperatures. 
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 Figure 5.1(c) and Figure 5.1(d) also present the fitting of the spectra by a sum of 

different curves. The two first-order A1’ and E’ bands can be fitted using Lorentzian functions 

since first-order bands involve a single phonon at the Brillouin zone center. For the other bands, 

the best fit was obtained by a sum of Gaussian curves, each one associated with a specific type 

of DR process, as it will be discussed at the end of this section. 

 We adopt the peak assignment for the second-order features proposed recently by 

Carvalho et al. [53] and summarized in Table 5.1, and the additional α band is further explored 

in section 5.2. The peak around ~420 cm-1 in Figure 5.1(c) and Figure 5.1(d) is called p1 and 

involves the combination of two phonons of the LA and TA branches, close to the K point. 

Thus, it corresponds to a LA+TA(~K) process [53]. The broad and asymmetric band in the 

range 440-480 cm-1, usually called the 2LA band in the literature, is, in fact, a multicomponent 

band with at least four features. The feature at ~456 cm-1 is called p2, and it corresponds to the 

overtone of the van Hove singularity in the phonon DOS appearing at 228 cm-1 due to a saddle 

point (SP) between the K and M points in the LA phonon branch. It is the most intense peak in 

the calculated pDOS shown in Figure 2.8(d). The two peaks in the range 455-470 cm-1 are 

called p3 and p4 and they involve two LA phonons around the K and M points, respectively, 

giving rise to the 2LA(~K) and 2LA(~M) DR-processes. The fifth feature, called p5, localized 

at approximately 472 cm-1, was not reported in ref. [53]. It was evidenced by the fitting of the 

low-temperature spectra in this work. It is a non-dispersive band and can be assigned to a 

secondary maximum in the phonon density of states due to a maximum in the LA phonon 

branch around the K or M points [186], as shown in Figure 2.8(d). 

 The results presented in Figure 5.1 show that the double-resonance Raman bands in 

monolayer MoS2 are strongly affected by temperature and laser energy and that we can tune 

Table 5.1. Name, position, assignment, and mechanism responsible for the observed bands in 

the Raman spectrum of monolayer MoS2. 

Name Position (cm-1) Assignment Process 

α 380 2TA(~K) Double Resonance 

p1 420 LA+TA(~K) Double Resonance 

p2 454 2 LA(SP) Second-order 

p3 460 2 LA(~K) Double Resonance 

p4 470 2 LA(~M) Double Resonance 

p5 472 2 LA(K) or  2 LA(M) Second-order 
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the resonance effect. Each feature will be studied in the next section as a function of temperature 

and also as a function of the laser energy. 

 First, consider the scattering of the excited electron from K to K’ for a laser energy a 

bit above the bandgap, just as it is illustrated in Figure 5.2(a). If a zoom is performed close to 

the scattering site (the red dot in Figure 5.2(a)), we can possibly observe the contribution of 

other phonons which can also obey the resonance condition, illustrated in Figure 5.2(b). These 

phonons are almost out of resonance, but they can still contribute to the scattering of the 

electron. Now, a simple geometry analysis reveals that the wavevector connecting the vicinities 

of K and K’ points is close to the wavevector connecting the vicinities of Γ and K, as Figure 

5.2(c) illustrates. Therefore, these are equivalent to phonons that connect Γ and K, which is 

greatly exaggerated in Figure 5.2(d). The first-order Raman band can be modeled as a 

Lorentzian lineshape because only a single phonon will participate in this process and the 

phonon participating has close to null momentum in the large wavelength approximation. This 

is a similar process to a photon emission or absorption from an atom. On the other hand, the 

 

Figure 5.2. (a) Intervalley scattering process that describes the double resonance bands, all the processes are out 

of scale for clarity. (b) Zoom at the point in (a). (c) Wavevectors connecting K and K’ and Γ and K. (d) 

Wavevectors of phonons connecting Γ and K through the LA phonon branch, which were greatly exaggerated for 

clarity. These can also connect Γ and K through the TA phonon branch as well. 
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second-order process involves a locus of phonons, which can be weighted by a gaussian 

contribution. Thus, this contribution can be used as a fitting lineshape. 

5.1.2 Temperature dependence of the first-order and double-resonance bands. 
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Figure 5.3. Monolayer MoS2. (a) Frequency of each band as a function of temperature for the 2.03 eV laser energy. 

The values represent the slope of the line used to fit the frequencies as a function of temperature. (b) Frequency 

of p1 to p5 as a function of the laser energy at 80 K, where the colors correspond to the colors used in (a). The 

dashed lines are guides to the eyes. (c) Frequency of p1 to p5 as a function of the laser energy at 300 K, where the 

colors correspond to the colors used in (a). The dashed lines are guides to the eye. The open symbols represent 

data from Carvalho et al. adjusted with four Lorentzian curves at 298 K [53]. 



64 

 Figure 5.3(a) shows the frequency of the Raman features as a function of temperature. 

The first-order A1’ and E’ modes are zone-center phonons and, therefore, the temperature 

dependence of their frequency is only due to the temperature dependence of the phonon energy. 

When the temperature is raised, phonon-phonon interactions play a major role, leading to a 

decrease in the phonon energy [238–240]. 

 Our results of -0.009 ± 0.001 cm-1/K for the slopes in the frequency versus temperature 

plots for the A1’ and E’ modes are close to the previous results in the literature [241,242] within 

the accuracy of our measurements. In those works, samples of suspended and supported MoS2 

were measured and similar slopes of the A1’ mode frequency versus temperature were 

obtained [241–243], between -0.012 and -0.016 cm-1/K. Notice that the accuracy  0.001 cm-1/K 

in the temperature range 80-300 K corresponds to a frequency uncertainty of 0.2 cm-1, which is 

below our spectrometer resolution. 

 The temperature dependence of the p2 and p5 bands is only due to the temperature effect 

on the phonon dispersion relations. The rate of change for the temperature dependence of the 

p2 and p5 frequencies are, respectively, -0.016 cm-1/K and -0.019 cm-1/K. These rates are about 

two times the rates of first-order bands, -0.009 cm-1/K as shown in Figure 5.3(a), in good 

agreement with the assignment of p2 and p5 as normal second-order pDOS bands.  

 Figure 5.3(a) also shows the frequency of the double-resonance peaks p1, p3, and p4 as 

a function of temperature. In this case, the peak frequencies of p1, p3, and p4, depend both on 

the temperature and on the laser energy.  As a matter of fact, the slopes of the DR bands p1, p3, 

and p4 are -0.033, -0.036 and -0.024 cm-1/K, respectively, and are larger than the slope of the 

first and second-order bands. Thus, we conclude that other effects come into play for the 

temperature-induced changes in the DR bands. As will be discussed below, the temperature 

dependence of p1, p3, and p4 is indeed related to how both the phonon and electronic structures 

are affected by temperature. 

 A fundamental property of a DR feature is the fact that its frequency depends on the 

laser energy. Different laser energies involve different points in the valleys in the electronic 

structure and phonons with different momenta. This result is clearly shown in Figure 5.1(b). As 

already discussed, the DR bands in monolayer MoS2 are originated from the scattering of the 

electron from a valley around the K point to other valleys around the K’ or Q points. The KK’ 

scattering process involves phonons in the proximity of the K point, whereas the KQ scattering 

process involves phonons in the proximity of the M point. As the laser energy increases, the 

optical transition occurs farther from the bottom of the conduction band, and phonons with 

different momenta satisfy the double-resonance condition. For TMDs, the acoustic phonon 
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dispersion exhibits a maximum at the K and M points, and the phonon energy decreases for 

wavevectors moving apart of these points. Therefore, as the laser energy increases, the 

frequency of the double-resonance bands decreases, leading �
ᵪ�ω
ᵪ�ᵀ��ᵀ�

 to be negative, as shown in 

Figure 5.3(b) and (c), and as it was observed in ref. [53]. Assuming that ω1, ω3, and ω4 are 

named as the frequencies of the peaks p1, p3, and p4, respectively, the slopes obtained in Figure 

5.3(b) and (c) are: �
∂ω1
ᵪ�ᵀ� �80 ᵀ�

= −50 cm−1

eV , �
∂ω3
ᵪ�ᵀ� �80 ᵀ�

= −40 cm−1

eV , �
∂ω4
ᵪ�ᵀ� �80 ᵀ�

= −23 cm−1

eV , 

�
∂ω1
ᵪ�ᵀ� �300 ᵀ�

= −100 cm−1

eV , �
∂ω3
ᵪ�ᵀ� �300 ᵀ�

= −63 cm−1

eV , �
∂ω4
ᵪ�ᵀ� �300 ᵀ�

= −36 cm−1

eV .  

5.1.3 Effects of temperature on the photoluminescence spectrum. 

 In order to distinguish the contribution of phonons and electrons for the temperature 

dependence of the DR Raman features, we have performed photoluminescence measurements 

in monolayer MoS2 with an in-situ variation of the sample temperature (Figure 5.4). From these 

measurements, we can directly obtain the temperature dependence of the optical transition 

energies. 

 Figure 5.5(a) shows the fitting of the PL spectra at T = 173 K using four Voigt 

components. The most intense feature, named TA, is associated with the A 

trion  [76,91,92,94,97,100]. The strong intensity of TA is due to the excess of charge (possible 

optical doping) induced by the relatively high laser power used in our experiments [97]. The 
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Figure 5.4. PL of monolayer MoS2 measured for the temperature of 93, 173, 213 and 293 K. 
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two smaller bands are named XA and XB, and associated with the A and B 

excitons [76,91,92,94,100], respectively.  

 The positions of TA, XA, and XB as a function of temperature are shown in Figure 5.5(b) 

and their positions and widths were fitted according to the equations (see Appendix A for the 

deduction) [244] 

 
ᵀ�(ᵀ�) = ᵀ�(ᵀ� = 0) − ᵀ�

�
1 + 2

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

 , (A.13) 

 
Γ(ᵀ�) = Γ(ᵀ� = 0) + ᵀ�

�
1 + 2

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

 . (A.14) 

 The values of the fitting parameters for the positions and width of TA, XA, and XB peaks 

can be found in Table 5.2, and a deduction of the equations can be found in Appendix A. The 

parameters related to the properties of the material are the extrapolated optical bandgap at 0 K, 
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Figure 5.5. Temperature dependence of the excitonic transitions of monolayer MoS2. (a) The observed features 

comprising the PL spectrum at 173 K. (b) Fitting of the positions of TA, XA, and XB for the measured temperature 

range using Equation A.13. 

Table 5.2. Fitting parameters obtained after the mutual adjustment of equations A.13 and A.14 

to the experimental PL data. 

 ᵀ�(0) (eV) ᵀ� (meV) Γ(0) (meV) ᵀ� (meV) 〈ħω〉 (meV) 

TA 1.94 ± 0.02 34 ± 10 24 ± 8 29 ± 10 24 ± 10 

XA 1.99 ±0.03 34 ± 10 44 ± 20 3 ± 1 24 ± 10 

XB 2.16 ± 0.06 94 ± 60 66 ± 36 54 ± 20 38 ± 14 
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ᵀ�(0), the average phonon energy 〈ħω〉 and the intrinsic broadening parameter Γ(0), while ᵀ� and 

ᵀ� are fitting parameters. From the difference between ᵀ�(0) for XA and TA, we obtain a binding 

energy of 50 meV for the trion energy, which is in good agreement with the reported values in 

the literature [92]. Also, from the difference between ᵀ�(0) for XA and XB, we extract the spin-

orbit coupling energy of 170 meV, in excellent agreement with the results presented in Figure 

2.5. 

 The Raman excitation profile of the A1’ mode, i.e., the calibrated intensity of the mode 

as a function of the laser energy, is shown in Figure 5.6 for a temperature of 80 K. The red 

curve corresponds to the fitting of the Raman excitation profile (REP) using the theoretical 

expression for the Raman intensity given by Equation 3.2, while the black curve is the PL 

measured at 80 K. The fitting parameters from Figure 5.6 can be found in Table 4.2. From the 

REP of the A1’ mode, we extract two resonance energies at 1.907 and 2.098 eV. Notice that the 

actual maximum of these two curves is shifted from the value of the electronic transition by 

approximately 26 meV, which is half the energy of the A1’ mode. Equation 3.2 predicts two 
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Figure 5.6. The intensity of the A1’ band at 80 K, normalized by the intensity of the E’ band, as a function of the 

laser energy is shown as solid squares. The red line represents a fit using Equation 3.2 for the two maxima 

observed. The black line is the measured PL spectrum at 80 K.  

Table 5.3.  Fitting parameters for the excitation profile of the ratio of intensities of the A1’ and 

E’ bands according to equation (3.2). The phonon frequency ωPh was fixed at 410 cm-1. 

E (eV) C (eV) Γ (eV) 

1.907 ± 0.005 0.007 ± 0.004 0.053 ± 0.021 

2.098 ± 0.008 0.008 ± 0.004 0.071 ± 0.020 
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resonances when the laser energy corresponds to the relevant electronic transition and when the 

laser energy corresponds to the electronic transition plus the energy of the phonon. Since TA is 

1.906 eV at 80 K and the first resonance observed in the REP is at 1.907 eV, it is reasonable to 

assume that TA corresponds to the first observed resonance. 

5.1.4 Effects of strain induced by the different thermal expansions of sample and 

substrate 

 It is important to comment that the strain induced by the adhesion of the sample to the 

substrate when the sample is cooled-down, due to the different thermal expansion coefficients 

of MoS2 and the substrate, affects in principle both electronic structure and phonon energy of 

MoS2. However, this effect is not strong enough to be observed in our experimental results. 

Considering the linear thermal expansion coefficient of 0.56 x 10-6 K-1 for fused quartz [245] 

and of 4.76 x 10-6 K-1 for MoS2 [246], the cooling down process from 300 K to 80 K would 

induce a strain of ~0.1% in MoS2, considering the perfect adhesion with the substrate. However, 

as shown in previous works of graphene and MoS2 on SiO2/Si [247–249], the strain transfer is 

usually partial and the adhesion depends on the type of the substrate, being very weak for SiO2. 

 According to the Raman and PL study of strained MoS2 [250], the induced strain of 

0.1% would shift the frequency of the in-plane E’ mode by ~0.5 cm-1 and would not affect the 

position of the out-of-plane A1’ mode. In fact, our observed slopes of -0.009(1) cm-1/K for both 

the A1’ and E’ modes positions as a function of temperature are very close to those observed 

for suspended and supported monolayer MoS2 samples, approximately -0.013 cm-1/K for both 

A1’ and E’ modes [241,242]. On the other hand, the PL measurements as a function of 

strain [250] show that 0.1% of strain would shift the exciton transition by 0.005 eV. 

Considering that the dispersion of the DR bands is approximately 50 cm-1/eV, the shift of the 

band induced by 0.1% strain would be smaller than 0.5 cm-1. Therefore, even considering a 

perfect adhesion between MoS2 and the substrate when the sample is cooled down, the changes 

induced by the strain in the electronic structure and phonon energy cannot be detected in our 

measurements, considering the spectrometer resolution and the temperature variation range. 

5.1.5 Determination of the temperature dependence of the acoustic mode near the 

zone edges 

 As shown in Figure 5.3(a-c), the positions of the DR bands depend on both the 

temperature and the laser excitation energy, which is in resonance with the excitonic transition. 

Moreover, the excitonic transition also depends on temperature, as shown in Figure 5.5(b). The 
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rates ᵪ�ω
ᵪ�ᵀ� shown in Figure 5.3(a) for the DR bands may have contributions of the temperature 

dependence of both the phonon and the excitonic transitions. We can distinguish these two 

contributions by taking into account the results shown in Figure 5.3(a-c) and Figure 5.5(b), as 

explained below. 

 Let us call ω1, ω3 and ω4, the frequencies of p1, p3, and p4, respectively. We can construct 

a function for ωᵅ� based on light absorption and the wavevector accessed by the electron-hole 

pair. We refer to the DR process illustrated in Figure 5.2, where an electron in the valence band 

around the K point is excited by a photon with energy ᵀ� to the conduction band at a wavevector 

ᵅ�, distant ᵅ� units from the K point. For simplicity, we suppose that the Brillouin zone is centered 

at the K point, such that we can write for light absorption: 

 Δᵀ� = ᵀ� − ᵀ�ᵀ� = ħ2ᵅ�2

2µ∗ , (5.1) 

where Eg is the bandgap and µ∗ = ᵅ�ᵀ�
∗ᵅ�ℎ

∗

ᵅ�ᵀ�
∗+ᵅ�ℎ

∗ is the exciton reduced effective mass. The term Δᵀ� 

will be the excess energy of the electron-hole pair after the electron is promoted to the 

conduction band. After light absorption, the electron can be scattered to the K’ point by a 

phonon with frequency ω and wavevector ᵅ�. Following this process, the electron is scattered 

back to the K point by another phonon with frequency ω’ and wavevector −ᵅ�, and at the K 

point, the electron-hole pair recombine in order to emit a scattered photon. From the explanation 

developed so far, we can already say that ω(ᵀ�) =  ω(ᵅ�) = ω(Δᵀ�). 

