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RESUMO 

As principais fontes de poluentes atmosféricos nas áreas urbanas são as fontes móveis 
(veículos). Além da diversidade da frota, os veículos brasileiros usam diferentes tipos de 
combustíveis e várias tecnologias para controlar as emissões. Entre as ferramentas 
desenvolvidas para auxiliar na implementação de soluções que minimizem os impactos 
negativos da emissão de poluentes veiculares, existem os modelos de tráfego, de emissão e de 
qualidade do ar. Portanto, estimar os efeitos das emissões veiculares usando modelagem 
computacional é uma oportunidade de pesquisa para áreas urbanas densamente povoadas e com 
frotas representativas. Considerando o contexto, o objetivo principal deste trabalho foi estimar 
as emissões veiculares acoplando modelos estatísticos à modelo de emissões a partir de dados 
de radares e contagem de veículos e, com isso, aprimorar as técnicas de modelagem numérica 
por meio do desenvolvimento de uma metodologia para realizar transferências de informação 
de tráfego para modelos de qualidade do ar já existentes. O estudo foi realizado em Belo 
Horizonte (Minas Gerais), uma cidade localizada em uma área de 331 km2 e com uma 
população de aproximadamente 2,5 milhões de habitantes. Estimou-se o comportamento 
periódico do tráfego nas vias urbanas e as curvas características desse comportamento por 
categoria de veículos com base em dados de contagem de fluxo (radares e contagens manuais). 
A partir dessa etapa, foi feita a espacialização dos dados de fluxos de veículos usando diferentes 
modelos estatísticos, sendo o modelo de efeito misto normal–bairro vizinho o mais indicado 
para a espacialização do fluxo nas vias urbanas. O resultado da espacialização dos dados de 
fluxo nas vias da cidade foi o dado de entrada para a quantificação das emissões por categoria 
de veículos e por tipo de combustível, usando o modelo brasileiro de emissões veiculares 
(Vehicular Emissions Inventories -VEIN). Foram modelados cenários atuais e futuros (2025, 
2030 e 2050) com estratégias de redução de frota para o cálculo do impacto na redução das 
emissões veiculares. Na avaliação dos cenários, verificou-se que as ações como a implantação 
do rodízio de veículos na cidade, a implementação de um programa de inspeção veicular, a 
remoção da frota com mais de 30 anos das vias urbanas, a substituição da frota de ônibus por 
veículos elétricos geram reduções de até 44% nas emissões de CO, 42% de NOx e 38% de 
MP2.5. A implementação das estratégias sugeridas em conjunto a campanhas que incentivem a 
não utilização do veículo particular, bem como a construção de infraestrutura de transporte 
público de qualidade, como linhas de metrô e ciclovias conectando as regiões da cidade, podem 
contribuir satisfatoriamente para a melhoria da qualidade do ar em Belo Horizonte.   
 
Palavras-chave: Dados de Radar; Comportamento de Tráfego; Método de Krigagem; Modelos 
de Efeitos Mistos; Inventário de Emissão Veicular; Soluções em Mobilidade Urbana. 
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ABSTRACT 

The primary sources of air pollutants in urban areas are mobile (vehicles). In addition to fleet 
diversity, Brazilian vehicles use different types of fuels and various technologies to control 
emissions. Among the tools developed to assist the implementation of solutions that minimize 
the negative impacts of vehicular pollutant emissions, there are traffic, emission, and air quality 
models. Therefore, estimating the effects of vehicular emissions using computer modeling is a 
research opportunity for densely populated urban areas with representative fleets. Considering 
the context, the main objective of this work was to estimate the vehicle emissions by coupling 
statistical models to the emissions model using radar and count vehicle database. Thus, to 
improve numerical modeling techniques, it was developed a methodology for performing traffic 
information transfers to air quality models. Belo Horizonte (Minas Gerais), a city located in an 
area of  331 km2 and with a population of approximately 2.5 million inhabitants, was selected 
to develop this study. The periodic behavior of traffic on urban roads and the characteristic 
curves of this behavior by vehicle category were estimated based on flow count data (radars 
and manual counts). Different statistical models were used to calculate the spatialization of 
vehicle flow. The result showed that the mixed model normal-neighbor was suitable for the 
flow spatialization in urban roads. The result of flow data spatialization on the city was the 
input data for the quantification of emissions by vehicle category and fuel type, using the 
Brazilian Vehicle Emissions Inventories – VEIN. Current and future scenarios were modeled 
with fleet reduction strategies to calculate the impact on vehicle emission reduction. The 
evaluation scenarios showed that actions such as the implementation of road space rationing 
and vehicle inspection program, the removal of the over 30-year-old fleet from urban roads, the 
replacement of the bus fleet by electric vehicles lead to reductions of up to 44% in CO 
emissions, 42% of NOx and 38% of MP2.5. The implementation of the strategies suggested 
adding the non-use of the private vehicle, as well as the construction of quality public transport 
infrastructures (subway lines and bike paths connecting the city regions), can contribute 
satisfactorily to improve the air quality in Belo Horizonte. 

Keywords: Radar Traffic Data; Traffic Behavior; Kriging Method; Mixed-Effects Model, 
Vehicular Emission Inventory, Urban Mobility Solutions. 
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1.1. BACKGROUND AND JUSTIFICATION 

Pollution is the environmental quality degradation resulting from activities that, directly or 

indirectly, harm the health, safety, and well-being of the population. Besides, it can create 

adverse conditions to social and economic activities, adversely affect the biota and aesthetic or 

sanitary conditions of the environment, also launching materials or energy in disagreement with 

the established environmental standards (Brazil, 1981). CONAMA resolution nº 491/2018 

(MMA, 2018) defines a critical air pollution episode as being a situation characterized by the 

presence of high pollutants concentrations in the atmosphere in a short period, resulting from 

the occurrence of unfavorable meteorological conditions to their dispersion.   

Air pollution is a serious environmental problem and a health risk that affects the whole world. 

According to the World Health Organization (WHO), outdoor air pollution is responsible for 

approximately 4.2 million deaths around the world, both in urban and rural areas. The causes 

of premature deaths varied, but there are cases in which air pollution is one of the leading causes 

of them, such as ischemic heart disease and strokes (58%), chronic obstructive pulmonary 

disease and acute lower respiratory infections (18%), in addition to lung cancer (6%) 

(Andreão et al., 2018; WHO, 2018).   

The growth in the presence of contaminants or air pollutants happens mainly due to the 

expansion of industrial facilities close to large cities, and the rise in the number of vehicles 

circulating in urban centers. Air pollutants, such as particulate matter (PM), ozone (O3), 

nitrogen dioxide (NO2), and sulfur dioxide (SO2) have guidelines recommended by WHO. 

Places where the concentrations of these pollutants exceeded established standards, it is 

possible to damage the population health (WHO, 2006).  

The research directed to air pollution study from different sources and its consequences for the 

environment and society has essential and has to carried out for year (Faiz et al., 1995; Faiz et 

al.,1996; Onursal and Gautam, 1997; Molina and Molina, 2004; Ketzel et al., 2007; 

Bukowiecki et al., 2010; Kanakidou et al., 2011; Oliveira et al., 2011; Wang and Hao, 2012; 

Pérez – Martinéz et al., 2015; Andrade et al., 2017; Kumar et al., 2018). It remains essential in 

the search for solutions to the problems faced by the population exposed to air pollution. 

In urban areas, the main source of air pollution are vehicles, mainly the burning of fuels such 

as ethanol, gasohol (a mixture of gasoline and ethanol) and diesel (Sbayti et al., 2001; Alonso et 
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al., 2010; Nagpure et al., 2010; Albuquerque et al., 2012; Andrade et al., 2012; Mahmod et al., 

2013, Uddin, 2013; Kumar and Goel, 2016; Vouitsis et al., 2017). The harmful effects on the 

environment and health depend on the concentration of pollutants emitted to which human 

beings are exposed.  

Due to the diversity of the fleet, and the use of different types of fuels and technologies to 

control emissions, Brazil has become an essential place for studies about air pollution caused 

by vehicular emissions. By the end of 2019, the country had approximately 104.4 million 

vehicles, including passenger cars, motorcycles, trucks, buses, among others. One of the central 

regions of the country, the southeast region, stands out for having 48.5% of the total national 

vehicle fleet. The state of Minas Gerais accounts for 23.1% of the fleet in the Southeast Region, 

followed by the state of Rio de Janeiro, (13,7%) and Espírito Santo (4,0%), second only to the 

state of São Paulo (59,3%) (DENATRAN, 2019). 

The negative impacts on the air quality of the cities due to the growth of the fleet led the national 

government to develop different actions that contributed to minimizing the negative impacts. 

