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RESUMO 

As principais fontes de poluentes atmosféricos nas áreas urbanas são as fontes móveis 
(veículos). Além da diversidade da frota, os veículos brasileiros usam diferentes tipos de 
combustíveis e várias tecnologias para controlar as emissões. Entre as ferramentas 
desenvolvidas para auxiliar na implementação de soluções que minimizem os impactos 
negativos da emissão de poluentes veiculares, existem os modelos de tráfego, de emissão e de 
qualidade do ar. Portanto, estimar os efeitos das emissões veiculares usando modelagem 
computacional é uma oportunidade de pesquisa para áreas urbanas densamente povoadas e com 
frotas representativas. Considerando o contexto, o objetivo principal deste trabalho foi estimar 
as emissões veiculares acoplando modelos estatísticos à modelo de emissões a partir de dados 
de radares e contagem de veículos e, com isso, aprimorar as técnicas de modelagem numérica 
por meio do desenvolvimento de uma metodologia para realizar transferências de informação 
de tráfego para modelos de qualidade do ar já existentes. O estudo foi realizado em Belo 
Horizonte (Minas Gerais), uma cidade localizada em uma área de 331 km2 e com uma 
população de aproximadamente 2,5 milhões de habitantes. Estimou-se o comportamento 
periódico do tráfego nas vias urbanas e as curvas características desse comportamento por 
categoria de veículos com base em dados de contagem de fluxo (radares e contagens manuais). 
A partir dessa etapa, foi feita a espacialização dos dados de fluxos de veículos usando diferentes 
modelos estatísticos, sendo o modelo de efeito misto normal–bairro vizinho o mais indicado 
para a espacialização do fluxo nas vias urbanas. O resultado da espacialização dos dados de 
fluxo nas vias da cidade foi o dado de entrada para a quantificação das emissões por categoria 
de veículos e por tipo de combustível, usando o modelo brasileiro de emissões veiculares 
(Vehicular Emissions Inventories -VEIN). Foram modelados cenários atuais e futuros (2025, 
2030 e 2050) com estratégias de redução de frota para o cálculo do impacto na redução das 
emissões veiculares. Na avaliação dos cenários, verificou-se que as ações como a implantação 
do rodízio de veículos na cidade, a implementação de um programa de inspeção veicular, a 
remoção da frota com mais de 30 anos das vias urbanas, a substituição da frota de ônibus por 
veículos elétricos geram reduções de até 44% nas emissões de CO, 42% de NOx e 38% de 
MP2.5. A implementação das estratégias sugeridas em conjunto a campanhas que incentivem a 
não utilização do veículo particular, bem como a construção de infraestrutura de transporte 
público de qualidade, como linhas de metrô e ciclovias conectando as regiões da cidade, podem 
contribuir satisfatoriamente para a melhoria da qualidade do ar em Belo Horizonte.   
 
Palavras-chave: Dados de Radar; Comportamento de Tráfego; Método de Krigagem; Modelos 
de Efeitos Mistos; Inventário de Emissão Veicular; Soluções em Mobilidade Urbana. 
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ABSTRACT 

The primary sources of air pollutants in urban areas are mobile (vehicles). In addition to fleet 
diversity, Brazilian vehicles use different types of fuels and various technologies to control 
emissions. Among the tools developed to assist the implementation of solutions that minimize 
the negative impacts of vehicular pollutant emissions, there are traffic, emission, and air quality 
models. Therefore, estimating the effects of vehicular emissions using computer modeling is a 
research opportunity for densely populated urban areas with representative fleets. Considering 
the context, the main objective of this work was to estimate the vehicle emissions by coupling 
statistical models to the emissions model using radar and count vehicle database. Thus, to 
improve numerical modeling techniques, it was developed a methodology for performing traffic 
information transfers to air quality models. Belo Horizonte (Minas Gerais), a city located in an 
area of  331 km2 and with a population of approximately 2.5 million inhabitants, was selected 
to develop this study. The periodic behavior of traffic on urban roads and the characteristic 
curves of this behavior by vehicle category were estimated based on flow count data (radars 
and manual counts). Different statistical models were used to calculate the spatialization of 
vehicle flow. The result showed that the mixed model normal-neighbor was suitable for the 
flow spatialization in urban roads. The result of flow data spatialization on the city was the 
input data for the quantification of emissions by vehicle category and fuel type, using the 
Brazilian Vehicle Emissions Inventories – VEIN. Current and future scenarios were modeled 
with fleet reduction strategies to calculate the impact on vehicle emission reduction. The 
evaluation scenarios showed that actions such as the implementation of road space rationing 
and vehicle inspection program, the removal of the over 30-year-old fleet from urban roads, the 
replacement of the bus fleet by electric vehicles lead to reductions of up to 44% in CO 
emissions, 42% of NOx and 38% of MP2.5. The implementation of the strategies suggested 
adding the non-use of the private vehicle, as well as the construction of quality public transport 
infrastructures (subway lines and bike paths connecting the city regions), can contribute 
satisfactorily to improve the air quality in Belo Horizonte. 

Keywords: Radar Traffic Data; Traffic Behavior; Kriging Method; Mixed-Effects Model, 
Vehicular Emission Inventory, Urban Mobility Solutions. 
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1.1. BACKGROUND AND JUSTIFICATION 

Pollution is the environmental quality degradation resulting from activities that, directly or 

indirectly, harm the health, safety, and well-being of the population. Besides, it can create 

adverse conditions to social and economic activities, adversely affect the biota and aesthetic or 

sanitary conditions of the environment, also launching materials or energy in disagreement 

with the established environmental standards (Brazil, 1981). CONAMA resolution nº 491/2018 

(MMA, 2018) defines a critical air pollution episode as being a situation characterized by the 

presence of high pollutants concentrations in the atmosphere in a short period, resulting from 

the occurrence of unfavorable meteorological conditions to their dispersion.   

Air pollution is a serious environmental problem and a health risk that affects the whole world. 

According to the World Health Organization (WHO), outdoor air pollution is responsible for 

approximately 4.2 million deaths around the world, both in urban and rural areas. The causes 

of premature deaths varied, but there are cases in which air pollution is one of the leading 

causes of them, such as ischemic heart disease and strokes (58%), chronic obstructive 

pulmonary disease and acute lower respiratory infections (18%), in addition to lung cancer 

(6%) (Andreão et al., 2018; WHO, 2018).   

The growth in the presence of contaminants or air pollutants happens mainly due to the 

expansion of industrial facilities close to large cities, and the rise in the number of vehicles 

circulating in urban centers. Air pollutants, such as particulate matter (PM), ozone (O3), 

nitrogen dioxide (NO2), and sulfur dioxide (SO2) have guidelines recommended by WHO. 

Places where the concentrations of these pollutants exceeded established standards, it is 

possible to damage the population health (WHO, 2006).  

The research directed to air pollution study from different sources and its consequences for the 

environment and society has essential and has to carried out for year (Faiz et al., 1995; Faiz et 

al.,1996; Onursal and Gautam, 1997; Molina and Molina, 2004; Ketzel et al., 2007; 

Bukowiecki et al., 2010; Kanakidou et al., 2011; Oliveira et al., 2011; Wang and Hao, 2012; 

Pérez – Martinéz et al., 2015; Andrade et al., 2017; Kumar et al., 2018). It remains essential in 

the search for solutions to the problems faced by the population exposed to air pollution. 

In urban areas, the main source of air pollution are vehicles, mainly the burning of fuels such 

as ethanol, gasohol (a mixture of gasoline and ethanol) and diesel (Sbayti et al., 2001; Alonso et 

al., 2010; Nagpure et al., 2010; Albuquerque et al., 2012; Andrade et al., 2012; Mahmod et al., 
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2013, Uddin, 2013; Kumar and Goel, 2016; Vouitsis et al., 2017). The harmful effects on the 

environment and health depend on the concentration of pollutants emitted to which human 

beings are exposed.  

Due to the diversity of the fleet, and the use of different types of fuels and technologies to 

control emissions, Brazil has become an essential place for studies about air pollution caused 

by vehicular emissions. By the end of 2019, the country had approximately 104.4 million 

vehicles, including passenger cars, motorcycles, trucks, buses, among others. One of the central 

regions of the country, the southeast region, stands out for having 48.5% of the total national 

vehicle fleet. The state of Minas Gerais accounts for 23.1% of the fleet in the Southeast Region, 

followed by the state of Rio de Janeiro, (13,7%) and Espírito Santo (4,0%), second only to the 

state of São Paulo (59,3%) (DENATRAN, 2019). 

The negative impacts on the air quality of the cities due to the growth of the fleet led the national 

government to develop different actions that contributed to minimizing the negative impacts. 

National programs such as Programa de Controle da Poluição do Ar por Veículos Automotores 

(PROCONVE) created by CONAMA resolution no18 /1986 (MMA, 1986), which defined the 

first emission limits for light vehicles; the Programa Nacional de Controle da Qualidade do Ar 

(PRONAR) established by resolution no 05/1989 of the Conselho Nacional de Meio Ambiente 

(CONAMA) (MMA, 1989); the Programa de Controle da Poluição do Ar por Motociclos e 

Veículos Similares (PROMOT) created by resolution CONAMA no 297/2002 (MMA, 2002) 

are examples of actions taken to reduce vehicle emissions and to improve air quality, especially 

in cities. 

The vehicles emit various pollutants in variable amounts, such as carbon monoxide (CO), 

carbon dioxide (CO2), methane (CH4), aldehyde (RCHO), nitrogen oxides (NOx), sulfur 

dioxide (SO2) and particulate matter (PM). Ozone (O3), a secondary pollutant, is the result of 

complex chemical reactions that take place between nitrogen dioxide (NO2) and volatile 

organic compounds (VOC’s) in the presence of solar radiation. In Brazil, Pacheco et al. (2017) 

showed that the metropolitan area of São Paulo (MASP), Rio de Janeiro (MARJ) and Belo 

Horizonte (MABH) reduced the concentrations of fine particulate matter (PM2.5) when 

compared to other cities in the world, such as Delhi (India) and Beijing (China). They also 

pointed out that the implementation of programs like PROCONVE and the increased use of 

biofuels was efficient in reducing the concentration of some pollutants such as CO, NOx, and 
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PM in urban areas. Andrade et al. (2012) showed the significant contribution of vehicles to 

environmental concentrations of PM2.5 in six Brazilian capitals (São Paulo (40,0%), Rio de 

Janeiro (50,0%), Belo Horizonte (17,0%) and Recife (37,0%)) and the importance of 

developing a public transport system based on clean energy sources.  

Other studies also present relevant results for the air quality theme and are references for the 

continuity of the research, mainly, in the case of fine particles (Kukkonen et al., 2005; 

Lapuerta et al., 2008; Martins et al., 2008; Kumar et al., 2010; Schmitt et al., 2011; Randazzo 

and Sodré, 2011; Carvalho et al., 2015; Nogueira et al., 2015; Nagpure et al., 2016; Kong et 

al., 2016; Kumar et al., 2018; Jeong et al., 2019).  

Pollutants regulated by PROCONVE (CO, NOx, non-methane hydrocarbons-NMHC, RCHO, 

PM, greenhouse gases (CO2, CH4 e N2O), in addition to particulate matter emissions due to 

tire wear, brakes, and track) have maximum emission limits based on international experiences 

(USEPA - EUA, 1997; EMEP – EEA, 2016). The criteria were adapted to the Brazilian reality 

and are established through guidelines, deadlines, legal, and emissions standards permissible 

for different categories of national and imported vehicles (IBAMA, 2011).   

The contribution of each vehicle category combined with the fuel type is different, considering 

air emissions. Around 47.0% of CO emissions, for instance, correspond to emissions for 

passenger cars, and 33.0% are from motorcycles, similar to what happens with NMHC (47.0% 

of NMHC emissions are attributed to passenger cars and 23.0% to motorcycles). In the case of 

PM, the ones responsible for the highest pollutant emissions are passenger cars (14.0%), buses 

(urban, minibusses, road) (12.0%), heavy trucks (19.0%), semi-heavy trucks (23.0%) and 

medium trucks (11.0%). In the case of NOx, trucks are responsible for most emissions, with 

23.0% attributed to heavy trucks, 24.0% for semi-heavy trucks, 10.0% to medium trucks, and 

9.0% to light trucks. Most CH4 emissions are associated with passenger cars (48.0%) and 

motorcycles (23.0%). RCHO come from passenger cars (89.0%) and light commercial vehicles 

(11.0%) (CNT, 2019).  

The fleet growth associated with fuel consumption increases vehicle emissions and, 

consequently, deteriorates the air quality of cities. Besides, existing combustion engine 

technologies, incomplete fuel burning, and driving cycles carried out by drivers also help to 

increase vehicle emissions.  



 

5 
 

Different studies report the importance of the real contribution of traffic with its different types 

of vehicles and fuels, to atmospheric emissions and, consequently, to air quality, contributing 

to the elaboration of action plans that minimize the negative impacts of vehicular emissions 

(Hellström et al., 2009; Herner et al., 2009; Piecyk and Mckinnon, 2009; Carslaw et al., 2011; 

Figliozzi, 2011; Weiss et al., 2011; Coelho et al., 2012). 

The problems caused by poor air quality are diverse and require work and research that seeks 

answers to assist managers in making decisions. Among the tools developed to assist in the 

search for solutions that minimize the negative impacts of the emission of pollutants from 

mobile sources, the vehicle emission models stand out. Vehicle emissions are one of the input 

data for air quality models. The calculation of these emissions requires accurate information 

on vehicle emission factors, the vehicle fleet composition, including fuel consumption, age, 

and type of vehicles, as well as the distribution of vehicle flows on urban roads in the evaluated 

area.  

Air quality models, in general, do not use detailed information on traffic behavior and, 

consequently, have limitations to truthfully represent emissions resulting from traffic and urban 

mobility in an area. Also, with the computational advance and the consequent increase in the 

resolution of the simulations, it becomes increasingly necessary to improve the input 

information of the models (emission models), mainly about the temporal and spatial 

distribution of vehicles.  

In this context, Belo Horizonte was selected for the development of this research. Belo 

Horizonte, the principal city of Minas Gerais state, has a fleet equivalent to 19.3% of state's 

fleet, with 69.2% of passenger cars, light commercial vehicles corresponding to 15.7%, trucks 

to 3.0%, buses to 0.7% and motorcycles represent 11.5% of Belo Horizonte's fleet 

(DENATRAN, 2019). This city shows the representativeness of the city's fleet compared to the 

vehicle fleet that circulates in the state. In addition to vehicles, the number of fixed sources, 

such as the metallurgical industry, boilers in hospitals, pizzerias, and laundries, also contribute 

to the degradation of air quality in cities. According to Santos et al. (2019), the number of 

companies and fixed sources licensed in Belo Horizonte increased by approximately 57.4% 

and 22.7%, respectively, between 2003 and 2015. Fuel oil, firewood, natural gas, among other 

fueled these sources, which also contributes to increased emissions of air pollutants. 
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Currently, Belo Horizonte develops actions and projects for urban infrastructure, transport, and 

mobility through the implementation of the Belo Horizonte Urban Mobility Plan (PlanMob-

BH). The PlanMob aims to recommend physical interventions, operational and public policy 

coherently and completely (PLANMOB-BH, 2010). Among the plan's proposals, there is an 

offer of more attractive public transport and discouraging the use of passenger cars, which is 

mainly responsible for vehicular emissions in urban centers.  

The better representation of vehicular emissions, including actions that improve the urban 

mobility of the city, will bring greater accuracy in the representativeness of air quality. 

Therefore, from the detailed view of vehicle emissions, including studies of the periodic 

behavior of urban traffic on the roads and the result of characteristic curves of traffic behavior 

by vehicle category, it is possible to propose a contribution to a more adequate and detailed 

view of the vehicle's actions on air quality. This study proposes the use of statistical models to 

calculate the traffic flow, showing that this is an alternative to minimize costs with source-

destination surveys and with the use of commercial software designed for traffic modeling. 

Estimating the main effects of vehicle emissions through the use of modeling for the most 

densely urban regions, with a representative vehicle fleet, presents itself as an essential and 

relevant topic for research.  

 

1.2. OBJECTIVES 

1.2.1. General objective 

To estimate vehicle emissions by coupling statistical models to vehicle emission model from 

radar and vehicle count data. 

1.2.2. Specific objectives 

1.2.2.1. To identify the traffic behavior on urban roads and to derive the characteristic 

curves of this behavior by vehicle category;  

1.2.2.2. To spatialize vehicle flow data using a statistical model; 

1.2.2.3. To estimate emissions by vehicle category and by type of fuel considering the traffic 

behavior inserted in the Vehicle Emission Inventory Model (VEIN); 

1.2.2.4. To assess the impact of detailed traffic data on vehicle emissions estimates. 
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1.3. DOCUMENT STRUCTURE 

This thesis is divided into six chapters. Chapter 1, already presented, shows the introduction, 

justification, and general and specific objectives of the thesis. Chapter 2 presents a systematic 

review of the literature (SRL) in which the main traffic variables used in modeling emissions 

and air quality are presented and the discussion of the relationships, connections, and relevance 

between these variables. Besides, the step by step to generate traffic data using different traffic 

models were presented and, finally, a list of main traffic variables to be used as input data in 

the modeling of vehicle emissions was proposed. This work also presented the main pollutants 

inventoried in the selected works (NOx, PM, SO2, CO, and VOC), the differences between air 

quality modeling in developed and developing countries, and the importance of accurate 

modeling results to understand and evaluate the main issues inherent to air quality. 

Chapter 3 presents the methodology used to structure and integrate traffic data inputs for 

modeling vehicle emissions. This chapter also shows that the demand to identify the real 

contribution of pollutants emitted by road vehicles to investigate air quality and its impacts on 

human health is increasing. However, it is necessary to consider the limitations of vehicle 

emission models. The specific objectives 1.2.2.1;1. 2.2.2 and 1.2.2.3 of the thesis are presented 

in chapter 3 since a statistical analysis of the monthly traffic behavior was performed, and the 

specific average traffic flow was determined using local radar data. The hourly behavior of the 

vehicle type was also analyzed, emphasizing the importance of the daytime cycle by vehicle 

type in the accuracy of the emissions inventory. Finally, a vehicle emissions inventory was 

calculated using VEIN, the Brazilian model of vehicle emissions inventory. The inventory 

considered data from different traffic behavior profiles (constant daytime cycle and by vehicle 

type) established from local radar data.  The Kriging interpolation method to determine the 

spatial/temporal distribution of vehicle flows in urban roads in the Belo Horizonte city is a low-

cost method used in this work.   

Chapter 4 improves specific objectives 1.2.2.2 and 1.2.2.3 and fulfills specific objective 

1.2.2.4, which corresponds to the assessment of the impact of detailing traffic data on vehicle 

emissions estimates. In this chapter, the spatial statistical analysis of radar data is presented, 

calculating the traffic flow using local radar data in different statistical models and analyzing 

future scenarios (2025, 2030, and 2050) from the vehicle emissions inventory projected for 

2020. Results may serve as a reference for the policy definitions focused on traffic and 
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environment in Belo Horizonte, as well as improving understanding of the dynamics of 

mobility in the city. 

Finally, chapter 5 presents the final considerations and suggestions for future work, and chapter 

6 presents all the bibliographic references used in the thesis.   
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The paper “Traffic data in air quality modeling: a review of key variables, improvements in 

results, open problems and challenges in current research” 

(https://doi.org/10.1016/j.apr.2019.11.018) was developed by the author of this thesis in 

collaboration with researches Professor Prashant Kumar, Professor Marcelo Félix Alonso (co-

advisor), Willian Lemker Andreao, Rizzieri Pedruzzi, Fábio Soares dos Santos e Professor 

Taciana Toledo de Almeida Albuquerque (advisor). The paper provided a review of the main 

concepts about traffic, emissions, and air quality modeling, as well as how the main traffic 

variables are treated in vehicle emissions and air quality models.  

The importance of this work within the thesis is to show the state of the art of detailing traffic 

variables in emission and air quality modeling. There are still many differences in terms of 

advances in studies when comparing developing and developed countries. In developing 

countries, the air quality monitoring network is precarious and incipient. It was challenging to 

collect data and make use of the models being the main alternative to analyze the conditions of 

air quality in the cities. The establishment of research networks is crucial for search solutions 

applicable in the places where pollution comes from vehicles significantly impact the health of 

the population.  

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)- Finance Code 

001, Brazil partially funded this research. The support of the Global Centre for Clean Air 

Research (GCARE), Department of Civil and Environmental Engineering, Faculty of 

Engineering and Physical Sciences, University of Surrey, United Kingdom; the support 

received from the FAPESP and the University of Surrey through the PEDALS (Particles and 

Black Carbon Exposure to London and Sao Paulo Bike-Lane Users) and NOTS (Novel high-

resolution spatial mapping of health and climate emissions from urban transport in Sao Paulo 

megacity) projects, and through the CArE-Cities (Clean Air Engineering for Cities) project and 

the support received from the FAPESB/CIMATEC/SENAI were also essential to this research. 
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2.1. INTRODUCTION 

Significant vehicle fleet growth in large urban areas is one of the main causes of air pollution, 

which may affect air quality and, consequently, the health and well-being of exposed 

populations (Pant and Harrison, 2013; Andrade et al., 2017; Kumar et al., 2018). The effects 

on the environment and human health depend on the concentrations of the pollutants, 

topography, and weather conditions (Heal et al., 2012).  

According to the World Health Organization (WHO), outdoor air pollution is responsible for 

approximately 4.2 million deaths around the world in both urban and rural areas. Ischemic heart 

disease and strokes (58%), chronic obstructive pulmonary disease and acute lower respiratory 

infections (18%), and lung cancer (6%) are the key causes of premature death (WHO, 2018). 