 Since changing the temperature ᵀ� will affect the bandgap and will also affect the phonon 

frequency, we may also write that ω(ᵀ�, ᵀ�) =  ω(ᵅ�, ᵀ�) = ω(Δᵀ�, ᵀ�). We must remember that Δᵀ�, 

as it was defined, depends on both ᵀ� and ᵀ�. Thus, in order to calculate the partial derivatives 

of ω with regards to the experimental parameters, we must also consider the electronic transition 

energy and the way it will affect the final result. We can calculate the derivatives of ω using the 

chain rule: 

 
�

ᵪ�ω
ᵪ�ᵀ��ᵀ�

= �
ᵪ�ω

ᵪ�Δᵀ��ᵀ� �
ᵪ�Δᵀ�
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= �
ᵪ�ω

ᵪ�Δᵀ��ᵀ�
 (5.2), 
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(5.3). 
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The term �
ᵪ�ω

ᵪ�Δᵀ��ᵀ�
 , gives the rate of change of ω with Δᵀ� at constant ᵀ�, the term �

ᵪ�ᵀ�ᵀ�
ᵪ�ᵀ� �ᵀ�

 gives 

the rate of change of the bandgap with ᵀ�, which is equal to the term �
ᵪ�ω
ᵪ�ᵀ��ᵀ�

, or the slope of ω 

with the laser energy. The term �
ᵪ�ω
ᵪ�ᵀ��Δᵀ�

 gives the rate of change of ω with ᵀ� at fixed Δᵀ�, or the 

purely thermal coefficient of ω. The product �
ᵪ�ω

ᵪ�Δᵀ��ᵀ� �
ᵪ�ᵀ�ᵀ�
ᵪ�ᵀ� �ᵀ�

= �
ᵪ�ω
ᵪ�ᵀ��ᵀ� �

ᵪ�ᵀ�ᵀ�
ᵪ�ᵀ� �ᵀ�

 gives the 

contribution of the DR process to the rate of change of ω with ᵀ�. 

 We can evaluate the contribution �
ᵪ�ω

ᵪ�Δᵀ��ᵀ� �
ᵪ�ᵀ�ᵀ�
ᵪ�ᵀ� �ᵀ�

 to �
ᵪ�ω
ᵪ�ᵀ��ᵀ�

 by substituting some values 

from Figure 5.3 and using �
ᵪ�ᵀ�ᵀ�
ᵪ�ᵀ� �ᵀ�

 ~ 2ᵀ�ᵀ�ᵀ�
Θ = −0.25 meV/K from the parameters of TA in Table 

5.2. The values of �
ᵪ�ω1
ᵪ�Δᵀ��80 ᵀ� �

ᵪ�ᵀ�ᵀ�
ᵪ�ᵀ� �ᵀ�

 , �
ᵪ�ω3
ᵪ�Δᵀ��80 ᵀ� �

ᵪ�ᵀ�ᵀ�
ᵪ�ᵀ� �ᵀ�

  and �
ᵪ�ω4
ᵪ�Δᵀ��80 ᵀ� �

ᵪ�ᵀ�ᵀ�
ᵪ�ᵀ� �ᵀ�

 are equal to -

-0.013, -0.010 and -0.006 cm-1/K, respectively. Thus, the values of �
ᵪ�ω1
ᵪ�ᵀ� �Δᵀ�

 , �
ᵪ�ω3
ᵪ�ᵀ� �Δᵀ�

 and 

�
ᵪ�ω4
ᵪ�ᵀ� �Δᵀ�

 will be equal to -0.020, -0.026 and -0.019 cm-1/K, respectively, consistent with the 

values we have obtained for the second-order peaks p2 and p5. Considering that ω1 = ωᵀ�ᵀ�(~ᵅ�) +

ωᵀ�ᵀ�(~ᵅ�), ω3 = 2ωᵀ�ᵀ�(~ᵅ�) and ω4 = 2ωᵀ�ᵀ�(~ᵅ�), we can determine the rate of change of the 

frequency of the LA and TA phonons in the proximities of the K and M points, presented in 

Table 5.4. 

5.1.6 Combining the temperature and laser energy effects on the double-

resonance bands 

 The complete set of data comprising the second-order and DR bands of each spectrum 

at different laser lines and temperatures can be summarized in a single graphic by considering 

the difference between the excitation laser and the excitonic energies as a function of 

temperature [165]. As evidenced in Figure 5.5(c), the relevant optical transition for the Raman 

scattering was the TA trion. The procedure employed here is based on the difference ᵪ�ᵀ� =

 (ᵀ� – ᵀ�ᵀ�) between the laser energy E and the trion energy TA determined in Figure 5.5(b). For 

instance, we know that at 80 K, TA = 1.906 eV, and if we measure the Raman spectrum with a 

1.917 eV laser line, we need to consider the difference ΔE = 0.011 eV. 

Table 5.4. Temperature dependence of the acoustic phonons’ frequencies in the proximity of 

the K and M points. 

 LA(~K) LA(~M) TA(~K) 

�
ᵪ�ᵪ�ᵅ�ℎ
ᵪ�ᵀ� �Δᵀ�

   -0.013 cm-1/K -0.009 cm-1/K -0.008 cm-1/K 
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 The simple approach of considering only the difference between laser-line and 

excitonic-transition energies enables us to include all data obtained in this work, at different 

temperatures and using different laser lines, in the same plot. The frequency of the DR bands 

as a function of ΔE is shown in Figure 5.7. We can clearly see the dispersive behavior of p1, p3, 

and p4 peaks. On the other hand, the frequency of the experimental bands p2 and p5, which 

corresponds to maxima of the LA branch in the calculated pDOS, only disperses with 

temperature. 

5.1.7 Conclusions 

 In conclusion, we have studied the Raman spectra of monolayer MoS2 using many 

different laser lines with energies in the range 1.92-2.21 eV and at different temperatures 

ranging from 80 to 300 K. We have measured the dispersion of all DR features and the second-

order bands by changing the laser excitation energy in the temperature range of 80 to 300 K. 

The dependence of the frequency of first-order bands on temperature is explained by 

anharmonic effects related to phonon-phonon interactions, whereas the frequency and the shape 

of the double-resonance bands depend not only on the temperature dependence of the phonon 

frequency but also on the excitonic transition energy. The excitonic transitions were measured 
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Figure 5.7. Frequency of the DR and second-order bands as a function of ΔE defined in the main text. The lines 

represent a linear fit with the corresponding slopes presented in the figure. The error for the slope values is 3 cm-

1/eV. 
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by PL as a function of temperature in order to distinguish these two effects. We have observed 

that the Raman bands are enhanced by resonances with the trion with energy TA. 

5.2 Few layers and Bulk MoS2 

 Unlike the monolayer, whose electronic structure is characterized by a direct bandgap 

at the K point, bulk MoS2 possesses an indirect bandgap (Ig) that connects the Γ and Q points 

as it was shown in Figure 2.4(b). It can also be observed in Figure 2.4(b) that the valleys in the 

conduction band around the K and Q points are in the same energy level for bulk. Therefore, 

in comparison with monolayer MoS2 where the main contributions to the double resonance 

process come from the electron scattering from valleys near the K and K’ points, in bulk MoS2 

are also possible electron scattering processes that occur from valleys near the K and Q points. 

Here a similar approach as that used for monolayer MoS2 will be applied to explain temperature 

effects on the intervalley scattering for few-layers and bulk MoS2. A broader spectral range 
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Figure 5.8. Raman spectrum of the monolayer (1L), bilayer (2L), trilayer (3L), and bulk MoS2 collected with a 

1.92 eV (647.1 nm) laser line at temperatures of (a) 300 K and (b) 80 K. The intensity is normalized by the intensity 

of the E2g mode at approximately 382 cm-1. We use the irreducible representations of bulk for simplicity. The 

intensity of the A1g mode for bulk in (b) is cut for clarity. 
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from 140 to 480 cm-1 will be explored in order to understand the additional processes observed, 

for bilayer, trilayer and bulk, as compared to monolayer MoS2. 

 Figure 5.8(a) and (b) show the Raman spectra of monolayer (1L), bilayer (2L), trilayer 

(3L) and bulk MoS2 obtained with a laser excitation energy of 1.92 eV at temperatures of 300 

and 80 K. At 300 K, the Raman spectrum of all samples is dominated by the A1g mode a well 

as the double resonance bands p1 and 2LA. We use the irreducible representations of bulk at 

this point forward for simplicity. At frequencies lower than 300 cm-1, we can see some smaller 

bands, and the ones in the range of 140 to 275 cm-1 are especially enhanced at the low 

temperature for 1L, 2L, and 3L, as can be seen in Figure 5.8(b). The band at approximately 395 

cm-1, indicated by an arrow in Figure 5.8(a) and (b), is equal in intensity between 2L, 3L, and 

bulk at 300 K, but it is very small for 2L and 3L, and huge for bulk at 80 K. We also see that 

the peak corresponding to the E2g mode is very broad and asymmetric, which could be explained 

in terms of another component that appears due to the resonance with the excitonic level. We 

explore these peaks in detail in the next sections, starting from the region between 140 to 275 

cm-1 and after we move to the region between 300 to 480 cm-1. 

5.2.1 The spectral region between 140 and 275 cm-1 

 Figure 5.9(a) and (b) present the Raman spectra of 1L, 2L, 3L and bulk in the range of 

140 to 275 cm-1 collected with a 1.92 eV laser at 300 and 80 K, respectively. At 300 K, there 

are two components common to all four samples, at approximately 177 cm-1 and at 207 cm-1. 

Both peaks are related to a phonon subtraction process, where there is the creation of a phonon, 
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Figure 5.9. Raman spectra of 1L, 2L, 3L and bulk from bottom to top at (a) 300 and (b) 80K in the range of 140 

to 275 cm-1. 
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followed by the destruction of another phonon [251]. In order to simplify the notation, we 

address the phonon branches, except the acoustic at the M or K points, by their irreducible 

representations at the Γ point of bulk. The 177 cm-1 peak corresponds to the difference between 

A1g(M) and LA(M) phonons, which we conveniently write as A1g-LA(M). In the same way, 

the peak at 207 cm-1, which is barely visible at 300 K, corresponds to E2g-LA(M). We name 

these processes as Stokes/Anti-Stokes combinations since they correspond to the emission of a 

phonon by the lattice followed by the absorption of a different phonon by the lattice. In 

principle, these bands should be heavily affected by temperature, since the Stokes/Anti-Stokes 

process requires that the lattice is already thermally excited. However, since we did not reach 

temperatures below cryogenic and we are in resonance, the Stokes/Anti-Stokes process is still 

observed. In fact, at 80 K, the peaks are slightly more intense for 3L and bulk, than at 300 K, 

for 2L, the intensity is about the same, and for 1L, the intensity drops to almost zero and 

increases for 300 K, revealing a strong dependence with the electronic structure.  

 We expect that the main electron-scattering process for the 177 and 207 cm-1- peaks 

comes from the valleys near K to the valleys near Q. Now, from Figure 2.4(b), the parabolic 

band near Q at the conduction band is above the parabolic band at the K point for 1L; it is 

slightly closer to alignment for 2L and it is aligned for bulk. Therefore, as the number of layers 

increases, the resonance with the valley at Q should come for energies closer to the direct 

bandgap. If instead of the laser energy we tune the electronic structure as we have done in the 

monolayer case, we can control the resonance energies. Therefore, at 80 K, since bulk will be 

closer to the resonances with the Q valley, the processes that come from the phonon subtraction 

processes will be more intense and it will be out of resonance for 1L. This is also the case for 

the small peak at 252 cm-1, which corresponds to the difference A1g-TA(M), which is not visible 

at 300 K but can be seen at 80 K. The peak at 150 cm-1 corresponds to the difference E2g-LA(K) 

and as the other bands discussed above it is stronger when the laser is in resonance with the 

direct bandgap. The best instance of this is the case for 1L at 300 K, where the laser is more 

energetic than the trion energy, as discussed in section 5.1.3, and there is enough energy for 

both electron and hole to be in resonance. 

 The broad band centered at approximately 225 cm-1 and the very thin band centered at 

approximately 190 cm-1 correspond to the LA and TA bands, which are activated through the 

phonon-defect process. From the difference in intensity between the spectra collected at 80 and 

300 K, we can conclude, especially for 1L, that the defect assisted process is intensified when 

the laser is in resonance with the excitonic or, for 1L, the trion transition. We will keep 

exploring the defect-assisted process in section 5.3, where we characterize CVD samples of 
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MoS2 and show that the intensity of the defect-assisted bands is highly enhanced when the 

sample is excited in resonance with the electronic transition, and also that there is a trade-off 

between the defect-assisted bands and the subtractive bands. 

5.2.2 The spectral region between 350 and 480 cm-1 

 We now turn our attention to the region between 350 and 480 cm-1 from Figure 5.8, 

which is zoomed in Figure 5.10. A quick comparison between the spectra acquired at 80 and 

300 K shows a big difference for all samples, going from the first-order modes to the double-

resonance bands as well. 

 The first observation is regarding the first order A1g mode, which is quickly discernable 

at 300 K in Figure 5.10. We discussed in section 2.3 about the vibrational properties of ᵅ�-layers 

TMDs, and the conclusion is that the number and representation of the Raman-active modes 

would change according to ᵅ� and the parity of ᵅ� [110]. From refs. [114–116], however, only a 

main feature can be observed which increases in frequency as the number of layers increase as 

well. One observation made by ref. [114] is that the width of the A1g band is maximum for 2L, 
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Figure 5.10.  Raman spectra of 1L, 2L, 3L, and bulk for temperatures of (a) 300 and (b) 80 K in the range of 300 

to 480 cm-1 collected with a 1.92 eV laser. 
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which is almost the double of 1L. A greater width could potentially mean another component 

with a frequency very close to the A1g mode, that could not be separated due to thermal effects 

or due to the lack of appropriate resolution of the spectrometer. As the number of layers 

increases from 2L to 3L, though, the width reduces, and at 4L the width is basically the same 

as 1L. Therefore, we could assume that the components composing the A1g band get closer and 

closer as the number of layers converges to bulk. 

 From Table 2.1, we would expect 3 modes of A1g representation for 2L, while for 3L 

we would expect 4 modes of A1’ representation. Since the stacking of layers introduces the 

interlayer vibrational modes which are Raman-active, we expect that at least 1 mode of A1g 

representation would be referent to an interlayer vibrational mode. Since the A1g and A1’ modes 

are totally symmetric, they represent a breathing-like movement, an out-of-plane vibration. 

From ref. [46], the number of interlayer breathing modes is only 1 for 2L and 3L. Thus, for 2L 

and 3L, 1 and 2 A1g modes remain unaccounted, and as it is shown in Figure 2.8(b), they must 

be almost degenerate. Therefore, the splitting of the A1g band presented in Figure 5.10(b) for 

80 K is due to both thermal effects that are lessened when temperature is decreased, and also 

due to a better resolution, since the red light used in this experiment is more dispersed (in the 

frequency domain) than green light used in [114]. We observe no clear distinction of the E2g 

band, which can be attributed to the large contribution from the broad band that is right beside 

it, at approximately 380 cm-1. 

 The band at 380 cm-1, which we call α, has been attributed to a few possibilities, such 

as the E1u phonon at the Γ point [160], the E2g phonon at the M point [252], or a combination 

of two TA or two TA’ phonons at the K point [186]. Based on the enhancement of the KK’ 

electron-scattering process in 1L, we propose that the α band comes from the combination of 

two TA phonons at the K point. The assignment is fair since the band is very strong for 1L, 

which does not possess the quasi-acoustic phonons and also because it corresponds to exactly 

twice the frequency of the TA phonon at K, which was observed at 80 K in Figure 5.9(b). Since 

the pDOS for MoS2 presents a very strong peak at the 190 cm-1 (Figure 2.8(d)), reflecting the 

flat dispersion of the TA branch close to the K point, we would expect that this peak is not very 

dispersive, remaining rather constant in frequency when the laser energy changes. Therefore, 

most of the changes we observe in the frequency of this peak are simply related to temperature 

effects. 