National programs such as Programa de Controle da Poluição do Ar por Veículos Automotores 

(PROCONVE) created by CONAMA resolution no18 /1986 (MMA, 1986), which defined the 

first emission limits for light vehicles; the Programa Nacional de Controle da Qualidade do Ar 

(PRONAR) established by resolution no 05/1989 of the Conselho Nacional de Meio Ambiente 

(CONAMA) (MMA, 1989); the Programa de Controle da Poluição do Ar por Motociclos e 

Veículos Similares (PROMOT) created by resolution CONAMA no 297/2002 (MMA, 2002) 

are examples of actions taken to reduce vehicle emissions and to improve air quality, especially 

in cities. 

The vehicles emit various pollutants in variable amounts, such as carbon monoxide (CO), 

carbon dioxide (CO2), methane (CH4), aldehyde (RCHO), nitrogen oxides (NOx), sulfur 

dioxide (SO2) and particulate matter (PM). Ozone (O3), a secondary pollutant, is the result of 

complex chemical reactions that take place between nitrogen dioxide (NO2) and volatile organic 

compounds (VOC’s) in the presence of solar radiation. In Brazil, Pacheco et al. (2017) showed 

that the metropolitan area of São Paulo (MASP), Rio de Janeiro (MARJ) and Belo Horizonte 

(MABH) reduced the concentrations of fine particulate matter (PM2.5) when compared to other 

cities in the world, such as Delhi (India) and Beijing (China). They also pointed out that the 

implementation of programs like PROCONVE and the increased use of biofuels was efficient 
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in reducing the concentration of some pollutants such as CO, NOx, and PM in urban areas. 

Andrade et al. (2012) showed the significant contribution of vehicles to environmental 

concentrations of PM2.5 in six Brazilian capitals (São Paulo (40,0%), Rio de Janeiro (50,0%), 

Belo Horizonte (17,0%) and Recife (37,0%)) and the importance of developing a public 

transport system based on clean energy sources.  

Other studies also present relevant results for the air quality theme and are references for the 

continuity of the research, mainly, in the case of fine particles (Kukkonen et al., 2005; 

Lapuerta et al., 2008; Martins et al., 2008; Kumar et al., 2010; Schmitt et al., 2011; Randazzo 

and Sodré, 2011; Carvalho et al., 2015; Nogueira et al., 2015; Nagpure et al., 2016; Kong et al., 

2016; Kumar et al., 2018; Jeong et al., 2019).  

Pollutants regulated by PROCONVE (CO, NOx, non-methane hydrocarbons-NMHC, RCHO, 

PM, greenhouse gases (CO2, CH4 e N2O), in addition to particulate matter emissions due to 

tire wear, brakes, and track) have maximum emission limits based on international experiences 

(USEPA - EUA, 1997; EMEP – EEA, 2016). The criteria were adapted to the Brazilian reality 

and are established through guidelines, deadlines, legal, and emissions standards permissible 

for different categories of national and imported vehicles (IBAMA, 2011).   

The contribution of each vehicle category combined with the fuel type is different, considering 

air emissions. Around 47.0% of CO emissions, for instance, correspond to emissions for 

passenger cars, and 33.0% are from motorcycles, similar to what happens with NMHC (47.0% 

of NMHC emissions are attributed to passenger cars and 23.0% to motorcycles). In the case of 

PM, the ones responsible for the highest pollutant emissions are passenger cars (14.0%), buses 

(urban, minibusses, road) (12.0%), heavy trucks (19.0%), semi-heavy trucks (23.0%) and 

medium trucks (11.0%). In the case of NOx, trucks are responsible for most emissions, with 

23.0% attributed to heavy trucks, 24.0% for semi-heavy trucks, 10.0% to medium trucks, and 

9.0% to light trucks. Most CH4 emissions are associated with passenger cars (48.0%) and 

motorcycles (23.0%). RCHO come from passenger cars (89.0%) and light commercial vehicles 

(11.0%) (CNT, 2019).  

The fleet growth associated with fuel consumption increases vehicle emissions and, 

consequently, deteriorates the air quality of cities. Besides, existing combustion engine 
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technologies, incomplete fuel burning, and driving cycles carried out by drivers also help to 

increase vehicle emissions.  

Different studies report the importance of the real contribution of traffic with its different types 

of vehicles and fuels, to atmospheric emissions and, consequently, to air quality, contributing 

to the elaboration of action plans that minimize the negative impacts of vehicular emissions 

(Hellström et al., 2009; Herner et al., 2009; Piecyk and Mckinnon, 2009; Carslaw et al., 2011; 

Figliozzi, 2011; Weiss et al., 2011; Coelho et al., 2012). 

The problems caused by poor air quality are diverse and require work and research that seeks 

answers to assist managers in making decisions. Among the tools developed to assist in the 

search for solutions that minimize the negative impacts of the emission of pollutants from 

mobile sources, the vehicle emission models stand out. Vehicle emissions are one of the input 

data for air quality models. The calculation of these emissions requires accurate information on 

vehicle emission factors, the vehicle fleet composition, including fuel consumption, age, and 

type of vehicles, as well as the distribution of vehicle flows on urban roads in the evaluated 

area.  

Air quality models, in general, do not use detailed information on traffic behavior and, 

consequently, have limitations to truthfully represent emissions resulting from traffic and urban 

mobility in an area. Also, with the computational advance and the consequent increase in the 

resolution of the simulations, it becomes increasingly necessary to improve the input 

information of the models (emission models), mainly about the temporal and spatial distribution 

of vehicles.  

In this context, Belo Horizonte was selected for the development of this research. Belo 

Horizonte, the principal city of Minas Gerais state, has a fleet equivalent to 19.3% of state's 

fleet, with 69.2% of passenger cars, light commercial vehicles corresponding to 15.7%, trucks 

to 3.0%, buses to 0.7% and motorcycles represent 11.5% of Belo Horizonte's fleet 

(DENATRAN, 2019). This city shows the representativeness of the city's fleet compared to the 

vehicle fleet that circulates in the state. In addition to vehicles, the number of fixed sources, 

such as the metallurgical industry, boilers in hospitals, pizzerias, and laundries, also contribute 

to the degradation of air quality in cities. According to Santos et al. (2019), the number of 

companies and fixed sources licensed in Belo Horizonte increased by approximately 57.4% and 
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22.7%, respectively, between 2003 and 2015. Fuel oil, firewood, natural gas, among other 

fueled these sources, which also contributes to increased emissions of air pollutants. 

Currently, Belo Horizonte develops actions and projects for urban infrastructure, transport, and 

mobility through the implementation of the Belo Horizonte Urban Mobility Plan (PlanMob-

BH). The PlanMob aims to recommend physical interventions, operational and public policy 

coherently and completely (PLANMOB-BH, 2010). Among the plan's proposals, there is an 

offer of more attractive public transport and discouraging the use of passenger cars, which is 

mainly responsible for vehicular emissions in urban centers.  

The better representation of vehicular emissions, including actions that improve the urban 

mobility of the city, will bring greater accuracy in the representativeness of air quality. 

Therefore, from the detailed view of vehicle emissions, including studies of the periodic 

behavior of urban traffic on the roads and the result of characteristic curves of traffic behavior 

by vehicle category, it is possible to propose a contribution to a more adequate and detailed 

view of the vehicle's actions on air quality. This study proposes the use of statistical models to 

calculate the traffic flow, showing that this is an alternative to minimize costs with source-

destination surveys and with the use of commercial software designed for traffic modeling. 

Estimating the main effects of vehicle emissions through the use of modeling for the most 

densely urban regions, with a representative vehicle fleet, presents itself as an essential and 

relevant topic for research.  

 

1.2. OBJECTIVES 

1.2.1. General objective 

To estimate vehicle emissions by coupling statistical models to vehicle emission model from 

radar and vehicle count data. 

1.2.2. Specific objectives 

1.2.2.1. To identify the traffic behavior on urban roads and to derive the characteristic curves 

of this behavior by vehicle category;  

1.2.2.2. To spatialize vehicle flow data using a statistical model; 

1.2.2.3. To estimate emissions by vehicle category and by type of fuel considering the traffic 

behavior inserted in the Vehicle Emission Inventory Model (VEIN); 
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1.2.2.4. To assess the impact of detailed traffic data on vehicle emissions estimates. 

1.3. DOCUMENT STRUCTURE 

This thesis is divided into six chapters. Chapter 1, already presented, shows the introduction, 

justification, and general and specific objectives of the thesis. Chapter 2 presents a systematic 

review of the literature (SRL) in which the main traffic variables used in modeling emissions 

and air quality are presented and the discussion of the relationships, connections, and relevance 

between these variables. Besides, the step by step to generate traffic data using different traffic 

models were presented and, finally, a list of main traffic variables to be used as input data in 

the modeling of vehicle emissions was proposed. This work also presented the main pollutants 

inventoried in the selected works (NOx, PM, SO2, CO, and VOC), the differences between air 

quality modeling in developed and developing countries, and the importance of accurate 

modeling results to understand and evaluate the main issues inherent to air quality. 