In urban areas, vehicles are the main sources of air pollution mainly due to the burning of fuels 

such as gasoline, ethanol, gasohol (a mixture of gasoline and ethanol), diesel, biodiesel (a 

mixture of vegetables oils or animal fats and diesel), and natural gas (Sbayti, et al., 2001; 

Alonso et al., 2010; Gurjar et al., 2010; Albuquerque et al., 2012; Andrade et al., 2012; 

Mahmod et al., 2013; Uddin, 2013; Kumar et al., 2016; Andrade et al., 2017). The growth of 

the vehicular fleet and the related fuel consumption can lead to an increase in the emission of 

air pollutants. Therefore, the development of a robust vehicle emissions inventory (VEI) is 

required for a given study area, which may support policymakers and researchers to develop 

strategies in urban centers to reduce pollutant emissions and their concentration in the 

environment (Kumar et al., 2011a; Jain et al., 2016; Nagpure et.al., 2016). It should consist of 

as much of the vehicular fleet as possible, varying according to the type of vehicle (passenger 

cars, buses, trucks, motorcycles), age (older vehicles emit more pollutants), fuel used, and 

average distance traveled (ADT). All these data are needed for each road link in a study area 

(Coelho et al., 2014; Ho et al., 2014; Fu et al., 2017; Dias et al., 2018; Gómez et al., 2018).  

The traffic-emission-air quality modeling has evolved over the years, but some gaps remain 

due to the quality of input data, especially in developing countries, and the complexity inherent 

in this type of modeling.  Air quality models (AQMs) are among the tools developed to assist 

authorities responsible for researching, designing, and applying effective strategies to reduce 

the emission of harmful pollutants into the atmosphere. These models allow an understanding 

of the relationship between the sources of pollutant emissions and their impacts on ambient air 

quality. There are substantial differences between air quality models in terms of the formulation 
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of models to estimate atmospheric parameters and the concentration of pollutants. However, 

one of the major differences between them is the capacity to simulate many chemical reactions 

and formation of secondary pollutants, such as secondary aerosols and ozone, while 

maintaining the representativeness of the physical phenomena in the atmosphere (US EPA, 

2015). Photochemical models are more suitable to perform this task. Despite the advantages of 

photochemical models, one of the most critical aspects is the need for a high-quality emissions 

inventory (EI), with a complete emissions dataset that includes the main sources of emissions 

in a region, different pollutants, chemical speciation for VOC and PM, temporal variations in 

emissions and a representative tridimensional meteorological field (Arya, 1999; Pulles and 

Heslinga, 2010). 

Some recent reviews have treated microsimulations tools, spatial projection and traffic flow to 

evaluate vehicular emissions (e.g., Fontes et al., 2015); systematically reviewed and analyzed 

available source apportionment studies on particulate matter (Karagulian et al., 2015); 

discussed coupling different air pollution modelling (Zhong et al., 2016); presented roadmaps 

and technical options to emission control (Wu et al., 2017); and highlighted co-operation to 

enforcement environmental policies (Isley and Taylor, 2018). This paper intends to fill the gaps 

in the area of the need of traffic emissions for air quality modelling. The aims of this work are 

(1) to carry out a systematic literature review (SLR) to present the main traffic variables used 

in emissions and air quality modeling and discuss their relationships, connections, and 

relevance; (2) to show a consistent sequence by which to generate traffic data using different 

traffic models; and (3) to propose a list of key traffic variables to use as input data in vehicle 

emissions modeling. This work also presents the main pollutants inventoried (NOx, PM, SO2, 

CO, and VOCs), the differences between air quality modeling in developing and developed 

countries, and the importance of accurate modeling results to understand issues of air quality. 

Section 2 provides a systematic literature review using the VOSViewer tool. Section 3 

highlights the review of traffic models and presents a sequence in which to generate traffic 

data. Section 4 presents an enhanced review of the relevant emissions and air quality models, 

presenting air quality modeling from different countries. Section 5 proposes a list of traffic 

variables and provides an analysis of uncertainty in air quality modeling. Finally, Section 6 

summarizes the key findings, open problems, challenges in current research and conclusions. 
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2.2. APPROACH USING A SYSTEMATIC LITERATURE REVIEW 

The first step in the systematic literature review was to select papers that described the 

importance of having detailed traffic data to improve results generated by an air quality model. 

The selection was made by analyzing bibliographic data such as authors, titles, abstracts, and 

keywords. A total of 826 scientific articles was found, and 125 were selected for detailed 

analysis. The databases consulted included Scopus, Compendex, ProQuest, and Periódicos 

Capes portal (a Brazilian virtual library which has a collection of 134 databases including Web 

of Science). Table 1 shows the combination of the keywords, database searched, and time period 

using different strings associated with different combinations of search terms.   

Table 1: Systematic Literature Review (SLR): Database and papers found during the study period. 

Database SLR 
number 

Keywords Papers 
found 

Period 
researched 

  

Capes Portal SLR1 “traffic models” and “emission models” 209 1999 to 2019   

Capes Portal SLR2 “vehicle emission model” and “air quality model” 411 Last 10 years   

Capes Portal SLR3 “review air quality model” and “review traffic emission model” 27 Last 10 years   

Capes Portal SLR4 “emission” and “traffic model” and “review” 56 Last 10 years   

Scopus SLR1 “traffic model” and “emission model” and “air quality model” 1 Last 10 years  

Scopus SLR2 “traffic model” and “emission model” 48 Last 10 years  

Scopus SLR3 “traffic model” and “air quality model” 2 Last 10 years  

Compendex SLR1 Traffic congestion; Highway traffic control and Air pollution 
control (OR particulate emissions OR Nitrogen oxides (NOx)OR 
Air quality standards and Emission control 

21 1969 to 2019  

Compendex SLR2 traffic model and emission model 28 1969 to 2019  

Compendex SLR3 traffic model and air quality model 1 1969 to 2019  

ProQuest SLR1 “traffic model” and “emission model” and “air quality model” 2 Last 10 years  

ProQuest SLR2 “traffic model” and “emission model” 16 Last 10 years  

ProQuest SLR3 “traffic model” and “air quality model” 4 Last 10 years  

 Total: 826 

VOSviewer software (Eck and Waltman, 2010) was used to investigate the strength of links 

between keywords. This strength is a similarity measure or the proximity index. The similarity 
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between two items is calculated from the relationship between the number of items that co-

occurrences and the total number of occurrences or co-occurrences. The strongest connections 

in the papers are between ‘air quality’, ‘ozone’, ‘vehicle emission’, ‘road traffic’, ‘congestion’, 

‘emission inventory’, ‘emissions’ and ‘fuel consumption’ respectively (Table 2).  

Table 2: Selected keywords and the relationships between them. 
Keyword Occurrences Strength Connection 
Air quality 16 22 

Ozone 6 12 
Vehicle Emissions 11 11 

Road Traffic 5 10 
Congestion 5 9 

Emission Inventory 8 9 
Emissions 6 8 

Air quality modeling 4 7 
Fuel Consumption 4 7 

Figure 1 illustrates the density of the keywords (the most used) in selected papers and shows a 

strong link between vehicle emissions and air quality, traffic, and mobile source. Red areas 

indicate a high density of keywords (i.e., repetition of most used keywords) as opposed to the 

blue colour representing a low density of keywords (Eck and Waltman, 2016). This density 

view is particularly useful to obtain a quick overview of the important areas on a map. There 

are three main density areas that include keywords related to (1) emissions and traffic; (2) air 

quality and vehicle emissions; and (3) pollutants and air quality. 

 

 
Figure 1:Density view diagram of keywords. 
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The systematic review literature also shows where the studies are most concentrated to 

introduce how traffic variables are connected, and which connections have strong and weak 

relationships between traffic variables and air quality. The network of connections between the 

variables showed that ozone, NOx, and particulate matter (PM) was the most studied pollutants. 

NOx and PM are characteristic of vehicular emissions in urban centers (Miranda et al, 2012; 

Fu et al., 2013; Lang et al., 2014) and have a direct effect on human health (Cesaroni et al., 

2013; Crouse et al., 2015; Thurston et al., 2015; Pope et al., 2019).  

Further analysis was carried out using correlation maps generated from the textual data. This 

included an analysis of the titles and abstracts that considered a combination of at least six 

occurrences of the variables. Occurrences indicate the number of times the selected variables 

appeared in the selected articles and relevance is a score (weight) of each variable. The 

variables traffic flow, fuel consumption, speed, average speed and acceleration occurred in a 

range between 11 and 6 times and relevance varied from 3.04 to 0.71. These traffic variables 

are the ones that need to be considered when drawing up a vehicular emission inventory. Other 

variables such as accuracy, ozone, roadway, air quality model, vehicular emission, congestion,  

and CO2 were also relevant. When the years of publication are analyzed, the term ‘accuracy’ 

stands out in publications from the last four years. The term ‘accuracy’ (the most proximity of 

a value obtained with respect to a reference value)  has large correlation with the term ‘air 

quality model’ (it is highly related to the topic of the review), while its correlation to other 

variables is weak.  

Finally, the arrangement of connections between variables related to traffic-emissions- air 

quality models are shown in three clusters (Figure 2): cluster 1: traffic variables and 

connections between emission models and accuracy; cluster 2: traffic variables that are 

commonly used in traffic and emission modeling; and cluster 3: pollutants and variables related 

to air quality models and connections to traffic and emissions variables.  
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Figure 2: Network of connections between the variables used in different but related research articles. 

The cluster analysis is showed a set of items included in a map and the item may belong to only 

one cluster. This analysis shows how the variables to traffic-emission-air quality modeling are 

linked in the literature review. All the above variables are part of the network, and all 

connections from clusters are important in the analyses of vehicle emissions and their impacts 

on urban air quality. 

2.3. VEHICLE EMISSIONS AND THE USE OF TRAFFIC MODELS 

In developing a vehicular emission inventory, the main pollutants characterized for fuel 

combustion were nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), non-

methane hydrocarbons (NMHC), PM, greenhouse gases such as carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O). PM emissions due to tire/brake/road wear and dust 

resuspension are also accounted for and evaporative emissions still are considered because they 

may increase HC concentrations.  

Vehicular emissions are classified either as direct or indirect. Direct emissions are those 

resulting from the combustion of fuel in a vehicle engine (hot exhaust emissions) which 

increases with the characteristics of driving cycles. Indirect vehicular emissions are caused by 

the resuspension of PM deposited on the track surface and by the wear of brake pads, tires and 

road surface (Pant and Harrison, 2013; Andrade et al., 2017; Kumar and Goel, 2016; Kumar et 

al., 2017). Vehicle emission rates can be calculated using emissions inventories and 

mathematical models. In this work, the emission rate is the representative value that relates the 

mass of a given element to the atmosphere considering “time” (mass/time) and must be 

expressed in tons per year (t/year) (Cetesb, 2009). 
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The vehicular emission inventory can be developed using both top-down and bottom-up 

methodological approaches (Aparicio et al., 2016; Wang et al., 2016; Ibarra-Espinosa and 

Ynoue, 2017). The top-down approach is based on statistics on vehicle composition, 

representative speeds, and country balances. It calculates the total emissions of some regions 

using generic indicators, such as sales data or fuel consumption. Emissions are then 

disaggregated according to specific emission factors. This approach reduces the accuracy of 

the spatial distribution of emissions, although it is fast, cheap, and does not require much 

technical skill (Costa and Baldasano, 1996; Bieser et al., 2010; Kumar et al., 2011a; Santos et 

al., 2019). 

The bottom-up approach is based on traffic counts, vehicle compositions, road lengths, speed 

recordings, and a good knowledge of a given study area. This approach is based on estimations 

of emissions that use detailed data on each source of emissions. A study region is divided into 

sectors using traffic typologies, vehicle categories, and type of fuel used. The sources are the 

location of the emitter, the activities are standard temporal emissions, and emissions factors 

determine the quantity of pollutants emitted (Bieser et al., 2010; Santos et al., 2019). 

Both methodologies require emissions factors (EFs) that describe the relationship between the 

activity data (traffic) and the emissions related to these data (Pulles and Heslinga, 2010; EEA 

2016; Ibarra-Espinosa and Ynoue, 2017). The choice of methodology depends on the goal of 

the study, the information available, and the requirements of the inventory. In both cases, traffic 

information (activity data) is a key variable.  

The dynamics and behavior of urban traffic (activity traffic data) can be represented on 

temporal and spatial scales using traffic modeling. Traffic models have been in development 

since the 1960s and have been refined over the years. These models can use macroscopic, 

mesoscopic, and microscopic approaches that are differentiated by the level of detail in input 

information such as speed, acceleration, traffic flow, and the aggregation of variables (Portugal, 

2005; Darbha et al., 2008; Kumar et al., 2014) (Table 3). 

Table 3: Types of traffic models. 

Model 
Representation of traffic  Traffic flow variables 

Macroscopic Traffic flow Aggregated 
Mesoscopic Vehicle unit Aggregated 
Microscopic Vehicle unit Disaggregated 
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The decision regarding the most appropriate traffic model to select is made by the analyst. 

Figure 3 presents a sequence of processes followed to generate input data for vehicle emissions 

models with data from traffic models. For the study area, the study scale (country, state, city, 

neighborhood, or smaller areas), types of routes (regional, arterial, collector, or local) and time 

periods (annual, monthly, daily, hourly or by data fraction) must be defined.  

The traffic data can be collected using an origin-destination survey, Global Positioning System 

(GPS) data, schedules of routes (for buses), radar databases, traffic counts, and traffic 

simulations (Ibarra-Espinosa and Ynoue, 2017; IEMA, 2017; Dias et al., 2018). However, 

some of this information does not consider all roads in the study area, and/or all hours of the 

day. In these cases, it is necessary to interpolate available traffic data to areas and hours for 

which such information is unavailable. Traffic models provide activity data with flow for every 

road in the area of interest. 

Macroscopic models show the spatial and temporal evolution of traffic. The flow of traffic is 

considered fluid, such as in the study of hydrodynamics. Vehicles neglected at the individual 

level and for variables such as counts, and the vehicle flows are aggregated to a level equal to 

that of traffic performance measurement systems. These models are not very flexible, have low 

levels of detail and computational advantage in terms of their running speed (Hoogendoorn and 

Bovy, 2001; Esteves-Booth et al., 2002; Portugal, 2005; Barceló, 2010; Mohan and Ramadurai, 

2013; van Wageningen-Kessels et. al., 2015).   
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Figure 3: Steps to use traffic modeling to generate input data for vehicle emissions models. 
 
 
Mesoscopic models use slightly more detailed variables than macroscopic models. Vehicles 

can be grouped (into platoons) or represented individually. Their behavior rules are specified 

in the form of probability distribution functions of the flow/capacity relationship. Vehicles are 

categorized based on their size, location, speed, and acceleration, which are important variables 

when traffic simulation is combined with air quality modeling (Hoogendoorn and Bovy, 2001; 
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Burghout et al., 2005; Portugal, 2005). The mesoscopic analysis deals with the constituents of 

traffic streams and seeks to explain the spatial and temporal behavior of vehicles based on the 

theory of traffic flow dispersion (Portugal, 2005; Barceló, 2010).  

In microscopic models, vehicles are treated individually, and each retains all characteristics of 

interest to be modeled by the system. Table 4 presents a brief summary of traffic models and 

their classification. These models represent traffic processes and the interactions between 

vehicles and road infrastructure in detail. Defining the application context (spatial and 

temporal) is also fundamental to choosing these models, as they require a high computational 

capacity high due to the complexities of road networks (arcs and nodes). 

Table 4: Summary of Traffic Models. 
Decade Model Type 

1970 

Urban Traffic Control System (UTCS-1) Microscopic 
Microscopic 
Microscopic 
Macroscopic 
Macroscopic 

Network Simulation (NETSIM) 

Simulation Model for Multi–lane Traffic Flows (MULTISIM) 

SIGnal Optimization (SIGOP II) 

Microassignment 

1980 

Network Simulation/Interactive Computer Graphics (NETSIM/ICG) Microscopic 

Simulation Model of Roundabout Operations (SIMRO) Microscopic 

Traffic Simulation Model (TRAFLO) Macroscopic 

 
Advanced Interactive Microscopic Simulator for Urban and Non-
Urban Networks (AIMSUM2) 

Microscopic 

 Corridor Simulation (CORSIM) Microscopic 

 
Dynamic Route Assignment Combining User Learning and 
microsimulAtion (DRACULA) 

Microscopic 

 INTEGRATION Microscopic 

 PARAMICS Microscopic 

1990 SATURN Microscopic 

 TPS VISION Microscopic 

 TRAF–NETSIM Microscopic 

 VISSIM Microscopic 

 CONTRAN Mesoscopic 

 EMME Macroscopic 

2000-
Presently 

Simulation of Urban Mobility (SUMO) Microscopic 

Cell Transmission Model/Kinematic Waver Model (CF/LWR) Macroscopic/Microscopic 

Cluster Mesoscopic 

Generic GK Mesoscopic 

Fastlane Macroscopic 

Kinematic Waver Model MC/LWR with pce Macroscopic 
Source: Adapted from Portugal (2005), Barceló (2010), Li and Sun (2012); Mohan and Ramadurai (2013) and Kessels et al. (2015)). 

 

The importance of using traffic models to generate input data for emissions models is directly 

related to the detail level of variables used in the former. Highly detailed (microscopic) models 

are complex but are supposed to describe reality more accurately, whereas simple and traceable 

(macroscopic) models are used in real-time applications such as proactive traffic management. 
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Therefore, descriptive and predictive accuracy must be weighed against the need for fast 

simulations. Traffic models that can enable rapid simulations and, preferably, that has 

simplified mathematical formula (van Wageningen-Kessels et. al., 2015, Forehead and Huynh, 

2018) are recommended. Table 5 presents a selection of papers that used traffic models and 

their related variables to generate precise data to insert into vehicle emissions models. These 

studies showed the importance and impact of traffic models used to improve input data for 

vehicle emissions models and, consequently, for air quality models.   
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Table 5: Review of traffic models. 
Reference Pollutants Models Traffic Variables Country Remarks 

Wei et al. (2019) CO, CO2, NOx, 
VOC 

PARAMICS Road network; traffic signs; 
intersections; traffic zone; routes; 
bus stations; vehicles type  

China A genetic algorithm was used to calibrate the traffic simulation model, so the vehicle 
activity data simulation could be closed to real world. The focus to control vehicular 
emissions must be different: buses (CO, VOC); trucks (NOx, CO2) and cars (CO). 

Stern et al. (2019) CO, CO2, HC, 
NOx 

Traffic - waves Behavior; autonomous capability 
(adaptive cruise control, lane 
following, etc.) 

USA Significant emission reductions from vehicle may be possible with more technologically 
advanced vehicles, even with a limited number of vehicles on the road recovered. 

Hofer et al. (2018) CO2 Agent-based Traffic flow travel distance; road 
network; type, size, and age of car 
used 

Austria Electric cars were used to reduce CO2 emissions. A significant result in CO2 emissions 
would be observed only if many old cars were banned. 

Xu et al. (2018) NOx, PM10, 
PM2.5 

VISSIM Vehicle drive cycles; hourly 
traffic data; traffic volume and 
composition; radar speeds 

Canada The emissions estimated using vehicle speeds from radar were at least three times lower 
than those derived from simulated vehicle trajectories. Careful attention must be paid when 
raw radar data is used for emissions modeling. 

Jiang et al. (2018) CO2, NOx, PM Dynamic Traffic 
Assignment (DTA)   

Density of urban traffic; travel 
speed; traffic acceleration  

China The model estimates various traffic-related exhaust emissions in urban areas and may serve 
to quantify the environmental impacts of various traffic management and control strategies. 

Jamshidnejad et al. (2017) CO, HC, NOx SUMO Traffic behavior; network; group 
of vehicles; time-speed curves 

Netherlands, 
Greece 

The model considered an aggregated behavior of group of vehicles and afforded a great 
accuracy and a low computational time when compared the behavior of individual vehicle.  

Tang et al. (2017) CO, HC, NOx LWR* Model Driver behavior; fuel 
consumption; traffic - waves 

China The driver´s bounded rationality has decisive effects on the fuel consumption  

Borrego et al. (2016) NOx, PM10 VISSIM Driver behavior; car – following 
parameters; GPS data 

Portugal The detailed traffic data when combined with instantaneous exhaust emissions data can 
provide an accurate  

Han et al. (2016) HC Lighthill–Whitham–
Richards (LWR) 

Vehicle occupancy; flow; 
network; link flow capacity 

United 
Kingdom, 

USA 

Reduced models allow emissions to be easily calculated in a network traffic model 
structure, as against to conventional techniques that require the trajectory of individual 
drivers in the network. 

Hosseinlou et al. (2015) CO, CO2, HC, 
NOx,  

AIMSUM  Travel speed and time; fuel 
consumption 

Iran From a societal perspective, 73 km/h would be an optimal speed; from a road user’s 
perspective, this speed would be 82 km/h. The speed may influence pollutant emissions 
and the societal cost of travel. 

Rowangould (2015) PM Travel Demand 
Model 

Trip per link; vehicle classes; time 
periods 

USA A new methodology using a dispersion model to create regional PM2.5 maps using 
vehicular exhaust data. The detailed concentration maps could be used, for example, to 
improve the siting of air quality monitors. 
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Table 5: Review of traffic models (continuation). 
Reference Pollutants Models Traffic Variables Country Remarks 

Vieira da Rocha et al. 
(2015) 

CO2, NOx, PM Newell and  
Gipps 

Traffic at peak hours; speed; 
acceleration; car-following; fuel 
consumption; fleet composition 

USA At an individual vehicle level, it takes more than a precise calibration of the car-following 
rules to obtain accurate estimates of fuel consumption, NOx, and PM emissions. 
Marginally counterparts on the traffic model accuracy could improve the accuracy of 
vehicle emissions. 

