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Abstract

A quantitative understanding and precise control of a complex dynamical system, such
as natural, social and technological networks, can only be achieved with the ability
to observe its internal states either by direct measurement or indirect estimation.
For a large-scale dynamical network, however, it is extremely difficult or physically
impossible to place enough sensors to make the system fully observable. The problem
of determining whether a system is observable has been well addressed by control
engineers and, in a high-dimensional context, network scientists in the recent decade.
Nevertheless, even if the system is theoretically observable, the high-dimensionality of
the network poses fundamental limits on the computational tractability and performance
of a full-state observer. To overcome the curse of dimensionality, and noting the fact
that often only a small number of state variables in a network are essential for control,
intervention, and monitoring purposes, we instead ask the system to be functionally
observable, i.e., that only a targeted subset of system states be reconstructable from
the available measurements. In this manuscript, we develop a graph-based theory of
functional observability, which leads to highly scalable algorithms to determine minimal
necessary sensors and to design the corresponding state observer with minimal order.
Compared with the full-state observer, the developed functional observer achieves the
same estimation quality with much less sensory and computational resources, making
it applicable to large-scale networks. We apply the proposed methods to the detection
of cyber-attacks in power grids under limited measurement units and the inference
of the infected population during a pandemic under limited testing resources. The
applications and numerical results show that the functional observer can significantly
scale up our ability to explore otherwise hidden dynamical processes on large-scale

complex networks.

Keywords: Observability, dynamical networks, structural systems, sensor placement,

observer design.






Resumo

A compreensao quantitativa e controle preciso de um sistema dindmico complexo, como
redes naturais, sociais e tecnologicas, podem ser alcancadas apenas com a habilidade
de observar seus estados internos, seja por meio de medicoes diretas ou estimacao
indireta. No caso de uma rede dinamica de larga-escala, entretanto, é extremamente
dificil ou fisicamente impossivel alocar um ntmero suficiente de sensores para tornar
um sistema completamente observavel. O problema de determinar se um sistema é
observavel foi intensivamente estudado por engenheiros de controle e, no contexto de
alta-dimensionalidade, cientistas de redes na década recente. Nao obstante, mesmo se
um sistema for teoricamente observavel, a alta-dimensionalidade de redes apresenta
limites fundamentais a tratabilidade computacional e desempenho de um observador
de estados completo. Com o objetivo de superar a maldi¢ao da dimensionalidade, e
notando o fato que usualmente apenas um pequeno subconjunto das varidveis de estado
em uma rede sao essenciais para propositos de controle, interven¢ao e monitoramento,
investiga-se nesta tese as condigoes para que um sistema seja observavel funcional, isto
é, que apenas um subconjunto alvo dos estados do sistema sejam reconstrutiveis a
partir das medigoes disponiveis. Neste manuscrito, desenvolve-se uma teoria baseada
em grafos da propriedade de observabilidade funcional, que permite o desenvolvimento
de algoritmos altamente escalaveis para a determinacao do conjunto minimo necessario
de sensores e o projeto de um observador de estados funcional de minima ordem.
Comparado ao observador de estados completo, o observador de estados funcional
apresenta a mesma qualidade na estimacao de estados com muito menos recursos
sensoriais e computacionais, tornando-o adequado a aplicagoes em redes de larga-escala.
Os métodos propostos sao aplicados na deteccao de ataques cibernéticos em redes
de poténcia sob um limitado ntimero de unidades de medicao, e na inferéncia das
populacoes infectadas durante uma epidemia sob capacidade limitada de testes. As
aplicagoes e resultados numéricos mostram que o observador de estados funcional pode
aumentar significativamente nossa habilidade de explorar processos dindmicos ocultos

em redes complexas de larga-escala.

Palavras-chave: Observabilidade, redes dindmicas, sistemas estruturais, alocacao de

sensores, projeto de observador.






Table of contents

Introduction

1.1 Context and Motivation . . . . . ... .. .. ... ... ... ...,
1.2 Contributions . . . . . . . . ...
1.3 List of Publications . . . . . . .. ... ... ... ... ... . ...,
1.4 Outline. . . . . . . . ...

Dynamical Networks Modeling

2.1 Dynamical Systems Notation. . . . . . .. ... ... ... ... .. ..

2.2 Graph Theory . . . . . . . . ..

2.3 Representation of Dynamical Networks . . . . . .. . ... ... ....
2.3.1 Graph representation . . . . . . . ... ... ... ...
2.3.2 State-space representation . . . . . . ... ... ... ... ..

233 Examples . . .. ...

A Review on Observability of Network Systems

3.1 Structural Observability . . . . .. .. .. ... ...
3.1.1 Linear dynamical systems . . . . . . . ... ... ... .....
3.1.2 Nonlinear dynamical systems . . . . . ... .. ... .. ....

3.2 Dynamical Observability . . . . . ... .. ... ... ... ... ..
3.2.1 Linear dynamical systems . . . . . ... ... ... ... ...
3.2.2 Nonlinear dynamical systems . . . . . .. ... ... ... ...

3.3 Topological Observability . . . . . .. ... ... .. ... ... .....
3.3.1 Linear dynamical systems . . . . .. .. .. ... ... ... ..
3.3.2 Maximum matching algorithm . . . . . . .. ... . ... ...
3.3.3 Nonlinear dynamical systems . . . . . .. ... ... .. ... ..

3.4 Analysis of Related Works . . . . . .. .. . ... 0L

3.5 Future Research Directions on the Dynamical Observability of Network
Systems . . .o L

11
11
13
14



xvi

Table of contents

3.6 Application Examples . . . . . .. ... L 47
3.6.1 Powergrids . . . .. .. . ... 48
3.6.2 Multi-agent consensus . . . . .. ... L 52
3.7 Final Considerations . . . . . . . . . . . . ... ... 57

4 Functional observability and target state estimation in large-scale
networks 59
4.1 Background on Functional Observability . . . . .. ... ... ... .. 61
4.2 Structural Functional Observability . . . . . .. .. ... ... ... .. 63
4.3 Methods . . . . . . . . .. 66
4.3.1 Minimum sensor placement for sets of target nodes . . . . . . . 66
4.3.2  Minimum order functional observer design . . . . . . .. .. .. 68
4.4 Numerical Results in Large-Scale Complex Networks . . . . .. .. .. 74
4.4.1 Minimum sensor placement . . . . . .. ... ... 75
4.4.2  Minimum order functional observer design . . . . . . ... ... 7
4.4.3 Performance comparison between observers . . . . . . .. . ... 80
4.5 Applications . . . . . ... 82
4.5.1 Cyber-attacks detection in power grids . . . . .. .. .. .. .. 82
4.5.2 Estimation of epidemic spreading in target populations . . . . . 86
4.6 Conclusion . . . . . . . ... 90
5 Conclusion 93
References 95
Appendix A Sensor Placement Algorithm 109
A.1 Minimization of Coefficient of Observability . . . ... ... ... ... 109
A.2 Minimization of Functional Observer Order . . . . . . . . . ... .. .. 110
Appendix B State Observer Design 111
B.1 Luenberger Observer . . . . . . . . . . . ... ... ... ... 111
B.2 Functional Observer . . . . . . .. .. .. ... ... ... .. ... . 113
B.3 Functional Observer for Nonlinear Systems . . . . . . . .. .. ... .. 116
Appendix C Proof of Structural Functional Observability 119
Appendix D Related Works on “Target Observability” 125



List of figures

2.1
2.2
2.3

24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

4.1
4.2
4.3
4.4
4.5

4.6
4.7

Graph examples. . . . . . . . . L 9
SCC and root SCC of a digraph. . . . . . . .. .. ... .. ... .... 10
Differences between graphs of a nodal dynamical system, a network

topology and a full network. . . . . . .. ... ... ... L. 12
Nonlinear graph of the Jacobian matrix of the Rossler system. . . . . . 16

Full network examples of Rossler systems, with m = 3, coupled by

different variables. . . . . . . .. ... 17
Graph representation of (3.21). . . . . ... ... L. 33
Maximum matching of simple networks. . . . . .. ... ... ... .. 35
Root SCC of a Rossler system graph. . . . . . ... ... ... ..... 37
Tank system and corresponding network representation. . . . . . . . . . 41
Dynamics of the IEEE power grid benchmark. . . . . . .. .. ... .. 49
Coefficient of observability 6, per number of PMUs. . . . .. . ... .. 51

Signaling network W of a flock of m = 150 agents moving in a 2-
dimensional space in two different scenarios. . . . . . .. ... ... .. 55
Proportion of the minimum number of sensor nodes |S|/m as a function

of the signaling network symmetry pgym (W) for the two different scenarios. 56

Structural functional observability of dynamical systems. . . . . . . .. 64
Hlustrative example of Algorithm 2. . . . . . . .. ... ... ... ... 73
Minimum sensor placement in large-scale networks. . . . . . . . .. .. 7
Minimum order functional observer design in large-scale networks. . . . 78

Performance of functional observers for target state estimation in large-
scale networks. . . . ... L Lo 81
Target state estimation for cyber-attack detection in power grids. . . . 83

Target state estimation in epidemics. . . . . . . . . ... .. ... . 87






List of abbreviations

LHS
ODE
PMU
RHS
RMSE
SCADA
SCC
SIRD
SF
SVD
SW

Left-hand side

Ordinary differential equation

Phasor measurement unit

Right-hand side

Root-mean-square error

Supervisor control and data acquisition
Strongly connected components
Susceptible-infected-recovered-dead individuals
Scale-free network

Singular value decomposition
Small-world network






List of symbols

Z
o
o+
V)
<
o
=

SAE®S e o
2

Operators
®©
X

S2)
At

Symbols.

LT QSR TN 2wy
™ >

Q

)

©
&

Rl
)
@b‘
ﬂ

Scalar.

Vector.

Matrix.

Set.

Denotes dependence on c.
Estimate of a.

Set of real numbers.

Set of complex numbers.
Empty set.

Hadamard product operator (element-wise product).
Kronecker product operator (direct product).

Direct sum operator.

Moore-Penrose inverse of A.

State variables. Vector of dimension R".

Output variables. Vector of dimension R?.

Input variables. Vector of dimension RP.

Target variables desired to be estimated. Vector of dimension R".
Continuous time instant.

Dynamic, input, output and feedforward matrix of a dynamical system.
Functional matrix.

Nonlinear functions of the dynamical model.

Graph.

Set of nodes and edges.

Adjacency and Laplacian matrix.

Set of state nodes, sensor nodes, driver nodes and target nodes.
Eigenvalues sorted from smallest to largest values.






Chapter 1

Introduction

1.1 Context and Motivation

The mathematical modeling of dynamical systems is a fundamental framework in
engineering that provides a means to analyze aspects of a system, such as its stabil-
ity, controllability or observability, and thereafter design control laws for practical
applications (Chen, 1999; Khalil, 2002). However, being designed for the most part
with systems of low-dimensional order in mind, classic control theory methods are
not efficient, or even feasible, for large-scale systems, such as interconnected (net-
worked) dynamical systems. This practical limitation has led control theory notions
to be adapted, optimized, or even redefined, in the literature for high-dimensional
applications (Chen, 2014).

A specific, but recurrent, type of high-dimensional system can be defined as networks.
A network is a set of nodes interconnected by edges, in which information flows among
its elements through pairwise interactions. It can be mathematically modeled by graph
structures, which allow a wide range of useful metrics and algorithms of graph theory
(Bullo, 2016; Chen et al., 2013; Newman, 2010). For instance, graph theory can be
used to assess the robustness to spreading failures in power systems (Schéfer et al.,
2018; Zhang et al., 2014) or biological networks (Gilarranz et al., 2017; Schimit and
Monteiro, 2009).

Up to the end of the twentieth century, it was believed that real-world interconnected
systems, such as neuronal, social, communication, traffic, and energy networks, and even
the Internet, were composed of stochastic connections among its nodes. However, works
over the last two decades highlighted that most of real-world networks share similar

topological characteristics—not being purely random, nor purely regular (Barabési,
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1999, 2009; Watts and Strogatz, 1998). Complex networks, therefore, are a subclass
of mathematical models derived from graph theory, in which topological structures
(graphs) show recurrent patterns that are found in the most diverse real networks
present in nature and engineering (Barabési and Posfasi, 2016; Chen et al., 2013).
Based on these findings, the last years have been flooded with studies about complex
network models, such as scale-free networks (Barabasi, 1999) and small-world networks
(Watts and Strogatz, 1998).

The study of complex networks is essential to increase the knowledge about the
structural characteristics and recurrent patterns that govern real networks—even when
nodal dynamics are disregarded in favor of a higher focus on the graph properties. It
is a first step in a long ladder whose final goal is to develop control techniques for
dynamical complex networks (Wang and Chen, 2003). Dynamical networks are defined
by a set of dynamical systems that, when analyzed individually, describe relatively
simpler behaviours, but, when interconnected, develop interactions that considerably
raise the system complexity (Monteiro, 2014). This is a consequence of a twofold
interaction between local properties (nodal dynamics) and global properties, such as
the network structure or topology (Aguirre et al., 2018).

Many mathematical models were expanded to include complex networks that
describe the spatial relations and interactions between their elements. Among the
numerous examples are: models of infectious diseases (Moreno et al., 2002; Schimit and
Monteiro, 2009), reaction-diffusion systems (Wolfrum, 2012) (e.g. predator-prey models
(Nakao and Mikhailov, 2010)), and Boolean systems (Gates and Rocha, 2015). In the
field of nonlinear dynamics, the study of synchronization in networks of oscillators stands
out (Arenas et al., 2008; Boccaletti et al., 2002; Montanari et al., 2019; Rodrigues et al.,
2016), with important applications in power systems (Dorfler et al., 2013; Montanari
et al., 2020) and biological networks (Hammond et al., 2007). In this case, each node is
composed of an individual dynamical system, a nonlinear oscillator, and its interactions
are determined by coupling functions of the state variables of different oscillators.
Usually, the main goal is to determine under which conditions the synchronization
manifold of a dynamical network of oscillators becomes stable. These conditions can be
related to the network structure (Moreno and Pacheco, 2004; Wang and Chen, 2002a),
the coupling method (Stankovski et al., 2017), or the nonlinear oscillator model—from
the well-studied Kuramoto phase oscillator (Dorfler and Bullo, 2014; Kuramoto, 1975)
to chaotic ones (Boccaletti et al., 2002; Eroglu et al., 2017).

It is only natural that as our understanding of complex behaviors, such as synchroniza-

tion, in network systems increases, the next step is to question how to control such
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systems according to our needs. Indeed, “the ultimate proof of our understanding of
natural or technological systems is reflected in our ability to control them?”, as stated by
Liu et al. (2011b). One fundamental mechanism that enables the precise control of such
dynamical system is feedback, which involves sensors, signals and actuators in a closed
loop (Wiener, 2019). In large-scale interconnected systems, however, it is not always
possible to rely on direct measurements provided by sensors. For instance, it is not
always economically viable to place a sophisticated phasor measurement unit (PMU)
at every substation in a power grid, as well as it is not physically possible to measure
each one of the tens of billions of neurons in our brain. Thus, indirect estimation of
unmeasured variables is essential for the control of large-scale dynamical networks.
Observability is a key property that determines if the trajectory temporal evolution
of the internal states of a dynamical system can be reconstructed based on knowledge
of the inputs and outputs, as introduced by Kalman (1959). It can be formulated as
condition for the optimal placement of sensors in a network (Haber et al., 2018; Liu
et al., 2013; Montanari and Aguirre, 2020) as well as the design of stable state estimators
(Luenberger, 1966; Montanari and Aguirre, 2019). However, as network systems grow
large, high-dimensionality poses a fundamental obstacle that hampers the direct use of
traditional methods developed in control theory (Chen, 2014; Motter, 2015), calling for
different approaches to overcome the curse of dimensionality (Montanari and Aguirre,
2020). In the past decade, a different definition of observability, grounded on graph
theory, known as structural observability (Lin, 1974), has opened a new branch to
novel developments and highly intuitive techniques in this field, which although not
yet consolidated, have achieved great scalability to high-dimensional systems (Liu and
Barabasi, 2016; Liu et al., 2011b). This work expands on this field of research by
exploring the advantages and disadvantages of recent results and further proposing a
novel approach to state estimation in large systems by introducing a generalization of

a property from control theory known as functional observability.

1.2 Contributions

The main goal of this work is to investigate the interplay between the observability
property of a dynamical network and its corresponding nodal dynamics, coupling
methods and network structure. The contributions of this manuscript are threefold:
Firstly, we thoroughly review the fundamental properties of observability—and
by duality controllability—of low-dimensional dynamical systems. We explore the

importance of using not only a crisp (yes or no) classification of observability, but
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also one that gradually quantifies how good a system observability really is under a
specific set of measures. These notions are extended to a network context, where
different metrics need to be developed due to high-dimensionality issues. An extensive
review and criticism is developed regarding observability metrics based on the network
topology properties as represented by its the adjacency matrix. We conclude the
review with some interesting guidelines of research in observability and controllability
of network systems.

Secondly, following the developed review on observability in network systems, it
becomes clear that the concept of full observability might not be the most suitable
approach to dynamical networks due to the high-dimensionality of the problem. To
circumvent this, the concept of functional observability is revisited from control theory
in a network context, allowing one to focus on a specific subset of nodes desired to
be estimated (observed) rather than on the whole set of nodes of a network. We
generalize the concept of functional observability to the context of structural functional
observability, allowing us to rigorously establish graph-theoretic conditions for the
functional observability equivalent to the original rank-based conditions.

Thirdly, based on the proposed theory, we design two highly-scalable algorithms
to solve the optimal sensor placement and functional observer design problems in the
context of structural networks. The first algorithm determines the minimal set of
sensors placed on a dynamical network required to ensure the functional observability of
a system with respect to a given set of target nodes, while the second algorithm—after
the sensors are placed—designs a minimum-order functional observer whose output
converges asymptotically to the target states, thus achieving accurate estimation.
Numerical results are shown for both algorithms in the context of large-scale complex

networks and applications in power grids and epidemics.

1.3 List of Publications

The following manuscripts were published, or are in final stages of editing, during the

course of this work:

e Arthur N. Montanari, Chao Duan, Luis A. Aguirre, Adilson E. Motter.
Functional observability and target state estimation of large-scale networks. In
progress (2021).

o Arthur N. Montanari, Luis A. Aguirre. Observability of Network Systems: A
Critical Review of Recent Results. Journal of Control, Automation and FElectrical
Systems, 31:1348-1374 (2020).
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o Arthur N. Montanari, Ercilio I. Moreira, Luis A. Aguirre. Effects of net-
work heterogeneity and tripping time on the basin stability of power systems.
Communications in Nonlinear Science and Numerical Simulation, 89:105296
(2020).

o Leonardo L. Portes, Arthur N. Montanari, Debora Correa, Michael Small,
Luis A. Aguirre. The reliability of recurrence network analysis is influenced by
the observability properties of the recorded time series. Chaos, 29:083101 (2019).

o Arthur N. Montanari, Leandro Freitas, Leonardo A. B. Torres, Luis A. Aguirre.
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1.4 Outline

This manuscript is subdivided in five chapters. Chapter 2 presents the used theoretical
foundation and notation of system theory and graph theory applied to network systems
modeling, while Chapter 3 thoroughly reviews observability of dynamical and network
systems. Following the previous discussion, Chapter 4 presents the main results of this
work, generalizing the concept of functional observability to structural networks as
well as providing application examples in power grids and multi-group epidemiological
models. Finally, Chapter 5 concludes this work with some future work proposals and

final considerations.






Chapter 2

Dynamical Networks Modeling

A dynamical network can be studied at three levels: i) the node dynamics, described
by a dynamical system; ii) the network topology, described by a graph; and iii) the
full network, a combination of both aforementioned levels (Aguirre et al., 2018). The
interconnection among independent and comparatively simpler dynamical systems in
a network unravels different kinds of interactions that considerably raises the system
complexity (Monteiro, 2014). Thus, to investigate a full network, three components
must be considered: i) the graph, which describes the interconnection structure along
the network; ii) the coupling method, which describes how these interconnections
unfold; and iii) the node dynamics, which describes the behaviour and interactions of
a node when isolated from its neighbourhood.

This chapter is organized as follows. Section 2.1 formalizes the adopted notation
for dynamical systems representation in this work. Section 2.2 reviews fundamental
properties and metrics of graph theory. Section 2.3 mathematically defines a dynamical

network based on the three aforementioned levels of definition.

2.1 Dynamical Systems Notation

The state-space representation of a linear continuous time-invariant dynamical system
is given by
* = Ax + Bu,
(2.1)
y = Cx + Du,
where € R"™ is the state vector, u € R? is the input (control) vector, y € R? is the

output (measurement) vector, and (A, B, C, D) are matrices of consistent dimensions



8 Dynamical Networks Modeling

known as, respectively, the dynamic matrix, input (control) matrix, output (measure-
ment) matrix and feedforward matrix. Time ¢ dependence is omitted for compactness
of notation, only for the system variables @, u and y. Vectors are defined as column
vectors, denoted by bold lower-case letters, and matrices by upper-case letters.

For an autonomous nonlinear continuous time-invariant dynamical system, the

state-space representation is:
& = f(x),
y = h(x),
where f : M +— M and h : M +— R? are nonlinear functions, and @ € M C R". It is

assumed that the reader is familiar with linear and nonlinear system theory. For more

(2.2)

details, the reader is referred to (Chen, 1999) for linear systems theory, and to (Khalil,
2002; Vidyasagar, 1978) for fundamentals of nonlinear systems.

2.2 Graph Theory

Graph theory provides mathematical definitions, properties and metrics for analysis
and design of network systems and even algorithms. This section presents key aspects
of graph theory applied throughout the work.

A graph is defined as G = {V,E}, where V = {v1,vg,..., 0, and E CV x V =
{e1,€3,...,6e5} are finite sets of m nodes and m edges, respectively. The cardinality
of a set, denoted by |V|, is the number of elements of the set. The adjacency matriz
Aag; = [agj] is a representation that associates elements (edges) of £ to a pair of
elements (nodes) of V. In what follows, the notation A,q; = [a;;] is used to denote that
a;; is an entry of A,g;.

The following conventions and properties of graph theory are used throughout this
work. For more details, we refer the reader to (Bullo, 2016; Chen et al., 2013; Newman,
2010). Figure 2.1 illustrates the following types of graph and exemplifies some usual

graph structures in the literature:

« Undirected and directed graphs. If (v;,v;) are undirectedly linked, then a;; =
aj; # 0, and A,q; is a symmetric matrix. If (v;,v;) are not linked, then a;; = 0.
This adjacency matrix is denoted as wundirected. If it is a directed graph, or
digraph for short, then a;; corresponds to an edge connecting node v, to node v;
(Newman, 2010). If a;; # 0, then node 7 has an edge connecting to itself, denoted
as self-edge.
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e ok O
EEH/?Q%V

Figure 2.1: Graph examples. (a) Chain or path graph. (b) Star graph. (c) Ring or
cycle graph. (d) Complete or fully connected graph. (e) Cartesian grid graph. (f) Digraph.
(g) Cycle digraph. (h) Weighted graph.

e Binary and weighted graphs. If A.q; € {0,1}™°™, then the graph is binary or

)me

unweighted. And the graph is weighted if A,q; € (—00, 00

o Paths. A path is an ordered sequence of nodes, interconnected by direct edges (if
it is a digraph), between a given pair of nodes. A simple path has no repeated

node in its sequence, except possibly for the initial and final node.

o Clycle. A cycle is a simple path where the final node equals the inital one, and it

has at least 3 nodes. Otherwise, the graph is acyclic.
o Connected. A graph is connected if there exists a path between any pair of nodes.
o Subgraph. A digraph G’ = {V', &'} is a subgraph of G if V' CV and & C €.

e Line graph. A line graph L(G) is a graph such that each node of L(G) represents
an edge of G, and two nodes of L(G) are adjacent if and only if their corresponding
edges are incident in G (share a common endpoint). In other words, edges of G
become nodes of L(G) and vice-versa.

In a dynamical system context, the Laplacian matrix and the connectivity properties

of a graph are very useful in the state-space representation of networks of diffusively

coupled oscillators (Bullo, 2016). These concepts are reviewed in what follows:

o G is strongly connected if there exists a directed path between any pair of nodes;
o G is weakly connected if the undirected version of a digraph is connected;

o A globally reachable node is a node that can be reached from any node by a direct

path; and
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(b)

Figure 2.2: (a) SCC (in dashed circles) and root SCC (in solid circle) of a digraph.
(b) Condensation graph of (a). Adapted from (Bullo, 2016).

o A directed spanning tree is a subgraph where a node is the root of directed paths
to all other nodes.

A particular definition of interest is the strongly connected components (SCC).
A subgraph G’ is a SCC if G’ is strongly connected and any subgraph of G strictly
containing G’ is not strongly connected. A root SCC' is a SCC with no incoming edges.
A condensation digraph C(G), in turn, is defined as a graph whose nodes are a SCC of
G, and there exists a directed edge from a node formed by G} to a node formed by G,
if there exists a node from Gj connected to a node from G;. Figure 2.2 illustrates these
concepts.

The Laplacian matrix L = [l;;] is defined as follows:
L = Dging — Aadjs (2.3)

where Dgiae = diag(kiin, - - ., km,in) is called the degree matrix and k;;, = Z}":l a;j is

the in-degree of node v;. Some useful properties of the Laplacian matrix are (Boccaletti
et al., 2006):

e L is always symmetric and positive semidefinite.

o Given that Ay < XAy < ... <\, are eigenvalues of L, if Ay > 0 (A\; = 0), then the

network is connected.

e The number of connected components in G is the dimension of the nullspace of

the Laplacian matrix and the algebraic multiplicity of the zero eigenvalue.

o trace(L) = 2m if the network is unweighted or the weights are normalized such
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Based on the type of graph under study, several interesting conclusions can be
derived from the structure or connectivity properties of a graph, which can be measured
by graph and complex network metrics. One metric of interest in Chapter 4 is the

global clustering coefficient of a graph G = {V,£}:

@; 1)’ (2.4)

CC =

where k; = 37, a;; is the node degree of node v; € V, and T; is the number of closed
triangles in G including v;. The reader is referred to (Chen et al., 2013; Costa et al.,

2007) for further details on network metrics.