Chapter 3 presents the methodology used to structure and integrate traffic data inputs for 

modeling vehicle emissions. This chapter also shows that the demand to identify the real 

contribution of pollutants emitted by road vehicles to investigate air quality and its impacts on 

human health is increasing. However, it is necessary to consider the limitations of vehicle 

emission models. The specific objectives 1.2.2.1;1. 2.2.2 and 1.2.2.3 of the thesis are presented 

in chapter 3 since a statistical analysis of the monthly traffic behavior was performed, and the 

specific average traffic flow was determined using local radar data. The hourly behavior of the 

vehicle type was also analyzed, emphasizing the importance of the daytime cycle by vehicle 

type in the accuracy of the emissions inventory. Finally, a vehicle emissions inventory was 

calculated using VEIN, the Brazilian model of vehicle emissions inventory. The inventory 

considered data from different traffic behavior profiles (constant daytime cycle and by vehicle 

type) established from local radar data.  The Kriging interpolation method to determine the 

spatial/temporal distribution of vehicle flows in urban roads in the Belo Horizonte city is a low-

cost method used in this work.   

Chapter 4 improves specific objectives 1.2.2.2 and 1.2.2.3 and fulfills specific objective 1.2.2.4, 

which corresponds to the assessment of the impact of detailing traffic data on vehicle emissions 

estimates. In this chapter, the spatial statistical analysis of radar data is presented, calculating 

the traffic flow using local radar data in different statistical models and analyzing future 

scenarios (2025, 2030, and 2050) from the vehicle emissions inventory projected for 2020. 
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Results may serve as a reference for the policy definitions focused on traffic and environment 

in Belo Horizonte, as well as improving understanding of the dynamics of mobility in the city. 

Finally, chapter 5 presents the final considerations and suggestions for future work, and chapter 

6 presents all the bibliographic references used in the thesis.   
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CHAPTER 2:  

TRAFFIC DATA IN AIR QUALITY 
MODELING: A REVIEW OF KEY 

VARIABLES, IMPROVEMENTS IN RESULTS, 
OPEN PROBLEMS AND CHALLENGES IN 
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The paper “Traffic data in air quality modeling: a review of key variables, improvements in 

results, open problems and challenges in current research” 

(https://doi.org/10.1016/j.apr.2019.11.018) was developed by the author of this thesis in 

collaboration with researches Professor Prashant Kumar, Professor Marcelo Félix Alonso (co-

advisor), Willian Lemker Andreao, Rizzieri Pedruzzi, Fábio Soares dos Santos e Professor 

Taciana Toledo de Almeida Albuquerque (advisor). The paper provided a review of the main 

concepts about traffic, emissions, and air quality modeling, as well as how the main traffic 

variables are treated in vehicle emissions and air quality models.  

The importance of this work within the thesis is to show the state of the art of detailing traffic 

variables in emission and air quality modeling. There are still many differences in terms of 

advances in studies when comparing developing and developed countries. In developing 

countries, the air quality monitoring network is precarious and incipient. It was challenging to 

collect data and make use of the models being the main alternative to analyze the conditions of 

air quality in the cities. The establishment of research networks is crucial for search solutions 

applicable in the places where pollution comes from vehicles significantly impact the health of 

the population.  

 

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)- Finance Code 

001, Brazil partially funded this research. The support of the Global Centre for Clean Air 

Research (GCARE), Department of Civil and Environmental Engineering, Faculty of 

Engineering and Physical Sciences, University of Surrey, United Kingdom; the support 

received from the FAPESP and the University of Surrey through the PEDALS (Particles and 

Black Carbon Exposure to London and Sao Paulo Bike-Lane Users) and NOTS (Novel high-

resolution spatial mapping of health and climate emissions from urban transport in Sao Paulo 

megacity) projects, and through the CArE-Cities (Clean Air Engineering for Cities) project and 

the support received from the FAPESB/CIMATEC/SENAI were also essential to this research. 
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The paper “Kriging method application and traffic behavior profiles from local radar network 

database: a proposal to support traffic solutions and air pollution control strategies” 

(https://doi.org/10.1016/j.scs.2020.102062) was developed by the author of this thesis in 

collaboration with researches Professor Prashant Kumar, Professor Marcelo Félix Alonso (co-

advisor), Willian Lemker Andreao, Rizzieri Pedruzzi, Sérgio Ibarra Espinosa and Taciana 

Toledo de Almeida Albuquerque (advisor). The paper presented the methodology of this work 

and suggested the Kriging method to define the traffic flow in each link in a Brazilian capital 

called Belo Horizonte. The study area is the largest city in the metropolitan area composed of 

34 municipalities and has a local radar network located on the main avenues of the city. The 

radar network counts vehicles per type (passenger cars, motorcycles, trucks/buses) for 24 hours. 

The count data were used to trace the profile behavior per vehicle type in the city, information 

that directly impacts vehicle emissions during a weekday and weekend. 

The results showed that Kriging is a low-cost method when compared to traffic modeling and 

can be used to spatialized vehicle flow information on urban roads. It also showed that caution 

is needed in the use of the method as the counting data must meet specific requirements, such 

as the existence of a spatial correlation between data used in the interpolation by the Kriging 

method. The result of spatialization was used as input data in the VEIN to calculate the vehicle 

emission inventory for Belo Horizonte, Brazil.  

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)- Finance Code 

001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Empresa de 

Transporte e Trânsito de Belo Horizonte (BHTRANS) and Prefeitura de Belo Horizonte (PBH), 

Brazil partially funded this research. The support of the Global Centre for Clean Air Research 

(GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and 

Physical Sciences, University of Surrey, United Kingdom; the support received from the 

FAPESP and the University of Surrey through the CarE-Cities (Clean Air Engineering for 

Cities) funded by Research England under the University of Surrey’s Global Challenge 

Research Funds (GCRF) and NOTS (Novel high-resolution spatial mapping of health and 

climate emissions from urban transport in São Paulo megacity) projects. 

 
 
.  
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The paper “Coupled model using radar network database to assess vehicular emissions: 

mobility and traffic solutions for future scenarios in an urban area” was developed by the 

author of this thesis in collaboration with researches Professor Prashant Kumar, Professor 

Marcelo Félix Alonso (co-advisor), Willian Lemker Andreão, Rizzieri Pedruzzi, Sérgio Ibarra 

Espinosa, Felipe Marinho Maciel and Taciana Toledo de Almeida Albuquerque (advisor). It 

is under review in the Journal of Environmental Science. The paper provided an improvement 

in the methodology of this thesis and analyzed future scenarios (2025, 2030, and 2050) to 

assess vehicular emissions.  

The statistic mixed effect model called the “Normal-Neighborhood Model” (i.e., the mixed 

effect model with random effect in the neighborhood, radar type, and the regional area) was 

developed and used to spatialized the radar data in each urban road in Belo Horizonte. Then, 

the result was coupled in VEIN to calculated vehicular emission inventory for future scenarios 

in Belo Horizonte, considering the strategies defined in PlanMob (Plano de Diretor de 

Mobilidade Urbana de Belo Horizonte). The results can support decision-makers to define 

transport and environment public policies to minimize the negative impacts of vehicle 

emissions in the city. 

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior (CAPES) – Finance Code 001, Conselho Nacional de Desenvolvimento Científico e 

Tecnológico (CNPQ), Empresa de Transporte e Trânsito de Belo Horizonte (BHTRANS) and 

Prefeitura de Belo Horizonte (PBH),  Brazil. The support of the Global Centre for Clean Air 

Research (GCARE), Department of Civil and Environmental Engineering, Faculty of 

Engineering and Physical Sciences, University of Surrey, United Kingdom; the support 

received from the FAPESP and the University of Surrey through the CarE-Cities (Clean Air 

Engineering for Cities) funded by Research England under the University of Surrey’s Global 

Challenge Research Funds (GCRF) and NOTS (Novel high-resolution spatial mapping of 

health and climate emissions from urban transport in Sao Paulo megacity) projects were also 

outstanding. 
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4.1. INTRODUCTION 

The health effects of short and long-term exposure due to ambient air pollution are a world 

problem. More than 90% of the world´s population lives in places exceeding WHO air quality 

guidelines (Andrade et al., 2017; Kumar et al., 2017; Pacheco et al., 2017; Andreão et al., 2018; 

WHO, 2018), this fact increases the population risks. Vehicles are one of the most significant 

emissions sources of air pollutants in an urban area (Wu et al., 2017; Wong et al., 2019; Singh 

et al., 2020) and the real contribution of vehicular emissions to predict air quality remain a 

challenge. Traffic activities combined with fuel consumption rise air pollutant emissions, and 

consequently, raise deterioration of air quality and degradation of health (Hatzopoulou and 

Miller, 2010; Andrade et al., 2012; Zhang and Batterman, 2013; Kumar et al., 2016).  