Sun et al. (2015) CO, CO2, HC, 
NOx 

GPS Fuel consumption; mobile sensing 
data; state-dependent acceleration; 
vehicle trajectory 

China For vehicle-based estimates, if the number of vehicles is estimated properly, the 
corresponding fuel/emissions results are usually close to real ground values. 

Alam and Hatzopoulou 
(2014) 

Greenhouse gases VISSIM Network congestion; roadway 
grade; passenger load; fuel type  

Canada Compressed natural gas emissions are related to traffic congestion, transit signal priorities, 
and improved technology. 

Hernádez-Moreno and 
Mugica-Álvarez (2014) 

Black Carbon 
(BC), CO, CO2, 
HC, NOx, SOx, 
PM10, PM2.5. 

TRANSIMS Instantaneous fuel consumption; 
average speed 

Mexico The method for integrating polynomial regression models is an alternative for developing 
regional emissions models. 

Ma et al. (2014) CO, HC, NOx VISSIM, SUMO Light signal; vehicle actuated 
control; traffic flow rate; speed; 
fuel; stops; delays 

China There is a visible improvement in urban mobility, but the reduction of fuel consumption 
and vehicle emissions is not as evident. 

Misra et al. (2013) CO, NOx PARAMICS Route choice; driver behavior; 
vehicle category 

Canada Microscale urban traffic emissions were estimated using integrated model. CO and NOx 
concentrations observed by sensors were used to validate the model. 

Zegeye et al. (2013) CO, HCs, NOx VT-micro, VT – 
macro, METANET 

Average density; flow and 
average space mean speed; fuel 
consumption 

Netherlands The integration of macroscopic traffic flow models with microscopic emissions and fuel 
consumption models provided good estimates of the emissions and fuel consumption over 
a short simulation time. 

Zhu and Ferreira (2013) CO2 AIMSUM, 
Monte Carlo 
Simulation 

Vehicle speed; acceleration; free 
flow stage; congested stage 

Australia Under free-flowing traffic conditions, the CO2 model produced low overall uncertainty. 
However, under congested conditions, there were significant errors associated with 
emissions estimates. 

Tchepel et al. (2012) PM2.5 TREM-HAP, 
Monte-Carlo 
technique 

Hourly traffic counts; number of 
vehicles; vehicle categories; 
average speed; road segments 

Portugal Cold start emissions can contribute to up to 45% of total daily emissions. Uncertainties in 
the transport activity data affected the uncertainty of the model application. 

Xie et al. (2012) CO, NOx, SO2 PARAMICS Traffic volume; vehicle type; link 
volume; speed data; rate per 
Vehicle Miles Traveled (VMT) 

USA A change from diesel to compressed natural gas in transit buses reduced SO2 emissions 
rates; however, it increased CO emissions rates. Electric cars reduced energy consumption 
and SO2 and CO2 emissions. 

Kumar et al. (2011a) PM Activity based 
approach 

Type of vehicle; Vehicle 
Kilometers Traveled (VKT) 

India This is the first study that calculated the total mortality due to exposure of ambient PM 
concentrations in an Indian megacity (Delhi). 

Gurjar et al. (2010) CO2, CO, NOx, 
SPM, VOC´s 

Activity based 
approach 

Number of vehicles of each type; 
distance traveled in a year by each 
vehicle type 

India Pollutants were emitted mainly from a high number of commercial goods vehicles and 
buses, cars, and taxis. The increasing demand for personal vehicles contributes to emissions 
of CO, VOCs, and other pollutants. 
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The systematic literature review showed that approximately 61% of the articles used 

microscopic model to design traffic network; 22% adopted macroscopic models and 17% 

determined traffic flow using agent-based and activity-based approach. The predominance of 

microscopic models can be explained by the purpose of the research, the size of the study area, 

and the existence of detailed traffic data.  

Although the microscopic model performed with more detailed traffic data, there are some 

inherent problems with traffic data, and it can be impacted on the final accuracy of traffic-

emission-air quality modeling. Fallahshorshani et al. (2012) reported some of traffic data 

problems: traffic varies temporally and a disturbance in one location can be reflected in the 

traffic over a large area; traffic is ubiquitous and includes heavy traffic flow on major roadways 

with traffic distributed over surface streets and a vehicle fleet composition defined as stochastic 

is far from reality. On the other hand, the detail is necessary, and some solutions are being 

studied and applied at traffic modeling such as the use of real-time traffic data, data from 

intelligent traffic systems (ITS), dynamic traffic assignment (DTA) models agent-based models 

and neural networks (Forehead and Huynh, 2018; Qi et al., 2018; Wang et al., 2018).  

2.4. EMISSION AND AIR QUALITY MODELS 

To estimate emissions for a specific region, emissions models must use emission factors (EF) 

as an input. Therefore, to develop accurate emission factors for road vehicle emissions models, 

intensive testing is required to properly cover all the relevant vehicle types and driving 

conditions (Franco et al., 2013; Fontaras et al., 2014; Mishra and Goydal, 2014; Ramírez et al., 

2019). A consistent approach to using an EF, treating transformation processes in air quality 

models appropriately, and evaluating the performance of models against measured data is 

required to produce accurate modelled results (Kumar et al., 2011b; EEA, 2016). Vehicle 

emissions models are divided into static and dynamic (or modal) models, based on the types of 

variables used, such as speed and acceleration, and how they are combined (Barth et al., 1996; 

Barth et al., 2000; Davis et al., 2005).  

Static models are based on the average vehicle speed and consider vehicle dynamics using this 

concept. These models are used in cities to calculate emissions and work based on specific 

emission factors for each type of vehicle or engine, disaggregation factors, and average traffic 

situations (Davis et al., 2005; Esteves-Booth et al., 2002). They are suitable for large-scale 

strategic analysis and in cases where the average speed characterizes the traffic flow in an 
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appropriate manner for the purpose of the study. Some examples of static models used in the 

literature are EMission FACtor (EMFAC) and the Computer Program to calculate Emissions 

from Road Transport (COPERT) (Samaras and Zierock, 1990; Barth et al., 1996; Ekström et 

al., 2004; Gkatzoflias et al., 2007; Ntziachristos et al., 2009). 

Dynamic models are more detailed and they consider the variations in vehicle operating modes 

over time and represent continuous emissions, usually measured on a second-by-second basis. 

These types of models use variables such as engine speed, throttle position, air conditioner use, 

gear shifts, variations in constant operating modes, and accelerations or decelerations (Barth et 

al., 1996; Barth et al., 2000; Hoogendoorn and Bovy, 2001). To calibrate dynamic models, 

emissions are measured continuously using a chassis dynamometer test or through equipment 

installed in vehicles and stored by time intervals (Barth et al., 2000). The most popular dynamic 

models are the Virginia Tech-Micro (VT-Micro), International Vehicle Emissions (IVE), 

Assessment and Reliability of Transport Emission Models and Inventory Systems 

(ARTEMIS), Comprehensive Modal Emissions Model (CMEM), and the Motor Vehicle 

Emissions Models (MOVES) (Koupal et al., 2002; Koupal et al., 2003; Davis ET AL., 2005; 

Scora and Barth, 2006; Boulter and McCrae, 2007; Rakha et al., 2003; Hui et al., 2007). As 

with traffic models, the selection of vehicle emissions models goes through different stages, 

and the result generated shows emissions by type of vehicle in certain spatial and temporal 

conditions. This is the information that could be used as input data in an air quality model. 

Among the variables that should be considered in the models, the resolution of the temporal 

variable is crucial, as the way emissions are redistributed from annual to hourly fluxes 

determines the accuracy of the pollutant modelled concentrations (Menut et al., 2012). Another 

important variable is traffic dynamics, which it is difficult to measure because, for example, 

there are spatial and temporal variations in traffic states (i.e., heterogeneity), which could result 

in emissions being underestimated since accelerations and decelerations are neglected (Lin and 

Ge, 2006). The configuration of the AQM (e.g., the horizontal and vertical grid resolution), 

parameterization of dispersion processes (e.g., the vertical and lateral turbulent diffusion 

coefficients), spatial and temporal allocation of emissions , and vehicle fleet information (e.g., 

regional variations in fleet composition and fuel used) also influence the results of modeling 

(Kota et al., 2014). 
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During the systematic literature review, 24 articles related to emissions models that were 

coupled with air quality models are highlighted. Table 6 shows the selected works, traffic 

variables, emissions models, AQMs used, and some remarks. 
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Table 6: Reviews of relevant emissions and air quality models. 
Reference Pollutants Emission Model Air Quality Model Traffic Variables Country Remarks 

Khan et al. (2019) NOx, NO2, PM10, 
PM2.5 

THOR AirGis Road network; vehicle category; 
travel speed; Annual Average Daily 
Traffic (AADT) 

Denmark The new AirGis overestimated the observed concentrations for some 
datasets. The model can be used for short- and long-term air pollution 
exposure assessments.  

Sampaio et al. (2019) CO2, NOx, 
NMVOC, PM2.5 

VSP, COPERT EMEP, URBAIR Speed (second by second, average); 
traffic flow 

Portugal The approach showed the development of a dynamic link based eco-
indicator allowing for potential exposed people to traffic-related 
consequences. 

Dias et al. (2018) CO, NOx, PM10, 
VOC 

TREM URBAIR Vehicle speed; spatial variation Portugal A GPS-based approach improves the understanding of the temporal 
variability of vehicle speeds within urban areas and quantifies and reduces 
the uncertainty in road transport inventories. 

González et al. (2018) O3, PM10 IVE WRF – Chem Vehicle categories, traffic flow 
levels, road network distribution 

Colombia Local emission inventory allowed a more realistic analysis of emission 

representation. It led to a better understanding of both dispersion and 

transformation of air pollutants 
Jezek et al. (2018) BC, NOx EMEP/EEA Gaussian Dispersion Fleet composition; street lengths; 

speed limits; AADT 
Slovenia The reduction around 10% in composition fleet reduced BC and NOx 

emission in 39% and 33% respectively.  
Jensen et al. (2017) NO2, PM2.5, 

PM10 
COPERT IV  AirGis AADT; Vehicle distribution; travel 

speed in each road; diurnal vehicle 
profiles 

Denmark The predict street concentrations present a reasonably accurate report of 
the annual mean air quality levels at Danish address, its geographic 
distribution and relative difference between areas. 

Sun et al. (2017) CO, CO2, HC MOVES - Vehicle amount per age; vehicle 
kilometer traveled; speed 

China The engine speed has the highest correlation with carbon emission in 
microscopic level study.  

Borrego et al. (2016) NOx, PM10 VSP and EMEP/EEA  URBAIR Driving cycles; traffic flow; speed; 
travel time,  

Portugal Instantaneous vehicle emissions combined with filtered urban 
backgrounds determine the accuracy of the urban Gaussian model. 

Oduro et al. (2016) NOx, CO, CO2 
Total Volatile 
Hydrocarbon 

(THC) 

CART–BMARS - Speed; acceleration; load; power; 
ambient temperature 

Australia A comparison of the CART–BMARS hybrid model with BMARS and 
artificial neural network algorithms versus on-board measurements and 
chassis dynamometer tests demonstrated the effectiveness and efficiency 
of the combined model in estimating vehicular emissions. 

Csikós et al. (2015) CO, HCs, NOx COPERT IV Gaussian Dispersion Traffic flow; traffic density; space 
mean speed of traffic 

Hungary A new simple dynamic dispersion model was proposed for motorway 
traffic emissions, and verifications and numerical and sensitivity analyses 
were provided. 

Rowangould (2015) PM EMFAC2011 AERMOD Trip in each link; vehicle classes; 
time periods  

USA High-resolution air dispersion modeling was successfully applied to large 
transportation networks when a novel rastering approach and a few 
simplifying assumptions were applied.  

Borge et al. (2014) NO2 SMOKE CMAQ Intensity; activity data; fleet 
composition; average speed 

Spain A very detailed bottom-up emissions inventory was prepared for Madrid 
based on the SMOKE system. Local traffic represents the major source of 
NO2 concentration levels. 

Kota et al. (2014) CO, NOx MOVES, 
MOBILE6.2 

CMAQ Traffic hours; county-specific 
vehicle fleet information; vehicle 
miles traveled (VMT) 

USA Emissions models overestimated both CO and NOx on-road vehicle 
emissions. The meteorology field in the air quality model also influences 
the performance of the latter. 

 



 

28 
 

Table 6: Reviews of relevant emissions and air quality models (continuation). 
Reference Pollutants Emission Model Air Quality Model Traffic Variables Country Remarks 

Pallavidino et al. (2014) CO, CO2, NH3, 
NMVOCs, NOx, 

PM10, SO2 

COPERT IV 
 

- Circulating fleet; vehicle 
category; traffic flows; fuel 
consumption 

Italy If data is available, a bottom-up methodology should be used because it 
allows a better estimation of road transport emissions and apportionment 
among vehicle types. 

Amirjamshidi et al. 
(2013) 

CO, CO2, HCs, 
NOx 

CMEM Gaussian Plume Model Fuel consumption; 
speed/acceleration profiles; 
traffic composition 

Canada Despite the fact that pollutant concentrations were higher along freeways, 
the central business area presented higher exposure to pollutants. 

Zhang and Batterman, 
(2013) 

NO2 CMEM and 
MOBILE6.2 

CALINE4 AADT; fuel consumption; road 
type; fleet mix and speed; 
vehicle age 

USA Travel time, the duration of the rush hour, congestion-specific emissions 
estimates, and uncertainties are variables that must be considered in 
evaluations of the risk associated with congestion. 

Beevers et al. (2012) NOx, NO2, O3 SMOKE CMAQ/ADMS 
(CMAQ-urban) 

Traffic counts United 
Kingdom 

The CMAQ–urban model captured the spatial heterogeneity of NO2 and 
O3 concentrations in London. The WRF meteorological model influenced 
NOx concentrations. 

Vijayaraghavan et al. 
(2012) 

O3, PM2.5 MOVES CAMx Vehicle age; fuel; other factors USA The modeled results showed a large improvement in O3 and PM2.5 
concentration, based on an improvement in air quality standards. 

Gokhale (2011) CO, NO2, PM COPERT IV CALINE4, CAL3QHC 
and HV-GFLSM 

Traffic flow rate; modal fleet 
composition; traffic speed; 
traffic density 

India Different traffic flow conditions influenced the dispersion of pollutants, 
thereby affecting the spatial distribution of the concentrations. 

Kumar et al. (2011b) Nanoparticles CFD, OSPM - Traffic flow; average vehicle 
speed 

United 
Kingdom 

Appropriate treatment of particle transformation processes in dispersion 
models is a key point in extending the applicability of gaseous dispersion 
models to nanoparticles. Measured data is essential to evaluate model 
performance. 

Madireddy et al. (2011) CO2, NOx VERSIT+ - Road speed limits; traffic light 
synchronization; green wave 
traffic lights 

Belgium Lowering speed limits reduced CO2 and NOx emissions in a residential 
area, as did the implementation of a green wave along an arterial road. 

Alonso et al. (2010) CO, NOx, O3 Emission Preprocessor 
(PREP-CHEM – SRP) 

CCATT–BRAMS Vehicle density Brazil The proposed inventory improved the performance of atmospheric 
chemistry simulations on the local scale and significantly affected the 
regional spatial distribution of O3 and its precursors. 

Hatzopoulou and Miller 
(2010) 

CO, CO2, NOx, 
VOCs 

CALMET CALLPUF Link-based attributes (speed 
and volume); fuel; vehicle fleet 
attributes; engine on/off profile 

Canada The use of an activity-based travel demand model to generate vehicle 
activity inputs resulted in more comprehensive emission results that 
accounted for the time of day. An improved spatial representation of NOx 
was achieved by treating the individual link emissions as individual line 
sources within the dispersion model. 

Zhang and Batterman 
(2010) 

CO, PM2.5 MOBILE6.2 CALINE4 Traffic counts USA The model performed reasonably well for CO concentrations but 
significantly underestimated those for PM2.5 concentrations due to the 
underestimations of PM2.5 emissions factors. Comparisons of statistical 
and simulation models are necessary. 
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The systematic literature review showed that 22% of the articles used COPERT, a static model 

and 26% used MOVES/MOBILE 6.2, a dynamic model. The percentage of researches that used 

the combination between the emission model and air quality model was found to be 

approximately 74%. Furthermore, dispersion models were more prevalent than photochemical 

models, which may be linked with the size of area and pollutant investigated. 

Smit et al. (2010) conducted a meta-analysis of 50 studies that validated several types of vehicle 

emissions models, including data on average speed, traffic flow, other traffic variables, cycle 

variables, and modes of transportation. In addition to their data analysis, the authors showed 

that it is still necessary to know the methods used to validate the vehicle emissions models, and 

the relationship between the increase in the complexity of the models and the accuracy of 

forecasts, to determine the accuracy of the vehicle emission models. Two comparisons of 

different methods of calculating mobile emissions have shown variability of approximately 

35% and 47% (Parrish, 2006; Dallmann and Harley, 2010). 

Improvements in air quality model results can be obtained using detailed traffic data. For 

example, Borrego et al. (2016) developed a modeling approach using detailed traffic flows 

derived from microscopic traffic models calibrated with GPS data and road traffic emissions of 

exhaust estimated using a combined VSP/EMEP methodology, among other considerations, 

thereby improving the analysis of model performance metrics. Another important fact is the 

relevance of topography and meteorological data for the dispersion of vehicle emissions. Data 

such as wind velocity and direction, temperature, relative humidity, atmospheric pressure, solar 

radiation, and precipitation require rigorous validation before being used in AQMs (Jacobson, 

2002; Abdul-Wahab and Fadlallah, 2014). The meteorology is one of the most influential 

factors in air quality modeling, but it is important to say that this topic is beyond the scope of 

this study and hence will be explored in a future study. 

Lin and Ge (2006) argued that roadside dispersion models require hourly or daily traffic 

volumes, fleet compositions, and average vehicle speeds on a road segment. However, average 

link-based traffic parameters persist as a limitation to these models. Nevertheless, These models 

shows are more prevalent than photochemical models, mainly due to the study area (roads and 

their surroundings). 
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The modeling of traffic emissions and air quality is a complex process and simplifications are 

necessary for modeling approaches. Some of the simplifications, for example, include on 

limitations of instantaneous emission models to predict pollutants of exhaust emission; 

aerodynamic effect of street geometry; traffic turbulence impact in dispersion around urban 

areas and spatial/temporal scale distribution. Therefore, the essential elements should be 

represented in functional mathematical models to transform traffic data in a vehicular emission 

inventory and into air quality concentrations and thus the modelling chain should be able to 

manage those diverse aspects in a realistic manner (Fallahshorshani et al., 2012). 

2.5. FINDINGS AND PROPOSAL 

2.5.1. Systematic Literature Review results 

The systematic literature review method is considered innovative in the application and 

presentation of traffic-emissions-air quality modeling analysis. The variables highlighted in this 

study show that the relationships and interactions between traffic variables, pollutants and 

modeling objectives are fundamental to simulate the environmental impacts of traffic at the 

local urban scale. This systematic review shows that many questions related to input data, 

spatial/temporal scales,  accuracy, compatibility among models and interfaces between model 

remain open (Fallahshorshani et al., 2012).  

The systematic literature review found that approximately 23% of the articles reviewed 

modeled NOx emissions; 18% of them modeled CO; 13% examined PM, including PM10 and 

PM2.5; and 13% studied CO2. Other pollutants such as HCs, VOCs, and NO2, were modeled 

and their emission rates were used in air quality models.  

The modeling of NOx, CO, PM (PM10 and PM2.5) and CO2 emissions are directly related to 

negative impacts in air quality, climate change, fuel consumption and driver´s behavior. Models 

can overestimate (60%) or underestimate (40%) emissions and modeling results should be used 

with other analyzes to define new strategies to reduce vehicular emissions. The development 

new engine technologies, urban mobility strategies definition, efforts to understand driver´s 

behaviors and creation of synergies to low vehicle emissions are the key to reduce emissions 

and improve air quality in urban areas.  

Although VOC´s were not modeled in these paper’s selection, some recent studies show that 

industrial, transport,  and natural emissions can be calculated/estimated, but projecting highly 
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diffuse VOC´s sources from consumer products is extremely challenging and usually depends 

on predictions of air exchange between outdoor and indoor environments. VOC´s is not a single 

pollutant, they have diverse chemistry and lifetime range from only a few minutes to several 

months; they can perform in heterogeneous process that modifies or compose aerosol properties 

and understanding these degradation processes is decisive for both air quality and climate 

applications (Galvão et al., 2016; Lewis, 2018).  

2.5.2. Air Quality Researches: the difference between developed and developing 
countries 

In this systematic literature review, most of the studies with traffic models were conducted in 

developed countries (63%) and the USA is the leader in research related in traffic and air quality 

modeling (22%), followed by Canada (13%), and Europe (Netherlands, Portugal  United 

Kingdom, Austria(13%)). The BRICS (Brazil, Russia, India, China and South Africa) are 

responsible for 30% of surveys and China accounting for 22% considering all studies.  The 

analysis of emission and air quality models showed a similar situation. The USA stands for 

21%, followed by Europe (Denmark, Portugal, Spain, Italy, United Kingdom and Belgium, 

42%) and BRICS (13%). Canada (8%), Australia (4%) and Colombia (4%) also developed 

researches in emission and air quality modeling. 