2.3 Representation of Dynamical Networks

A dynamical network is a set of dynamical systems interconnected according to a
network topology described by A,q;. Although the individual dynamical systems
at nodes are relatively simple, the interactions among them considerably raises the
network complexity. This interplay is not only governed by the nodal dynamics and
the adjacency matrix, but also by the coupling method. In this section, we show how
dynamical networks can be mathematically represented from a graph approach and a

dynamic systems approach.

2.3.1 Graph representation

A network system can be described by a graph G which determines the interconnection
structure among every element of V), that is, the network topology. To G we associate
Angy € R™™. In the case of a dynamical network composed by linear time-invariant
(LTI) systems, each node v; is composed of a dynamical system (A;, B;, C;, D;) which
itself can be represented by a graph G; = {X&;,&;}. In this case, the adjacency matrix
of G, is the corresponding dynamical matrix A; € R™*". Hence, every node in G is

expanded as a subgraph G; and, therefore, the full network is represented by a larger

and more complex graph Gpy = { Vi, ) (and corresponding adjacency matrix
Al e RVN where N = 37" n;).

We illustrate this representation in Fig. 2.3. Consider a network of m = 3 nodes
whose topology is described by a graph G = {V, €} (Fig. 2.3a). Consider that each
node v; € V represents a 3-dimensional linear dynamical system (A;,0,0,0), with its

corresponding graph G; illustrated in Fig. 2.3b. The full network Gpy (Fig. 2.3c) is,
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v, 0 0 aq3
AAdj = |az 0 0
azi 1] asp 0 0 -1 0
asz A =1 0 0
V1 a [ a3 0 —aqi3 @ 0 -1
13 L=|—-a a 0
Vs 21 21
0 -azp; asp

A, 0 O aq3 0 —Qi3
= [0 A, 0]——(121 ayy 0

0 —Qzz a3

~
I
0 -1 0 0 0 0 0 0  07p
1 -5 0 0 0 0 0 a5 O [[xn
¢, 0 -1 0 0 0 0 0 0]|xsy
0 0 0 0 -1 0 0 0 0]l]xe
=[0 @ 0 1 —ay 0 0 0 0||xxm
0 0 0 a 0 -1 0 0 0]
0 0 0 0 0 0 0 -1 0]]xs
0 0 0 0 +a;; 0 1 —ay 0 ||xzs
o0 0 0 0 0 0 a 0 —1llxs

(©)

Figure 2.3: (a) Network topology graph G, and respective adjacency matrix A,q; and
Laplacian matrix L. (b) Nodal dynamical system graph G;, for i = 1,2, 3, of a 3-dimensional
linear oscillator X; = {x1;, 2, x3;}, and respective dynamical matrix A4;. (c) Full network
graph Ggg of a network topology graph described in (a), where each node is composed of a
linear oscillator presented in (b) coupled by the z9; variable.

therefore, given by G, where each element of V is expanded as a subgraph G;. In this
case, graphs {G1, Go, G3} are subgraphs of Ggy (however, this is not always the case, as
seen in Example 2.2).

Not only expanding each node as a subgraph is essential since it includes the effects
of nodal dynamics in the representation, but it also highlights which is the coupling
variable between the interconnected nodes. Albeit for the higher dimensionality
(|Gran| = N), it is clear that the full network representation is a more complex and
complete model of the dynamical network, which can potentially lead to a more reliable
analysis of the system.

This notation is only valid for linear dynamical matrices coupled by a linear graph
(i.e., a linear coupling method). For nonlinear dynamical systems (2.2), or nonlinear
couplings between the nodes, we use the following representation (Letellier et al., 2018):
linear connections are represented by solid lines, while nonlinearities are represented by

dashed lines. This is a reminder that nonlinear connections are no longer constant and



2.3 Representation of Dynamical Networks 13

might vanish under specific circumstances. The nonlinear graph now faces singularity
issues that can have a huge impact for the “information flow” between two nodes, or
vertices, interconnected by a nonlinear edge. See Example 2.2 for further details. This
representation has great value for symbolic analysis, as presented in an observability
context (Bianco-Martinez et al., 2015; Letellier and Aguirre, 2009; Letellier et al.,
2018).

2.3.2 State-space representation

A dynamical network can also be represented as a larger dynamical system (2.1)
of higher-dimensionality N = 1", n;, where n; is the dimension of the i-th nodal
dynamical system and m is the cardinality of the network topology G. This high-
dimensional representation, however, is usually detrimental to classical methods from
system analysis and control design (Chen, 2014). Nevertheless, a dynamical network
is a special case of a high-dimensional system. Since many applications in network
systems have a rather sparse network topology and similar nodal dynamics (same set
of ODEs but with parametric differences, yielding N = mn, where n; = n, Vi), it is
in the best interest of analysis and control methods of dynamical networks to take
advantage of these properties.

In this sense, a compact state-space representation of a full (dynamical) network is

presented in what follows, adapted from the work of Pecora and Carroll (1998):

T A 0 ... 0 T
I A L 2
e \0 0 4 )|

where z = [z] ... z]]" € RY and =; = [vy; ... z]7 € R, for i = 1,...,m.

Thus, z;; is the j-th state variable of the dynamical system at node v;, and x; is
the corresponding state vector. L is the Laplacian matrix of the full network Gy,
describing the connection among all the state variables. The negative sign before L
implies that the state variables are diffusively coupled!.
The Laplacian matrix L of G is related to the Laplacian matrix L of the network
topology graph G as follows:
L=L®M, (2.6)

!Two variables (z;, ;) are diffusively coupled by a coupling function g(z;, ;) if g(z;, x;) =
_g(wj ) wi)'
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where ® denotes the Kronecker product, and M = [m;;] € {0,1}"*" is the “coupling
matrix” that defines how the state variables are interconnected among themselves.
That is, if m;; = 1, then an edge connecting node v; to v; in G is actually coupling the
state variable x3; to xz in G-

For instance, note that the “full graph” in Fig. 2.3c can be represented as in (2.5).
Furthermore, if we assume that ; = a (yielding A; = A), for ¢ = 1,2, 3, then (2.5) can

be represented in a compact form as:
t=(LA-L M), (2.7)

where I3 is the identity matrix of order 3. Indeed, this compact notation highlights the
several levels of interplay in a dynamical network, including: (i) the nodal dynamics A,
(ii) the network topology L, (iii) and the coupled state variables between interconnected

nodes, represented by the coupling matrix M.

2.3.3 Examples

In this work, two specific oscillators are taken as benchmark examples for theoret-
ical and numerical analysis in dynamical networks: the Kuramoto phase oscillator
(Kuramoto, 1975) and the Rossler attractor (Rossler, 1976). The former for its rich
dynamical behaviour with the added advantage of being described by rather simple
equations. The latter for its chaotic behaviour, wide knowledge in the literature and
interesting observability properties. The state space representations of both oscillators

are presented in the following examples.

Example 2.1. Network of Kuramoto phase oscillators.
The Kuramoto phase oscillator is a 1-dimensional linear dynamical system defined as
(Kuramoto, 1975):

T =w, (2.8)

where z € R is the oscillator phase angle, and w is the natural frequency.

Although described by a rather simple equation, the Kuramoto oscillator shows a
rich dynamical behaviour when interconnected in a network by a sinusoidal coupling
(Dorfler and Bullo, 2014). Consider a network G = {V, £} of Kuramoto oscillators
where each oscillator (node) v; € V is represented by the phase angle z; € R (i.e.
v; := x;). This dynamical network can be represented by the following continuous
state-space model (Chen et al., 2013; Dorfler and Bullo, 2014; Moreno and Pacheco,
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2004; Wang and Chen, 2002a):

N
x’i:wi—l—Zaijsin(xj—xi), 1=1,2,...,m, (2.9)
j=1
-
where ¢ = [ml Ty ... xN] € RY, N = m is the network size, and A,q; = [a;;].

Note that the coupling among the oscillators is additive, diffusive and proportional
to the coupling strength a;;. Alternatively, (2.9) can be rewritten as a function of the

Laplacian matrix:
N

T=w+ Y A O sin(l.’I;T — wlT), (2.10)

j=1

-
where w = |w; ... wN] and 1 € {1}"V (N-dimensional column vector of “ones”),
and © denotes the Hadammard product (element-wise product). If (z; —x;) is bounded
in a small region around the equilibrium point, it is possible to linearize (2.10) with a

reasonable accuracy, yielding the following linear representation

& =w— Lx. (2.11)

Example 2.2. Network of Rossler systems.

The well-known Rossler system is given by the following set of ODEs (Réssler, 1976):

T =—-Yy—2z
y =x+ay (2.12)
2 =b+z(xr—c)

where this system settles to a chaotic attractor for (a,b,c) = (0.398,2,4).
Figure 2.4 illustrates how the Rossler system can be represented as a “nonlinear
graph”, proposed by Letellier et al. (2018), using the Jacobian matrix D f of (2.12):

0 —1 —1
Df =11 a 0 ) (2.13)
z 0 Tr—c

Consider now a network of m Rossler oscillators linearly coupled by means of the
variable y (Boccaletti et al., 2002; Pecora and Carroll, 1990). Hence, at each node

T
v; € V there is a system with state variables x; = [xl Yi zl} . The dynamical network
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x—c\_ |

-

Figure 2.4: Nonlinear graph of the Jacobian matrix of the Réssler system. Linear and
nonlinear edges are represented by solid and dashed lines, respectively. This convention is a
reminder that nonlinear connections are no longer constant and might vanish under specific
circumstances. For instance edges ags = x — ¢ and as; = z vanish at z(t) = c and z(t) = 0,
respectively. Such singularities might have a huge impact on the “information flow” between
two nodes interconnected by a nonlinear edge.

can be represented by the following state-space model:

Ty = —Yi— %
Ui =m0 a(y; — vi) (2.14)

fori =1,...,m, (a;, b;, ¢;) are the parameters of the ith Rossler system, and A.q; = [ayj].
This is a state-space model of dimension N = 3m. Note that, differently from Example
2.1, the diffusive coupling is linear.

Coupling the Rossler oscillators directly from y to x, yields

Ty = =Y — 2+ 2y ai(yy — )
Ui =T+ ay; (2.15)
Z@' = bz + Zz'<IL’Z' - Cz’)

or undirectedly coupled by all variables, also known as “network of networks” (Chapman
et al., 2014):

T = =y — 2+ 2 ag(T; — 1)
Ui =it aqy + 250 ai(y; — yi) (2.16)
Zi = b+ zi(r — ) + XL aii(z — )
fori=1,...,m.
Dynamical networks (2.14), (2.15) and (2.16) are illustrated as full networks in Fig.
2.5. Equations (2.14)—(2.16) can be represented similarly to (2.7), highlighting the
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(©)

Figure 2.5: Full network Gy of Rossler systems coupled (a) undirectedly by y variable
(diffusive coupling), (b) directly from variable y to z, and (c) undirectedly between all
respective variables. Network topology G is a cycle graph with m = 3. Self-edges are included
(or have the weight modified, if already present) to the coupled vertices because of the
diffusive coupling. Note that, unlike to Fig. 2.3, in example (b), G is not a subgraph of Ggy.

network structure and coupling variable, as follows:
z=f(x)— (L M)z, (2.17)

where © = (11 y1 21 .. T Ym 2], £ =[f1 (1) ... fl(zn)]" : RY = RN, fi(x;) :
R3 — R? is a nonlinear function that describes the nodal dynamics of x; according to

(2.12), and the coupling matrix M is given by

00 0 01 0 100
M=101o0, |00o0|, oo [0 1 0], (2.18)
00 0 00 0 00 1

for (2.14), (2.15) and (2.16), respectively. A






Chapter 3

A Review on Observability of
Network Systems

Observability is a property that determines if the trajectory temporal evolution of
the internal states of a dynamical system can be reconstructed based on knowledge
of the inputs and outputs, as introduced by Kalman (1959). This classic concept of
observability, addressed here as structural observability, is based on a crisp definition,
i.e. the system is or is not observable (Chen, 1999). This crisp classification might be
misleading since, in some ll-conditioned cases, a small change in the parameter space of
an unobservable dynamical system might make it observable, and vice-versa (Friedland,
1975). Thus, although observability is a sufficient and necessary condition for the design
of a state observer (Luenberger, 1966), a more important question for practical purposes
might be whether a system is almost unobservable or not. This structural definition can
be extended by metrics that quantify observability in a gradual or continuous manner,
i.e. measuring how well the system trajectory can be reconstructed (Aguirre, 1995;
Friedland, 1975), which we address as dynamical observability. Dynamical observability
not only allows one to identify if a given dynamical system is observable from a practical
point-of-view, but it also allows one to quantify and rank the degree of observability
conveyed by different sets of output measures—and therefore choose the best option
(Letellier et al., 1998). Sections 3.1 and 3.2 review both approaches to quantify the
observability of a linear and nonlinear dynamical system.

In the context of network systems, it is a reasonable assumption that not all nodes
are available for measurement. For instance, not every single neuron of the one hundred
billion neurons present in the brain are physically accessible for direct measurement.

Likewise, it might not be economically viable to place a phasor measurement unit
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in every single electrical substation of a power system. Thus, two important goals
in the field of network systems are: i) to determine if a given (minimum) set of
sensor nodes!' renders the network observable, a problem that can be assessed by
structural observability metrics; and ii) to determine the best set of sensor nodes from
different configurations with the same cardinality, a problem that can only be solved
by dynamical observability metrics. Indeed, the optimal sensor placement problem can
be approached as an observability problem.

However, classical observability metrics from control theory are unfeasible for high-
dimensional (network) systems. To circumvent this issue, Liu et al. (2011b) presented
a pioneer work on the controllability of network systems?, where the notion of network
controllability is revisited under a different definition grounded on graph theory (Lin,
1974), which we address here as topological controllability and observability, reviewed
in Section 3.3. This opened a recent and new branch for research in the control of
(complex) network systems (Liu and Barabési, 2016), which has gathered several—but
not yet consolidated—results in the literature.

Undoubtedly many works in the literature embraced the graph-theoretical approach
to the controllability and observability of network systems (Gao et al., 2014; Jia et al.,
2013; Leitold et al., 2017; Nacher and Akutsu, 2013; Pésfai et al., 2013; Yan et al.,
2015), leading to some major developments in this field, including applications in the
control of neuronal networks (Gu et al., 2015; Su et al., 2017). This preference for
the graph-theoretical perspective of observability, developed by Lin (1974), is mainly
due to the intuitive representation of network systems by graph models and the high
scalability of graph metrics. However, it must be noted that a great number of results in
this field totally disregard the effects of nodal dynamics. This led to recurrent criticism
on the true applicability of their work (Cowan et al., 2012; Gates and Rocha, 2015;
Leitold et al., 2017; Wang et al., 2017), as upcoming works showed that the topological
observability severely underestimates the required number of sensor nodes for practical
purposes such as state estimation (Haber et al., 2018; Montanari and Aguirre, 2019).
Not only that, but the conclusions might be drastically different when the effects of
nonlinearity are properly taken into account (Jiang and Ying-Cheng Lai, 2019; Letellier
et al., 2018; Motter, 2015). Indeed, the interplay between observability of a network

LA common jargon in literature is to refer to nodes available for measurement (that issue output
signals) as sensor nodes, and control nodes (that have input signals) as driver nodes.

2The study of controllability and observability of network systems was born in a controllability
context. Thus, some of the discussion in this work might be focused on controllability rather than
observability, although we can rely on the duality between both concepts (in a linear context) to
understand and compare the available results.
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system, the graph structure and and the nodal dynamics, therefore, remains an open
subject to study in network systems.

The main contribution of this chapter is not only to survey the literature of ob-
servability of network systems—which has been done before by Liu and Barabasi
(2016)—but mainly to review, with a critical mindset, recent advances on the observ-
ability of network systems from a control theory perspective. The pros and cons of a
topological approach to the observability of network systems are exposed in Section 3.4,
while Section 3.5 provides some guidelines and future research directions in this field of
work. To confront the concepts of structural, dynamical and topological observability
at a “practical” level, we provide two application examples of optimal sensor placement
in the context of power systems and multi-agent system consensus in Section 3.6.

We refer to (Aguirre et al., 2018) for the adopted nomenclature and classification
of observability metrics in this chapter. The contents of this chapter were published in
(Montanari and Aguirre, 2020).

3.1 Structural Observability

We hereby address as structural observability to any crisp definition of observability

4

based on a “yes-no” condition, i.e. a definition that classifies a system as either

observable or not.

3.1.1 Linear dynamical systems

The classic concept of observability for linear systems was introduced by Kalman
(1959). The following definition and theorem is further discussed and proven in many

textbooks in linear systems theory, including the work by Chen (1999).

Definition 3.1. (Chen, 1999, Definition 6.01) The linear system (2.1) or the pair
(A, C) is said to be observable if for any unknown initial state x(0), there exists a finite
time t; > 0 such that the knowledge of the input w and the output y over t € [0, 1]

suffices to uniquely determine x(0). Otherwise, (2.1) is said to be unobservable.

Theorem 3.1. (Chen, 1999, Theorem 6.01) The following statements are equivalent.

1. The n-dimensional pair (A, C) is observable.

2. The matriz W,(t) € R™"

t
W,(t) = /O ATTOTCA dr (3.1)
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is nonsingular for any t > t;.

3. The observability matriz O € R"*"

C
CA
o=\ ca (3.2)

_CAnil_
has full column rank, i.e. rank(O) = n.

4. The matrix {(A -7 C’T}T has full column rank at every eigenvalue \; of
A, fori=1,...,n.

5. If Re{\;} <0, for alli=1,... ,n, then the unique solution of
AW, +W,A=-CTC (3.3)
s positive definite, is called observability Gramian and can be expressed as

W, = / T AT A (3.4)
0

Proof. Equivalence between statements (1)-(5) is proven in (Chen, 1999). We state an
alternative proof on the equivalence between statements (1) and (3), found in (O'Reilly,
1983). Consider the linear system (2.1), where the temporal evolution of y(¢) is given
by
¢
y(t) = CeMax(ty) + C [ e Bu(r)dr + Du(t). (3.5)

to
Following Definition 3.1, since we suppose that w(t) and y(t) are known over t € [to, t1],

(3.5) can be rewritten as
y(t) = CeMz(ty). (3.6)

where g(t) := y(t) = C [ A" Bu(7)dr + Du(t) is a known variable. From Definition
3.1, system (2.1) is observable if &(ty) can be solved from (3.6). Differentiating (3.6)
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successively around t = t; yields

Y(to) ¢
T

R S B T
g(nfl) (tO) C A1

g(to) = Om(to)

Equation (3.7) is a set of linear algebraic equations. Since g(to) is known, the
initial state @ (¢y) can be uniquely determined if g lies in the column space of O. We
prove the sufficiency and the necessity of equivalence (1)-(3) from (3.7).

Sufficiency. If the system is unobservable, then there is an « # 0 such that y =
CeAlt=to)g = 0,Vt > t,. Then, from (3.6), we have Cx =0, CAx =0, CA%x =0,....
Therefore, the system is unobservable if there is a @ # 0 that is orthogonal to every
element of O, which is only possible if rank(O) < n.

Necessity. Suppose rank(Q) < n. Then there is an & # 0 in R” such that
Cx =0, CAx =0, CA%x = 0,..., CA" 'z = 0. Because, from Cayley-Hamilton
Theorem (Chen, 1999, Theorem 3.4), C'A™ is a linear combination of its lower degree
terms {C,CA,...,CA" 1} the rank of O stops growing if terms C'A?, for i > n, were
added to it—which implies that the dimension of the column space of O also stops
growing. Thus, if rank(OQ) < n, then there is an @ # 0 lying in the column space of O

which is not reconstructible (yielding an unobservable system). O]

From the proof above, it is clear that, if a pair (A, C') is observable, then a solution
for (3.7) exists, given by
z(0) = 0'9(0), (3.8)

where O denotes the Moore-Penrose inverse (pseudoinverse). Since rank(Q) = n, then
-1
Of .= ((’)T(’)) OT and, therefore, solution x(0) is unique.

Remark 3.1. Computation of (3.8) is not feasible for practical applications since it
requires differentiation of y(¢), which amplifies high-frequency noise in measurements.
Nevertheless, proving that rank(Q) = n guarantees that x(ty) can be uniquely de-
termined and is also a sufficient and necessary condition for existence of stable state
observers. Moreover, the observability matrix is also related to subspace identification
methods (Haber and Verhaegen, 2014; Overschee and De Moor, 1996).

Note that Definition 3.1 only classifies the pair (A, C') as observable or unobservable.

Thus, we refer to Theorem 3.1 as a structural observability property. This crisp
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classification is due to the observability property being based on a rank condition
of (3.2). Consequently, the observability property is a discontinuous function of the
system parameters. Hence a small change in the parameter space of (2.1) can move a
dynamical system from unobservable to observable, and vice-versa.

Suppose that matrix OT O is nonsingular, but 4ll-conditioned. For practical purposes,
this means that the computation of its inverse is prone to large numerical errors, leading
to large errors in the solution of (3.8). One might argue that in this case, a pair (A, C) is
almost unobservable—or rather unobservable for practical purposes—and, therefore, the
structural observability property of Theorem 3.1 is not suitable for certain applications
due to its sensitivity to an ill-conditioned matrix (Friedland, 1975). This problem is

further explored in Section 3.2.

3.1.2 Nonlinear dynamical systems

Several generalizations to observability of nonlinear systems have been proposed in the
literature (Hermann and Krener, 1977; Letellier and Aguirre, 2009; Mesbahi et al., 2019;
Sontag, 1991; Zabczyk, 1995; Zhirabok and Shumsky, 2012). This work follows the
definition of local weak observability®, grounded on differential geometry, established
by Hermann and Krener (1977).

Consider the nonlinear system (2.2), or the pair { f, h}. Let the flow map ®,(x(to)) :
M — M be the solution of (2.2), which defines the trajectory from a initial state (o)
to a final state x(ty + t), given by

to+t
D, (x(ty)) :==x(to+t) = x(to) + \ f(x(7))dr. (3.9)

From Definition 3.1, the concept of observability can be generalized to nonlinear
systems (2.2) by determining whether an initial state x(ty) can be uniquely recon-
structed from the image of the composition map h o ®,. This is formally defined as
follows (Hermann and Krener, 1977; Mesbahi et al., 2019).

Definition 3.2. The nonlinear system (2.2), or the pair {f,h}, is
e locally observable at x if there exists a neighbourhood U C M of xqy such
that for every state xy # €1 € U, h o ®y(xy) # h o B, (x1) for some finite t > ty;

e locally observable if it is locally observable at every xy € M;

3Note that the definitions of “weak” or “local weak” observability found in Hermann and Krener
(1977) are omitted since they are equivalent to the “local” observability definition (defined below)
when considering autonomous systems (2.2).
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« and observable if its locally observable and the neighbourhood U can be taken
as M.
Otherwise, {f,h} is said to be locally unobservable at x.

An advantage of the local observability definition is that it can be verified through

a simple algebraic test as follows.

Theorem 3.2. Let the nonlinear system (2.2), or the pair { f,h} be of class C*, s > 1.
The pair {f,h} is locally observable at xq if the observability matrix

5 LSh(x)
O = — : 3.10
=gy | , (3.10)
L% h(x) .
is full rank, i.e. rank(O(xg)) = n, where ,Cjch(a:o) = Vh - f is the j-th Lie derivative
of h along the vector field f at x = x,.

Proof. (Klaus and Reinschke, 1999) From Definition 3.2, {f, h} is observable if the

map
T T
V,(x): x— {yT {y(l)} {y(s_l)} ] (3.11)
is invertible (injective) for a given s > 1—in other words, if it is possible to uniquely
determine x from y (and its successive derivatives). The inverse function theorem
provides a sufficient condition for local invertibility of general nonlinear maps: Wp,(x)
is locally invertible at x if its Jacobian matrix has full rank, i.e.

rank (all(;h(w)> = n. (3.12)

€r

r=xq

Substituting (2.2) in (3.11), yields the nonlinear map

y h(z) Lh(z)
(1) dh(z) Llh
W, (x) = y: = v = f_(‘”> , (3.13)
yo b |22 g ()

where higher-order Lie derivatives are defined as

_ oL} 'h(x)

J .
Lih(x) : 5

f(z), (3.14)
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for L$h(x) == h(x).
It follows that the Jacobian matrix of ¥, (x) is equivalent to O(x) and hence

condition (3.12) implies local invertibility (and observability) at . O
Remark 3.2. It follows that (3.10) reduces to (3.2) if f and h are linear functions.

Remark 3.3. In the context of single measurement (¢ = 1), the nonlinear observability
matrix (3.10) is full rank only if s > n. Theoretically, however, the necessary number
s of Lie derivatives so that the nonlinear system is observable depends on {f, h} and
can even tend to infinity (Mesbahi et al., 2019; Zabczyk, 1995).

The discussion in Section 3.1.1 regarding this crisp classification of observability
and the effects of ill-conditioning of O also holds for the nonlinear case. Naturally,
computational burden is aggravated for the nonlinear case, since computation of (3.10)

is more intensive than (3.2).

Observability and embedding theory. A relation between observability and
embedding theory follows naturally from the proof of Theorem 3.2 (Letellier et al.,
2005). If b : R® — R and y € R! (single output), then the pair {f,h} is locally
observable if the Jacobian matrix of the map ¥, is locally nonsingular. In this case,
(3.10) is the Jacobian matrix of the map ¥, between the original state-space and the
n-dimensional differential embedding space (Letellier et al., 2005)%. If ¥}, is nonsingular
for all @, then there is a global diffecomorphism and the pair {f, h} is fully and globally

observable.

Example 3.1. Structural observability.
Consider Rossler system (2.12). If h(x) = y (the recorded variable is the y variable of
the Rossler system), then the observability matrix O, () (or the Jacobian matrix of

the map \Ilz::vr—> [y Y gj})is

0 1 0
ows
Y = (’)y(m) = |1 a 0. (3.15)
ox )
a a‘ —1 —1

Since Oy () is constant and nonsingular (implying full rank) for all € R”, the Réssler

system is fully (globally) observable from the y variable.

4The relation between the observability matrix and the Jacobian matrix of map ¥}, was investigated
for multivariate embedding (h : R™ — R?) in (Aguirre and Letellier, 2005).



3.2 Dynamical Observability 27

If h(x) = z, then the observability matrix O.(x) (or the Jacobian matrix of the
map P2 : x — [z Z é])is

0 0 1
2 =0,(x) = 2 0 r—c . (3.16)
b+2z(x—¢) —z (z—c)—y—2z

Since O,(x) is not constant, we refer to Theorem 3.2. Note that O,(x) is singular
for z = 0, since det(O,(x)) = —2% Thus, considering the definition of structural
observability, the Rossler system is unobservable for z = 0 and observable for z € R\{0}.

