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Resumo

Investigamos neste trabalho o Problema do Roteamento Mais Lucrativo de Um Veículo
com Reboque e com Janelas de Tempo. Nesse problema, são dados uma frota contendo
caminhões e reboques, além de um conjunto de clientes, que fornecem uma recompensa
caso sua demanda seja coletada por um veículo. Os reboques podem ser acoplados aos
caminhões para aumentar a capacidade do veículo; em compensação, a velocidade do
veículo é reduzida, e os custos de viagem são aumentados. Alguns clientes só podem
ser atendidos por caminhões desacoplados, o que pode dar origem a rotas em que um
reboque é desacoplado do caminhão em vértices satélite dados. O caminhão pode, en-
tão, viajar alguns trechos da rota desacoplado, após os quais retorna ao ponto onde o
reboque foi estacionado, e a carga coletada pelo caminhão é transferida para o reboque.
O objetivo do problema é encontrar uma escolha de veículo e uma rota a ser percor-
rida por ele, para a qual o lucro, dado pelas recompensas coletadas menos os custos
de viagem, seja máximo. Propomos uma formulação de Programação Inteira para o
problema, além de desigualdades válidas e estratégias de lifting, capazes de reforçar as
relaxações lineares da formulação. A formulação desenvolvida emprega apenas variá-
veis binárias e garante o cumprimento das restrições de capacidade, janelas de tempo e
sincronização das operações de acoplamento, transferência de carga e desacoplamento,
por meio de cortes de Benders Combinatórios. Pelo que conhecemos, esta é a única for-
mulação compacta no espaço de variáveis que permite múltiplas sub-rotas partindo do
mesmo vértice satélite. Em trabalhos anteriores, diferentes variações do Problema de
Roteamento de Veículo com Reboque (PRVR) têm sido tratadas. Essas variações são
caracterizadas por considerar ou não algumas propriedades importantes na modelagem
do problema, como janelas de tempo para os clientes, vértices satélite dedicados, frota
heterogênea e tempos de transferência dependentes da carga. Nosso modelo lida com
todos esses aspectos listados, além de considerar velocidades diferentes para veículos da
frota e velocidades reduzidas para o caminhão quando acoplado a um reboque, o que,
segundo nossa pesquisa, ainda não havia sido abordado na literatura sobre PRVRs.
Desenvolvemos um algoritmo exato Branch-and-Cut para o problema e apresentamos
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resultados computacionais. Os resultados sugerem que as desigualdades válidas aqui
introduzidas não apenas melhoram os limites duais mas resultam em melhores algorit-
mos Branch-and-Cut.

Palavras-chave: Otimização Combinatória, Problema de Roteamento de Caminhão
com Reboque, Janelas de Tempo, Branch-and-Cut.
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Abstract

We investigate in this work the Profitable Single Truck and Trailer Routing Problem
with Time Windows. In this problem, a fleet of trucks and trailers is given, along
with a set of customers, that reward a profit if their demand is collected by a vehicle.
Trailers can be attached to trucks in order to increase vehicle capacity, at the expense of
reducing vehicle speed and increasing travel costs. Some customers can only be served
by decoupled trucks, which may give rise to routes in which a trailer is decoupled from
the truck at given satellite depots. The truck can, therefore, travel parts of the route
detached, after which it returns to the point where the trailer was parked, and the
load collected by the truck is transfered to the trailer. The goal is to find a choice
of vehicle and route for which the collected profit minus the route cost is maximum.
We propose an Integer Programming formulation for the problem, along with valid
inequalities, that enforce Linear Programming Relaxation bounds for the formulation.
The formulation developed employs binary variables only and ensures that capacity,
time windows and synchronization for decoupling, load transfer and coupling operations
are observed through Combinatorial Benders cuts. From our research, this is the only
formulation that is compact in the variable space to allow multiple subtours from the
same satellite vertex. Previous works have studied different variations of the Truck
and Trailer Routing Problem (TTRP). These variations are characterized by some
key characteristics of the problem being considered or not, such as customer time
windows, dedicated satellite depots, heterogeneous fleet and load-dependent transfer
times. Our model deals with all these aspects, plus considering different speed values
for vehicles in the fleet, and a decrease in truck speed when it is attached to a trailer.
To our knowledge, this modeling aspect has not been handled in the literature for
TTRPs. We develop an exact Branch-and-Cut algorithm for the problem and present
computational results. The experiments suggest that the valid inequalities introduced
not only improve dual bounds, but also result in better Branch-and-Cut algorithms.

Keywords: Combinatorial Optimization, Truck and Trailer Routing Problem, Time
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Windows, Branch-and-Cut.
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Chapter 1

Introduction

A common activity that takes place in the dairy industry involves collecting milk
from farmyards and bringing it to a dairy, where the product is processed and later
distributed. The choice of route to be used in this task has to consider some particu-
larities arisen from the nature of the product being transported. Milking takes place
at certain times of the day only, and, for each farmyard, there is a time interval within
which it should be collected and properly stored, so it does not lose its properties.
Also, collection points may sit at remote locations that cannot be reached by large
vehicles, due to accessibility limitations. A usual solution for this is to employ trucks
and trailers. A truck is a relatively small vehicle able to access remote locations. A
trailer is a larger unit, but it needs to be decoupled from the truck and parked at
certain points of the route, so the truck can visit remote locations. After the truck
returns to the parking spot, milk can be transferred from truck to trailer, so the truck
capacity is released for visiting other remote locations.

Consider an autonomous driver who is hired by a dairy to perform the task
described, with a rented vehicle. The driver is paid a given prize for each farmyard
serviced by them. They can pick a truck and a trailer from a fleet of distinct vehicles,
with different capacity, travel cost and maximum speed values, available from a rental
company. This driver would be interested in identifying the choice of vehicle to rent
and route for which they would receive the largest profit, considering rent and travel
costs. The problem faced by the driver is known as the Profitable Single Truck and
Trailer Routing Problem with Time Windows (PSTTRPTW).

The PSTTRPTW is a variation of the Truck and Trailer Routing Problem
(TTRP) [Chao, 2002], in which the goal is to find a minimum cost set of routes for mul-
tiple vehicles, visiting all customers. Applications that inspire TTRPs involve several
particularities that can be taken into account when modeling a real-life scenario. Some
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2 Chapter 1. Introduction

of these properties include: time windows for customers to be visited; a heterogeneous
fleet of trucks and trailers (i.e., the fact that distinct vehicles may have different ca-
pacities and travel costs); the existence of specific spots where trailers can be parked;
the time taken for coupling and decoupling operations; the time taken for transferring
load from truck to trailer, and the dependency of this time on the amount of load to
be transferred. Several combinations of these modeling aspects have been studied in
the literature. In this thesis, we consider all the properties listed above for solving the
PSTTRPTW.

1.1 Contributions

The main contributions of this thesis are listed in the following, in the order they
appear in the text:

• Introduction of an Integer Programming Formulation for the PSTTRPTW. Our
model involves a compact set of integer variables, and an exponential number
of constraints. Restrictions related to truck capacity in subtours, customer time
windows and satellite scheduling are handled through Combinatorial Benders
cuts, that eliminate infeasible portions of a route. A truck is allowed to perform
any number of subtours at satellite depots; to our knowledge, this is the first
model that is compact in the variable space with such properties. Also, we take
into account the fact that distinct vehicles may travel at different speeds. This
includes a speed decrease when a truck is coupled to a trailer, in comparison to
the speed reached by the same truck when decoupled. To our knowledge, this
assumption has also not been previously considered.

• Introduction of valid inequalities for the formulation, and lifting strategies for
some of the model constraints.

• Development of a Branch-and-Cut algorithm based on our formulation. Two
separation algorithms for the Combinatorial Benders cuts are developed. One
of them is a heuristic, that identifies violated cuts for fractional solutions of the
Linear Programming Relaxations. The other algorithm is an exact one, employed
for integer solutions of the relaxations.
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1.2 Organization of this Thesis

This thesis is structured in six chapters. The remaining of the text is organized as
follows. In Chapter 2, the PSTTRPTW is formally defined; we also present a review of
previous works in the literature that deal with related problems. Chapter 3 describes
the modeling that was developed for the problem, and introduces an Integer Program-
ming formulation based on it. A formal proof of the correctness of the formulation is
shown. We also discuss preprocessing and variable fixing strategies, valid inequalities
for the formulation, and how some constraints can be lifted. In Chapter 4, we introduce
a Branch-and-Cut algorithm based on the formulation. In Chapter 5, we describe and
discuss computational experiments involving different versions of the proposed algo-
rithm. Chapter 6 concludes this work, with final remarks and suggestions for future
research.





Chapter 2

The Profitable Single
Truck-and-Trailer Routing Problem
with Time Windows

In this chapter, we formally introduce the Profitable Single Truck-and-Trailer Routing
Problem with Time Windows (PSTTRPTW). We also review previous studies that
addressed related problems, in order to place this work amidst the literature.

2.1 Problem Definition

Let K be a set of trucks and L, a set of trailers. Each truck k ∈ K has an associated
capacity Qk > 0. Each trailer l ∈ L also has a capacity Ql > 0. A truck k can be
coupled to a trailer l. This combined vehicle will be denoted by (k, l) and we refer to
it as a complete vehicle. Truck k can also travel without a trailer attached to it, in
which case we will call it a single truck and denote it by (k, 0). Therefore, the set of
all possible vehicles is V := K × ({0} ∪ L).

For each vehicle (k, l) ∈ V , some associated quantities are defined. The vehicle
capacity, Qk +Ql, represents the maximum amount of load that the vehicle can carry
at any time. For l = 0, we define Ql = 0, since the capacity of a single truck is just
Qk. The vehicle speed, skl > 0, gives the distance the vehicle travels per time unit.
The travel cost, φkl > 0, is related to the amount of resources spent per distance unit
traveled by the vehicle. For a given truck k ∈ K, we will typically have sk0 > skl and
φk0 < φkl for any trailer l ∈ L, meaning that a truck can travel faster and spend less
resources when decoupled. Each truck k ∈ K also has a corresponding rent cost, ak0.

5
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If trailer l ∈ L is rent together with truck k, an additional cost akl is paid.
Let G = (V,A) be a complete, directed graph, of which V is the set of vertices,

and A is the set of arcs. Vertices in the subset C ⊂ V are customers and represent
locations where some supply of a given product is available to be collected by a vehicle.
The customer set is partitioned into two subsets: the vehicle customer set, CV , and the
truck customer set, CK. Vehicle customers may be serviced by any vehicle, complete
or not, whereas, due to accessibility limitations, truck customers can only be visited
by single trucks. Vertex 0 ∈ V \C is the main depot, and S := V \ ({0} ∪C) is the set
of satellite depots.

The supply of customer i ∈ C will be denoted by qi > 0. Customer i also has
an associated profit pi > 0 to be rewarded if that customer is serviced. Time windows
[ei, fi] represent time intervals within which the goods are available to be collected. So,
if a customer is serviced, that service must start within that customer time window.
If the vehicle arrives at customer i before its time window opening ei, it must wait at
that point until instant ei, and only then start servicing i. A vehicle cannot arrive at
a customer after fi. If i /∈ C, we establish that ei := 0 and fi :=∞.

We also consider supply-dependent service times, i.e., the time necessary to ser-
vice a customer is considered to be proportional to its supply. When servicing customer
i, qi product units are loaded from this customer into a vehicle. For truck k, this op-
eration can happen at a rate of ok units of load per unit of time, hence the service
time for customer i by vehicle (k, l) ∈ V is given by qi

ok
. If the collected product is, for

instance, a fluid like milk, quantity ok may represent the rate at which a pump, with
which truck k is equipped, works.

For each arc (i, j) ∈ A, the distance dij > 0 to travel from i to j is given. In
this work, distances are assumed to satisfy the triangular inequality property. We also
assume that vehicles travel at constant speed, so the time required for vehicle (k, l) ∈ V
to travel through arc (i, j) is given by dij

skl
. This arc travel has an associated cost, that

depends on the arc distance and the travel cost of the vehicle that crosses (i, j), and is
given by cklij := dijφkl.

We define a walk in a directed graph as a finite sequence of adjacent arcs, in which
vertices and arcs can appear more than once. A feasible route for the PSTTRPTW
is defined as a walk in G that is assigned to a vehicle, starting and ending at depot
vertex 0, in which customer vertices can be visited at most once. If a customer is
visited in a route, it must be serviced, within its time window. The sum of the supplies
of the customers that are visited in a route cannot exceed the capacity of the assigned
vehicle. If a route is assigned to a complete vehicle, it can also include satellite depots.
At these special vertices, the trailer can be decoupled and the truck can continue the
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route by itself, visiting truck or vehicle customers. If this happens, the truck must
then return to the same depot where the trailer was parked, and the load from the
truck can be transferred to the trailer. A portion of the route between two consecutive
visits to a satellite depot, traveled by a single truck, is referred to as a subtour. After
a trailer decoupling at a satellite depot, the route may include any number of subtours
from that satellite. For each subtour, the sum of the supplies of the visited customers
cannot exceed the capacity of the truck alone. Immediately after the last subtour
from satellite depot i ∈ S, the trailer must be coupled to the truck again at i. A
trailer can be decoupled and re-coupled any number of times in a route, in any satellite
depot. Naturally, a route that includes subtours cannot be assigned to a single truck,
but a route without subtours (and, therefore, no satellite depots) can be assigned to
any vehicle. Note that truck customers can only be serviced either in routes that are
assigned to single trucks, or within subtours.

Figure 2.1 illustrates three possible routes in a given graph. The square labeled
with “0” represents the depot vertex, diamonds s1 and s2 are satellite depots, and
numbered circles are customers, of which the white ones are vehicle customers, and the
gray ones represent truck-only customers. In each subfigure, a route is represented by
arrows. A continuous arrow means that the corresponding arc is traveled by a complete
vehicle, while a dashed one is used for arcs traversed by single trucks.

0

1

s1

2

3

4

5

6

s2

7

8

9

(a) A truck-only route.

In Figure 2.1a, a truck-only route, visiting two truck customers and one vehicle
customer, is depicted. Figure 2.1b shows a truck-and-trailer route that does not contain
subtours (and therefore no satellite vertices). Note that this route could not include
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0

1

s1

2

3

4

5

6

s2

7

8

9

(b) A truck-and-trailer route without subtours.

0
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(c) A truck-and-trailer route with subtours.

Figure 2.1: Examples of feasible routes.

truck customers. Finally, a truck-and-trailer route with two subtours is illustrated by
Figure 2.1c. In this route, customers 2, 3 and 4 are serviced by a decoupled truck in
a subtour, after decoupling at s1. The vehicle is decoupled again later, at s2, starting
another subtour to service customer 8.

In order to attach (detach) trailer l ∈ L to (from) truck k ∈ K, a cou-
pling/decoupling time τkl is spent. After finishing a subtour, when a truck returns
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to a satellite depot, the supply that was collected in that subtour is transferred from
the truck to the trailer, so that the truck can perform other possible subtours later.
Like for the customer service time, this load transfer time also depends on the amount
of load to be transferred and on the parameter ok. Thus, if the truck load at the end
of a subtour is q′, the load transfer time is given by q′

ok
. In this work, we consider that

a load transfer time is spent after every subtour in the solution route, corresponding
to the total supply in the subtour. Note that this assumption is a simplification of a
real world scenario, and it may forbid solutions that could be feasible in practice. For
example, by choosing not to perform a load transfer at some point, or to perform a
partial load transfer, it might after be possible to service a customer with a tight time
window, that cannot be reached in time under our assumption. Furthermore, if, at a
given point of a route, the trailer is full, a load transfer operation would not even be
possible, and the load collected after this point must be stored in the truck.

Therefore, given a route assigned to (k, l) ∈ V that visits a customer i ∈ C, the
time at which the vehicle arrives at i in this route is given by the sum of the travel
times of all arcs that appear before i, the service times of all customers that appear
before i, the possible waiting times at customers that appear before i, and the coupling,
load transfer and decoupling times that happen before i in the route. Note that the
travel time for arcs in subtours is calculated using the single truck speed, instead of
the complete vehicle speed.