 The band at approximately 395 cm-1, which we call β, is observed with the highest 

intensity for bulk at 80 K, while it is rather weak for 2L and 3L and inexistent for 1L. At 300 

K, the β band presents the same intensity between 2L, 3L, and bulk, while it still remains 
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inexistent for 1L. Therefore, we believe the process related to this band is connected to the KQ 

scattering process, which involves phonons around the M point. A simple look into Figure 

2.8(a) (the phonon dispersion of 1L for simplicity), reveals that the combination of phonons 

around the M point belonging to the LA (~235 cm-1) and ZA (~160 cm-1) branches would 

correspond exactly to this frequency. In the same manner, the weak band at 320 cm-1, which is 

observable for 3L and bulk at 80 K, can be related to the combination of two TA phonons 

around the M point, which is a weak process overall since the coupling with TA phonons is 

much weaker than that for LA phonons. 

 We now turn to the 2LA band, which was deeply explored for 1L in section 4.2. A 

comparison between 1L, 2L, 3L, and bulk at 80 K from Figure 5.10, shows how the resonance 

with the valley at the Q point can affect the double resonance process. Since bulk has the less 

energetic bandgap between the samples, it would exhibit the lowest energy at the Q valley in 

the conduction band. Thus, when the laser energy is closer to the resonance with the excitonic 

transition, the KQ electron-scattering process is stronger, since the scattering channel involves 

real states. For 2L and 3L, although they are indirect bandgap as well since the Q valley is more 

energetic compared to the bulk, the intensity will be smaller since the real state is getting into 

resonance. At 300 K, however, the entire band structure is shifted to smaller energy, and the 

bandgaps are reduced. As a consequence, the strong resonance observed for bulk is reduced, 

and the maximum intensity is shifted from 469 to 464 cm-1. 2L and 3L, on the other hand, 

present a stronger intensity for the 2LA band (when the spectra are normalized by the E2g band), 

which means that the process is now in resonance, which is also evidenced by the fact that the 

frequency of the 2LA band is about the same between the 80 and 300 K, changing just 2 cm-1. 

1L is still coming into resonance with the KQ scattering process, since the “shoulder” of the 

2LA band, corresponding to the p4 peak described in section 4.2, is getting stronger at 300 K. 

 Another way to look for the resonance with the KQ scattering process is to begin at a 

laser energy below the excitonic transition and increase the sample temperature. In this way, 

since the conduction band is reducing in energy, the laser energy will come into resonance with 

the excitonic transition, which would enhance the double resonance features. 

 Figure 5.11(a), (b) and (c) shows the Raman spectra of bulk collected with a laser energy 

of 1.66 eV at 300, 473 and 573 K. In these experiments, the bulk sample was excited with a 

vertically polarized laser, but the collection was optimized for the horizontal configuration, 

which greatly minimizes the intensity of the A1g mode. Nonetheless, we can observe that at 300 

K in Figure 5.11(a), only the E2g band, the first-order mode, is strongly observed, which is 

expected since the sample is out of resonance with this specific laser energy. We can observe 
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the other bands though, but they are minimized compared to the E2g band. According to 

ref. [194], the XA transition would have values of 1.82, 1.76 and 1.73 eV at 300, 473 and 573 

K, extrapolating the results obtained in their work. Although a laser excitation energy of 1.66 

eV is not exactly in resonance with XA at any of the temperatures present in Figure 5.11, we 

would still need to consider the resonance window, which becomes broader as temperature 

increases. Therefore, we are coming into resonance with XA as the temperature is increased 

from Figure 5.11(a) to Figure 5.11(c). The same effect can be achieved by beginning with a 

laser excitation energy above the resonance with XA at room temperature and decreasing the 

temperature in order to recover the resonance. We illustrate this result in Figure 5.11(d), (e) and 

(f), where a laser with an energy of 1.92 eV is used to excite the sample while the temperature 

changes from 300 to 80 K. We observe that the components of the 2LA band change according 

to the measurement temperature. From Figure 5.11(a), (b) and (c), as the temperature increases, 

the contribution from the p4 peak to the 2LA band becomes more apparent, which is mainly due 

to contributions from the KQ electron-scattering process. Thus, as the temperature is increased, 

the bulk sample is coming into resonance with XA. 
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Figure 5.11. Cross-polarized Raman spectrum of bulk obtained using a laser line of 1.66 eV at the temperatures

of (a) 300 K, (b) 473 K and (c) 573 K. The A1g mode is attenuated because of the polarization geometry used in 

the experiments. It is also shown the Raman spectrum of bulk collected with the 1.92 eV laser at temperature of 

(d) 300 K, (e) 193 K, and (c) 80 K. 
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5.2.3 Bulk MoS2 with several laser energies and Temperatures 

 We now turn to the double resonance processes in bulk, which were studied with the 

same laser energies and temperatures as the 1L sample in section 4.2. Figure 5.12(a) shows the 

Raman logarithmic intensity color map in the energy range between 370 and 485 cm-1, for laser 

energies between 1.916 and 2.210 eV and a temperature of 80 K. The most prominent feature 

is the A1g mode, which presents a strong resonance with the XA and XB transitions [180]. It is 

also observed a strong contribution from the 2LA band, covering the entire laser energy range, 

where the contributions to the peak can be separated according to the laser energy, being fairly 

easy to distinguish close to 2.09 eV. 

 We can extract the excitonic transition energy, ᵀ�ᵀ�, by fitting the Raman excitation 

profile (REP) of the A1g peak with respect to the laser energy, just as it was done for 1L. The 

REP is shown in Figure 5.12(b), where we identify XA and XB, with their respective fitting 
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Figure 5.12. (a) Raman intensity map obtained at 80 K, where the ᵅ� axis represents wavenumber, the ᵅ� axis 

represents the laser energy and the intensity is given by the color map on a logarithmic scale. The black line at 

approximately 2.091 eV represents the energy of XB, which is still in the region of measurements. (b) Raman 

excitation profile of the A1g band in (a), located at approximately 410 cm-1. The intensity is normalized by the E2g

band located at approximately 385 cm-1. 

 

Table 5.5. Fitting parameters of the REP in Figure 5.12(b) with equation 3.2. 

 ᵀ� (eV) ᵀ�ᵀ� (eV) Γ (eV) 

XA 0.010 ± 0.002 1.887 ± 0.002 0.023 ± 0.004 

XB 0.008 ± 0.003 2.091 ± 0.003 0.022 ± 0.007 



80 

parameters presented in Table 5.5. The extracted energy transitions are 1.887 and 2.091 eV for 

XA and XB, respectively. The value obtained for XA is very similar to the one observed in the 

literature of 1.884 eV at 80 K [194]. Therefore, we will use the temperature dependence of XA 

observed by Dey et al. [194] in order to compare the thermal effects of XA to the DR bands. 

 Figure 5.13 presents the positions of p1 to p5 as a function of ΔE, just like it was done 

for 1L in section 4.2. Again, we see a similar trend between the position of each band and ΔE, 

indicating a strong effect of the excitonic transition in the DR position. We observe an 

additional feature though, which is readily distinguished in Figure 5.12(a) at approximately 478 

cm-1, which we call p6. The p6 band is very weak even when compared to other weak features 

and it appears only in the XA excitation range, ranging from 1.916 to 1.975 eV, and it was 

ascribed to either a combination of two LA’ phonons at the K point, or to a combination of 

three TA’ phonons at the M point [186].  

 Either way, p6 is supposed to be a simple second- or third-order band, where the position 

of the band is unaffected by the laser energy, but it should be affected by temperature. 

Therefore, we can see how p6 behaves as a function of temperature and extract the information 

of whether it is a combination of two or three phonons. From the fitting of the position of p6 as 

a function of temperature, we obtain a thermal coefficient of -0.017±0.002 cm-1/K for the 1.92 

eV laser, -0.015±0.002 cm-1/K for the 1.94 eV laser and -0.012±0.001 cm-1/K for the 1.96 eV 
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Figure 5.13. Position of the DR bands as a function of the difference between the laser energy and XA. 
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laser. These values are fairly consistent with the results we have obtained for the second-order 

bands of 1L, which would mean that we have a simple second-order band, instead of a third-

order band. 

 Now, we turn the attention to the lower frequency peaks and their behavior. Figure 5.14 

shows the Raman scattering of bulk collected under a laser energy of 2.03 eV for the 

temperatures of 93, 193 and 298 K. Besides the double resonance band p1 observed for 1L, we 

observe additional features indicated in Figure 5.14, such as the aforementioned α and β bands 

at approximately 380 and 395 cm-1, and also another band at approximately 405 cm-1, which 

we call γ. The peak fittings were performed following a similar procedure as that for 1L, but 

we chose to share the width between the α, β, and γ features in order to facilitate the fitting 

procedure. This was justified in the sense that we need to reduce the number of fitting 

parameters in order to fit every spectrum correctly. Otherwise, the data will present 

inconsistencies with the generally expected behavior of the Raman bands, such as convoluted 

bands becoming thinner when the temperature increases. 

 The α and γ bands were previously associated with the E1u
2 and B1u vibrational 

modes [160]. However, α is strongly enhanced in 1L, as shown in Figure 5.10, and thus, we 

associate it with the combination of two TA phonons near the K point, where there is a 

maximum in the pDOS.  
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Figure 5.14. Raman spectrum of bulk MoS2 under a laser excitation energy of 2.03 eV at 93, 193 and 298 K. The 

long tail contribution observed at 298 K comes from the 2LA band. 
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 We could ask the same question of whether the γ band can be attributed to a phonon 

combination process as well. Since the possible processes that are active around the K point 

have already been strongly observed for 1L, we are left to associate the γ band to a possible 

combination of phonons in the proximities of the M point. A quick look into the phonon 

dispersion and pDOS of bulk MoS2 in Figure 2.8(c) and (e) reveal a maximum around 167 cm-

1 due to a saddle point in the TA phonon branch around the M point. Since the LA branch also 

presents a maximum around 238 cm-1, the γ band at 405 cm-1 can be associated with a 

combination of an LA phonon and a TA phonon in the proximity of the M point. We can 

associate the γ band to the combination of one TA and one LA phonon in the proximities of the 

M point. 

 Figure 5.15(a) presents the frequency of all bands in the interval of 370 to 430 cm-1 as 

a function of the laser energy. The position of the A1g and E2g bands as a function of the laser 

energy remain basically unchanged, with a small variation of 1 cm-1/eV, which is around the 

error bar for the slopes of the other bands. An interesting aspect is the observation of a very 

thin band alongside the E2g band, which has been attributed to the E1u
2 vibrational mode [165]. 

One important characteristic which has been reported in the literature for MoS2 is the splitting 

of the degenerate LO and TO phonon branches that form the E2g mode due to the polar character 

of MoS2 [253]. Therefore, we use the assignment proposed by ref. [253] instead of the 

assignment attributed before in ref. [165].  

 Aside from the first order A1g and E2g modes, we also observe the behavior of the α, β, 

γ, and p1 peaks. For the α band, the frequency decreases with the laser energy at a rate of -13 

cm-1/eV, which is small compared to p1, but still relevant. However, the β and γ bands, present 

a positive rate of change, which is in direct contrast to p1, p3, and p4. Even more interesting is 

the split of β into two components, one almost constant at approximately 398 cm-1 while the 

other presents an odd dispersive behavior, again increasing in frequency as the laser energy 

increases. 

 Figure 5.15(b) and (c) present the position of all the bands in the region between 370 

and 430 cm-1 as a function of temperature for the laser energies of 1.98 eV and 2.03 eV. The 

first-order bands present similar behaviors as 1L, where the rate of change is -0.010 cm-1/K for 

the A1g band while it is -0.013 cm-1/K for the E2g mode. The p1 band presents a rate of change 

of more than double the value of the A1g mode, at -0.026 m-1/K and -0.030 m-1/K for the 1.98 

and 2.03 eV lasers, respectively. The other bands present, the same (or very close) slope as the 

first-order bands.  
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 The fact that bands with such high dispersion with the laser energy as β and γ present 

slopes similar to the ones of first-order bands is unexpected if we consider the model proposed 

for 1L. According to the model that we have proposed for 1L, the band is expected to show 

either a small decay or a constant frequency as a function of temperature, since the ᵪ�ω
ᵪ�ᵀ� is positive. 

In order to analyze the behavior of α, β, and γ, we use a similar process as that used for p1 to 

p6, where we plot the frequency of α, β, and γ as a function of ΔE.  
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Figure 5.15. (a) Position of each band in the frequency range between 370 and 430 cm-1 as a function of the laser 

energy at 80 K. The solid lines represent a linear fit over an apparently linear behavior, and the slopes associated 

with each fit are next to the curves. The first order bands present a small variation (about 1 cm-1/eV) which is 

neglected because it is within the experimental error of the measurements. (b) and (c) represent the position of 

each band in the range between 370 and 430 cm-1 as a function of temperature for the laser energy of 1.98 and 

2.03 eV, respectively. In (b) and (c), the positions are linearly fit as a function of temperature and the slopes are 

presented next to each curve. The error for each slope is in the order of 0.001 cm-1/K. 



84 

 Figure 5.16 shows the position of the α band as a function of ΔE. Similar behavior is 

observed between the dispersion with purely the laser energy presented in Figure 5.15(a), where 

the slope between 1.92 and 2.1 eV is -13 cm-1/eV. Since the α band presents a relatively small 

dispersion with the laser energy, we may apply the model from 1L, which means that this band 

would present a small decay of approximately -0.004 cm-1/K. Combining the thermal effects of 

Figure 5.15(b) and (c), we would arrive at a dispersion of approximately -0.004 cm-1/K for the 

TA phonon branch at the K point, which is about half of the value observed for 1L. A smaller 

value of the thermal slope of the phonon branch may be related to the extra interactions between 

the layers, which would imply that other phonon decay processes may occur for bulk, compared 

to 1L. 

 We mentioned the β band before, and we observed it as for two temperatures in Figure 

5.10 measured with a laser very close to XA. It is possible to observe that there are two 

components in the β band, which can be better observed in Figure 5.17. We will call the two 

components β’’, for the lower frequency component, and β’ for the higher frequency 

component. In the low energy regime, closer to XA, the two components are almost degenerate, 

which can be seen in Figure 5.17(a) for a laser energy of 1.92 eV and in Figure 5.17(b) for a 

temperature of 93 K. However, as ΔE increases, meaning higher laser energies for Figure 

5.17(a) or higher temperatures for Figure 5.17(b), the band splits and the two components can 

be distinguished. Figure 5.17(c) shows the frequency of β’ and β’’ as a function of ΔE, for the 

laser energies close to XA measured at 80 K and for the laser energies of 1.92, 1.96, and 1.98 
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Figure 5.16. Frequency of α as a function of ΔE, the difference between the laser and XA. 
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eV. The behavior observed of the frequency of β’ and β’’ as a function of ΔE is heavily 

dependent on the laser line utilized.  

 Going back to Figure 5.17(c), starting with the smaller energy laser in red of 1.92 eV, 

β’ and β’’ are nearly degenerate at 394.5 and 395 cm-1. As the temperature increases, the 

separation between β’ and β’’ increases as well, until a determined limit is reached at 

approximately 391 and 396 cm-1, where both bands remain constant. The next laser line, at 1.96 

eV, begins closer to the maximum observed at 80 K for both β’ and β’’, but as temperature 

increases, both components decrease as well. Finally, the last laser line covering the XA region 

at 1.98 eV, follows a similar trend as 1.96 eV, decaying as the temperature increases. After 1.98 

eV, the β’ component is not seen anymore, and only the β’’ component is still active. However, 

β’’ presents only a small dispersive behavior with the laser line and it is strongly affected by 

temperature, almost compared to a simple second-order band. 

 We have already associated β to the combination of LA and ZA phonons in the 

proximity of the M point. If we assume that some other scattering process may occur, such as 

the electron being scattered to two different valleys in the proximity of the Q point, we can 

370 380 390 400 370 380 390 400 0.05 0.10 0.15

390

391

392

393

394

395

396

397

398

E2g

α

1.94 eV

1.92 eV

1.95 eV

1.96 eV

1.97 eV

β'

In
te

ns
it

y

Wavenumbers (cm-1)

β"

1.98 eV

(a)

β

(b)

298 K

253 K

213 K

173 K

133 K

93 K

Wavenumber (cm-1)

β" β'

α

E2g

β

β''

W
av

en
um

be
r 

(c
m

-1
)

ΔE (eV)

(c)

β'
 80 K
 1.92 eV
 1.96 eV
 1.98 eV

Figure 5.17. The evolution of the components of the β band for (a) laser energies between 1.92 and 1.98 eV at 80 
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associate the splitting of β to such phenomenon, which is illustrated in Figure 5.18. For a laser 

energy below a certain threshold, the electron could only be scattered to the Q valley via a 

single route, since there would not be enough energy to connect the real states leading to a 

resonant condition, illustrated by the red arrow in Figure 5.18. However, for a laser with 

sufficient energy, the K and Q valleys could be connected by two possible processes, involving 

the LA and ZA phonons in this case, illustrated by the green arrow in Figure 5.18. For increasing 

laser energies, it would be possible to increase the separation of β’ and β’’, which is illustrated 

by the blue arrow in Figure 5.18. 