This raises the following question: how good is the trajectory reconstruction from
measurements on z in the vicinity of z = 07 This question is further explored with the

definition of dynamical observability. A

3.2 Dynamical Observability

As detailed in Section 3.1, the structural classification of observability faces several
practical problems, such as the feasibility of reconstructing a dynamical system trajec-
tory from a set of output signals whose observability matrix is ill-conditioned (sensitive
to small changes). If one has access to different sets of output signals for a given
dynamical system, it is relevant, for practical purposes, to classify a system not only
as observable or not, but also to establish a continuous quantification of observability
levels conveyed by each available set of output signals. In this way, one can distinct
observable systems between conditions of “poor” and “rich” observability, which directly
affect the reconstruction quality of the dynamical system trajectory. Metrics that
quantify observability in a continuous manner, rather than discrete, are referred in this

work as dynamical observability coefficients (Aguirre et al., 2018).

3.2.1 Linear dynamical systems

As the problem of investigating dynamical observability seems to be related with

the conditioning of matrix O, Friedland (1975) proposed the condition number as an

alternative: (A)
_ a1 _ 0
R(A) = ||A7|1A] = ) (3.17)
where we have used the /5-norm, and o7 > 09 > ... > 0, are the singular values of a

square matrix A. As k(A) increases, the numerical condition of A degrades.
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Friedland (1975) adapted the conditioning number for a more intuitive quantification

of observability as follows.

Definition 3.3. The “coefficient of observability” of a pair (A, C) is defined as

§:= (3.18)

)\max(F)

Amin(F) ‘

where 0 <6 <1, F =070 or F =W,, and Amin and Amax refer to the minimum and
mazimum eigenvalues® of F. If Apax(F) = 0, then necessarily Amin(F) = 0 and the

dimension of the observable space is zero by definition.

Larger values of  indicate that (A, C') is more observable. Thus, even when O is
full rank, a small § points to poor observability. If 6 = 0, then (A, C') is not observable.
The use of observability coefficients allows one to decide if a given set of output
signals (e.g. y; = Ci@) conveys more or less observability to the dynamical system
(2.1) than another set of output signals (e.g. yo = Cox). Thus, if both pairs (A, Cy)
and (A, Cy) are observable according to Theorem 3.1, one can use Definition 3.3 to
distinguish between conditions of “poor” and “rich” observability, which directly affects
the reconstruction quality of this dynamical system trajectory (Montanari and Aguirre,
2019).

Remark 3.4. Although the structural observability definition is invariant under
similarity transformations (Chen, 1999, Theorem 6.02), the coefficient of dynamical

observability ¢ is sensitive to similarity transformations (Aguirre, 1995).

Remark 3.5. Coefficient 9 usually increases with the dimension ¢: typically more
outputs increase the quality of observability. However this is not always true for some

networks of oscillators (Montanari and Aguirre, 2019).

Definition 3.3 is found in several works in the literature based on the conditioning
number of the observability matrix (Aguirre and Letellier, 2005; Aguirre et al., 2018;
Friedland, 1975; Luan and Tsvetkov, 2019; Montanari and Aguirre, 2019; Wang et al.,
2017; Whalen et al., 2015). Nevertheless, it is worth mentioning that other coefficients
of dynamical observability have been proposed in literature based on the observability
Gramian (Johnson, 1969; Pasqualetti et al., 2013b; Summers et al., 2016):

o the trace of the Gramian tr(W,), related to the average observation energy in all

directions of the observable subspace;

5Since F is symmetric, its singular values are equal to the absolute values of its eigenvalues.
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« the determinant of the Gramian det(IV,), a volumetric measure of the set of

spaces which can be observed within one unit of energy;

o and the smallest eigenvalue of the Gramian A, (W,), a worst-case metric related

to the amount of energy required to observe the most difficult state.
It is not yet clear in the literature the distinction between coefficients of observability
based on the observability Gramian and the observability matrix®. For instance, Sun
and Motter (2013) show that a given continuous-time dynamical system might have an

ill-conditioned observability Gramian and a well-conditioned observability matrix.

3.2.2 Nonlinear dynamical systems

Definition 3.3 was extended to nonlinear dynamical systems by Letellier and Aguirre
(2002); Letellier et al. (1998).

Definition 3.4. The “local coefficient of observability” at xy of a pair {f,h} is defined

v MO (o) - O(0))

)\max(OT<w0) ' O(mo))

where 0 < §(xg) < 1. The “global coefficient of observability” of {f,h} is the average
along a trajectory ®, (x(to)), fort € [to, t1]:

(5($0) =

: (3.19)

5 ! [ 6y f(t)ar (3.20)

:tl—to to

The coefficient in (3.20) is not normalized. Hence, it is not meaningful to compare
the coefficient of observability of variables (or sets of output signals) for different

systems. It must be noted that the comparison is relative (Aguirre et al., 2008).

Example 3.2. Dynamical observability.
Consider Réssler system (2.12) and the observability matrix O, () built considering
variable y as the measured (recorded) signal (see (3.15)). Since O, is constant over the
entire state space there is a global diffeomorphism between original and reconstructed
spaces. Computing (3.19) yields 6, = 0.133.

On the other hand, consider O, () in (3.16). As explained in Example 3.1, since
det(O,(x)) = —z*, the system is not observable at z = 0 and, from a dynamical

observability point of view, it is poorly observable in the vicinity of the plane z = 0.

6Especially in the context of continuous-time systems. In the discrete-time case, the definitions of
the observability matrix and Gramian are equivalent.
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For instance, for z = 0.3, using (3.19) yields d,(z = 0.3) = 1.32 - 107%. However,
equation (3.19) only provides a local quantification of the variable z observability. For
a more global quantification, we compute the average (3.20) over the entire chaotic
attractor, which yields 9, = 0.006—indicating, nonetheless, the poor observability of z
when compared to y.

For the Rossler system with (a,b,¢) = (0.398,2,4), the following values were
computed using (3.20): ¢, = 0.022,6, = 0.133,0, = 0.006. Since 6, > 6, > 9, it is
stated that the observability rank of the recorded variables is y >z > z (Letellier and
Aguirre, 2002). A

Examples 3.1 and 3.2 show that the loss of local observability is intrinsically related
to the local singularities that ¥, may have, which are a consequence of nonlinearities.

The following remark holds generally, though.
Remark 3.6. According to Takens’ theorem (Takens, 1981), assuming that {f,h} is

structurally observable, if the dimension of the reconstructed space is increased, that
isU,:x— [y y y(s_l)]T, with s > n usually, then any singularities of ¥; may
vanish and the pair {f, h} gradually becomes more dynamically observable (Letellier
et al., 2005).

3.3 Topological Observability

Sections 3.1 and 3.2 approached the study of observability from a system theory
point of view. However, the developed methods are not particularly efficient for high-
dimensional dynamical systems such as networks. Indeed, even if the full network
dynamics were known, to find a set of sensor nodes that render a full network observable
would require a brute force computation of O over (2 — 1) distinct combinations (Liu
et al., 2011b)—which is not feasible at all. This process would be even more demanding
if computation of eigenvalues in (3.18) or Lie derivatives in (3.10) were involved.

Faced with these challenges, a possible strategy to study the observability of a
network system is to investigate it from a graph approach, which we refer to as
topological observability. In this case, the topological observability is usually assessed
solely from the network topology graph, although some works argue that the results are
more representative when the topological observability is assessed from the full network
graph (Aguirre et al., 2018; Cowan et al., 2012; Leitold et al., 2017), as discussed in
Section 2.3.

Most studies developed over this idea follow the pioneer line of work of Liu et al.
(2011Db), grounded on the structural observability definition of Lin (1974).
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3.3.1 Linear dynamical systems

Lin (1974) proposed a novel concept of structural controllability for linear systems,
which was later extended to observability (Willems, 1986).

Definition 3.5. (Li et al., 2019, Definition 1) A matrizv A € {0,%}" " is called
a structured matriz if A = |a;;] is either a fized zero entry or an independent free
parameter, denoted by a «. A matriz A is a numerical realization of A if a real number

is assigned to all free parameters of A.

Definition 3.6. The structured pair (A, C') is structurally observable if and only if

there exists some numerical realization (A, C') that is observable.

Remark 3.7. Note that rank(A) < rank(A). This upper bound is also known as

structural or generic rank.

A possible interpretation to Definition 3.5 based on graph theory is that two pairs
(Ao, Cp) and (Ay, C}) are of the same structure if their corresponding graphs share the
same structure, i.e. the same set of nodes V and edges &, although the edge weights

do not need to share the same values—provided that they are different from zero.

Remark 3.8. Definition 3.5 is grounded on the assumption that, in real applications,
the true entries of (A, B,C, D) are usually uncertain, while zero entries are somewhat
guaranteed (Lin, 1974). Thus, if a system is structurally observable, then it is observable
for a wide range of parameters except for a proper algebraic variety in the parameter

space which renders it unobservable (Liu et al., 2011b).

Remark 3.9. Note that Lin’s definition of structural observability is structural in two
senses: (i) it is a crisp definition, as detailed in Section 3.1; and (ii) it is independent
of the specific entries of (A, B, C, D)—relying only on the fact that zero entries are
specifically known. “Structural observability (controllability) in Lin’s sense” (Definition

3.6) is only a necessary condition for “observability (controllability) in Kalman’s sense’
(Definition 3.1).

The structural observability definition proposed by Lin (1974) has a strong graph-
theoretical interpretation. In order to understand Theorem 3.3 (and later Theorem
4.3), we present some required definitions.

The corresponding graph of a dynamical system (A, B, C') is denoted by G(A, B, C) =
{V,€}, where V = X UUUS and € = Ex U &, U Es. Nodes sets are the set of state

variables X = {zy,...,2,}, set of input variables Y = {uy,...,u,}, and set of output
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variables & = {y1,...,y,}. An edge (x;, z;) (directed arrow from z; to ;) is an element
of £y if A;; is a free parameter entry of structured matrix A, an edge (x;,u;) is an
element of &, if B;; is a free parameter entry of structured matrix B, and an edge
(yi, z;) is an element of & if Cj; is a free parameter entry of structured matrix C. For
brevity sake, when studying the observability property of a pair (A, C') we refer to
the corresponding graph simply as G(A,C) = {X US,Ex U Es}. Likewise for the pair
(A,B) and G(A,B) ={XUU,Ex U &}

Definition 3.7. A subset of nodes V' C X has a dilation” in a corresponding graph
G(A,C) if and only if |T(V")| < |V'|, where T (V') is the set of all nodes v; € X US
with the property that there is a direct edge from a node in V' to v;.

The following theorem derives from this graph approach to structural observability.

Theorem 3.3. (Lin, 197}, See equivalent theorem and proof for controllability) The
pair (A, C) is structurally observable if and only if the corresponding graph G(A,C)
satisfies both of the following conditions:

1. every state x; € X has a path to some output y; € S;

2. G(A,C) has no dilations.

Example 3.3. Structural observability in Lin’s sense.

Let a linear system (2.1), or a pair (A, C), be expressed as structured matrices
A=|x + 0|, Cc=[0 0 4] (3.21)

Following the definitions above, a corresponding graph of (3.21) can be drawn as shown
in Fig. 3.1. Since every node has a self-edge, G(A, C') has no dilations. Moreover, it is
possible to reach y; from all nodes X = {x1, x9, 23}. Thus, we note that the graph in

Fig. 3.1 is structurally observable according to Lin’s definition. A

3.3.2 Maximum matching algorithm

Grounded on the structural and topological definition of controllability proposed by
Lin (1974), Liu et al. (2011b) presented a pioneering work for controllability of complex

networks®. The main goal is twofold: (i) to identify the minimum set of driver nodes

"Note that the definition of dilation here is dual to Lin’s definition Lin (1974), since here we focus
on the structural observability property rather than controllability.

8 Although the main focus of this work is on observability, the review of Liu et al. (2011b)’s
proposal for controllability is still relevant due to duality.
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X3

\M/L“* V1

Figure 3.1: Graph representation of (3.21).

D = {u,...,uy,}, i.e. input signals w, which can steer a (linear) network system entire
state; and (ii) to understand the relations between controllability and the complex
network (topological) properties.

Liu et al. (2011b) argued that other pioneering works on controllability of network
systems, e.g. (Lombardi and Hornquist, 2007; Rahmani et al., 2009; Tanner, 2004),
are based on a weak assumption that, in a network system, the topology and nodal
dynamics are entirely known. This assumption allowed previous works to explore the
spectral graph properties of a network, such as the spectrum of the Laplacian matrix
(Rahmani et al., 2009). However, even in the face of recent developments in modeling
of complex networks, the accurate estimation of edge weights is not quite realistic yet.
Indeed, in the case of biological or social networks, not even the nodal dynamics are
fully known.

Thus, in order to study controllability of complex networks, Liu et al. (2011b)
turned to the topological and structural controllability definition of Lin (1974) since:
(i) it has a convenient interpretation grounded on a theoretical graph approach, which
is very useful when the network topology can be established; and (ii) following Remark
3.8, Lin’s structural controllability is not sensitive to parameter fluctuations, also a
convenient feature since parameter estimation is often unreliable in large network
systems.

Indeed, Liu et al. (2011b) show that Lin’s structural controllability problem maps
into an equivalent graph problem where one can gain full control over a directed
network® G(A, B) if and only if each unmatched node is directly connected to a driver
node, and there are direct paths from any input signal to all matched nodes. A

matching is formally defined as:

9Definition of G(A, B) is analogous to that of G(A, C), where G(A, B) is the corresponding graph
of pair (4, B).
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Definition 3.8. (Liu et al., 2011b, Definition 8 of Supplementary Information) An
edge subset €y is a matching if no two edges of £y share a common starting node or
a common ending node. A node is matched if it is an ending node of an edge in the

matching. Otherwise, it is unmatched.
This leads to the following theorem.

Theorem 3.4. (Liu et al., 2011b, Theorem 2 of Supplementary Information) The
minimum number of driver nodes np needed to render G(A, B), or the pair (A, B),

controllable, is defined by
np = max{m — |Ey|, 1} (3.22)

where m is the number of nodes in G(A, B). If there is a perfect matching in G(A, B),
np = 1 (i.e. |D| = 1). Otherwise, np equals the number of unmatched nodes with

respect to any maximum matchings (i.e. D is composed by the unmatched nodes).

Remark 3.10. Adding more edges to G(A, B) will never weaken a system structural
controllability by Definition 3.6, which is not necessarily true for Definition 3.1. This
feature makes Theorem 3.4 meaningful in dealing with missing links in network topology
modeling (Liu et al., 2011b).

Remark 3.11. Differently from a brute force search for a minimum D, which is of
order O(2"), the maximum matching algorithm allows D to be identified with at most
O(y/m|&|) steps (Liu et al., 2011b)—a highly scalable algorithm to solve the minimum

driver (sensor) placement problem.

From these results, Liu et al. (2011b) reached several conclusions on the controllabil-
ity of complex networks. The most interesting ones are: (i) controlling heterogeneous
and sparse networks is harder than controlling homogeneous and dense ones; and (ii)
the counter-intuitive notion that driver nodes tend to avoid high-degree nodes. Some
other conclusions, such as the correlation between the np and the network degree
distribution are arguable considering the applied methodology and assumptions (Cowan
et al., 2012). Section 3.4 criticizes and discusses the main results derived from this
framework.

Figure 3.2 illustrates, with some simple network examples, the available choices
of D that render a network structurally controllable in Lin’s sense via the maximum
matching algorithm. This technique is readily available for use in the MATLAB-based
“NOCAD” toolbox (Leitold et al., 2019).
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Figure 3.2: Examples of maximum matching in simple networks. Set £, is composed of
orange edges. Unmatched and matched nodes are represented, respectively, in blue and white
colors. To render the graph structurally controllable, all unmatched nodes must receive an
input signal. (a) In a direct path, a network is controllable from the top node. (b) In this
directed star, there is two sets £y with the same minimum cardinality, thus the network
is controllable for two different configurations of driver placement. (c¢) The addition of a
self-edge removes the necessity for an additional driver node in the same network topology of
(b). (d) The addition of a bidirectional edge has the same effect of (c).

3.3.3 Nonlinear dynamical systems

In a later work, Liu et al. (2013) proposed a means to determine the topological
observability of complex networks in the context of nonlinear polynomial networks
(e.g., chemical reactions). The work is also grounded on Lin’s definition of observability
and motivation is similar to the one stated in Section 3.3.2, whereas the main goal of
Liu et al. (2013) is to determine the minimum set of sensor nodes S = {y1,...,vyq}
which can render the system topologically observable.

Entitled graph approach (GA), Liu et al. (2013) proposed a procedure to guarantee
the topological observability of a network:

1. draw an “inference diagram”, a nonlinear graph G, from (2.2) according to Section

2.319;

2. transpose the adjacency matrix of G (i.e. invert the edge directions);
3. decompose G in strongly connected components (SCCs) (see Section 2.2);
4. determine the root SCCs (i.e. a SCC with no incoming edges);

5. place a sensor node y; in at least one node of each root SCC.

0Note that this inference diagram G drawn from (2.2) does not distinguish between linear (solid)
and nonlinear (dashed) interconnections. The problem of singularities and vanishing nonlinear
interconnections is explored by Letellier et al. (2018), and further illustrated in Example 3.4.
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If no nodes of a root SCC are observed, the network is unobservable, because one or
more columns of O(x) in (3.10) are composed of only zero entries and rank(O(x)) < n.
A more physical interpretation is that if there is no path from a given node to a sensor
node (which always happens if no node of a root SCC is a sensor), then the information

from this state cannot be inferred from any existing sensor nodes (Liu et al., 2013).

Remark 3.12. A graph is observable from a single sensor node if and only if the
graph G has only one SCC. A sufficient and necessary condition for this is that the
corresponding adjacency matrix A.q; € RY*Y is irreducible. A real non-negative
Aqgy € RN s irreducible if and only if (I + Auq5)V " > 0.

Remark 3.13. The procedure is only a necessary condition for observability of
nonlinear polynomial systems. If all sensor nodes selected from GA are measured,
then O(z) has no zero columns (Liu et al., 2013). Nevertheless, there is no guarantee
that O(x) columns are linearly independent, i.e. that O(x) is full rank in the sense of
Theorem 3.2.

Following Remark 3.13, based on an empirical analysis of multiple randomly gen-
erated chemical reactions, Liu et al. (2013) argue that the probability of correlation
among the columns of O(x) is rather small, if not zero, due to the “complicated poly-
nomials” entries of O(x). This is analogous to Remark 3.8 on topological observability,
where it is said that the proper algebraic variety of the parameter space that renders
the system unobservable is comparatively small. However, the presence of symmetries
in a dynamical network can render the system unobservable (Whalen et al., 2015),
leading GA to underestimate S. This is addressed by Liu et al. (2013) when comparing
the lower bound of § for topological observability provided by GA to the one provided
by the maximum matching algorithm.

It must be mentioned that, although the probability that two columns of O(x)
are (exactly) linearly dependent is rather small, the columns of O(x) might be almost
linearly dependent nonetheless—leading to a rather small coefficient of (dynamical)
observability 0. Indeed, since the GA method is based on a structural classification
of observability, it cannot identify the best sensor placement inside a root SCC, only
which sets of sensor nodes are able to render the network topologically observable.

As a concluding remark, we highlight that GA is a methodology developed ex-

clusively for nonlinear systems described by polynomial functions and, therefore, is
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(b)

Figure 3.3: Root SCC (dashed circle) of a Rossler system graph. (a) All edges are nonzero.
(b) For z = 0, the nonlinear edge vanishes.

not directly!! applicable to other nonlinear systems, such as networks of Kuramoto

oscillators.

Example 3.4. Topological observability. We illustrate a potential failure of the
GA method to classify the topological observability of a polynomial nonlinear system,
the Rossler system (Letellier et al., 2018).

As detailed in Section 2.3, let the Rossler system be represented by a nonlinear graph
(see Fig. 2.4). Clearly, if z tends to 0 in (2.12), then the nonlinear edge connecting x
to z vanishes. Figure 3.3 represents the root SCC of a Rossler system graph when the
nonlinear edge is still present and after vanishing. Following GA method, in Fig. 3.3a,
any state (z, y or z) could be chosen as a sensor node in order to render the network
topologically observable. However, if 2z = 0 one edge vanishes and z is no longer part
of the root SCC. Hence only the x and y variables could be chosen as sensor nodes in
order to render the network topologically observable.

This counter-example shows the importance of considering the singularity effects
of nonlinear systems when determining the potential root SCC, especially when the
system operates in the vicinity of this point of singularity. Indeed, the “vanishing” of
the nonlinear edge connecting x to z is the cause of the poor observability of the z

variable of Rossler system, as discussed in previous examples. A

UThere are “universal” representations for nonlinear systems as polynomial systems (i.e. polynomial
vector fields) at the expense of augmenting the number of states and considering only predefined
initial conditions (“consistent” initial conditions) (Kerner, 1981; Ohtsuka, 2005).
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3.4 Analysis of Related Works

This section reviews the extensions and criticism in the literature regarding the afore-
mentioned methods of topological observability. Most earlier discussions in the study
of controllability and observability of network systems focused mainly on controllabil-
ity rather than observability. However, due to the duality of these properties, there
is no harm or loss of generality in comparing and discussing methods designed for
controllability or observability of linear dynamical systems.

In this review, we are more interested in a broader class of works that propose metrics
designed for generalized networks—that is, networks with no specific class of network
topology or nodal dynamics (only linear and nonlinear distinctions). Nevertheless,
several works in the literature explore the relation of observability and the graph
properties of certain types of network topologies, including Cartesian grid graph
(Notarstefano and Parlangeli, 2013), chain and cycle graph (Parlangeli and Notarstefano,
2012), clustered networks (Ruths and Ruths, 2014), and specific complex network
models, such as the scale-free network (Fu et al., 2016). The discussion of observability
has also been directed to networks of specific dynamics and applications, such as
Boolean networks (Chen and Qi, 2009; Gates and Rocha, 2015; Laschov et al., 2013),
chemical reactions (Liu et al., 2013), traffic networks (Castillo et al., 2008), biological
systems (e.g. neuronal networks (Gu et al., 2015; Su et al., 2017)) and power systems
(Baldwin et al., 1993; Monticelli and Wu, 1985).

Lin’s topological definition of controllability. Lin (1974)’s definition of structural
controllability (see Sec.3.3.1) allows an intuitive analysis of a given linear dynamical
system from its corresponding graph representation. This approach, which we refer to
as topological controllability (observability), is not concerned with the specific entries
of system matrices (A, B, C, D) such as the Kalman rank condition in Theorem 3.1,
but rather if those matrices present a structure that might allow controllability under a
correct and arbitrary choice of parameters. Lin argues that, in a mathematical model
of a real process, the parameters estimations are contaminated by uncertainties whereas
“zero” entries are practically guaranteed. Thus, a first step towards deciding if a system

is controllable is to establish if it is structurally and topologically controllable.

Liu and coworker’s controllability of complex networks. Liu et al. (2011b),
motivated by the fact that complex networks often have a reliable topological (graph)
representation but an unreliable estimation of edge weights, took advantage of Lin’s
topological approach to investigate controllability in complex networks. Based on

the maximum matching of the corresponding graph, Liu et al. (2011b) identify the
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“minimum” set of driver nodes D to render a complex network structurally controllable.
However, Lin’s definition of structural controllability is a crisp definition, so how can
one assure that this D provided by the maximum matching is really the best set? This
is specially true since the maximum matching set of a graph is not necessarily unique.
It is shown that Liu and coworkers’ controllability (Liu et al., 2011b) and observability
(Liu et al., 2013) methods underestimate the required set of driver (Gates and Rocha,
2015; Leitold et al., 2017; Wang et al., 2017) and sensor (Haber et al., 2018; Montanari
and Aguirre, 2019) nodes—mainly because they do not consider the specific entries of
(A, B,C, D). Perhaps a more relevant question rather than if a network is structurally
controllable is if it is almost uncontrollable (Cowan et al., 2012; Friedland, 1975).

Control via “control hubs”. A fundamental result of Liu et al. (2011b) is that
heterogeneous and sparse networks are harder to control than homogeneous and dense
ones. This result is based on an analysis of correlation between the number of driver
nodes np required for controllability and the network degree distribution, which was
further discussed by Posfai et al. (2013). This led to a counter-intuitive notion that high-
degree nodes, also called hubs, are less desirable to be driver nodes (Liu et al., 2011b).
As discussed by Nepusz and Vicsek (2012); Slotine and Liu (2012), this is a consequence
of the fact that, since network models in (Liu et al., 2011b) do not consider nodal
dynamics, the control signal injected by driver nodes spread homogeneously among its
neighbouring nodes, raising symmetries that restrict the state-space exploration.
Nepusz and Vicsek (2012) show that control by nodes of high-degree is also possible
if a different paradigm is taken: to change the analysis from nodal dynamics to edge
dynamics (see also (Pang et al., 2017)). The argumentation follows that by choosing a
hub node as a driver, if one can control its edge dynamics individually instead of its
nodal dynamics, then the spread of control signals no longer suffers from symmetry
issues. In case of controlling edge dynamics, homogeneous and dense networks become
harder to control than heterogeneous and sparse ones. Moreover, one can benefit from
controllability metrics (and other network metrics) designed for nodal analysis by
performing a transformation from nodal dynamics representation to edge dynamics
(that is, drawing a line graph from the original graph). This approach reduces the
number of driver nodes in exchange for a higher control energy cost per driver node.

Influence of nodal dynamics. Contradicting some claims in (Liu et al., 2011b;
Nepusz and Vicsek, 2012), Cowan et al. (2012) affirm that the minimum number of
driver nodes is not mostly dependent on node degree distributions (at least in linear
networks), but rather on the underlying nodal dynamics of the studied system. Indeed,
in the network modelling of Liu et al. (2011b), the individual nodes of the studied
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benchmarks show no independent behaviour, acting as pure integrators if the network
were fully disconnected. This is a consequence of Liu et al. (2011b) not including the
presence of self-edges, which are a fundamental part of a network dynamics. Consider

a linear dynamical network (2.1), rewritten as

m p
ii = )\ZIZ + Z Qi 5 + Z bij“j) (323)
j=1 j=1
fori = 1,..., N = m, where x; is the state at node v; (only 1-dimensional systems

are considered at each node). A simplified form of (2.5), equation (3.23) highlights
that, in a dynamical network, each node has its dynamics described not only by its
neighbouring interactions (which includes a potential self-edge a;; related to the network
topology and usually translated in the Laplacian matrix, if a;; # 0), but also by its
own independent dynamical behaviour—given by an eigenvalue \; that determines its
individual time constant (when absent of external influences).