The vehicular emission inventory (VEI) is a tool used to identify the emission contributions 

from mobile sources. Every link level of each urban street in the network requires traffic 

activities. Speed, flow (counts of vehicles) and road density are variables used in traffic network 

modeling (Morris and Trivedi, 2013; Xu et al., 2018) and the accuracy of each data contribute 

for more reliable results (Nagpure et al., 2016; Fu et al., 2017; Dias et al., 2018; Pinto et al., 

2019). Furthermore, the better traffic flow representations with fine spatial and temporal 

distributions result in a satisfactory allocation of emissions on grid cells. 

In developed countries, Global Position System (GPS), Intelligent Transport System (ITS), 

Dynamic Traffic Assignment (DTA), agent-based models, statistical models, traffic models 

(macroscopic, mesoscopic, microscopic), neural networks, chassis dynamometer tests are 

sources of traffic data (Rowangould, 2015; Borrego et al., 2016; Jamshidnejad et al., 2017; 

Hofer et al., 2018; Jiang et al., 2018; Wei et al. 2019). In developing countries, in most cases, 

traffic data are collected from combinations between internet searches, reports, and contacts 

with private and governmental agencies. Moreover,  the majority of countries in South America 

are typically poorly represented in global inventories due to the scarcity of measurement 

campaigns and national inventories. The use of socio-economic indexes to develop local 

inventories using extrapolated data instead of measured data is frequent (Saide et al., 2009; 

Alonso et al., 2010; Sharma and Chung, 2015). 

Gaps remain on spatial and temporal distributions, on consistent emissions factors, allocations 

of emissions on grid cells, and available data to validate the estimations (Pinto et al., 2019). 

The average link-based traffic parameters are a persistent limitation.  
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The most uncertain input in air quality modeling are emissions and differences between state 

of the art, and current practices show that is necessary increased compatibility in this modeling 

practices (Fallahshorshani et al., 2012; Kaewunruen et al., 2016; Tominaga and Stathopoulos, 

2016; Sallis et al., 2017). 

The prediction of traffic data has shown to be suitable for minimizing costs from an origin-

destination survey and the use of commercial software with traffic models. Radar databases and 

traffic counts using statistical modeling is an alternative and a low-cost approach to producing 

traffic activities data in each urban street to use as input to predict vehicular emissions (Fu et 

al., 2017). Real traffic data is a way to determine traffic activities, and it is possible to integrate 

with exploratory variables, such as type of road (urban or rural), functional classification, area 

type, speed limit and others (Eom et al., 2006; Yu et al., 2010; Morris and Trivedi, 2013; Lowry, 

2014; Nantes et al., 2016; Pan et al., 2016; Chang and Cheon, 2018; Xu et al., 2018). 

The spatial and temporal vehicle flow distributions can be performed using kriging interpolation 

(Shamo et al., 2015, Pinto et al., 2020), spatial Pearson correlation coefficients (Chen et al., 

2016); GIS techniques and modeling (Adedeji et. Al., 2016; Requia et al., 2017), neural network 

(Fu et al., 2017); Thiessen polygons (Gómez et al., 2018); spatial autoregressive moving 

average (SARMA) regression model (Sun et al., 2018), land-use regression (LUR) and 

geographically weighted regression (GWR) models (Kanaroglou et al., 2013; Song et al., 2019), 

among others. Additionally, models may provide the required activity data, and therefore, a 

well representative flow for every urban street in the study area.  

Traffic data is critical data to improve the input data in emission modeling and, consequently, 

air quality modeling. The potential of using radar data to produce traffic data is a way to 

integrated environmental and transportation planning areas. Simple, low-cost, and accurate 

methods for assessing the spatial distribution of traffic data and vehicular emissions are 

essential for environmental management and transportation public policy definition. Besides, it 

is essential for analyzing future scenarios and projections.  

The approach to structuring traffic data inputs for emission modeling can change the spatial 

vehicular emissions and to improve this knowledge, the aims of this work are: (1) perform a 

spatial statistical analysis of local radar data; (2) to calculate traffic flow using local radar data 

using different statistical models; (3) to analyze scenarios about a Brazilian vehicle emission 
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inventory to define public policies in an urban area. This study was conducted in Belo Horizonte 

(BH), the capital of the third-largest metropolitan area in Brazil, investigating current (2020) 

and future scenarios (2025, 2030, and 2050).  

4.2. MATERIALS AND METHODS  

4.2.1. Study area 

Belo Horizonte (BH), the capital of Minas Gerais state, is a densely populated urban city (over 

2.5 million inhabitants), with nine sub-regions (Figure 16), and a representative vehicle fleet 

(over 2 million vehicles). The Minas Gerais state has the third-largest metropolitan region of 

the country, and BH was selected because of the availability and accuracy of vehicle data, which 

is used by the city traffic agency and in the local and national government officials reports. 

 

 
 Figure 1:  Belo Horizonte and sub-regions. 

 

The city network has 31,905 urban streets, where residential roads represent 65.80%, followed 

by service road (10.80%). In the west region are located 13.24% of the streets, 12.74% are in 

the northeast region, and 12.73% in the Pampulha region, a tourist place in the city. Table 20 

presents the street and urban street type of radar and manual count points, while Table 21 shows 

the sub-region where the street is located. The radars have been installed by the Transportation 

and Transit Company of Belo Horizonte (BHTRANS) to control the speed limit of the vehicles 

in the city, reducing the number and severity of accidents, creating a safe transit. In this work, 

it was used data from 304 radars and 87 count points. The radar types are CEV and CEV MOVE 

(Electronic Speed Control); DAS, DAS Busway, and MOVE (Semaphore Advance Detector); 

CJG and CJG Busway (Combined Equipment (DIF + CEV)); DIF (Exclusive Intrusion Detector 

and Truck Circulation Detector) and RF (Fixed Speed Control Radar. 
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Table 1:  Percentage of urban street type in Belo Horizonte. 

Description 
Urban Street Type 

Urban Street Type of Radar and 
count points 

Sample (S) % Sample (S) % 
Residential 20,986 65.78 5 1.28 

Service 3,379 10.59 21 5.37 
Tertiary 3,333 10.45 35 8.95 

Secondary 2,071 6.49 106 27.11 
Trunk 924 2.90 129 32.99 

Primary 813 2.55 81 20.72 
Motorway 399 1.25 14 3.58 

Total 31,905 100.00 391 100.00 

 
 

Table 2:  Percentage of urban street per sub-region in Belo Horizonte. 
City region Urban Street % Radar Type % 

Barreiro 3,404 10.67 16 4.09 
Centre-South 1,845 5.78 70 17.90 

East  2,226 6.98 30 7.67 
Northeast  4,065 12.74 30 7.67 
Northwest  3,815 11.96 68 17.39 

North  2,755 8.64 27 6.91 
West  4,223 13.24 38 9.72 

Pampulha 4,061 12.73 70 17.90 
South  2,492 7.81 16 4.09 

Venda Nova 3,019 9.46 26 6.65 
Total 31,905 100.00 391 100.00 

 
The major urban streets are in West, Pampulha, and Northeast, whereas there are the lowest 

urban streets in Downtown, South, and East regions. The most of radar is in secondary and 

trunk street, and most are downtown (17.90%), Northwest (17.39%), and Pampulha (17.90%).  

4.2.2. Descriptive Statistical Analysis 

The qualitative variables were the type of the radar, type of street, and regional, while 

quantitative variables are vehicle flow, street length, population, traffic zone, and per capita 

income. Absolute and relative frequencies measures in the descriptive analysis of the qualitative 

variables were used, whereas quantitative variables were describing using measures of position, 

dispersion, and central tendency. The Mann-Whitney and Kruskal-Wallis tests are statistical 

tests used to the comparison between vehicle flow and qualitative variables. The Spearman 

correlation was used to correlate vehicle flow and quantitative variables (Hollander and Wolfe, 

1999) and is a limited measure between -1 (negative correlation) and 1 (positive correlation).  

Moran Index and semivariogram were applied to describe spatial correlation. Moran index is 

one of the most classic methods to measure spatial autocorrelation. A correlation coefficient is 

the result interpretation, e.g., values close to 1 indicate a dense spatial pattern (high values tend 

to be located close to high values, and low values tend to be located close to low values). The 

values close to -1 indicate a dense negative spatial pattern (low values tend to be close to high 
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values), and values close to 0 indicate an absence of spatial pattern (Rogerson, 2012). The 

semivariogram is also used to describe spatial correlations of point observations and consists 

of evaluating if the variables follow a specific pattern in space. The semivariogram is a measure 

of the variability of the variable concerning distance (as the distance between the observation 

increases the semi-variance also increases since the observations that are close to each other 

tend to have more features in common than the observations that are distant). 