 Since bulk has a different scattering channel which involves the valleys near the Q point, 

it could have some implications in the behavior of the band as a function of temperature. It was 

shown recently that the indirect bandgap in bilayer MoS2 shifts to higher energies as 

temperature increases [89]. We believe that a similar process may also be occurring for bulk 

MoS2, where the shift of the indirect bandgap with temperature may be affecting the resonance 

condition for the β and γ bands, while the p1 and α bands are tuned by the resonance with the 

excitonic transition. 

 The γ band presents an odd behavior as well, wherein Figure 5.15(a) it presented a high 

dispersion of 64 cm-1/eV between the laser energy range of 1.92 and 1.98 eV while it showed 

a small dispersion of 14 cm-1/eV between the laser energy range of 2.09 and 2.21 eV. Figure 

5.19(a) shows the Raman spectrum of bulk collected under a 1.96 eV laser illumination at 

 

Figure 5.18. Representation of the KQ double resonance channel responsible for the β band for three different 

laser energies. 
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temperatures ranging from 93 to 298 K, where we see both the A1g and γ bands. The A1g band 

presents the known linear behavior explored before, but the γ band presents another behavior, 

where its position increases with temperature and it decays afterward. In Figure 5.19(b), the 

position of the γ band is plotted as a function of ΔE. The γ band presents an increasing linear 

behavior as a function of ΔE until 0.1 eV, which is the limit of our measurements at 80 K 

corresponding to the 1.98 eV laser. The measurements with the 1.96 eV laser mimic the 

observed behavior of the measurements at 80 K, but the band position decays after 0.1 eV, 

which can be connected to either the resonance process or to temperature effects. The 

measurements with the 1.98 eV laser present similar results as those of the 1.96 eV laser, 

however, and the decay of the band as a function of ΔE is confirmed. 

 We associated the γ band to a combination of LA and TA phonons close to the M point. 

Since the LA and TA phonon branches present a positive derivative leaving the M point and 
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Figure 5.19. Raman spectrum of bulk under the illumination of a 1.96 eV laser obtained for different temperatures 

of the sample between 93 and 298 K, where the A1g and γ bands are fitted. The dashed line is a guide to the eyes. 

(b) Frequency of the fitted positions of the γ band as a function of ΔE, for laser energies between 1.92 and 1.98 

eV measured at 80 K (black dots), and collected with the 1.92 ( red dots), 1.96 (green dots) and 1.98 (violet dots) 

at temperatures ranging from 80 to 298 K. 
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going to the K point, as the laser energy increases, the wavevectors connecting the K and Q 

points become smaller. Therefore, the corresponding phonons become more energetic, which 

leads to a combination of phonons with increasing frequency, when we think only about the 

photon energy. When the temperature effects are considered, the dispersion of the band will be 

affected by the double resonance process, but it will also be affected by the thermal effects as 

well. 

 In summary, future calculations considering the behavior of the Q valley as a function 

of temperature are still needed to understand the behavior of α, β, and γ, but the general trend 

of the observed bands agrees well enough with the proposition of a shift in the valleys near the 

Q point. 

 The last important feature that we discuss for bulk, is the feature centered at 

approximately 177 cm-1, which is associated with the difference between the A1g and LA 

phonon branches around the M point, that we call δ. Figure 5.20 shows the Raman spectra of 

bulk collected with laser energies of 1.92 eV, 2.03 eV, and 2.09 eV, at temperatures of 93, 193 

and 298 K, where we see the spectral region between 370 and 430 cm-1, but also the δ band at 
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Figure 5.20. The Raman spectrum of bulk collected with laser energies of (a) 1.92, (b) 2.03 and (c) 2.09 eV at 93, 

193 and 298 K. 
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177 cm-1. The δ band presents a very small frequency increment with either the laser energy or 

temperature effects, and it is also asymmetric, which leads to the use of a modified Gaussian 

function that had an exponential decay to fit this peak. Therefore, we will not focus on the 

frequency of the δ band, but rather we focus on its intensity changes with both the laser energy 

and temperature, as it is shown in Figure 5.20. The intensities are calibrated by the intensity of 

the E2g mode, which is not affected appreciably by the resonance with XA and XB. 

 Since the δ band comes from the difference between two phonons, its intensity depends 

on the probability of the lowest energetic vibrational level, the LA(M) phonon, being occupied, 

which will be destroyed in order to produce the scattered light. Since the probability of 

occupation of a vibrational level increases as temperature increases, it would be expected that 

as temperature increases, the intensity of this band would increase as well. Although this 

behavior is observed for the 2.03 eV laser in Figure 5.20(b), the other laser energies tell 

completely different stories, where the intensities decrease as the temperature increases. 

Therefore, this band is also tuned by the resonance condition much like all the other double 

resonance bands as well. 

 Figure 5.21 presents the intensity of δ as a function of ΔE for the measurements at 80 K 

and the temperature dependence of measurements with the 2.03 and 2.09 eV lasers. The 

intensity profile of the measurements at 80 K reveals a clear maximum near 0.2 eV, 

corresponding to the resonance with XB, at 2.091 eV. The intensity of δ is greatly enhanced for 

the 2.03 eV laser at higher temperatures because the band is coming into resonance exactly as 

temperature increases and shifts XB to lower energy at the same time that the LA(M) phonons 

become more populated. On the other side, for the 2.09 eV laser, δ is close to the maximum at 
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at 80 K varying the laser energy, while the red and blue open squares correspond to measurements with a 2.03 and 

2.09 eV laser, respectively, varying the temperature. 
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approximately 0.22 eV, around 130 K, and it quickly goes out of resonance as temperatures 

increases, due to the XB shift to lower energies thanks to thermal effects. Therefore, even as the 

population of the LA(M) phonons increases, the intensity of δ will quickly decrease. 

 The knowledge provided by the δ band is important for the study of the Raman spectrum 

of defective TMDs since the defect induced bands have frequencies very close to those 

displayed by the bands resulting from the difference of frequencies. 

 To summarize the features observed and explored for bulk MoS2 in this section are 

included in Table 5.6, where we include the names, positions, and assignments of the double 

resonance bands. 

Table 5.6. Names, Assignments, and frequencies of the second-order features of bulk MoS2. 

 Name Assignment Frequency (cm-1) Reference  

 δ A1g(~M) - LA(~M) 178  [190]  

 α 2TA(~K) 380  [186]  

 β LA(~M)+ZA(~M) 395 This work  

 γ LA(~M)+TA(~M) 405 This work  

 p6 2LA’(K) or 2LA’(M) 480 This work  

5.2.4 Conclusions 

 In conclusion, we presented a comprehensive study of the Raman spectrum of few-

layers and bulk MoS2 covering the range between approximately 160 and 480 cm-1, where we 

show the presence of several bands that can be related to either first or second-

order/combination processes enhanced by the resonance with the excitonic transition. 

 This work shows the importance of the contribution of the other possible scattering 

channels in MoS2, which are relevant for bulk, as much as it is for 2L, 3L and nL as well. We 

mainly show other possibilities of attributions that are not considered in the literature and also 

that preserve the Raman selection rules, where infrared-active modes do not need to be involved 

if we just consider other possibilities as well. 

5.3 Temperature study of defect induced Raman bands in MoS2 

samples under laser resonance 

 This section is devoted to the study of the defect induced bands in the Raman spectrum 

of 1L and bulk MoS2 when the laser is in resonance with the excitonic transition energy. 

Synthesized or natural bulk crystals of MoS2 present a small concentration of sulfur 

vacancies [254], but, it is still non-negligible. We already discussed in chapter 3 the effects of 
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defects in the Raman spectrum of MoS2, where the defect induced bands are very weak, even 

when the sample is almost in resonance with the laser energy. Therefore, we would expect that 

in the low defect density regime, or high ᵀ�ᵀ�, the Raman spectrum of MoS2 would be dominated 

by the presence of mostly the first and second-order Raman peaks. 

 Figure 5.8 showed that for an exfoliated sample, which is our reference for a low defect 

density sample quality, we only see a small contribution from the LA band at 300 K. When the 

temperature is reduced to 80 K, however, the intensity of the LA band increases expressively, 

to the point where it equals the intensity of the 2LA band and surpasses the intensity of the E’ 

band at approximately 388 cm-1. 

 We explore this result further, where we measured the Raman spectra of 1L using two 

laser lines and changing the temperature in the range of 80 to 300 K. Further, we also measure 

the Raman spectrum of a defective 1L using a single laser excitation energy of 1.96 eV and 

changing the temperature from 80 to 400 K. 

5.3.1 Defect induced bands in the Raman spectra of natural MoS2 at low 

temperatures 

 For laser energies close to XA or TA, the Raman signal is strongly suppressed by the PL 

signal, which makes the measured spectra very noisy and difficult to interpret. Therefore, 

instead of working close to the resonance with XA or TA, we move to laser energies closer to 

XB, where the PL intensity is a small fraction of the XA intensity and the spectra measured in 

this energy range present easily discernable features. Figure 5.22(a) shows the Raman spectrum 

of 1L between 140 and 260 cm-1 collected in the energy range between 2.03 and 2.21 eV at 80 

K. In this case, we can see three main features, the δ, TA(K) and the LA bands. 

 According to references [177] and  [53], the range between 140 and 260 cm-1 is 

composed of at least 10 bands altogether. The fitting procedure to converge so many peaks in 

such a small spectral range is highly unreliable. We also have bands presenting strong 

convolution, which makes it extremely difficult to analyze. Therefore, instead of fitting every 

single component in this range, we propose the analysis of the integrated area of the defect 

induced bands and also the subtractive band δ, which would produce a much more reliable and 

reproducible procedure. 

 To obtain a quantitative analysis of the integrated intensity, we fit the asymmetric δ 

band with a modified Gaussian function to show an exponential decay in the high-frequency 

range, characteristic of this band. The choice of an asymmetric function relates to the pDOS of 

the A1’(~M) branch which is relatively sharp, and the pDOS of the LA(~M) branch, which is 
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very asymmetric. The combination of both densities of states would lead to a line shape that is 

asymmetric in shape and can avoid the use of more than one function to fit this particular peak. 

The definition of the modded gaussian peak can be found in Appendix D. The TA(K) band is 

fitted with a single gaussian since this band presents a characteristic thin contribution. The 

asymmetric LA band is fitted with three components, one biGaussian at 225 cm-1 and two 

Gaussians around 230 and 235 cm-1. The biGaussian represents the contribution from the van 

Hove singularity to the LA band, while the Gaussians curves represent the contribution from 

the double resonance LA(~K) and LA(~M) bands, discussed in chapter 3. The meaning for the 

choice of a biGaussian, which has two different widths at half maximum, is to account for the 

asymmetric shape of the van Hove singularity in the pDOS related to the saddle point between 

the K and M points in the LA branch (see Figure 2.8(d)). The definition of the biGaussian 

function used for the fitting is presented in Appendix D, 

 Figure 5.22(b) shows the integrated area of the δ, TA(K) and LA bands as a function of 

the laser energy. We see a maximum at approximately 2.09 eV, corresponding to the resonance 

with XB, similar to bulk. We would expect then, that the subtractive band δ and the LA bands 

show a strong enhancement when the laser energy approaches the resonance with the excitonic 

level. Meaning that both δ and LA bands are strongly enhanced near the resonance with XB. 

This is also true for XA, as it was shown in Figure 5.8 and Figure 5.9, where the intensity of the 
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Figure 5.22. (a) Raman spectra of 1L in the spectral range of 140 to 260 cm-1 collected with several laser energies 

at 80 K. The three main features in this range are marked and named. The intensities are normalized by the LA 

band for clarity. (b) Integrated intensities of the δ (solid squares), TA(K) (solid circles) and LA (solid triangles) 

bands as a function of the laser energy. The intensity is normalized by the intensity of the E’ band. 
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LA band is extremely high, however, the presence of a strong PL along with a very strong 

elastic scattering signal further mask the presence of the defect induced bands. 

5.3.2 The behavior of the defect induced and δ bands as a function of temperature 

for 1L 

 In order to check the behavior of the Stokes/Anti-Stokes band δ and the defect induced 

TA(K) and LA bands, we have measured the Raman spectra with two laser energies close to 

XB, at 2.03 and 2.09 eV, and in the temperature range between 80 and 298 K. 
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Figure 5.23. (a) Raman spectra of 1L between 140 and 260 cm-1 collected under a laser energy of 2.03 eV at 

temperatures ranging from 93 to 298 K. The spectra are normalized by the intensity of the LA band. (b) Area of 

the three main components from (a) (δ, TA(K) and LA) as a function of temperature. (c) Same as (a) but with a 

laser energy of 2.09 eV. (d) Same as (b) but corresponding to the spectra at (c). 
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 Figure 5.23(a) shows the Raman spectra of 1L for temperatures from 93 to 298 K, 

between 140 and 260 cm-1 for the 2.03 laser, where the intensity is normalized by the LA band 

for better visualization. From the start, we observe the contribution from the δ band increasing 

as temperature increases, following the same trend as bulk. The TA(K) band disappears as 

temperature increases, being overwhelmed by the δ band. The LA band is not much affected 

by the temperature effects, however, remaining almost constant as temperature changes. We 

also see the band at 150 cm-1, corresponding to the E’-TA(K) band, which is strongly affected 

by temperature effects. 

 Figure 5.23(b) shows the integrated area of the three main bands, δ, TA and LA, as a 

function of temperature for the 2.03 eV laser, where the intensity is normalized by the intensity 

of the E’ band. The solid points correspond to the fitted values of each band as a function of 

temperature. One could easily realize that the LA and TA bands remain almost constant as 

temperature increases, while the δ band increases by almost five-fold. 

 Figure 5.23(c) shows the Raman spectra of 1L for temperatures of 93 to 298 K, between 

140 and 260 cm-1 for the 2.09 laser, where the intensity is normalized by the LA band again for 

clarity. Now, similar to what we observed for bulk, the δ band is already amplified even at the 

very low temperature of 93 K, but, as temperature increases, the intensity of the δ band increases 

as well, in contrast to the results from bulk. Figure 5.23(d) shows the integrated area of the δ, 

TA and LA bands normalized by the E’ band intensity as a function of temperature, for the 2.09 

eV laser. While the intensity of the δ band increases as a function of temperature, the intensity 

of the defect induced bands are actually decreasing, which indicates that the defect induced 

bands are going out of resonance. Since the sample has a very low defect concentration, we 

expect that the defect induced bands would show this big intensity only when the resonance 

condition with XA or XB is achieved. 

5.3.3 Defect induced bands in defective samples under resonance at low 

temperatures 

 Further, we explore the same results for a defective sample grown by Chemical Vapor 

Deposition assisted by sodium cholate [255,256], which was discussed in section 4.3.2. Figure 

5.24(a) shows the measured Raman and PL spectra of a defective collected with a 1.96 eV laser 

for temperatures between 120 and 400 K in the spectral range of 1.95 to 1.55 eV. Figure 5.24(b) 

shows the extracted Raman spectra for each temperature as well. From Figure 5.24(a), we can 

observe the resonance behavior with the excitonic transition TA. As the temperature increases, 

the PL center redshifts, exactly like we observed for the exfoliated sample. 
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 Figure 5.25 shows the PL peak position from Figure 5.24(a) as a function of 

temperature, compared with the emission of the exfoliated monolayer in section 5.1.3. The 

range between 200 and 400 K is very well behaved and presents a linear decay, with a slope of 

-0.28 meV/K, very similar to the results from the exfoliated sample at approximately -0.25 

meV/K. We do not know a reason for the anomalous behavior of the PL peak in the temperature 

range of 100 to 200 K, but a possible explanation may be related to the resonance with a 

combination of vibrational levels [126,127]. 