The profit of a route assigned to a given vehicle is given by the sum of the profits
associated to the customers visited in that route, minus the sum of the rent costs, and
the costs of the arcs in the route for that vehicle. In the Profitable Single Truck and
Trailer Routing Problem with Time Windows, the goal is to find a feasible route and
vehicle assignment, satisfying all the above restrictions, whose profit is maximum.

To summarize all the PSTTRPTW input data, Table 2.1 shows all the data that
define an instance for the problem, along with their respective notation, as discussed
in this section, and that will be used through the rest of this thesis.

2.2 Literature Review

The PSTTRPTW is a variation of the Vehicle Routing Problem (VRP) [Dantzig and
Ramser, 1959; Cordeau et al., 2001], in which, given a set of vehicles, a minimum
cost set of routes servicing every customer must be found. The VRP is, in turn, a
generalization of the classic Traveling Salesman Problem (TSP) [Dantzig et al., 1954]
in the sense that, in the TSP, there is only one vehicle available.
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Table 2.1: PSTTRPTW input data.

Notation Description
G = (V,A) The complete, directed input graph

CK Truck customer set
CV Vehicle customer set

C = CK ∪ CV Customer set
S Satellite depots set
qi Demand of customer i ∈ C
pi Profit rewarded for serving customer i ∈ C
ei Customer i ∈ C time window opening time
fi Customer i ∈ C time window closing time
dij Distance of arc (i, j) ∈ A
K Set of trucks
L Set of trailers
ak0 Rent cost of truck k ∈ K
akl Rent cost of trailer l ∈ L with truck k ∈ K
skl Speed of vehicle (k, l) ∈ V
φkl Fuel consumption of vehicle (k, l) ∈ V
τkl Coupling/decoupling time of truck k ∈ K and trailer l ∈ L
ok Product transfer rate in vehicle with truck k ∈ K
Qk Capacity of truck k ∈ K
Ql Capacity of trailer l ∈ L

The VRP has been extensively studied over the years and has a number of vari-
ations. We highlight some of them, for their relation to the PSTTRPTW. In the
Heterogeneous Fleet Vehicle Routing Problem [Ferland and Michelon, 1988], the avail-
able vehicles may have different sizes and capacities, and, in each route, the collected
load must not exceed the capacity of the respective vehicle. In the Vehicle Routing
Problem with Time Windows (VRPTW) [Kolen et al., 1987; Kallehauge, 2008], the
customers have a time interval in which the service must happen. The VRPTW has
some versions itself. For instance, time windows may be “hard”, in the sense that the
vehicle cannot arrive late at any customer at all, or “soft”, in which case a penalty
value is paid when a time window is violated [Koskosidis et al., 1992]. In the Vehicle
Routing Problem with Satellite Facilities [Bard et al., 1998], a set of satellite vertices
is available. Along a route, a vehicle can stop at these points and reload, instead of
returning to the starting vertex.

Cuda et al. [2015] provide a survey on two-echelon routing problems, which are
routing problems involving two levels of routing: from central depots to intermediate
facilities, and then to customers. For instance, in the Capacitated Two-Echelon Vehicle
Routing Problem (2E-VRP) [Hemmelmayr et al., 2012; Baldacci et al., 2013; Santos



2.2. Literature Review 11

et al., 2015], a set of primary vehicles is available at a central depot, and a set of
customers must be serviced, but they are only accessible for a set of secondary vehicles.
These vehicles are available at given satellite facilities, each one of which has a given
capacity. The problem consists, then, in finding optimal routes for the primary vehicles
to the satellites, and for the secondary ones to the customers, while satisfying the
capacity constraints.

In the Truck and Trailer Routing Problem (TTRP), a set of capacitated trucks
and trailers are available at a central depot and must service a set of customers. Trailers
are non-autonomous vehicles that can be pulled by trucks in order to raise capacity,
but a subset of customers cannot be visited by these complete vehicles. Trailers can
be parked at vehicle customers, and trucks can perform subtours from there, visiting a
subset of customers, including trailer customers. The goal is to find an optimal set of
feasible routes that services all customers. Like the 2E-VRP, the TTRP also involves
two phases of routing: the first level corresponds to sending the complete vehicles to
vehicle customers, and the second level consists in finding subtours for decoupled trucks.
Chao [2002] formally introduces the problem for the first time, although variations have
appeared in earlier works [Semet and Taillard, 1993; Gerdessen, 1996; Bodin and Levy,
2000].

Several studies propose metaheuristic approaches for the standard TTRP outlined
above, often introducing variants to the original problem [Hoff, 2006; Scheuerer, 2006;
Tan et al., 2006; Lin et al., 2009; Caramia and Guerriero, 2010; Villegas et al., 2010,
2011, 2013; Pasha et al., 2014; Batsyn and Ponomarenko, 2014; Wang et al., 2018].
In [Lin et al., 2011], the Truck and Trailer Routing Problem with Time Windows
(TTRPTW) is addressed, combining elements from the VRPTW and the TTRP. Derigs
et al. [2013] describe a metaheuristic based on local search and large neighborhood
search. This algorithm considers, for the first time, the flexibility of servicing a vehicle
customer at any visit, if this customer is visited multiple times (due to subtours).
The authors also consider a TTRP variant in which load transfer is not possible,
meaning that load collected by a decoupled truck cannot be transferred to a trailer
after re-coupling. This limitation is compatible with certain real-life scenarios, either
because of the nature of the load, or for security reasons. Non-deterministic versions of
the TTRP have also been considered. Torres et al. [2015] handle a TTRP with fuzzy
constraints. Mirmohammadsadeghi and Ahmed [2015] address stochastic demands and
time windows.

Exact approaches for the TTRP family of problems have received relatively less
attention than heuristic ones, although this seems to be changing more recently. Ex-
act algorithms can be classified according to the solution method they use to generate
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bounds and prune the search space. Branch-and-Price (BP) [Barnhart et al., 1998] ap-
proaches are Branch-and-Bound algorithms that generate valid dual bounds by means
of column generation. As such, they involve a pricing subproblem, typically solved by
Dynamic Programming (DP), when the problem is a VRP or one of its variations that
are defined by multiple vehicles. Among this group, Drexl [2011] deals with a “gener-
alized” TTRP, which includes transshipment locations. In these vertices, a trailer can
be parked to perform load transfers. This work considers a heterogeneous fleet, and
both customers and transshipment locations have time windows.

Parragh and Cordeau [2017] introduce a set-partitioning formulation and a BP
algorithm with variable neighborhood search for a TTRPTW in which, like in [Derigs
et al., 2013], it is possible to choose when to service vehicle customers that are visited
multiple times. Rothenbächer et al. [2018] also consider this possibility, along with
load-dependent transfer times.

Another category of exact approaches, Branch-and-Cut (BC) algorithms tackle
the problem formulations, that involve a usually large set of constraints, by means of
cutting planes generation, and try to devise inexpensive ways of dynamically adding
some of them to Linear Programming Relaxations (LPRs) of the model. In [Drexl,
2014], BC algorithms are proposed for a TTRPTW variant in which a trailer is not
strictly assigned to a single truck, meaning it can be pulled by different trucks along
the route. Also, there can be load transfers from different vehicles to a trailer, and
transfer times depend on the load. Belenguer et al. [2016] also propose a BC algorithm,
this time for a Single TTRP with Satellite Depots, in which there is only one vehicle
available and only truck customers to be serviced, and satellite depots can be used to
park the trailer.

Very recently, Bartolini and Schneider [2020] introduced a flow formulation and
a BC algorithm for a TTRP variant without time windows, considering scenarios in
which load transfers are allowed, as well as scenarios where they are forbidden. The
authors also use their method to handle the Single TTRP with Satellite Depots, as in
[Belenguer et al., 2016].

The TTRP variants solved by the works mentioned in this section are defined
by the presence or not of some key characteristics, that may depend on the particular
real life application that inspired that work, and on the limitations of the model that
is employed. For example, in [Drexl, 2014] and [Rothenbächer et al., 2018], the time
taken by a load transfer operation depends on the amount of load to be transferred.
In the other exact approaches listed here, load transfer times are treated as constant
or ignored. Table 2.2 summarizes some of these characteristics of the TTRP variants
treated by each of the exact approaches that we mentioned, as well as the model in-
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troduced in this thesis. A horizontal line separates the three works that used a BP
algorithm (above the line) from the ones that used a BC method (below). In each col-
umn of this table, a modeling characteristic is represented, and a check mark symbol
indicates that the characteristic is considered by the corresponding work. The first
column represents the possibility of a heterogeneous fleet in the instance, that is, if the
model considers vehicles with possibly distinct capacities. The second column repre-
sents the possibility of considering different speed values for each vehicle in the fleet.
The third column indicates if a solution for the considered TTRP variation consists
of multiple routes, for multiple vehicles in the fleet. The fourth column indicates the
presence of time windows for customers. The fifth column corresponds to the existence
of dedicated satellite depots among the vertices in an instance of the problem. The
sixth column represents the possibility for a satellite depot to be used as the starting
point of multiple subtours in a solution route. Finally, the last column of the table
indicates if the model considers the amount of load to be transfered in the calculation
of load transfer times.

Table 2.2: Previous works that handle TTRP variations with exact approaches and
comparison of modeling characteristics considered in each one.

Heterogeneous
fleet

Distinct
vehicle
speeds

Multiple
routes

Time
windows

Dedicated
satellite
depots

Multiple
subtours
per vertex

Load-dependent
transfer times

(1) X X X X X

(2) X X X

(3) X X X X X X

(4) X X X X X

(5) X X

(6) X X X

(7) X X X X X X

Works referred by each row of this table:

(1) Drexl [2011]

(2) Parragh and Cordeau [2017]

(3) Rothenbächer et al. [2018]

(4) Drexl [2014]

(5) Belenguer et al. [2016]

(6) Bartolini and Schneider [2020]

(7) This thesis
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The model developed in this work considers different speed values for vehicles in
the fleet, as well as a decrease in truck speed when it is coupled to a trailer. To our
knowledge, this has not been handled by exact approaches previously introduced for
the TTRP. In general, an existing BP model could be adapted for this aspect, since
time windows are usually tackled by the DP algorithm. For an existing BC approach,
however, this would require significant changes in the formulation.

Our model also allows for a truck to perform any number of subtours from each
satellite depot. From our research in the literature, among exact BC approaches,
no previous model has considered that aspect for a TTRPTW variation. The model
introduced in [Drexl, 2014] for a TTRPTW variation also has a polynomial number of
variables; however, each truck can only perform one subtour at each satellite vertex.
Belenguer et al. [2016] and Bartolini and Schneider [2020] also solve TTRPs with
models from the same category. In those works, the number of subtours departing
from the same satellite depot is not restricted, but they do not consider customer time
windows. When that aspect is dropped, the model does not need to handle the satellite
scheduling, i.e., the order at which satellite vertices are visited, which allows for it to
be considerably simpler.

The PSTTRPTW is a variation of the TTRPTW that involves profits. Actually,
it is possible to define generalized versions with profits for the TSP [Feillet et al., 2005]
and for any vehicle routing problem variation. In such versions, it is not necessary to
visit all customers, and a profit is associated to each of them. There is, then, a trade-
off relationship between the arc travel costs and the customer service profits. This
relationship can be tackled with different optimization senses, giving rise to distinct
variations of routing problems involving profits. For example:

1. In a prize collecting variation of a routing problem, the goal is to find a minimum
cost set of routes with profit not smaller than a given predefined value. Some
works that handle prize collecting vehicle routing problems also consider a penalty
value in the objective function associated to non-visited customers, like in the
original work regarding the Prize Collecting TSP [Balas, 1989].

2. In an Orienteering Problem [Chao et al., 1996], the aim is to find a set of routes
with maximum profit, while the total travel cost cannot exceed a given budget.

3. If the goal is to find a set of routes that maximizes the collected profit minus the
travel cost, the routing problem variation often receives the designation profitable.

Profitable Vehicle Routing Problems, besides having a clear economical meaning
on their own, may be thought as subproblems in column generation schemes for solving
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more general vehicle routing problems. In these subproblems, customer profits typically
originate from dual variables associated to constraints that impose the customer service
in the master problem. From our research in the literature, all BP approaches for
multiple vehicle Truck-and-Trailer Routing Problems resort on DP algorithms to solve
such pricing subproblems. Our goal is also to contribute with an approach based on
Integer Programming (IP) techniques. The first step in this direction is the presentation
of an IP formulation for the PSTTRPTW. This subject is the theme of the next
chapter.





Chapter 3

An Integer Programming
Formulation and Valid Inequalities
for the PSTTRPTW

In this chapter, we introduce an Integer Programming formulation for the
PSTTRPTW. The formulation makes use of an auxiliary graph, created from the prob-
lem input graph. Before presenting the formulation, the construction of this graph is
described. We also highlight some properties obtained with the auxiliary graph that
are explored in the formulation. A proof for the formulation correctness is also pro-
vided, as well as preprocessing procedures and valid inequalities, designed to reinforce
the formulation’s LPR bounds.

3.1 Auxiliary Graph Creation

Given an instance for the PSTTRPTW, we create an auxiliary graph Ḡ = (V̄ , Ā). One
of the main benefits we look for with this transformation is to separate the three roles
a satellite vertex can play in the problem description: decoupling, load transfer and
coupling. The transformation makes these three operations easier to express through
linear constraints in the model. Another purpose of using Ḡ is to help translating some
structural restrictions imposed by the problem definition, for instance, that only single
trucks can reach or leave truck customers, or that only complete vehicles can arrive at
a satellite depot to decouple a trailer.

Let G = (V,A) be the input graph for the problem. The vertex set of the auxiliary
graph Ḡ is given by V̄ = {0} ∪ C ∪ S̄, where, for each satellite vertex i ∈ S, we create

17
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three specialized satellites in S̄: id, it and ic. id is the decoupling satellite associated to
i, whereas it is the load transfer satellite, and ic, the coupling satellite. The specialized
satellite sets Sd, St and Sc, that partition S̄, are defined as

Sd = {id : i ∈ S},

St = {it : i ∈ S},

Sc = {ic : i ∈ S}.

Each of the specialized satellite vertices is used to represent a specific role that a
satellite depot can perform. A complete vehicle visiting a vertex id ∈ Sd in a route in Ḡ
represents a decoupling operation, after which that vehicle leaves id as a single truck.
When a truck visits vertex it ∈ St, this represents a load transfer operation performed
in the original satellite i ∈ S. Likewise, a visit to ic ∈ Sc by a single truck corresponds
to a coupling operation at i, after which the vehicle leaves this satellite depot with the
trailer attached. A similar transformation was described in [Drexl, 2014].

When two vertices of S̄ playing different roles have the same original satellite in
S, we will refer to them as related. If two satellites are related, we will always use
the same letter to reference them. For example, if, in a context, we are denoting a
decoupling satellite as id, and refer to a satellite as ic, we mean the coupling satellite
that was created from the same original satellite as id, that is, i ∈ S.

This specialization of satellites allows for graph Ḡ not being complete, unlike the
input graph G. Given two vertices i, j ∈ V̄ , with i 6= j, arc (i, j) is not included in the
auxiliary graph in the following cases:

1. i = 0 and j ∈ St ∪ Sc. A vehicle cannot transfer load or couple a trailer right
after leaving the depot (it should decouple first).

2. i ∈ CK and j ∈ Sd. If a vehicle leaves a truck only customer, it has to be a single
truck. So, it cannot perform a decoupling operation right after.

3. i ∈ Sd∪St and j ∈ {0}∪ S̄. If a truck has just decoupled or transferred load in a
satellite depot, it cannot return to the main depot, since it has to recouple first.
It also should not immediately visit another satellite vertex without visiting a
customer first, as this is a suboptimal choice. Since there is always an optimal
solution in which such arcs are not needed, they are not created.