If all nodes of a dynamical network include self-edges, then all nodes are matched
according to Definition 3.8. The network is referred as perfectly matched and, according
to Theorem 3.4, the number of driver nodes required to render it structurally controllable
is one—as long as this unique driver node is attached to all nodes (Cowan et al., 2012).
Once more, hub nodes are shown to be fundamental for network control, despite
demanding higher control energy costs. Although a single control input might be
sufficient to (theoretically) render a network structurally controllable, one should not
expect it to be feasible from a practical point-of-view as the system dimension increases.

This is related to the problem of dynamical controllability (observability).

Benchmarks studied in (Liu et al., 2011b). A common topic of criticism to
Liu et al. (2011b)’s work is that the networks used as benchmarks for the proposed
maximum matching method (see (Liu et al., 2011b, Table 1)) were analyzed on an
exclusively topological level while the internal states that describe the nodal dynamics
were disregarded. Consider the tank system example in Fig. 3.4, as originally discussed
in Leitold et al. (2017). Fig. 3.4b shows a minimum set of driver nodes given by a
maximum matching search if a network model is purely represented on a topological
level, as Liu et al. (2011b) did in most of their benchmark models. Fig. 3.4c, on the
other hand, shows this same outcome if a network model is built from the dynamical
matrix that describes the underlying process, according to Aguirre et al. (2018); Cowan
et al. (2012); Leitold et al. (2017). Note that when including the network dynamics,
only one driver and sensor is (theoretically) required, a result in line with the argument
raised by Cowan et al. (2012).
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Figure 3.4: Adapted from (Leitold et al., 2017). (a) Tank system. (b) Liu and coworker’s
representation based exclusively on the network topology, which is given by the water flow in
the tank system. (c¢) Dynamical network representation where both the network topology
and dynamics are taken into account.

Results pointing to a correlation between node degree distributions and (structural)
controllability, therefore, can be misleading since the benchmark studied on (Liu et al.,
2011b, Table 1) do not represent dynamical processes at all. In fact, Fig. 3.4 is
only a simple example that, if the network dynamics were considered when dealing
with systems such as food webs, regulatory networks, power grids, electronic circuits,
neuronal networks and metabolic systems, it is expected that the minimum set of driver
nodes would be significantly different from the results found by Liu et al. (2011b).
Moreover, specially for strongly connected and diffusively coupled networks, a maximum
matching search can lead to a single sensor node being capable of rendering the whole
dynamical network structurally observable, even if it has hundreds or thousands of nodes.
Once again, this kind of result questions the feasibility of structural controllability and
observability approaches to the control and state estimation of such types of real-world

networks. A more in-depth discussion is presented in Section 3.6

Further works related to topological observability. Despite the criticism re-
garding the limitations of using graph approaches to determine the controllability or
observability of a network system, a lot of effort has been devoted to this front for three
main reasons: i) the plainness from which the graph approach proposed by Lin (1974)
can be extended to the context of network systems, ii) the high scalability of such
approach to large-scale networks with thousands of nodes, as seen in Liu et al. (2011b),
and iii) the fact that the recent and relevant studies established several conclusions

on the effects of network structure to the controllability and observability of a system.
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Numerous extensions to Liu and colleagues’ work led to results on target control (Gao
et al., 2014; Gutiérrez et al., 2012; Jia et al., 2013; Nacher and Akutsu, 2013), study
of correlations between controllability and network properties (Li et al., 2017; Pésfai
et al., 2013), analysis of the relationship between control energy and the chosen set of
driver nodes (Yan et al., 2015), novel controllability methods based on graph properties
(Leitold et al., 2017), robustness analyzes to cascading failures (Pu et al., 2012), and
recent developments in network control of neuronal networks (Gu et al., 2015; Su et al.,
2017).

Lack of validation. A common problem in studies involving network systems
and novel controllability and observability proposals is the lack of an “independent”
validation. Many algorithms and techniques are applied to network databases and
compared to other metrics, leading to conclusions regarding which method provides
the smaller set of driver (sensor) nodes (Liu et al., 2011b, 2013; Nepusz and Vicsek,
2012; Yuan et al., 2013). However, the relevance of the provided set of driver nodes is
not usually questioned. Is it the smaller set of driver nodes really better than the larger
one? In which sense should “better” be understood? This question is a matter resolved
by dynamical observability metrics, although most, if not all, are only applicable to
systems of lower dimensions.

Using a first-order (linear) electronic circuit interconnected by a chain graph as a
validation benchmark, Wang et al. (2017) gave attention to this topic when studying
the practical feasibility of two methods to determine the minimum set of driver nodes:
the maximum matching algorithm proposed by Liu et al. (2011b), and the “exact”
controllability method proposed by Yuan et al. (2013). The authors noticed that,
when applying a single control signal to one of the chain extremities, the longer the
“control chain”?, the closer to being singular was the controllability Gramian (dual
to (3.4)). This is an expected result since, as mentioned in Section 3.2.1, the smallest
and largest eigenvalues of the controllability Gramian are related to the maximum
and minimum energy costs (also known as control energy) of driving a system state
through the state-space. Indeed, in order to compare the practical (physical) capability
of a set of driver nodes to control a dynamical system, Wang et al. (2017) investigated
the conditioning number of the controllability Gramian (Definition 3.3) conveyed by
each set of driver nodes. This is, essentially, a dynamical observability approach to

this problem. One interesting result is that it is possible to raise the coefficient of

12The “control chain” here refers to the path of nodes between the driver node (the input signal)
and the target node.



3.5 Future Research Directions on the Dynamical Observability of Network Systen#3

Y

controllability by a slight addition of driver nodes along the network chain, “breaking’
the long control chain into smaller sections.

Indeed, when validating the feasibility of a minimum set of driver to actually
control the system state, a frequent conclusion is that controllability metrics based
on graph-theoretical (topological) approaches, such as (Lin, 1974; Liu et al., 2011b),
usually underestimates the minimum set of driver nodes (Gates and Rocha, 2015;
Leitold et al., 2017; Wang et al., 2017). This conclusion is also present in the context
of observability, where a minimum set of sensor nodes determined by the GA method
(Liu et al., 2013) was shown to be insufficient to provide a reliable estimation of the
system states when using Bayesian filtering techniques (Haber et al., 2018; Montanari
and Aguirre, 2019).

An interesting approach to validate controllability metrics is to use boolean networks,
since they highlight the interaction between the network topology and nonlinear
dynamics involving simple binary variables (Gates and Rocha, 2015). Moreover, Gates
and Rocha (2015) show that the controllability predicted by the maximum matching
method might fail even for (linearized) small nonlinear examples. Likewise, Aguirre
et al. (2018) show that the structural observability defined by GA is susceptible to
failures if the procedures do not take into account the nonlinearity of the edges (Aguirre
et al., 2018; Letellier et al., 2018)—as discussed in Example 3.4.

3.5 Future Research Directions on the Dynamical

Observability of Network Systems

Most topological observability methods are mainly concerned with distinguishing
which set of sensor nodes renders a network system observable. Another important
goal is to quantify if a given set of sensor nodes renders a network more or less
observable than another set—mnoting that the network is observable from both sets—,
and how this quantification is related to practical purposes (trajectory reconstruction,
state estimation, differential embedding, and so on). This is a matter of dynamical
observability, which still is an open problem in the literature.

A natural approach, for instance, to measure the degree of observability of a given
set of sensor nodes is to extend or simply apply the dynamical observability metrics
discussed in Section 3.2 to network systems. Indeed, this approach was pursued in
some works in the literature. Based on the smallest eigenvalue of the Gramian (see
Section 3.2.1), Yan et al. (2012) focused on the study of scaling laws for the control

energy of network systems as a function of the control horizon, while Pasqualetti et al.
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(2013b)—supported by the findings of Sun and Motter (2013)—studied the trade-offs
between control energy and the number of control nodes. Gu et al. (2015) directed their
study to a neuronal network application, and Bof et al. (2017) demonstrated a relation
between the controllability of a network and its eigenvector centrality'®, showing that
it is harder to control a network whose nodes have a similar centrality degree. Another
interesting result is the report of a trade-off between the controllability of complex
networks and its resilience to perturbations and failures (Pasqualetti et al., 2018; Zhao
and Pasqualetti, 2019). Following Definition 3.4, Whalen et al. (2015) investigated the
presence of symmetries in small motifs (]V| = 3) and its restrictions on the “state-space
exploration”.

However, one of the reasons that led graph-inspired (topological) techniques dis-
cussed in Section 3.3 to dominate this field of work in place of matrix-theoretical
ones is the high scalability of graph tools compared to those developed in control
theory. Moreover, when dealing with driver (sensor) node selection, most developed
solutions suffer from dimensionality issues, since they are either based on combinatorial
or non-scalable optimization techniques, or heuristic approaches that are limited to the
specific studied systems and show no guarantees of control (Pasqualetti et al., 2013b).

In light of this open problem, in this section, we investigate some interesting
paradigms to quantify observability (controllability) of network systems in a computa-
tionally feasible way. In what follows, we briefly discuss five interesting alternatives to

quantify observability (controllability) in network systems.

(i) Network partitioning. Formally, network partitioning consists of dividing the set
of nodes V of a given graph G = {X, £} into P disjoint sets P = {X},..., Xp}, where
G: = {X;, &} is the ith subgraph of G, fori=1,..., P.

Clearly, network partitioning methods (Fortunato, 2010) are a viable alternative
in network systems to subdivide a high-order systems into several and, if possible,
non-intersected “clusters” of lower dimension. Ideally, the low-order subgraphs could be
assessed by traditional methods from control theory. In practice, however, to subdivide
a network into independent systems, or even to uncover its remaining dynamical
interdependences, might be a challenge. For instance, Liu et al. (2013) proposed a

sensor selection method based on a network partitioning into SCC (Section 3.3.3).

13Tt must be noted, however, that this relation was established based on an assumption that the
dynamic matrix A is non-negative, which is not generally the case when the nodal dynamics are taken
into account. When studying combustion and biological networks, Haber et al. (2018) detected no
clear correlation between the optimal selection of sensor nodes and the corresponding node centrality
measures.



3.5 Future Research Directions on the Dynamical Observability of Network Systen#b

Desynchronized (partitioned) control has also been implemented by Su et al. (2017) to
validate its experiments.

For instance, following the GA method, Pasqualetti et al. (2013b) proposed an
elegant solution to actuator placement by choosing all nodes at each SCC boundaries'*
as driver nodes. Hence, the authors developed a control law strategy that decouples the
SCC dynamical interdependences in such a manner that its selected “internal” driver
nodes are solely responsible for the SCC steering from the origin to a target state. In
fact, by “forcing” all the SCC to behave independently, the high-order network problem
is reduced to independent low-order dynamical systems that can be controlled by local
control centers. The authors argue that their method is scalable since it depends on
the number of partitions rather than the network cardinality. By breaking the network
in partitions with a sufficiently small cardinality, actuators (sensors) can be optimally
placed in each partition such that a given dynamical controllability (observability)
measure is maximized by brute-force search.

Although the aforementioned method, as well as other network partitioning methods,
are tempting, highly centralized networks are not suitable for decomposition. In such
cases, even if SCC can still be identified, their subgraphs might still be very high-order

systems for traditional techniques of control theory.

(ii) Set function optimization. Summers et al. (2016) formulated the sensor'

placement problems as a set function optimization problem as follows:

.24
scmax J(S), (3.24)
where given a X = {z1,...,x,}, the problem is to select a g-element subset S of X" that

maximizes an objective set function J(S) : 2" — R —i.e. a function that assigns a real
number to each subset §. The objective function desired to be maximized is chosen
so that it describes the trade-off between the number of required sensor nodes and
the related estimation energy costs. Possible functions are the dynamical observability
metrics discussed in Section 3.2.1. As one might note, (3.24) is a combinatorial
optimization problem that could only be solved by brute force search if the network
dimension were of lower order.

The greatest contribution of Summers et al. (2016) is to show that most dynamical
observability metrics based on the observability Gramian are submodular functions.

Thus, although solving the optimization problem through brute-force search is compu-

14See (Pasqualetti et al., 2013b) for a mathematical definition.
15Tt was actually formulated in the context of controllability and optimal actuator placement.
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tationally hard, if the objective function is submodular, then the optimization problem
can be solved by a greedy algorithm with guaranteed performance (Nemhauser et al.,
1978). Via numerical simulations, the authors show that, considering |V| = 25 and
|S| = 7, the greedy optimization displays a result better than 99.93% of all other
combinations. The method is further validated on a power system model and scalability
of the greedy algorithm is discussed in detail. Haber et al. (2018) apply, for comparison
purposes, Summers and coworkers’ approach to nonlinear networks and show that their
method performs well, although they do not provide any mathematical proofs for the

nonlinear case.

(iii) Symbolic observability. To deal with larger systems with more complicated
dynamics, Bianco-Martinez et al. (2015); Letellier and Aguirre (2009) provided a
dynamical symbolic observability metric that does not depend on the specific parameter
entries but rather on the presence and quantity of linear, nonlinear and rational
couplings within the dynamical system. The observability metric is normalized in a
[0, 1] range, allowing one to compare different dynamical systems—which is not possible
following Definition 3.4. This approach seems to be promising for dynamical networks
as long as they are “not very large” (Letellier et al., 2018).

Some other interesting symbolic approaches to quantify observability have been

presented in a power system analysis context (Bretas and London, 1998; Slutsker
and Scudder, 1987). Indeed, the problem of sensor and actuator placement in power
systems is a very relevant (and old) one due to emerging and expensive technologies
designed to monitor or control the system states (Baldwin et al., 1993; Monticelli and
Wu, 1985). An application example to power systems is given in Section 3.6.
(iv) Indirect measures of “reconstruction quality”. In an observability context,
the degree of observability can be indirectly assessed through the “estimation quality”
of the state. This is a more empirical approach. For instance, in a Bayesian filtering
context, this is motivated by the fact that if the measured signals do not provide
relevant information to the filter, i.e. they convey poor observability, then the update
stage of the filter is impaired and, consequently, the estimates show poor performance.
This is based on an assumption that the filters or algorithms are well-tuned (Montanari
and Aguirre, 2019).

Examples found in the literature are the estimation error of a moving horizon
estimation technique (Haber et al., 2018) or a particle filtering framework (Montanari
and Aguirre, 2019), as well as the fitting error from training a Gauss-Newton algorithm
(Guan et al., 2018) or a reservoir computer (Carroll, 2018). Due to the scalability

issues of Bayesian filtering methods and similar techniques, this approach is not very
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useful for networks with dimensionality N > 100. It is an interesting approach to
further understand the interplay between observability, network topology and nodal
dynamics (Guan et al., 2018; Montanari and Aguirre, 2019).

Note that all discussed observability metrics throughout the text depend on knowl-
edge of the system equations. When such are not available, Aguirre and Letellier
(2011) provided a data-based procedure to infer the degree of observability from a
recorded time series. This approach relies on measuring the reconstruction quality from
a embedding of the available time series as a function of specific properties associated
with poor coefficients of observability, such as sharp folds and strong squeezing of

trajectories as consequence of singularity issues.

(v) Observability of a subset of nodes of interest. As discussed, a recurring goal
in the literature is the search of an optimal set of sensor nodes that renders a dynamical
network fully observable. Motter (2015) argues that this goal is not quite realistic,
though, since, from a practical point-of-view, to reconstruct (steer) the dynamical
system trajectory of a high-dimensional system requires direct measurement (control)
of most nodes in a network—which is not always feasible. An alternative, therefore, is
to focus on a particular subset of nodes of interest and determine what is the required
set of sensor nodes in order to render this subset observable. Basically, this approach
revolves around reducing the dimensionality of the problem. This problem has been
explored by Iudice et al. (2019) in the context of node observability (controllability), i.e.
focusing on a particular node observability, as well as by Gao et al. (2014), grounded
on the definition of output controllability. In Chapter 4, we expand on the concept
of functional observability, from control theory (Hieu and Tyrone, 2012; Jennings
et al., 2011), to determine the graph-theoretical conditions under which it is possible
to reconstruct the state of a particular subset of nodes with a reduced-order observer,

thereby reducing computational costs in the state reconstruction of a large-scale system.

3.6 Application Examples

Throughout this chapter, we showed how the concepts of structural, dynamical and
topological observability can be applied to a (low-dimensional) nonlinear dynamical
system, the Rossler system. In the following, we provide an example of how these
concepts are applied in the high-dimensional context of power grids and multi-agent
coordination. Moreover, we also take this opportunity to show how the studied

dynamical systems can be modelled in a network context.
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It should be mentioned, however, that since the numerical computation of the
observability matrix (3.10) of a nonlinear model is quite unfeasible in a high-dimensional
setting, we focus on a linearized model of the nonlinear network dynamics around
the operation point. In what follows, to determine the “minimum set of sensor nodes
S” using the maximum matching search (Section 3.3.2), we use its MATLAB-based
implementation found in the NOCAD toolbox (Leitold et al., 2019).

3.6.1 Power grids

Model dynamics. This section provides an application example in the IEEE power
grid benchmark with 50 generators and 145 buses (Nishikawa and Motter, 2015; Vittal,
1992). Figure 3.5a illustrates the benchmark model as network system. In this context,
the power grid dynamics are modelled as a network of interconnected Kuramoto
oscillators (Arenas et al., 2008; Dorfler et al., 2013; Montanari et al., 2020), given by

2H, . D m
¢it+—¢i =P+ Z Kijsin (¢; — ¢i + Byj) (3.25)
“r “r =L
for i = 1,...,m, where m is the number of nodes, ¢;(¢) is the phase angle of oscillator

v; at time ¢ relative to a frame that rotates at the reference frequency wg rad/s, H; and
D; are inertia and damping constants respectively, P; is related to the power supply of
generator at node v;, K;; is the coupling weight related to the maximum power transfer
capacity in the respective transmission line interconnection two nodes (v;,v;), and 3,
is the corresponding phase shift.

All parameters are estimated from the power grid benchmark dataset provided
by Vittal (1992) following the “effective network model” paradigm'® described by
Nishikawa and Motter (2015). While (H;, D;) are estimated from the generator
constructive parameters, (F;, K;;, 3;;) are inferred from the power grid steady-state
distribution of power flow. Although the power grid benchmark has 145 buses, the
power grid model in (3.25) is reduced, via Kron reduction (Sauer et al., 2017), to an
effective network!” with m = 50 nodes, where each node v; represents a generator
whose dynamics are described by a second-order Kuramoto oscillator. The power grid

dynamics are shown in Fig. 3.5b. If @(t) converges to zero for all generators, then

16Djifferent models of power grids based on networks of coupled oscillators are discussed in (Moreira
and Aguirre, 2019; Nishikawa and Motter, 2015).

1"Differently from the power grid structure shown in Fig. 3.5, due to the Kron reduction, the
effective network model is fully connected (i.e. each generator is directly connected to every other
generator in the network, with a coupling strength K;; related to their corresponding power flow).
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Figure 3.5: (a) IEEE power grid benchmark, where generator and load buses are represented
by circle and square nodes, respectively, and transmission lines by edges. (b) Phase and
instantaneous frequency time evolution. Linearization is performed around the equilibrium
point at ¢ = 150 s.

the power grid is said to be fully synchronized. A MATLAB implementation of this
framework is provided by Nishikawa and Motter (2015).

For the following computations, model (3.25) is linearized around its equilibrium
point (computed through numerical integration after ¢ = 150 s, as in Fig. 3.5b). The

linearized model is represented in its canonical form:

[2 ?b] | (3.26)

)
where ¢ = [p1 ... ¢p) € R™ 0 € {0}™™, Ay € R™*™ is a fully dense matrix, and
Aoy € R™ ™ is a diagonal matrix.

0 I,
Agr A

PMU placement. One specific problem related to observability in the context of
power grids is that of optimal placement of phasor-measurement units (PMU) (Phadke
and Thorp, 2008; Yang et al., 2012). A PMU placed on a generator bus (node) allows
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real-time measurement of its voltage and line currents. Moreover, depending on the
power grid structure, voltages and/or line currents of neighboring buses (nodes) can be
determined from Kirchhoff’s law. Indeed, in the scientific community of power systems
(Cruz and Rocha, 2017; Peng et al., 2006; Tran and Zhang, 2018), the search for an
optimal PMU placement such that the voltages of all buses can be determined is known
as a “topological observability” problem!®.

Two main reasons motivate this problem. On the one hand, a PMU is a very
expensive equipment and it might not be economically viable to install one in every node
of a power grid (Rocha et al., 2018). On the other hand, communication between two
(geographically apart) areas might have been interrupted by some failure or malicious
attack and one might need to estimate, from its accessible set of measurements, what
is the state of some other generator connected to the power grid. Indeed, a reliable
communication structure (which includes both direct and estimated measurements) is
a very important concern for the implementation of Wide Area Control techniques,
especially with the current transition of power grids to smart grids (Malik, 2013).

In the following, assume that if a PMU is placed in a generator node (bus) v;, then
one has access sufficient information to infer the respective generator states {¢;, (bz} In
this sense, the optimal PMU placement can be framed as a (traditional) observability
problem in the sense that one wants to estimate, from knowledge of the generator
states where a given set of PMU is placed, the generator states of all other nodes
that do not have a PMU. We use this example to counterpoise the different types of

observability discussed in this manuscript, stating pros and cons in each case.

Structural and topological observability. Consider the linearized model (3.26)
and that, if a PMU is placed on generator v;, then node v; is said to be a sensor node
of § and hence {¢;, qbz} € S. Since Ag; is a fully dense matrix whose individual entries
a;; are related to the power system parameters (K;;, 8;;, H;), the probability that the
columns of O are linearly dependent is practically zero (as pointed out by Remark
3.8). This is specially true if we consider that the generator parameters and power
supply levels are not homogeneous along the power grid (which is true in reality).

Thus, the dynamical network (3.26) is topologically observable (in Lin’s sense) from

18 Although this problem shares the same nomenclature discussed throughout this paper, it has
a different meaning. “Topological observability of power systems” is a solvability problem where
one wants to determine, based on Kirchhoff’s law, the whole vector of voltages and line currents
from knowledge of the admittance matrix and some measurements available by a given set of PMUs.
“Topological observability of dynamical systems”, on the other hand, is graph-theoretical way to certify
if the basic conditions for the design of a stable linear observer can be satisfied.
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Figure 3.6: Coefficient of observability §, per number of PMUs (sensor set cardinality |S]|),
considering an optimal sensor placement (solid red line) and 1,000 Monte Carlo runs with
random placements (boxplot).

any generator node (implying that |S| = 1 is a sufficient and necessary condition).
Likewise, it is structurally observable (in Kalman’s sense) from any node.

This illustrates the discussion in Section 3.4 that, when nodal dynamics are taken
into account, self-edges are included in the graph representation, leading to a trivial
solution where all nodes are matched and thus only one sensor node (placed anywhere)
is required to render the network observable. In this case, self-edges are only represented
in states gzﬁZ (due to the diagonal block Asy). Nevertheless, since there is a bidirectional
connection between state variables ¢; and ¢;, for all 4, then the conclusion remains:

every node is matched. This is in line with the examples in Fig. 3.2.

Dynamical observability. Although, in the linear case, any node is sufficient as a
sensor node to render the power grid topologically or structurally observable, one might
argue that, for practical purposes, S is almost unobservable. Indeed, if |S| = 1, then
6, ~ 107% (regardless of where the PMU is placed). Hence topological and structural
observability approaches do not provide any relevant insight into the problem of optimal
sensor placement in this case.

Assessing the dynamical observability of a power system, on the other hand, might
not only be useful to determine the minimum number of sensor nodes required to
render the network observable from a practical point-of-view, but also to assess the

optimal placement. Figure 3.6 shows how the coefficient of observability d, increases



52 A Review on Observability of Network Systems

with the number of PMUs considering an optimal'® and multiple random placements.
The optimal PMU placement is based on the set function optimization problem (3.24),
which is revisited in Appendix A.1. We also provide a MATLAB implementation of a
greedy algorithm to solve (3.24) at https://doi.org/10.13140/RG.2.2.22524.28803/1, as
proposed by Summers et al. (2016).

It is interesting to see that the network dynamical observability d, greatly benefits
from the first few sensor nodes (approximately 20% of the network cardinality), before
reaching a stationary value (around half the network cardinality) where further sensor
nodes do not increase d,. An interesting interpretation, discussed by Guan et al. (2018),
is that as the number of sensor nodes increases, useful and relevant data about the
system dynamics is acquired by the output measurements until a turning point where
additional sensors provide redundant information about the system dynamics. This
sudden increase of the network observability with the first few choices of sensor nodes
is in line with results in (Guan et al., 2018; Qi et al., 2015; Summers et al., 2016).

Not only the network dynamical observability improves with the addition of sensor
nodes, but it can also benefit from an optimal placement. Figure 3.6 shows the efficacy
of the framework put forward by Summers et al. (2016), where the greedy algorithm
approach to sensor placement provides an optimal performance clearly above random
placements of the same sensors. For instance, to reach a given degree of observability
(e.g., log(d,) =~ —80), 14 PMUs are needed if they are optimally placed over the power
grid. On the other hand, a random placement requires 20 PMUs to reach (with a
~ 50% chance) the desired degree of observability.

This is especially important since a sensor placement that conveys a higher coefficient
of observability d, is shown to be related to a better state estimation (Montanari and
Aguirre, 2019; Singh and Hahn, 2005). Indeed, analogous to the results exposed in Fig.
3.6 and also in the context of PMU placement and power grids, Qi et al. (2015) showed
that a PMU placement that conveys higher coefficient of observability (albeit based on
the determinant of an empirical observability Gramian) to the power grid leads to a

smaller state estimation error (based on an unscented Kalman filter framework).