 We now turn to the analysis of the defect induced and subtractive bands in the range 

between 170 and 260 cm-1. From Figure 5.24(b), we can see that as the temperature increases, 

the defect induced bands become less intense, and the δ band becomes more intense. The 

intensity of each spectrum is normalized by the intensity of the E’ band. Since the laser energy 

is very close to XA and XB, the E’ band is a good normalization standard because it presents no 

resonance with XA and XB. Therefore, we can use it to quantify ᵀ�ᵀ� in a more concise way. 
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Figure 5.24. (a) Measured spectra of the defective sample for the temperature range between 120 and 400 K using 

a 1.96 eV laser. The intensity is normalized by the intensity of the PL peak around 1.8 eV. (b) Extracted Raman 

spectra from (a). The intensity is normalized by the intensity of the E’ band. 
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 Figure 5.26(a) presents the intensity of the A1’, δ, TA(K) and LA bands normalized by 

the intensity of the E’ band. The A1’ band slowly comes into resonance with XB as the 

temperature increases, since XB is shifted both by temperature and defect effects. On the other 

hand, the defect induced bands, are steadily coming out of resonance, following a similar 

behavior that was observed for 1L with the 2.09 eV laser. Since the laser is slowly coming out 

of resonance with the excitonic transition observed in  Figure 5.25 as the temperature increases, 

we can say that the defect induced bands are still heavily dependent on the resonance with the 

laser energy for their observation, even when ᵀ�ᵀ� is considerably low. 

 Now, considering the relation between ᵀ�ᵀ� and the intensity ratio ᵀ�(ᵀ�ᵀ�)
ᵀ��ᵀ�′�

 given by equation 

4.4, we may now find a new constant ᵀ��ᵀ�′� for the 1.96 eV laser. Since ᵀ�ᵀ� = 8.6 ± 0.6 ᵅ�ᵅ�, 

and ᵀ�(ᵀ�ᵀ�)
ᵀ��ᵀ�′�

= (0.73 ± 0.05) − (0.0010 ± 0.0002)ᵀ�, we can estimate the value of ᵀ��ᵀ�′� =

(47 ± 4) − (0.064 ± 0.015) ᵀ� ᵅ�ᵅ�2 for the 1.96 eV laser. At 80 K, ᵀ��ᵀ�′� = 42 ᵅ�ᵅ�2, and in 

contrast with the value obtained for the 2.33 eV laser, this value is almost 40 times bigger, 

revealing the importance of a laser in resonance with the excitonic transition in order to 

correctly quantify the presence of defects in the sample. The contribution from temperature 

effects is ᵀ��ᵀ�′�(ᵀ�) = −0.064ᵀ� ᵅ�ᵅ�2, which can reduce the constant by up to 26 nm2 in our 

temperature range. Although this would mean a new constant of 21 nm2, this value is still 20 
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Figure 5.25. Position of the PL peak for the defective sample as a function of temperature (solid circles), compared 

with the position of TA of the exfoliated sample in section 5.1.3 (empty circles). The solid line used to fit the 

position of TA for the defective sample is a linear adjust with a slope of -0.28 meV/K. The solid line used to fit the 

position of the exfoliated sample is the same presented in section 5.1.3, while the line has a slope of -0.25 meV/K.
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times bigger than the one reported for the 2.33 eV laser of ᵀ��ᵀ�′� = (1.11 ± 0.08) ᵅ�ᵅ�2 [177], 

revealing that even at elevated temperatures the intensity of the defect induced bands is still 

much higher by a simple laser choice. We can also use the same procedure to calculate the 

coefficient ᵀ��ᵀ�′� for the TA band, where ᵀ�(ᵀ�ᵀ�)
ᵀ��ᵀ�′�

= (0.73 ± 0.05) − (0.0010 ± 0.0002)ᵀ�, and 

ᵀ��ᵀ�′� = (28 ± 4) + (0.064 ± 0.015)ᵀ�. 

 The subtractive band δ presents a steady increase with temperature, consistent with the 

previous observations of 1L for the 2.03 and 2.09 eV laser energies. In this case, we can 

conclude that this band is more affected by temperature effects for 1L than it is for bulk samples. 

This is especially true since δ is always increasing in intensity regardless of the laser energy we 

used for 1L, in the proximities of TA, XA, and XB. Since the intensity of the δ band increases as 

the temperature increases, the area it covers in the spectrum will also increase, due to its intrinsic 

asymmetric shape. Therefore, as temperature increases, the δ band will mask the presence of 

the defect bands, becoming the most prominent band in the region between 140 and 260 cm-1, 

which is the result presented in Figure 5.26(b). 
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Figure 5.26. (a) Intensities of the A1’, TA(K), δ and LA bands normalized by the intensity of the E’ band as a 

function of temperature. (b) Normalized area of the TA(K), LA and δ bands as a function of temperature. 





 

 

6. Optical properties of WS2, MoSe2, and their 
heterostructure 

 This chapter is devoted to the investigation of the optical and electronic properties of 

monolayers of WS2 and MoSe2 and the heterostructure formed by the stacking of these two 

materials. We dive into the photoluminescence spectrum of the samples first, in order to 

understand the interlayer interaction in the heterostructures. We investigated the characteristics 

of the excitonic transition as a function of the sample temperature. The PL spectrum was 

observed at different points in the heterostructure, to observe how the interlayer interaction can 

affect the electronic structure of each sample. From that point on, we deal with the resonant 

Raman signal of the specific points that present higher or smaller interactions between the 

samples and explore the topic further by comparing the PL and Raman signals at different 

temperatures and laser energies. 

 Much like the Raman spectrum of MoS2 presents a strong resonance with XA or TA, the 

Raman spectrum of WS2 and MoSe2 presents a strong resonance with XA and TA as well, as it 

has been shown for 1L, few-layers and bulk of these materials [60–62,117,118,162,181,219]. 

A few important properties of WS2 and MoSe2 have not been explored though, such as the 

double resonance processes in these TMDs, and how temperature can affect these processes. In 

the next sections, we deal with these issues, starting with WS2, and moving to MoSe2. The final 

section of this chapter is devoted to the study of the heterostructure formed by the WS2 and 

MoSe2 flakes, where we measure the Raman spectrum and observe the interlayer coupling 

between each flake and the effects observed in the Raman spectrum. 

6.1 Raman and photoluminescence measurements on WS2 

 From Figure 2.6, we can extract the position of XA, XB, and XC of WS2 at room 

temperature, where we find that XA = 2.0 eV, XB = 2.4 eV and XC = 2.8 eV. Using what we 

learned from MoS2, one easy way to recover the resonance with the laser energy is to reduce 

the sample temperature in order to increase the electronic transition energy. This phenomenon 

is easily illustrated in Figure 6.1, where for two laser energies of 2.18 and 2.54 eV, slightly 

above XA and XB for this material, the Raman spectra are enhanced by several times compared 

to that at 320 K. One detail in particular when comparing Figure 6.1(a) and Figure 6.1(b) is the 

fact that the bands that show enhancement for XA are different from the bands that show 

enhancement for XB, revealing an intricate possible double resonance behavior for this material.  
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 Recent resonance Raman measurements of WS2 reveal a rich structure of features for 

laser energies in the proximities of XA and TA [219]. Moreover, the features related to the zone 

center phonons are more enhanced, especially the band associated with the combination of two 

A1’ phonons, 2A1’. The results observed in ref. [219] are similar to the results we observed here 

in the temperature range between 80 and 160 K in Figure 6.1(a), where the intensity of the 2A1’ 

band is very intense near 80 K, and it is almost as intense as the E’ band. In contrast, the bands 

associated with the combination of acoustic phonons in the edges of the Brillouin zone are not 

very intense, and even the 2LA band is diminished compared to the intensity of the A1’ band. 
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Figure 6.1. Raman spectra of WS2 collected under (a) 2.18 eV and (b) 2.54 eV excitation for temperatures ranging 

from 320 K (bottom) to 80 K (top). 
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  Figure 6.1(b) shows the Raman spectrum collected under the 2.54 eV laser for 

temperatures ranging from 80 to 320 K. At 80 K, the position of XB shifts to higher energy 

compared to 320 K [257]. Therefore, starting from 320 K in Figure 6.1(b) and going to 80 K, 

we restore the resonance with XB. We can observe the presence of several peaks, but the most 

enhanced bands, in this case, are associated with the combinations of acoustic phonons at the 

zone edges. The spectrum of WS2 at 80 K in Figure 6.1(b) is very similar to the spectrum of 

WS2 collected with a 2.41 eV laser, a common laser used to probe and characterize 

WS2 [61,119], where the intensity of the 2LA band at approximately 356 cm-1 is extremely 

enhanced compared to the 2.18 eV laser. Following the assignment proposed for MoS2, we 

believe that the main contribution to the 2LA band for WS2 should come from the saddle point 

in the LA branch between the K and M points. Although there should be some dispersive bands 

for the 2LA band, it has not been reported so far in the literature, and we did not observe any 

dispersive behavior of the 2LA band with the laser or temperature. We summarize the position 

of each band and their respective assignment in Table 6.1, where we use the irreducible 

Table 6.1. Assignment of all the bands observed for the 2.18 and 2.54 eV lasers at 80 K. 

Band 

assignment 

Band position (cm-1)  Band 

assignment 

Band position (cm-1) 

2.18 eV 2.54 eV  2.18 eV 2.54 eV 

LA(SP) 178 177  
E’’2+TA(K), 

E’’2+ZA(K) 
486 482 

E’’2-TA(K), 

E’’2+ZA(K) 
 193  

E’1+TA(K), 

E’1+ZA(K) 
 504 

A1’-LA(K)  213  E’’2+LA(K)  528 

A1’-LA(M)  230  
A1’+TA(K), 

A1’+ZA(K) 
 538 

2ZA(M) 266 266  E’1+LA(M) 555 552 

TA+ZA(K) 299 299  A1’+LA(M) 589 590 

LA+TA(M)  313  
2LA+2TA(M), 

2LA+2ZA(M) 
654  

LA+TA(K), 

LA+ZA(K) 
331 328  2E’1(M) 685  

2LA(SP) 355 356  E’1+E’2(M) 712 715 

E’(Γ) 360 360  2E’(Γ) 720  

E’1(M)  373  ? 759  

A1’(K)  389  E’+A1’(Γ) 781  

A1’(Γ) 421 421  2A1’(Γ) 842  
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representations of the Γ point for clarity and treat the degenerate phonon branches as E’1 and 

E’2, for the higher and lower frequencies, respectively. The phonon dispersion and critical 

points in the phonon structure are listed in Appendix C. 

 From this point forward, we focus on the results from the laser excitation line at the 

absorption edge of XA and TA, 2.18 eV, since the Raman spectrum shows the highest resonance 

at lower temperatures. As we have shown for MoS2, the position of the A1’ and E’ bands of 

WS2 will be affected by temperature effects as well, where the main factor for the shift induced 

by temperature effects comes from the anharmonic effects related to phonon-phonon and 

electron-phonon interactions.  

 Figure 6.2(a) shows the shift in the position of the A1’ and E’ bands as a function of 

temperature for the 2.18 eV laser. The fitted slope for the frequency of the peaks as a function 

of temperature is -0.011±0.001 and -0.010±0.001 cm-1/K for the A1’ and E’ bands, respectively. 

The slope values are in good agreement with the observed results present in the 

literature [77,227,258]. The important remark we make here is about the intensity of the A1’ 

band, which comes into resonance with XA as the temperature decreases, revealing a strong 

resonance of the A1’ band with XA, as it is revealed in Figure 6.2(b). 

 Figure 6.3(a) shows the PL spectrum collected under the 2.18 eV laser with a laser 

power of 0.10 mW. We can observe the PL peak shifting to lower energies as temperature 

increases, which is in agreement with the observed PL spectra for MoS2. The intriguing 

characteristic is how the center of the PL emission is shifting as a function of temperature since 
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Figure 6.2. (a) Frequency of the A1’ (solid diamonds) and E’ (empty circles) bands as a function of temperature. 

(b) The intensity of the A1’ and E’ bands as a function of temperature, where the intensities of both peaks are 

normalized by the maximum of the A1’ band. The solid and dotted lines are a guide to the eye. 
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it is in total disagreement with the expected behavior based on equation A.13 (Appendix A). 

The observed behavior of the peak PL emission is changing like an exponential decay. The 

fitting of the peak PL emission as a function of temperature is presented in Figure 6.3(b), where 

an exponential decay of the form ᵅ�0 + ᵀ�ᵀ�ᵅ�/ᵪ� is used to fit the position of the PL emission as a 

function of temperature, and the fitting parameters can be found in Table 6.2. Although the 

equation that governs the intensity of the Raman spectrum is not directly proportional to the 

electronic energy, the peak intensity of the Raman signal comes when the laser energy is close 

to the electronic transition energy. Therefore, when the transition energy is being tuned by the 

thermal effects, the Raman signal is coming out of resonance, revealing that the intensities of 

these bands are related to the position of XA. 

6.2 Raman and photoluminescence measurements on MoSe2 

 MoSe2 possesses three excitonic transitions in the visible and NIR range, which can be 

extracted from Figure 2.6 just like we did for WS2. The positions of XA, XB, and XC are 
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Figure 6.3. Measurement of the PL emission for a laser with energy close to the absorption peak. (a) PL spectrum 

collected with a 2.18 eV laser for the temperature range between 80 to 300 K. (b) Position of the less energetic 

components of (a) as a function of temperature shown as solid spheres, the solid line represents a fit with an 

exponential decay function. The fitting parameters are presented in Table 6.2. 

Table 6.2. Fitting parameters of the exponential decay function used to fit the position of XA 

as a function of temperature for the XA transition of WS2. 

 ᵀ� (ᵀ�ᵀ�) ᵪ� (ᵀ�) ᵅ�0 (ᵀ�ᵀ�) 

XA 0.283 ± 0.064 58 ± 10 2.015 ± 0.005 
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approximately 1.55, 1.75 and 2.60 eV at room temperature. However, it has been shown in the 

literature that the excitonic transitions present a shift as a function of temperature as well [259]. 

Here, we show how the Raman spectrum of MoSe2 changes for the resonance with XC. 

 Figure 6.4 presents the Raman spectrum of MoSe2 collected under the laser energies of 

2.18, 2.54 and 2.81 eV. We observe straight away the strong resonance of the A1’ band under 

the three laser energies, and how the intensity changes with temperature for the two laser 

energies at the edges. The E’ band intensity is also affected by the three different lasers shown 

here, but to a much lesser degree than the A1’ band.  

 One important detail is the behavior of the intensity as a function of temperature in the 

three laser energies below, above, and on resonance with the excitonic transition. Again, the 

excitonic transition is tuned by temperature due to the electron-phonon interaction, meaning 

that as temperature increases, the electronic transition energy decreases. At 80 K for the 2.18 

eV laser in Figure 6.4(a), the intensity is approximately 1.5, however, as the temperature 

increases, the intensity of the A1’ band increases, reaching approximately 2.5 at 320 K. In the 
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Figure 6.4. Raman spectrum of monolayer MoSe2 between the temperature range of 80 to 320 K for the laser 

energies of (a) 2.18, (b) 2.54 and (c) 2.81 eV. The intensity in the spectral range of 250 to 350 cm-1 after the dotted 

axis is multiplied by 10 for clarity. The intensities are normalized by the intensity of the silicon peak. 
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spectra obtained with excitation energy of 2.54 eV laser in Figure 6.4(b) the intensity of the A1’ 

band remains almost constant in the whole temperature range measured. The last measurements 

that are shown in Figure 6.4(c) are obtained with the 2.81 eV laser, where the intensity is 

actually decreasing as a function of temperature. In summary, the processes observed are 

actually being tuned by the resonance with XC. 

 The intensity of the A1’ band as a function of the laser energy, corrected with the 

intensity of the silicon peak [231] (see section 4.2) is shown in Figure 6.5(a) for a few 

temperatures in the range of 80 to 320 K, and it is fitted with equation 3.2 in order to extract 

the excitonic transition energy. As temperature increases, we can see that the energy of the XC 

transition shifts to lower energies. The same result can be observed for the intensity of the E’ 

band, presented in  Figure 6.5(b) which does not present an enhancement as strong as the A1’ 

band, but presents an enhancement with XC nonetheless. 

Table 6.3. Fitting parameters of the linear fit in Figure 6.5(c). The electronic transitions 

extracted from the A1’ and E’ bands are marked as XC(A1’) and XC(E’), respectively. 

 ᵀ�(0) (eV) 
ᵀ�ᵀ�
ᵀ�ᵀ� (meV/K) 

XC(A1’) 2.591±0.002 -0.337±0.012 

XC(E’) 2.650±0.005 -0.417±0.017 
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Figure 6.5. Intensities of the (a) A1’ and (b) E’ bands as a function of the laser energy for the temperatures of 80, 

160, 240 and 320 K. The intensities are normalized by the intensity of the silicon peak in the measured spectrum, 

and afterward, we used the silicon cross-section from ref. [231]. The solid lines represent a fit with equation 3.2. 