4. i ∈ Sc and j ∈ CK ∪ St ∪ Sc. If a vehicle has just coupled a trailer, it is not
allowed to visit a truck customer, since it has a trailer attached. It also cannot
transfer load or couple again.
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5. i = vc and j = vd, for any v ∈ S. This is another suboptimal arc. If a vehicle
has just coupled at v, it should not decouple again at the same satellite depot.
In such a situation, it is always preferable to only perform a load transfer at v.

For all pairs of vertices i, j ∈ V̄ not matching any excluding item above, an arc
(i, j) is included in Ā.

Besides the cases above, there are also situations in which an arc can never be
used by a single truck, and others in which it cannot be used by a complete vehicle.
In such cases, the arc is still included in Ā, and we describe in the next section how
to prevent it from being used by forbidden vehicles. We now list every situation that
forbids an arc from being traversed by a specific type of vehicle.

An arc (i, j) ∈ Ā cannot be used by a single truck in the two following cases:

1. i ∈ Sc. A vehicle that leaves a coupling satellite should be coupled.

2. j ∈ Sd. A single truck can never arrive at a decoupling satellite, since it is already
decoupled.

Conversely, arc (i, j) ∈ Ā cannot be used by a complete vehicle in the following
cases:

1. i ∈ CK ∪ Sd ∪ St. If a vehicle is leaving a truck customer, a decoupling satellite,
or a load transfer satellite, it should not be pushing a trailer.

2. j ∈ CK ∪ St ∪ Sc. For similar reasons as above.

Table 3.1 summarizes the arc usage rules introduced so far. For i, j ∈ V̄ , each row
in the table represents a possibility for i, whereas the central columns correspond to a
possibility for j. A dash means the arc is not created. Symbols “{0}” and “L” mean
the arc is created, but can only be used by single trucks and by complete vehicles,
respectively. For the case i ∈ Sc, j ∈ Sd, the arc is created only if i and j are not
related, as explained earlier. Finally, “{0}∪L” means the arc can be used by any type
of vehicle.

As the PSTTRPTW definition states, each vehicle has its own travel cost. Hence,
arcs have an associated cost for each vehicle. As defined in Section 2.1, the cost
associated to arc (i, j) ∈ Ā, for vehicle (k, l) ∈ V̄ , is given by cklij = dijφkl.

We now define the time associated to an arc. Like for the costs, time-related
parameters like speed and coupling time also depend on the vehicle. Therefore, time
tklij associated to an arc (i, j) is also defined for each vehicle (k, l). Besides the travel time
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Table 3.1: Rules for creation of arc (i, j) and its usage by vehicles in the auxiliary
graph, and time associated to (i, j) for vehicle (k, l).

HH
HHHHi

j {0} CV CK Sd St Sc tklij

{0} - {0} ∪ L {0} L - - dij
skl

CV {0} ∪ L {0} ∪ L {0} L {0} {0} dij
skl

+ qi
ok

CK {0} {0} {0} - {0} {0} dij
skl

+ qi
ok

Sd - {0} {0} - - - dij
skl

+ τkl

St - {0} {0} - - - dij
skl

Sc L L - L* - - dij
skl

+ τkl
* for i ∈ Sc and j ∈ Sd, (i, j) is created only if i and j are not related. In this case, (i, j) can only be

used by a complete vehicle.

dij
skl

, tklij also considers time-consuming operations that take place at vertex i, namely,
customer service, coupling and decoupling, depending on whether i is a customer or
a specialized satellite depot. The last column of Table 3.1 shows the value of tklij for
arc (i, j), for each possible type that endpoint i may assume. If vehicle (k, l) is not
allowed to use arc (i, j), we define tklij :=∞. Note that there are still two types of time-
consuming events that are not considered by tklij : the waiting when a vehicle arrives at
a customer before its time window opening, and the load transfer after a subtour. The
time taken by these events depend on vertices previously visited, and therefore must
be dynamically calculated, as seen later in this chapter.

3.2 Properties of the PSTTRPTW

In this section, we present properties that hold for a feasible solution for the
PSTTRPTW, arisen from the problem definition and the rules for the auxiliary graph
creation. These properties are explored in the formulation and algorithm for the
PSTTRPTW, described later on. First, we introduce the definitions and the notation
that will be used throughout this thesis. For the remaining of this section, consider a
given instance, for which an auxiliary graph Ḡ = (V̄ , Ā) was created.

Definition 1. A walk in Ḡ is defined as a finite sequence Γ = (γ1, . . . , γ|Γ|) of adjacent
vertices in Ḡ, possibly including repeated vertices and arcs.

Despite the usual definition of a walk in a graph using a sequence of arcs, in order
to simplify notation, we use a different, but equivalent, definition. The capital letter
Γ will be used to denote walks, and γi (in lower case) will be used to reference the
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i-th vertex in Γ. The length |Γ| of a walk is the number of elements in the sequence,
which counts possibly repeated vertices that appear in the walk. We use si in indexes
to reference the i-th satellite vertex that appears in the walk in context. For example,
γs1 ∈ S̄ is the first satellite that appears in Γ. C(Γ) is defined as the set of customers
that appear in Γ. Also, s(Γ) is the number of times satellite vertices appear in Γ,
counting possible repeated entries. A subtour in Γ is any portion of Γ that starts at
a decoupling or load transfer satellite i ∈ Sd ∪ St, ends at the related load transfer
or coupling satellite (it or ic, respectively), and contains only customer vertices in
between. A subtour of Γ that ends at satellite vertex i will be denoted as Γ̂(i).

A vehicle in V can be assigned to traverse a walk. This assignment represents a
choice of vehicle and route in our problem. The following definition reflects the problem
condition by which a complete vehicle is decoupled after visiting a decoupling or load
transfer satellite.

Definition 2. Consider that a vehicle (k, l) ∈ V was assigned to a walk Γ. For any γi,

• If l = 0, or if the last satellite vertex in Γ before γi is a decoupling or load transfer
satellite, we say (k, l) is decoupled at γi.

• Otherwise, that is, if (k, l) is a complete vehicle and the last satellite vertex in Γ

before γi is a coupling satellite, or if no satellite appears before γi, we say (k, l)

is coupled at γi.

We now define two important quantities associated to a walk in Ḡ.

Definition 3. The total supply of a walk Γ in Ḡ is given by the sum of customer
supplies in Γ, that is,

q(Γ) :=
∑
i∈C(Γ)

qi.

Definition 4. Consider a walk Γ and a vehicle (k, l) ∈ V , assigned to Γ. The travel
time tikl that vehicle (k, l) takes to reach the i-th element of Γ is given by the following
recursion:

t1kl(Γ) := eγ1

tikl(Γ) :=


max{ti−1

kl (Γ) + ∆i, eγi}, if γi ∈ C

ti−1
kl (Γ) + ∆i, if γi ∈ {0} ∪ Sd

ti−1
kl (Γ) + ∆i +

q(Γ̂(γi))

ok
, if γi ∈ St ∪ Sc

i = 2, . . . , |Γ|
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where the quantity ∆i is given by

∆i =

tklγi−1γi
, if (k, l) is coupled at γi

tk0
γi−1γi

, if (k, l) is decoupled at γi

Also, we define the travel time of Γ for vehicle (k, l) as

tkl(Γ) := t
|Γ|
kl (Γ)

Note that the travel time definitions consider the coupling state of the vehicle
at any vertex of Γ, as well as the possibility that the vehicle may have to wait for
a customer time window to open, if it arrives too early at it. Also, after finishing a
subtour, at a load transfer or coupling satellite, the load transfer time is considered.

In the sequence, we define three desirable properties for a walk, that will be used
afterwards to characterize feasible solutions.

Definition 5. Given a walk Γ and a vehicle (k, l) assigned to Γ, we say this assignment
is time window consistent if, for every γi ∈ C(Γ),

tikl(Γ) ≤ fγi

That is, vehicle (k, l) is able to arrive at every customer in Γ before its time window
closing.

Definition 6. Given a walk Γ and a vehicle (k, l) assigned to Γ, we say this assignment
is capacity consistent if:

i) q(Γ) ≤ Qk +Ql, and

ii) q(Γ̂(γsi)) ≤ Qk, for every i = 1, . . . , s(Γ) such that γsi ∈ St ∪ Sc.

That is, the total supply to be collected along Γ does not exceed the capacity of vehicle
(k, l), and the total supply in subtours does not exceed the truck capacity.

Definition 7. We say that a walk Γ is satellite consistent if Γ contains no satellite
vertices, or, if it does,

i) γs1 ∈ Sd

ii) If γsk = i ∈ Sd ∪ St, then γsk+1
∈ {it, ic}, for k = 1, . . . , s(Γ)− 1.

iii) If γsk ∈ Sc, then γsk+1
∈ Sd, for k = 2, . . . , s(Γ)− 2.



3.2. Properties of the PSTTRPTW 23

id

γs1

it

γs2

it

γs3

ic

γs4

jd

γs5

jt

γs6

jc

γs7

id

γs8

ic

γs9

. . . . . . . . . . . . . . . . . .

Figure 3.1: Example of a satellite consistent walk.
Customers visited between satellites are omitted. Dotted lines between satellites represent
subtours, and strong, continuous lines are portions of the walk that must be traveled by a

complete vehicle.

iv) γsk ∈ Sc for k = s(Γ).

This definition translates the ordering that satellite vertices in a feasible solution
must follow: the first satellite must be a decoupling one; after that, the related load
transfer satellite can be visited zero or more times, until the walk visits the related cou-
pling satellite. Then, another decoupling satellite can be visited, and the same pattern
repeats until the walk visits the last coupling satellite. This property is illustrated by
Figure 3.1, in which a walk visiting nine satellite vertices is represented. For simplicity,
customers visited between satellites are not shown. Dotted lines between two satellites
represent subtours, and continuous lines are portions of the walk that must be traveled
by a complete vehicle.

The next statement about a feasible solution for the PSTTRPTW follows directly
from the problem description and the definitions above.

Remark 1. A feasible solution for the PSTTRPTW consists of a choice of a walk Γ

in Ḡ, referred to as a route, and a vehicle (k, l) ∈ V, assigned to Γ, for which the
following holds:

i) Γ starts and ends at vertex 0 ∈ V̄ , and visits each customer in C at most once;

ii) Γ is time window consistent for (k, l);

iii) Γ is capacity consistent for (k, l);

iv) Γ is satellite consistent.

Now, we introduce results that allow to establish bounds on the number of times
certain vertices and arcs in Ḡ can be visited. Let W ⊆ C be a subset of customers for
which

∑
i∈W qi ≤ max{Qk+Ql : (k, l) ∈ K×L}, that is, W is a set of customers whose

total supply does not exceed the capacity of at least one vehicle in V . Let c̄ be the
maximum cardinality of a possible set W . That is, c̄ is the Dantzig bound [Dantzig,
1957] for a Knapsack Problem in which we aim to select a subset of customers whose
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total supply fit a vehicle of maximum capacity. Quantity c̄ is a bound for the number
of customers that can be visited by a vehicle in a feasible route. It can be calculated
by sorting the customers in C by supply in ascending order and counting the number
of customers until the total supply exceeds the biggest vehicle capacity in V .

While the depot and customer vertices are visited at most once in a feasible
solution for the problem, satellite vertices can be visited multiple times. The satellite
consistency property allows to establish bounds for the number of times satellite vertices
and certain arcs in Ḡ are used.

Proposition 1. The number of times a trailer is decoupled (or coupled) in an optimal
solution is at most c̄.

Proof. Consider an optimal solution that selects a complete vehicle. For each time
the selected trailer is decoupled, the truck visits at least one customer. Because of
the satellite consistency, the truck also does not visit a different satellite vertex until
re-coupling at the satellite where the trailer was parked. Therefore, the number of
decoupling operations is equal to the number of couplings, and limited by the number
c̄ of customers that can be visited in a route.

Proposition 2. The number of times a vehicle visits satellite vertices in an optimal
solution is at most 2c̄.

Proof. Consider a solution that visits c̄ customers, and in which the route is built
according to the following: for each visited customer, the trailer is decoupled, the
customer is serviced, and then the trailer is coupled again, as shown in Figure 3.2.
This solution visits satellite vertices 2c̄ times. This is the maximum number of satellite
visits in a feasible solution, since, if a customer is visited while the vehicle is coupled, or
if more than one customer are visited between two consecutive decoupling and coupling
operations, the number of visited satellite vertices is always smaller than in the solution
considered. Also, note that any solution that uses load transfer satellites requires less
than 2c̄ satellite visits.

Proposition 3. Let (i, j) ∈ Ā. If i ∈ Sc and j ∈ Sd, then (i, j) can be traversed at
most b c̄

2
c times in an optimal solution. Otherwise, (i, j) is traversed at most once.

Proof. If i or j is the depot or a customer vertex, then (i, j) is used at most once, since
these vertices cannot be visited more than once. Suppose now that i, j ∈ S̄. By the
rules for the auxiliary graph arcs, summarized in Table 3.1, the only arcs connecting
satellites that are created are for i ∈ Sc and j ∈ Sd. We consider again the extreme-case
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id ic jd jc id ic

1 2 c̄

Figure 3.2: Route with the maximum number of satellite visits.

solution that visits each customer between two decoupling and coupling operations, as
in Figure 3.2. In the worst case, satellites i and j are alternated in this route. Since at
most c̄ customers are visited, the number of times this route can go from i to j (and
from j to i) is b c̄

2
c.

3.3 Integer Programming Formulation

Before presenting the formulation, we introduce some definitions and the notation
adopted hereafter. Let Z be the set of integer numbers, and R, the set of real numbers.
Given an auxiliary graph Ḡ = (V̄ , Ā) and a subset of vertices W ⊆ V̄ , we define
A(W ) := {(i, j) ∈ Ā : i, j ∈ W}, δ+(W ) := {(i, j) ∈ Ā : i ∈ W, j /∈ W}, δ−(W ) :=

δ+(V̄ \W ) and δ(W ) := δ+(W )∪ δ−(W ). For unitary sets, we simplify the notation by
defining δ+(i) := δ+({i}), δ−(i) := δ−({i}) and δ(i) := δ({i}). If, additionally we have
Y ⊆ V̄ , we define δ+(W : Y ) := δ+(W ) ∩ δ−(Y ) and δ(W : Y ) := δ+(W : Y ) ∪ δ+(Y :

W ). W(Ḡ) is defined as the set of all walks in Ḡ. We also define n := |V̄ | andm := |Ā|.
We consider the following integer decision variables:

• xij : number of times arc (i, j) ∈ Ā is traversed in the solution

• yi =

1, if vertex i ∈ V̄ is visited in the solution

0, otherwise

• zk0 =

1, if truck k ∈ K is used in the solution (with or without a trailer)

0, otherwise
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• zkl =

1, if truck k ∈ K is used in the solution with trailer l ∈ L

0, otherwise

• wk0
ij =

1, if arc (i, j) ∈ Ā is traversed by truck k ∈ K without a trailer

0, otherwise

• wklij : number of times arc (i, j) ∈ Ā is traversed by truck k ∈ K with trailer l ∈ L

• rκij =


1, if (i, j) ∈ δ+(S̄) is traversed after leaving a satellite depot for the κ-th

time, if κ or more satellites are used in the solution, for κ = 1, . . . , 2c̄

0, otherwise

Variable r is indexed both by the arc (i, j) leaving a satellite depot, and by the
number of times κ a satellite depot is visited in the solution. By Proposition 2, index
κ can be limited by 2c̄ for this set of variables.

Let H ⊆ Ā be a set of arcs in Ḡ and S ⊆ V , a set of vehicles. In order to shorten
the presentation, we define the following real-valued sums:

x(H) :=
∑

(i,j)∈H

xij

wkl(H) :=
∑

(i,j)∈H

wklij

wij(S) :=
∑

(k,l)∈S

wklij

where x and w are the vectors of variables introduced in this section. Additionally, if
H ⊆ δ+(S̄) and κ = 1, . . . , 2c̄,

rκ(H) :=
∑

(i,j)∈H

rκij

where r is the vector of decision variables previously introduced.