There is a major concern between air quality modeling in developed and developing countries, 

however, there were significant gaps in the consistency of emissions factors, allocation of 

emissions on grid cells, inventories and spatial and temporal distributions of sources, and the 

performance of the meteorological models, in all searches. 

Input data is the main gap in air quality/emissions modeling because a large number of reliable 

datasets are required. In developed countries, traffic data is extracted from GPS data logger 

vehicles using Geographic Information System (GIS) software, remotely sense tailpipe exhaust, 

and chassis dynamometer tests and other sources (ITS, DTA and agent-based models and neural 

networks). It is possible to measure real traffic flow in peak and non-peak periods on typical 

weekdays over four seasons (winter, spring, summer, and fall) because the required logistical 

facilities are available when experimental campaigns are set up. There are also numerous 

networks by which to monitor emissions and air quality, mobile laboratories are available to 

measure real-time data, and satellite information and detailed topographical and meteorological 

data are available. In developed countries like the USA and the United Kingdom, there are 
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consolidated methodologies for elaborate national emissions inventories, including emission 

factors that represent reality; this is not so in developing countries. 

In developing countries, gathering all the information required to build a vehicular emission 

inventory or conduct air quality modelling is a challenging task. It is necessary to combine 

diverse information sources (peer-reviewed literature reports and contacts in local and non-

local agencies (both private and governmental) to obtain data for modeling (Sharma and Chung, 

2015). Additionally, it is necessary to use socio-economic indexes (such as the Human 

Development Index, population, and vehicle density) to estimate and develop local inventories, 

using extrapolated data instead of measured data, in addition to emission factors that do not 

represent local vehicle fleet and fuel used. This approach is even more necessary in regions that 

are typically poorly represented in global inventories due to the scarcity of national inventories 

and measurement campaigns, which is the case for the majority of countries in South America 

(Alonso et al., 2010). It is important to recognize the efforts to change this situation, reinforced 

the results that improve air pollution management system and contribute to integrating 

environmental and transportation local public policies decisions (Rodríguez et al., 2016; 

González et.al., 2017; Mangones et al., 2019). 

2.5.3. Uncertainty Analysis  

All the models (traffic, emissions, and air quality) have uncertainties that are reflected in the 

accuracy and results. One of the critical issues in air pollution is the determination of emission 

factors; consequently, there are limitations and uncertainties in existing emissions inventories 

and when emissions inventory modeling is performed (Collet et al., 2012). The uncertainties in 

emissions inventories are, however, propagated in emissions models and air quality modeling. 

The spatial and temporal concentration of pollutants around buildings, in hotspots, and on roads 

can vary by orders of magnitude. Thus, the real environment must be represented carefully in 

numerical simulations. Kumar et al. (2011b) showed that aerosol dispersions used in dispersion 

models are affected more, compared to gaseous dispersions, by uncertainties (both structural 

and parametric) caused by the inappropriate treatment of particulate transformation process. 

The solutions needed for more accurate modeling are not simple, and include tools for the pre-

treatment of input data, detecting outliers, correcting missing values, and estimating 

uncertainties. Most of the uncertainties reported in the studies reviewed seem very optimistic 
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and may not have noted all feasible sources of error, such as variability in the source profiles 

(Belis et al., 2013).  

There are a range of solutions, but obtaining consistent emission factors and reducing 

differences between models and measurements is one of the first alternatives (Kumar et al., 

2011b). For vehicle emissions, in particular, it is important to improve current average speed 

models or at least acquire data on congestion levels to obtain more accurate emissions 

predictions and achieve correct applications (Smit et al., 2008). 

Finally, the use of advanced factor analysis techniques able to manage complex and 

heterogeneous data and improve uncertainty estimations should be promoted (Belis et al., 

2013). Smit et al. (2010) showed that the design of future models or improvements to existing 

ones should account for the errors allowable for different applications or at least provide an 

estimate of the prediction errors in models. 

2.5.4. Proposed a list of key traffic variables  

There are currently guides accompanying every model, focusing only on the model manuals 

and technical operation (Givoni et.al, 2012). The following list is a suggestion to guide the 

modeling process and it shows the proposed list of key traffic variables based on this systematic 

literature review and the research conducted in this study (Table 7). The objective is to show 

that emissions modeling must include these variables, at least, and that their details must be 

evaluated for each application type and study region. The list presents the variables without 

considering the type of model (traffic, vehicular emissions, or air quality) that should be chosen 

by the researchers; this can be determined according to their purpose. ‘Vehicle’ included types, 

age, categories and size; ‘behavior’ considered traffic or driver behavior; ‘time’ means travel 

times and time periods and density means density of urban traffic.  

Table 7: List of key traffic variable to traffic-emission-air quality modeling. 
Key traffic variables % Key traffic variables % 

1. Traffic flow 20 6. Behavior 5 

2. Vehicle 20 7. Acceleration 4 

3. Speed 12 8. Time 3 

4. Network 12 9. Density 3 

5. Fuel 9 10. Other 11% 
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For each model, it is necessary to evaluate the set of variables that will be used in detail and 

consider how they will be combined. There are several combinations of models possible and it 

would not be feasible to present all of them here. 

2.6. SUMMARY AND CONCLUSIONS 

A systematic literature review was performed that integrates traffic, emissions, and air quality 

models. The result showed that there are several combinations of different traffic and emissions 

models and emissions and air quality models. The combinations are used to improve and 

develop the analysis of air quality data, but limitations of different models and interfaces need 

to be evaluated depending on the purpose of the study they are used for. The findings showed 

that there is no best and perfect combination of traffic-emission-air quality modelling. This 

combination is defined to aggregate the purpose of the model, the scientific treatment, the 

methods used to calculate the emissions, available data, and how and for what the decision-

makers will use the modeling results; there is no single model qualified to describe all relevant 

spatial scales of the air pollution phenomena (local, regional and global) and emissions are 

reported the most uncertain input in air quality modelling and differences between state of art 

and current practices shows that is necessary increased compatibility in this modelling 

practices. Furthermore, transparency, simplicity, satisfaction of different users with different 

models and friendly user interface is mandatory to combine who mainly work in transport 

policy, transport and air quality modelling to think how a state-of-the-art model might be used 

(Fallahshorshani et al., 2012; Kaewunruen et al., 2016; Tominaga and Stathopoulos, 2016; Sun 

et al., 2016; Williams, 2017; Sallis et al., 2016). 

Existing models will, therefore, need to be improved and adapted to address all issues in air 

quality modeling. All model types need to be calibrated, with input data requiring many 

adjustments in the parameters and the variables that they are composed of. It was identified that 

there are still gaps in the consistency of emissions factors, spatial and temporal distributions, 

allocations of emissions in grid cells, and performances of meteorological models. Furthermore, 

the average link-based traffic parameters are a persistent limitation. However, even when 

adjustments are made, the input data may not represent the reality of the study object, causing 

errors in representation. The classification of the models was conducted to facilitate the 

selection of the most appropriate models to be coupled in order to construct an integrated and 

efficient modeling system. Some strengths and limitations of different models in terms of 
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precision (statistical variability) in some physical representation of processes were found. The 

precision of models can be evaluated by statistical analysis including assessing prediction 

errors. In the case of traffic, although the flows of vehicles on individual roads were known, 

even broken down by vehicle type, there is seldom information to break the flows down further 

by fuel type or engine size and age of vehicle.  

There is a strong dependence on data on traffic patterns, vehicle speeds, and traffic intensity to 

determine the accuracy of the information generated by the traffic models and, consequently, 

the emissions generated by vehicle emissions models. Due to the nature of modeling, the 

propagation of inherent errors has a relevant impact on the process. Therefore, a comprehensive 

analysis of the uncertainties in model input variables is necessary to improve their results 

(Napelenok et al., 2011). 

The studies reviewed showed that models are important tools for evaluating the implementation 

of policies using practical guidelines for traffic and that they can improve the performance of 

air quality models. Accurate traffic data generates reliable results in vehicle emissions models 

and air quality models. However, Smit et al. (2010) showed that truly accurate road traffic 

emissions models are hard to obtain as real emissions values are unknown and cannot be easily 

determined by measurements. Therefore, it is only feasible to construct partially validated 

models; to be more accurate, complex models require detailed input data (Smit et al., 2006). 

Even a small positive change in the accuracy of traffic models can improve the accuracy of 

vehicle emissions models (Vieira da Rocha et al., 2015) and that increasing the complexity of 

models can introduce more parameters with uncertain values, decline transparency and 

depreciate the accuracy of the responses given by the models.   

Traffic emissions continue to be a fundamental variable for globally accurate simulations, 

especially in urban centers, apart from their use in the development of air quality models 

(Borrego et al., 2016). Although detailed inputs increase the accuracy of emissions estimates, 

collecting reliable input data is a complex task that demands time and resources (Alam and 

Hatzopoulou, 2014). 

Traffic data is essential for air quality modeling in urban centers, but it is necessary to first 

analyze uncertainties in traffic data. Real traffic data, such as that from radar, can reduce the 

uncertainties in models, thereby improving their accuracy. The term “accuracy” was found in 
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approximately 22% of the studies examined in the systematic review, which shows that more 

research is necessary to improve the discussion of this term. Efforts to develop better traffic 

flow representations need to integrate traffic engineering data into emissions models and 

improve the results of air quality models as a result. Finally, it would be important to propose 

a guideline for an acceptably accurate reference for distinct applications in different regions.  

This systematic literature review indicates several open problems and challenges in current 

research. The key areas to be addressed by research and innovation, the framework to select the 

traffic model, and the key traffic variables list can help researches to find a way to start their 

works. The definition of right proportion of traffic emissions attributed to different vehicles 

categories and fuel consumption is mandatory to find acceptable answers for the vehicle 

emissions issues. More attention is needed to develop integrated modelling systems that can 

simulate the impact of traffic on air environments in urban areas in development countries. GPS 

data in real-time can be used to derive typical driving cycles for each road link; the surveys can 

be target to propose transport systems, especially to reduce emissions and to improve the 

mobility. 

Moreover, this study highlights some challenges in current researches for both developing and 

developed countries. In developed countries, the researches can expand their investigations in: 

to review and evaluate the efficiency and efficacy of traffic management strategies (TMS) used 

to improve the air quality and reduce human exposure; to assist users to reduce air pollution 

exposure in their mobility and daily activities using real traffic data; to use Internet of Things 

(IoT) platform to obtaining, managing, and analyzing sensing data and other (road structure 

such as intersections, traffic, weather and other conditions) to advise drivers to adjust their 

behaviors (departure time, route selection, window and air condition system configuration and 

vehicle maintenance); to use real traffic data to discover more traffic pollution insights and 

support sustainable traffic management and green mobility; to develop fine-grained air quality 

prediction models associated with traffic, road, and weather conditions; to evaluate, to review 

and to compilation existing traffic emission methodologies and define the best practices and 

input data information apply to traffic emission (Fallahshorshani et al., 2012; Kaewunruen et 

al., 2016; Tominaga and Stathopoulos, 2016; Sun et al., 2016; Williams, 2017; Bigazzi and 

Rouleau, 2017; Sallis et al., 2016). 
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The situation in developing countries is considerably different. Applications that have already 

taken place in developed countries, for instance, considering emission factors, road traffic 

characteristics and inventory tools for road transport emissions (Joumard, 1999) can be applied 

in developing countries. Considering the topic “emission factor”: to develop co-operative work 

to analyses the large difference about emissions levels measurement by car manufactures and 

research organizations laboratories; to create a local emission factor dataset including all kind 

of vehicles; to consolidate traffic emission methodology and to generate emissions maps and 

the effects of fuel quality, different fuels, and alternative technologies on the emissions from 

passenger cars, duty vehicles, bus and motorcycles. Considering the topic “Road Traffic 

Characteristics”: to develop accurate modelling of the future composition of the vehicle type 

and usages combining socio-economic approaches, land use and human demographic 

parameters; to analysis of driving behavior according to the road infrastructure and to model 

using microscopic driving behavior by traffic models. Considering the topic “Inventory tools 

for road transport emissions”: to developed measurement campaigns to check the accuracy of 

the models. Most of these actions have already been established in developed countries 

(Joumard, 1999).  

Finally, it is necessary to develop and improve research networks between countries to allow 

addressing questions about scientific, operational and diagnostic evaluation in air quality area.  
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KRIGING METHOD APPLICATION AND 
TRAFFIC BEHAVIOR PROFILES FROM 
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The paper “Kriging method application and traffic behavior profiles from local radar 

network database: a proposal to support traffic solutions and air pollution control 

strategies” (https://doi.org/10.1016/j.scs.2020.102062) was developed by the author of 

this thesis in collaboration with researches Professor Prashant Kumar, Professor Marcelo 

Félix Alonso (co-advisor), Willian Lemker Andreao, Rizzieri Pedruzzi, Sérgio Ibarra 

Espinosa and Taciana Toledo de Almeida Albuquerque (advisor). The paper presented 

the methodology of this work and suggested the Kriging method to define the traffic flow 

in each link in a Brazilian capital called Belo Horizonte. The study area is the largest city 

in the metropolitan area composed of 34 municipalities and has a local radar network 

located on the main avenues of the city. The radar network counts vehicles per type 

(passenger cars, motorcycles, trucks/buses) for 24 hours. The count data were used to 

trace the profile behavior per vehicle type in the city, information that directly impacts 

vehicle emissions during a weekday and weekend. 

The results showed that Kriging is a low-cost method when compared to traffic modeling 

and can be used to spatialized vehicle flow information on urban roads. It also showed 

that caution is needed in the use of the method as the counting data must meet specific 

requirements, such as the existence of a spatial correlation between data used in the 

interpolation by the Kriging method. The result of spatialization was used as input data 

in the VEIN to calculate the vehicle emission inventory for Belo Horizonte, Brazil.  

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)- Finance 

Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), 

Empresa de Transporte e Trânsito de Belo Horizonte (BHTRANS) and Prefeitura de Belo 

Horizonte (PBH), Brazil partially funded this research. The support of the Global Centre 

for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, 

Faculty of Engineering and Physical Sciences, University of Surrey, United Kingdom; 

the support received from the FAPESP and the University of Surrey through the CarE-

Cities (Clean Air Engineering for Cities) funded by Research England under the 

University of Surrey’s Global Challenge Research Funds (GCRF) and NOTS (Novel 

high-resolution spatial mapping of health and climate emissions from urban transport in 

São Paulo megacity) projects. 
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3.1. INTRODUCTION 

The urban air pollution is a significant health and environment hazard. The World Health 

Organization estimated that air pollution is responsible for 7 million deaths worldwide 

every year as a result to household exposure (indoor) and ambient (outdoor) pollution. 

Vehicles are commonly the outdoor main source of air pollution in urban areas. The 

consumption of different fuels (i.e, gasoline, ethanol, gasohol - a mixture of gasoline and 

ethanol, diesel) and traffic behavior (average annual daily traffic-AADT, morning peak-

MP and evening peak-EP) lead to a huge increase in the emission of air pollutants, and 

consequently, in the deterioration of air quality and degradation of health (Kumar et al., 

2016; Andrade et al., 2017; Kumar et al., 2017; Pacheco et al., 2017; Albuquerque et al., 

2018; Wang et al., 2018; Santos et al., 2019).  

Air quality monitoring network needs to provide dataset and information to government, 

scientists and companies to development solutions to solve air quality impacts in urban 

areas. It is essential to reduce air pollution and raise awareness people to change their 

own daily routine to reduce personal exposure to air pollution (Andreão et al., 2018; Silva 

et al., 2018; Mahajan et al., 2020). In development countries, for instance in Brazil, it is 

essential for government and society to create a collaborative network to build sustainable 

plans and actions for the cities. Programs to review and evaluate the efficiency and 

efficacy of traffic management strategies (TMS) and action plans, as example, to assist 

users to reduce air pollution exposure using real traffic data and to utilize Internet of 

Things (IoT) platform can support sustainable traffic management and green mobility in 

smart cities (Wang et al., 2017; Silva et al., 2018; Pinto et al., 2019; Abhijith and Kumar, 

2019). In Brazil, there is specific law introduce the guidelines of the National Urban 

Mobility Policy. In Belo Horizonte (BH), a densely populated urban city in southeast 

Brazil where this study was conducted, has a document called PlanMob. The plan 

proposes demand management as the main strategy for improving the urban mobility 

system, combining a set of infrastructure projects for public and non-motorized transport 

with measures to regulate the use of individual transport (BHTRANS, 2010). 

The collaborative network can be used not only to develop new technologies but also to 

create new partnerships to planning the integration between transportation and air quality 

in smart cities. There are several ways to develop solutions using available dataset to 

provide better service for traffic management and air quality. Sensors to detect vehicles 
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types are used to track and monitor traffic flow and it can be used to update traffic details 

providing solution through predictive analysis (Jamil et al., 2015; Rizwan et al., 2016; 

Fernández-Ares et al., 2017; Menouar et al., 2017).  

In this context, this paper highlights the importance to exchange information between 

municipalities agencies (i.e. local environmental protection and traffic agencies) 

changing dataset as radar technology to improve vehicular emissions estimative, and, 

consequently, to raise air quality awareness in urban areas. The results also provide useful  

information to local Climate Change Committee to establish law proposals, effective 

implementations actions to reduce emissions and to improve air quality in the city. It 

shows the importance and impacts of the current methods on air pollution control.  

The demand to identify the real contribution of pollutants emitted by on-road vehicles to 

investigate the air quality must have to consider the limitations of emission models when 

distinct traffic behavior profiles from radar data and fine spatial/temporal distribution are 

used. The prediction of traffic data has proven to be a useful for reducing high costs from 

origin destination survey and traffic modeling using commercial software. Radar 

databases and traffic counts using statistical modelling is an alternative and a low-cost 

approach to produce traffic activities data in each urban street to use as input to predict 

vehicular emissions (Fu et al., 2017).  

The spatial and temporal vehicle flow distributions can be performed using kriging 

interpolation (Shen and Hadi, 2013; Lowry, 2014; Shamo et al., 2015; Yang et al., 2018), 

spatial Pearson correlation coefficients (Chen et.al., 2016); GIS techniques and modelling 

(Adedeji et. al., 2016; Requia et al., 2017), neural network (Fu et al., 2017); thiessen 

polygons (Gómez et.al., 2018); spatial autoregressive moving average (SARMA) 

regression model (Sun et.al., 2018), land use regression (LUR) and geographically 

weighted regression (GWR) models (Kanaroglou et al., 2013; Song et. al., 2019), hybrid-

kriging/land-use regression model (Wu et al., 2018) among others. Additionally, models 

may provide the required activity data and therefore, they can provide a well 

representative flow for every urban street in the study area.   

To improve this knowledge and fill some gaps, the aims of this work are: (1) to carry out 

a statistical analysis of monthly traffic behavior and to determine a specific average traffic 

flow using local radar data; (2) to analyze the vehicle type hourly behavior and show the 
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importance of the diurnal cycle per vehicle type in the emission inventory accuracy ; (3) 

to develop an emission inventory using a National Vehicle Emission Inventory model 

(VEIN), emission factor from São Paulo State Environmental Protection Agency 

(CETESB), methodology from National Environment Ministry, input data from different 

traffic behavior profile (constant and different diurnal cycle) established from local radar 

data, and kriging interpolation method to find the appropriate spatial/temporal 

distributing. 

3.2. MATERIALS AND METHODS  

3.2.1. Site description and vehicle data 

The study area is Belo Horizonte, a capital of Minas Gerais state and a densely populated 

urban city with a representative vehicle fleet in Brazil. The Minas Gerais state has the 

third largest metropolitan region of the country. Its metropolitan area is divided into 34 

municipalities that occupy a territory around 9,500 km2 and the capital is in a territorial 

area of 331.4 km2, with a population of approximately 2.5 million inhabitants (IBGE, 

2018) and approximately 2.0 million vehicles in 2018 (DENATRAN, 2018). The vehicles 

fleet in Belo Horizonte is mostly composed by cars (75.7%), followed by light 

commercial vehicles (11.4%), motorcycles (10.7%), trucks (1.6%) and buses (0.5%). 

Regarding fuel consumption, flex fuel vehicles are the majority (65.2%), and the other 

fuels are distributed as follows: gasoline (25.8%), diesel (6.2%) and ethanol (2.8%). The 

fleet age is also a relevant data and it is characterized by vehicles aged 0 to 10 years 

(73.3%), 11 to 20 years (19.7%), 21 to 30 years (6.0%), and over 30 years (0.9%) 

(DETRAN MG, 2019; Pinto et al., 2017; Santos et al., 2019). 

3.2.2. Traffic Behavior and Vehicle Flow 

3.2.2.1. Local radar and count point data 

The data collection sites were all over the city in the main avenues. The radars have been 

installed by the Transportation and Transit Company of Belo Horizonte (BHTRANS) to 

control the speed limit of the vehicles in the city, reducing the number and severity of 

accidents, creating a safety transit. Along the years, the car crash situation reduced 

because of radars (BHTRANS, 2018). In this work, it was used data from 304 radars and 

87 count points. Figure 4 shows the radar distribution sites (blue). In red, there are counts 

points also used to determine the proportion between buses and trucks. 
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Figure 4: Radar (blue) and count points (red) in Belo Horizonte (Brazil). 

Source: Adapted from Google Maps. 
 

Radars or electronic controllers are divided into Metrological and Non-Metrological. 