(c) Position of the XC as a function of temperature taken from the fitted profile of the A1’ band (solid diamonds) 

and E’ band (empty circles). The fitting parameters can be found in Table 6.3. 
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 From the fitting of the intensities with equation 3.2, we can recover the electronic 

transition energy, presented in Figure 6.5(c) as a function of temperature. We can see that the 

electronic transition energy is slightly different for the A1’ and E’ bands, with an apparent 

difference of about 60 meV at 80 K. The fitting parameters obtained by the linear fitting of both 

the observed electronic transitions are presented in Table 6.3. In addition to the difference in 

their energy, the rate of change of the electronic transition with temperature is also different 

between the two bands. In a recent work [259], it was shown that the dielectric function of 

MoSe2 in the energy range of XC is actually composed of two peaks instead of just one. The 

two components, called Ca and Cb in ref. [259], presented different temperature coefficients of 

values -0.32 meV/K and - 0.36 meV/K, which are approximately consistent with the XC(A1’) 

and XC(E’) measured in this work. However, the difference between their values at 80 K was 

approximately 150 meV, almost 2.5 times the value we observed in our work. Nonetheless, the 

attributed transitions Ca and Cb are related to transitions in the proximity of the Γ point, but 

separated due to spin-orbit interactions [260]. Since the method of growth used in [259] is 

different from the method used here, we attribute the observed difference to probable strain or 

other external influences. 

 Coming back to the results observed specifically at 2.18 eV in Figure 6.4(a), we further 

analyze the dependence of the A1’ and E’ bands frequencies and intensities as a function of 

temperature. Figure 6.6(a) shows the zoomed spectra of MoSe2 measured with the 2.18 eV laser 

line in the spectral range between 270 and 360 cm-1. Coming from the lowest temperature at 80 

K, the peak corresponding to the E’ band is strongest at approximately 292 cm-1, called E’2, 

while there is a small peak centered at approximately 287 cm-1, called E’1. As the temperature 

increases, the intensity of E’2 decreases, while the intensity of E’1 increases, to the point where 

we can barely distinguish the E’2 band at 320 K. 

 In monolayer MoSe2, it was reported by a few works the resonance behavior of the E’ 

band as a function of the laser energy [60,117]. It was observed that for laser energies below 

2.18 eV, the position of the E’ band was located at approximately 292 cm-1, while for energies 

above this threshold, the position of the E’ band was located at approximately 289 cm-1. The 

explanation of this behavior comes from the split of the LO-TO phonon branches at the Γ point 

due to the polar character of MoSe2 [60,261], where the LO phonons, with higher energy, would 

be the E’2 band, and the E’1 band would represent the TO phonons. The exact explanation for 

the behavior where the E’2 band comes into resonance with XA and XB is still lacking though, 

and we keep only the observation of this event. In section 5.2.3, we saw a similar behavior for 
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bulk MoS2, where the band appearing at approximately 386 cm-1, also comes into resonance 

with XA and XB. Which means that the assignment for the E’1 and E’2 bands are correct. 

 Figure 6.6(b) shows the position of the A1’, E’1 and E’2 bands as a function of 

temperature, where we see a linear behavior of the positions as a function of temperature, 

similar to the results from MoS2 and WS2. What has changed is the value of the slope, which is 

-0.008 cm-1/K for both A1’ and E’1 bands, while it is null for the E’2 bands. Since the linear 

behavior is only an approximation of equation A.6, the difference observed means that the 

average phonon energy is different, but also the fitting parameters are different. The reported 

value for the slope of the A1’ band is -0.012 for a temperature range of 123 to 623 K [262,263], 

measured with a 2.33 eV laser. Although the reported result is bigger than the results we have 

found here, the temperature range is also bigger, meaning that other effects such as fourth-order 

terms in the potential interaction between atoms must be taken into account. Nonetheless, the 

authors explain the observed shift of the Raman bands in terms of thermal expansion, without 

taking into account the anharmonic effects due to phonon-phonon interactions. They find 
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Figure 6.6. (a)Raman spectra of MoSe2 in the spectral range of 270 to 330 cm-1 collected under 2.18 eV laser 

illumination for the temperature range of 80 to 320 K. The lines depict the position of the two components of the 

E’ band, named E’1 and E’2, which move as a function of temperature.  (b) Frequencies of the A1’ and E’ bands as 

a function of temperature. The solid lines represent a linear fit where the slope of both A1’ and E’1 bands is given 

by the Δω/ΔT, while the slope of the E’2 band is null. (c) Intensities of the A1’ band and E’1 bands as a function of 

temperature. The intensities are normalized by the highest intensity of the A1’ band for clarity. 
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thermal expansion coefficients of approximately 1 x 10-4 K-1 for MoSe2, however, the reported 

thermal expansion coefficient for bulk MoSe2 is reported to be approximately 7 x 10-6 K-1 [264], 

which is one order of magnitude smaller than the value obtained by ref. [262].  

 Considering that bulk should present a smaller expansion coefficient compared to a 

monolayer, we could still assume that the expansion coefficient for monolayer MoS2 would be 

approximately equal for MoSe2 as well. A recent work using Raman spectroscopy of a 

monolayer MoS2 at different temperatures and substrates, found a thermal expansion value of 

approximately 7×10-6 K-1, in good agreement with the reported value for bulk MoSe2. 

Therefore, we assume that most of the contributions to the softening of the phonon energies are 

due to anharmonic interactions. 

 The final remark we make in this section is regarding the intensities of the A1’ and E’ 

bands at the 2.18 eV laser as a function of temperature, which is found in Figure 6.6(c). The 

intensities of both the A1’ and E’ bands are increasing, although at different rates, meaning that 

the modes are coming into resonance as temperature increases. This resonance is due to XC, 

which has a rather broad width, and shifts to lower energy as temperature decreases, as it is 

shown in Figure 6.5(c). 

 Since we have an understanding of the resonance phenomena and exciton-phonon 

interaction in WS2 and MoSe2 we investigate the stacking effects on the heterostructures formed 

by monolayers of WS2 and MoSe2. 

6.3 Heterostructure of WS2/MoSe2 

 We make two main observations, the coupling of the E’ mode of MoSe2 with the 

excitonic transition of WS2, and also the observation of a double, triple, or higher-order process 

involving the combination of two phonons of WS2 and a phonon of MoSe2. 

 Only a few works have reported the presence of an additional peak in the Raman 

spectrum due to interlayer interactions [265–268]. Even fewer have reported the emergence of 

additional peaks due to interlayer interactions in heterostructures, where only one work reports 

the observation of an additional band in the Raman spectrum of a WSe2 over hexagonal Boron 

Nitride (hBN) [266]. They report the presence of two additional peaks corresponding to the ZO 

vibrational mode of hBN at 820 cm-1, and the combination of the ZO mode of hBN with the 

A1’ mode of monolayer WSe2, at 1070 cm-1. Due to symmetry restrictions, the ZO mode of 

hBN is not Raman active, however, due to the interlayer interaction between WSe2 and hBN, 

the modes could be observed, and its intensity profile matches the electronic transition energy 

found by absorbance. 
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 Here, we work with the heterostructure presented in Figure 4.6(a), where we measure 

different spots of the sample to compare their optical responses. Raman and PL measurements 

were taken at the different spots of the sample, presented in Figure 6.7(a).  

 The PL measured at the colored spots in Figure 6.7(a) are presented in Figure 6.7(b), 

where we can have an idea of the interlayer coupling based on the observed difference of the 

PL peaks intensity in the monolayers presented in Figure 4.6(b) and (c). It would be expected 

that changes in the interlayer coupling between the flakes in the heterostructure would lead to 

higher emission from one layer or the other, according to the strength of the interlayer coupling, 

which has been observed for other heterostructures of MoSe2 and WSe2 [269]. 

 Basically, the interlayer interactions can be probed by the relative intensity between the 

PL peak of WS2 and MoSe2 [270,271]. Although it is expected that the interlayer interaction 

should be tuned by the angle between the layers, the domains observed in our sample are not 

well defined. Therefore, we can’t extract the angle between the top WS2 monolayer and the 

bottom MoSe2 monolayer. 

 From the PL spectra presented in Figure 6.7(b), we can observe that the relative PL 

intensity between WS2 and MoSe2 is almost equal for H2, while for the other points the intensity 

of the PL of WS2 is much stronger than the PL of MoSe2. The laser used to acquire the PL 

spectra in Figure 6.7(b) is the 2.81 eV laser, which is in resonance with XC from WS2, but it is 
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Figure 6.7. (a) Measured spots of the WS2/MoSe2 heterostructure. (b) PL spectrum of the spots presented in (a), 

measured with a 2.81 eV laser. The dashed lines at approximately 1.58 and 2.0 eV are the approximate positions 

of XA for MoSe2 and WS2, respectively. The peak appearing at approximately 1.4 eV is the second-order 

diffraction from the laser. The dotted peak in H4 is the PL spectrum multiplied by 0.1, in order to show the entire 

data set. Measurements are carried under 80 K. 
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coming out of resonance with XC from MoSe2. Therefore, we would expect an enhancement of 

the PL from WS2, while the PL from MoSe2 would be out of resonance. Since the biggest 

enhancement of the PL intensity of MoSe2 comes from the H2 spot in Figure 6.7(b), it appears 

that the interlayer interaction would be strongest for H2, while the weakest would come from 

the other points. 

 In order to explore the resonant behavior of the heterostructure, instead of measuring so 

far into the resonance with XC, it would be more appropriate to measure the PL closer to the 

resonance with XA, where possible interlayer excitons can be observed due to the resonance 

condition matching the electronic level closest to the optical bandgap. In this context, we 

measured the PL spectrum near the XA/TA excitonic transition of the spots presented in Figure 

6.7(a). 

 Figure 6.8(a), shows the PL spectrum of all spots present in Figure 4.6(a) and Figure 

6.7(a) collected under a 2.18 eV laser illumination at 80 K. While the PL spectrum of MoSe2 

presents a strong peak related to the XA transition, the PL spectrum of WS2 is relatively weak, 

presenting a band at approximately 2.08 eV. The Raman lines can be observed at energies above 

2.0 eV, where the most intense Raman band for WS2 is the A1’ band, which presents almost 

60% of the intensity of the PL peak. The Raman signal of MoSe2 cannot be observed in Figure 

6.8(a) due to the strong resonance observed by the PL peak. The heterostructures present a very 

interesting behavior, where the intensity of the PL peak of MoSe2 drops drastically, becoming 

almost equal to the intensity of the PL peak of WS2. In addition, a new peak at 2.0 eV starts 

forming in the PL spectrum of WS2, which becomes the dominant feature as we move from H1 

to H5. The apparent difference between the peak observed for WS2 and the additional peak 

observed in H1 to H5 is 50 meV, which corresponds to the binding energy of TA for WS2 [272]. 

It could be suggested that the observed enhancement of the TA emission in the heterostructure 

can be due to the interlayer interaction, which may transfer charges from the MoSe2 layer to 

the WS2 layer. And if this is indeed the case, we would see an enhancement of the contributions 

from the Raman spectra of MoSe2 coming into resonance with the excitonic transition of WS2 

due to the resonance effect caused by the hybridization of the electronic states between the top 

and bottom layers. 

 Figure 6.8(b) shows the Raman spectrum extracted from Figure 6.8(a) for the seven 

spots mentioned before. In the WS2 spectra, we see an enhancement of the A1’ and E’ bands, 

which was discussed before. We also notice the presence of the double resonance bands listed 

in Table 6.1. In the MoSe2 side, the most prominent band observed is the A1’ band at 

approximately 240 cm-1, and the E’ band is barely noticeable. However, moving into the Raman 
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spectrum of the heterostructure spots, we observe the presence of two peaks that are enhanced, 

one at approximately 290 cm-1 and another one at approximately 1130 cm-1.  

 We can attribute the peak at 290 cm-1 to the E’ peak of MoSe2 since the frequency 

corresponds quite well to the frequency observed in Figure 6.6(b). But, the intensity of the E’ 
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Figure 6.8. (a) PL measurements obtained with a 2.18 eV laser for the same spots presented in Figure 4.6(a) and 

Figure 6.7(a). The thin peaks above the energy of 2.0 eV are the Raman spectrum coming from the flakes, while 

the thin peaks below 1.6 eV are due to the plasma lines coming from the Ar-Kr laser. (b) Raman spectrum extracted 

from the measurements in (a), where the intensity is normalized by the intensity of the Si peak at approximately 

525 cm-1. 
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mode in the heterostructures is much higher than the intensity observed in the monolayer. This 

is indicative of the strong interlayer interaction since, in the case of weak interlayer interaction, 

the resulting Raman spectrum of the heterostructure would correspond to just the sum between 

the Raman spectrum of the individual layers.  

 We illustrate the interlayer interaction by comparing the Raman spectrum obtained by 

the sum of the spectrum of the individual layers, and the spectrum of the heterostructure itself, 

presented in Figure 6.9. In both of the spectra in Figure 6.9, the A1’ band of WS2 is the dominant 

feature, but we can see some noticeable variations in the intensity of the other features. First, 

the intensity of the A1’ band of MoSe2 is much stronger in the H1 spectrum than in the sum, 

which is also the case of the E’ band. Second, the intensities of the second-order and double 

resonance features of WS2 are reduced compared to the silicon peak close to 520 cm-1, 

especially the E’’-LA(K) band. The change in intensity of the double resonance band means 

that the electronic structure is being affected somehow since the intensities of these bands are 

strongly dependent on the resonance condition being satisfied in order to allow the combination 

of phonons for that specific double resonance process. Therefore, the inhibition of the energetic 

combination process of the E’’+LA(K), while the other bands like the E’+LA(M) and 
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Figure 6.9. Raman spectrum of the H1 heterostructure sample compared with the sum of the spectrum of WS2 and 

MoSe2 obtained under a 2.18 eV laser illumination at a temperature of 80 K. The intensity of the spectra is 

normalized by the intensity of the highest peak for clarity. 
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A1’+LA(M) remain almost constant in intensity compared to the intensity of silicon, means that 

the KK’ electron scattering process could be possibly inhibited by the KQ electron scattering 

process. As we discussed for MoS2 in chapter 5, the KQ scattering process is connected to the 

indirect bandgap of the material. Therefore, the band structure of the heterostructure is being 

affected near the indirect bandgap of WS2. 

 The band at approximately 1130 cm-1 is trickier to assign, since it does not correspond 

to a first-order band, due to its high frequency, neither to a second-order peak, since its 

frequency is higher than the sum of the highest frequency phonons of WS2 (check Appendix 

C). However, we can assign it to a combination of three phonons, being two A1’ phonons from 

WS2 at Γ, plus one E’ phonon from MoSe2, which is in resonance with the XA/TA transition 

from WS2. We can call this phonon combination 2AW+EM. The sum of these three phonons 

would correspond to exactly 1130 cm-1, matching the position of the additional band observed 

in the Raman spectrum of H1 to H5. From this point forward, for simplicity, we call the A1’ 

and E’ bands of WS2 of AW and EW, and the A1’ and E’ bands of MoSe2 are called AM and EM. 
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Figure 6.10. (a) Raman spectrum of H1 measured in the temperature range between 80 and 320 K under a 2.18 

eV laser illumination. AM and EM are the A1’ and E’ bands of MoSe2, while AW and EW are the A1’ and E’ bands 

of WS2. (b) Position of the first-order bands as a function of temperature, where the numbers next to each curve 

represent the slope of the linear fit given by the solid curve. The error associated with the slope is 0.001 cm-1/K. 

(c) and (d) are the intensities of first-order bands as a function of temperature for (c) WS2 and (d) MoSe2. Intensities 

are normalized by the highest intensity of the AW and  AM bands. The solid lines are guides to the eye. 
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 In order to observe the coupling between layers, we change the temperature to observe 

how the interlayer interaction is tuned, since as the temperature increases, the excitonic 

transition shifts to lower energies, making the laser at 2.18 eV come out of resonance. Figure 

6.10(a) shows the Raman spectrum of H1 in the range of 160 to 440 cm-1 for some temperatures 

in the range between 80 to 320 K. At 80 K, the EM band is expressively intense, much different 

from the results observed for the single flake of MoSe2 in Figure 6.4(a), where its intensity is 

over one hundred times smaller than the intensity of the AM band. However, as we increase the 

temperature, two effects can be observed: first, the intensity of the EM band decreases back to 

the single flake case in Figure 6.4(a); second, the observed frequency of the EM band presents 

a bigger slope as a function of temperature. 

 Figure 6.10(b) presents the positions of the first-order bands of WS2 and MoSe2 in the 

spectra of H1 as a function of temperature. The same experiments were carried with H2 and 

similar results were found, therefore, we choose to omit the results from H2. The AW and the 

EW bands of WS2 follow the same exact behavior observed in a single layer, presented in 

sections 5.2 and 5.3. The EM band of MoSe2 presents a much higher dispersion though, where 
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Figure 6.11. PL measurements of H1 close to the emission from WS2 measured with a 2.18 eV laser for 

temperatures in the range of 80 to 300 K. 
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the slope is almost twice as big as the one observed in Figure 6.6(b). Unlike what was observed 

before, it seems that a mix of the LO and TO phonons appears as if the degeneracy of the E’ 

band is recovered, leading to a substantial increment in the slope of the E’ band.  