3.6.2 Multi-agent consensus

Model dynamics. This section provides an application example in the context of
collective behavior of locally interacting adaptive and identical individuals, hereby called

agents. Examples of these agents and collective dynamics include fishes in schools, birds

9Note that it is not feasible to find the optimal placement via brute-force with a system of
dimensionality N 2 100.
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in flocks and robots in artificial swarms. The following multi-agent system describes
the general flocking behavior of a group of moving agents in a 2-dimensional space
(Arenas et al., 2008; Bouffanais, 2016; Vicsek et al., 1995):

. 1 &
b= W - ), (3.27)
i,in j=1
for i = 1,...,m, where x;(t) is the velocity direction (angle) of agent i at time ¢,

ki = >2; Wi; is the node in-degree of agent i, m is the number of agents, and
W € {0,1}™*™ is an adjacency matrix that describes the signaling network between
agents, where W;; = 1 if agent 7 perceives or senses agent j in its neighborhood, and
Wi; = 0 otherwise.

This local consensus protocol represents the decentralized information flow through-
out the swarm as a behavioral response to changes in the leading agents states?. The
Laplacian matrix L associated with the adjacency matrix W plays an important role
in this analysis since (3.27) can be represented as

& =—Dy L, (3.28)
where D is the degree matrix defined in Section 2.2.

Albeit simple, model (3.27) allows us to illustrate our discussion without straying

too far from the main focus of this work. It is expected that a more specific application

would also have to take into account a more detailed model.

Sensor networks. Compared to the application example in Section 3.6.1, the
collective motion of agents adds an extra layer to our analysis: the signaling network W
between agents is not fixed, but rather time-dependent. The communication between
agents depends on physiological (technological) limitations of living (artificial) agents,
which often constrain the sensory range that a single agent can both perceive and
process in its neighborhood (Bouffanais, 2016; Pearce et al., 2014). For example, the
presence of obstacles forces the swarm of agents to engage in different maneuvers that
essentially change the neighborhood of interactions of each single agent (Olfati-Saber,
2006), re-configuring the signaling network. This is a feature that is particularly
connected to the design problem of wireless sensor networks (Derakhshan and Yousefi,
2019).

20Leading agents can represent agents with privileged information about external factors, such
as predators and obstacles, or agents that receive external input from a control center in artificial
swarms.
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The optimal sensor placement in multi-agent systems, therefore, has a different
motivation than in Section 3.6.1. In the present case, each agent usually has its
own sensory system that assess neighboring information for decision-making in a
decentralized manner. From the point-of-view of a single agent, access to the whole
state of a system is not needed and, therefore, there is no observability problem. On
the other hand, access to the whole system state might be required for monitoring
and control purposes in applications that rely on a command center, such as for
unmanned aerial vehicle coordination (Olfati-Saber, 2006) or cyber-attack detection
in self-driving vehicles coordination (Vivek et al., 2019). Although the system state
can be monitored, in principle, by transmitting the measured states of all agents
to the command center, this is not energetically efficient. Battery life is one of the
major limitations in artificial swarms applications, and relying on each single agent to
transmit its current state to a command center has a high overall energy consumption.
A more efficient alternative is to find the minimum set of agents (sensor nodes) that
need to transmit their current state to a command center such that the state of the

remaining agents can be estimated/reconstructed. This is an observability problem.

Sensor placement. In multi-agent systems, the swarm of agents is continuously
self-organizing in motion, changing the signaling network W as a function of the
agents position over time (similarly to a switching network). For instance, after a split
maneuver, the system might become unobservable from a set of sensor nodes chosen
before the start of the maneuver, requiring a new set of sensor nodes to be assigned for
the new configuration.

Figure 3.7 illustrates the chosen minimum set of sensor nodes required to convey
observability to the system in two different scenarios: the first when the group of agents
moves in consensus as a flock, and the second when the group of agents splits apart
to engage in a evasive maneuver against obstacles in its path. In this example, the
minimum set of sensor nodes is determined by using the maximum matching algorithm
(Section 3.3.2) on the graph G(A) associated with the dynamical matrix A = —Dg;, L
given by model (3.28).

Since the signaling network re-configures in real-time, it is important that the
minimum sensor placement algorithm is sufficiently fast for such application. For m =
150 agents, the maximum matching algorithm solves the minimum sensor placement

problem in less than a second. Indeed, considering the present state-of-the-art, a
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Figure 3.7: Signaling network W of a flock of m = 150 agents moving in a 2-dimensional
space in two different scenarios: (a) the agents are moving in consensus, and (b) a snapshot of
the agents engaged in a split maneuver to dodge obstacles (large circles) along the way. Agents
are represented by black nodes (in zy coordinates), and the minimum set of sensor nodes to
render the system structurally observable (according to the maximum matching algorithm) is
represented by blue nodes. The signaling networks were adapted from (Olfati-Saber, 2006).

topological observability approach is the only feasible alternative®! to solve the minimum
set of sensor nodes in real-time applications involving swarms with up to thousands of
agents. This is further supported by the low complexity order O(y/m|€|) predicted in

a worst-case scenario.

Observability and network topology. We now investigate the relation between
the minimum set of sensor nodes and the network topology G(A). It is clear that, after
the split maneuver, the loss of connectivity in W increases the size of the minimum
set of sensor nodes, specially because additional sensor nodes must be included to
track (observe) the state of isolated agents and disconnected subgraphs. On the other
hand, Fig. 3.8 shows that the minimum number of sensor nodes is related not only to
the number of subgraphs in G(A), but also to the degree of symmetry pgym (W) of the
binary matrix W, defined as??:
number of unidirectional edges in G(W)

e | . 3.29
Psym(W) number of edges in G(W) 3:29)

21For example, solving the minimum sensor placement problem based on the rank condition (3.2)
for observability was shown to be a NP-hard problem (Olshevsky, 2014).

22A symmetric adjacency matrix corresponds to an undirected graph, which only has bidirectional
edges. Contrariwise, an asymmetric adjacency matrix is related to a directed graph, which has
unidirectional (and possibly bidirectional) edges.
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Figure 3.8: Proportion of the minimum number of sensor nodes |S|/m as a function of
the signaling network symmetry psym (W) for the two different scenarios: consensus (solid
line) and split maneuver (dashed line). Simulations are presented for 1,000 Monte Carlo
runs where edges in the graph associated with W are randomly assigned a single direction
according to psym(W) in each run. Lines show the median values, while error bars show the
5th and 95th percentile.

The lower the symmetry of the signaling network, the larger the minimum sensor set.
This is a straight consequence of the changes in the graph topology: a lesser symmetry
reduces the number of paths between nodes, and increases the number of dilations in
the graph, therefore requiring a higher number of sensor nodes to guarantee structural
observability in Lin’s sense (Theorem 3.3). Likewise, reducing the adjacency matrix
symmetry (changing bidirectional edges to unidirectional edges) also increases the
number of unmatched nodes (as seen in Fig. 3.2¢,d), increasing the number of sensor
nodes determined by the maximum matching algorithm.

If W is symmetric (and G(W) is undirected), as discussed in Section 3.6.1, any agent
can be chosen as a sensor node, regardless of the network size and topology. This raises
once again the question of whether a structural or topological approach to observability
is sufficient to determine the minimum set of sensor nodes for practical purposes.
Nevertheless, Fig. 3.8 suggests that, as W becomes more asymmetric, determining the
minimum set of sensor nodes becomes a more complicated problem which a topological
approach helps to shed some light on it. For instance, Fig. 3.8a shows that the studied
multi-agent system in consensus can be rendered observable by assigning less than 10%
of the total number of agents as sensors regardless of the level of symmetry. Although
the study of controllability of multi-agent systems has found several advances in recent
years (Guan and Wang, 2018; Komareji and Bouffanais, 2014; Rahmani et al., 2009),
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we emphasize that studying the topological observability of multi-agent systems, such
as the work of Lu et al. (2017), can lead to novel developments in different fields,
including swarm monitoring applications, development of cyber-defense protocols, and

optimal configuration of sensor networks.

3.7 Final Considerations

In this chapter, we reviewed some definitions of observability of dynamical systems, as
far as network systems are concerned. Firstly, we presented the traditional concepts of
observability proposed by Kalman (and its following extension to nonlinear systems),
where a system is classified simply as observable or unobservable. We classify this
approach as structural observability. However, due to numerical issues, a set of
outputs that renders a system observable, but badly conditioned, might not provide
a satisfactory state reconstruction under a practical context. Thus, a more relevant
question arises: whether an observable system is almost unobservable. Several indices
were proposed in the literature to quantify the quality of observability of a linear
and nonlinear system. We refer to this continuous quantification of observability as
dynamical observability.

In a network context, traditional control methods usually fail to be applied due
to high-dimensionality issues, especially when nonlinear systems are considered. This
is also true in an observability context, leading to the need for novel methods that
circumvent this problem. The intuitive modelling of network systems via graph
representations led to a new set of observability methods that benefits from the
network topology properties to derive the minimum set of sensor nodes under which a
network is rendered observable. We classify this approach as topological observability.

Although intuitive and suitable for high-dimensional network systems, these topolog-
ical observability metrics have several limitations under a practical context, especially
when the nodal dynamics are considered. Indeed, we provide a critical review of the
recent progress in the study of observability (and controllability) of network systems,
emphasizing the main advantages (e.g., its high scalability and interpretability) and
disadvantages (e.g., the underestimation of the necessary set of sensor nodes under a
practical context) of topological observability. To circumvent the main disadvantages
in the study of observability of network systems, we briefly review some interesting
approaches in the literature in order to provide future research directions of interest in
this field.
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Finally, we show and discuss in two application examples how the concepts of
structural, dynamical and topological observability can aid in the problem of sensor
placement. In power grids, since all nodes are diffusively coupled according to a full
network and self-edges are represented, topological observability (and structural) is
easily achieved with any single choice of sensor node. Thus, a dynamical observability
is necessary not only to distinguish which choice of sensor node is the best, but
also to determine what is the smallest number of sensor nodes so that the degree of
observability of the power system reaches a satisfactory value (where it stops growing).
On the other hand, a topological approach provides the only highly scalable solution
to cope, nowadays, with real-time applications in multi-agent consensus.

As a general conclusion, we argue that, contrariwise to some recent results in
the literature, depending on the characteristics of the network system, a topological

)

or structural approach to observability might not “tell the full story”, requiring a
further investigation based on dynamical observability. It is suggested that, the less
directed a network is and the higher the number of self-edges in its topology, the more

a topological observability underestimates the set of sensor nodes.



Chapter 4

Functional observability and target
state estimation in large-scale

networks

Understanding the properties and control principles of large-scale dynamical networks,
such as power grids, neuronal networks and food webs, allows at least in principle the
development of intervention strategies that shape the behavior of these systems to
achieve the desired functionality. As formalized by Wiener (2019), the fundamental
mechanism enabling precise control of a dynamical system is feedback, which involves
sensors, signals, and actuators in a closed loop. A sensor provides immediate measure-
ments of a particular state variable. As the dynamical network grows large, it becomes
prohibitive or even impossible to implement a sensor for each system state variable, be
it for economical reasons or physical limitations. Therefore, the indirect estimation of
the unmeasured variables is essential for the control of large-scale dynamical networks.
Observability, as reviewed in Chapter 3, is a key property for the optimal sensor
placement and design of state estimators in large-scale networks. Despite the success of
state observers in many engineering applications, high-dimensionality is still an obstacle
that hampers the direct use of these methods to large-scale dynamical networks (Chen,
2014; Motter, 2015), calling for different approaches and novel techniques (Cornelius
et al., 2013; Fiedler et al., 2013; Liu et al., 2011b, 2013; Wang and Chen, 2002b; Zanudo
et al., 2017) to overcome the curse of dimensionality.

For many real-world problems, estimating the entire state vector of high-dimensional
systems does not seem necessary at all (Motter, 2015). It is often sufficient to focus on

a particular subset of nodes of interest. For instance, in decentralized control strategies
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applied to network systems, each controller only requires feedback signals from a few
particular subset of nodes in the neighborhood of its controlled area (Olfati-Saber and
Murray, 2004; Xue and Chakrabortty, 2018). This is also true for fault detection and
monitoring against unforeseen failures or cyber-attacks, which finds several applications
in supply networks (Pasqualetti et al., 2013a), power grids (Singh and Pal, 2014;
Zhang and Vittal, 2013) and autonomous vehicle coordination (Vivek et al., 2019). In
biological networks, a small number of “target nodes”, also known as biomarkers, are
known to be of interest for control (intervention) or estimation (medical diagnostics)
purposes (Barabdsi et al., 2011), such as the specific nodes associated with cancer
in regulatory networks (Cornelius et al., 2013), or clusters of synchronized neurons
associated with Parkinson’s disease (Hammond et al., 2007) and epilepsy (Lehnertz
et al., 2009).

These practical problems motivate the concept of functional observability (Fernando
et al., 2010b; Jennings et al., 2011) which enables the existence of a functional observer
capable of reconstructing a targeted subset of the state variables of a dynamical system
from the inputs and measurements. Though conceptually attractive, previous works
on functional observability and the design of functional observers (Darouach, 2000;
Fernando et al., 2010a,b; Hieu and Tyrone, 2012; Jennings et al., 2011) were based
on numeric rank-based conditions without explicitly taking advantage of the network
topology and thus do not lead to scalable algorithms applicable to large-scale dynamical
networks.

In this chapter, we develop a graph-theoretic characterization of functional observ-
ability and the associated sensor placement and observer design algorithms, making
it possible to accurately estimate a desired subset of state variables—hereby known
as target variables—of a large-scale dynamical network using minimal sensory and
computational resources. The contributions are threefold: Firstly, in Section 4.2, we
propose a new concept, i.e., “structural functional observability”, which can be seen as
a generalization of Lin’s structural observability (Lin, 1974). It allows us to rigorously
establish graph-theoretic conditions for functional observability equivalent to the origi-
nal rank-based conditions (Jennings et al., 2011). Secondly, based on the proposed
theory, two highly-scalable algorithms are developed to solve the sensor placement and
observer design problems in Section 4.3. The first algorithm determines the minimal
set of sensors placed on a dynamical network to ensure the functional observability
with respect to a given set of target nodes. After the placement is decided, the second
algorithm designs a minimum-order functional observer whose output converge asymp-

totically to the target states thus achieving accurate estimation. Numerical results in
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large-scale complex networks are shown for both algorithms in Section 4.4. Thirdly, we
demonstrate the advantages of the proposed methods with two concrete applications
to cyber-security of power grids and surveillance for epidemics in Section 4.5. For
power-grid cyber-security, we show that the proposed functional observers can be
implemented as active monitors for cyber-attacks in power grids, effectively providing
state estimates that allow for cross-validation among different information sources and
detection of fake measurement data in real-time. For the epidemic surveillance, we
demonstrate that, during a pandemic like COVID-19, the proposed functional observer
can infer the infected population at places where testing is inadequate from the data
collected at other places where sufficient testing has been done, and our algorithms

can also guide the optimal allocation of limited testing resources.

4.1 Background on Functional Observability

Generically speaking, a dynamical system is completely observable if it is possible to
reconstruct the initial state 2(0) from knowledge of the input w(t) and measurement y(t)
over a finite time interval. If the rank condition rank(QO) = n is true (see Theorem 3.1),
there exists straightforward methods to design a full-state observer, i.e., an auxiliary
dynamical system whose states converge asymptotically to those of the original system
(2.1) when taking y and w as inputs, providing an estimation of the state vector x.
Since the direct measurement y already contains ¢ linear combinations of state x, only
(n — q) state variables are required to be estimated, which can be accomplished by a
reduced-order state observer, also known as Luenberger observer (Luenberger, 1966)
(see Appendix B for details).

In practice, it is often unnecessary to estimate the entire state vector x. Instead,

only a lower-dimensional function

z = Fex, (4.1)

where z € R"| is usually of interest (e.g., for feedback control or monitoring purposes).

Given the desirable F' € R™*", functional observability is defined as follows.

Definition 4.1. The linear system (2.1) and (4.1), or the triple (A,C, F'), is said to
be functionally observable if for any unknown initial state (0), there exists a finite
time t; > 0 such that the knowledge of w and y over t € [0,t1] suffices to determine
uniquely z(0) = Fx(0). Otherwise, (A,C,F) is said to be functional unobservable.
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Theorem 4.1. (Jennings et al., 2011; Rotella and Zambettakis, 2016b) The triple
(A, C, F) is functionally observable if and only if

O

rank (O) = rank (4.2)

Remark 4.1. If condition (4.2) is satisfied, then F' is some linear combination of the
rows of O, i.e., F = Y L;CA?, where L; € R™", Substituting it in (4.1) yields

2(t) = Fx(t) = nf LCA'x(t) = nf Lig W (t),
79 (¢
_ {Lo Ln—l} Y ( ) ’ (4.3)
g ()

= Ly,

where it is known from (3.7) that y®) (t) = C A’z (t). Therefore, Theorem 4.1 guarantees
the existence of a linear map L that determines z uniquely from gy. Nevertheless,

even if L is known, determining z from (4.3) has the same shortcomings described in
Remark 3.1.

Remark 4.2. From a geometrical point-of-view (Jennings et al., 2011), condition
(4.2) is equivalent to row(F') C row(Q), where row(-) is the row space. In other words,
the subspace desired to be estimated (the image of F') must be contained inside the
observable subspace from y (the image of O). Clearly, complete observability (Theorem

3.1) is a special case of functional observability (Theorem 4.1) for F' = I.

Contrariwise to the observability property, which is the sole condition for the
straightforward design of a Luenberger observer (see Appendix B.1), condition (4.2)
only guarantees the theoretical existence of a functional observer (Jennings et al., 2011),
and does not readily lead to an algorithm to design a functional observer (Fernando
et al., 2010b; Rotella and Zambettakis, 2016b). To this end, two additional conditions
must be satisfied as depicted in the theorem below (Darouach, 2000).

Theorem 4.2. (Darouach, 2000, Theorem 2) The necessary and sufficient conditions

for the existence and stability of a functional observer of form (B.8) for a triple



4.2 Structural Functional Observability 63

(A, O, Fo) 18:

e
CA ¢

rank | = rank [C'A|, (4.4)

0 7

| FoA
(AFy — FpA CA

rank CA =rank | C' |, (4.5)
. C Fy

for every eigenvalue X\ of A.

If (A, C, F) satisfies condition (4.2) but not conditions (4.4)—(4.5), then there exists
some matrix Fy € R™*™ whose row space contains that of F, i.e., row(Fy) 2 row(F),
that satisfies conditions (4.2)—(4.5) for a triple (A,C, Fy). If such an F, can be
determined, then a functional observer of size rq > r can be methodically designed

following Algorithm 5 (see Appendix B.2 for details).

4.2 Structural Functional Observability

The rank-based conditions (4.2) and (4.4)—(4.5) are not numerically stable and compu-
tationally efficient for the design of functional observers on large-scale systems. Here, we
adopt a graphical approach that explicitly takes advantages of the network structures
of the dynamical systems. As discussed in Section 3.3.1, the system matrix A can
be structurally represented as a corresponding graph G(A) whose nodes represent the
internal state variables X = {z1,...,x,}. The edges of G(A) capture the interaction
pattern among state variables, i.e., there is an edge from z; to x; on graph G(A) if A;;
is non-zero. We denote a node z; on graph G(A) as a sensor node if C;; # 0 for some 1,
and a node xy as a target node if Fj, # 0 for some i. We assume that each sensor or
target is only related to one internal state variable, meaning that each row of C' or F
has only one non-zero entry. The sets of all sensor and target nodes are denoted S and
T, respectively. Figure 4.1a illustrates the construction of graph G(A).

We now provide a generalization of the concept of structural observability to
structural functional observability. Following Definition 3.5, we shall say the triple
(A, C, F) has the same structure as another triple (4, C, F), if by the construction

described above, they share the same structure graph G(A), sensor node set S, and
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Figure 4.1: Structural functional observability of dynamical systems. (a) Dynamical
system matrices (A,C, F) (top row) and corresponding graph G(A), with n = 10 state
nodes X = {x1,...,x10}, ¢ = 2 sensor nodes (blue) in & = {5, 23}, and r = 1 target node
(red) in T = {x10}. In this choice of sensor and target nodes, the system is unobservable
(rank(O) = 9 < n), but is structurally functionally observable (rank[OT FT]T =9). (b) The
triple (A, C, F') is observable (and thereby functionally observable). While a Luenberger
observer has to estimate the states of every unmeasured node (order n — ¢ = 8), a functional
observer only needs to estimate, along with the target node x19, the pink node x5 (order
ro = 2). Note that (A, C, Fy) satisfies conditions (4.2)—(4.5). (c) Sensor node x5 is a minimum
sensor set (among other options) required for the structural functional observability of target
x10. However, the absence of sensor node xg increases the functional observer order to rg = 7.
(d) The network is strongly connected. This stronger connectivity slightly compromises the
target state estimation by increasing the functional observer order to ro = 5 (more pink
nodes), albeit it is still smaller than (n — ¢) = 8.

Z1

target node set 7. For the following definitions and theorems, consider that the

following assumption holds.
Assumption 4.1. Let rank[CT FT]T = g + r, where rank(C) = ¢ and rank(F) = r.

Remark 4.3. Assumption 4.1 provides no loss of generality since any linearly dependent
output, or target state, can be determined from a linear combination of outputs and

target states, hence not requiring estimation.

Definition 4.2. The structured triple (A, C, F) is structurally functionally observable
if and only if there exists some numerical realization (121, C’,F) that is functionally

observable.
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According to Definition 4.2, structural functional observability is purely determined
by the state variable interaction structure, encoded by graph G(A), sensor node set
S, and target node set T, which is independent of the specific numerical realization
of (A,C,F). In fact, if a triple (A4, C, F) is structurally functionally observable, a
system that shares the same structure as (A, C, F') is functionally observable for a wide
range of parameters except for a proper algebraic variety with null Lesbegue dimension
(see Remark 3.8). This structural approach allows us to establish a graph-theoretic

characterization of functional observability:

Definition 4.3. Let Dy be a minimal dilation set of G(A,C), that is, a set with the
property that, for all subset D;, C Dy, the subset D;. has no dilations. Let D = |, Dy
be the union of all minimal dilation sets of G(A, C).

Theorem 4.3. A triple (A, C, F) is structurally functionally observable if and only if
the corresponding graph G(A, C) satisfies both of the following conditions:
1. every state variable x; € T has a path to some output y; € S;

2. TND =0, where D is the union of all minimal dilation sets of G(A,C).
Proof. See Appendix C. O]

Remark 4.4. The above result can be seen as a significant generalization of Lin’s
theory of structural controllability (Lin, 1974). Note that if F' = I, or equivalently
T =X, then T ND = () if and only if D = (), which implies that the graph G(A, C)
has no dilations. Therefore, conditions for structural functional observability (Theorem

4.3) reduces to the conditions of structural observability (Theorem 3.3).

We illustrate this graphical characterization of complete observability and functional
observability in Fig. 4.1a. The graph has no dilations due to the presence of self-edges
and the pair (A, C) is unobservable because node x9 does not have a direct path to
a sensor node. Even so, the system (A, C, F) is structurally functionally observable
since from the target node o there is path to a sensor node x5 or xg.

The above result lays the foundation of functional observer design on large-scale
dynamical networks. To enable the algorithm development, we further investigate two

main design problems:

1. How to select the minimum set of sensor nodes S such that a triple (A, C, F') is

structurally functionally observable?

2. What is the minimum set of “auxiliary” state nodes that must be estimated along

with the desired target nodes so that a procedural functional observer design is



66 Functional observability and target state estimation in large-scale networks

possible (see Fig. 4.1b)? In other words, given (A, C, F'), what is the minimum
size Iy such that (4.4)-(4.5) are satisfied for (A, C, Fy)?

Clearly, both questions are intertwined and intrinsically related to the network
structure (illustrated in Figs. 4.1c,d). In the following sections, we assume that no
target node is an element of a minimal subset of nodes with a dilation. A sufficient
condition for this latter assumption is that every target node has a self-edge (i.e.,
G(A) has no dilations). The importance of including self-edges in dynamical networks
models, specially for state control and estimation applications, has been thoroughly
discussed in the literature (Cowan et al., 2012; Leitold et al., 2017; Montanari and
Aguirre, 2020). Indeed, dilations are not found in a broad range of dynamical networks,
especially those described by a set of diffusively coupled subsystems. This includes
applications in networks of coupled oscillators (Arenas et al., 2008; Eroglu et al., 2017;
Rodrigues et al., 2016), power grids (Dorfler et al., 2013; Nishikawa and Motter, 2015),
neuronal models (Aguirre et al., 2017; Izhikevich, 2004), combustion networks (Haber
et al., 2018; Perini et al., 2012), regulatory networks (Mirsky et al., 2009; Mochizuki
et al., 2013), consensus problems (Olfati-Saber and Murray, 2004) and multi-group
epidemiological models (Colizza et al., 2006).

4.3 Methods

With large-scale complex networks in mind, this section provides a highly scalable
solution for the two design problems raised in Section 4.2: (1) the minimum sensor
placement problem, and (2) the minimum-order functional observer design.

A MATLAB implementation of Algorithms 1, 2 and 5 are publicly available at
https://github.com/montanariarthur /FunctionalObservability.

4.3.1 Minimum sensor placement for sets of target nodes

According to the theory and assumption discussed above, the minimal sensor placement
problem is to determine a minimum set S such that there is a direct path from every
target node to some sensor node. We show that the minimum sensor placement problem
can be formulated as a set cover problem. For each candidate sensor node, let R;
denote the set of target nodes in G(A) that have a direct path to the state node z; € X.
By this definition, the minimal sensor placement amounts to identifying the minimal
node set S such that the union of the sets R;, x; € S, covers the target set T, i.e.,
Uz,esRi 2 7. This is an NP-hard problem, to which we provide an approximate but
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highly scalable solution via Algorithm 1, in which a breadth-first search determines R;

for each node x; € X and a greedy algorithm solves the set cover problem.