4.2.3. Traffic Modelling using Statistic Model 

The vehicular flow was estimated with kriging and mixed-effects models. The Backward 

Method (Efroymson, 1960) was the method used for the selection of explanatory variables in 

the mixed-effects model. This method is a procedure of removing, at a time, the variable with 

the highest p-value. The interaction repeated until only significant variables remain in the 

model. In this study, the Backward Method adopted a significance level of 5%.  The models 

chosen were Linear Regression, Poisson Regression, and Negative Binomial Regression, and 

the Linear Regression was modeled with the logarithm of daily vehicle flow in the morning 

peak hour. 

4.2.3.1. Kriging Model  

The kriging model is the most regression method used in geostatistics (Oliver and Webster, 

2015). The technique assumes that the closer points tend to have more similar values, while the 

points that farther tend to have more different values, i.e., the values presented a spatial 

correlation. According to Landim (2003), kriging is a method of estimation by moving averages 

of measurements distributed in space from the values of its surroundings. In this method, a 

semivariogram is a function that relates spatial dependence (Landim and Sturaro, 2002). 

Therefore, the kriging method consists in minimizing the estimated variance from the model 

that considers spatial dependence (Landim, 2003). 

4.2.3.2. Mixed – Effect Model 

In regression models, measurements in the same place or point, or both generate a clustering 

structure that must be appropriately addressed, once it violates the underlying assumption of 

independence of observations. In the presence of pooled data, there is a correlation between 

observations of the same place or point and that there is no correlation between observations of 

different places or points. The correlation between repeated measurements of the same locations 
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or points is approached using mixed-effect models, also known as subject-specific models since 

interpretation is performed at the subject level (Pinheiros and Bates, 2000; Fitzmaurice et al., 

2011). Therefore, to estimate vehicle flow, a mixed-effect model with random on the intercept 

was adjusted. The subject was radar type, regional and neighboring neighborhood or address. 

The generalized linear models present the possibility of using counting models and include the 

logarithm binding (Mccullagh and Nelder, 1989). The Poisson distribution is widely used to 

model count data, but Poisson models consider the variance equal to mean, but this usually does 

not occur in practice, causing sub or super dispersion (Hair et al., 2009).  Thus, it is common to 

use Poisson models with robust variance or to use Negative Binomial distribution. The 

estimation of vehicle flow was realized using the kriging model and two types of mixed effect 

models. The mixed-effect models were adjusted for each distribution adopted (Linear, Poisson, 

and Negative Binomial). The first one considered the random effect on the address, radar type, 

and regional area, and the second model was fitted considering the random effect on the 

neighborhood, radar type, and regional area. To choose the best model, i.e., the model with the 

smallest errors, cross-validation was used. 

Prediction analysis was also performed to complete the statistic model selection. The database 

used for the prediction did not contain the variable “radar type.” Therefore it was decided to 

perform the prediction considering the following types of radar: without radar (the prediction 

adjustment did not use the radar type); Semaphore Advance Detector (DAS), Fixed Speed 

Control Radar (RF), Electronic Speed Control (CEV) and Combined Equipment (CJG). The 

variable “radar type” is significant for the model, since it reduces the model error by 

approximately three times. 

4.2.3.3. Cross-Validation 

The cross-validation principle was used to select the best model to verify if the model had an 

appropriate fit and a good predictive ability. The following adjust quality measurements were 

calculated: Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and 

Root Mean Square Error (RMSE). The cross-validation assesses model performance in a new 

database, and it is necessary processing to verify how accurate the model is in practice. Cross-

validation avoids the overfitting problem. This problem can occur when the model fits too much 

in the training set and performs far less than a validation database (Hair et al., 2009). The cross-

validation process consists of a split database into two mutually exclusive subsets and then 
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using one for model estimation (training database) and the other for model validation (test 

database). Thereby, k-fold cross-validation was used, which consists of a data into k partitions, 

where the validation set is the first partition, and the model is estimated using the rest of other 

partitions. The error is verified in the test partition. Therefore, the average of the k partition 

average errors resulted in the prediction error estimation. Vehicular emissions vary with the 

method adopted to structure the data inputs, and the findings presented in this work are essential 

to developing a relevant reference in a city that has data traffic limitations. The developed 

approach can serve as a means of reliably estimating of vehicular emissions, as well as offering 

a robust means of spatially analyzing road transport activity.  

This study is new in Brazil and reinforced the importance of detailing traffic activities using 

real data to estimate vehicular emissions in an urban area. Radar data can provide many 

potential benefits for research and analysis in an environmental and planning transportation. 

For many developing countries, data from traffic counters can improve understanding of the 

city's mobility dynamics, as well as harnessing this data in online services or via traffic 

monitoring applications.  

In this study, the focus was to provide a suitable statistical model based on local radar data to 

predict traffic flow for a Brazilian city and use a national vehicular emission model to analyze 

different scenarios and the impacts on vehicular emission in the city. These findings can be 

incorporated in future investigations to implement public policies to reduce vehicular emission 

in the urban area and in advance environmental health effects research and human health risk 

assessment. Some suggestions like  development a tool to allow  users to query information 

such as flow, average speed, infractions, and vehicular emissions as well as to provide quality 

and quantity traffic data to traffic simulation systems allowing better studies on possible traffic 

interventions in the city road plan and air quality estimates can implement using this research 

4.2.4. Vehicular Emission Model – VEIN 

The Brazilian Vehicular Emissions Inventories (VEIN) (Ibarra-Espinosa et al., 2018; Ibarra-

Espinosa et al., 2019) is a vehicle emission model, free and open source. The model was 

developed using free software R (R Core Team, 2017) and generates pollutants emission from 

motor vehicles of different categories and fuels, and it was also elaborated considering transport 

activity and emission factors (EFs) (Equation 4) (Pulles and Heslinga, 2010; Ibarra-Espinosa et 

al., 2018; Ibarra-Espinosa et al., 2019). 
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𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 =  ∑ ( 𝐴𝑅𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝐸𝐹𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡,𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  Equation 1 
 

 

The equation shows that the emission of any pollutant depends on the activity rate (AR) and 

the EF. The transport activity corresponds to the number of vehicles multiplied by the distance 

traveled (km). VEIN reads the traffic flow on each route. The model reads the traffic data and 

then organizes the data by the fleet composition. After reading the data, vehicular flow is 

extrapolated to the routes of the network, considering the vehicle type and the age of use.  The 

expected result is a one-week vehicular flow. VEIN reads the traffic flow on each route and 

organizes the data by the fleet composition. Then, the vehicular flow is temporally extrapolated 

using hourly traffic counts (Ibarra-Espinosa et al., 2018; Ibarra-Espinosa et al., 2019). The 

hourly traffic flow generated covered 168 hours of a typical week. The emission factors are 

averaged emissions measurements by type of vehicle and age of use, published by the 

Environmental Agency for São Paulo (CETESB, 2018). 

The vehicular emission inventory was developed for four scenarios (S1, S2, S3, and S4). The 

S1 is a projection of vehicular emission inventory from 2018 to 2020. The S2 represents a 

reduction of the fleet over 30 years, indicating the possibility of implementing vehicle 

inspection in Belo Horizonte and withdrawing the circulation of old vehicles. The S3 and S4 

illustrate a projection to 2025 and 2030, respectively. The Belo Horizonte Urban Mobility Plan 

(BHTRANS, 2010) and the Energy National Plan 2030 (EPE, 2007) were references used in 

the definition of the scenarios in this work. Furthermore, optimistic scenarios were modeled for 

2025, 2030, and 2050. 

4.3. RESULTS 

4.3.1. Data Exploratory Analysis 

Data exploratory analysis is shown in Table 22, where p-value represents Mann-Whitneya, and 

Kruskal-Wallisb tests from the comparison between variables and vehicle flow (in the morning 

peak hour). 
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Table 3:  Comparison between variables and vehicle flow (in the morning peak hour). 