 The intensity of the first-order bands is presented in Figure 6.10(c) for WS2, where a 

similar behavior between a single flake and the heterostructure is observed. Figure 6.10(d) 

presents the intensity of the first-order modes for MoSe2, where the intensity profile of the E’ 

band follows, approximately, the same behavior of the first-order bands of WS2. Therefore, we 

can assume from this result that the interlayer interaction is responsible for the observed 

phenomena around the E’ band of MoSe2 in the heterostructure. 

 We move now to the new band observed at approximately 1130 cm-1, which we call N. 

Figure 6.11 shows the PL spectrum of H1 for a few temperatures in the range of 80 to 300 K. 

At 80 K, the most prominent feature appears close to the position of 2.03 eV, and as temperature 

is increased, the main PL features become broad and convoluted, until 300 K, where only 1 

main peak can be observed. This result is similar to the reported behavior of the PL spectrum 

of WS2 under gate tension, where the induced charges contribute to the enhancement of the 
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Figure 6.12. (a) Raman spectrum extracted from Figure 6.11, where the intensity is normalized by the intensity of 

the silicon peak. (b) The intensity and (c) position of N as a function of temperature. The solid line in (c) 

corresponds to the linear function 1129.5 - 0.04T. 
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trion and biexciton peaks [272]. This behavior can be possibly attributed to the interlayer 

interaction, which would contribute with charge transfer from one flake to the other, resulting 

in a high charge concentration for the monolayer. This behavior can actually explain the higher 

intensity of the N band intensity since, from Figure 6.8(a), the intensity of N is stronger for 

higher contributions of TA to the PL spectrum. 

 Figure 6.12 shows the extracted Raman spectrum from Figure 6.11, where the N band 

is more clearly observed. Starting at 80 K, the N band is not very strong, however, at 100 and 

120 K the intensity of N is quite noticeable, to the point where it is equal to the intensity of the 

silicon peak at 100 K. Moving to higher temperatures, the band becomes smaller, until it 

vanishes at 300 K. The intensity profile as a function of temperature is displayed in Figure 

6.13(b), where the maximum intensity measured is for the 100 K spectrum. Comparing the 

behavior of the PL emission in Figure 6.11 to the intensity of N, we observe a similar trend, 

where the N peak becomes smaller as the TA peak becomes smaller as well. 

 Figure 6.12(c) shows the position of the N band as a function of temperature. The 

behavior as a function of the temperature of the N band follows an approximately linear 

behavior between the temperatures of 80 and 180 K, which could be approximately fit with the 

expression 1129.5 - 0.04T. The slope of -0.04 cm-1/K is very close to the sum of the slopes of 

the components of the band that we proposed before, 2AW+EM, where the added slope can be 

found to be -0.036 cm-1/K. 
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Figure 6.13. (a) The intensity and (b) position of N as a function of temperature. The solid line in (c) corresponds 

to the linear function 1129.5 - 0.04T. 
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 In summary, we conclude this chapter saying that the possible interlayer interactions in 

the heterostructures composed of TMDs are observable by the optical techniques when the 

excitation energy is in resonance with the electronic transition energies of the components, such 

as it was reported by ref. [266]. Recently it was reported that in WS2/MoSe2 heterostructures, 

just like the ones reported here, the electronic structure of the new metamaterial depends on the 

stacking angle up to an angle of 9°, or for angles bigger than 45° [273], and it is independent 

of the stacking angle in a large range of angles in between. In our case, since the observed PL 

intensities of the separated components vary by position and also by laser energy, we believe 

we’re observing the interlayer interaction in a variety of angles, both small and large. Therefore 

we can contribute to significant statistics of the observation of Raman bands induced by the 

interlayer interaction in the heterostructures at different stacking angles.





 

 

7. Conclusion 

 In this work, we explored the PL and Raman spectra of three different types of TMDs 

belonging to the H-MX2 phase, where we also observed the spectrum of few-layers and bulk 

crystals. We observed the temperature dependence of the resonant Raman spectra under the 

illumination of lasers with energy in resonance with the excitonic transition energies. It was 

observed how the first-order, second-order and double-resonance bands of MoS2, for both 

monolayer and bulk, behave as a function of temperature. We also observe how the resonance 

with different laser energies was capable of affecting the double-resonance bands, where we 

can extract the purely resonant effects from the double resonance bands that are affected by the 

resonance with the excitonic transition. The PL spectra measured as a function of temperature 

revealed how the excitonic transition energies are affected by temperature. From the 

combination of resonance effects from excitonic transition as a function of temperature and the 

purely resonant behavior of the double-resonance bands as a function of the laser excitation 

energy, we can extract the temperature dependence of the acoustic phonons in MoS2. Further, 

we can combine the information provided by the difference between the laser energy and the 

excitonic transition to complete the frequency profile of the double resonance bands.  

 We also presented the frequency dependence of the lower frequency double-resonance 

bands which were not treated in the literature before, as a function of both the laser energy and 

temperature. These bands are investigated for bulk MoS2 samples, where the resonance with 

the indirect bandgap becomes more relevant than for the monolayer case. Based on the behavior 

presented by each band as a function of the laser energy, we could associate each band to 

specific two-phonon combinations near the K and M points in the Brillouin zone. We observed 

how the Stokes/Anti-Stokes band behaves near the resonance with the B exciton as a function 

of the laser energy and temperature, where we observe that for bulk, the resonance with the 

excitonic transition is extremely important to describe the intensity of the band.  

 Finally, for monolayer MoS2, we observe the defect-induced and subtractive bands for 

different laser energies and temperatures, where the intensities of the defect-induced bands are 

heavily affected by temperature, decreasing massively near room temperature. We also 

observed the subtractive band as a function of temperature, where at room temperature, the 

frequency range containing the defect-induced bands is dominated by the subtractive bands. 

 In WS2, we observed the tuning of the double-resonance bands for laser energies near 

the A and B excitons, where we recover the resonance with the excitonic transitions by 
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decreasing the temperature. We observe that the resonance with the A exciton intensifies the 

double resonance bands involving zone-center phonons, while the resonance with the B exciton 

intensifies the double resonance bands involving the zone-edge phonons. 

 In the case MoSe2, we observed the behavior of the intensity of the first-order bands as 

a function of the laser energy and temperature as well, where we could extract the excitonic 

transition energy of the C exciton as a function of temperature for the A1’ and E’ bands. It was 

also observed that the transition energy extracted from the intensity profile for each mode is 

different, and we attributed the difference to the coupling of each phonon with two components 

of the excitonic transition observed in the literature. 

 Finally, for the WS2/MoSe2 heterostructure, we were able to observe the interlayer 

interaction in different points in the flake displaying different relative PL intensities for each 

monolayer component, which we attributed to different stacking angles of the heterostructure. 

We investigated the interlayer interaction further by measuring the PL spectrum with a laser 

excitation energy closer to the A exciton of WS2, revealing a strong change in the relative PL 

intensities for the components of the heterostructure. The analysis of the Raman spectrum near 

the resonance of WS2 revealed the enhancement of the first-order mode of MoSe2, along with 

the appearance of a new Raman band that could be associated with the combination of three 

phonons, two belonging to WS2 and one belonging to MoSe2. 

 We would like to add here that it could be possible to observe similar exciton-phonon 

and phonon-phonon processes in heterostructures formed by other TMDs components, 

provided that we excite the sample in resonance with the excitonic transition. 
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Appendix A: Temperature effects in the optical 
spectra 

 In order to calculate the electronic and vibrational properties of materials, the lattice 

motion must be decoupled from the electronic motion in order to make the calculations feasible. 

Although this is a good approximation, in reality, there are some effects that come from 

electron-phonon and phonon-phonon interactions that are relevant to the electronic and 

vibrational properties of the material. The effects induced by electron-phonon and phonon-

phonon interactions appear when macroscopic parameters such as temperature are changed. 

Here, we use a relation that describes the phonon-phonon interactions and that is based on the 

anharmonic terms in the lattice potential.  

 In our case, since the focus of our work is the study of the Raman process, we are 

interested in the process of inelastically scattering of light, which involves the creation of a 

zone center phonon of frequency ω0. After light absorption, the electron-hole pair recombines 

and a scattered photon is emitted along with the emission of a phonon. The phonon will decay 

into other phonons in the material, respecting energy and momentum conservation [274]. We 

consider in our treatment the three-phonon process, in which the phonon created through the 

interaction of light with the material decays into two thermal phonons. The lineshape of the 

Raman features, in first-order, is given by the Lorentzian distribution  

 ᵀ�ᵀ� × Γ
[ω − Ω(ᵅ�, ᵅ�)]2 + Γ2 (A.4), 

Where ᵀ�ᵀ� is the Raman intensity and is given by equation 3.2, and the distribution is centered 

in the resonant frequency Ω(ᵅ�, ᵅ�), and the broadening parameter Γ is the reciprocal of the 

lifetime of the phonon. The resonant frequency is given by Ω(ᵅ�, ᵅ�) = ωᵅ�,ᵅ� + Δ(ᵅ�, ᵅ�), where ωᵅ�,ᵅ� 

is the value of the vibrational frequency under the harmonic approximation, and the term Δ(ᵅ�, ᵅ�) 

comes from the terms beyond the harmonic approximation [274]. For the calculation of these 

terms, we use the changes in the population of phonons for a simple, yet powerful method to 

obtain relations between the energy of the phonon and the temperature. 

 Under thermal equilibrium, if a phonon ω0 is created and it decays into two phonons ω1 

and ω2 afterward, we may write the condition 

 (ᵅ�0 + 1)ᵅ�1ᵅ�2 = ᵅ�0(ᵅ�1 + 1)(ᵅ�2 + 1) (A.1), 

where ᵅ�ᵅ� is the occupation for the phonon with frequency ωᵅ� given the Bose-Einstein 

distribution. If we consider a small variation ᵪ�ᵅ�0 from the occupation of ω0 due to the decay of 
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an optical phonon unto two other phonons, the decay rate of ᵪ�ᵅ�0 will be proportional to the 

difference of occupations after and before the decay given by 

 (ᵪ�ᵅ�0 + ᵅ�0)(ᵅ�1 + 1)(ᵅ�2 + 1) − (ᵪ�ᵅ�0 + ᵅ�0 + 1)ᵅ�1ᵅ�2 (A.2). 

Therefore, we may write the following kinetic equation [274,275] 

 ᵀ�
ᵀ�ᵅ�

(ᵪ�ᵅ�0) = −ᵀ��(ᵪ�ᵅ�0 + ᵅ�0)(ᵅ�1 + 1)(ᵅ�2 + 1) − (ᵪ�ᵅ�0 + ᵅ�0 + 1)ᵅ�1ᵅ�2� (A.3), 

where ᵀ� is a fitting parameter. Combining equations A.1 and A.2, we reach 

 ᵀ�
ᵀ�ᵅ�

(ᵪ�ᵅ�0) = −ᵀ��1 + ᵅ�1 + ᵅ�2�ᵪ�ᵅ�0 = −ᵀ�
�

1 + 2

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

ᵪ�ᵅ�0 (A.4), 

which is the correction introduced by the three-phonon scattering process for the temperature 

dependence of the eigenvalues of the vibrational frequencies. We apply a trick to use the 

average phonon energy to describe the rate of change since there is a continuum of phonons 

that can satisfy the condition of A.4. Equation A.4 is a decay law related to the lifetime, τ0, of 

the phonon and for increasing temperatures, the lifetime of the phonon is also decreased. The 

quantity related to the lifetime measured experimentally is the linewidth at half maximum, Γ, 

which is the inverse of the lifetime, according to the uncertainty relation between time and 

energy. The formal definition is given by 

 
Γ = 1

τ0
= − 1

ᵪ�ᵅ�0

ᵀ�
ᵀ�ᵅ�

ᵪ�ᵅ�0 = ᵀ�
�

1 + 2

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

 (A.5). 

Equation A.5 gives the dependence of the linewidth at half maximum, expected to 

increase as the temperature is increased [274,275].  

Just like Γ, the value of Δ also changes with temperature, generally decreasing when 

the temperature increases. We may use the same reasoning applied to Γ to obtain the relation 

 
Δ(ᵅ�, ᵅ�) = ᵀ�

�
1 + 2

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

 (A.6), 

Which is analog of A.5 and is in good agreement with the changes in the vibrational frequency 

as a function of temperature, for a negative value of ᵀ�, up to a certain temperature that depends 

on the thermal properties of the material [274]. 

In reality, the range of validity of 2.24 and 2.25 is limited since we are only considering 

a three-phonon process, and a complete analysis would also need to consider a four-phonon 

process, beyond the scope of our text [274]. For the range of temperature measurements that 

were used in our work, the three-phonon process is enough. 
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 Since this process has been used for the changes in the vibrational properties, we may 

also consider a similar decay for the bandgap, where the electron-phonon interaction will be 

dominant. Since we are dealing with effects that are small compared to the measured values, 

we may deal with the contributions from electron-phonon interactions by the expansion of the 

electron-lattice potential in terms of the normal coordinate of vibration. For a crystal with ᵪ� 

atoms at sites ᵅ�(ᵅ�, ᵪ�) that have displacements ᵅ�(ᵅ�, ᵪ�), we may write that the temperature 

correction Δᵀ�ᵅ�,ᵅ� to the electronic state ᵅ�, ᵅ� will be [244] 

 

Δᵀ�ᵅ�,ᵅ� = � �
�ᵅ�ᵅ�||

| ᵪ�ᵀ�
ᵪ�ᵀ�ᵅ� ||

|ᵅ�′ᵅ�′
� �ᵅ�′ᵅ�′

||
| ᵪ�ᵀ�
ᵪ�ᵀ�ᵅ� ||

|ᵅ�ᵅ��
ᵀ�ᵅ�ᵅ� − ᵀ�ᵅ�′ᵅ�′ᵅ�′ᵅ�′ᵅ�ᵪ�,ᵅ�′ᵪ�′

�ᵅ�ᵅ�(ᵅ�ᵪ�)ᵅ�ᵅ��ᵅ�′ᵪ�′�

− 1
2

ᵅ�ᵅ�(ᵅ�ᵪ�)ᵅ�ᵅ�(ᵅ�ᵪ�) − 1
2

ᵅ�ᵅ��ᵅ�′ᵪ�′�ᵅ�ᵅ��ᵅ�′ᵪ�′�� 

(A.7), 

where ᵪ�ᵀ�
ᵪ�ᵀ�ᵅ�

 will be the change in the electron-lattice potential per unit displacement of the atom 

ᵪ� in direction ᵅ�. A sum over ᵅ� and ᵅ�, the cartesian components, is implicit. We can make use of 

the creation and annihilation operators in order to rewrite the displacement ᵅ� as 

 
ᵅ�(ᵅ�, ᵪ�) = � �

ħ
2ᵀ�ᵀ�ᵪ�ωᵅ�,ᵪ��

1
2
ᵫ�(ᵅ�, ᵪ�, ᵪ�)ᵀ�ᵅ�ᵅ�∙(ᵅ�+ᵫ�ᵪ�)ϕᵅ�,ᵪ�

ᵅ�,ᵪ�
 (A.8), 

where ᵅ� and ᵪ� are the phonon wavevector and branch while ωᵅ�,ᵪ� is its frequency, ᵀ�ᵪ� is the 

mass of the ᵪ�-th atom located and position ᵫ�ᵪ� in the unit cell, ᵀ� is the number of unit cells in 

the crystal and ϕᵅ�,ᵪ� = ᵀ�ᵅ�,ᵪ�
† + ᵀ�−ᵅ�,ᵪ�. The polarization vector ᵫ�(ᵅ�, ᵪ�, ᵪ�) will obey the 

completeness relations 

 
� ᵪ�ᵅ�(−ᵅ�, ᵪ�, ᵪ�)ᵪ�ᵅ�(ᵅ�, ᵪ�, ᵪ�)

ᵪ�
= ᵪ�ᵪ�ᵪ�

� ᵪ�ᵅ�(−ᵅ�, ᵪ�, ᵪ�)ᵪ�ᵅ��ᵅ�, ᵪ�, ᵪ�′�
ᵪ�

= ᵪ�ᵅ�ᵅ�ᵪ�ᵪ�ᵪ�′
 (A.9). 