For variable x, the short hand x(Γ) :=
∑|Γ|−1

i=1 xγiγi+1
is the sum of that variable

for all arcs in Γ. If W ⊆ V̄ , the notation x(Γ|W ) represents the sum of x restricted to
arcs in Γ that belong to δ+(W ), that is:

x(Γ|W ) := x({(γi, γi+1) : γi ∈ W})
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Our IP Formulation for the PSTTRPTW is given by:

max

∑
i∈C

piyi −
∑

(k,l)∈V

aklzkl −
∑

(i,j)∈Ā

∑
(k,l)∈V

cklijw
kl
ij : (x, y, z, w, r) ∈ P ∩ Zσ

 , (3.1)

where σ is the total number of variables, and P ⊂ Rσ is the polyhedron defined by
the linear constraints (3.2)-(3.16), introduced in the sequence.

Connectivity constraints

xij = wij(V) (i, j) ∈ Ā (3.2)

x(δ+(i)) = x(δ−(i)) i ∈ V̄ (3.3)

x(δ+(W )) ≥ yi W ⊆ V̄ \ {0}, i ∈ W (3.4)

Constraints (3.2) link variables x and w, ensuring that the number of times
an arc is used is exactly the number of times a vehicle traverses it. Flow balance
constraints (3.3) establish that, the number of times a vehicle arrives at a vertex is
exactly the number of times it leaves that vertex. Inequalities (3.4) are the Directed
Cutset Constraints (DCUTs) [Chopra et al., 1992]. They ensure that a feasible solution
must be connected and arrive at the depot vertex, whenever a nonempty route is
implemented by a vehicle, i.e., a non-trivial solution is chosen.

x(δ+(0)) ≤ 1 (3.5a)

x(δ+(i)) = yi i ∈ C (3.5b)

Inequalities (3.5a) establish that a route can leave the depot at most once, and
(3.5b), that the vehicle leaves a customer vertex if and only if it is visited.

yi ≥ xij (i, j) ∈ δ+(V̄ \ Sc) (3.6a)

yi ≥ xji (j, i) ∈ δ−(Sc) (3.6b)

Constraints (3.6) establish that, if an arc is traversed in the solution, its
endpoints must be used. Since arcs of the type (ic, jd) : i ∈ Sc, j ∈ Sd can be traversed
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multiple times, (3.6a) might not hold for them. For these cases, constraints (3.6b) are
used instead.

Total vehicle capacity constraint

∑
i∈C

qiyi ≤
∑
k∈K

Qkzk0 +
∑

(k,l)∈V

Qlzkl (3.7)

Constraint (3.7) ensures that the total supply collected in a feasible route does
not exceed the capacity of the selected vehicle, be it a single truck or a complete vehicle.

Truck selection constraint

∑
k∈K

zk0 ≤ 1 (3.8)

By constraint (3.8), at most one truck is selected in a feasible solution. Note
that a “trivial” solution, in which no vehicle is selected and no vertex is visited, is
allowed and has objective value equal to zero.

Arc-vehicle assignment constraints

wk0(δ+(0)) = zk0 −
∑
l∈L

zkl k ∈ K (3.9a)

wkl(δ+(0)) = zkl k ∈ K, l ∈ L (3.9b)

wk0(δ+(i)) ≤ zk0 i ∈ C, k ∈ K (3.9c)

wkl(δ+(i)) ≤ zkl i ∈ CV , k ∈ K, l ∈ L (3.9d)

wklji ≤ zkl i ∈ Sd, j /∈ Sc, (j, i) ∈ δ−(i), k ∈ K, l ∈ L (3.9e)

wklij ≤ zkl i ∈ Sc, j /∈ Sd, (i, j) ∈ δ+(i), k ∈ K, l ∈ L (3.9f)

wkl(δ+(Sc)) ≤ c̄zkl k ∈ K, l ∈ L (3.9g)

Constraints (3.9) determine which vehicles are allowed to traverse each type of
arc, according to the selected vehicle. By (3.9a), a single truck (k, 0) can leave the
depot if, and only if, truck k is selected and no trailer is selected together with k. At
the same time, this constraint also enforces that, if k is selected, at most one trailer can
be selected to be used coupled with k. If zk0 = 1 and

∑
l∈L zkl = 0, the corresponding

solution is a truck-only route. Constraints (3.9b) establish that, if the complete vehicle
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(k, l) is selected in the solution, it must leave the depot vertex.

A customer can be visited by single truck k only if this truck is selected
(constraints (3.9c)), and vehicle customers can be visited by the complete vehicle (k, l)

only if this vehicle is selected (constraints (3.9d)). For arcs that arrive at decoupling
satellites or leave coupling satellites, vehicle (k, l) is allowed only if it is selected,
as determined by (3.9e)-(3.9g). Constraints (3.9e) and (3.9f) consider arcs that can
only be used once, while (3.9g) also considers arcs that can be visited multiple times,
using the bound expressed in Proposition 1. Note that it is not necessary to have a
similar constraint for arcs adjacent to transfer satellites, because these vertices are
only visited by single trucks.

Trailer consistency constraints

wk0(δ+(i)) = wk0(δ−(i)) i ∈ {0} ∪ CV , k ∈ K (3.10)

Constraints (3.10) express the fact that, if i is the depot or a vehicle customer
vertex, the truck that arrives at i must be the same that leaves this vertex. Together
with (3.2) and (3.9), these constraints also ensure that, if a complete vehicle arrives
at i, the same truck and trailer pair must leave i.

Satellite consistency constraints

2c̄∑
κ=1

rκij = xij (i, j) ∈ δ+(S̄) (3.11)

Constraints (3.11) link variables x and r, establishing that, for each time an arc
that leaves a satellite vertex is used, a variable r for this arc is active for some index κ.

r1(δ+(St ∪ Sc)) = 0 (3.12a)

r1(δ+(Sd)) ≤ 1 (3.12b)

rκ(δ+(it) ∪ δ+(ic)) ≤ rκ−1(δ+(id) ∪ δ+(it)) i ∈ S, κ = 2, . . . , 2c̄ (3.12c)

rκ(δ+(Sd)) ≤ rκ−1(δ+(Sc)) κ = 2, . . . , 2c̄ (3.12d)

Constraints (3.12) enforce that the satellite vertices corresponding to the r
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variables set to 1 provide a sequence, considering index κ, that is consistent with
the coupling rules given by the problem, as in Figure 3.1. More precisely, by
(3.12a), the first satellite vertex to be visited in a route can be neither a transfer
nor a coupling satellite. Inequality (3.12b) establishes that at most one decoupling
satellite is assigned to index κ = 1. For κ ≥ 2, a transfer or coupling satellite
can be assigned to index κ only if the related decoupling or transfer satellite is
assigned to κ − 1 (constraints (3.12c)), and a decoupling satellite can be assigned
to index κ only if a coupling satellite is assigned to κ − 1 (constraints (3.12d)).
Note that this set of constraints ensures that at most one arc is assigned to each κ,
and that an arc is assigned to index κ only if some arc is assigned for indexes 1, . . . , κ−1.

Subtour capacity constraints

x(Γ) ≤ |Γ| − 1− zk0 Γ ∈ W(Ḡ) :

γ1 ∈ Sd ∪ St
γ2, . . . , γ|Γ| ∈ C

, k ∈ K : Qk < q(Γ) (3.13)

Constraints (3.13) consider walks that start at decoupling or load transfer and
then visit only customers. If the selected truck capacity is smaller than the supply of
the customers visited in a given walk, then the corresponding solution is forbidden.
Therefore, these constraints ensure that the supply collected in a subtour does not
exceed the selected truck capacity.

Time window constraints

x(Γ|{0} ∪ C) +

s(Γ)∑
i=1

riγsiγsi+1
≤ |Γ| − 1− zkl (3.14)

Γ ∈ W(Ḡ) :

γ1 = 0

γ|Γ| ∈ C
, (k, l) ∈ V : tkl(Γ) > fγ|Γ|

Constraints (3.14) guarantee that the time windows of customers visited in a
feasible solution are observed. If a given solution uses vehicle (k, l) and a route that
begins with walk Γ, and (k, l) is unable to reach the end of Γ before the time window
of customer γ|Γ| closes, then this solution must be forbidden. Note that, regardless of
Γ including or not satellite vertices, the sum in the left side has |Γ| terms, and this
constraint enforces that (k, l) and Γ are not simultaneously picked in a feasible solution.
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Figure 3.3: Satellite scheduling constraints.

Satellite scheduling constraints

x(Γ) ≤ r1(δ+(γ|Γ|)) + |Γ| − 2 Γ ∈ W(Ḡ) :


γ1 = 0,

γ2, . . . , γ|Γ|−1 ∈ C,

γ|Γ| ∈ Sd

(3.15a)

rκ−1
γ1γ2

+ x(Γ|C) ≤ rκ(δ+(γ|Γ|)) + |Γ| − 2
Γ ∈ W(Ḡ) :


γ1 ∈ S,

γ2, . . . , γ|Γ|−1 ∈ C,

γ|Γ| ∈ S

κ = 2, . . . , 2c̄

(3.15b)

rκγ1γ2
+ x(Γ|C) + rκ+1(δ+(S̄)) ≤ |Γ| − 1

Γ ∈ W(Ḡ) :


γ1 ∈ Sc,

γ2, . . . , γ|Γ|−1 ∈ C,

γ|Γ| = 0

κ = 1, . . . , 2c̄− 1

(3.15c)

Inequalities (3.15) aim to ensure that the satellite sequence given by variables r
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is compatible with the route defined by variables x. Figure 3.3 shows a generic route
that visits κ′ satellite vertices. Customers visited by this route are not displayed, but
possibly appear in the route in portions represented by arrows. Constraints (3.15a)
consider walks Γ with the following pattern: Γ starts at the depot vertex, visits any
number of customers and finishes at a decoupling satellite i1. In the figure, this walk
corresponds to the portion of the route between 0 and i1. This set of constraints states
that, since i1 is the first satellite vertex in the route, if the arcs in Γ are selected in a
solution, we must have r1

i1j
= 1 for some (i1, j) ∈ δ+(i1).

Consider now any portion Γ of a route starting at a satellite iκ−1, then visiting
zero or more customers and ending at another satellite vertex iκ, like in the portion
of the route of Figure 3.3 between iκ−1 and iκ. Constraints (3.15b) establish that, if
the arcs in Γ are selected by a solution, and riκ−1j = 1 for some j (that is, iκ−1 is the
(κ−1)-th satellite in the solution), then we must have rκiκv = 1 for some (iκ, v) ∈ δ+(iκ),
that is, iκ must be the κ-th satellite in the solution.

Finally, constraints (3.15c) handle the portion Γ of the route between the last
visited satellite, iκ′ , and the depot vertex, like shown in Figure 3.3. These constraints
state that, if the arcs in Γ are selected in a solution, and riκ′j = 1 for some j, then no
satellite vertex must be set to be the (κ′+ 1)-th one, that is, we cannot have rκ

′+1
ij = 1

for any (i, j) ∈ δ+(S̄).

Variable bounds

0 ≤ xij ≤

b c̄2c, if i ∈ Sc and j ∈ Sd
1, otherwise

(i, j) ∈ Ā (3.16a)

0 ≤ yi ≤ 1 i ∈ V̄ (3.16b)

0 ≤ zkl ≤ 1 (k, l) ∈ V (3.16c)

0 ≤ wklij ≤

b c̄2c, if i ∈ Sc and j ∈ Sd
1, otherwise

(i, j) ∈ Ā, (k, l) ∈ V (3.16d)

0 ≤ rκij ≤ 1 (i, j) ∈ δ+(S̄), κ = 1, . . . , 2c̄ (3.16e)

Variable bounds are provided by (3.16). Upper bounds for variables x and w

are given by the number of times each arc can be traversed, and are in accordance to
Proposition 3.
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3.3.1 Proof of the Formulation Correctness

We now present a proof that the IP model introduced in this section is in fact a
formulation for the PSTTRPTW. The proof requires to show that there is a bijective
mapping between integer vectors in P and feasible solutions for the problem.

Consider a feasible solution for the problem. From the exposition given in this
section, it was already shown that it is possible to build an integer vector (x, y, z, w, r) ∈
P whose objective value equals the solution cost, and for which constraints (3.2)-(3.16)
hold. Therefore, this set of constraints does not cut off any feasible solution. The
opposite direction of this statement, i.e., that the set of constraints that define P
are not satisfied by any infeasible solution, remains to be proved. The next lemma
demonstrates this result.

Lemma 1. For each (x, y, z, w, r) ∈ P ∩ Zσ, there is a feasible solution for the
PSTTRPTW with cost equal to the objective value for (x, y, z, w, r).

Proof. Let (x, y, z, w, r) be an integer vector satisfying constraints (3.2)-(3.16). We
now describe how a feasible solution for the problem can be obtained.

If zk0 = 0 for every k, then the solution is empty with objective value zero.
Otherwise, select the truck k for which zk0 = 1. Note that, by (3.8), there can be at
most one such k ∈ K. For this index k, if zkl = 1 for some l ∈ L, then the solution
uses trailer l with truck k. Otherwise, the solution consists of a truck-only route. Note
that, by (3.9a), and because w ≥ 0, there can be at most one such l, and only for the
selected k.

The solution route is built according to the following procedure:

1. Set i← 0 and κ← 1.

2. If i ∈ {0} ∪C, then add to the route the arc (i, j) for which xij = 1, and go to
step 5.

3. Add to the route the arc (i, j) for which rκij = 1.

4. Set κ← κ+ 1.

5. Set i← j.

6. If i 6= 0, then go to step 2.

The following six statements highlight properties for the route built by this
procedure. They will be used to demonstrate that this solution is feasible for the
PSTTRPTW.
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Statement 1. Whenever steps 2 or 3 are reached, there is an arc (i, j) that can be
added to the route.

Proof. The proof is by induction on the procedure iterations. In the first iteration, we
have i = 0. Let k be the selected truck. First, suppose that zkl = 0 for all l. Then,
constraint (3.9a) provides wk0(δ+(0)) = 1. Therefore, there is exactly one arc (i, j) for
which wk0

ij = 1. By (3.2), xij = 1, and this will be the arc that the procedure adds.
If, otherwise, zkl = 1 for some l ∈ L, then, (3.9b) gives wkl(δ+(0)) = 1, and, with the
same argument, we obtain an arc (i, j) for which xij = 1.

Now, suppose that the procedure arrives at a given iteration with a connected
walk, and we show that there is an arc to be added at the next iteration. First, assume
that i ∈ C, which means the condition in step 2 is true. Since this iteration is not the
first, i was set in step 5 of the previous iteration, which means there is an arc (v, i) for
which xvi = 1. By (3.3), this implies that there is an arc (i, j) for which xij = 1. This
is the next arc to be added by the procedure.

In the case that i ∈ S̄, we reach step 3. If no satellite vertex was added until
this point, let Γ be the route built so far by the procedure, with γ1 = 0 and γ|Γ| = i.
Consider constraint (3.15a) for Γ. We have x(Γ) = |Γ|, since xij = 1 for all arcs in Γ.
This leads to r1(δ+(i)) ≥ 1, which means there is an arc (i, j) to be added to Γ.

If, otherwise, i is not the first satellite that the procedure adds, a similar argument
can be used. Let γ1 be the previous satellite vertex in the route before i, and let Γ be
the portion of the route between γ1 and i. Applying constraint (3.15b) for Γ and the
current value of κ leads to rκ(δ+(i)) ≥ 1, and we also have an arc to be added by the
procedure.

Statement 2. The procedure always finishes. Therefore, the generated route is con-
nected, starting and ending at the depot vertex.

Proof. We have to show that the procedure eventually reaches step 6 with i = 0.
Suppose that this does not happen. Since the set of vertices is finite, there is at
least one vertex v that appears an infinite number of times in the procedure route.
Vertex v cannot be a satellite vertex, as this would require that rκvj = 1 for infinite
indexes κ, and these are defined only for 1, . . . , 2c̄. Thus, v ∈ C. Note that, because
of (??), the choice of arc in step 2 is unique. This means that, after reaching v, the
procedure loops indefinitely between the same sequence of customer vertices. Let W
be the set containing these vertices. For each i ∈ W , there is exactly one j for which
xij = 1, and, since the vertices inW form a loop, we have x(δ+(W )) = 0. Furthermore,
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because of (??), we have yv = 1. Applying constraint (3.4) for W and v, we have a
contradiction.