Variables Sample (S) 
Average 
vehicle 

flow 
S.D 1º Q. 2º Q. 3º Q. p-value 

Count point 
Manual 87 144.03 10.83 72.50 102.00 201.50 

<0.001a 
Radar 304 1,295.56 70.52 138.50 986.00 2,256.50 

Type of radar 
and manual 
count point 

CEV 38 2,506.03 180.24 1786.00 2,495.00 3,117.00 

<0.001b 

CEV move 1 99.00 - 99.00 99.00 99.00 
DIF + CEV 7 1,131.43 434.69 85.00 1,259.00 1,720.00 
DIF + CEV Busway 13 134.31 13.61 95.00 117.00 189.00 
DAS 95 1,372.17 104.81 493.50 1,117.00 2,025.50 
DAS Busway 26 153.27 8.94 115.00 175.50 190.00 
DAS move 22 128.36 18.35 82.00 124.50 140.00 
DIF 36 72.86 5.94 47.50 62.00 104.00 
Manual 87 144.03 10.83 72.50 102.00 201.50 
RF 66 2,258.61 109.87 1,802.00 2,293.00 2,787.00 

Urban street type 
where radar type 
is located. 

Motorway 14 316.64 20.69 247.00 305.50 368.00 

<0.001b 

Primary 81 1,308.83 110.07 351.00 1,325.00 1,975.00 
Residential 5 406.20 139.16 222.00 330.00 708.00 
Secondary 106 619.65 83.12 71.00 147.50 1,029.00 
Service 21 131.81 18.63 83.00 124.00 140.00 
Tertiary 35 276.77 64.79 55.50 97.00 293.50 
Trunk 129 1,672.59 126.54 181.00 1,906.00 2,881.00 

Regional where 
radar type is 
located 

Barreiro 16 767.06 234.61 98.50 222.50 1,514.00 

<0.001b 

Downtown 70 705.27 100.62 83.00 291.50 1,111.00 

East 30 1,005.67 214.26 212.00 490.00 1,316.00 

Northeast 30 1,193,00 274.38 91.00 162.00 2,505.00 

Northwest 68 1,118.53 158.87 137.00 316.00 1,830.50 

North 27 1,543.74 274.22 82.50 1,814.00 2,977.50 

West 38 1,663.53 187.86 380.00 1,837.50 2,461.00 

Pampulha 70 1,034.91 139.33 129.00 198.50 2,314.00 

South 16 931.69 278.12 118.50 533.50 1,363.50 

Venda Nova 26 402.81 116.49 47.00 88.50 330.00 

 
 

Radar data obtained significantly higher daily vehicle flow (p-value <0.001) than the manual 

count point, which was expected since radars automatically count vehicles over 24 hours during 

weekdays and weekends. Manual counts follow the methodology developed by the National 

Department of Transportation Infrastructure (DNIT) (DNIT, 2006) and can be extrapolated to 

24 hours per day. The counting was performed manually during the four, five, six, until fifteen 

minutes period during the morning peak hour. Automatic counts tend to be more robust than 

manual counts. There was a significant difference (p-value <0.001) between the type of road, 

the radar points localization, and the daily vehicle flow. The multiple comparison test showed 

primary, and trunk road types presenting much flow than secondary, service, and tertiary urban 

street. For regional where radar type is located, significant differences were also found (p-value 

<0.001).  

Table 23 brings the correlation between vehicle flow and quantitative variables, showing that 

there was no significant association (p-value >0.05).  The variation on vehicle flow did not 

depend on the quantitative variable length of an urban street, the population in traffic zones, 

and the per capita income of traffic zones in this case. 
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Table 4:  Spearman correlation between vehicle flow and quantitative variables                                             

Variables 
Vehicle flow 

r p-value 

Length of an urban street (meters) -0.08 0.105 

Population in traffic zones (inhabitant) -0.02 0.741 

Per capita income of traffic zones -0.02 0.675 

 

4.3.2. Spatial Exploratory Analysis 

The non-spatial correlation may be attributed to Moran Index, which was equal to 0.00 (p-value 

= 0.905). Figure 17 illustrates the result of the spatial correlation model of the peak hour vehicle 

flow in a semivariogram graphic. The semivariogram model is used to describe the continuity 

of the spatial correlation in the data, and the points in the graph indicate the spatial data 

structure. There was no spatial correlation since the value of semivariance did not increase with 

the distance, i.e., the flow of vehicles did not present a spatial pattern.  

 

 

 
 

Figure 2:  Result of vehicle flow in the peak hour (semivariogram). 
 

The lack of spatial correlation can also be explained by the different types of urban streets 

(variable “type of road”) in Belo Horizonte. The urban streets have different widths and lengths 

and, therefore, different vehicle flow at modeled peak hour.  

4.3.3. Mixed – Effects Model and Cross Validation 

The selected model “Normal-Neighborhood Model” (i.e., the mixed effect model with random 

effect in the neighborhood, radar type, and the regional area) is given by the following equation 

5: 

𝑬(𝑽𝒆𝒉𝒊𝒄𝒍𝒆 𝑭𝒍𝒐𝒘𝒊𝒋𝒌) = 𝐞𝐱𝐩 {𝜷𝟎 + 𝜶𝒊 +  µ𝒋 + ɣ𝒌 + 𝜷𝟏 (𝑷𝒓𝒊𝒎𝒂𝒓𝒚)  +  𝜷𝟐 (𝑹𝒆𝒔𝒊𝒅𝒆𝒏𝒕𝒊𝒂𝒍) +𝜷𝟑 (𝑺𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚) + 𝜷𝟒 (𝑺𝒆𝒓𝒗𝒊𝒄𝒆) + 𝜷𝟓 (𝑻𝒆𝒓𝒕𝒊𝒂𝒓𝒚) + 𝜷𝟔 (𝑻𝒓𝒖𝒏𝒌)}                                   

Equation 2 

Distance 

Semi variance 
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where 𝛼𝑖~𝑁(0, 𝜎𝛼2),  𝜇𝑗~𝑁(0, 𝜎𝜇2) e ɣ𝑘 ~𝑁(0, 𝜎ɣ2), for i = 1, 2, ..., 8 (radar type), for j = 

1, 2, ..., 10 (regional area) and for k = 1, 2, ..., 110 (neighborhood).  The term 𝑒𝑥𝑝(𝛼𝑖) gives 

the expected average vehicle flow value for the i-th radar type; the term 𝑒𝑥𝑝(µ𝑗) gives the 

expected average value for vehicle flow to the j-th regional area, and the term  𝑒𝑥𝑝(ɣ𝑘) provides 

the average value for the vehicle flow to the  k-th neighborhood. This model is the model with 

mixed effects because it has a fixed effect 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 𝑒 𝛽6   and random effect   (𝛼𝑖 ,𝜇𝑗𝑒 ɣ𝑘). 

4.3.3.1. Cross-Validation 

The cross-validation results according to the vehicle flow modeling used are in Table 24. The 

analysis showed that the Normal-Neighborhood Model presented the lowest error values (in 

bold in Table 24) for all three statistic indices (MAD, MAPE, and RMSE). Therefore, this 

model was selected for predictive analysis. Even without presenting the spatial correlation 

necessary for the kriging model application, it was calculated and presented the most significant 

error (MAPE=0.88) among all models, as expected. The mixed model with random effect in 

address, radar type, and the regional area had similar results than a mixed model with random 

effect in the neighborhood, radar type, and the regional area. This similarity is justified because 

the address and neighborhood are variables that impact equivalently on the flow of vehicles. 

Table 5:  Vehicle flow cross-validation for different models used. 
Model MAD MAPE RMSE 

Kriging 925.04 0.88 1321.24 
Normal-Address 395.89 0.38 652.01 
Poisson-Address 415.92 0.40 705.16 
Negative Binomial-Address 384.62 0.37 625.62 
Normal-Neighborhood 376.37 0.36 619.95 
Poisson-Neighborhood 465.75 0.44 840.83 
Negative Binomial-Neighborhood 393.62 0.37 637.66 

 
The analysis of the statistical distribution used has an impact on the results of the models, and 

the normal distribution was the most appropriate in both models. Besides, the backward method 

was applied to select the explanatory variables for the model. The variable “type of road” was 

the variable that remained in the select statistic model (Table 25). 
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Table 6: Influence of explanatory variables on vehicle flow. 
Variable Exp (β) 95% C.I.  p-value 

Motorway 1.00 - - 

Residential 0.18 [0.091; 0.357] <0.001 

Service 0.63 [0.359; 1.105] 0.110 

Tertiary 0.19 [0.119; 0.289] <0.001 

Secondary 0.35 [0.234; 0.537] <0.001 

Trunk 0.65 [0.407; 1.044] 0.080 

Primary 0.48 [0.303; 0.751] 0.002 

 
There was a significant influence on the type of road in the peak hour vehicle flow. For instance, 

when different types of roads are compared with the “motorway” type, the primary road showed 

a 52% reduction in vehicle flow, the secondary road had a 65% decrease, and tertiary road type 

had an 81% reduction in vehicle flow. Table 26 presents a description of random effects by the 

radar type. When the radar is RF, the vehicle flow increased 7.81 times. When the radar is DIF 

type (Exclusive Intrusion Detector and Trucks Circulation Detector), vehicle flow decreased by 

67%.  The radar CJG and DAS have the smallest random effect in the vehicle flow. 