  

When all is put together, we can use a thermal average, yielding [244] 

 
Δᵀ�ᵅ�,ᵅ�(ᵀ�) = �

ᵪ�ᵀ�ᵅ�,ᵅ�

ᵪ�ᵅ�ᵅ�,ᵪ�
�ᵅ�ᵅ�,ᵪ� + 1�

ᵅ�,ᵪ�
 (A.10). 
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2

 

Now, we must also take into account the electron-phonon interaction, which will select 

the most relevant phonons that will affect the electronic state ᵅ�ᵅ�. In the end, the result from 

A.10 can be resumed into 

 
Δᵀ�ᵅ�ᵅ� = −ᵀ�′

�
1
2

+ 1

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

= −ᵀ�
�

1 + 2

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

  (A.11), 

where ᵀ� will be a fitting parameter and 〈ħω〉 is the average phonon energy [244]. Since this 

result is similar to the one obtained at A.6, we manipulated the first outcome of A.11 to yield 

similar results. One remark though is that 〈ħω〉 for A.6 and for A.11 do not necessarily need to 

be the same. Same as with A.6 and A.11, the relation between the lifetime for the electronic 

state ᵅ�ᵅ� and ᵀ� will be given by 

 
ΔΓᵅ�ᵅ� = ᵀ�

�
1 + 2

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

  (A.12). 

In summary, for an energy dispersion relation, we may write that the temperature 

dependence of the state ᵀ� and its lifetime Γ will be 

 
ᵀ�(ᵀ�) = ᵀ�(ᵀ� = 0) − ᵀ�

�
1 + 2

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

  (A.13), 

 

 
Γ(ᵀ�) = Γ(ᵀ� = 0) + ᵀ�

�
1 + 2

ᵀ�
〈ħω〉
ᵀ�ᵀ�ᵀ� − 1�

 (A.14). 

 Thus, we may use the same type of equation to fit the dependence of the phonon and 

electronic transition energies. Care must be taken though, for the fitting parameters present in 

these equations is not always the same. 
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Appendix B: Double resonance Raman processes in 
graphene 

 Graphene was the first isolated 2D material, and it is regarded as the strongest material 

due to its in-plane double sp2 bonding [276]. At the same time, it was one of the first 2D 

materials to have its Raman spectra measured [128]. 

 The electronic properties of graphene can be well described by the tight-binding 

approach considering two pz orbitals [277]. Thus, the one-electron dispersion of graphene is 

characterized by the presence of Dirac cones near the K point in the Brillouin zone, where the 

valence and conduction bands touch each other, making graphene be considered a zero bandgap 

semiconductor [278]. In a first approximation, the electronic band structure around the K point 

can be regarded as linear and, consequently, the dependence of the electronic density of states 

present a linear behavior near the Fermi level [279]. The optical transitions in graphene are 

characterized by vertical transitions from the valence band to the conduction band close to the 

K point, with constant light absorption in the near-infrared (NIR) and visible spectral 

regions [280]. As for the vibrational properties of graphene, there are six phonon branches at 

the Γ point, three acoustic and three optical phonon branches, named longitudinal acoustic 

(LA), transversal acoustic (TA) and out of plane transversal acoustic (ZA), out of plane 

transversal optic (ZO), longitudinal optic (LO) and transversal optic (TO). Among these phonon 

branches, only the LO and TO modes at the Γ point are Raman active and correspond to a 

degenerate E2g representation (the G band). Thus, the expected Raman spectrum should consist 

of a single first-order band. 

 Nevertheless, the Raman spectrum of pristine graphene is characterized by the presence 

of mostly four bands, named as G, D+D”, 2D and 2D’ in frequency order (Figure 

B.0.1(a)) [130]. In the presence of defects, new features arise in the Raman spectrum of 

graphene, thus, besides the four Raman bands observed in pristine graphene, three other bands 

are also observed, named as D, D’ and D+D’ (see Figure B.0.1(a)). 

 The G band (the E2g mode) originates from a first-order Raman process, as shown in 

Figure 2.9(a). As a first-order process, it will be present in the Raman spectrum of pristine and 

defective samples regardless of the excitation laser energy and the number of 

layers [128,129,156,205–207]. An interesting aspect of the G  band is its classical behavior for 

the scattering process across the visible range, where its intensity is proportional to the fourth 

power of the laser frequency [178]. The other bands are related to a double or triple resonance 

process discussed before. 
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 The bands that arise from double or triple resonance may be affected not only by 

excitation laser energy and defect density but also by the number of layers as well, where an 

increasing number of layers will affect the number of allowed processes due to changes in the 

electronic structure [128,129]. Although we name the double or triple resonance processes as 

intervalley and intravalley, we must remember that graphene presents Dirac cones in its 

electronic structure, not parabolic bands. For the sake of comparison between materials, though, 

we will stick with this name. The intervalley scattering process (see Figure B.0.1(b)) occurs 

when the excited electron is scattered from the conduction band near K point to the conduction 

band near K’ point, whereas the intravalley scattering process (see Figure B.0.1(c)) scatters the 

electron along the same valley. Once the excited electron is scattered, it can return to its original 

band via another phonon or a defect, and then it recombines with the hole in the valence band 

emitting a scattered photon. 

 The 2D (or G’) band in graphene, appearing between 2600 and 2800 cm-1 in Figure 

B.0.1(d), is an example of a band originated from the electron-hole intervalley scattering. This 

process is mediated by two TO phonons (one for the excited electron and one for the hole) 

Figure B.0.1. The Raman scattering process in graphene. (a) Raman spectrum of pristine graphene (top) and 

defective graphene (bottom). (b) intervalley and (c) intravalley wave vector scattering processes. (d) Raman 

spectrum of graphene collected at different excitation wavelengths from NIR to UV. (e) Frequencies of the 2D 

and D + D” (G’ and G*) bands as a function of the laser energy. (f) Raman spectra of monolayer, bilayer and 

trilayer graphene at the same energy showing the differences in the observed intervalley processes of the 2D band. 

(g) The intensity of the 2D band as a function of the inverse of the laser energy. (h) Phonon dispersion of single-

layer graphene with the phonons that participate in the intervalley and intravalley bands. Adapted from ref. [176].
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around the K point in the phonon dispersion and the recombination happens around the K’ 

point [129,155,157]. This association is made because the phonon wavevector is around the 

length of the distance between K and K’ points, corresponding to the approximate distance 

between the Γ and K points (see Figure B.0.1(b)), which can be mapped to the phonon 

dispersion. Additionally, the 2D band frequency presents a high dispersion as the excitation 

laser energy is tuned (around 100 cm-1/eV, see Figure B.0.1(d) and (e)). The reason for this 

comes from both the linear electronic dispersion near K point of graphene and the Kohn 

anomaly, which manifests as strongly dispersive LO branch in the vicinity of the Γ and K 

points [281]. Thus, for laser energies close to the linear regime of the electronic dispersion, the 

intensity of the 2D band is greatly enhanced. 

 When a graphene sheet presents a significative defect density, a band with 

approximately half the frequency of the 2D band appears, and it is called D band [149]. The D 

band is a double resonance process, and its intensity is strongly bound to the defect 

density [156,206]. The 2D band, on the other hand, decreases in intensity for increasing defect 

density [156], which could be argued as a preference for the phonon-defect process instead of 

the phonon-phonon process of recombination. We mention that as the number of graphene 

layers increases, the number of intervalley processes increases as well, in accordance with the 

changes in the electronic structure (see Figure B.0.1(f)) [129,179]. Also, as the excitation laser 

energy approaches the UV range, the 2D band intensity considerably decreases (with the first-

order process prevailing), such that its intensity is inversely proportional to the excitation laser 

energy (see Figure B.0.1(d) and (g)) [178]. The D+D” band, also known in the literature as G* 

band, is associated with an intervalley scattering involving phonons from TO (D) and LA (D”) 

branches. Contrarily to the 2D band, the D+D” presents a negative dispersion due to the 

behavior of the LA phonon branch around the K point (Figure B.0.1(e)) [129,155,282]. 

 The 2D’ band is an example of a phonon-phonon intravalley scattering process [283]. 

The scattering of the excited electron happens along the K cone through the emission of two 

LO phonons close to the Γ point [283]. Analogously, one can also see a D’ band, which is a 

phonon-defect intravalley scattering [283]. Interestingly, the 2D’ band does not present a strong 

enhancement of its intensity, showing an intensity smaller than that of a first-order mode. This 

could be related to the strong interaction between electrons and LO phonons near the K point, 

such that the numerator is also an important factor. Therefore, the electron-phonon interaction 

is an important factor for the double (or triple) resonance process. 
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 The D’ and 2D’ bands are not very dispersive, i.e. their frequency position does not 

change much when tuning the excitation laser energy, but they are related to phonon dispersion 

points where the LO phonon branches are maximum [284]. 

 We comment that combinations of intravalley and intervalley scattering are also 

possible. For instance, the D+D’ band comes from the scattering of an electron to the K' point 

mediated by a TO phonon close to the K point and, then scattered back by a TO phonon close 

to the Γ point. Afterward, electron and hole recombine mediated by a defect [130,156]. 

 Figure B.0.1(h) shows the phonon dispersion of graphene depicting all the contributions 

from the double resonance Raman bands associated with their specific points [284]. In 

summary, the ability to probe phonons away from the Γ point in such a way that they can be 

mapped out by their wavevectors is one of the most interesting features of the double Raman 

resonance bands in a layered material.  

 The Raman spectrum of a defective graphene sample presents three new features 

assigned as D, D’ and D+D’  bands, as it is shown in Figure B.0.2(a) [156]. These new Raman 

bands are the result of intervalley and intravalley electron scattering and the combination of 

both processes where the conservation of momentum is preserved by the presence of a defect. 

 In Figure B.0.2(a), we can notice that the D band is the most intense one of the defect 

induced Raman features in graphene. It has half the frequency of the 2D band and shows a 

dispersive behavior as the excitation laser energy is tuned [156]. Additionally, the D band also 

depends on the average defect distance, LD, since its intensity increases as the LD value 

decreases (see Figure B.0.1(a)). Notice that D band intensity can even surpass the G band 

intensity. The intensity ratio of both bands (ID/IG) provides a route to characterize the sample 

quality [156]. The relationship between the ID/IG intensity ratio can be expressed as a function 

of LD given by [156,206] 

 ᵀ�ᵀ�
ᵀ�ᵀ�

= ᵀ�ᵀ�
�ᵅ�ᵀ�
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�
−ᵪ�

ᵅ�ᵀ�
2

ᵀ�ᵀ�
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ᵅ�ᵀ�
2

ᵀ�ᵀ���
 (B.1). 

The parameters ᵅ�ᵀ� and ᵅ�ᵀ� are length scales related to either the regions that contribute to the 

scattering of the electron to form the D band or to the disorder caused by defect formation. CA 

is a weight parameter that depends on the laser energy. By Equation B.1, it is possible to observe 

the behavior of the intensity of the D band as a function of both laser energy and defect length. 

A laser independent relationship can also be obtained by multiplying the left side of Equation 

B.1 by EL
4, as it is shown in Figure B.0.2(b) [156]. This new expression allows us to monitor 
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and control the defect density in graphene for its applications, independently of the laser line 

used. 

 It is worthy of note that after the threshold of the defects amounts is reached, i.e. the LD 

is considerably small, there is a change in the crystallinity of the sample becoming increasingly 

rich in sp3 amorphous carbon [130,156]. At this point, several changes in the Raman spectrum 

are observed, including the broadening and asymmetry of the bands, shifts in the frequency of 

the first-order modes, among others [130,156,205,206]. 

  

Figure B.0.2. One-phonon-defect Raman spectrum of defective graphene. (a) Raman spectrum of monolayer 

graphene for different values of inter-defect density (ᵀ�ᵀ�) collected with a 2.41 eV laser. (b) Intensity ratio of D to 

G band multiplied by the fourth power of the laser energy as a function of ᵀ�ᵀ�. Adapted from ref. [156].  
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Appendix C: Phonon dispersion and list of critical 
points for WS2 and MoSe2 

 Here, we show the phonon dispersion for WS2 and MoSe2, we also list all the phonon 

energies at the critical points for WS2 in order to list all the second-order and double resonance 

bands. In the process of naming the phonon branches in the K and M points in chapter 5, we 

used the irreducible representations of the phonon branches at the Γ point for simplicity, as we 

do in this appendix. 

 Figure C.0.1 presents the phonon dispersion relations for WS2 and MoSe2. The 

irreducible representations at the Γ point are the same for 1L MoS2 and they are given by 

 Γᵅ�ᵅ�ᵀ� = Γᵀ�ᵅ� ⊗ Γᵅ�ᵀ�ᵀ� = ᵀ�1′ ⊕ 2ᵀ�′ ⊕ 2ᵀ�2" ⊕ E''.    

Therefore, we expect the presence of 3 non-degenerate modes and 3 doubly degenerate modes. 

Since there are 3 acoustic phonons and the LA and TA phonon branches are degenerate at the 

Γ point, we expect that the representations ᵀ�2” and ᵀ�′ can be associated with the ZA, LA and 

TA branches, respectively, which is also justified due to the fact that the ᵅ�, ᵅ�, and ᵅ� functions 
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Figure C.0.1. Phonon dispersions of (a) WS2 and (b) MoSe2, with their respective density of states. 
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belong to the ᵀ�2” and ᵀ�′ representations. From the out-of-resonance Raman spectrum of WS2, 

we can find the irreducible representations ᵀ�1
′  and ᵀ�′, at 420 cm-1 and 358 cm-1 for WS2 and at 

242 and 286 to 291 cm-1 for MoSe2. The remaining irreducible representations can be directly 

related to the phonon branches in the phonon dispersion relations of each material in Figure 

C.0.1. 

 We now move to the table of phonon frequencies at the critical points, using the 

irreducible representations at the Γ point. At the K point, only one mode is expected to be 

degenerate, while at the M point, the phonon branches are expected to be non-degenerate [110]. 

Where the degenerate phonon branches of the Γ split, we designate the phonon as ᵀ�′
1 or ᵀ�′

2 

for the higher and lower energy branches. 

Table C.0.1. Frequency of the phonon branches at the critical points of WS2. 

ᵪ� ωᵀ�ℎ (cm-1) ᵀ� ωᵀ�ℎ (cm-1) ᵀ� ωᵀ�ℎ (cm-1) 

ᵀ�2" (ZO) 438 ᵀ�2" (ZO) 356 ᵀ�2" (ZO) 369 

ᵀ�1
′  (ZO) 418 ᵀ�1

′  (ZO) 393 ᵀ�1
′  (ZO) 405 

ᵀ�′ (TO, LO) 356 
ᵀ�′

1 (TO, LO) 360 ᵀ�′
1 (TO, LO) 367 

ᵀ�′
2 (TO, LO) 351 ᵀ�′

2 (TO, LO) 342 

ᵀ�" (TO, LO) 296 
ᵀ�"1 (TO, LO) 353 ᵀ�"1 (TO, LO) 348 

ᵀ�"2 (TO, LO) 339 ᵀ�"2 (TO, LO) 321 

ᵀ�′ (TA, LA) 0 
ᵀ�′ (LA) 184 ᵀ�′ (LA) 178 

ᵀ�′ (TA) 147 ᵀ�′ (TA) 143 

ᵀ�2" (ZA) 0 ᵀ�2" (ZA) 148 ᵀ�2" (ZA) 132 





 

 

Appendix D: Functions used for the fitting 
procedures of Chapter 5 

The Modded Gaussian function 

 The definition of the modded Gaussian function we used to fit the δ band is the 

following: 

 
ᵀ�(ᵅ�) = ᵀ�

ᵅ�0
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ᵅ�
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2
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ᵅ�0
�
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(2ᵪ�)1/2 ᵀ�

ᵅ�2
2 ᵀ�ᵅ�

   ᵅ�

−∞
 (D.1) 

Where ᵀ� is the area under the curve, ᵅ�ᵀ� is the peak center, ᵅ� is the width and ᵅ�0 is a fitting 

parameter. 

The BiGaussian function 

 The definition of the biGaussian  function we used in the fitting of the LA band is the 

following: 

 

ᵀ�(ᵅ�) =
�
�
�
�
�ᵀ�ᵀ�−1

2�
ᵅ�−ᵅ�ᵀ�
ᵅ�1 �, ᵅ� < ᵅ�ᵀ�

ᵀ�ᵀ�−1
2�

ᵅ�−ᵅ�ᵀ�
ᵅ�2 �, ᵅ� > ᵅ�ᵀ�

 (5.2) 

Where ᵀ� is the height of the peak, ᵅ�1 is the width of the peak when  ᵅ� < ᵅ�ᵀ� and ᵅ�2 is the width 

of the peak when  ᵅ� > ᵅ�ᵀ�. 
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