Statement 3. Each customer i for which yi = 1 is visited in the route exactly once.

Proof. Let i ∈ C be a customer such that yi = 1. As already noted, if i is reached by
the procedure, the choice of arc (i, j) in step 2 is unique, by (??). Therefore, i cannot
appear in the route more than once, since this would lead to an infinite loop.

Suppose, by contradiction, that the procedure finishes without adding i. First,
assume that the generated route does not include satellite vertices. In this case, let
W be the set of vertices in the route. Note that x(δ+(W )) = 0, and, because of (3.3),
x(δ−(W )) = x(δ+(W )) = 0. Applying constraint (3.4) for V \ W and i leads to a
contradiction.

Now, suppose that the route that does not include i has κ̄ ≥ 1 satellite vertices.
Since yi = 1, by (3.4), (3.3) and (??), there is exactly one arc (j, i) for which xji = 1.
Note that j 6= 0, because otherwise i would have been included in the route. If j ∈ C,
then j was also not included in the route, and, by (??), yj = 1 too. In this case, apply
the same operation for j, renaming this vertex to i. We can repeat this until we reach
a satellite vertex v (note that this operation cannot reach repeated customer vertices,
as this would violate (3.4) again). We have, then, an arc (v, i) for which xvi = 1. By
constraint (3.11), rκvi = 1 for some κ. We cannot have κ ≤ κ̄, since, in this case, i
would have been included in the route. Then, rκvi = 1 for κ > κ̄. Applying (3.12c) and
(3.12d) repeatedly for κ, κ−1, . . . , κ̄+ 2 leads to the conclusion that there is a satellite
vertex w for which rκ̄+1(δ+(w)) = 1. Let Γ be the portion of the generated route after
the last visited satellite until the depot. Considering constraint (3.15c) for Γ and κ̄,
we get rκ̄+1(δ+(S)) ≤ 0, which is another contradiction.

Statement 4. The route built by the procedure is satellite consistent.

Proof. The procedure ensures that, if the generated route includes satellites, their order
is given by indexes κ for which some variable r is active. Constraints (3.12), in turn,
enforce that this order agrees with Definition 7, as follows: i) (3.12a)-(3.12b) state that
the first satellite to be visited is a decoupling satellite; ii) (3.12c) grants that, after
visiting id or it, the next satellite must be it or ic, and iii) by (3.12d), only a decoupling
satellite can follow a coupling one in the sequence.

In order to verify that condition iv) of Definition 7 also holds, suppose that it does
not, that is, the last satellite s in the route is a decoupling or load transfer satellite.
Since the procedure arrived at s, xis = 1 for some vertex i. Because of the rules for
Ḡ, only complete vehicles are allowed to use arcs in δ−(s), so, by (3.2), we must have
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wklis = 1 for some complete vehicle (k, l), which, from (3.9e) or (3.9g), implies that
zkl = 1. Thus, the solution involves a complete vehicle.

Now, because of step 3, we have rκsi = 1 for some i ∈ δ+(s) and some κ. By
(3.11), xsi ≥ 1 holds. Because of the construction rules for Ḡ, only single trucks are
allowed to use arcs in δ+(s); therefore, using (3.2), it follows that wk0

si = 1. If i ∈ C,
applying (3.10) for i leads to wk0(δ+(i)) = 1, which means wk0

ij = 1 for some arc (i, j).
If j is also a customer, we can rename j to i and apply (3.10) again, until we reach
the depot vertex, for which we will have wk0

i0 = 1. On the other hand, reminding that
zkl = 1, constraint (3.9a) states that wk0(δ+(0)) = 0. Using now (3.10) for vertex 0, we
arrive at a contradiction. Therefore, the last satellite vertex must be a coupling one,
and the statement holds.

Statement 5. The route built by the procedure is capacity consistent for the selected
vehicle.

Proof. Statement 3, along with (??), establish that the customers visited in the gener-
ated route are exactly those for which yi = 1. Then, the left side of (3.7) is exactly the
total supply collected, which, by (3.7), is no greater that the selected vehicle capacity.

Now, consider a subtour starting at satellite i ∈ Sd ∪ St whose supply exceeds
the selected truck capacity, and let Γ be the portion of the route from i to the last
customer in this subtour. Then, constraint (3.13) is violated for Γ and the selected
truck k. Therefore, the supply in all subtours is compatible with the truck capacity.

Statement 6. The route built by the procedure is time window consistent for the se-
lected vehicle.

Proof. Suppose that the time taken by the selected vehicle (k, l) to reach a visited
customer i in the route exceeds fi, and let Γ be the portion of the route starting at the
depot vertex and ending at i. Consider constraint (3.14) for Γ and (k, l). The left side
of this constraint equals |Γ|, which leads to zkl ≤ 0. However, since (k, l) is the selected
vehicle, zkl = 1 must hold, and a contradiction follows. Therefore, time windows are
always observed in the generated route.

Together, the statements above show that the vehicle selection and the route
described produce a solution that matches all the properties that characterize a feasible
solution in Remark 1: by Statement 1, the route is a walk that starts at the depot
vertex and, by Statement 2, also ends at the depot. From Statement 3, no customer
is visited more than once, and the following three statements establish the consistency
properties.
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As for the cost of this solution, we define it the following way: for each time arc
(i, j) is added to the route, if the vehicle is coupled, we add cklij to the cost, and if it
is decoupled, we add ck0

ij . It is possible to verify that constraints (3.9) ensure that this
cost equals the objective value of vector (x, y, z, w, r).

The results discussed in this section allow us to state the formulation correctness,
formalized in Theorem 1.

Theorem 1. The Integer Program (3.1) correctly formulates the PSTTRPTW.

3.3.2 Handling the Constraint Sets

The formulation introduced in this section has a polynomial number of integer vari-
ables, and does not rely on continuous variables for quantities like load or time. The
inclusion of such types of variables to impose time windows and capacity consisten-
cies would require the use of big-M disjunctive constraints, and these tend to generate
poor LPR bounds. We avoided their use by imposing exponentially many constraints
(3.13)-(3.15) that are applicable to walks in Ḡ. Constraints (3.13)-(3.15) can be seen as
Combinatorial Benders cuts [Codato and Fischetti, 2006]. In order to handle the large
number of constraints, we adopt a BC approach. DCUTs (3.4) are an exponential set of
constraints that can be efficiently separated with well known max-flow routines [Pad-
berg and Rinaldi, 1991]. Constraints (3.13), (3.14) and (3.15), on the other hand, are
also numerous, and require another separation strategy, which is presented in Chapter
4.

Consider a solution for an integer relaxation of the formulation in which con-
straints (3.13)-(3.15) are dropped. This solution consists of a connected route, starting
and ending at the depot vertex. Due to the structure of the auxiliary graph, the
physical restrictions of the problem, that impose that a complete vehicle cannot visit
a truck-only customer, and coupling/decoupling rules, are observed by this solution.
Compatibility between the total collected supply and vehicle capacity also hold. How-
ever, there are three types of infeasibilities that such a solution might carry:

• Satellite inconsistencies: the order at which satellite vertices appear in the route,
given by variables x, may not be consistent with the ordering given by variables r.
For instance, in this solution, it is possible that the vehicle decouples at satellite
i and, after visiting some customers, visits non-related coupling satellite j. This



38
Chapter 3. An Integer Programming Formulation and Valid

Inequalities for the PSTTRPTW

type of violation is addressed by constraints (3.15), and we will refer to this set
of constraints as scheduling cuts.

• Truck capacity in subtours: in this relaxed solution, after a decoupling or load
transferring operation, the truck may collect an amount of supply greater than
its capacity without transferring its load before. A violation of this nature is
eliminated with the introduction of constraints (3.13) to the model, which we
call capacity cuts.

• Time windows inconsistencies: the selected vehicle in the solution may arrive at
a customer after its time window closing. Constraints (3.14) can eliminate this
type of violation, and we refer to them as time window cuts.

Based on this analysis, we can expect that, in a BC approach, in which constraints
(3.13)-(3.15) are not initially included in the model, the number of generated cuts will
directly depend on some characteristics of the instance being solved. For example, if the
number of satellites that need to be visited in an optimal solution is close to zero, the
number of scheduling cuts is likely smaller than for an instance that requires multiple
decoupling and load transfer operations. If customer time windows are relatively loose,
fewer time window cuts will be required, in contrast with an instance with tighter time
windows. Also, if truck capacities are relatively large compared to customer supplies,
fewer capacity cuts are expected to be needed. Therefore, although the sets of cuts
to be added is theoretically exponential, this approach may be effective under certain
conditions.

3.4 Preprocessing and Variable Fixing

Given a PSTTRPTW instance, it is often possible to preprocess it in order to build an
equivalent, “lighter”, instance, in which at least one optimal solution is not lost. It is also
possible to state that some variables are never active in an optimal solution, making
it possible to fix their values at zero. The objective of this operation is to reduce
the number of variables and constraints in the model. In some cases, as described
in the next section, preprocessing also allows to introduce valid inequalities for the
formulation.

Preprocessing performs verifications over the input instance as follows. In the
expressions below, for simplicity, whenever i /∈ C, we define ei := 0 and qi := 0.

1. For each (i, j) ∈ Ā with i ∈ C or j ∈ C, and each vehicle (k, l) ∈ V that can use
arc (i, j), check if qi + qj > Qk + Ql. If so, the capacity of vehicle (k, l) is not



3.5. Strengthening the Formulation 39

sufficient to consecutively visit i and j without performing a load transfer, and
we can fix wklij = 0. In practice, we can remove (i, j) for vehicle (k, l) from Ḡ,
and simply remove variable wklij from the model.

2. For each (i, j) ∈ Ā with j ∈ C, and each vehicle (k, l) ∈ V that can use arc (i, j),
check if fj − ei < tklij . If so, vehicle (k, l) can never reach customer j in time after
leaving i. In this case, we also remove (i, j) for vehicle (k, l) from Ḡ, and delete
wklij from the model.

3. For each (i, j) ∈ Ā, if arc (i, j) was removed for every vehicle that could use it,
then this arc will not be used at all, and xij = 0. Arc (i, j) can be removed from
Ḡ.

4. For each customer i ∈ C, if arc (0, i) was removed, this means that customer i
cannot appear in any feasible solution for any chosen vehicle, either because of
capacity or time window constraints. Then, yi can be fixed at zero, and we can
remove from Ḡ vertex i and all arcs adjacent to i.

3.5 Strengthening the Formulation

The formulation described in this chapter for the PSTTRPTW can be strengthened
with the addition of valid inequalities and lifting some of the constraints introduced
earlier, which enhances its LPR bounds.

3.5.1 Valid Inequalities

We now introduce valid inequalities for the problem in the hope of strengthening the
LPR bounds provided by P .

2-matching inequalities [Edmonds, 1965]. 2-matching inequalities were proven valid
for the matching polytope and have been used to reinforce LPR for the TSP and several
of its variants. They can be adapted for the PSTTRPTW as follows. We consider only
vertices that can be visited once, thus satellite vertices are not involved in the definition
of these inequalities. Given H ⊆ {0} ∪ C and T ⊆ δ(H : {0} ∪ C \H),

∑
(i,j)∈A(H)

xij +
∑

(i,j)∈T

xij ≤ |H|+
⌊
|T |
2

⌋
(3.17)
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is valid for 3 ≤ |H| ≤ n− 1 and non-redundant for |T | ≥ 3, odd.

Mutually excluding vertices. Let i, j ∈ V̄ , and assume that both arcs (i, j) and
(j, i) violate the criterion in item 2 of preprocessing for every vehicle (k, l), that is,
fj − ei < tklij and fi − ej < tklji. Then, since the distances in G satisfy the triangular
inequality, even if the service to customer i starts when its time window opens, customer
j cannot be reached in time by any vehicle after i, and the opposite also holds: if j is
serviced, no vehicle can arrive at i in time. This means customers i and j cannot be
simultaneously part of any feasible solution, and the following constraint can be added
to the formulation:

yi + yj ≤ 1 (3.18)

Infeasible sets elimination. This set of inequalities derives from one of the pre-
processing criteria in [Ascheuer et al., 2001], a paper dedicated to the Asymmetric
TSP with Time Windows. Differently from the PSTTRPTW, for that problem, all
customers have to be visited. In order to handle this difference, we adapted their
preprocessing routine into a set of valid inequalities.

Let i ∈ {0} ∪ C, j ∈ C and W ⊂ C \ {i, j}. We try to create a feasible path
by concatenating arc (i, j) with all permutations of set W . If all possible resulting
paths are infeasible due to customer time windows, set W and arc (i, j) are mutually
exclusive in a feasible solution, and the following constraint is valid for the formulation:

xij +
∑
k∈W

yk ≤ |W |. (3.19)

In order to calculate travel times in these paths, the speed of the fastest vehicle
in V is used. In our implementation, for each arc, we consider all customer sets with
|W | ≤ 2.

Related satellites. In order to reinforce that related satellite vertices are visited
consistently in a solution, the following sets of constraints are used:

yid = yic i ∈ S, (3.20)

yit ≤ yid i ∈ S. (3.21)

By (3.20), if satellite vertex i ∈ S is used in the solution for decoupling, it must
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also be used for coupling. Inequalities (3.21) establish that a satellite can only be used
for load transfer if it is used for decoupling.

3.5.2 Lifting Constraints

In this subsection, we describe how some inequalities can be lifted in order to better
approximate the convex hull of PSTTRPTW integer feasible solutions and, thus, to
provide better LPR bounds for the problem.

Opposite direction arcs. Applicable for constraints (??). If i, j ∈ C, and arcs (i, j)

and (j, i) both exist in Ḡ, that is, they were not removed by the preprocessing routine,
we can state that no feasible solution can use both arcs. Therefore, constraint (??) can
be rewritten for vertex i (and similarly for j) as

yi ≥ xij + xji (3.22)

Cutting off multiple vehicles. Applicable for constraints (3.13) and (3.14). Capac-
ity cuts (3.13) and time window cuts (3.14) both forbid solutions that select a certain
vehicle (k, l) and a given walk Γ, provided that the combination of (k, l) and Γ is not
consistent. If multiple vehicles are forbidden for Γ, they can all be considered in a
single, lifted cut.

For capacity cuts, let Γ be a walk matching this constraint condition, and let
K′ ⊆ K be the set of all trucks with capacity bigger than q(Γ). Then, (3.13) can be
replaced by

x(Γ) ≤ |Γ| − 1−
∑
k∈K′

zk0. (3.23a)

If K′ = K, then Γ can be simply cut off, regardless of the truck choice:

x(Γ) ≤ |Γ| − 2. (3.23b)

Now, consider time window cuts, for which a similar argument can be used. Let
K′ ⊆ K be the set of trucks that cannot travel through Γ in time, even decoupled.
Then, any truck k ∈ K′ cannot be used with path Γ with or without a trailer, and we
can subtract zk0 from the right side of (3.14), like above. Furthermore, for k ∈ K \K′,
let L′k ⊆ L be a set of trailers l for which tkl(Γ) > fγ|Γ| . Then, these complete vehicles
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0

γ1

u v

γ|Γ|

(a)

0 u

γ′1

v

γ′|Γ′|

(b)

Figure 3.4: Contracting a walk Γ, from vertex 0 to v (a), into a walk Γ′, from u to v
(b).