Metrological measure the speed of the vehicles, which is the case of speed controllers of 

the fixed and static radar type. On the other hand, the non-metrological ones verify the 

invasion of the exclusive bus lanes. (BHTRANS, 2018). Each radar counts three types of 

vehicle (passenger cars, motorcycle and trucks/buses) every 15 minutes, 24 hours in a 

day, week, month and year. Trucks and buses have the same proportion and similar weight 

and the radar counts them as the same category. The calibration and operation of local 

radar is made by Electronic Surveillance Management Department in BHTRANS. 

3.2.2.2. Monthly traffic behavior for trucks and buses  

This analysis was performed to identify buses and trucks. Radar use magnetics layers or 

optical sensors to counts vehicle types. They identify vehicle type through magnetic field 

or sensor during vehicle reading.  

The survey of the vehicle count followed the methodology proposed by National 

Department of Transport Infrastructure (DNIT) in Brazil. The volumetric counts aim to 

determine the quantity, direction and composition of vehicles flows passing through the 

selected sites of the road system in a unit of time. The manual counts were performed 

with the purpose of classifying vehicles based on similar operating characteristics 

(passenger cars, motorcycles, buses and trucks) (DNIT, 2006), according to the following 

steps: 

• Counting sites selection: the points were selected according to the type of track and 

intensity of vehicle flow and covered all regions in the city. The main reference was 
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the Emission Inventory of the Metropolitan Region of Belo Horizonte published by 

the environmental agency (FEAM, 2018). The points were in different type of street 

(8% in primary, 50% in secondary and 42% in tertiary road); 

• Counting period selection: Wednesdays and Thursdays. These days are selected 

because peak hours in urban street are concentrated on weekdays. Generally, traffic 

flows on Tuesday, Wednesday and Thursday are roughly similar, while on Monday 

may be lower than average and Friday slightly higher.  

• Counting method selection: the counting was performed manually during the four, 

five and six-minutes period. 

3.2.2.3. Traffic behavior profile  

In this step, a Python code was developed to read the radar data from the dataset. The 

script is constituted for six steps and it considers the hourly data of vehicle flows, 

separated by type (passenger cars, motorcycles, trucks, buses) on weekdays and weekends 

in 2016. As a result, tables are generated with vehicles flows for 24-hour period for 12 

months. The normalized data were used to define the diurnal cycle per vehicle type in the 

main roads of Belo Horizonte city. The Python program was write using these steps:  

• Step 1: To read spreadsheets with local radar time data; 

• Step 2: To create lists and variables;   

• Step 3: To create a loop for reading all local radar data in available spreadsheets;   

• Step 4: To sum in each vehicle count range on each track that has  radar;  

• Step 5: To split flow data in weekday and weekends;  

• Step 6: To create the result spreadsheet with normalized flows by time and period 

of week. 

This program generated a database with 864 data, but it was necessary to select a week 

in August 2016 (08/08/2016 to 08/14/2016) in the local morning peak hour (07:00-

08:00h; local time because a VEIN restriction. 

3.2.2.4. Urban streets characterization 

The urban streets in Belo Horizonte are classified in six types of streets according to the 

Open Street Map (OSM), as showed in Table 8: residential (routes in residential area); 

primary (paved routes that is the main circulation network); secondary (paved routes that 
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links neighborhoods); tertiary (routes used to link with secondary streets); trunk (main 

high-speed highways that cross the city and connect several neighborhoods) and 

motorway (freeway). 

Table 8: Urban street type in Belo Horizonte 
Classification OSM Classification CTB* Quantity % 

Residential Local 14,414 76.9 
Primary Arterial 448 2.4 

Secondary Arterial 1,205 6.4 

Tertiary Collector 2,077 11.1 

Trunk Regional link 466 2.5 

Motorway Regional link 131 0.7 

TOTAL - 18,741 100.00 

*Brazilian Traffic Code 

Further, the speed can be used to differ each street and the range varies between 20 and 

120 km/h. The urban street precision used in this study is suitable with transportation 

planning and traffic modeling.  

3.2.2.5. Emission factors and fuel consumption data collection 

To estimate emissions for a specific region, emissions models must use accurate 

emissions factors (EF´s) as input. Therefore, to develop accurate EFs for road vehicle 

emissions models, intensive testing is required to properly cover all the relevant vehicle 

types and driving conditions (Franco et al., 2013). In this study, the emission factors used 

are from the emission inventory developed by Environmental Company of São Paulo 

State (CETESB) whereas they have the most current publication about vehicular 

emissions in Brazil. The emission factor used was estimated considering exhaust (fuel 

consumption) and non-exhaust (evaporative, wear of brake, pads and tires) (CETESB, 

2017). The EF´s are used to predict the emissions from vehicles and the emission 

pollutants estimated in this work were: carbon monoxide (CO), non-methane 

hydrocarbons (NMHC), nitrogen oxide (NOx), particulate matter (PM) and sulfur dioxide 

(SO2). Additionally, it was considered the carbon dioxide (CO2) and methane (CH4). The 

combination between EFs, fuel consumed (Table 9), fleet composition (Table 10) and 

transport activity (vehicle flow) associated with a vehicle emission model result in a 

Vehicular Emission Inventory (VEI).  
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Table 9: Fuel sale in Belo Horizonte 
Fuel Type* Fuel density 

(t/m3) (t.m-3) 
Fuel Consumption (m3) Fuel weight (t) 

Gasohol (25% of ethanol) (E25) 
 

0.754 783,614,431 591,041 

Ethanol (E100) 
 

0.809 268,884,302 217,527 

Diesel (5% de biodiesel) (B5) 0.840 287,872,518 205,541 (85%) ** 

*E25: Gasohol; E100: Ethanol and B5: Diesel. **Fuel used by vehicles. Source: ANP, 2018. 
 

Table 10: Vehicle type and fuel combination to use in VEIN in 2018. 
Code  Description Fleet (%) 

PC_E25  Passenger car using gasohol 17.50 

PC_FE25  Flex passenger car using gasohol 40.60 

PC_FE100  Flex passenger car using ethanol 15.00 

PC_E100  Passenger car using ethanol 2.60 

LCV_E25  Light commercial vehicle using gasohol 1.20 

LCV_FE25  Flex light commercial vehicle using gasohol 4.30 

LCV_FE100  Flex light commercial vehicle using ethanol 1.60 

LCV_E100  Light commercial vehicle using ethanol 0.20 

LCV_B5  Light commercial vehicle using diesel 4.10 

SLT_B5  Semi light truck using diesel 0.10 

LT_B5  Light truck using diesel 0.40 

MT_B5  Medium truck using diesel 0.20 

SHT_B5  Semi heavy truck using diesel 0.40 

HT_B5  Heavy truck using diesel 0.50 

UB_B5  Urban bus using diesel 0.30 

SUB_B5  Small urban bus using diesel 0.10 

MB_B5  Motorway bus using diesel 0.10 

M_E25_150  150cc motorcycle using gasohol 6.20 

M_E25_150_500  150cc to 500cc motorcycle using gasohol 0.70 

M_E25_500  500cc using gasohol 0.20 

M_FE25_150  150cc flex using gasohol 2.30 

M_FE25_150_500  150cc to 500cc flex using gasohol 0.30 

M_FE25_500  500cc flex using gasohol 0.10 

M_FE100_150  150cc flex using ethanol  0.90 

M_FE100_150_500  150cc to 500cc flex using ethanol 0.10 

M_FE100_500  500cc flex using ethanol 0.02 

* Details of fleet composition are in Supplementary Information: vehicle fleet per age, type and fuel; vehicle fleet distribution and vehicle fleet 
distribution according PROCONVE and PROMOT Phases. PROCONVE and PROMOT are Brazilian government programs to reduce vehicle 
emissions.  

 

3.2.3. Kriging Interpolation Method 

The kriging method was select because it is an interpolation technique that can improve 

predictions of traffic volume at unmeasured locations based on limited data. This method 

is most useful in uncounted and unsampled locations. Traffic count data are collected less 

frequently than in order areas because of high cost and complexity of measurement. The 

radar database can be used as an input data in kriging interpolation method (Wang and 

Kockelman, 2009; Kim et al., 2016; Prasetiyowati et al., 2016; Klatko et al., 2017; Rocha 

et al., 2017; Song et al., 2018; Shukla et al., 2019).  

The comparison of Kriging between other methods, for instance, regression models, 

shows that kriging carry out more accurate predictions than regression models. The reason 

is that regression assumes that the prediction errors are white noise whereas Kriging 



 

47 
 

permits errors that are correlated; i.e., the closer the inputs are the more positive are the 

output correlations. Further, regression models use a single estimated parameter set for 

all input values, whereas Kriging adapts its parameters (Kriging weights) as the input to 

be predicted changes (Van Beers and Kleijnen, 2004). 

Neural network can be used to predict AADT and vehicle flow but may disregard 

underlying issues such as parameter stability and error distribution (Fu et al., 2017). 

Thiessen polygons can be applied to distribute the traffic counts to road segments without 

information, but the segments in the area covered by the polygon were assumed to have 

the same traffic counts of the point that generate the polygon (Gómez et al., 2018). The 

LUR is used to calculate vehicle flow but there are some disadvantages, such as, the lack 

of cause-effect relationship, large input requirements and measurements cost (Khan et al., 

2018). All the methods cannot replace traffic counting entirely, but they can reduce the 

need for such counts.  

The kriging interpolation was performed with software ArcGis v.10.6, adopting some 

repeatability during interactions. The spatial modeling for linear kriging was performed 

based on Shamo et al. (2012) with some settings. The four basic steps were: (1) data 

exploration; (2) structural analysis; (3) crossvalidation; and (4) ranking of results.  The 

step 1 involved data examination and statistical analysis and provides understanding of 

spatial correlation and distribution. Step 2 included the selection of kriging method and 

combination with semivariogram (spherical, exponential and gaussian). In the step 3, it 

was validated the model results (kriging method and semivariogram) and finally, step 4 

consisted in a rank considering the best set of variogram and kriging method produces the 

best results.   

The application of kriging method was used to characterize the spatial/temporal 

distributing of an event dispersion (traffic activity), evaluating the uncertainty parameters 

when spatial variability to obtain a continuous surface estimate.  The centroid in a polyline 

shapefile was calculated (green point), and it was used to interpolate radar data (red and 

blue points) that had an average vehicle flow in a local morning peak hour (07h to 08h) 

during one week in August 2016 (Part 1). The kriging interpolation surface was 

transformed in a network with vehicle flow in each link (Part 2). These are the input data 
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of traffic activity to VEIN model (Part 3) (Figure 5). The parameters used in kriging 

method are described in results. 

 
(Part 1) (Part 2) (Part 3) 

Figure 5: Steps to interpolate radar data (vehicle flow) to urban streets. 
 
This is a critical step in an emission modeling because there is an intense dependence on 

traffic patterns data and traffic intensity to determine the accuracy of emissions generated 

by the emission models. Spatial and temporal distributions is a gap in vehicular emission 

modeling and the average link-based traffic parameters are a persistent limitation.  

3.2.4. Vehicle Emission Model 

Many studies have used different emission models, which take traffic information (fleet 

composition, vehicle speed or link – based speed, etc.) as inputs to estimate traffic related 

emissions that cause air pollution (Pan et al., 2016). The Brazilian Vehicular Emissions 

Inventories (VEIN) is a vehicle emission model, free and open source, developed in the 

Institute of Astronomy, Geophysics and Atmospheric Sciences of the University of São 

Paulo (IAG - USP) (Ibarra-Espinosa et al., 2018; Ibarra-Espinosa et al., 2019). VEIN 

model followed four phases to calculate the vehicular emission inventory, which has 

scripts to represent each phase (Figure 6). 

 
Figure 6:  Flow chart of Brazilian Vehicle Inventory Model 
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The model was developed using free software R (R Core Team, 2017) and generates 

pollutants emission from motor vehicles of different categories and fuels, and it was also 

elaborated considering transport activity and EFs (Equation 1) (Pulles and Heslinga, 

2010; Ibarra-Espinosa et al., 2018; Ibarra-Espinosa et al., 2019). 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑝𝑜𝑙𝑢𝑡𝑎𝑛𝑡 =  ∑ ( 𝐴𝑅𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝐸𝐹𝑝𝑜𝑙𝑢𝑡𝑎𝑛𝑡,𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  
 

Equation 1 
 

The equation shows that the emission of any pollutant depends on the activity rate (𝐴𝑅) 

and the 𝐸𝐹. The transport activity corresponds to the number of vehicles multiplied by 

the distance traveled (km). VEIN reads the traffic flow on each route. Regarding emission 

factors, VEIN considers emission factors for exhaustion, evaporative emissions, and 

emissions due to deterioration and wear emissions (tire). The model reads the traffic data 

and then organizes the data by the fleet composition according to Equation 2. 

𝐹𝑖,𝑗,𝑘∗ = 𝑄𝑖 ∗ 𝑉𝐶𝑖,𝑗 ∗  𝐴𝑔𝑒𝑗,𝑘     
Equation 2 

 
  

The term 𝐹𝑖,𝑗,𝑘∗  corresponds to the vehicular flow in path 𝑖 for vehicle type 𝑗 by age of use 𝑘. The term 𝑗 corresponds to the vehicle composition according to the type of use, fuel 

type, engine size and gross weight (Corvalán et al., 2002; Ibarra-Espinosa et al., 2018; 

Ibarra-Espinosa et al., 2019). 𝑄𝑖 is the flow of traffic on route 𝑖, 𝑉𝐶𝑖,𝑗 is the fraction of 

vehicles which varies according to the type of vehicle 𝑗 of the fleet in route 𝑖 and age 𝑗; 𝑘 

is the age distribution of vehicles according to the composition of the fleet 𝑗 and age of 

use 𝑘. 

After reading the data, the model extrapolates the vehicular flow to the 𝑖 routes of the 

network considering the vehicle type 𝑗 and the age of use 𝑘. The result of this step is the 

vehicular flow for the week time. It is important to emphasize that the vehicle traffic 

behavior profile must be mapped and inserted in the emission model. Equation 3 shows 

how the calculation is performed by the model. 

𝐹𝑖,𝑗,𝑘,𝑙 =  𝐹𝑖,𝑗,𝑘∗ ∗  𝑇𝐹𝑗,𝑙    
Equation 3 
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In Equation 3, the term 𝑇𝐹𝑗,𝑙 corresponds to time factors that vary according to each hour 𝑙 and vehicle type 𝑗. This term represents a matrix with 24 lines that correspond to 24 

hours a day and 7 columns, the period corresponding to one week (Sunday to Monday).  

3.2.5. Scenarios Description  

3.2.5.1. Scenarios 1 and 2 

Scenario 1 and 2 was characterized as the base case. The base case was prepared 

considering the vehicle fleet and fuel consumption for Belo Horizonte in 2018; the day 

cycle of different vehicle types (24-hour traffic profile) based on local radar data and 

counting points and the EF´s published by CETESB for 2018 (CETESB, 2019). The main 

difference between scenarios 1 and 2 is the diurnal cycle, i.e., constant diurnal cycle for 

all vehicle type (figure 7) and different diurnal cycle per day for vehicle type (figure 8) 

respectively. 

3.2.5.2. Scenario 3 

Scenario 3 considered 10% reduction in the fleet circulation (passenger cars and light 

commercial vehicles) for all types of fuel. The percentage used in this study followed the 

initial reference of São Paulo city, where road space rationing in the city led to a reduction 

in the average levels of all primary pollutants since its implementation. Road space 

rationing is a solution that defines the demand for vehicle use, usually within a given 

coverage area, and takes into consideration vehicle license plates and days of the week. 

It is one of the strategies used by the traffic authorities to reduce traffic congestion and, 

consequently, vehicle emissions. 

3.2.5.3. Scenario 4 

Scenario 4 considered 20% reduction in the current truck fleet (semi-light, light, medium-

heavy and heavy) indicating the possibility of implementing vehicle inspection in Belo 

Horizonte and withdrawing the circulation of old heavy vehicles (over 20 years). 

Furthermore, this scenario considered simultaneously 20% reduction in the current fleet 

of diesel buses indicating the renewal of the bus fleet by electric vehicles. Changes in the 

public bus transportation system is one of the alternatives used by managers to minimize 

vehicle emissions. 



 

51 
 

3.3. RESULTS 

3.3.1. Average traffic flow using local radar and count point data 

The vehicle flow was determined using radar data and it was used to formulate the VEI. 

The vehicle flow counted was used to interpolate the vehicle flow in the urban street 

network. Table 11 shows a descriptive statistic per each radar type and count point.   

Table 11: Average vehicle flow per type. 

Radar Description Quantity 
Average Vehicle 

Flow* 
S.D** 1o Q  2o Q 3o Q 

CEV and CEV Move Electronic Speed Control 39 2,444 1,162 1,571 2,493 3,117 

DAS, DAS Busway and 
Move 

Semaphore Advance Detector 143 
959 1,016 181 493 1,484 

CJG and CJG - Busway Combined Equipment (DIF + CEV) 20 483 811 91 120 207 

DIF 
Exclusive Intrusion Detector and Truck 
Circulation Detector 

36 
73 36 47 62 105 

RF Fixed Speed Control Radar  66 2,259 893 1,794 2,293 2,829 
Count Points Manual count 87 144 101 72 102 203 
 TOTAL 391 

*Vehicle flow per day in the morning peak hour. **Standard Deviation 

 
The most of radar CEV and RF type are in trunk (48%) and primary (40%) streets and 

average vehicle flow are higher than DIF and count points. RF is a fixed speed control 

radar that are in main avenues around the city, while DIF is a specific type of radar that 

counts intrusion vehicle in specific lanes and are in secondary streets (60%). The street 

type is a one of the variables that define average vehicle flow.  

The real vehicle flow is a relevant data to represent traffic activity. It was found that there 

are differences in average vehicle flows according to the radar type and this information 

was combined with vehicle type to be used in kriging interpolation method. 

3.3.2. Buses and trucks proportion using manual count point 

It is important discriminate vehicle type when it is analyzing the traffic behavior. In this 

work, it was used manual count points to define buses and trucks proportion on streets. 

The results show the average per interval during the weekday, and the same proportion 

was adopted to the weekend. The same fraction was assumed for intervals 1 and 4 (Table 

12). 

Table 12:  Percentage between trucks and buses in 2016 from count point. 
Period Interval % Bus % Truck 

1 12 am to 5 am 43.4% 56.6% 

2 6 am to 11 am 60.0% 40.0% 

3 12 pm to 5 pm 63.8% 36.2% 

4 6 pm to 11 pm 43.4% 56.6% 
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By changing diurnal profile of traffic behavior, one can expect to better represent the 

diurnal cycle of pollutant emissions. The percentage is changed throughout the day and 

this improvement can impact the emissions rate for 24 hours. The result of vehicles 

counting is being considered as a complement to the vehicle flow data counted by the 

radars. These indexes were used in the step to analyze the hourly behavior from radar data 

and to determine the diurnal cycle per vehicle type.  It was noticed that, approximately, 

60% of vehicles are buses at 5 pm, which is consistent with municipal law that prohibits 

truck traffic in some areas in the city. The results reflect the municipal traffic control 

policy already implement in the city.  

3.3.3. Statistical analysis of traffic behavior profiles  

The regression analyses (polynomial level 5) using an average traffic flow per month 

during 2016 (Table 13) was calculated. The variable x represents the hour of the day. 

There is a good adherence for all months, i.e. r2 values are equal or higher than 0.86. 

Table 13: Regression Analyses for average traffic flow in each month. 
Month Equation r2

 

January y = -4E-07x5 + 2E-05x4 - 0.0006x3 + 0.0060x2 - 0.0201x + 0.0234 r² = 0.86 

February y = -4E-07x5 + 3E-05x4 - 0.0006x3 + 0.0062x2 - 0.0208x + 0.0236 r² = 0.88 

March y = -4E-07x5 + 3E-05x4 - 0.0007x3 + 0.0067x2 - 0.0220x + 0.0236 r² = 0.87 

April y = -4E-07x5 + 3E-05x4 - 0.0007x3 + 0.0066x2 - 0.0218x + 0.0236 r² = 0.88 

May y = -4E-07x5 + 3E-05x4 - 0.0006x3 + 0.0065x2 - 0.0213x + 0.0231 r² = 0.87 

June y = -4E-07x5 + 3E-05x4 - 0.0007x3 + 0.0066x2 - 0.0214x + 0.0226 r² = 0.87 

July y = -4E-07x5 + 3E-05x4 - 0.0006x3 + 0.0064x2 - 0.0208x + 0.0223 r² = 0.87 

August y = -4E-07x5 + 3E-05x4 - 0.0006x3 + 0.0065x2 - 0.0212x + 0.0227 r² = 0.87 

September y = -4E-07x5 + 3E-05x4 - 0.0007x3 + 0.0067x2 - 0.0219x + 0.0235 r² = 0.87 

October y = -4E-07x5 + 3E-05x4 - 0.0007x3 + 0.0068x2 - 0.0223x + 0.0244 r² = 0.88 

November y = -4E-07x5 + 3E-05x4 - 0.0006x3 + 0.0066x2 - 0.0221x + 0.0250 r² = 0.88 

December y = -4E-07x5 + 3E-05x4 - 0.0006x3 + 0.0066x2 - 0.0223x + 0.0258 r² = 0.88 

 

3.3.4. Diurnal cycle per vehicle type  

The diurnal cycle and vehicle type were used to develop an emission inventory using 

VEIN v.0.7.12. The first analysis considered the same diurnal cycle for all vehicle types, 

which showed a good adherence (r2 = 0.90) and a 5o degree polynomial to represent the 

average behavior (Figure 7). This plot showed an average for 12 months and 24 hours. It 

is a good estimation of reality considering that the city does not have real traffic data to 

calculate vehicular emission inventory.  
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Figure 7: Average traffic behavior in local time. 