Algorithm 1 Minimum sensor placement

input: graph G(AT), target set 7, candidate set C

output: sensor set S

initialize R; < 0, Vi = 1,...,|C|;

for all z; € T
starting at node z; in graph G(A), find the set of reachable nodes R, C X using a
breadth-first search algorithm;

for all z; € C
if Tj € R;, then R; < R, U {.TUZ},

end
end

initialize S « 0.

do
for all x; € C\S, compute gain
A(azz) = ’ U Rj’ - ‘ U Rj ; (4'6)
JjiwjeSU{z;} jix; €S
add the element with highest gain
S+ SuU{arg max A(z;)|z; € C\S}; (4.7)

while Uj., es Ry # T-

Algorithm 1 provides an approximate solution to the minimum sensor placement
problem in polynomial time. Firstly, a breadth-first search is run for each target node
(for-loop), allowing one to determine the sets of target nodes R; C T that have a
direct path to each state node z; € C C X in G(A), where C is a set of candidate nodes
for sensor placement. Secondly, a greedy algorithm is used (while-loop) to find an
approximation of the minimum set of sensor nodes such that structurally functional
observability is guaranteed. Note that a breadth-first search has a complexity order
O(n + |€|) (Newman, 2010), where |£] is the cardinality of the set of edges £ in
G(A), and can be run in parallel for each x; € T. Meanwhile, the greedy search, in a
worst-case scenario, has a complexity order O(n?). The computational complexity of
both algorithmic searches are suitable for large-scale complex networks with thousands

of state nodes.
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4.3.2 Minimum order functional observer design

After the sensor nodes are selected, we need to further choose matrix F, to enable
the design of a functional observer (as discussed in Section 4.1). In the last decade,
Fernando et al. (2010b) provided a theoretical solution to the problem of designing a
minimum-order functional observer, that is, finding a minimum order matrix Fj such
that conditions (4.4)—(4.5) are satisfied for a triple (A, C, Fy), where Fj is subjected
to row(Fy) 2 row(F). However, the method provided in (Fernando et al., 2010a)
is not scalable for high-dimensional systems, because, as further detailed below, it
iteratively invokes singular value decomposition (SVD) to numerically check rank
condition (4.4) followed by a combinatorial search to determine additional rows to
Fy such that condition (4.5) is satisfied. To circumvent these issues, adopting the
structural approach described in previous sections, we can convert the rank-based
condition (4.4)-(4.5) onto equivalent graph-theoretical ones, providing a highly scalable

solution in the context of large-scale networks.

Scalability issues of previous numerical procedures. For completeness, we show
the scalability issues present in the most conventional way to numerically implement,
as shown by Fernando et al. (2010a), the theoretical results of Fernando et al. (2010Db)
for the design of a minimum order functional observer. Despite the fact that we only
investigate this single algorithm, we note that other numerical procedures proposed
in the literature (Fernando and Trinh, 2014; Mohajerpoor et al., 2016; Rotella and
Zambettakis, 2016a), aside from their different numerical performances, have reported
no improvement in the scalability of the design algorithm.

A two-stage algorithm is proposed by Fernando et al. (2010a), where a recursive
augmentation of Fy with extra row vectors is carried out in each stage until condition
(4.4) and (4.5) are satisfied. The numerical rank condition in (4.4)-(4.5) is computed
using singular value decomposition (SVD), which is not very scalable, having complexity
order O(n?) (and also being unstable for high-dimensional matrices). In a worst-case
scenario, one has ¢ = 1 and » = 1, but—in order to design a stable functional
observer—has to estimate ro = n — ¢ = n functions. Under these circumstances, the
worst-case scenario for the first stage of this algorithm requires finding the minimum
Fy that satisfies (4.4) with n recursive iterations. Since each iteration requires at least
one SVD computation, the first stage of this algorithm has complexity order O(n?).
For the second stage, the worst-case scenario requires checking the rank condition (4.5)
for up to >}, (Z) = 2" — 1 possible submatrices—which has complexity order O(2").

Despite the worst-case analysis, usually the second stage algorithm requires checking
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(4.5) for just a few submatrices, or none at all. Thus, the complexity order of the first
stage of this algorithm is a more “honest” metric for comparison purposes and the one
that we mainly adopt throughout the main text. Note that the low scalability of the
numerical procedure in (Fernando et al., 2010a) is a direct consequence of the use of

SVD methods to compute the numerical rank.

Minimum order functional observer design for large-scale systems. To
circumvent the scalability issues reported above, adopting the structural approach
described in previous sections, we convert the rank-based condition (4.4)—(4.5) onto
equivalent graph-theoretical ones. To achieve this, we first make the observation
that, if the corresponding graph of a dynamical system has a self-edge in every target
node, condition (4.4) structurally implies (4.5) (see Corollary 4.1 for a proof). In light
of this, only condition (4.4) needs to be considered to determine Fj and hence the
combinatorial search is no longer needed. We then propose Algorithm 2 as a highly
scalable solution to determine matrix Fj with the smallest order possible by simply
augmenting the rows of F in such a way that (4.4) is satisfied (see Corollary 4.2 for a
proof). In Algorithm 2, instead of invoking SVD, the rank condition (4.4) is verified
by computing the maximum matching set associated with the corresponding bipartite
graph of its matrices. As shown below, the algorithm has a (worst-case scenario)
computational complexity of O(n?®), which brings a significant improvement compared
to the complexity order O(n*) of the numerical procedure provided in (Fernando et al.,
2010Db).

With applications in network systems in mind, notice that, as stated in Section 4.2,
C and F only have one nonzero element per row and Assumption 4.1 holds throughout

this chapter. Firstly, we state Corollary 4.1.

Corollary 4.1. A stable functional observer of order r exists for some numerical
realization (A, C, F) if: (i) condition (4.4) is true for a structured triple (A, C, F), and
(7i) every target node x; € T has a self-edge in G(A,C).

Proof. A stable functional observer of order r exists if and only if Darouach’s conditions
(4.4)—(4.5) are true for some numerical realization of a structured triple (A, C, F)
(Darouach, 2000, Theorem 2). We show that, structurally speaking, condition (4.4)

implies (4.5) under the given condition (ii).
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Consider condition (4.5) for A = 0. Since, by assumption, condition (4.4) is true,
then condition (4.5) can be restated for A = 0 as

C
FA oA
rank | C' | =rank el (4.8)
CA
FA

In other words, condition (4.8) holds true if row(F) C row([CT (CA)T (FA)T]T).
Since condition (4.4) is true, then row(FA) C row([CT (CA)T FT]"), ie.,

FA=D, + D,F, (4.9)

for some matrices D; € R"™ 2 and Dy € R™*". If D, is invertible, from equation (4.9),
we have

C

F=D;'FA-D;'D,
CA

. (4.10)

This means that row(F) C row([CT (CA)T (FA)T]T). We now show that D, is indeed
invertible under condition (ii). If every target node x; € T has a self-edge in G(A, C),
then the i-th entry of at least one row of F'A is a non-zero entry. Since z; is a target
node, then, by assumption, the i-th entry of one row of F' is a non-zero entry. As a
result, there is always a non-zero value that can be assigned to [Ds];; such that (4.9)
holds true. Since this result holds for all target nodes x; € T, by induction, D, has
non-zero entries in all its diagonal elements. Moreover, since Dy is a map between
structured matrices F and F'A, then it is also a structured matrix with generic entries
(Yamada and Luenberger, 1985). As a result, there is always some numerical realization
of (A,C, F), and hence of Dy, such that rank(Dsy) = r and D, is invertible.

Consider now condition (4.5) for A # 0. From the results above, we have that

C C
rank [CA| =rank |[CA| . (4.11)
F FA
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Since [(AF — FA)T CT (CA)T|" is a linear combination of [FT CT (CA)T]T and
[FAT CT (CA)T]T, both of which have the same rank, then

AN —FA F
rank C <rank | C |. (4.12)
CA CA

Because (A, C, F) are structured matrices, there is always some numerical realization
of (A, C, F) such that this upper bound holds true for all A # 0. ]

If we assume that every target node x; € T has a self-edge in G(A, C'), then, in order
to solve the minimum order functional observer design problem, it is only necessary
to design an algorithm that finds a minimum order Fj that satisfies condition (4.4).
Indeed, it is often the case that a dynamical network has a self-edge in every target
node, as seen in the application examples in power grids and epidemiological models in
Section 4.5.

Algorithm 2 Minimum-order functional observer design
input: functionally observable triple (4, C, F')

output: functional observer matrices (Fy, N, J, H, D, L)
initialize Fy < F, ro < rank(Fp), My < 0, Ma « (;

do

update G « [CT (CA)T FJ]T;

build a bipartite graph B(V, X, €y x), where V = {v1,..., 2447, } is a set of nodes
where each element corresponds to a row of G, X = {x1,...,z,} is the set of state
nodes (where each element also corresponds to a column of G), and (v;,z;) is an
undirected edge in &y y if Gj; is a non-zero entry;

find the maximum matching set &, associated with B(V, X, &y x) (e.g., via the Hopcroft-
Karp algorithm);

for all z; € X, if x; is connected to an edge in &,,, then update the set of right-matched
nodes Mj < My U {z;};

define the set of candidate nodes C = Mo\ M1, where x; € My if [FyAl;; is a non-zero
entry;

draw an element x3, € C and update Fy < [Fy (F')T]T (rg <= 7o +1), where F’ € R
and [F'];; = 1if j =k, and 0 otherwise;

while C # 0);

design the functional observer matrices (N, J, H, D, L) for a triple (A, C, Fp).

For cases where (A, C, F) is functionally observable, Algorithm 2 provides a scalable

solution to the problem of determining Fy with minimum order such that condition (4.4)
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is satisfied for the triple (A, C, Fp). In this algorithm, we avoid numerical computation
of the rank condition in (4.4), which is numerically unstable and computationally
demanding for high-dimensional matrices. The numerical rank computation based on
SVD methods have a complexity order O(n?). Instead, we compute the structural
(or generic) rank of a matrix by finding the maximum matching of the corresponding
bipartite graph of such a matrix. This is a highly scalable alternative since the
maximum matching problem can be solved by the Hopcroft-Karp algorithm, which has
a complexity order O(y/ny|&|), where ny, and |&,| are the number of nodes (columns
and rows) and edges (non-zero entries) in the bipartite graph (matrix). Fig. 4.2
presents an illustrative example, where it becomes clear how we take advantage of the
structural properties of a dynamical system to augment Fj at every iteration until
condition (4.4) satisfied.

Algorithm 2 finds the minimum order Fy in O(n*®) time. This complexity order can
be estimated in a worst-case scenario where one has a single sensor node (¢ = 1) and
target node (r = 1), but—in order to satisfy (4.4)—all other unmeasured nodes must be
estimated, hence rg = n — g ~ n. This means that Algorithm 2 provides a solution with
approximately n recursive iteration, where a maximum matching algorithm is run at
cach iteration, yielding O(n-/n,|&|). Note that we have at most n, = 2¢+ro+n ~ 2n
nodes in B, and let |&,| = npkayg, Where k. is the average node degree in B. Thus,
the complexity order is O(n*?) if we assume that k., < n. Note that this is still a
very conservative estimate since usually ry < n.

Corollary 4.2 proves that Algorithm 2 finds a matrix Fj with the smallest order

possible under the assumptions stated throughout this chapter.

Corollary 4.2. If (A,C, F) is structurally functionally observable, then Algorithm 2
returns a matriz Fy with the smallest order possible such that the rank condition (4.4)
is structurally satisfied, under the constrain that Fy has only one nonzero entry per

row.

Proof. From (Fernando et al., 2010b, Lemma 1), condition (4.4) can be satisfied for a

Fy of minimum order by incrementally augmenting Fy with row vectors orthogonal to

C
CA ¢
row Nrow |CA| . (4.13)
Fy
Fy

A
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Figure 4.2: Illustrative example of Algorithm 2 running for the dynamical network in
Fig. 4.1b. On iteration 1, the algorithm builds the corresponding bipartite graph B for
[CT (CA)T FJ]T. Note that the rows (nodes in V) corresponding to C' and Fy are connected,
respectively, to the sensor and target nodes in X. Rows of C'A and FyA are connected to
the “predecessors” of the sensor and target nodes (i.e., the nodes that point to them). Using
some maximum matching algorithm, the matched edges &,, and right-matched nodes in My
are highlighted in yellow. We highlight the elements in My (predecessors of Fp) with a red
outline, and define C = {x2} (elements in My that are not right-matched). After drawing
element z9 in C, and updating Fp, the algorithm proceeds to iteration 2. The same steps
are repeated. Since x1 € My is already a right-matched node, then C = () and the process
terminates. Note that the cardinality of V increases at every iteration, also increasing the
computational burden in the maximum matching computation. To avoid this, we provide a
more efficient MATLAB implementation of Algorithm 2 that uses an incremental procedure
to avoid computation of the maximum matching for the whole bipartite network at every
iteration.

The maximum matching search in Algorithm 2 determines the set of right-matched
nodes M such that each of its elements corresponds to a set of basis vectors that
spans row([CT (CA)T FJ]T). Likewise, elements of My corresponds to basis vectors
that spans row(FyA). Thus, the elements of C = M3\ M corresponds to a set of basis
vectors that spans the orthogonal complement of (4.13). Remind that each of these
basis vectors have only one non-zero entry per row. Thus, from (Fernando et al., 2010b,

Lemma 1), by recursively adding the basis vector corresponding to elements of C to Fy,
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Algorithm 2 returns the minimum order Fj subject to the constraint that Fy (and F,

by assumption) have only one nonzero entry per row. O

4.4 Numerical Results in Large-Scale Complex
Networks

In this section, we show numerical results of Algorithms 1 and 2, developed in Section
4.3, applied to random complex networks and real-world networks. In what follows, we
describe the numerical setup for the generated random networks and the real-world

networks datasets used throughout this section.

Generation of random complex dynamical networks For the random generation
of the complex networks, we adopt the following choice of parameters: N is the number
of nodes; m = {1,3,5,7} for a Barabési-Albert scale-free (SF) network (Barabdsi,
1999); and k =2, p = {0,0.2,0.5, 1} for a Newman-Watts small-world (SW) network
(Newman and Watts, 1999). Parameter m is the number of edges that a new node
attaches to existing nodes, k is the number of nearest neighbors in a ring graph and p
is the probability of adding a new edge. For each one of these undirected networks, a
directed model is generated by randomly assigning a single direction to each edge.
Since we are concerned with dynamical networks, we assume that, in each node of
a generated complex network, there is a 3-dimensional subsystem with the following
general structure:
-1 -1 0
Apoge =11 =1 0. (4.14)

To include the effects of heterogeneity in the nodal dynamics of the generated dynamical
networks, we let each subsystem’s dynamics be defined by A; = A\;Anoqe, fori =1,..., N,
where \; ~ U[2,5]. Thus, similar to (2.7) the dynamical matrix A describing the whole

dynamical network is given by
A:diag()\l,...,/\N)®An0de—L®M, (415)

where ® is the Kronecker product operator, L is the Laplacian matrix of the generated
complex network, and M = {0,1}**3 is defined by M;; = 1 if i = j = 2 and 0 otherwise.
The term L ® M means that the second state variable of all subsystems are diffusively
coupled according to L. Note that A has dimension n = 3.
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Figure 4.3: Minimum sensor placement in large-scale networks. Minimum number of sensors
q/N as a function of the number of target nodes /N in (a) randomly generated directed
small-world (SW) and scale-free (SF) networks, and (b) real-world networks. Results are
shown for an average over 100 realizations of randomly selected target nodes on each network.
The minimum set of sensor nodes is determined using Algorithm 1 (with C = X’). Random
complex networks were generated with N = 10* nodes, where each node has a 3-dimensional
subsystem (i.e., n = 3N), while real-world networks are assumed to have 1-dimensional
subsystems (i.e., n = N). Parameter p is the probability of adding a new edge in a SW
network and parameter m is the number of existing nodes a new node is connected to in a
BA network.

State nodes were chosen as sensor or target nodes in this section under Assumption
4.1 and that only the first state variable of each subsystem A; can be chosen as a sensor
or target node (i.e., Cj; or Fj; is a non-zero entry only if (j + 2)/3 is integer), hence S

and 7 can have at most N elements.

Real-world networks datasets. For the real-world networks used in Section 4.4.1, we
take several adjacency matrices A,q; available in different real-world datasets shown in
Table 4.1. For each real-world network, we define a dynamical matrix A as the Laplacian
matrix of Aldj. We use the Laplacian matrix in order to model the energy/information
flow in A,q; as diffusive processes, and we use AJ:

J
databases, under a different convention where x; has a directed arrow to z; in the

since A,q; is defined, in the studied

corresponding graph G(Aaq;) if [Aaqj)i; is a non-zero entry.
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Dataset of real-world networks studied in the paper.

Table 4.1
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4.4.1 Minimum sensor placement

The application of Algorithm 1 to several randomly generated complex networks as
well as real-world networks is illustrated in Figure 4.3. The results show that, generally
speaking, the fewer target nodes, the fewer sensor nodes are required to guarantee the
functional observability of a system. Indeed, as r approaches n, the minimum number
of sensor nodes tends to be the one required for complete observability of a system. In
the studied metabolic networks, Fig. 4.3b shows that monitoring around 8 to 15% of
the total number of metabolites is sufficient for complete observability of the network
system (r = n). This is consistent with results found in (Liu et al., 2013, Table 1),
where it was shown that a necessary number of sensor nodes for complete observability
of metabolic networks lies around 5 to 10% of the total number of metabolites.
Complete observability is often unnecessary for many biomedical applications since
the number of biomarkers (target nodes whose activities are altered by some disease) are
usually much smaller than the network size (r < n) (Barabasi et al., 2011). Our results
show that a functional observability approach is more feasible in such applications,
especially because a significantly smaller number of sensor nodes is actually needed
for estimation of the biomarkers concentrations (Fig. 4.3b). This is also true for
cyber-physical systems in engineering applications (e.g., power grids and transportation
networks), where one might be interested in monitoring and detecting potential failures
or cyber-attacks in specific nodes. Overall, Fig. 4.3a shows that many other systems
described by complex network models can have a substantially small set of sensor
nodes if only a few target nodes are of interest, specially if the network connectivity is

larger (i.e., higher parameters p and m in SW and SF networks, respectively).

4.4.2 Minimum order functional observer design

For different randomly generated complex networks, Fig. 4.4a,b illustrate the order
of the minimum functional observer, determined via Algorithm 2, as a function of
numbers of sensor and target nodes. Overall, functional observers are of much lower
order compared with the corresponding Luenberger observers, leading to significant
improvement in computation efficiency and scalability when designing and implementing
the observers in large-scale networks. Generically speaking, the larger sensor set S
leads to lower order ry, whereas the larger target set 7 results in higher order r(, as
shown in Fig. 4.4a,b.

For a fixed number of target nodes, Fig. 4.4c shows that the functional observer

order to the system dimension ratio ro/n decreases as we increase the network size,
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Figure 4.4: Minimum order functional observer design in large-scale networks. Minimum
functional observer order ry/n as a function of the (a) number of sensor nodes ¢/N, (b)
number of targets /N, and (c) the network size N, in different directed random networks.
Results are color coded for SW and SF networks with different generation parameters p and
m, respectively. Other parameters are set as (N, r) = (10%, 0.1N) for (a), (N, q) = (10*,0.3N)
for (b), and (q,r) = (0.3N,100) for (c). Sensor and target nodes were randomly placed in the
network. The black solid line shows the Luenberger observer order (n — ¢) for comparison
purposes. (d) functional observer order ro/N as a function of the global clustering coefficient
(2.4) of G(A) in directed (solid line) and undirected (dashed line) SW and SF networks, with
(N,q,7) = (10*0.3N,0.1N). (e) Running time of Algorithm 2 (in seconds) as a function of
N in a directed SW network with (¢, r,p) = (0.3N,0.1N,0.2). (f) ro/N as a function of q/N
in undirected SW and SF networks, with (N,r) = (102,0.1N), for cases where sensor nodes
are randomly placed (solid line) and optimally placed (dashed line) using a greedy algorithm
to solve (A.3) (see Appendix (A)). Results are the average of 100 Monte Carlo runs in all
plots.

which means that the order reduction gained by the functional observer compared to
the Luenberger observer increases with the network size. The magnitude of this gain,
however, depends more intrinsically on other system properties, including the network

structure G(A), the choice of target nodes in 7, and how sensor nodes in S are placed.
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We find that more clustered and directed networks seems to lead to a larger order
reduction in the design of a functional observer compared to a Luenberger one. This is
illustrated in Fig. 4.4d, where we can see that as p and m increases in SW and SF
networks, respectively, the clustering coefficient increases and the functional observer
order decreases more sharply. Interestingly, although directed networks require a larger
minimum set of sensor nodes to guarantee the structural functional observability of a
system compared to undirected networks (which only requires one node), the directed
network allows the design of functional observers of smaller orders. This result also
highlights that Algorithm 2 brings computational improvement for both directed and
undirected network applications. Finally, Fig. 4.4e illustrates how the running time
of Algorithm 2 scales with the network size, showing that it does not surpass our
worst-case prediction of O(n??).

Figures 4.4a—e show results considering that sensors and targets are randomly placed
in the network. However, the functional observer order ry can be further reduced by
optimizing the sensor placement (as previously seen in Fig. 4.1b—d). Given a dynamical
network G(A) and a set T, one might be interested not only in solving the minimum
sensor placement problem but also in finding, for a fixed number of additional sensors,
the best placement of S such that the order of F{ is minimized, thereby minimizing
the computational costs in the functional observer design and implementation. This
is, however, a difficult bi-level optimization problem, which—for illustration purposes
only—we provide a non-scalable greedy algorithm (see Appendix A.2 for details). Such
algorithm allows us to show that one can design a functional observer with even smaller
order if the sensor nodes in § are optimally placed in some way instead of randomly
placed, shown in Fig. 4.4f. Albeit this specific result is illustrated in a low-dimensional
setting, we can extrapolate from Fig. 4.4c that this optimal sensor placement is also

relevant in a high-dimensional setting.

4.4.3 Performance comparison between observers

This section provides a performance comparison between (reduced-order) Luenberger
observers and functional observers in large-scale complex networks. In what follows,
we describe the numerical setup for the observer design and simulation.

For each generated complex dynamical network A and some given sets S and T,
we have a functionally observable triple (A, C, F') in which we follow three steps to

evaluate the observer performance:
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1. we design a Luenberger observer of form (B.5) (using Algorithm 4) and a minimum
order functional observer of form (B.8) (using Algorithm 2 to determine a
minimum order Fy then Algorithm 5 to determine the auxiliary matrices);

2. using a fourth-order Runge Kutta method, we simulate the dynamics of the
physical system (2.1), the Luenberger observer (B.5) and the functional observer
(B.8) excited by a a step input of w(t) = 10, V¢ > 0 (where B = [1...1]"),
with integration step 6t = 0.01, initial conditions z;(0) ~ N(0,1),Vi, and
w;(0) ~ N (10,1), Vi, and a total simulation time t; = 4 s (which is sufficient to
reach a steady-state regime);

3. and, at each integration step kd;, where k = 1,2,... t;/dt, we compute the
estimation error of each observer as ||z(k) — 2'(k)||, where z(k) = Fa(k) € R" is
the (true) value of the target vector and 2'(k) € R" is the corresponding observer
estimate of the target vector.

Note that, in the case of a Luenberger observer, 2'(k) is inferred from the (n — ¢)-
dimensional vector &, estimated in (B.5), while, in the case of a functional observer,
2'(k) is inferred from the ro-dimensional vector 2(k) estimated in (B.8).

In this work, we use the linear-quadratic regulator (LQR) as a pole-placement
algorithm for the observer design, which requires solving the algebraic Riccati equation
XTP+PX—-PYRYWTP+Q=0for P. Let E+ P, X + AL, +al,and Y «+ A,
for a Luenberger observer design, and Z <~ P, X < Ny +al,Y + N/ for a functional
observer design. In both cases, we define « = —100, Q = 1072 - I and R = I. The
diagonal terms in X guarantee that Z and E are designed to have the right-most
eigenvalues equal to a with minimum estimation energy (R >> Q). This ensures that
their dynamics are dominated by the same slowest eigenvalue, allowing a consistent
comparison of observer performances despite their different orders.

Figure 4.5 compares the performance of the functional observer and the Luenberger
observer when estimating the target state evolution shown in Fig. 4.5a. The transients
of the target state estimation error ||z(t) — 2'(¢)|| in Fig. 4.5b show that the functional
observer has similar dynamical behavior as the Luenberger observer and the output
of both observers converge to the accurate internal states of the system. Statistical
analysis in Fig. 4.5¢ further reveals that both observers perform asymptotically close
even under the effects of modelling errors. Overall, numerical results show that the
considerable order reduction in the functional observer design does not compromise its
efficacy. Figure 4.5d, on the other hand, shows that such order reduction significantly
reduces the computational costs both in the design and online implementation of

the functional observer. Such computational advantage of functional observer makes
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Figure 4.5: Performance of functional observers for target state estimation in large-scale
networks. (a) Target variables z(t) = Fa(t) dynamical evolution over time ¢. (b) Target
state estimation error [|z(t) — 2/(t)|| evolution over time ¢, where z(t) is the target state
vector’s “true values” and 2/(¢) is the estimated target state vector by a functional observer
(solid line) or Luenberger observer (dashed line). (c) Histogram of the steady-state estimation
error ||z(t¢) — 2'(t¢)||, where ¢t = 4 s, of a functional observer (blue) and Luenberger observer
(orange), for different modelling errors o in the dynamical matrix A. In this simulation, each
observer is designed using a dynamical matrix A where each entry is drawn from a uniform
distribution as A;; ~ U[(1—$)A;j, (1+9)A;j]. (d) Running time of the design algorithm (left)
and simulation time of the dynamics (right) of a functional observer (blue) and Luenberger
observer (orange) as a function of the network size N. Results are shown for a directed
SW network where each node has a 3-dimensional subsystem (i.e., n = 3N), and sensors
and targets were randomly chosen. Parameters were set as (p,q,r) = (0.2,0.3N,0.1N), and
N =10? in (A,B,C). Simulations in (c,d) are the average of 100 Monte Carlo runs.

it superior or even indispensable in large-scale networks, especially when constant
re-design of the observer is expected due to continuous evolution of system equilibrium

and network structure.

4.5 Applications

This section provides two application examples of the developed algorithms in the

context of power grids and epidemics.
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4.5.1 Cyber-attacks detection in power grids

The control of man-made technological systems, such as power grids, supply networks,
interconnected autonomous vehicles and swarms of robots, is mediated by a sensory
and communication infrastructure that captures and exchange measurements from the
physical system between areas that are geographically apart. Decentralized control
strategies (Bakule, 2008), such as wide-area damping control in power grids (Xue
and Chakrabortty, 2018), are important to improve the system stability and suppress
perturbations which often lead to system-wide failures (Yang et al., 2017). Such control
strategies, however, rely on a resilient communication network, which is arguably
more vulnerable to potential failures and cyber-attacks than the physical system itself.
There have been growing threats to cyber-security, among which are cyber-attacks
to supervisory control and data acquisition (SCADA) systems leading to the massive
power outages in Ukraine (Lee et al., 2016), the Maroochu Water Services breach in
Australia (Slay and Miller, 2007), the substantial damage on Iran’s nuclear program
with the Stuxnet computer worm (Farwell and Rohozinski, 2011), and, more recently,
the short communication outages in the Western U.S. power grid on March 2019 (NAE,
2019).