(k, l) can also be eliminated, and the time window cuts can be lifted as

x(Γ|{0} ∪ C) +

s(Γ)∑
i=1

riγsiγsi+1
≤ |Γ| − 1−

∑
k∈K′

zk0 −
∑

k∈K\K′

∑
l∈L′k

zkl. (3.24a)

Note that, if Γ cannot be traveled by single trucks (because of the presence of a
coupling satellite), then set K′ is not applicable, and it is considered to be empty. If no
vehicle can travel through Γ in time, we can again replace the z sums by 1, resulting
in the stronger inequality

x(Γ|{0} ∪ C) +

s(Γ)∑
i=1

riγsiγsi+1
≤ |Γ| − 2. (3.24b)

Contracting walks. Applicable for (3.14). Let Γ be a walk starting at the depot
vertex, that cannot be traveled in time by vehicle (k, l) ∈ V , and define v = γ|Γ|, as
in Figure 3.4a. Let u ∈ C(Γ) be the last customer in Γ for which vehicle (k, l) cannot
reach v in time, that is, fv − eu is smaller than the time spent by (k, l) to travel the
portion of Γ between u and v. If there is no such customer u, we cannot contract walk
Γ, so assume u exists, and let Γ′ be the subwalk of Γ starting at u and ending in v, as
illustrated in Figure 3.4b.

If Γ′ has no satellite vertices, time window cuts can be taken considering only Γ′,
and we have

x(Γ′) ≤ |Γ′| − 1− zkl (3.25a)

If, however, Γ′ contains satellite vertices, we cannot simply use Γ′, as this could
cut off possibly feasible solutions that visit v before u. We search for the last satellite
vertex u′ that appears before u in Γ. If it exists, we consider subwalk Γ′′, starting at
u′ and ending at v, and (3.14) becomes
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x(Γ′′|{0} ∪ C) +

s(Γ′′)+κ−1∑
i=κ

riγ′′siγ
′′
si+1
≤ |Γ′′| − 1− zkl κ = 1, . . . , 2c̄− s(Γ′′) (3.25b)

Note that we consider all possible κ indexes, since now any number of satellites
may be visited before walk Γ′′ in a solution. We also remark that walk contraction is
compatible with the vehicle elimination rule described before, so both lifting strategies
can be applied for the same time window cut.

Unrelated satellite vertices in subtours. Applicable for constraints (3.15b). If a
solution includes a subtour starting at i ∈ Sd ∪St and ending at an unrelated satellite,
it can be eliminated regardless of the κ indexes. In this case, scheduling cuts (3.15b)
can be simplified to

x(Γ) ≤ |Γ| − 2 Γ ∈ W(Ḡ) :


γ1 = i ∈ Sd ∪ St,

γ2, . . . , γ|Γ|−1 ∈ C,

γ|Γ| ∈ {0} ∪ S̄ \ {it, ic}

(3.26)

Although they are a special case of scheduling cuts, this set of constraints is
stronger, since, for each Γ, all the original constraints, for each index κ, are replaced
by a single one. Constraints (3.15b) are, however, more general, and are still necessary
when Γ does not match the criteria in (3.26).

Cutting off infeasible arcs after a walk. Applicable for constraints (3.15a) and
(3.15b). In these scheduling cuts, if i ∈ C(Γ), then arc (γ|Γ|, i) does not need to be
considered on the right side of the constraint, since no feasible solution can include
this arc and Γ at the same time. The lifted versions of these constraints become,
respectively,

x(Γ) ≤
∑

(γ|Γ|,i)∈δ+(γ|Γ|):i/∈C(Γ)

r1
γ|Γ|i

+ |Γ| − 2 (3.27a)

rκ−1
γ1γ2

+ x(Γ|C) ≤
∑

(γ|Γ|,i)∈δ+(γ|Γ|):i/∈C(Γ)

rκγ|Γ|i + |Γ| − 2. (3.27b)
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3.6 Comments

In this chapter, we introduced an IP formulation for the PSTTRPTW. A BC algo-
rithm based on this formulation, that handles the exponential-sized sets of constraints
(3.13)-(3.15), is discussed next, in Chapter 4. One of the possible applications for this
algorithm is to solve the pricing subproblem in a column generation scheme for a mul-
tiple vehicle TTRPTW, in place of a DP algorithm, which, as discussed earlier, is the
method usually adopted in the literature for this type of problems.

A BC approach to solve this subproblem has properties, as discussed in Subsection
3.3.2, that offers a contrast with DP. The DP algorithm is able to prune infeasible
choices. For example, if the time window of customer i closes before the time window
of customer j opens, the algorithm can discard every solution in which j is visited
before i. In a BC approach, however, a number of time window cuts may be needed
to eliminate such solutions. On the other hand, in a less restrictive scenario, DP may
be unable to eliminate many possible solutions early, leading to a poor performance,
whereas a BC scheme may find an optimal solution faster, without the need of adding
many cuts to the LPRs.

Like for time windows, truck capacities also give rise to a similar parallel between
BC and DP: if a truck is able to service a relatively large number of customer without
needing to transfer load, DP has to deal with a larger set of feasible configurations,
while BC may need few capacity cuts, leading to a better performance of the latter
method. On the other hand, smaller truck capacities tend to favor DP, since a large
number of cuts will probably be generated by BC.

These strategies also differ on that DP usually solves a routing problem for a fixed
vehicle. Therefore, the solution of a pricing subproblem may require multiple calls to a
DP routine, for different vehicles. In contrast, in BC, all vehicles are considered at once,
and the algorithm searches for the best choice of vehicle and route. A BC approach is
able to benefit from this property, by cutting off routes for multiple vehicles at once,
like in the lifting strategies discussed for capacity and time window cuts, (3.23) and
(3.24), respectively.



Chapter 4

A Branch-and-Cut Algorithm for
the PSTTRPTW

This chapter describes Branch-and-Cut [Padberg and Rinaldi, 1991] algorithm based
on the formulation introduced in Chapter 3 to solve the PSTTRPTW. Since the for-
mulation includes an exponential number of constraints, we cannot hope to explicitly
include all of them into a LPR to provide bounds for a Branch-and-Bound procedure.
Instead, we discuss how each exponentially sized set of constraints can be efficiently
separated after solving a LPR.

Let P∗ ⊂ Rσ be the polyhedron defined by the constraints that define P , (3.2)-
(3.16), plus the valid inequalities (3.17)-(3.21), discussed in Subsection 3.5.1. The BC
algorithm is based on this reinforced formulation. There are three sets of constraints
in P∗ that are initially not entirely included in the model by the algorithm: DCUTs
(3.4), 2-matching inequalities (3.17), and constraints (3.13)-(3.15), which we refer to
as infeasible walk elimination constraints (IWECs). The remaining constraints are
included in the model right from the start. At each node of the BC procedure, a LPR
of the associated subproblem is solved. If a feasible solution is found, no matter if
fractional or not, a separation routine is called to look for violated constraints that are
not in the current relaxation. If a violated constraint is found, it is then added to the
model, and the linear relaxation is re-solved. Branching takes place when the solution
to the LPR is fractional and no violated inequalities are found.

4.1 Separation Algorithms

In this section, we describe the separation algorithms in charge of identifying whether
or not the solution to the LPRs violate one or more inequalities (3.4), (3.17), and (3.13)-
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(3.15). Separation routines are called whenever a solution for the relaxed problem is
found, and it is possible to set different procedures depending on the integrality of the
solution. For the DCUTs, the same procedure applies for both fractional and integral
solutions; the routine for 2-matching inequalities is called only when the solution is
fractional, and the IWECs have a different separation algorithm for each case.

4.1.1 Directed Cutset Constraints

In our algorithm, the DCUTs (3.4) are initially included in the model for |W | = 1.
Remaining ones, i.e., those defined by sets W : |W | ≥ 2, are separated by well-
known separation routine based on maximum flow networks, introduced in [Padberg
and Rinaldi, 1991], is used. Given an optimal solution (x̄, ȳ, z̄, r̄, w̄) for the LPR being
considered at a given separation round, a network is built from Ḡ, in which each arc
(i, j) is given a weight corresponding to the value x̄ij it takes in the given solution.
Then, we use Dinic’s algorithm [1970] to find the minimum cut W that separates a
customer i ∈ C from the depot vertex, 0. If the capacity x̄(δ+(W )) of the cut δ+(W )

is less than ȳi, a violated DCUT, separating i from 0, was found. The procedure is
called for each i ∈ C : ȳi > 0. For each violated cut set satisfying these criteria, the
corresponding DCUT is added to the current LPR.

4.1.2 2-Matching Inequalities

We use the separation heuristic introduced in [Grötschel and Holland, 1988] for 2-
matching inequalities (3.17). The procedure is only called when the relaxed solution
is fractional. Given a fractional solution (x̄, ȳ, z̄, r̄, w̄), the heuristic procedure builds
an undirected graph G̃ = ({0}∪C,E) from Ḡ, in which satellite vertices are excluded,
and an edge {i, j} ∈ E is created if and only if x̄ij + x̄ji > 0 holds. The heuristic is
based on a parameter 0 < ε < 1

2
, and considers the subgraph G̃ε = ({0}∪C,Eε), where

Eε = {{i, j} ∈ E : ε ≤ x̄ij + x̄ji ≤ 1− ε}. Then, the procedure looks for the connected
components of G̃ε. For each connected component H with |H| ≥ 3, it tries to find a
set of arcs T in G̃ε, with T ⊆ δ(H), such that |T | is odd and minimum, |T | ≥ 3, and
x̄(E(H)) + x̄(T ) > |H| + |T |

2
. If such a set exists, we add the corresponding violated

2-matching inequality to the current LPR.

This heuristic can be implemented to run in O(n + m) time complexity. In our
implementation, we set the parameter ε to 0.1. In the separation procedure, the 2-
matching routine is called after the DCUTs separation, only if the current solution
violates no DCUT.
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4.1.3 Infeasible Walk Elimination Inequalities

Constraints (3.13), (3.14) and (3.15) are separated by the procedures described in
this section. We implemented two different separation procedures for them: one for
fractional solutions and another for integral ones, and therefore they are described
separately. In both cases, the routine looks for walks in the subgraph of Ḡ induced
by the current solution (x̄, ȳ, z̄, r̄, w̄) that have a capacity, a time window or a satellite
inconsistency for a vehicle selected in the solution, and generates a corresponding
violated inequality. For the fractional separation routine, multiple violated inequalities
can be added for the same separation point. For the integer separation cases, we
always add a single cut for the first inconsistency found. Whenever possible, before
being added to the LPR, the inequality is lifted, as described in Subsection 3.5.2.

Since these separation algorithms assume that the input solution satisfies all
connectivity constraints, they are only called after the DCUT separation, and only if
no violated DCUT is found at that separation round.

4.1.3.1 Fractional Separation

In the fractional point separation for IWECs, we consider the support graph G̃ = (V̄ , Ã)

of Ḡ, in which arc (i, j) ∈ Ã exists if and only if (i, j) ∈ Ā and x̄ij > 0. Then, using
the values of x̄ as arc weights, we compute shortest paths between all pairs of vertices.
For each of these shortest paths Γ in G̃, we check if Γ matches certain criteria for
characterization of the families (3.13)-(3.15) of inequalities, their lifted versions, and
additional valid inequalities introduced in Section 3.5. In the following, we describe
the criteria for each type of cut that the fractional separation procedure can generate.
They follow directly from the constraints introduced in Chapter 3, as well as their
corresponding lifted inequalities.

1. Subtour capacity violation: If

γ1 ∈ Sd ∪ St
γ2, . . . , γ|Γ| ∈ C

q(Γ) > Qk for k ∈ K′ ⊆ K

x̄(Γ) > |Γ| − 1−
∑
k∈K′

z̄k0

then, a violated capacity cut was identified and can be added to the current LPR.
If K′ = K we use the lifted form (3.23b) for the cut; otherwise, the inequality as
formulated as (3.23a).
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2. Coupling violation: If 

γ1 = i ∈ Sd ∪ St
γ2, . . . , γ|Γ|−1 ∈ C

γ|Γ| ∈ S̄ \ {id, it}

x̄(Γ) > |Γ| − 2

then, a violated lifted scheduling cut (3.26) can be added to the current LPR.

3. First satellite scheduling violation: If

γ1 = 0

γ2, . . . , γ|Γ|−1 ∈ C

γ|Γ| ∈ S̄

x̄(Γ|C) >
∑

(γ|Γ|,i)∈δ+(γ|Γ|):i/∈C(Γ)

r̄1
γ|Γ|i

+ |Γ| − 2

then, a violated lifted scheduling cut (3.27a) can be added to the current LPR.

4. Intermediate satellite scheduling violation: If

γ1 = i ∈ S̄

γ2, . . . , γ|Γ|−1 ∈ C

γ|Γ| ∈ S̄

r̄κ−1
γ1γ2

+ x̄(Γ|C) >
∑

(γ|Γ|,i)∈δ+(γ|Γ|):i/∈C(Γ)

r̄κγ|Γ|i + |Γ| − 2 for some κ = 2, . . . , 2c̄

then, a violated lifted scheduling cut (3.27b) can be added to the current LPR.

5. Last satellite scheduling violation: If

γ1 = i ∈ Sc
γ2, . . . , γ|Γ|−1 ∈ C

γ|Γ| = 0

r̄κγ1γ2
+ x̄(Γ|C) + r̄κ+1(δ+(S̄)) > |Γ| − 1 for some κ = 1, . . . , 2c̄− 1

then, a violated scheduling cut (3.15c) can be added to the current LPR.
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6. Time window violation without satellite vertices: If

γ1 ∈ {0} ∪ C

γ2, . . . , γ|Γ| ∈ C

tk0(Γ) > fγ|Γ| − eγ1 for k ∈ K′ ⊆ K

tkl(Γ) > fγ|Γ| − eγ1 for k ∈ K \ K′ and L′k ⊆ L

x̄(Γ|{0} ∪ C) > |Γ| − 1−
∑
k∈K′

z̄k0 −
∑

k∈K\K′

∑
l∈L′k

z̄kl

then, a violated time window cut can be added to the current LPR. If K′ = K,
then no vehicle can traverse Γ in time to service its last customer, and we use
the lifted form (3.23b) for the cut. Otherwise, K′ is the set of trucks that cannot
traverse Γ in time, even decoupled, and, for trucks k /∈ K′, Lk is the set of trailers
such that the complete vehicle (k, l) cannot traverse Γ in time. In this case, we
use the lifted inequality (3.24a). Since Γ does not include satellite vertices, this
inequality is simplified to

x(Γ|{0} ∪ C) ≤ |Γ| − 1−
∑
k∈K′

zk0 −
∑

k∈K\K′

∑
l∈L′k

zkl

7. Time window violation with satellite vertices: If

γ1 ∈ {0} ∪ S̄

γ2, . . . , γ|Γ|−1 ∈ C ∪ S̄

γ|Γ| ∈ C

tk0(Γ) > fγ|Γ| − eγ1 for k ∈ K′ ⊆ K

tkl(Γ) > fγ|Γ| − eγ1 for k ∈ K \ K′ and L′k ⊆ L

x̄(Γ|{0} ∪ C) +
s(Γ)∑
i=1

r̄iγsiγsi+1
> |Γ| − 1−

∑
k∈K′

z̄k0 −
∑

k∈K\K′

∑
l∈L′k

z̄kl

then, a time window cut can be added to the current model. Like for the previous
case, if K′ = K, then no vehicle can traverse Γ in time to service its last customer,
and we use the lifted form (3.24b) for the cut. Otherwise, we use the lifted
inequality (3.24a).

Shortest paths in G̃ are found by means of calling the one-to-all version of Di-
jsktra’s algorithm. Let Γ be the shortest path between vertices i and j. Note that,
if x̄(Γ) ≤ |Γ| − 3, it is not possible for Γ to violate any of the IWECs in the current
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solution. Therefore, for each shortest path, we check if it satisfies this minimum length
condition, before verifying if it matches one of the criteria above. Algorithm 1 describes
the fractional separation procedure for IWECs.