The dataset permited an analysis per vehicle type and the behavior between vehicles are 

similar in the peak hour. The percentage represents a vehicle flow normalizaded. It was 

considered a percentage to represent the traffic behavior in the city during 24 hours. For 

instance, the peak hours for passenger cars are on 07:00h am local time (6.25%) and 

05:00h pm local time (6.64%). The peak hour for motorcycles are on 07:00h am (7.18%) 

and 06:00h pm (7.18%). For buses and trucks, the peak hour in the morning is 07:00h am 

and in the evening is 05:00h pm and 06:00 h pm respectivily (Figure 8). All the behaviors 

(average and vehicle type) are used to calcuted the veichular emission inventory.  
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Figure 8: Average traffic behavior per vehicle type in local time

y = 2E-06x4 - 9E-05x3 + 0.0013x2 + 0.0005x + 0.0021
R² = 0.85
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3.3.5. Kriging interpolation using vehicular flow counts by radars 

The kriging interpolation method requires the verification if there is spatial autocorrelation 

between data. There are some techniques to calculate spatial autocorrelation and the Moran 

Index, one of the most classic method to confirm this condition, was used in this work. The 

result is interpreted as a correlation coefficient, i.e., the values close to 1 indicate a strong spatial 

pattern (high value tend to be located close to each other and low values tend to be located close 

to each other), values close to -1 indicate a strong negative spatial pattern (low values tend to 

be close to high values) and values close to 0 indicate absence of spatial pattern (Rogerson, 

2012). Some tests were performed with local radar data combination to identify if the data 

followed normal distribution. The normal distribution was found when the specific radar type 

was select, i.e., RF and CEV type. In this case, the Moran Index was approximately 0.30 and 

p-value was 0.013 (p-value <0.05: statistically significant, i.e., there is spatial autocorrelation) 

(Table 14). There is a spatial autocorrelation in clustered pattern (Figure 9). It was presented 

the same calculation with 391 radar points, but there is no spatial correlation in this event.  

Table 14:  Moran Parameters. 
Parameters Global Moran´s Summary 

391 radar points (a) 105 radar points (b) 
Moran´s Index -0.319695 0.295447 
Variance 0.045805 0.015148 
z-score -1.481780 2.478643 
p-value 0.138399* 0.013188* 

*p-value>0.05: there is no spatial correlation; p-value<0.05: there is spatial correlation 

 
Figure 9: Moran Index. 
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Kriging assumes that the distance or direction between sample points reflects a spatial 

correlation that can be used to explain variation in the surface. The kriging interpolation method 

resulted in a surface presented in Table 15 and Figure 10. The surface represents the predict 

values in a grid and each cell contains an attribute value that represent a change in Z value. 

Tests were made with different semivariogram models (spherical, exponential and gaussian) 

and the gaussian model generated the best result for the spatial distribution of vehicle flow from 

radar data. 

Table 15:  Kriging Parameters. 
Type Ordinary 

Semivariogram model Gaussian 
Number of points 12 
Number of streets 18,741 

Number of centroids 18.741 
 

 

Figure 10: Kriging Surface. 
 
The surface shows the higher flows were concentrated in radar points where there is a larger 

number of vehicles (1). Locations with many radars with smaller vehicle flows resulted in lower 

interpolation flows (2). This result reinforces the vehicle concentration is in the main streets 

and consequently it is where occur higher pollutant emissions. The dataset structure is 

determinant to define the best kriging technique using in the statistic modeling. The Mean 

Absolute Percentage Error (MAPE) was approximately 50%. 
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3.3.6. VEI for Four Different Scenarios 

3.3.6.1. Integration of street maps and vehicle flow  

The first script of VEIN (road.rmd) reads the network with vehicle flows, i.e., vehicle flow in 

each link calculated using spatial interpolation resulted from kriging method. (Figure 11). 

 

 

Figure 11:  (a) Vehicle Flow in each urban street and (b) Regions of Belo Horizonte  
Source (b): Adapted from www.pbh.gov.br  

 

The vehicle flow was concentrated in North, Northeast, Pampulha and East regions in Belo 

Horizonte. This result represents the real situation in morning peak hour, and they are climate 

changes vulnerability assessment of Belo Horizonte in which interventions must be focused, 

giving support to decision-making (SMMA, 2016). 

3.3.6.2. Integration of fleet composition and fuel consumption 

The second script (traffic.rmd) include all information about fleet composition and fuel 

consumption. The fleet composition (ANFAVEA, 2017; ABRACICLO, 2017) is used to divide 

the vehicle flow already allocate in each street (step 1). The fleet composition is per vehicle 

type and age. The results consist in a matrix with vehicle flow and type of vehicle and indicate 

vehicles in circulation per year of use (Figure 12), which is settled using the scrip 3 (fuel_eval) 

simultaneously. 
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(a) Flex passenger car using gasohol (b) Passenger car using gasohol (c) Flex passenger car using ethanol 

  
 

 

(d) Flex Light Commercial using gasohol (e) Heavy truck using diesel (f) Urban bus using diesel  

Figure 12: Examples of vehicle in circulation per year of use. 
 

The Programa de Controle da Poluição do Ar por Veículos Automotores (PROCONVE) and 

the Programa de Controle da Poluição do Ar por Motociclos e Similares (PROMOT) establish 

pollutants emission standard in different phases (interval of years) for diverse categories of 

vehicles. These programs enable the effective vehicle emissions reductions and the companies 

can adopt a mix of vehicle models with less emissions, such as flex-fuel and electric vehicles. 

The flex-fuel vehicle (a,c) is an example of vehicle whose design allows use gasohol, ethanol 

or any mixture between two fuels that allowed a reduction in the number of vehicles that use 

exclusive gasohol (b). It is important to consider vehicle per year of use because older vehicles 

(d,e,f), which already have a higher emission than current vehicles, have increased emission 

due to deterioration. Vehicle whose design allows the use of gasoline C, hydrous ethanol or any 

mixture between the two fuels. 

3.3.6.3. Comparison between scenarios 

The next step was the calculation of VEI using the fourth phase use the script “vein.R” to 

calculate all the emissions. Furthermore, four scenarios using kriging interpolation method was 

defined and modeled (Table 16). 

Table 16:  Scenarios description. 
Scenario Description 

Scenario 1 (S1) Vehicle flow: constant diurnal cycle for all vehicle type 

Scenario 2 (S2) Vehicle flow: different diurnal cycle per day for vehicle type 

Scenario 3 (S3) Scenario 2 + 10% reduction in passenger car and light commercial vehicle fleet 
Scenario 4 (S4) Scenario 2 + 20% reduction in trucks and buses fleet 

 

N
um

be
r 

of
 v

eh
ic

le
(u

ni
ts

) 

Year (y) Year (y) Year (y) 

N
um

be
r 

of
 v

eh
ic

le
 (

un
it

s)
 

N
um

be
r 

of
 v

eh
ic

le
(u

ni
ts

) 

N
um

be
r 

of
 v

eh
ic

le
(u

ni
ts

) 

Year (y) Year (y) 

N
um

be
r 

of
 v

eh
ic

le
(u

ni
ts

) 

N
um

be
r 

of
 v

eh
ic

le
(u

ni
ts

) 

Year (y) 



 

59 
 

The VEI was calculated using vehicle flow, urban network, fleet and fuel consumption and the 

results for each scenario are presented in Table 17. The reduction in passenger car and light 

commercial vehicle fleet consumption led to a reduction in CO (8.5%) and CO2 (8.8%) 

emissions (S2 and S3) and the reduction in diesel consumption showed a reduction in NOx 

(8.4%) and PM2.5 (8.6%) emissions (S2 and S4). The  reduction in NMHC emissions are most 

evident when reducing the fleet of vehicles that consume gasohol and ethanol, i.e, 8.0% (S2 

and S3) against 0.7% in S4 (Table 18). Dominutti et al. (2016) showed that gasoline is one of 

the most important sources of hydrocarbons in urban area. 

Table 17:  Results of scenarios considering vehicle flow from kriging interpolation (t.year-1). 
Scenarios CO CO2 NMHC NOx PM2.5 SO2 

Scenario 1 (S1) 17,132 2,846,763 1,820 4,032 125 207 
Scenario 2 (S2) 17,198 2,893,226 1,827 4,038 128 208 
Scenario 3 (S3) 15,730 2,639,526 1,681 3,817 121 194 
Scenario 4 (S4) 17,137 2,838,606 1,815 3,700 117 196 

 
Table 18:  Reduction of emissions pollutants between scenarios (%). 

Pollutant S2 vs. S3 S2 vs. S4 

CO 8.5 0.4 
CO2 8.8 1.9 

NMHC 8.0 0.7 
NOx 5.5 8.4 
PM2.5 5.5 8.6 
SO2 6.7 5.8 

 
The fleet reduction adopted in S3 and S4 is accompanied by reduction in fuel consumption in 

different proportions. In S3, 10% in fleet reduction of passenger car and light commercial 

vehicles leads to a decrease of 6% in diesel and 10% of gasohol and ethanol consumption. In 

S4, 20% in fleet reduction of trucks and buses lead a decrease of 8% in diesel reduction. These 

findings explain the difference in CO, CO2, NOx and PM emissions reductions in each scenario.  

3.3.7. NOx Emissions 

The reduction of 20% on fleet of trucks and buses causes a reduction in total emissions of NOx. 

In the morning peak time (08:00 h, local time) the reduction is visible when the fleet 

composition is implemented (Figure 13).  
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Figure 13:  Difference on NOx emissions in the morning peak hour using kriging interpolation method. 

 

The reduction in NOx emissions reaches part of 6 regions (North, Northeast, Northwest, 

Pampulha, Centre-South and East) in the Belo Horizonte city. Therefore, it is necessary carry 

out measures to gain benefits in air quality to decrease pollutant emissions.  

In other analysis, NOx emissions per year of use can be check in the VEIN (Figure 14). The 

combination between number of vehicles, year of use and fuel consumption results that the 

main NOx emission occurred for vehicle with between 5 and 10 years old in both scenarios (S2 

and S4).  

 

 
Figure 14: NOx emissions per year of use and vehicle type. 

 

The Brazilian Vehicle Air Pollution Control Program (PROCONVE) has set emission standards 

for diesel vehicles based on European standards (EURO) (Carvalho, 2015; Andrade et al., 2017; 

CETESB, 2018; Santos, 2018). The phases (P1 to P7) show the maximum allowable NOx 

values in g/(kw·h) (P1: 18.02; P2: 14.4; P3: 9.0; P4: 7.0; P5: 5.0; P6: 3.5 and P7: 2.00). In 

addition, the program defined sulfur reduction that began with 3,000 to 10,000 ppm (P2 to P4), 
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500 to 2,000 (P5), 50 (P6) and 10 ppm (P7). The phases were between 1977 to 2001 (P1 to P4), 

2002 to 2003 (P4), 2004 to 2007 (P4/P5), 2008 to 2011 (P5) and 2012 to 2018 (P7) and engine 

technologies and fuel were improving to meet the legislation requirements. The phase P6 was 

not possible due to the unavailability of low sulfur diesel. The age between 5 and 10 years old 

corresponds to phases P5 and P7 (2008 to 2013). The highest NOx emission corresponds to the 

phases with the lowest emissions rates, therefore the number of vehicles (42.9% of the total 

fleet) is the main cause of the largest emissions of vehicles with 5 and 10 years old. 

The model calculated the emissions during the week in g/h. For NOx, the emission distribution 

during the week shows light commercial vehicle, all types of trucks and buses decrease had a 

decrease in NOx emissions in all days (Figure 15). 

 

Hour (h) 

Figure 15:  NOx emissions for 168 hours (one week) per vehicle type in scenario 2. 
 

The morning peak hour (07:00-08:00h am; local time) and evening peak hour (06:00-07:00h 

pm; local time) shows similar emissions during weekday. In the weekends, the emissions are 

lower than weekdays. In the morning peak hour in weekdays, the differences between scenarios 

: 4.9% (S2 and S3) and 9.6% (S2 and S4). In the evening peak hour in weekdays, the differences 

between scenarios are: 5.8% (S2 and S3) and 7.8% (S2 and S4). 

Emissions (g) 
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3.3.8. Comparison with local vehicular emission inventories 

The effect of radar data resolution and spatial distribution on the vehicle emission modeling in 

an urban area contributed to discuss the accuracy of vehicle emissions and the impacts on air 

quality modeling. The premises definition is an important step to analyze the VEI results. Even 

considering different assumptions, there are two studies that calculate the vehicle emissions in 

Belo Horizonte, and it is possible to compare the results carefully. Santos (2018) showed a 

vehicular emission inventory to Belo Horizonte in 2015 and the State Environmental Agency 

in Minas Gerais also published a bottom-up vehicle emissions inventory (FEAM, 2018) (Table 

19). 

Table 19: Different Vehicular Emission Inventory to Belo Horizonte. 
References (t/year) Base year CO NOx PM2.5 SO2 

Santos (2018)* 2015 16.574 13.992 1.220** 581 
FEAM (2018) 2015 3,081 1,599 132 89 
Present study (S2) 2018 17.198 4,038 128 208 

*PM = PM10 and PM2.5; **Considering fleet segregation 
 

The results obtained with VEIN showed that CO is the main pollutant from mobile sources 

followed by NOx, PM2.5 and SO2.When the comparison between the present study and bottom-

up vehicle emission inventory (FEAM, 2018), the main differences between emissions may be 

justified by at least two relevant variables: emission factors and the network configuration, i.e., 

the number of inventoried streets. The emission factors used in the bottom-up approach did not 

vary with fleet age and the network represented just 0.37% of the network used in present study. 

The comparison between Santos (2018) and the present study shows similar value for CO 

emissions but there is a huge difference for NOx and PM2.5 emissions. The main reason is the 

premises adopted in each study. The performance of present study could be considered 

reasonable although there are differences between results.  

3.4. DISCUSSION 

The kriging method is a good and reasonable solution to solve a persistent problem in vehicular 

emission inventory, i.e., traffic activity in each link of the urban street network. The local radar 

data is an existing database that can be used to calculate input data of traffic. In this work, the 

discussion of scenarios may guide traffic agencies and environmental protection agencies to 

decide about transportation public policies and infrastructure that integrate mobility solutions 

and air pollution control.  
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The S1 and S2 did not present differences in terms of total emissions. The profiles “constant 

diurnal cycle for all vehicle type” and “different diurnal cycle per day for vehicle type” set up 

differences in the spatial distribution of emissions over 24 hours. This information is relevant 

to investigate which types of vehicles are primarily responsible for raising or declining vehicle 

emissions on city network. The comparison between S3 and S4 showed the impacts on 

reduction in different types of fleet. This comparison showed that road space rationing reduced 

in CO (8.9%) and CO2 (7.5%) emissions. The scenario 4 was proposed considering the 

reduction only in trucks and buses using diesel. The results showed a reduction in NOx (3.2%) 

and PM (4.4%). For trucks, the vehicle inspection can contribute significantly to reduction of 

some pollutants, such as NOx. In general, the control inspection must be carried out on all motor 

vehicles and motorcycles regardless of the type of fuel they use. Vehicles are currently not 

inspected in the Brazilian states.  

In addition to reducing the truck fleet, it was proposed to replace the bus diesel fleet. A possible 

solution it to substitute the current fleet for electric buses. Electric buses are advantageous 

options because they have, for example, higher efficiency and less noise than internal 

combustion engines, also increase energy efficiency and do not emit atmospheric pollutants 

(Falco et al., 2017; Slowik et al., 2018). The implementation of hybrid (diesel - electric) and 

electric buses can lead to significant reductions in CO2 and other pollutant emissions and 

contribute to the decarbonization of the Brazilian transportation sector (Slowik et al., 2018). 

3.5. CONCLUSIONS 

Vehicles associated with consumption and burned of different fuels, topography and weather 

conditions are generally the main source of air pollution in urban areas. The continuous 

monitoring of vehicular flow in real time using radars results in an improvement of the spatial 

and temporal distribution of traffic activity, a remain gap of a vehicular emission inventory. In 

this way, this study analyzed the effect of radar data resolution to simulate vehicular emission 

and it was estimated an emission inventory using VEIN (a National Vehicle Emission Inventory 

Model) considering four different scenarios. The study used input data from different traffic 

behavior profile (constant and different diurnal cycle) established from local radar data and 

kriging interpolation method to find the appropriate spatial/temporal distributing. Furthermore, 

it was carried out a statistical analysis of monthly traffic behavior; determined a specific average 
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traffic flow using local radar data; analyzed the vehicle type hourly behavior and showed the 

importance of the diurnal cycle per vehicle type in the emission inventory accuracy.  

Differences between emission inventory using diverse vehicle profiles showed that the process 

to selecting the best vehicle profile depends on the main goal of the study and the vehicle flow 

dataset to set the input data in a vehicular emission modelling. Vehicular emissions vary with 

the method adopted to structure the data inputs and these findings are important to develop a 

relevant reference in a city that have data traffic limitations and do not have hourly traffic 

behavior profiles.  

The scenarios showed some solutions to decrease vehicular emissions. In scenario 3, it was 

discussed the vehicle rotation implementation. In Belo Horizonte, the Urban Mobility Plan 

(PlanMob) foresees the vehicle rotation for 2020. The restriction was effectively linked to the 

improvement of public transport and the encouragement of the use of clean means of transport, 

as it was done in other major cities of the world. Other actions such as increasing the BRT (Bus 

Rapid Transit) network, subway and the cycling structure are also planned. The plan does not 

define the percentage of vehicle fleet reduction on the roads to represent discouragement of car 

use through vehicle rotation. 

Considering that urban mobility public policies should stimulate public transport in its diverse 

modalities, in order to attract individual transport users and faced with the need to find solutions 

that minimize vehicle emissions, scenario 4 was also defined taking into account mobility 

public transport by bus. In Belo Horizonte, tests with a 100% electric minibus were performed 

in 2016, but they still formatting economic analyses. In addition, this scenario is aligned with 

the “Sustainable City” axis described in PlanMob - BH 2030 which presented the status of the 

investments in the Electric Bus Pilot Project, which is in the economic viability study phase. 

This study is pioneer in Brazil and reinforced the importance of detailing traffic activities using 

real data to estimate vehicular emissions in an urban area. Recently, São Paulo city hall has 

promoted a challenge for the development of solution for smarter and safer urban mobility in 

the city using radar database. The approach adopted in this research can be followed for 

conducting research on other urban transport systems and can support traffic agencies and 

environmental protection agencies in the entire country to decide about public transport polices 

to reduce vehicular emission around the city, improving air quality. Further investigations to 
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improve kriging method and spatial distributing in VEIN model is necessary as well as 

validation of the emission inventory estimated and also the effects of input data in air quality 

modeling simulations. The vehicle flow is a dynamic attribute and the kriging method based on 

an estimator (semivariogram) change when any change in the dataset results occur. In addition, 

development of more extensive profiles to represent weekday and weekends would allow to 

analyze specific actions to reduce vehicular emissions in urban areas, investigate air pollution 

exposure in specific roads in the city, develop project-level emissions and hot-spot analysis.  
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CHAPTER 4:  

COUPLED MODEL USING RADAR 
NETWORK DATABASE TO ASSESS 

VEHICULAR EMISSIONS: MOBILITY AND 
TRAFFIC SOLUTIONS FOR FUTURE 
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The paper “Coupled model using radar network database to assess vehicular emissions: 

mobility and traffic solutions for future scenarios in an urban area” was developed by the 

author of this thesis in collaboration with researches Professor Prashant Kumar, Professor 

Marcelo Félix Alonso (co-advisor), Willian Lemker Andreão, Rizzieri Pedruzzi, Sérgio Ibarra 

Espinosa, Felipe Marinho Maciel and Taciana Toledo de Almeida Albuquerque (advisor). It 

is under review in the Journal of Environmental Science. The paper provided an improvement 

in the methodology of this thesis and analyzed future scenarios (2025, 2030, and 2050) to 

assess vehicular emissions.  

The statistic mixed effect model called the “Normal-Neighborhood Model” (i.e., the mixed 

effect model with random effect in the neighborhood, radar type, and the regional area) was 

developed and used to spatialized the radar data in each urban road in Belo Horizonte. Then, 

the result was coupled in VEIN to calculated vehicular emission inventory for future scenarios 

in Belo Horizonte, considering the strategies defined in PlanMob (Plano de Diretor de 

Mobilidade Urbana de Belo Horizonte). The results can support decision-makers to define 

transport and environment public policies to minimize the negative impacts of vehicle 

emissions in the city. 

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior (CAPES) – Finance Code 001, Conselho Nacional de Desenvolvimento Científico e 

Tecnológico (CNPQ), Empresa de Transporte e Trânsito de Belo Horizonte (BHTRANS) and 

Prefeitura de Belo Horizonte (PBH),  Brazil. The support of the Global Centre for Clean Air 

Research (GCARE), Department of Civil and Environmental Engineering, Faculty of 

Engineering and Physical Sciences, University of Surrey, United Kingdom; the support 

received from the FAPESP and the University of Surrey through the CarE-Cities (Clean Air 

Engineering for Cities) funded by Research England under the University of Surrey’s Global 

Challenge Research Funds (GCRF) and NOTS (Novel high-resolution spatial mapping of 

health and climate emissions from urban transport in Sao Paulo megacity) projects were also 

outstanding. 
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4.1. INTRODUCTION 

The health effects of short and long-term exposure due to ambient air pollution are a world 

problem. More than 90% of the world´s population lives in places exceeding WHO air quality 

guidelines (Andrade et al., 2017; Kumar et al., 2017; Pacheco et al., 2017; Andreão et al., 2018; 

WHO, 2018), this fact increases the population risks. Vehicles are one of the most significant 

emissions sources of air pollutants in an urban area (Wu et al., 2017; Wong et al., 2019; Singh 

et al., 2020) and the real contribution of vehicular emissions to predict air quality remain a 

challenge. Traffic activities combined with fuel consumption rise air pollutant emissions, and 

consequently, raise deterioration of air quality and degradation of health (Hatzopoulou and 

Miller, 2010; Andrade et al., 2012; Zhang and Batterman, 2013; Kumar et al., 2016).  