Two common types of cyber-attacks (and failures) are based on jamming or corrup-
tion of measurement signals being transmitted in some communication channel—also
known as denial-of-service and deception attacks, respectively (Amin et al., 2009).
Depending on the set of attacks, however, knowledge of the physical system dynamics
and the transmitted data can still be used to design observers capable of recovering
lost data and also detecting the presence of stealth deception attacks through state
estimation (Giraldo et al., 2018; Liu et al., 2011a; Pasqualetti et al., 2013a; Teixeira
et al., 2010). In what follows, we show, in the context of power grids, how functional
observers can be implemented for cyber-attack monitoring and detection, and how
they are a computationally efficient alternative to such applications compared to the
use of full-state estimators, e.g., Luenberger observers and Kalman filters.

The power grid dynamics can be modeled as a structure-preserving network of
coupled Kuramoto oscillators (Dorfler et al., 2013; Nishikawa and Motter, 2015), where

the generators dynamics are governed by the so-called swing equation,

c ee - . N
21, o; + Dy ¢; = P+ E Kjsin(¢; — ¢i), (4.16)
R

w w e~
R j=1,5#i
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Figure 4.6: Target state estimation for cyber-attack detection in power grids. (a) Schematic
network of the IEEE-118 power grid, which comprises of 118 buses with ng = 54 generator
oscillators (black circle), each one connected to a corresponding generator terminal (gray
circle), and n; = 64 load oscillators (gray square). PMUs placed in load buses are shown in
blue. Phase oscillator whose transmitted measurement is corrupted by a deception cyber-
attack (|C| = 1) is shown in red. (b) Dynamics of the oscillators phase ¢;(t), for i =1,..., N,
and the generators frequency ¢;(t), fori =1, ... , Mg, over time ¢. (c) A deception cyber-attack
framework is illustrated. Transmitted oscillator phase ¢,(t) € C (blue solid line) is replaced
with false data ¢, (t) (red solid line). The colored dashed lines show the state estimation, from
multiple observers, of the lost data. (d) Performance of the cyber-attack detection framework.
Histogram of the RMSE between the functional observers’ state estimates d;a(t) and the
possibly attacked measurement ¢,(t), as a function of the time of detection tq. Left histogram
(blue) shows results when ¢,(t) is not under attack, and right histogram (red) shows results
when ¢,(t) is under attack, i.e., ¢.(t) <= ¢a(t). (¢) Running time of the observer design
and state estimation error (RMSE between ¢, and qga) as a function of the observer order.
Results are color coded for different scenarios where functional (blue scale) and Luenberger
(red scale) observers are designed with different number of sensors |S|. Simulations are shown
for 100 Monte Carlo runs, where elements of S and C were randomly chosen in each run, and
100 observers are designed from distinct subsets S’ per run.

fori =1,...,ng, and the dynamics of load buses and generator terminals are described

as first-order phase oscillators,

D, . N
—¢;=PF+ > Ksin(¢; — &), (4.17)
WR j=1#i

for i =ng +1,..., N, where n, is the number of generators, n; is the number of load

buses, N = 2ng, + ny is the number of oscillators, and n = N + n, is the system

dimension. Let ¢;(t) be the phase angle of oscillator i at time t relative to frame
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rotating at the reference frequency wg in rad/s, H; and D; be the inertia and damping
constants. In addition, K;; = V;V;B;; where V; and V; are the voltage levels at bus %
and j and B;; is the susceptance of the transmission line connecting bus 7 and j. If
there is no line connecting bus 7 and j, K;; = 0. The power injection F; > 0 represents
power generation whereas P; < 0 indicates power consumption by the loads.

We illustrate our framework on the IEEE-118 benchmark system with a diagram
shown in 4.6a. Parameters (K;;, P;, H;, D;,wg) in (4.16)—(4.17) were computed based
on the IEEE-118 dataset using the MATLAB toolbox provided by Nishikawa and
Motter (2015). Power flow equations were numerically solved using the MATPOWER
toolbox (Zimmerman et al., 2011). Initial conditions were set assuming that the
power system was in a synchronized steady-state, i.e, ¢;(0) = 0, Vi, and each ¢;(0) is
determined by the power flow solution.

We assume that the power grid is equipped with a set of phasor measurement units
(PMUs) randomly placed on a small number of load or generator terminal buses, i.e.,
the set of sensor nodes S C {¢n, +1,...,¢n}, where |S| = 0.3(ng 4+ n;). These PMU
measurements are transmitted to a control center in real-time to support automated
control actions, human-based decision-making, and cyber-attack detection, etc. In this
study, the system is initially operating in steady-state regime when, right after the
power system is hit by a small perturbation at time t = 1 s (Fig. 4.6b), a coordinated
cyber-attack corrupts one of the sensor measurements ¢, € C C S, transmitting false
information instead to the control center, illustrated in Fig. 4.6¢. To simulate the small
perturbation, an additive perturbation was applied to the phase of each generator in
steady-state ¢ = 1 s, drawn from the Gaussian distribution A/(0,0.01). We assume
that a single attack replaces the transmitted measurement of some oscillator phase
¢ (t) € C with some false data ¢, (t)—which, for illustration purposes, we assume to be
copied from some another neighboring measurement: ¢,(t) = {¢;(t) : ¢; ¢ C, K.; > 0}.
Data is reconstructed from the state estimation gga(t) of multiple functional observers,
each one designed from a distinct subset S’ C S, with cardinality |S’| = |S|/2. For
all simulations, observers were designed using knowledge of the system dynamics
(4.16)—(4.17) linearized around the equilibrium point (steady-state) and a subset of
measurements S’ as defined above, with the target set defined as 7 = C. We assume
that @, (t) = ¢a(t) for t < 1s (before perturbation).

We show that this cyber-attack can be effectively detected by designing a stable
functional observer and cross-validating the transmitted measurements against the
state estimates during the short transient dynamics. Since one has no access to the

true state estimation error ¢,(t) — qga(t), such cross-validation is actually performed
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statistically, relying on the state estimation of multiple distinct functional observers

designed from &’ C S, as shown in Fig. 4.6d. We define the root mean-square error

(RMSE) as

1 tq+1 ~
RMSE — ¢ L o) - dutola, (118)
d /1

where the RMSE is a function of the time of detection window (e.g., the gray box
in Fig. 4.6¢). Simulations are shown for 100 Monte Carlos runs, where the additive
perturbations to the system were randomly drawn from N (0,0.01) in each run, and
100 distinct functional observers were designed in each run (as illustrated in Fig. 4.6¢).
Therefore, each histogram comprises 10,000 data points.

The performance of methods for cyber-attack detection depends on the time of
detection window, i.e., the time it takes to reliably detect an attack after it is launched,
or equivalently, the interval of time under which the system is left unprotected waiting
for a decision. Fig. 4.6d shows that, after a short period of time (=~ 0.25s), the
separation between the histograms corresponding to the attacked and un-attacked
systems becomes statistically significant so that reliable judgement can be made. Since
the separation between the two histograms becomes even stronger as time increases,
the judgement can be made more robust if a larger detection window is allowed.

In applications with multiple and constantly changing operation points, such as
smart power grids, algorithms for the design of controllers and observers have to be
sufficiently fast so that they can be implemented in real-time after a subsequent change
of equilibrium (operation point). A cyber-attack detection framework can only be
performed statistically if the algorithms for the observer design are sufficiently fast so
that multiple observers can be implemented in a relatively short amount of time for
real-time use. Algorithm 2 provides a fast and scalable solution for the design of a
minimum-order functional observer, which effectively allows one to design significantly
more functional observers in a same time frame. Figure 4.6e shows that for the same
number of PMUs |S]|, the functional observer usually has a much smaller dimension
than the Luenberger observer, and thereby has a significantly smaller running time
for design. This has a cumulative impact on the computational resources for such
application, specially when hundreds of (functional) observers are desired to provide
estimates. Despite this large improvement in computational costs, no significant
differences between the observers performance (state estimation error) are perceptible
(Fig. 4.6e). These conclusions reassure the findings in Figs. 4.4 and 4.5, and, as in
Fig. 4.5d, we can expect that the larger the power grid size, the more expressive the

computational resources used by functional and Luenberger observers.



86 Functional observability and target state estimation in large-scale networks

4.5.2 Estimation of epidemic spreading in target populations

Motivated by the unprecedented spreading of the coronavirus SARS-CoV-2 and the
increasing number of fatalities associated with the COVID-19 disease, recent works in
the literature highlighted the importance of epidemiological models for containment
measures against the epidemic spreading, which often come at significant socioeconomic
costs. For instance, epidemiological models are useful for our understanding of growth
patterns and scaling laws governing the epidemic spreading (Blasius, 2020; Singer,
2020), as well as for the development of optimal control strategies (Lesniewski, 2020;
Morris et al., 2020; Tsay et al., 2020), which ultimately support the decision of when
social distancing and quarantine policies should be implemented (Hethcote, 2000).
Such policy-making strategies depend on the knowledge of the initial and/or current
state of the epidemic in a population. However, when a pandemic like COVID-19
starts, it takes time to mobilize medical resources and ramp up testing capacity. At
the initial stage of the pandemic, it is almost impossible to ensure every city to have
sufficient testing. Therefore, it is important to develop the ability to infer as much
information as possible from available testing data. Previous results showed that state
estimators can infer the true current state of the number of infected, susceptible and
recovered individuals to some disease (Iggidr and Souza, 2019).

In this work, we show how functional observers can be designed to provide a
state estimation of the infected population in a set of “target” cities (where testing is
inadequate) from the known infection rate of a set of “sensor” cities (where sufficient
testing has been done). To this end, consider the following multi-group epidemiological
model (Colizza et al., 2006):

. S; 1 N S; S
Si =06 — — Z [AadJ]ZJ + Z adJ 7]7
Pi j=1,j7# i j= LJ#Z P]
ii= 52 - Y Mot Y Al
= Pi Vi I; adjij adJ Ji ) 4.19
i =Ly P, =T P; (4.19)
D; =1,

fori=1,..., N, where N is the number of groups (populations, nodes), (S;, I;, R;, D;)
are the susceptible, infected, recovered and dead (SIRD) individuals of group ¢ with
population size P; = S; + I; + R; + D;, (7,n) are the recovery and fatality rate, ;

is the contact rate per group 4, and A,q; is the adjacency matrix of a transportation
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Figure 4.7: Target state estimation in epidemics. (a) Air traffic network of the United
States, where nodes represent cities and edges represent the domestic flights between two
cities. Target cities are highlighted in red, and the minimum set of sensor cities required for
functional observability is highlighted in blue. (b) Transportation network flow between three
groups (top) and its corresponding structural graph representation (bottom) as a dynamical
network described by (4.19). The nodal dynamics are taken into account by expanding each
group 7 as a set of SIRD states, while edges represent the linear (solid lines) and nonlinear
(dashed lines) interactions between the state variables in the ODE. (c) Difference between
the time instant ¢, when the epidemic peak actually happens in each target city and the
predicted 7, time instant (in days). Red bars show predictions (per city) done by numerically
integrating (4.19) with arbitrary initial conditions, while blue bars show predictions given by
the estimates of a functional observer. (d) Minimum sensor placement |S|/N as a function of
the number of targets | 7| /N for different countries and regions with distinct air transportation
networks. Simulations are presented for an average of 100 Monte Carlo runs, where target
cities were randomly chosen.

network where [A,q;);; describes the number of people traveling from group i to j on a
daily basis.

In this study, we assume each group to be an individual city and the adjacency
matrix A,q; to describe the air traffic network between the cities” airports (Fig. 4.7a),

which is defined according to the TranStats database for international and domestic
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flights (all carriers) (Tra, 2004). Multiple airports belonging to the same city are
combined in a single group i (node), with the corresponding city’s population size
P,. Parameters in (4.19) were set as (3,v,n) = (0.4,0.16,0.01) in order to mimic the
coronavirus spreading in a given group, according to results reported in (Blasius, 2020).
To incorporate the heterogeneity of each group in the simulation, we define the contact
rate of each group as 3; ~ N(f3,0.01). In the study of the United States air traffic,
only domestic flights were considered, while in the study of sets of countries, as in Fig.
4.7d, only flights within the countries and regions were considered.

Simulations in Fig. 4.7 are shown for 100 Monte Carlo runs, where we assume that
the epidemic outbreak was in Miami, setting the initial conditions I,,(0) = 100 and
Sm(0) = Py — 100, where I, represents the infected population in Miami. To simulate
the lack of information about the outbreak start (first infection), the simulation-based
predictions and the functional observers were initiated with a false guess of 7;(0) =1
and S;(0) = P; — 1, where j is a random city chosen in each Monte Carlo run.

Ideally, if the true initial conditions of an epidemic were known, containment
measures to “flatten the curve” could be established based on a straightforward
simulation of model (4.19). Unfortunately, this is not the case, because not only the
current number of infected individuals in a given group might be wrong but also the
starting point of the outbreak might be far from the assumed. This carries larger
errors to the simulations of “when” the epidemic peak in a given population group
happens, shown by the red bars in Fig. 4.7c. To circumvent these limitations, we
design a functional observer to provide more reliable estimates of the number of
infected individuals in a set of 15 “target” cities. To find the minimum set of sensor
nodes required for the system functional observability and actually design a minimum
order functional observer for the nonlinear system (4.19), we represent the linear and
nonlinear interactions in (4.19) as a structural graph (as in Fig. 4.7b), thereafter using
Algorithms 1 and 2.

In more details, we show how the structural results derived in this paper for the
minimum sensor placement and the minimum functional observer design of large-scale
linear systems can be extended to a nonlinear model such as (4.19). Firstly, we
draw a “nonlinear” graph representation G = {X,€} of (4.19) (Fig. 4.7B), where
S;, I, R;, D; € X is the set of state nodes and (wi, ;) € £ is a directed edge from z;
to x; if #; is a explicit function of z; in (4.19), as described in Section 3.3.3. Let the
(unweighted) adjacency matrix A be a representation of G. Secondly, we define the set
of “target” cities whose number of infected individuals are desired to be known (i.e.,
I; € T if i is a target city). Thirdly, we define the set of candidate nodes C available
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for sensor placement. In this simulation, we assume that all cities are available for
complete medical testing, but only associated with the number of fatalities due to the
epidemic disease, thus C = {Dy, ..., Dy}. Note that because there is always a path
from I; to Dy, I; is always structurally functionally observable from D;. Fourthly, given
(G,T,C), we use Algorithm 1 to find the minimum sensor placement S C C necessary
to guarantee structural functional observability with respect to T (if possible). Let
C and F be the corresponding matrices to S and T, as in Fig. 4.1. Fifthly, given
(A, C, F), we use Algorithm 2 to find the structure of the minimum order functional
observer required to estimate 7 (i.e., Fy). And finally, we use the results derived in
(Trinh et al., 2006) to determine the functional observer parameters with Algorithm 6
(see Section B.3 for more details).

Figure 4.7a shows the minimum set of 8 sensor nodes required for the system to
be functionally observable, while the blue bars in Fig. 4.7c show the time estimate of
when the epidemic peak happens in the target cities. We define the time instant [¢,);
when the epidemic peak happens in a given target city ¢ as [t,]; = arg max; I;(¢), and
the corresponding estimated time instant Z, as [f,]; = arg max, I;(t), where I;(t) is the
estimated infected population over time given by: (i) the free simulation of (4.19) with
false initial conditions, and (ii) the functional observer simulation.

As seen in Fig. 4.7c, there is a great improvement in the estimation accuracy
with a smaller deviation between realizations of different initial conditions, which
highlights the observer resilience to false initial predictions. Note that, in this case,
a functional observer is designed in a situation where the system is unobservable but
functionally observable. This highlights a fundamental advantage of our approach:
when the conventional full-state observers are not applicable to the unobservable
epidemic dynamics, our approach still provides high-quality estimation of the current
state of the epidemics with limited information from a small number of “sensor” cities.

In addition, there is an interesting fact that, different from most networks studied
in Fig. 4.3, the minimum number of sensors in this case is not a logarithmic function
but rather a linear function of the number of targets. This is illustrated in Fig.
4.7d using the transportation network data of different countries (regions), where the
slope of this function is shown to be dependent on the structural properties of the
countries’ transportation network. Air traffic networks with high connectivity, such
as the Chinese one, are shown to require smaller sets of sensor nodes to guarantee
functional observability, compared to others more sparsely connected networks such as
the Brazilian, European and the global transportation networks—which are intrinsically

affected by their geopolitical interests. Once again, the network structural connectivity



90 Functional observability and target state estimation in large-scale networks

has a fundamental impact in the functional observability of a system, including the
number of sensor nodes (as seen in Fig. 4.3) and the functional observer order (as seen
in Fig. 4.4d).

4.6 Conclusion

In many large-scale complex networks, it is physically impossible to ensure complete
observability and computationally prohibitive to design full-state observers, posing
fundamental challenges to our ability to observe, understand, and control the dynamical
processes. On the other hand, many practical applications only need the observation
of a small subset of key state variables, i.e. requiring the system to be functionally
observable. Our theoretical work establishes a connection between the functional
observability and the network structure, enabling highly scalable graph algorithms
to optimally allocate sensors and design functional observers that achieve accurate
estimation of a target subset of system variables. It is noteworthy that the concept of
“target observability” (or, by duality, target controllability) was previously explored
in the literature (Commault et al.; Czeizler et al., 2018; Gao et al., 2014; Klickstein
et al., 2017; Li et al., 2019; Wu et al., 2015), where conditions were proposed for the
existence of an estimator (controller) capable of estimating (controlling) a selected
subset of target nodes. Though it appears similar, it is fundamentally different from
the functional observability property: the target observability theory does not lead to
an order reduction in the designed state observers, still having the same computational
burden as the conventional full-state observers (see Appendix D for a more detailed
analysis).

Hence, our results advance the theory and methods for state estimation on large-
scale dynamical networks, which could have significant implications to cyber-physical
systems, metabolic engineering, drug re-purposing, autonomous robotics, intervention
ecology, chemical engineering, etc. For example, intervention measures designed to
be taken on specific genetic biomarkers, metabolites or ecological populations often
require precise quantification of such states. Even though physically accessible, such
variables cannot be directly measured without the use of equipment or human-based
actions that interfere with the underlying process or environment, compromising the
intervention measures to be taken thereafter. Our results provide a framework under
which such target nodes can be estimated from measures taken from different variables
that do not interfere with the control actions, dismissing the need for direct measures.

On a different front, our results also allows technological supply networks and multi-
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agent systems to benefit economically from a smaller number of sensor units, and the
communication infrastructure built-in, while relying on a robust state estimation of
the system state for feedback control and operation purposes.

This work also gives raise to further fundamental questions worthy pursuing in the
future. First, the functional observability is a qualitative concept which does not yield
a quantitative measure of how functionally observable the system is. By developing
a quantitative metric of functional observability, Algorithm 1 can be re-designed to
maximize the functional observability metric, so that the estimation accuracy and
dynamical performance of observers are accounted for during the sensor placement.
Second, our application example in epidemiology illustrates how our knowledge of
the model structure can be used to design functional observers in nonlinear systems.
But our analysis is based on a specific system model and how our method can be
extended to more general nonlinear systems requires further studies. Third, the cyber-
attack detection problem can be extended to more general problem of how to design a
communication network resilient to cyber-attacks in a large-scale cyber-physical system.
We believe the graph-theoretical approach to functional observablitity developed in
this manuscript could shed light on this intriguing problem as well. Finally, the design
of functional observers is based on the knowledge of accurate system models. What if
only the system structural model is available but its specific parameters are unknown?
How can we still design and implement functional observers that achieve accurate
estimation of the internal state variables of the system? Further empowered by machine
learning techniques, our graph-based theory and methods could enable plug-and-play

state estimation for complex systems without prior knowledge of the system models.






Chapter 5

Conclusion

The structural approach to analyze the observability and controllability of large-
scale network systems generated interest in applying it to the most diverse areas.
New findings came out in the past decade from combining theoretical results and
techniques developed in the context of control theory, graph theory and, more recently,
network theory. However, as more works find applications away from technological
infrastructures with well-defined and precise models (e.g., power grids, multi-agent
systems) to more broad network applications with imprecise models and parameters
(e.g., neuronal networks, food webs, epidemiological models), it becomes increasingly
more important to avoid pitfalls that might arise from such rich combination of fields.

Observability is a property originally defined in control theory with low-dimensional
systems in mind. Albeit a crisp “yes-no” definition in origin, this property is a
discontinuous function of the systems parameters, where a small change in the parameter
space can move a dynamical system from observable to unobservable, and vice-versa.
The classical definition of observability, therefore, becomes “trickier” as the system
dimension grows large and the number of parameters increase, especially when the
modelling uncertainty is reasonably large (see Sections 3.1 and 3.2).

The graph-based approach to observability, entitled structural observability, cir-
cumvents this problem by establishing a definition that depends solely on the system
structure, without taking into account the specific values of the parameters. Not only
the static structure of a network is usually a highly reliable information gathered in
large datasets when compared to the system dynamical information, but the structural
approach also provides a more reliable characterization by guaranteeing the observabil-
ity of a system even in the case of “missing links” in the system modelling. Moreover,

it provides an intuitive framework where graph-based techniques can be applied to
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solve problems related to the observability of a system, such as the optimal sensor
placement and state observer design (see Section 3.3).

The structural observability avoids fundamental pitfalls related to the dimensionality
of a large-scale network system, but it also creates some other problems of its own. For
instance, it does not take into account symmetries inherit to the dynamical system, and
the optimal sensor placement determined by algorithms grounded on this formulation
does not guarantee that the state estimation of a high-dimensional state vector will
perform within the desired estimation error for any given application. As seen in
Section 3.6, if the system dimension is reasonably large, a dynamical system observed
from a single node, even if observable, is practically speaking almost unobservable from
a conditioning point-of-view. Finally, observability only guarantees the existence of
a n-dimensional state estimator, which is usually computationally intractable for its
design or expensive for real-time applications.

Chapter 3 investigates the advantages and disadvantages of different approaches
to investigate the observability in dynamical systems. In order to avoid most of the
pitfalls exposed throughout this text, in Chapter 4, we explore upon the concept of
structural observability generalizing its property to the notion of structural functional
observability. By establishing graph-theoretical conditions under which only a given
subset of targeted state variables can be reconstructable from a set of sensor nodes, we
circumvent the curse of dimensionality by reducing the dimension of the state vector to
be estimated. Grounded on this theoretical development, we develop two algorithms for
the optimal sensor placement and minimum-order functional observer design. Although
the sensor placement algorithm shares the same disadvantages of other structural-
based approaches, it is capable—in the context of directed networks—of returning
smaller sets of sensor nodes depending on the number of target variables. Likewise,
the designed functional observer achieves significantly smaller dimension compared
to traditional full-state observers, being more computationally efficient for large-scale
applications while also achieving the same estimation quality. The interdisciplinary
problems explored in Section 4.5 are an exemplification of the broad range of network
systems over which the developed techniques can find application.

Better techniques for state estimation in high-dimensional systems can further
advance our capability of achieving precise control of large-scale networks, and we
believe that the results presented in this thesis were able to address some of the
challenges in this field and may provide interesting applications in a broad scope of
network applications, ranging from the development of cyber-security infrastructures

to the medical diagnosing of potential biomarkers in biological systems.
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Appendix A

Sensor Placement Algorithm

This appendix describes a greedy algorithm for optimal sensor placement in dynamical
networks. Section A.1 is based on the work of Summers et al. (2016) and describes the
use of greedy algorithm, applied in Section 3.6.1, to minimize to find the optimal set of
sensor nodes that minimizes a given coefficient of observability. Section A.2, applied in
Section 4.4.2, uses the same greedy algorithm to solve a slightly different optimization
problem which finds the set of sensor nodes that minimizes the functional observer

order with respect to a given set of target nodes.

A.1 Minimization of Coeflicient of Observability

Summers et al. (2016) formulated the problem of sensor placement as a set function
optimization problem. Consider a finite set X = {x1,...,x,}, where z; is the i-th
state variable of the state vector x = {xl .. .xn}T. Let a set function J : 2% — R!
assign a real number to each subset of X'. In the context of dynamical systems, X
represents the set of state variables which are potential locations for sensor placement,
S ={y1,...,y,} € X represents the set of output variables, and J(S) could be a
coefficient of observability that quantifies the degree of observability conveyed by a
particular set S (as in Section 3.2). In the context of networks, the state and output
variables can represent nodes and sensors, respectively.

The set function optimization problem can be defined as

Sgrgﬂgzq J(S) (A.1)
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where |S| denotes the cardinality of a set. The goal is to find the set of g-elements
of X that maximizes J. This combinatorial problem, however, grows exponentially
with the cardinality of S. Nevertheless, Summers et al. (2016) demonstrated that some
coefficients of observability based on the Gramian of observability are submodular
functions. Hence, if J is a submodular function, (A.1) can be solved using a greedy
algorithm, which is guaranteed to have a performance within a well-known bound
(Summers et al., 2016, Theorem 3). Summers et al. showed numerically that, given a
submodular set function J, the greedy optimization performs very close to the global
optimal solution. In fact, a good performance was achieved even when using cost
functions that are not submodular, such as the minimum eigenvalue of the Gramian of

observability. The greedy algorithm is implemented as follows.

Algorithm 3 Greedy algorithm.
Fork=1,...,q.

1. Let S© + @ be an empty starting set, where the superscript represents an iteration
counter.

2. Compute the gain A (wi\S(k)) = J(S® U{x;}) — J(S®), for all elements z; € X\S®).

3. Add the element with the highest gain

S+ sk y {arg max A(z;| S0

2 € X\5<k>} . (A.2)

A.2 Minimization of Functional Observer Order

Given a functionally observable triple (A,C, F'), one can be interested in how to
optimally place additional sensor nodes in a network such that the functional observer

order ry is minimized. This is a bilevel optimization problem

SCAVT ISl=q J(5), (A.3)
where C is a set of candidate nodes for sensor placement and .J(S) is a cost function
that returns the minimum order ry of a functional observer. However, finding r( is
“embedded” in a lower-level optimization task which requires, for instance, use of
Algorithm 2. This is a hard to solve problem but, for illustration purposes in Fig.
4.4f (Section 4.4.2), we implement the same (non-scalable) Algorithm 3 where the cost
function J(S) is the order of Fj returned by Algorithm 2 for this set S.