Given a fractional solution (x̄, ȳ, z̄, r̄, w̄), build the support graph G̃ from Ḡ;
for i ∈ V̄ do

Find all shortest paths from i in G̃;
for j ∈ V̄ do

Let Γij be the shortest path from i to j in G̃
if x̄(Γij) > |Γij| − 3 then

if Γij satisfies criterion 1 then
Add the corresponding capacity cut;

end
else if Γij satisfies criterion 6 then

Add the corresponding time window cut;
end
else if Γij satisfies criterion 2, 3, 4 or 5 then

Add the corresponding scheduling cut;
end

end
end

end
if no scheduling cut was found then

for i ∈ {0} ∪ S̄ do
for j ∈ C do

if Γij satisfies criterion 7 then
Add the corresponding time window cut;

end
end

end
end

Algorithm 1: Fractional separation for infeasible walk elimination constraints

Time window violation criteria (items 6 and 7 above) consider “contracted” walks,
that start at a vertex different from 0, as described Subsection 3.5.2, with inequalities
(3.25). This allows the procedure to find stronger inequalities. However, these criteria
can generate redundant inequalities. To verify this, assume that a shortest path be-
tween vertices i and j, i 6= 0, violate a time window criterion. Then, the shortest path
from 0 to j also violates the same criterion, as well as other vertices that may appear
in a shortest path from 0 to i. In order to avoid adding redundant cuts, after finding
violated constraints, the algorithm considers the normalized vectors corresponding to
each cut. Then, we calculate the inner product between all pairs of such vectors and,
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whenever the result is sufficiently close to 1, we discard the corresponding cut that
contains more nonzero variable coefficients. This way, we ensure that paths that are
contained in another path are discarded, and only stronger cuts are added. In our
implementation, we used a tolerance of 0.1 when checking if an inner product is close
to 1.

Since it is based on shortest paths, the procedure we just described is a heuristic,
and not all inconsistencies are necessarily found, for fractional points. For example, if
the solution contains a time window inconsistency for a walk from vertex i to vertex
j that visits a satellite vertex more than once, this violation certainly will not be
detected, since this walk is not a shortest path from i to j. Such inconsistencies are
only handled by the integer separation routine, described in the following.

4.1.3.2 Integer Separation

Differently from the fractional separation, the integer separation procedure for the
IWECs is an exact algorithm. In other words, the algorithm always finds a cut vi-
olated by the integer point to be separated, provided that one such cut does exist.
The structure of this algorithm is similar to the procedure used in the proof of the
formulation correctness, in Lemma 1. First, we identify the selected vehicle given by
z̄. Then, starting from the depot vertex, we iterate through each arc included in the
solution, in the order they are indicated by the solution route. For each visited arc, we
check for possible inconsistencies and, if any is found, a corresponding cut is added to
the model and the procedure ends.

Algorithm 2 summarizes the integer separation routine. After defining the se-
lected vehicle (k̂, l̂), we start to build the solution route Γ. Variable i represents the
last vertex added to Γ at any iteration. The procedure iterates until the depot vertex
is reached again, which means the route is complete. To discover the next vertex in
the route at each iteration, we use variable x or r, depending on whether i is a cus-
tomer or a satellite vertex, like in the procedure from the proof of Lemma 1. If i is a
satellite, it is possible that no next vertex is found (which corresponds to Statement 1
not holding). If this happens, we have a satellite scheduling violation, and we generate
a cut of type (3.15a) or (3.15b), depending on whether i is the first satellite vertex in
Γ or not. If κ = 1, then i is the first satellite vertex, and we add a cut (3.15a) for walk
Γ. Otherwise, we add a cut (3.15b), considering the portion of Γ starting at the last
satellite vertex visited before i and ending at i.

During the iterations, we keep a flag variable to control the current coupling status
of the vehicle in the walk. This status starts as true and, whenever a decoupling satellite
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Let (x̄, ȳ, z̄, r̄, w̄) be the input integer solution
if z̄k0 = 1 for some k ∈ K then

k̂ ← k;
else

return
if z̄k̂l = 1 for some l ∈ L then

l̂← l;
else

l̂← 0;
i← 0;
Γ← (i);
κ← 1;
repeat

if i ∈ S̄ then
if r̄κij = 1 for some (i, j) ∈ δ+(i) then

i← j;
κ← κ+ 1;

end
else

if κ = 1 then
Generate a scheduling cut (3.15a);

else
Generate a scheduling cut (3.15b);

return;
end

end
else

Let (i, j) ∈ δ+(i) be the arc for which x̄ij = 1
i← j;

end
Add i to Γ;
if i ∈ C then

if q(Γ̂(i)) > Qk̂ then
Generate a capacity cut (3.23);
return;

end
if tk̂l̂(Γ) > fi then

Generate a time window cut (3.24);
return;

end
end

until i = 0;
if r̄κij = 1 for some (i, j) ∈ δ+(S̄) then

Generate a scheduling cut (3.15c);
Algorithm 2: Integer separation for infeasible walk elimination constraints
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is reached, it is set to false. If a coupling satellite is reached, it is set to true again.
While a vehicle is decoupled, we also store the total supply q(Γ̂(i)) collected in the
current subtour (i.e., since the last time a decoupling or transfer satellite was visited).
If this value exceeds the capacity of the selected truck, a capacity inconsistency was
found. We determine which trucks would be overloaded by the total subtour supply,
and we generate a lifted capacity cut (3.23).

We also calculate, at each iteration, the time taken by vehicle (k̂, l̂) to traverse
the current walk. If, at any customer i, this value exceeds its time window closing fi, a
time window inconsistency was found. At this point, we loop backwards in Γ in order
to find the last customer j in Γ for which the selected vehicle cannot reach i in time,
even if it departs at instant ej. The portion of Γ between j and i is used to generate a
lifted time window cut, as defined by (3.25). If this subwalk does not contain satellite
vertices, we use the form (3.25a). Otherwise, we need to extend the subwalk until the
last satellite vertex before j, and use the form (3.25b). We also determine which other
vehicles cannot traverse this subwalk in time, and add the corresponding z variables
to the right side of the cut, as in the lifted inequalities (3.24).

After reaching the depot vertex again, it is still necessary to check for scheduling
inconsistencies of type (3.15c), which would correspond to Statement 3 not holding. If
r̄κij = 1 for some (i, j) ∈ δ+(S̄) and the current value of variable κ, then the sequence
of satellite vertices given by the values of r̄ are not compatible with the route given
by the solution. We consider the portion of Γ starting at the last satellite in the route
and ending at the depot vertex, and we generate a scheduling cut (3.15c).

4.2 Implementation Details

Before starting the BC algorithm, we perform a preprocessing and variable fixing rou-
tine, as described in Section 3.4, in order to try to delete arcs from Ḡ and fix variables
x and w at zero. The model initially contains the constraints that define P∗, except
for the exponentially sized sets: (3.4) for |W | > 1, (3.13), (3.14), (3.15) and (3.17). We
provide a valid lower bound for the algorithm, given by the cost of the best solution
that uses at most three customer vertices, for any vehicle (single truck or complete),
without visiting satellite vertices.

We configure the solver to use different branching priorities for the variable sets.
After solving a LPR and calling all separation routines without finding any violated
cuts to add, if the solution is still fractional, the BC procedure chooses the variable to
branch on based on the given priorities: variables with highest branching priority are
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branched first. We used the following priority values, from the largest to the smallest
priority:

• y: 4

• x and r: 3

• zk0: 2

• zkl: 1

• w: 0

This choice of priority values aims to guide the BC algorithm into determining the
topology of the solutions, given by variables y, x and r, before the choice of vehicle,
given by variables z. This decision is based on the fact that many walks in Ḡ will
likely be infeasible for every solution that includes them, regardless of the choice of
vehicle; therefore, this setting allows for such forbidden structures to be discarded
earlier. Variables w, that are uniquely determined by variables x and z, have the
lowest branching priority. In our experiments, using variable priorities allowed to obtain
overall better results in average, in comparison to running the same algorithm without
informing these priorities to CPLEX.



Chapter 5

Computational Experiments

In this chapter, we present computational results obtained with the BC algorithm
introduced in Chapter 4. We also investigate the quality of the LPR bounds of our
formulation and the strengthening capability of the families of valid inequalities we
introduced earlier. First, we describe the set of instances used in the experiments, as
well as the computational environment that was used. Then, we discuss the results
obtained with different variations of the algorithm and suggest the one that seems to
provide the best results.

5.1 Test Instances and Preprocessing Results

The test instances we used for the computational experiments were based on those
introduced in [Solomon, 1987] for the VRPTW, and later adapted by Lin et al. [2011]
for the TTRPTW [2011]. This benchmark instance set has been used in recent works
regarding the TTRPTW [Parragh and Cordeau, 2017; Rothenbächer et al., 2018]. In
this section, we describe how we adapted it for the PSTTRPTW.

The original Solomon instances were designed for the VRPTW with homogeneous
fleet, i.e., in that problem, all vehicles have the same capacity for a given instance.
This test bed is divided in six sets, that vary in spatial distribution of customers,
time windows width and vehicle capacity. Instance sets R1 and R2 contain uniformly
distributed customers; sets C1 and C2 have clustered customers, and sets RC1 and
RC2 are a mix or random and clustered structures. Instance sets R1, C1 and RC1 are
characterized by a short scheduling horizon, that is, vehicles have small capacity and
are able to service relatively few customers in a feasible route. In contrast, instances
R2, C2 and RC2 have large scheduling horizon, which permits many customers to be
serviced by the same vehicle. Geographic coordinates for each vertex of these instances

55
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are provided, and the vertices other than the depot are also given a supply, a time
window and a service time.

Lin et al. [2011] used these instances to create a test set for the TTRPTW.
For each instance, the authors identified truck-only customers in the following way:
customers were sorted by distance to the nearest vertex, and the first p customers
became truck customers, for p ∈ {25%, 50%, 75%}. The remaining customers became
vehicle customers. Therefore, three TTRPTW instances originated from each Solomon
instance, one for each percentage value p of truck customers. Also, the authors set the
truck and trailer capacities as half of the capacity of the vehicle in the original instance.
For example, for a C1 instance, for which the vehicle capacity in the corresponding
Solomon instance is 200, the truck capacity is 100 in the TTRPTW instance, and the
trailer capacity is also 100.

In the problem solved by Lin et al. [2011], subtours start at vehicle customers,
that also service as depots for trailers. There are, then, no dedicated satellite vertices.
In order to adapt these instances to also include this type of vertex, we modified the
TTRPTW instances as follows: for each truck customer i, we compute the five nearest
vertices that are not truck customers. If any of these vertices is already a satellite, we
move on to the next customer. Otherwise, let d be the distance from the customer to
the farthest of the five vertices. We check if there is a truck customer already examined
before i whose distance to i is smaller than d. If so, we skip customer i. Otherwise,
we randomly select one of the five vehicle customers to become a satellite depot. For
customers transformed into satellites, we only consider the positioning information
provided by the instance; their time windows and supply values are ignored.

The TTRPTW instances do not provide all the parameters needed to define a
PSTTRPTW instance (Table 2.1), like customer profits, vehicle travel costs, decoupling
times and product transfer rates. We now describe how each of these quantities were
calculated from the data outlined above. We set customer profits based on the provided
supply values, in a way that customers with larger supplies would reward bigger profits.
For each customer i ∈ C, we used the following formula:

pi = βiqi,

where βi is a random number uniformly distributed in [0.8, 1.2], generated for each i.

We defined a standard truck, with capacity Q0 given by the truck capacity in the
original instance, and speed s00 = 1, also provided by the original instance. In order
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to calculate the travel cost for this truck, we used the following expression:

φ00 =
1

2

ncq̄

s00fmax

,

where q̄ is the average supply of all customers in the instance, fmax is the largest time
window closing value of all customers in the instance, and nc is an estimation on the
expected number of customers in a route in an optimal solution of the corresponding
Solomon instance, an information provided in the instance set description [Solomon,
1987]. For instance sets R1, C1 and RC1, we used nc = 10. For sets R2 and RC2,
nc = 50, and for instances C2, nc = 35. This formula states that, if the standard
truck travels during all the available time horizon, servicing the expected number of
customers in that instance, its monetized travel cost will be approximately half of the
profit it will collect.

Since the PSTTRPTW is defined in terms of a heterogeneous fleet, we create, for
each instance, six additional trucks from the standard one, varying the following three
parameters: the capacity, the speed and the travel cost. Each of these derived trucks
have a 20% increment or decrement in two of those three conflicting parameters, like
summarized by Table 5.1.

We also define a standard trailer, whose capacity is also Q0, like in the original
TTRPTW instances. Two additional trailers are created, one with a 20% capacity
increase, and another with a 20% capacity decrease, like shown in Table 5.1.

Table 5.1: Calculation of truck and trailer parameters in the test instances.

Truck Capacity Speed Fuel consumption
0 Q0 s00 φ00

1 1.2×Q0 0.8× s00 φ00

2 0.8×Q0 1.2× s00 φ00

3 1.2×Q0 s00 1.2× φ00

4 0.8×Q0 s00 0.8× φ00

5 Q0 1.2× s00 1.2× φ00

6 Q0 0.8× s00 0.8× φ00

Trailer Capacity
0 Q0

1 1.2×Q0

2 0.8×Q0

Every instance has, therefore, 7 trucks and 3 trailers available, totaling 21 possible
vehicle combinations. Differently from previous works, our model allows for different
speed values when a vehicle is coupled or decoupled. Therefore, we also adapted
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our instance set for that. For each vehicle combination (k, l) ∈ V , we defined a factor
αkl ∈ (0.5, 1) that is a measure of the difference between the capacities of the decoupled
truck (k, 0) and the complete vehicle (k, l), when coupled:

αkl =
1

2

(
Qk

Qk +Ql

+ 1

)
.

The bigger the trailer capacity is relatively to the truck’s, the closest to 0.5 αkl

is. This factor is used calculate the speed and the travel cost of the coupled vehicle, in
function of the speed and travel cost of the decoupled one, respectively:

skl = αklsk0,

and
φkl =

φk0

αkl
.

From these expressions, the vehicle speed is decreased when coupled, and this
decrease is influenced by the ratio between the capacities of the single truck and the
complete vehicle, through factor αkl. In contrast, travel cost is increased when a vehicle
is coupled, by the same factor. For simplicity, we set the rent costs akl to zero for each
vehicle. This setting nullifies the corresponding term in the objective function (3.1).

For transfer rates and coupling times, we opted for a unique value for all vehicles.
We calculated these parameters based on the customer service time t̄, that is a constant
value for all customers, provided by the Solomon instances. The product transfer rate,
applicable when the product is either collected at customers or transferred at satellite
vertices, is given by

o =
q̄

t̄
.

Coupling/decoupling time τ , in turn, is calculated in a way that these operations
take about one fifth of the time required to service an average customer:

τ =
t̄

5
.

Table 5.2 summarizes the instances used in all our experiments. The first column
contains a name to identify the instances later on, in the tables of computational results.
The next two columns show, respectively, the number of vertices and customers in
the instance. The fourth and fifth columns display the number of truck and vehicle
customers, respectively. In the sixth column, the number of satellite depots is shown.
The following column represents the value of c̄ for each instance, that bounds the
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number of customers that can be serviced by a vehicle, explained in Section 3.2, and
that provides the number of indexes κ of the r variables in the IP model.

Table 5.2: Test instances data.