Table 7:  Description of random effects by the radar type. 
Radar Type Exp(βi) 95% C.I.  

RF 7.81 [6.73; 9.06] 

DAS1 4.64 [3.97; 5.43] 

CJG2 2.16 [1.38; 3.38] 

CEV-MOVE3 0.43 [0.15; 1.24] 

DIF 0.33 [0.26; 0.42] 
*1DAS and DAS-MOVE: Semaphore Advance Detector; 2CJG and CJG-Busway: Combined Equipment (DIF and CEV); 3CEV and CEV- 

MOVE: Electronic Speed Control. 

 

For the prediction analysis, it was selected three radar types (RF, DAS, and CJG) and “without 

radar.” This selection explains the importance of radar type variable for the model.  

4.3.3.2. Prediction Analysis 

The descriptive prediction analysis of vehicle flow in the peak hour considered the model 

adjustment without radar and with three different radar: RF, DAS, and CJG. The prediction of 

vehicle flow in the peak hour is underestimated as no specific radar type is considered (Table 

27). 

 

 



 

45 
 

Table 8:  Descriptive Analysis of vehicle flow (vehicle per peak hour) estimation. 
Radar Average S.D. Min. 1º Q. 2º Q. 3º Q. Max. 

Without radar 131.22 91.67 64.02 81.53 88.08 103.52 580.77 
DAS 609.32 425.70 297.30 378.60 409.00 480.73 2,696.91 
RF 1,024.63 715.86 499.93 636.64 687.78 808.40 4,535.11 
CJG 283.55 198.10 138.35 176.18 190.33 223.71 1,254.99 

 

4.3.3.3. Vehicle Flow Spatialization 

The inventory was calculated using spatial interpolation resulted from a mixed-effects model 

with random effect in the neighborhood, radar type, and regional because the model showed 

the lower MAD, MAPE, and RMSE. The traffic flow without radar was underestimated when 

comparing with selected counting points and concerning the use of radar data, as showed by 

the traffic flow spatialization in Figure 18 considering (a) no radar data and (b) CJG radar data, 

which presented the best spatialization, (c) DAS radar data and (d) RF radar data. 

  
(a) (b) 

  

(c) (d) 

Figure 3:  Spatialization of vehicle flow: (a) Without radar type and (b) Radar Type CJG, (c) Radar Type 
DAS and (d) Radar Type RF. 

 

In this work, the inventory was calculated using vehicle flow, urban network, fleet (age and 

categories of vehicles) and fuel consumption. The State Environmental Agency in Minas Gerais 

developed an inventory using 118 main streets in BH in 2015 (FEAM, 2018) and a comparison 

was performed with this work. The comparison with the base scenario (the year 2018) must 

consider the assumptions and parameters, such as emissions factors values and vehicle flow 
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spatialization. The emissions of CO, NMHC and NOx had increased by 29%, 22%, and 19% 

respectively when compared with FEAM (2018). The emissions of PM2.5 and SO2 had 

decreased by 23% and 41% when compared with the same work. 

4.3.3.4. Results of different scenarios 

Four scenarios were evaluated (Table 28) and their results present the emissions for carbon 

monoxide (CO), hydrocarbon (HC), dinitrogen monoxide (N2O), non-methane hydrocarbons 

(NMHC), nitrogen oxides (NOx), fine particulate matter (PM2.5) and sulfur dioxide (SO2). 

Additionally, it was considered the carbon dioxide (CO2) and methane (CH4) (Table 29). 

Table 9: Scenarios description. 
Scenario Description 

Scenario 1 (S1) VEI projection to 2020 
Scenario 2 (S2) Scenario 1 + Reduction in all fleet over 30 years 
Scenario 3 (S3) Scenario 1 designed to 2025 
Scenario 4 (S4) Scenario 1 designed to 2030 

 
The analysis of different scenarios allowed the suggestions of solutions proposals focused on 

mobility and transport issues in Belo Horizonte. 

Table 10:  Vehicular Emissions Inventory (t.y-1). 
Scenario Pollutants 

CH4 CO CO2 HC N2O NMHC NOx PM2.5 SO2 
S1 415 15,000 3,034,190 2,069 270 1,664 4,809 146 233 
S2 410 14,817 2,996,369 2,044 266 1,644 4,748 145 230 
S3 435 14,339 3,546,694 2,032 323 1,616 4,647 136 267 
S4 459 13,825 4,138,287 2,015 384 1,581 4,596 130 310 

 

It is highlighted the differences between S1 (2020) and S3, where the fleet over 30 years old 

was considered out of the urban street. The fleet reduction causes a 1.2% average decrease in 

pollutant emissions. The comparison between future scenarios (S3, S4) and S1 shows a decrease 

in CO, HC, NMHC, NOx, and PM2.5. The main reason is the decrease in emission factors 

values that are caused by the improvement in vehicular technologies and fuel quality. On the 

other hand, the emissions of CH4, CO2, N2O, and SO2 were increased (Table 30).  

Table 11: Difference emissions between each scenarios (%). 
 Pollutants 

CH4 CO CO2 HC N2O NMHC NOx PM2.5 SO2 
Difference between S2 and S1 -1.2 -1.2 -1.2 -1.2 -1.5 -1.2 -1.3 -0.7 -1.3 
Difference between S3 and S1 +4.8 -4.4 +16.9 -1.8 +19.6 -2.9 -3.4 -6.8 +14.6 
Difference between S4 and S1 +10.6 -7.8 +36.4 -2.6 +42.2 -5.0 -4.4 -11.0 +33.0 
Difference between S4 and S3 +5.5 -3.6 +16.7 -0.8 +18.9 -2.2 -1.1 -4.4 +16.1 
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This work also presented a simulation of three future scenarios considering an optimistic and a 

pessimistic projection considering the year 2025, 2030, and 2050. In the pessimistic projection, 

2025 and 2030 scenarios were maintained as S3 and S4 despite the reduction in vehicular 

emissions in both scenarios. The main reason for considering them as a pessimistic projection 

was the fact that both scenarios had an increase in the fleet composition, i.e., an increase of 25% 

for 2025 and 57% in the 2030 scenario. The fleet composition was estimated using the mobile 

average from the last ten years. The projection of emissions factors and fuel consumption was 

calculated by following the same procedure. 

In the optimistic view, the simultaneous reduction in the fleet composition of passenger cars, 

light commercial vehicle, motorcycles, trucks, and buses for all fuel (gasohol, ethanol, and 

diesel) was applied, and the results to CO, HC, NMHC, NOx, and PM2.5 are in Table 31.  

Table 12: Vehicular Emissions Inventory (t.y-1) in an optimistic and pessimistic projection. 
Year Pessimistic projection Fleet Reduction Optimistic Projection 

CO HC NMHC NOx PM2.5 Type of vehicle % CO HC NMHC NOx PM2.5 

2025 14,339 2,032 1,616 4,647 136 

Passenger car 10 

12,954 
(-10%) 

1,837  
(-10%) 

1,460  
(-10%) 

4,018  
(-14%) 

117  
(-14%) 

Motorcycles 5 
Light Commercial Vehicles 10 

Trucks 15 
Buses 20 

2030 13,825 2,015 1,581 4,596 130 

Passenger car 25 

10,553 
(-24%) 

1,544  
(-23%) 

1,212  
(-23%) 

3,507  
(-24%) 

99  
(-24%) 

Motorcycles 15 
Light Commercial Vehicles 25 

Trucks 20 
Buses 30 

2050 5,983 904 669 1,867 42 

Passenger car 50 

3.323 
(-44%) 

515  
(-43%) 

381  
(-43%) 

1,075 
(-42%) 

26  
(-38%) 

Motorcycles 25 
Light Commercial Vehicles 35 

Trucks 25 
Buses 100 

 

In 2025, the reduction in emission is more significant for NOx and PM2.5 (14%). In 2030, the 

decrease is similar for all pollutants (24%) even reduction in fleet composition do not being the 

same for all vehicle type. In 2050, it was supposed 100% of reduction in diesel buses and 50% 

in passenger cars using fossil fuel, and the impact in vehicular emissions is substantial, around 

42% smaller. In this hypothetical scenario, the fleet would be composed of electric vehicles, for 

instance.  



 

48 
 

4.4. DISCUSSION 

The results of this work can be used to define practical actions to reduce vehicular emissions 

not only in Belo Horizonte, Brazil, but also in any city that has this kind of dataset. Actions 

such as the implementation of the vehicle inspection program for the removal of vehicles older 

than 30 years on urban streets may generate a decrease in pollutant emissions.  