Appendix B

State Observer Design

This appendix reviews the design of full-order state observers, reduced-order state

observers and functional observers.

B.1 Luenberger Observer

The classic linear state observer was introduced by Luenberger (1966). The following
concepts and theorems were further discussed and proven in many textbooks such as
(Hieu and Tyrone, 2012; Korovin and Fomichev, 2009; O’Reilly, 1983).

Consider the linear dynamical system (2.1) and assume that not all state variables @
are measured directly in y. Define an observer with the following dynamics (Luenberger,
1966):

& = Ad + Bu+ L(y — C#), (B.1)

where & € R” is an approximation of x, i.e., an estimation by the state observer,
and L € R™1 is the observer gain matrix. This state observer is classified as a
full-order state observer. In the RHS of (B.1), the first two terms model the system
dynamics while the third term is proportional to the difference between the measured
and estimated output, i.e., the mismatch between the real system and the observer
dynamics.

Let the observer estimation error e := & — & dynamics be given by
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Thus, the estimation error converges to zero, i.e., & approaches x as t — oo, if (A— LC)
is Hurwitz. The eigenvalue assignment of (A— LC') determines the observer performance:
the higher the negative real component of its eigenvalues, the faster & approaches x;
however this also results in higher entries of L amplifying the measurement noise levels
in y.

The following theorem states that observability is a necessary and sufficient condition

for the existence of a full-order state observer.

Theorem B.1. (O’Reilly, 1983, Theorem 1.16) Corresponding to the real matrices A
and C, there is a real matrixz L such that the set of eigenvalues of (A — LC') can be

arbitrarily assigned (subject to complex eigenvalues occurring in conjugate pairs) if and
only if the pair (A, C) is observable. |

There is redundancy in the design of a full-order state observer. A full-order
state observer has the same order n that the original linear dynamical system it aims
to reconstruct. However, since the output y contains ¢ linear combinations of x,
the remaining n — ¢ state variables can be reconstructed from an observer of order
n — g—entitled reduced-order state observer.

The reduced-order observer is based on the following partitioned form! of (2.1):

Lq
o
y=1[1, 0] [Z] =z,

where x, € R? and x, € R"? are, respectively, the observed (measured) and unob-

All A12
A21 A22

By
By

U

(B.3)

served (unmeasured) states from the output y, and I, is an identity matrix of order
q. In this case, the goal is to estimate only @,. Thus, analogous to (B.1), define the

reduced-order state observer with the following dynamics:
&, = Anx, + Apd, + Bou + E(y — Apdy,), (B.4)

where y := Apx, = £, — Anxy — Biu € R? and F € R(=9*n ig 5 reduced-order
observer gain matrix. Nevertheless, y requires differentiation of ¢, = y, which

amplifies noise in y, compromising the observer performance. To circumvent this issue,

IThis can be achieved through a linear transformation = P- [m;— :U;E] T, where P = [CT C J‘] €

R™", CT € R™ P denotes the Moore-Penrose inverse (pseudoinverse) of C, and C+ ¢ R"*("—P)
denotes an orthogonal basis for the null-space of C' (CC+ = 0).
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a reduced-order observer can be defined as follows:

w=Nw+ Jy+ Hu,
{ Y (B.5)

iu:w+Ey7

w € R"9 and (E, N, J, H) are design matrices of appropriate dimension. Thus, the

estimation error e, := x,, — &, dynamics is given by

€=k, — &,
= AQlqu + A22wu + BQ'U/ — (N’I.U + Jy + Hu + E’y)
= (AQQ — EAlg)ZUu — Néu + (A21 + NE — J — EAll)y + (BQ — H — EBl)’U,
= (Age — EAp)ey,

(B.6)
where N = AQQ — EA12, J = A21 — EAll —+ NE and H = BQ — EBl were chosen
properly to provide cancellations. As in (B.2), the reduced-order state observer error
converges asymptotically to zero if (Ays — FAjs) is Hurwitz. Analogous to Theorem

B.1, the reduced-order observer exists if and only if the pair (Asy, Ajo) is observable.
Lemma B.1. If the pair (A, C) is observable, then the pair (Asa, A12) is also observable.

Remark B.1. Since the output signal y is present in the dynamics of the observer w as
well as in the state estimate &, in (B.5), the reduced-order observer is more susceptible
to measurement errors in y than in the full-order observer. This is a consequence of

the lack of redundancy in the reduced-order observer.

Remark B.2. In practical applications, an order reduction of ¢ is only significant in

multiple output systems where ¢ > 1.

Algorithm 4 summarizes the steps to design a reduced-order observer of form (B.5).
Further work expands the scope of the Luenberger observers to applications with
unknown inputs, time-delay systems, Lipschitz nonlinear systems and others. The
reader is referred to (Hieu and Tyrone, 2012) for further details.

B.2 Functional Observer

Consider the linear dynamical system (2.1)—(4.1). In this section, the goal is to design
a state observer—known as a functional observer—that is capable of reconstructing a
linear functional of the unknown (unmeasured) state vector . We assume that a triple
(A, C, F) is functional observable and satisfies conditions (4.4)—(4.5) (thus, F' = Fy).
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Algorithm 4 Design of a Luenberger reduced-order observer.

1. Compute sub-matrices A1, A1, As1, Aoo, F1, Fy, where

A A
-1 _ A Az _ _ [t oL
PlAP [Am AQQ] . FP [Fl FQ] . P [O C ] : (B.7)
2. Check the detectability® of the pair (Ags, A12), i.e. if rank[(Al, — Ags) Ajz] = n for
every Re()\;) > 0, where \;, for i = 1,...,n, is an eigenvalue of A. If not, stop as N is
not stable.

3. Determine E such that N = Aoy — EAqo is stable.
4. Compute J = A9 — FA11 + NE and H = By — EB;.

Define a functional observer with the following dynamics (Hieu and Tyrone, 2012;
Korovin and Fomichev, 2009):

w=Nw-+Jy+ Hu
{ Y (B.8)

z=Dw+ Fuy,

where w € R”, 2 € R" is an estimate of z, and (D, E, N, H) are matrices of appropriate
dimensions to be determined such that 2 converges asymptotically to z. Since conditions
(4.4)—(4.5) holds for the triple (A, C, F'), the functional observer is of r-th order.
Note that since £ estimates F'x, then w estimates some other linear combination
Tx, where T' € R™ ", Thus, to guarantee that 2 — Fx as t — oo, then w — Tz as
t — o0o. The conditions for the observer asymptotic stability are determined by the

following theorem.

Theorem B.2. (Hieu and Tyrone, 2012, Theorem 3.1) The estimate 2(t) will converge
asymptotically to Fx(t) for any initial condition w(ty) and any known input w(t) if

and only if the following conditions hold.

N is Hurwitz, (B.9)
NT +JC—-TA=0, (B.10)
H-TB=0, (B.11)

F— DT — EC =0. (B.12)

2Detectability is a weaker notion of observability, where a system is detectable if all the unobservable
(unmeasured) states are stable. The stated condition is straightforwardly derived from Theorem 3.1.4.
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Proof. Let the estimation error e,, = w — T'x dynamics be given by

6, = — T
= Nw + JCx + Hu—TAx — TBu + (+NTx — NTx)
= Ney, + (NT +JC —TA)x+ (H—-TB)u
= Ney,

(B.13)

where conditions (B.10) and (B.11) were applied. Clearly, e,, is asymptotically stable if
condition (B.9) holds. From this result, the estimation error e, := 2 — F'x asymptotic

behavior can be proven as follows:

e, =z2—Fx

=Dw+ EC — DIz — ECx (B.14)
= De,,
where condition (B.12) was applied. Since e,, is asymptotically stable, so is e.. O

Algorithm 5 Design of a multi-functional observer.

1. Compute sub-matrices A1y, A12, A21, Ago, Y, F5, where

Ay A r
“14p_ |A11 A2 _ _ [t oL
PlAP l - A22]’ FP = |Fy F2], P [C C ] (B.15)
2. Check if condition _
HhA
24122 B A12
rank | Ajp | =rank I (B.16)
F | 2

is satisfied. If not, stop as an r-th order observer does not exist.

3. Compute N7 = (®QT Ap + FQAQQ)F; and Ny = (QQF — Iq)AlgFQT, where Q = A F5-
and ® = *FQAQQFQL.

4. Check the detectability of the pair (Na, N), i.e. if rank[(A], — N2) N;| = n for every
Re(\;) > 0, where \;, for i = 1,...,n, is an eigenvalue of A. If not, stop as N is not
stable.

5. Determine Z such that N = Ny — Z N, is stable.

6. Compute Ly = ®Qf + Z(I, — QQY), Ly = F», D = I, J = L1A11 + LaAg; — NLq, and
E=F,—DL;.

7. Compute H = LB, where L = [L; L.

Designing the parameters of (D, E,J, N,T) so that it guarantees a functional
observer of minimum order is a nontrivial problem (Darouach, 2000; Fernando et al.,

2010b), specially when multi-functional observers (r > 1) are concerned. As presented



116 State Observer Design

by (Hieu and Tyrone, 2012, Section 3.5.1), Algorithm 5 provides a step-by-step design
procedure to systematically derive the parameters of a functional observer assuming
that (A, C, F') satisfies conditions (4.4)—(4.5). If such conditions are not satisfied but
(A, C, F) is functional observable, one can determine an augmented matrix Fy € R™*"
where row(Fp) O row(F'), such that (A, C, Fy) satisfies (4.4)—(4.5) and a functional
observer of order 7y > r can be designed. This is one of the main problems discussed
in Chapter 4.

B.3 Functional Observer for Nonlinear Systems

In the study of the epidemiological model (4.19) in Section 4.5.2, we illustrate how our
contributions can lead to the design of a functional observer for nonlinear systems by:
(i) determining, via Algorithm 1, the minimum sensor placement S for the functional
observability of a given set of target states T (i.e., given G and T, finding S); and (ii)
determining, via Algorithm 2, the structure of the minimum order functional observer
(i.e., given G, S and 7, finding the structure matrix Fy). However, in order to actually
complete the design of the functional observer, we need to determine the parameters of
the functional observer system. To that end, we apply the results presented in (Trinh
et al., 2006), and also reported in (Hieu and Tyrone, 2012, Section 6.2), for the design
of stable functional observers for nonlinear systems as detailed below.

Consider the following class of nonlinear systems studied in (Trinh et al., 2006):

&= Az + f(x),
y=_Czx, (B.17)
A Foa?,

where f(x) : R" — R™ is a nonlinear function not required to be Lipschitz. The

epidemiological model (4.19) can be described as (B.17) by defining the state vector
x=[S ... SvIi ... IRy ... Ry Dy ... Dy]" € R", (B.18)
where n = 4N, the nonlinear function

f(w) = [_6151[1/P1 s T BNSNIN/PN 515111/P1 R BlSNIN/PN OT]T, (Blg)
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where 0 € {0}V and A € R™" as a matrix defined by the linear functions in
(B.17). As described above, matrices C' and Fy are determined by Algorithms 1 and 2,
respectively.

Given (A,C, Fy) and f(x), a reduced-order functional observer can be designed
to estimate the partial state vector zy and thereby z = Fa (since F' defines the first
r rows of Fy, see Algorithm 2). Consider the following structure for the functional
observer:

w:Nw+Jy+Lf1(y,z0),
z=Dw + Fuy,

(B.20)

where (N, J, L, D, E) and fi(x) are to be determined such that 2(¢) converges asymp-
totically to zo(¢). This can be achieved by satisfying the conditions stated in (Hieu
and Tyrone, 2012, Theorem 6.1) following Algorithm 6.

Note that measures y are not an argument of fi(zg) since we defined in the main
manuscript that measures are taken only on the number of dead cases D; (if a given
group ¢ is chosen as a “sensor” city), and f () is not a function of D;. We note that, in
the design of the functional observer (B.20), the nonlinear function fo(x) is treated as
an unknown input, and that W has a fixed structure (with full-column rank), despite

not being a uniquely defined matrix.
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Algorithm 6 Design of nonlinear functional observer for a epidemiological model.
1. Decompose f(x) = fi(y, zo0) + W fa2(x) = f1(20) + W fa(x), where

—Bizﬁ’“, if [Fp)js =1, for some j,

and [Fo]i4n) = 1, for somek, and i < N,
[fi(z0)]i = —i—BiZ’Ifik, if [Fo)js =1, for some j, (B.21)
and [Fo]i4n) = 1, for somek, and N <i < 2N,

0, otherwise,

—61'%:”\’), if [FO]ji = 0, fOI‘ allj,
or [Folpi+ny =0, for allk, and i < N,

(W fa(@)]i = { +Bi =522, if [Folji = 0, for allj, (B.22)
or [Folgi+ny =0, for allk, and N <i < 2N,
0, otherwise,
foralli=1,...,n.

2. The nonlinear function fi(zp) is Lipschitz with a constant Lipschitz constant x, i.e.,

1f1(20) = f1(20)ll < &llz0 — 2o, (B.23)
where £ = max;(/3;).

3. Consider the linear transformation in (B.8), PW = [W{ WJ T, and P! = [P PJ]T.
Compute Ny = (BQFAyp + P Ap)Fy, No = (QQF — I,)A1oF), Ly = ®QPy + Fy « Py
and Ly = (QQF — I,) Py, where Q = [A1pF5- Wi] and @ = —[FoAgnF5- FaWho).

4. Find matrices Q@ = QT € R"0*™ and G € R4, and the positive scalars $; and S,
such that the following linear matrix inequality (LMI) holds (Hieu and Tyrone, 2012,
Theorem 6.2):

A QL G,
LiQ -pI, 0 | <0, (B.24)
LIGT 0 —pBaI,

where A = QN1 + Ny — GNy — NJ GT + k%(B1 + 2) Iy -
5. Compute the auxiliary matrices Z = Q7'G, T1 = ®Q + Z(I, — QQT) and Ty = Fy.

6. Compute the functional observer matrices N = Ny — ZN, J = T1A11 +T5A91 — NTq,
L=1L,—-Z7ZLy, D=1, and E = Fy — DT;. This satisfies condition 2 of (Hieu and
Tyrone, 2012, Theorem 6.1).




Appendix C

Proof of Structural Functional
Observability

Proof of Theorem 4.53. This proof follows from the four following lemmas. Lemma
C.1 and C.2 state the necessity of conditions 1 and 2, respectively. Lemmas C.4 and
C.5, together, state the sufficiency of conditions 1 and 2. The proof of Lemma C.4
borrows basic idea from (Sundaram, 2012, Theorem C.3) and extends it to functional
observability.

We remind the reader that an equivalent condition to (4.2) for functional observ-
ability is (Jennings et al., 2011):

A—- NI
rank C = rank
F

: (C.1)

A—/\]]

for all A € C. Since the equality holds trivially for A ¢ spec(A), we only need to care
about those A € spec(A) when trying to establish the equality (C.1) for given triple
(A, C,F). O

Lemma C.1 (Necessity of condition 1). If there is at least one state x; € T that
does not have a path to some output y; € S, then for any generic choice of free

parameters in the system matrices (A, C, F), there is at least one A € C such that

vank [AT— A7 €T FT]" > rank [AT - A1 (7).

Proof. Suppose that some nodes in X do not have a path to some output in S§. Let
X be the set of nodes that have a path to some output, and X, = X'\ X; denote all
state nodes that do not have a path to any output. Let |X;| = k and |X,| = n — k.
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After applying a permutation of coordinates such that the nodes in X; come first, then
matrices (A, C, F') have the form:

A11 0
A21 A22

A= C=[Cy o], F=|R B (C.2)

where A, € Rka, Ay € R(n_k)Xk, Ay € R(n—k)x(n—k)’ C, € Rqu, F, € Rer7
F, € R™(™=%) "and 0 is a vector or matrix of appropriate dimension with zero entries.
Note that there are no edges from a node in X, to A} US. Thus, we have the following

matrix pencil:

Ay — M 0
A= 1;1 Agy — N
c | = . R C.3
c, 0 (C.3)
F
£ jo8

Assume (C.1) is satisfied. From (C.3), we have row(Fy) C row(As — AI) for all
A € spec(Asgy), which implies

row(Fp) € () Uf = ( 4 U,\) = {0}, (C4)

A€spec(Aaz) A€spec(Aaz)

where @ is the direct sum operator, U, is the left eigen-space of Ay corresponding to
eigenvalue A and the second equality comes from the fact that, for a generic numerical
realization, A has a complete set of eigenvectors. This shows that F, contain only
all-zero rows, which contradicts the assumption that 7 N X, # (). Therefore, we have
vank [AT— AT €T FT] > rank [AT - AT 7] O

Lemma C.2 (Necessity of condition 2). rank[AT CT FT] > rank[AT CT]T if TND #
0.

Proof. Pick z; € T N'D and thus there is a minimal dilation set D’ C D that contains
x;. Let Xy =D’ and X; = X\ Xy, where |X;| =n — k and |X,| = k. After applying a
permutation of coordinates such that the nodes in X} come first, then matrices (A, C)

have the form:

A=[A A, C=00 @], F=|R B (C.5)

where A, € RF*" A, € R™* ¢y € Rk ¢, ¢ R*F Fy € R k) and F, € R"™F,
Since D’ is a dilation set, [A] C7]T has at most k — 1 non-zeros rows due to Remark
?7?. In addition, F5 contains at least one non-zero row because x; € T. Let us

pick ¢ € R™* which is the non-zero row of F; that corresponds to the target state
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x;. By assumption, each row of F' has only one non-zero entry, thus row vector
¢ only contains a single non-zero entry in the corresponding column of z;. Now,
we are ready to prove the Lemma by contradiction. Assume rank[AT CT FT]T =
rank[AT CT]T. It gives ¢ € row([A] C7]7), i.e. there exist a non-zero vector y €
RV +49) such that ¢ = y[A] CJ|T. This implies y[A] CF |5y, = 071 where
[A] CT ]{,,\ (z;} 1S the matrix [A] CJ]T removing the corresponding column of state
;. It shows rank([A] CF]pn () < k=1, i.e. D'\ {z;} is also a dilation set. This
contradicts to the assumption that D’ is a minimal dilation set. Therefore, we conclude
rank[AT CT FT] > rank[AT CT|T. O

Lemma C.3. (van der Woude, 1991, 1999) The generic rank of a matriz pencil

A-)M B

PO=1"c p

(C.6)

over all choices of free parameters in (A, B,C, D) and X\ € C, is equal to n+ 1, where |
is the largest number of disjoint paths from the input nodes u; € U to the output nodes
y; €S in G(A, B,C).

Proof. See (van der Woude, 1991, 1999). O

Lemma C.4 (Sufficiency of condition 1 for (C.1) for all A # 0). If every state x; € T
has a path to some output y; € S, then, for almost any generic choice of free parameters

in (A, C, F), rank [AT - CT FT]T = rank [AT — M CT}T for every X € C\ {0}.

Proof. Let matrix P;(\) be formed by removing the i-th row of [AT - CT F T]T

and permuting the ¢-th column to the last column, i.e.

) A — M, b
F; Ji

where A; is the matrix formed by removing the i-th row and i-th column of A; C;
and F; are formed by removing the corresponding i-th column of matrices C' and F/,
respectively; b;, ¢; and f; are the i-th column of A — A\I, C', and F, respectively. In
G(A, (), this corresponds to removing all incoming edges to the i-th state node x;,
and, by maintaining all outgoing edges from x;, we thus can view z; as an input node
corresponding to the input vector b;. We further define P;(\) as the matrix formed by

T
removing the i-th row from matrix |AT — \J CT} :
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For any node z; € T US, by assumption, there is a path from x; € 7 to some node
in S. According to Lemma C.3, this leads to rank P;(\) =n — 1 + 1 = n. In addition,
the path from z; to some node in S is unaffected if we remove all rows corresponding
to matrix F from P;(\). Therefore, for generic choices of (4,C, F) and A € C,

Ai — )\In—l bl

rank P;(\) = rank
C; Ci

} = rank P;(\). (C.8)

For any node z; ¢ T U S, either there is a path from z; to T or there is no path
to 7. We discuss these two cases separately. If there is a path from z; to some node
x; in T, by assumption there is a path from z; to some node in S, so we conclude
that there is a path from z; to some node in S. As a result, equation (C.8) also holds
true for this type of node x;. Assume now that there is no path from z; to 7, then
there are two further possibilities: either there is a path from x; to S or there is no
such path. In the former case, rank P;(\) = rank P,(\) = n and, in the latter case,
rank P;(\) = rank P;(\) = n — 1. As a result, equation (C.8) still holds true for both
cases. In summary, equation (C.8) holds for all n state nodes.

Now, assume that, for some particular choice of A € C, rank [AT -\ CT FT ! >

T
rank [AT — A CT} holds for any generic realization of (A, C, F'). Since the rank of

both matrices are upper bounded by n, we have rank {AT — A CT}T < n. It further
implies that, with this particular choice of A, rank P;(\) < n for any x; € X. In other
words, A is the common root for polynomial &(\) = det(P;(\)), Va; € X. Meanwhile,
a necessary condition for rank {AT — A C’T}T < n is rank(A — AI) < n, i.e. \is also
the root for polynomial {,(A) = det(A — AI). Note that each polynomial &;(\) does not
depend on the free parameters from the i-th row of A, and that the polynomial ()
does not contain free parameters from C'. Thus, each free parameter in system matrices
(A, C) does not appear in at least one of these polynomials. As a result, any common
root of all polynomials cannot be a function of any of the free parameters. The only
possible common root that does not depend on any numerical realization of the free

E
variables is A = 0, which exists only when {AT CT} is rank deficient. Therefore, for

any A € C\ {0}, rank [AT = AT €T FT]' =rank [AT— A1 C7]. O

Lemma C.5 (Sufficiency of condition 2 for (C.1) for A = 0). rank[AT CT FT| =
rank[AT CT|T if TND = 0.

Proof. Let D be the union of all minimal dilation sets of G(A, C). Let X> = D, and
X; = X\X,, where |X)| = k and |Xy| = n — k. After applying a permutation of
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coordinates such that the nodes in X; come first, then matrices (A, C, F') have the

form:

A=A A],C=[C1 G|, F=[R o (C.9)

where 4; € RF*" A, € Rk ¢ € Rk Oy € R k) and Fy, € R™*. The
second block in F only contains zeros entries due to the assumption 7 ND = ().
Assume that rank[A] CJ]T < k, which implies that we can find a subset D’ C X
such that the submatrix formed by the corresponding columns of A; contains less than
|D'| non-zero rows. This means A} contains a dilation and thus contains a minimal
dilation set, which contradicts to the assumption that D is the union of all minimal
dilation sets. As a result, rank[A] CT]T = k, i.e. row(F;) C row([A] C]]|") and
also row(F) C row([AT CT]T) because the second block of F is all-zeros. Therefore,
rank[AT CT FT] =rank[AT CT|T. O






Appendix D

Related Works on “Target
Observability”

Under the motivation that controlling the entire state vector of a dynamical system is
unfeasible for large-scale network applications, Gao et al. (2014) proposed the concept
of target controllability, which is based on the concept of output controllability from
control theory (Ogata, 2010, Section 9.6). Formally, a triple (A, B, F') is said to be
“target controllable” if, for any initial target state z(0) = Fa(0) and final target state
z(t1) = Fa(t1), there exists an input w that transfers the output z(0) to z(¢;) in finite
time . A triple (A, B, F') is output controllable if and only if

rank(FC) =r, (D.1)

where C = [B AB A*B ... A" !'B]is the controllability matrix, and F' determines
the target states desired to be controlled. By duality, a notion of “target observability”
can be defined as follows: A triple (A4, C, F') is said to be “target observable” if, for
any unknown initial target state F'x(0), there exists a finite time ¢; > 0 such that
knowledge of the input w and output y over t € [0, ¢;] suffices to uniquely determine

Fx(0). A triple (A, C, F) is target observable if and only if
rank(OF") = r. (D.2)

Example D.1 illustrates that the functional observability property studied in Chapter

4 and the above definition of target observability are not equivalent properties.
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Example D.1. Consider the observability condition (??), the functional observability
condition (4.2), and the target observability condition (D.2). Let the triple (A, C, F)
be

0O 0 0 0
0O 0 0 0
A= C=Jo oo 1],F=[0 1 0 0 (D.3)
as; azx 0 0
0 0 43 0
Then, from the following conditions
0 0 0 1
0 0 0
rank(Q) := rank 43 =3<4:=n (observability),
as3a31  a43a32 0 0
0 0 0 0
0
T a43
rank(OF") := rank 0| = l:=r (target obsv.),
0
0 0 0 1]
O 0 0 a43 0
rank lF] :=rank |ay3a31 agzaze 0 0| =4 > 3:=rank(O) (functional obsv.),
0 0 0 0
0 1 0 0

we have that the triple (A, C, F) is neither observable nor functional observable for
any choice of parameters in A, but it is target observable. This can also be verified,
respectively, by checking the graph-theoretical conditions for structural observability in
Theorem 3.3, structural functional observability in Theorem 4.3, and the dual definition
of target controllability in (Li et al., 2019, Theorem 2). A

Compared to previous results on target observability /controllability (Commault
et al.; Czeizler et al., 2018; Gao et al., 2014; Klickstein et al., 2017; Li et al., 2019;
Wu et al., 2015), our contribution stands out to the research of scalable methods for
target state estimation in large-scale systems, not only because our generalization was
built under a different dynamical system property from control theory, but because of
another subtle reason. As discussed in the main text, functional observability leads
to a procedural design algorithm of a functional observer (Darouach, 2000; Fernando
et al., 2010b; Hieu and Tyrone, 2012) capable of estimating the target states Fx
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without requiring state estimation of the whole state vector . Thus, there is an order
reduction in the observer design that reduces its computational complexity, improving
its computational and numerical performance for large-scale applications. On the other
hand, target observability (defined, by duality, from (Gao et al., 2014)) is a necessary
and sufficient condition for the existence of a full-state observer that guarantees the
asymptotic convergence of ||F'&(t) — Fa(t)||, where &(t) is the observer estimate of
the true values (). Thus, target observability is a property that, like observability,
still leads to the design of a n-dimensional observer, with the difference that it is
concerned in guaranteeing that only the estimates F'&(t) approach the true value Fx(t)
(without “caring” for the rest of the state estimates). In short, it is true that functional
observability is a stronger condition than output observability, but it leads to a model
reduction in the design of a “target observer’—an important feature for large-scale

applications.