The vehicular emission inventory (VEI) is a tool used to identify the emission contributions 

from mobile sources. Every link level of each urban street in the network requires traffic 

activities. Speed, flow (counts of vehicles) and road density are variables used in traffic network 

modeling (Morris and Trivedi, 2013; Xu et al., 2018) and the accuracy of each data contribute 

for more reliable results (Nagpure et al., 2016; Fu et al., 2017; Dias et al., 2018; Pinto et al., 

2019). Furthermore, the better traffic flow representations with fine spatial and temporal 

distributions result in a satisfactory allocation of emissions on grid cells. 

In developed countries, Global Position System (GPS), Intelligent Transport System (ITS), 

Dynamic Traffic Assignment (DTA), agent-based models, statistical models, traffic models 

(macroscopic, mesoscopic, microscopic), neural networks, chassis dynamometer tests are 

sources of traffic data (Rowangould, 2015; Borrego et al., 2016; Jamshidnejad et al., 2017; 

Hofer et al., 2018; Jiang et al., 2018; Wei et al. 2019). In developing countries, in most cases, 

traffic data are collected from combinations between internet searches, reports, and contacts 

with private and governmental agencies. Moreover,  the majority of countries in South America 

are typically poorly represented in global inventories due to the scarcity of measurement 

campaigns and national inventories. The use of socio-economic indexes to develop local 

inventories using extrapolated data instead of measured data is frequent (Saide et al., 2009; 

Alonso et al., 2010; Sharma and Chung, 2015). 

Gaps remain on spatial and temporal distributions, on consistent emissions factors, allocations 

of emissions on grid cells, and available data to validate the estimations (Pinto et al., 2019). 

The average link-based traffic parameters are a persistent limitation.  
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The most uncertain input in air quality modeling are emissions and differences between state 

of the art, and current practices show that is necessary increased compatibility in this modeling 

practices (Fallahshorshani et al., 2012; Kaewunruen et al., 2016; Tominaga and Stathopoulos, 

2016; Sallis et al., 2017). 

The prediction of traffic data has shown to be suitable for minimizing costs from an origin-

destination survey and the use of commercial software with traffic models. Radar databases and 

traffic counts using statistical modeling is an alternative and a low-cost approach to producing 

traffic activities data in each urban street to use as input to predict vehicular emissions (Fu et 

al., 2017). Real traffic data is a way to determine traffic activities, and it is possible to integrate 

with exploratory variables, such as type of road (urban or rural), functional classification, area 

type, speed limit and others (Eom et al., 2006; Yu et al., 2010; Morris and Trivedi, 2013; Lowry, 

2014; Nantes et al., 2016; Pan et al., 2016; Chang and Cheon, 2018; Xu et al., 2018). 

The spatial and temporal vehicle flow distributions can be performed using kriging interpolation 

(Shamo et al., 2015, Pinto et al., 2020), spatial Pearson correlation coefficients (Chen et al., 

2016); GIS techniques and modeling (Adedeji et. Al., 2016; Requia et al., 2017), neural network 

(Fu et al., 2017); Thiessen polygons (Gómez et al., 2018); spatial autoregressive moving 

average (SARMA) regression model (Sun et al., 2018), land-use regression (LUR) and 

geographically weighted regression (GWR) models (Kanaroglou et al., 2013; Song et al., 2019), 

among others. Additionally, models may provide the required activity data, and therefore, a 

well representative flow for every urban street in the study area.  

Traffic data is critical data to improve the input data in emission modeling and, consequently, 

air quality modeling. The potential of using radar data to produce traffic data is a way to 

integrated environmental and transportation planning areas. Simple, low-cost, and accurate 

methods for assessing the spatial distribution of traffic data and vehicular emissions are 

essential for environmental management and transportation public policy definition. Besides, it 

is essential for analyzing future scenarios and projections.  

The approach to structuring traffic data inputs for emission modeling can change the spatial 

vehicular emissions and to improve this knowledge, the aims of this work are: (1) perform a 

spatial statistical analysis of local radar data; (2) to calculate traffic flow using local radar data 

using different statistical models; (3) to analyze scenarios about a Brazilian vehicle emission 
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inventory to define public policies in an urban area. This study was conducted in Belo Horizonte 

(BH), the capital of the third-largest metropolitan area in Brazil, investigating current (2020) 

and future scenarios (2025, 2030, and 2050).  

4.2. MATERIALS AND METHODS  

4.2.1. Study area 

Belo Horizonte (BH), the capital of Minas Gerais state, is a densely populated urban city (over 

2.5 million inhabitants), with nine sub-regions (Figure 16), and a representative vehicle fleet 

(over 2 million vehicles). The Minas Gerais state has the third-largest metropolitan region of 

the country, and BH was selected because of the availability and accuracy of vehicle data, which 

is used by the city traffic agency and in the local and national government officials reports. 

 

 
 Figure 16:  Belo Horizonte and sub-regions. 

 

The city network has 31,905 urban streets, where residential roads represent 65.80%, followed 

by service road (10.80%). In the west region are located 13.24% of the streets, 12.74% are in 

the northeast region, and 12.73% in the Pampulha region, a tourist place in the city. Table 20 

presents the street and urban street type of radar and manual count points, while Table 21 shows 

the sub-region where the street is located. The radars have been installed by the Transportation 

and Transit Company of Belo Horizonte (BHTRANS) to control the speed limit of the vehicles 

in the city, reducing the number and severity of accidents, creating a safe transit. In this work, 

it was used data from 304 radars and 87 count points. The radar types are CEV and CEV MOVE 

(Electronic Speed Control); DAS, DAS Busway, and MOVE (Semaphore Advance Detector); 

CJG and CJG Busway (Combined Equipment (DIF + CEV)); DIF (Exclusive Intrusion Detector 

and Truck Circulation Detector) and RF (Fixed Speed Control Radar. 
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Table 20:  Percentage of urban street type in Belo Horizonte. 

Description 
Urban Street Type 

Urban Street Type of Radar and 
count points 

Sample (S) % Sample (S) % 
Residential 20,986 65.78 5 1.28 

Service 3,379 10.59 21 5.37 
Tertiary 3,333 10.45 35 8.95 

Secondary 2,071 6.49 106 27.11 
Trunk 924 2.90 129 32.99 

Primary 813 2.55 81 20.72 
Motorway 399 1.25 14 3.58 

Total 31,905 100.00 391 100.00 

 
 

Table 21:  Percentage of urban street per sub-region in Belo Horizonte. 
City region Urban Street % Radar Type % 

Barreiro 3,404 10.67 16 4.09 
Centre-South 1,845 5.78 70 17.90 

East  2,226 6.98 30 7.67 
Northeast  4,065 12.74 30 7.67 
Northwest  3,815 11.96 68 17.39 

North  2,755 8.64 27 6.91 
West  4,223 13.24 38 9.72 

Pampulha 4,061 12.73 70 17.90 
South  2,492 7.81 16 4.09 

Venda Nova 3,019 9.46 26 6.65 
Total 31,905 100.00 391 100.00 

 
The major urban streets are in West, Pampulha, and Northeast, whereas there are the lowest 

urban streets in Downtown, South, and East regions. The most of radar is in secondary and 

trunk street, and most are downtown (17.90%), Northwest (17.39%), and Pampulha (17.90%).  

4.2.2. Descriptive Statistical Analysis 

The qualitative variables were the type of the radar, type of street, and regional, while 

quantitative variables are vehicle flow, street length, population, traffic zone, and per capita 

income. Absolute and relative frequencies measures in the descriptive analysis of the qualitative 

variables were used, whereas quantitative variables were describing using measures of position, 

dispersion, and central tendency. The Mann-Whitney and Kruskal-Wallis tests are statistical 

tests used to the comparison between vehicle flow and qualitative variables. The Spearman 

correlation was used to correlate vehicle flow and quantitative variables (Hollander and Wolfe, 

1999) and is a limited measure between -1 (negative correlation) and 1 (positive correlation).  

Moran Index and semivariogram were applied to describe spatial correlation. Moran index is 

one of the most classic methods to measure spatial autocorrelation. A correlation coefficient is 

the result interpretation, e.g., values close to 1 indicate a dense spatial pattern (high values tend 

to be located close to high values, and low values tend to be located close to low values). The 

values close to -1 indicate a dense negative spatial pattern (low values tend to be close to high 
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values), and values close to 0 indicate an absence of spatial pattern (Rogerson, 2012). The 

semivariogram is also used to describe spatial correlations of point observations and consists 

of evaluating if the variables follow a specific pattern in space. The semivariogram is a measure 

of the variability of the variable concerning distance (as the distance between the observation 

increases the semi-variance also increases since the observations that are close to each other 

tend to have more features in common than the observations that are distant). 

4.2.3. Traffic Modelling using Statistic Model 

The vehicular flow was estimated with kriging and mixed-effects models. The Backward 

Method (Efroymson, 1960) was the method used for the selection of explanatory variables in 

the mixed-effects model. This method is a procedure of removing, at a time, the variable with 

the highest p-value. The interaction repeated until only significant variables remain in the 

model. In this study, the Backward Method adopted a significance level of 5%.  The models 

chosen were Linear Regression, Poisson Regression, and Negative Binomial Regression, and 

the Linear Regression was modeled with the logarithm of daily vehicle flow in the morning 

peak hour. 

4.2.3.1. Kriging Model  

The kriging model is the most regression method used in geostatistics (Oliver and Webster, 

2015). The technique assumes that the closer points tend to have more similar values, while the 

points that farther tend to have more different values, i.e., the values presented a spatial 

correlation. According to Landim (2003), kriging is a method of estimation by moving averages 

of measurements distributed in space from the values of its surroundings. In this method, a 

semivariogram is a function that relates spatial dependence (Landim and Sturaro, 2002). 

Therefore, the kriging method consists in minimizing the estimated variance from the model 

that considers spatial dependence (Landim, 2003). 

4.2.3.2. Mixed – Effect Model 

In regression models, measurements in the same place or point, or both generate a clustering 

structure that must be appropriately addressed, once it violates the underlying assumption of 

independence of observations. In the presence of pooled data, there is a correlation between 

observations of the same place or point and that there is no correlation between observations of 

different places or points. The correlation between repeated measurements of the same locations 
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or points is approached using mixed-effect models, also known as subject-specific models since 

interpretation is performed at the subject level (Pinheiros and Bates, 2000; Fitzmaurice et al., 

2011). Therefore, to estimate vehicle flow, a mixed-effect model with random on the intercept 

was adjusted. The subject was radar type, regional and neighboring neighborhood or address. 

The generalized linear models present the possibility of using counting models and include the 

logarithm binding (Mccullagh and Nelder, 1989). The Poisson distribution is widely used to 

model count data, but Poisson models consider the variance equal to mean, but this usually does 

not occur in practice, causing sub or super dispersion (Hair et al., 2009).  Thus, it is common to 

use Poisson models with robust variance or to use Negative Binomial distribution. The 

estimation of vehicle flow was realized using the kriging model and two types of mixed effect 

models. The mixed-effect models were adjusted for each distribution adopted (Linear, Poisson, 

and Negative Binomial). The first one considered the random effect on the address, radar type, 

and regional area, and the second model was fitted considering the random effect on the 

neighborhood, radar type, and regional area. To choose the best model, i.e., the model with the 

smallest errors, cross-validation was used. 

Prediction analysis was also performed to complete the statistic model selection. The database 

used for the prediction did not contain the variable “radar type.” Therefore it was decided to 

perform the prediction considering the following types of radar: without radar (the prediction 

adjustment did not use the radar type); Semaphore Advance Detector (DAS), Fixed Speed 

Control Radar (RF), Electronic Speed Control (CEV) and Combined Equipment (CJG). The 

variable “radar type” is significant for the model, since it reduces the model error by 

approximately three times. 

4.2.3.3. Cross-Validation 

The cross-validation principle was used to select the best model to verify if the model had an 

appropriate fit and a good predictive ability. The following adjust quality measurements were 

calculated: Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and 

Root Mean Square Error (RMSE). The cross-validation assesses model performance in a new 

database, and it is necessary processing to verify how accurate the model is in practice. Cross-

validation avoids the overfitting problem. This problem can occur when the model fits too much 

in the training set and performs far less than a validation database (Hair et al., 2009). The cross-

validation process consists of a split database into two mutually exclusive subsets and then 
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using one for model estimation (training database) and the other for model validation (test 

database). Thereby, k-fold cross-validation was used, which consists of a data into k partitions, 

where the validation set is the first partition, and the model is estimated using the rest of other 

partitions. The error is verified in the test partition. Therefore, the average of the k partition 

average errors resulted in the prediction error estimation. Vehicular emissions vary with the 

method adopted to structure the data inputs, and the findings presented in this work are essential 

to developing a relevant reference in a city that has data traffic limitations. The developed 

approach can serve as a means of reliably estimating of vehicular emissions, as well as offering 

a robust means of spatially analyzing road transport activity.  

This study is new in Brazil and reinforced the importance of detailing traffic activities using 

real data to estimate vehicular emissions in an urban area. Radar data can provide many 

potential benefits for research and analysis in an environmental and planning transportation. 

For many developing countries, data from traffic counters can improve understanding of the 

city's mobility dynamics, as well as harnessing this data in online services or via traffic 

monitoring applications.  

In this study, the focus was to provide a suitable statistical model based on local radar data to 

predict traffic flow for a Brazilian city and use a national vehicular emission model to analyze 

different scenarios and the impacts on vehicular emission in the city. These findings can be 

incorporated in future investigations to implement public policies to reduce vehicular emission 

in the urban area and in advance environmental health effects research and human health risk 

assessment. Some suggestions like  development a tool to allow  users to query information 

such as flow, average speed, infractions, and vehicular emissions as well as to provide quality 

and quantity traffic data to traffic simulation systems allowing better studies on possible traffic 

interventions in the city road plan and air quality estimates can implement using this research 

4.2.4. Vehicular Emission Model – VEIN 

The Brazilian Vehicular Emissions Inventories (VEIN) (Ibarra-Espinosa et al., 2018; Ibarra-

Espinosa et al., 2019) is a vehicle emission model, free and open source. The model was 

developed using free software R (R Core Team, 2017) and generates pollutants emission from 

motor vehicles of different categories and fuels, and it was also elaborated considering transport 

activity and emission factors (EFs) (Equation 4) (Pulles and Heslinga, 2010; Ibarra-Espinosa et 

al., 2018; Ibarra-Espinosa et al., 2019). 
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𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 =  ∑ ( 𝐴𝑅𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝐸𝐹𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡,𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  Equation 4 
 

 

The equation shows that the emission of any pollutant depends on the activity rate (AR) and 

the EF. The transport activity corresponds to the number of vehicles multiplied by the distance 

traveled (km). VEIN reads the traffic flow on each route. The model reads the traffic data and 

then organizes the data by the fleet composition. After reading the data, vehicular flow is 

extrapolated to the routes of the network, considering the vehicle type and the age of use.  The 

expected result is a one-week vehicular flow. VEIN reads the traffic flow on each route and 

organizes the data by the fleet composition. Then, the vehicular flow is temporally extrapolated 

using hourly traffic counts (Ibarra-Espinosa et al., 2018; Ibarra-Espinosa et al., 2019). The 

hourly traffic flow generated covered 168 hours of a typical week. The emission factors are 

averaged emissions measurements by type of vehicle and age of use, published by the 

Environmental Agency for São Paulo (CETESB, 2018). 

The vehicular emission inventory was developed for four scenarios (S1, S2, S3, and S4). The 

S1 is a projection of vehicular emission inventory from 2018 to 2020. The S2 represents a 

reduction of the fleet over 30 years, indicating the possibility of implementing vehicle 

inspection in Belo Horizonte and withdrawing the circulation of old vehicles. The S3 and S4 

illustrate a projection to 2025 and 2030, respectively. The Belo Horizonte Urban Mobility Plan 

(BHTRANS, 2010) and the Energy National Plan 2030 (EPE, 2007) were references used in 

the definition of the scenarios in this work. Furthermore, optimistic scenarios were modeled for 

2025, 2030, and 2050. 

4.3. RESULTS 

4.3.1. Data Exploratory Analysis 

Data exploratory analysis is shown in Table 22, where p-value represents Mann-Whitneya, and 

Kruskal-Wallisb tests from the comparison between variables and vehicle flow (in the morning 

peak hour). 

 



 

76 
 

Table 22:  Comparison between variables and vehicle flow (in the morning peak hour). 

Variables Sample (S) 
Average 
vehicle 

flow 
S.D 1º Q. 2º Q. 3º Q. p-value 

Count point 
Manual 87 144.03 10.83 72.50 102.00 201.50 

<0.001a 
Radar 304 1,295.56 70.52 138.50 986.00 2,256.50 

Type of radar 
and manual 
count point 

CEV 38 2,506.03 180.24 1786.00 2,495.00 3,117.00 

<0.001b 

CEV move 1 99.00 - 99.00 99.00 99.00 
DIF + CEV 7 1,131.43 434.69 85.00 1,259.00 1,720.00 
DIF + CEV Busway 13 134.31 13.61 95.00 117.00 189.00 
DAS 95 1,372.17 104.81 493.50 1,117.00 2,025.50 
DAS Busway 26 153.27 8.94 115.00 175.50 190.00 
DAS move 22 128.36 18.35 82.00 124.50 140.00 
DIF 36 72.86 5.94 47.50 62.00 104.00 
Manual 87 144.03 10.83 72.50 102.00 201.50 
RF 66 2,258.61 109.87 1,802.00 2,293.00 2,787.00 

Urban street type 
where radar type 
is located. 

Motorway 14 316.64 20.69 247.00 305.50 368.00 

<0.001b 

Primary 81 1,308.83 110.07 351.00 1,325.00 1,975.00 
Residential 5 406.20 139.16 222.00 330.00 708.00 
Secondary 106 619.65 83.12 71.00 147.50 1,029.00 
Service 21 131.81 18.63 83.00 124.00 140.00 
Tertiary 35 276.77 64.79 55.50 97.00 293.50 
Trunk 129 1,672.59 126.54 181.00 1,906.00 2,881.00 

Regional where 
radar type is 
located 

Barreiro 16 767.06 234.61 98.50 222.50 1,514.00 

<0.001b 

Downtown 70 705.27 100.62 83.00 291.50 1,111.00 

East 30 1,005.67 214.26 212.00 490.00 1,316.00 

Northeast 30 1,193,00 274.38 91.00 162.00 2,505.00 

Northwest 68 1,118.53 158.87 137.00 316.00 1,830.50 

North 27 1,543.74 274.22 82.50 1,814.00 2,977.50 

West 38 1,663.53 187.86 380.00 1,837.50 2,461.00 

Pampulha 70 1,034.91 139.33 129.00 198.50 2,314.00 

South 16 931.69 278.12 118.50 533.50 1,363.50 

Venda Nova 26 402.81 116.49 47.00 88.50 330.00 

 
 

Radar data obtained significantly higher daily vehicle flow (p-value <0.001) than the manual 

count point, which was expected since radars automatically count vehicles over 24 hours during 

weekdays and weekends. Manual counts follow the methodology developed by the National 

Department of Transportation Infrastructure (DNIT) (DNIT, 2006) and can be extrapolated to 

24 hours per day. The counting was performed manually during the four, five, six, until fifteen 

minutes period during the morning peak hour. Automatic counts tend to be more robust than 

manual counts. There was a significant difference (p-value <0.001) between the type of road, 

the radar points localization, and the daily vehicle flow. The multiple comparison test showed 

primary, and trunk road types presenting much flow than secondary, service, and tertiary urban 

street. For regional where radar type is located, significant differences were also found (p-value 

<0.001).  

Table 23 brings the correlation between vehicle flow and quantitative variables, showing that 

there was no significant association (p-value >0.05).  The variation on vehicle flow did not 

depend on the quantitative variable length of an urban street, the population in traffic zones, 

and the per capita income of traffic zones in this case. 
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Table 23:  Spearman correlation between vehicle flow and quantitative variables                                             

Variables 
Vehicle flow 

r p-value 

Length of an urban street (meters) -0.08 0.105 

Population in traffic zones (inhabitant) -0.02 0.741 

Per capita income of traffic zones -0.02 0.675 

 

4.3.2. Spatial Exploratory Analysis 

The non-spatial correlation may be attributed to Moran Index, which was equal to 0.00 (p-value 

= 0.905). Figure 17 illustrates the result of the spatial correlation model of the peak hour vehicle 

flow in a semivariogram graphic. The semivariogram model is used to describe the continuity 

of the spatial correlation in the data, and the points in the graph indicate the spatial data 

structure. There was no spatial correlation since the value of semivariance did not increase with 

the distance, i.e., the flow of vehicles did not present a spatial pattern.  

 

 
 

 

Figure 17:  Result of vehicle flow in the peak hour (semivariogram). 
 

The lack of spatial correlation can also be explained by the different types of urban streets 

(variable “type of road”) in Belo Horizonte. The urban streets have different widths and lengths 

and, therefore, different vehicle flow at modeled peak hour.  