These solutions implemented in conjunction with actions that encourage do not to use the 

private vehicle as they reduce the passenger car fleet rate applied for reducing CO, NOx, and 

PM2.5 emissions. The implementation of suggested actions with the construction of quality 

public transport infrastructures, such as subway lines and bike lanes connecting regions of the 

city, can contribute satisfactorily to the improvement of air quality in Belo Horizonte. 

The proposed statistical model can be used in different cities that have radar database. It is 

essential to provide statistical assumptions, such as the existence or not of spatial correlation 

between the flow data. This methodology is an alternative solution to predict vehicle flow to 

use as input data in vehicular emission models. Recently, São Paulo city hall has promoted a 

challenge for the development of a solution for smarter and safer urban mobility in the city 

using radar database. The approach adopted in this research can be followed for research on 

other urban transport systems. It can support traffic agencies and environmental protection 

agencies in the entire country to decide about public transport polices to reduce vehicular 

emission around the city, improving air quality. 

Furthermore, it is necessary to investigate the impacts on air quality. The vehicular emission 

inventory is an essential data to improve the mobile source input data in air quality modeling 

and allow understanding the relationship between pollutant emission sources and their real 

impacts on ambient air quality. 

The reductions observed in PM2.5, CO, HC, NMHC, and NOx for the scenarios designed to 

2025 and 2030 are mainly associated with improvement in vehicular technologies and fuel 

quality. Otherwise, the increase in CH4, CO2, and N2O emissions, associated with the fleet 

increase, shows that greenhouse gases from vehicles can push for a cleaner fuel policy for the 

city, which has become a trend mainly in European countries. The increase in SO2 emissions 

also indicates a policy to reduce the sulfur content in fuels. The scenarios considering fleet 

reduction demonstrate the benefits of adopting cleaner technologies. 
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4.5. CONCLUSIONS 

Vehicular emissions vary with the method adopted to structure the data inputs, and the findings 

presented in this work are essential to developing a relevant reference in a city that has data 

traffic limitations. The developed approach can serve as a means of reliably estimating of 

vehicular emissions, as well as offering a robust means of spatially analyzing road transport 

activity.  

This study is new in Brazil and reinforced the importance of detailing traffic activities using 

real data to estimate vehicular emissions in an urban area. Radar data can provide many 

potential benefits for research and analysis in an environmental and planning transportation. 

For many developing countries, data from traffic counters can improve understanding of the 

city's mobility dynamics, as well as harnessing this data in online services or via traffic 

monitoring applications.  

In this study, the focus was to provide a suitable statistical model based on local radar data to 

predict traffic flow for a Brazilian city and use a national vehicular emission model to analyze 

different scenarios and the impacts on vehicular emission in the city. These findings can be 

incorporated in future investigations to implement public policies to reduce vehicular emission 

in the urban area and in advance environmental health effects research and human health risk 

assessment. Some suggestions like  development a tool to allow  users to query information 

such as flow, average speed, infractions, and vehicular emissions as well as to provide quality 

and quantity traffic data to traffic simulation systems allowing better studies on possible traffic 

interventions in the city road plan and air quality estimates can implement using this research. 
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This work had as main objective to estimate vehicle emissions by coupling statistical models to 

a vehicle emissions model from radar and vehicle count data. Scenarios were evaluated based 

on the execution of different strategies to reduce vehicle emissions in Belo Horizonte, Minas 

Gerais state in Brazil, as well as future scenarios considering the years 2025, 2030, and 2050. 

This study is unique and strengthened the importance of detailing traffic activities, using local 

radar data to estimate vehicle emissions in an urban area. Other cities whose urban transport 

systems have vehicle count data in different locations in the urban space can adopt the approach 

of this research. In this sense, it may support local traffic agencies and environmental agencies 

in the joint decision of public policies that seek to reduce vehicle emissions in cities. For many 

developing countries, such as Brazil, data from traffic counters can be used more 

comprehensively, such as, for example, to improve understanding of the mobility dynamics. 

Also, it can serve as a reference in predicting vehicle flows on urban roads and enable the use 

of this data in services online, through applications that monitor traffic in real-time.  

 

It was initially held a systematic literature review, which mapped studies that united traffic, 

emissions, and air quality modeling. The results showed that there is no ideal combination 

among models and that it must be defined by the user and differs according to the objectives of 

the study. The availability of data, the methods used to calculate emissions, and how results in 

modeling can assist decision-makers in their actions to improve air quality in cities also 

contribute to the decision of the best combination between the available models. Besides, the 

gaps in some studies remain in the consistency of emission factors, in spatial and temporal 

distributions, in the allocation of emissions in grid cells and the performance of meteorological 

models. It is also worth mentioning that the average traffic flows on urban roads remain a 

limitation. 

This work verified that vehicles associated with the consumption of different fuels and the fleet 

age are two of the most important sources of air pollution in urban areas to be considered. The 

continuous monitoring of vehicle flow in real-time through the use of radars results in the 

improvement of the calculation of the spatial and temporal distribution of traffic activity. It 

promotes the improvement of the method of transferring vehicle flow information to the vehicle 

emissions model. The calculation of the emission inventory by coupling the statistical model of 

mixed effect normal-neighboring neighborhood to the Brazilian model of vehicle emissions 

inventory (VEIN) proved to be adequate for Belo Horizonte. The kriging method also proved 
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to be satisfactory and can be used, as long as there is a spatial correlation between the data. The 

hourly traffic behavior by vehicle type and the calculation of the average traffic flow using local 

radar information showed the importance of the daytime cycle by vehicle type to obtain more 

precision in the emissions inventory. The definition of the correct proportion of traffic 

emissions, attributed to different categories of vehicles and fuel consumption is mandatory 

when calculating emissions from mobile sources.     

    

The conclusions when evaluating the scenarios are that actions such as the execution of road 

space rationing in the city, a reality already in force in São Paulo, are a viable alternative, as it 

generates, on average, emission reductions of the order of 7.2% considering all pollutants 

inventoried. The implementation of a vehicle inspection program for the 20 years old fleet 

removal combined with the replacement of the bus fleet by electric vehicles generated 

reductions in NOx emissions (8.4%), PM2.5 (8.6%), and SO2 (5.8%). These results show that 

the suggested measures have great potential for reducing pollutant emissions by vehicles. The 

implementation of the strategies adding the non-use of the private vehicle, as well as the 

construction of quality public transport infrastructures (Bus Rapid Transit, subway lines, 

exclusive lanes, and cycle paths), can contribute satisfactorily to improve the air quality in Belo 

Horizonte. 

In the analysis of future scenarios, different combinations for reducing the fleet of passenger 

cars, light commercial vehicles, motorcycles, trucks, and buses were suggested, and the results 

showed that emission reductions varied, on average, 11.6% in 2025, 23.6% in 2030 and 42.0% 

in 2050. The reduction of the fleet combined with the success of government programs for the 

reduction of vehicle emissions, coupled with the technological advancement of vehicles and the 

improvement of fuel quality, contributes to a reduction in vehicle emissions.  

 

The results presented in this work are essential, as they become references for the design and 

improvement of public policies in the environmental area and transportation planning in Belo 

Horizonte, given the context of limitations in the production, analysis, and dissemination of 

traffic data. The proposals presented can be incorporated into future investigations for the 

application of new public policies that aim to reduce vehicle emissions in the urban area, and 

that guide research on the effects of air quality on human health.   
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From the results obtained and the limitations of this study, some future works are suggesting:    

 

• development of a tool using the Internet of Things (IoT) platform that gathers, analyzes, 

and manages traffic data and allows users of public transport and drivers to check 

information such as vehicle flow, average speed and vehicle emissions in the city, 

contributing to their mobility and daily activities (setting the departure time, selecting 

the route, configuring the air conditioning system, maintaining the vehicle, among 

others);  

• development of a tool that, acting as a source of useful traffic data to traffic simulation 

systems, allowing more detailed studies of interventions in urban traffic and estimates 

of air quality;   

• evaluation of the efficiency and effectiveness of traffic management strategies 

(Transport Management Strategies-TMS) used to improve air quality, reducing human 

exposure to pollutants;  

• evaluation and compilation of existing methodologies for calculating vehicle emissions, 

defining best practices, and input data information appropriate to Brazilian cities;  

• development of cooperative work between companies and research laboratories to 

analyze differences in the measurement of emission levels by vehicles manufacturers; 

• creation of a database with local emission factors, including all types of vehicles and 

consolidation of the vehicle emissions methodology to generate emission maps and their 

effects, based on the insertion of new vehicle technologies (passenger cars, light 

commercial vehicles, motorcycles, trucks, and buses) and the quality of fuels; 

• development of measurement campaigns to verify the accuracy of the traffic, emissions, 

and air quality modeling; 

• modeling the air quality in the proposed scenarios of this work to verify the impact on 

the environmental concentrations of pollutants. 
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