4.3.3. Mixed – Effects Model and Cross Validation 

The selected model “Normal-Neighborhood Model” (i.e., the mixed effect model with random 

effect in the neighborhood, radar type, and the regional area) is given by the following equation 

5: 

𝑬(𝑽𝒆𝒉𝒊𝒄𝒍𝒆 𝑭𝒍𝒐𝒘𝒊𝒋𝒌) = 𝐞𝐱𝐩 {𝜷𝟎 + 𝜶𝒊 +  µ𝒋 + ɣ𝒌 + 𝜷𝟏 (𝑷𝒓𝒊𝒎𝒂𝒓𝒚)  +  𝜷𝟐 (𝑹𝒆𝒔𝒊𝒅𝒆𝒏𝒕𝒊𝒂𝒍) +𝜷𝟑 (𝑺𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚) + 𝜷𝟒 (𝑺𝒆𝒓𝒗𝒊𝒄𝒆) + 𝜷𝟓 (𝑻𝒆𝒓𝒕𝒊𝒂𝒓𝒚) + 𝜷𝟔 (𝑻𝒓𝒖𝒏𝒌)}                                   

Equation 5 

Distance 

Semi variance 
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where 𝛼𝑖~𝑁(0, 𝜎𝛼2),  𝜇𝑗~𝑁(0, 𝜎𝜇2) e ɣ𝑘 ~𝑁(0, 𝜎ɣ2), for i = 1, 2, ..., 8 (radar type), for j = 

1, 2, ..., 10 (regional area) and for k = 1, 2, ..., 110 (neighborhood).  The term 𝑒𝑥𝑝(𝛼𝑖) gives 

the expected average vehicle flow value for the i-th radar type; the term 𝑒𝑥𝑝(µ𝑗) gives the 

expected average value for vehicle flow to the j-th regional area, and the term  𝑒𝑥𝑝(ɣ𝑘) provides 

the average value for the vehicle flow to the  k-th neighborhood. This model is the model with 

mixed effects because it has a fixed effect 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 𝑒 𝛽6   and random effect   (𝛼𝑖 ,𝜇𝑗𝑒 ɣ𝑘). 

4.3.3.1. Cross-Validation 

The cross-validation results according to the vehicle flow modeling used are in Table 24. The 

analysis showed that the Normal-Neighborhood Model presented the lowest error values (in 

bold in Table 24) for all three statistic indices (MAD, MAPE, and RMSE). Therefore, this 

model was selected for predictive analysis. Even without presenting the spatial correlation 

necessary for the kriging model application, it was calculated and presented the most significant 

error (MAPE=0.88) among all models, as expected. The mixed model with random effect in 

address, radar type, and the regional area had similar results than a mixed model with random 

effect in the neighborhood, radar type, and the regional area. This similarity is justified because 

the address and neighborhood are variables that impact equivalently on the flow of vehicles. 

Table 24:  Vehicle flow cross-validation for different models used. 
Model MAD MAPE RMSE 

Kriging 925.04 0.88 1321.24 
Normal-Address 395.89 0.38 652.01 
Poisson-Address 415.92 0.40 705.16 
Negative Binomial-Address 384.62 0.37 625.62 
Normal-Neighborhood 376.37 0.36 619.95 
Poisson-Neighborhood 465.75 0.44 840.83 
Negative Binomial-Neighborhood 393.62 0.37 637.66 

 
The analysis of the statistical distribution used has an impact on the results of the models, and 

the normal distribution was the most appropriate in both models. Besides, the backward method 

was applied to select the explanatory variables for the model. The variable “type of road” was 

the variable that remained in the select statistic model (Table 25). 
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Table 25: Influence of explanatory variables on vehicle flow. 
Variable Exp (β) 95% C.I.  p-value 

Motorway 1.00 - - 

Residential 0.18 [0.091; 0.357] <0.001 

Service 0.63 [0.359; 1.105] 0.110 

Tertiary 0.19 [0.119; 0.289] <0.001 

Secondary 0.35 [0.234; 0.537] <0.001 

Trunk 0.65 [0.407; 1.044] 0.080 

Primary 0.48 [0.303; 0.751] 0.002 

 
There was a significant influence on the type of road in the peak hour vehicle flow. For instance, 

when different types of roads are compared with the “motorway” type, the primary road showed 

a 52% reduction in vehicle flow, the secondary road had a 65% decrease, and tertiary road type 

had an 81% reduction in vehicle flow. Table 26 presents a description of random effects by the 

radar type. When the radar is RF, the vehicle flow increased 7.81 times. When the radar is DIF 

type (Exclusive Intrusion Detector and Trucks Circulation Detector), vehicle flow decreased by 

67%.  The radar CJG and DAS have the smallest random effect in the vehicle flow. 

Table 26:  Description of random effects by the radar type. 
Radar Type Exp(βi) 95% C.I.  

RF 7.81 [6.73; 9.06] 

DAS1 4.64 [3.97; 5.43] 

CJG2 2.16 [1.38; 3.38] 

CEV-MOVE3 0.43 [0.15; 1.24] 

DIF 0.33 [0.26; 0.42] 
*1DAS and DAS-MOVE: Semaphore Advance Detector; 2CJG and CJG-Busway: Combined Equipment (DIF and CEV); 3CEV and CEV- 

MOVE: Electronic Speed Control. 

 

For the prediction analysis, it was selected three radar types (RF, DAS, and CJG) and “without 

radar.” This selection explains the importance of radar type variable for the model.  

4.3.3.2. Prediction Analysis 

The descriptive prediction analysis of vehicle flow in the peak hour considered the model 

adjustment without radar and with three different radar: RF, DAS, and CJG. The prediction of 

vehicle flow in the peak hour is underestimated as no specific radar type is considered (Table 

27). 
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Table 27:  Descriptive Analysis of vehicle flow (vehicle per peak hour) estimation. 
Radar Average S.D. Min. 1º Q. 2º Q. 3º Q. Max. 

Without radar 131.22 91.67 64.02 81.53 88.08 103.52 580.77 
DAS 609.32 425.70 297.30 378.60 409.00 480.73 2,696.91 
RF 1,024.63 715.86 499.93 636.64 687.78 808.40 4,535.11 
CJG 283.55 198.10 138.35 176.18 190.33 223.71 1,254.99 

 

4.3.3.3. Vehicle Flow Spatialization 

The inventory was calculated using spatial interpolation resulted from a mixed-effects model 

with random effect in the neighborhood, radar type, and regional because the model showed 

the lower MAD, MAPE, and RMSE. The traffic flow without radar was underestimated when 

comparing with selected counting points and concerning the use of radar data, as showed by 

the traffic flow spatialization in Figure 18 considering (a) no radar data and (b) CJG radar data, 

which presented the best spatialization, (c) DAS radar data and (d) RF radar data. 

  
(a) (b) 

  

(c) (d) 

Figure 18:  Spatialization of vehicle flow: (a) Without radar type and (b) Radar Type CJG, (c) Radar 
Type DAS and (d) Radar Type RF. 

 

In this work, the inventory was calculated using vehicle flow, urban network, fleet (age and 

categories of vehicles) and fuel consumption. The State Environmental Agency in Minas Gerais 

developed an inventory using 118 main streets in BH in 2015 (FEAM, 2018) and a comparison 

was performed with this work. The comparison with the base scenario (the year 2018) must 

consider the assumptions and parameters, such as emissions factors values and vehicle flow 
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spatialization. The emissions of CO, NMHC and NOx had increased by 29%, 22%, and 19% 

respectively when compared with FEAM (2018). The emissions of PM2.5 and SO2 had 

decreased by 23% and 41% when compared with the same work. 

4.3.3.4. Results of different scenarios 

Four scenarios were evaluated (Table 28) and their results present the emissions for carbon 

monoxide (CO), hydrocarbon (HC), dinitrogen monoxide (N2O), non-methane hydrocarbons 

(NMHC), nitrogen oxides (NOx), fine particulate matter (PM2.5) and sulfur dioxide (SO2). 

Additionally, it was considered the carbon dioxide (CO2) and methane (CH4) (Table 29). 

Table 28: Scenarios description. 
Scenario Description 

Scenario 1 (S1) VEI projection to 2020 
Scenario 2 (S2) Scenario 1 + Reduction in all fleet over 30 years 
Scenario 3 (S3) Scenario 1 designed to 2025 
Scenario 4 (S4) Scenario 1 designed to 2030 

 
The analysis of different scenarios allowed the suggestions of solutions proposals focused on 

mobility and transport issues in Belo Horizonte. 

Table 29:  Vehicular Emissions Inventory (t.y-1). 
Scenario Pollutants 

CH4 CO CO2 HC N2O NMHC NOx PM2.5 SO2 
S1 415 15,000 3,034,190 2,069 270 1,664 4,809 146 233 
S2 410 14,817 2,996,369 2,044 266 1,644 4,748 145 230 
S3 435 14,339 3,546,694 2,032 323 1,616 4,647 136 267 
S4 459 13,825 4,138,287 2,015 384 1,581 4,596 130 310 

 

It is highlighted the differences between S1 (2020) and S3, where the fleet over 30 years old 

was considered out of the urban street. The fleet reduction causes a 1.2% average decrease in 

pollutant emissions. The comparison between future scenarios (S3, S4) and S1 shows a decrease 

in CO, HC, NMHC, NOx, and PM2.5. The main reason is the decrease in emission factors 

values that are caused by the improvement in vehicular technologies and fuel quality. On the 

other hand, the emissions of CH4, CO2, N2O, and SO2 were increased (Table 30).  

Table 30: Difference emissions between each scenarios (%). 
 Pollutants 

CH4 CO CO2 HC N2O NMHC NOx PM2.5 SO2 
Difference between S2 and S1 -1.2 -1.2 -1.2 -1.2 -1.5 -1.2 -1.3 -0.7 -1.3 
Difference between S3 and S1 +4.8 -4.4 +16.9 -1.8 +19.6 -2.9 -3.4 -6.8 +14.6 
Difference between S4 and S1 +10.6 -7.8 +36.4 -2.6 +42.2 -5.0 -4.4 -11.0 +33.0 
Difference between S4 and S3 +5.5 -3.6 +16.7 -0.8 +18.9 -2.2 -1.1 -4.4 +16.1 
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This work also presented a simulation of three future scenarios considering an optimistic and a 

pessimistic projection considering the year 2025, 2030, and 2050. In the pessimistic projection, 

2025 and 2030 scenarios were maintained as S3 and S4 despite the reduction in vehicular 

emissions in both scenarios. The main reason for considering them as a pessimistic projection 

was the fact that both scenarios had an increase in the fleet composition, i.e., an increase of 25% 

for 2025 and 57% in the 2030 scenario. The fleet composition was estimated using the mobile 

average from the last ten years. The projection of emissions factors and fuel consumption was 

calculated by following the same procedure. 

  

In the optimistic view, the simultaneous reduction in the fleet composition of passenger cars, 

light commercial vehicle, motorcycles, trucks, and buses for all fuel (gasohol, ethanol, and 

diesel) was applied, and the results to CO, HC, NMHC, NOx, and PM2.5 are in Table 31.  

Table 31: Vehicular Emissions Inventory (t.y-1) in an optimistic and pessimistic projection. 
Year Pessimistic projection Fleet Reduction Optimistic Projection 

CO HC NMHC NOx PM2.5 Type of vehicle % CO HC NMHC NOx PM2.5 

2025 14,339 2,032 1,616 4,647 136 

Passenger car 10 

12,954 
(-10%) 

1,837  
(-10%) 

1,460  
(-10%) 

4,018  
(-14%) 

117  
(-14%) 

Motorcycles 5 
Light Commercial Vehicles 10 

Trucks 15 
Buses 20 

2030 13,825 2,015 1,581 4,596 130 

Passenger car 25 

10,553 
(-24%) 

1,544  
(-23%) 

1,212  
(-23%) 

3,507  
(-24%) 

99  
(-24%) 

Motorcycles 15 
Light Commercial Vehicles 25 

Trucks 20 
Buses 30 

2050 5,983 904 669 1,867 42 

Passenger car 50 

3.323 
(-44%) 

515  
(-43%) 

381  
(-43%) 

1,075 
(-42%) 

26  
(-38%) 

Motorcycles 25 
Light Commercial Vehicles 35 

Trucks 25 
Buses 100 

 

In 2025, the reduction in emission is more significant for NOx and PM2.5 (14%). In 2030, the 

decrease is similar for all pollutants (24%) even reduction in fleet composition do not being the 

same for all vehicle type. In 2050, it was supposed 100% of reduction in diesel buses and 50% 

in passenger cars using fossil fuel, and the impact in vehicular emissions is substantial, around 

42% smaller. In this hypothetical scenario, the fleet would be composed of electric vehicles, for 

instance.  
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4.4. DISCUSSION 

The results of this work can be used to define practical actions to reduce vehicular emissions 

not only in Belo Horizonte, Brazil, but also in any city that has this kind of dataset. Actions 

such as the implementation of the vehicle inspection program for the removal of vehicles older 

than 30 years on urban streets may generate a decrease in pollutant emissions.  

These solutions implemented in conjunction with actions that encourage do not to use the 

private vehicle as they reduce the passenger car fleet rate applied for reducing CO, NOx, and 

PM2.5 emissions. The implementation of suggested actions with the construction of quality 

public transport infrastructures, such as subway lines and bike lanes connecting regions of the 

city, can contribute satisfactorily to the improvement of air quality in Belo Horizonte. 

The proposed statistical model can be used in different cities that have radar database. It is 

essential to provide statistical assumptions, such as the existence or not of spatial correlation 

between the flow data. This methodology is an alternative solution to predict vehicle flow to 

use as input data in vehicular emission models. Recently, São Paulo city hall has promoted a 

challenge for the development of a solution for smarter and safer urban mobility in the city 

using radar database. The approach adopted in this research can be followed for research on 

other urban transport systems. It can support traffic agencies and environmental protection 

agencies in the entire country to decide about public transport polices to reduce vehicular 

emission around the city, improving air quality. 

Furthermore, it is necessary to investigate the impacts on air quality. The vehicular emission 

inventory is an essential data to improve the mobile source input data in air quality modeling 

and allow understanding the relationship between pollutant emission sources and their real 

impacts on ambient air quality. 

The reductions observed in PM2.5, CO, HC, NMHC, and NOx for the scenarios designed to 

2025 and 2030 are mainly associated with improvement in vehicular technologies and fuel 

quality. Otherwise, the increase in CH4, CO2, and N2O emissions, associated with the fleet 

increase, shows that greenhouse gases from vehicles can push for a cleaner fuel policy for the 

city, which has become a trend mainly in European countries. The increase in SO2 emissions 

also indicates a policy to reduce the sulfur content in fuels. The scenarios considering fleet 

reduction demonstrate the benefits of adopting cleaner technologies. 



 

84 
 

4.5. CONCLUSIONS 

Vehicular emissions vary with the method adopted to structure the data inputs, and the findings 

presented in this work are essential to developing a relevant reference in a city that has data 

traffic limitations. The developed approach can serve as a means of reliably estimating of 

vehicular emissions, as well as offering a robust means of spatially analyzing road transport 

activity.  

This study is new in Brazil and reinforced the importance of detailing traffic activities using 

real data to estimate vehicular emissions in an urban area. Radar data can provide many 

potential benefits for research and analysis in an environmental and planning transportation. 

For many developing countries, data from traffic counters can improve understanding of the 

city's mobility dynamics, as well as harnessing this data in online services or via traffic 

monitoring applications.  

In this study, the focus was to provide a suitable statistical model based on local radar data to 

predict traffic flow for a Brazilian city and use a national vehicular emission model to analyze 

different scenarios and the impacts on vehicular emission in the city. These findings can be 

incorporated in future investigations to implement public policies to reduce vehicular emission 

in the urban area and in advance environmental health effects research and human health risk 

assessment. Some suggestions like  development a tool to allow  users to query information 

such as flow, average speed, infractions, and vehicular emissions as well as to provide quality 

and quantity traffic data to traffic simulation systems allowing better studies on possible traffic 

interventions in the city road plan and air quality estimates can implement using this research. 
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This work had as main objective to estimate vehicle emissions by coupling statistical models to 

a vehicle emissions model from radar and vehicle count data. Scenarios were evaluated based 

on the execution of different strategies to reduce vehicle emissions in Belo Horizonte, Minas 

Gerais state in Brazil, as well as future scenarios considering the years 2025, 2030, and 2050. 

This study is unique and strengthened the importance of detailing traffic activities, using local 

radar data to estimate vehicle emissions in an urban area. Other cities whose urban transport 

systems have vehicle count data in different locations in the urban space can adopt the approach 

of this research. In this sense, it may support local traffic agencies and environmental agencies 

in the joint decision of public policies that seek to reduce vehicle emissions in cities. For many 

developing countries, such as Brazil, data from traffic counters can be used more 

comprehensively, such as, for example, to improve understanding of the mobility dynamics. 

Also, it can serve as a reference in predicting vehicle flows on urban roads and enable the use 

of this data in services online, through applications that monitor traffic in real-time.  

 

It was initially held a systematic literature review, which mapped studies that united traffic, 

emissions, and air quality modeling. The results showed that there is no ideal combination 

among models and that it must be defined by the user and differs according to the objectives of 

the study. The availability of data, the methods used to calculate emissions, and how results in 

modeling can assist decision-makers in their actions to improve air quality in cities also 

contribute to the decision of the best combination between the available models. Besides, the 

gaps in some studies remain in the consistency of emission factors, in spatial and temporal 

distributions, in the allocation of emissions in grid cells and the performance of meteorological 

models. It is also worth mentioning that the average traffic flows on urban roads remain a 

limitation. 

This work verified that vehicles associated with the consumption of different fuels and the fleet 

age are two of the most important sources of air pollution in urban areas to be considered. The 

continuous monitoring of vehicle flow in real-time through the use of radars results in the 

improvement of the calculation of the spatial and temporal distribution of traffic activity. It 

promotes the improvement of the method of transferring vehicle flow information to the vehicle 

emissions model. The calculation of the emission inventory by coupling the statistical model of 

mixed effect normal-neighboring neighborhood to the Brazilian model of vehicle emissions 

inventory (VEIN) proved to be adequate for Belo Horizonte. The kriging method also proved 
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to be satisfactory and can be used, as long as there is a spatial correlation between the data. The 

hourly traffic behavior by vehicle type and the calculation of the average traffic flow using local 

radar information showed the importance of the daytime cycle by vehicle type to obtain more 

precision in the emissions inventory. The definition of the correct proportion of traffic 

emissions, attributed to different categories of vehicles and fuel consumption is mandatory 

when calculating emissions from mobile sources.     

    

The conclusions when evaluating the scenarios are that actions such as the execution of road 

space rationing in the city, a reality already in force in São Paulo, are a viable alternative, as it 

generates, on average, emission reductions of the order of 7.2% considering all pollutants 

inventoried. The implementation of a vehicle inspection program for the 20 years old fleet 

removal combined with the replacement of the bus fleet by electric vehicles generated 

reductions in NOx emissions (8.4%), PM2.5 (8.6%), and SO2 (5.8%). These results show that 

the suggested measures have great potential for reducing pollutant emissions by vehicles. The 

implementation of the strategies adding the non-use of the private vehicle, as well as the 

construction of quality public transport infrastructures (Bus Rapid Transit, subway lines, 

exclusive lanes, and cycle paths), can contribute satisfactorily to improve the air quality in Belo 

Horizonte. 

In the analysis of future scenarios, different combinations for reducing the fleet of passenger 

cars, light commercial vehicles, motorcycles, trucks, and buses were suggested, and the results 

showed that emission reductions varied, on average, 11.6% in 2025, 23.6% in 2030 and 42.0% 

in 2050. The reduction of the fleet combined with the success of government programs for the 

reduction of vehicle emissions, coupled with the technological advancement of vehicles and the 

improvement of fuel quality, contributes to a reduction in vehicle emissions.  

 

The results presented in this work are essential, as they become references for the design and 

improvement of public policies in the environmental area and transportation planning in Belo 

Horizonte, given the context of limitations in the production, analysis, and dissemination of 

traffic data. The proposals presented can be incorporated into future investigations for the 

application of new public policies that aim to reduce vehicle emissions in the urban area, and 

that guide research on the effects of air quality on human health.   
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From the results obtained and the limitations of this study, some future works are suggesting:    

 

• development of a tool using the Internet of Things (IoT) platform that gathers, analyzes, 

and manages traffic data and allows users of public transport and drivers to check 

information such as vehicle flow, average speed and vehicle emissions in the city, 

contributing to their mobility and daily activities (setting the departure time, selecting 

the route, configuring the air conditioning system, maintaining the vehicle, among 

others);  

• development of a tool that, acting as a source of useful traffic data to traffic simulation 

systems, allowing more detailed studies of interventions in urban traffic and estimates 

of air quality;   

• evaluation of the efficiency and effectiveness of traffic management strategies 

(Transport Management Strategies-TMS) used to improve air quality, reducing human 

exposure to pollutants;  

• evaluation and compilation of existing methodologies for calculating vehicle emissions, 

defining best practices, and input data information appropriate to Brazilian cities;  

• development of cooperative work between companies and research laboratories to 

analyze differences in the measurement of emission levels by vehicles manufacturers; 

• creation of a database with local emission factors, including all types of vehicles and 

consolidation of the vehicle emissions methodology to generate emission maps and their 

effects, based on the insertion of new vehicle technologies (passenger cars, light 

commercial vehicles, motorcycles, trucks, and buses) and the quality of fuels; 

• development of measurement campaigns to verify the accuracy of the traffic, emissions, 

and air quality modeling; 

• modeling the air quality in the proposed scenarios of this work to verify the impact on 

the environmental concentrations of pollutants. 
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