Name |V | |C| |CK| |CV | |S| c̄ Name |V | |C| |CK| |CV | |S| c̄
C101-010_1 11 9 6 3 1 9 C101-025_1 26 24 6 18 1 17
C101-010_2 11 9 8 1 1 9 C101-025_2 26 23 12 11 2 17
C101-010_3 11 9 9 0 1 9 C101-025_3 26 23 18 5 2 17
C201-010_1 11 9 1 8 1 9 C201-025_1 26 23 6 17 2 23
C201-010_2 11 8 3 5 2 8 C201-025_2 26 22 12 10 3 22
C201-010_3 11 8 5 3 2 8 C201-025_3 26 23 18 5 2 23
R101-010_1 11 9 3 6 1 9 R101-025_1 26 22 6 16 3 20
R101-010_2 11 9 5 4 1 9 R101-025_2 26 21 12 9 4 19
R101-010_3 11 9 8 1 1 9 R101-025_3 26 23 18 5 2 20
R201-010_1 11 9 3 6 1 9 R201-025_1 26 23 6 17 2 23
R201-010_2 11 9 5 4 1 9 R201-025_2 26 22 12 10 3 22
R201-010_3 11 9 8 1 1 9 R201-025_3 26 23 18 5 2 23
RC101-010_1 11 8 3 5 2 8 RC101-025_1 26 23 6 17 2 15
RC101-010_2 11 8 4 4 2 8 RC101-025_2 26 22 12 10 3 15
RC101-010_3 11 9 6 3 1 9 RC101-025_3 26 24 18 6 1 15
RC201-010_1 11 8 3 5 2 8 RC201-025_1 26 23 6 17 2 23
RC201-010_2 11 9 4 5 1 9 RC201-025_2 26 22 12 10 3 22
RC201-010_3 11 9 7 2 1 9 RC201-025_3 26 23 18 5 2 23
C101-015_1 16 14 6 8 1 13 C101-050_1 51 47 12 35 3 24
C101-015_2 16 13 9 4 2 13 C101-050_2 51 44 25 19 6 23
C101-015_3 16 14 12 2 1 14 C101-050_3 51 47 37 10 3 24
C201-015_1 16 14 3 11 1 14 C201-050_1 51 44 12 32 6 44
C201-015_2 16 12 6 6 3 12 C201-050_2 51 43 25 18 7 43
C201-015_3 16 13 10 3 2 13 C201-050_3 51 47 37 10 3 47
R101-015_1 16 14 5 9 1 14 R101-050_1 51 43 12 31 7 26
R101-015_2 16 13 7 6 2 13 R101-050_2 51 44 25 19 6 26
R101-015_3 16 14 12 2 1 14 R101-050_3 51 46 37 9 4 27
R201-015_1 16 14 5 9 1 14 R201-050_1 51 43 12 31 7 43
R201-015_2 16 13 7 6 2 13 R201-050_2 51 44 25 19 6 44
R201-015_3 16 14 12 2 1 14 R201-050_3 51 47 37 10 3 47
RC101-015_1 16 13 5 8 2 12 RC101-050_1 51 45 12 33 5 21
RC101-015_2 16 12 6 6 3 12 RC101-050_2 51 44 25 19 6 22
RC101-015_3 16 14 10 4 1 12 RC101-050_3 51 47 37 10 3 22
RC201-015_1 16 13 5 8 2 13 RC201-050_1 51 46 12 34 4 46
RC201-015_2 16 12 6 6 3 12 RC201-050_2 51 46 25 21 4 46
RC201-015_3 16 14 11 3 1 14 RC201-050_3 51 47 37 10 3 47

In Table 5.3, we display the instance dimensions after setting the auxiliary graph
Ḡ and the execution of the preprocessing procedure described in Section 3.4. The
second column shows the number of vertices in Ḡ, including the depot and the three
satellite vertices created in S̄ for each original satellite in S̄. The next column shows
the number of arcs in Ā. The column m∗ shows the number of arcs in the instance after
preprocessing, and ∆m is the percentage of arcs removed by preprocessing. Columns
|w| and |w|∗ represent the total of arcs that can be traversed by each vehicle combina-
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tion, summed for every vehicle, before and after preprocessing, respectively. The value
|w|∗ is the number of variables w that exist in the IP formulation after that procedure.
Finally, ∆|w| is the reduction percentage in the w variable size due to preprocessing.

Table 5.3: Test instances size after setting the auxiliary graph and after preprocessing.

Instance n m m∗ ∆m |w| |w|∗ ∆|w|
C101-010_1 13 134 97 27.61% 1302 980 24.73%
C101-010_2 13 130 93 28.46% 1008 749 25.69%
C101-010_3 13 128 91 28.91% 924 665 28.03%
C201-010_1 13 144 111 22.92% 2772 2009 27.53%
C201-010_2 15 162 137 15.43% 2128 1757 17.43%
C201-010_3 15 154 128 16.88% 1582 1337 15.49%
R101-010_1 13 140 97 30.71% 2058 1255 39.02%
R101-010_2 13 136 92 32.35% 1512 951 37.10%
R101-010_3 13 130 86 33.85% 1008 667 33.83%
R201-010_1 13 140 109 22.14% 2058 1541 25.12%
R201-010_2 13 136 103 24.26% 1512 1155 23.61%
R201-010_3 13 130 99 23.85% 1008 791 21.53%
RC101-010_1 15 162 139 14.20% 2128 1791 15.84%
RC101-010_2 15 158 134 15.19% 1834 1584 13.63%
RC101-010_3 13 134 100 25.37% 1302 967 25.73%
RC201-010_1 15 162 139 14.20% 2128 1797 15.55%
RC201-010_2 13 138 109 21.01% 1764 1386 21.43%
RC201-010_3 13 132 103 21.97% 1134 903 20.37%
C101-015_1 18 284 189 33.45% 3752 2431 35.21%
C101-015_2 20 308 227 26.30% 2884 2145 25.62%
C101-015_3 18 272 178 34.56% 2114 1431 32.31%
C201-015_1 18 290 204 29.66% 5138 3437 33.11%
C201-015_2 22 348 286 17.82% 3990 3255 18.42%
C201-015_3 20 304 230 24.34% 2632 2051 22.07%
R101-015_1 18 286 171 40.21% 4172 2087 49.98%
R101-015_2 20 316 221 30.06% 3514 2215 36.97%
R101-015_3 18 272 157 42.28% 2114 1207 42.90%
R201-015_1 18 286 207 27.62% 4172 2899 30.51%
R201-015_2 20 316 248 21.52% 3514 2723 22.51%
R201-015_3 18 272 195 28.31% 2114 1549 26.73%
RC101-015_1 20 324 249 23.15% 4312 3167 26.55%
RC101-015_2 22 348 281 19.25% 3990 3213 19.47%
RC101-015_3 18 276 182 34.06% 2492 1618 35.07%



5.1. Test Instances and Preprocessing Results 61

Table 5.3: Test instances size after setting the auxiliary graph and after preprocessing.

Instance n m m∗ ∆m |w| |w|∗ ∆|w|
RC201-015_1 20 324 261 19.44% 4312 3367 21.92%
RC201-015_2 22 348 293 15.80% 3990 3325 16.67%
RC201-015_3 18 274 200 27.01% 2282 1711 25.02%
C101-025_1 28 734 439 40.19% 12852 7227 43.77%
C101-025_2 30 786 516 34.35% 8974 5777 35.63%
C101-025_3 30 762 492 35.43% 6328 4214 33.41%
C201-025_1 30 810 569 29.75% 13132 8661 34.05%
C201-025_2 32 842 622 26.13% 9212 6736 26.88%
C201-025_3 30 762 518 32.02% 6328 4431 29.98%
R101-025_1 32 878 575 34.51% 13370 7264 45.67%
R101-025_2 34 890 616 30.79% 9408 6133 34.81%
R101-025_3 30 762 422 44.62% 6328 3445 45.56%
R201-025_1 30 810 599 26.05% 13132 9041 31.15%
R201-025_2 32 842 645 23.40% 9212 6930 24.77%
R201-025_3 30 762 551 27.69% 6328 4643 26.63%
RC101-025_1 30 810 513 36.67% 13132 6922 47.29%
RC101-025_2 32 842 566 32.78% 9212 5914 35.80%
RC101-025_3 28 710 380 46.48% 6048 3070 49.24%
RC201-025_1 30 810 603 25.56% 13132 9178 30.11%
RC201-025_2 32 842 649 22.92% 9212 6978 24.25%
RC201-025_3 30 762 555 27.17% 6328 4693 25.84%
C101-050_1 57 3042 1844 39.38% 50862 28053 44.84%
C101-050_2 63 3306 2264 31.52% 34902 23573 32.46%
C101-050_3 57 2892 1698 41.29% 23562 14092 40.19%
C201-050_1 63 3462 2540 26.63% 52374 35691 31.85%
C201-050_2 65 3404 2524 25.85% 35322 26002 26.39%
C201-050_3 57 2892 1840 36.38% 23562 15266 35.21%
R101-050_1 65 3586 2354 34.36% 52794 28141 46.70%
R101-050_2 63 3306 1984 39.99% 34902 18994 45.58%
R101-050_3 59 2990 1584 47.02% 24108 12449 48.36%
R201-050_1 65 3586 2835 20.94% 52794 38797 26.51%
R201-050_2 63 3306 2534 23.35% 34902 26169 25.02%
R201-050_3 57 2892 1989 31.22% 23562 16241 31.07%
RC101-050_1 61 3330 2001 39.91% 51912 23514 54.70%
RC101-050_2 63 3306 2047 38.08% 34902 19206 44.97%
RC101-050_3 57 2892 1463 49.41% 23562 11111 52.84%



62 Chapter 5. Computational Experiments

Table 5.3: Test instances size after setting the auxiliary graph and after preprocessing.

Instance n m m∗ ∆m |w| |w|∗ ∆|w|
RC201-050_1 59 3190 2328 27.02% 51408 34531 32.83%
RC201-050_2 59 3086 2216 28.19% 33936 23721 30.10%
RC201-050_3 57 2892 1990 31.19% 23562 16228 31.13%

5.2 Computational Environment

The BC algorithm described in this thesis was implemented in C++, and compiled
with g++, version 9.2.1, with the optimization flag -O3 enabled. We used IBM ILOG
CPLEX [IBM ILOG CPLEX Optimizer, 2020], version 12.10, through calls to the
Concert Technology Library, for solving the LPRs and managing the BC tree. The
experiments ran in a machine equipped with a Intel Core i7-980 6 core, 1333MHz, with
24GB of RAM, and Ubuntu operating system.

5.3 Linear Programming Bounds

In this section, we discuss results related to LPR bounds provided by our approach.
For that purpose, we consider two formulations: P0 and P∗. Formulation P0 consists
of inequalities (3.2)-(3.16), plus 2-matching inequalities (3.17). Formulation P∗, as
previously defined, includes all inequalities that define P0, plus valid inequalities (3.18)-
(3.21), replacing constraints by their lifted versions (3.22)-(3.27) whenever possible. For
all experiments described in this section, we used CPLEX for solving the LPRs, with
all cuts and heuristics disabled. In order to obtain LPR bounds, we instructed CPLEX
to solve the given model by Branch-and-Cut, limiting the BC tree to the root node
only. This configuration results in CPLEX solving LPRs and executing the separation
routines for the LPR solutions to look for violated cuts. Such cuts are iteratively added
to the current LPR and, when no further violated cuts can be found, the execution
finishes, without branching, no matter if the optimal solution if fractional or not. We
then register the dual bound and execution time obtained.

For each formulation, we experimented two different separation approaches. In
the first one, we do not use the fractional separation heuristic outlined by Algorithm 1.
Therefore, only DCUTs (3.4) and 2-matching inequalities are separated for fractional
points. IWECs (3.13)-(3.15) are only separated when the LPR solution is integer, and
no DCUT violated by that solution is found (which did not happen for any of the test
instances, for none of the formulations). In the second approach, we use the separation
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heuristic for fractional points, whenever a DCUT cannot be found. In this case, for
formulation P0, whenever an IWEC is found, we add the “original” version of the
violated cut (3.13)-(3.15). For P∗, we always try to lift the violated cut, as in equations
(3.23)-(3.27). Note that, since Algorithm 1 is not exact, the LPR solutions obtained
by the second approach may still violate some IWECs, and the obtained bounds are
possibly weaker than the actual LPR bounds for the corresponding formulation, P0 or
P∗, if all constraints were considered in the LPRs.

Therefore, we experimented four different executions for each instance: two sepa-
ration approaches for each formulation. We use the notation P0

i and P∗i when referring
to results for formulations P0 and P∗, respectively, without calling the fractional sep-
aration for IWECs, and we use P0

f and P∗f to represent results for these formulations
using that heuristic. By considering a “basic” and a “strengthened” formulations, P0

and P∗ respectively, we are interested in assessing the impact of the valid inequalities
and lifting strategies proposed in this study in the quality of the solutions and exe-
cution times. The conception of two different separation strategies, using or not the
fractional separation heuristic for IWECs, comes from the fact that, even though this
routine finds valid cuts that can help strengthening the LPR bounds, it is possible that
the number of inequalities added slows down the solution of the LPRs, resulting in a
worse performance. Hence, we are interested in investigating if one of the choices is
superior, or if it is possible to characterize situations in which some of them is best
recommended.

We now present compiled results for each instance set, each one of which contain-
ing three instances, with different truck customer percentages, as described in Section
5.1. Detailed computational results regarding LPR bounds for each instance can be
found in Section A.1, in the Appendix. Table 5.4 shows the time necessary for solving
the root node of the BC tree, and the LPR gap obtained for each version of the algo-
rithm, given by each of the four combinations of formulation and separation approach.
If UB is the LPR bound for a given instance, and LB is the best known lower bound
for that instance, then the LPR gap is given by (UB−LB)/UB. The values displayed
in this table are summarized for each instance set. In the first column of that table,
we identify the instance set. The following columns display, for each version of the
algorithm, the average root time and average gap obtained for the three instances in
each set.

In Table 5.5, we summarize the number of cuts generated for the second approach,
in which the fractional separation for IWECs is used, for formulations P0 and P∗. As
mentioned earlier, the first approach was not able to find violated IWECs for none of
the formulations, hence it is not shown here. Like for Table 5.4, the values here are
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Table 5.4: Average root times and LP gaps for each instance set obtained for formu-
lations P0 and P∗, with and without the use of the fractional separation heuristic for
IWECs.

Instance P0
i P0

f P∗i P∗f
set t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%)

C101-010 0.0 9.92 0.0 9.92 0.0 5.96 0.1 5.87
C201-010 0.1 2.43 0.1 2.39 0.1 2.11 0.2 2.11
R101-010 0.1 23.01 0.1 23.01 0.1 8.73 0.1 8.73
R201-010 0.1 0.62 0.1 0.62 0.0 0.07 0.0 0.07
RC101-010 0.1 28.86 0.1 28.71 0.1 25.15 0.1 25.01
RC201-010 0.1 5.87 0.1 5.87 0.1 4.99 0.1 4.99
C101-015 0.1 40.18 0.2 40.16 0.1 28.18 0.1 28.17
C201-015 0.3 1.28 0.3 1.28 0.3 1.11 0.8 1.11
R101-015 0.1 44.86 0.1 44.74 0.1 8.93 0.1 8.93
R201-015 0.1 2.67 0.2 2.67 0.1 1.13 0.1 1.13
RC101-015 0.3 51.86 0.3 51.86 0.3 38.77 0.3 38.42
RC201-015 0.3 12.02 0.3 12.02 0.3 11.22 0.4 11.21
C101-025 0.9 43.29 0.9 43.28 0.4 34.62 0.5 34.58
C201-025 0.8 14.87 1.2 14.85 0.3 14.86 0.5 14.78
R101-025 1.2 57.66 1.4 57.58 0.7 5.95 0.8 5.95
R201-025 1.0 15.73 1.2 15.72 0.9 13.83 1.7 13.74
RC101-025 1.1 51.16 1.2 51.14 1.0 42.08 1.1 41.99
RC201-025 0.9 35.18 1.1 35.18 1.2 34.66 1.4 34.66
C101-050 15.0 52.68 17.6 52.68 19.1 48.97 20.7 48.96
C201-050 29.4 58.87 38.5 58.82 43.5 55.81 73.5 55.77
R101-050 19.0 57.43 21.7 57.35 30.1 20.95 39.3 20.48
R201-050 13.1 81.49 16.9 81.46 37.3 80.78 42.3 80.78
RC101-050 11.2 55.35 12.0 55.31 18.3 49.56 22.0 49.50
RC201-050 11.9 86.74 13.8 86.73 14.8 85.71 15.7 85.71

also taken in average for each instance set. The first column identifies the instance set.
In the next two columns, we show the following values for formulation P0: the average
number of DCUTs generated for each instance set and the average number of IWECs
for each instance set. The last two columns display the same values for formulation
P∗. Almost no 2-matching cuts were generated in this experiment, and therefore their
numbers are not displayed.

Comparing results for P0
i and P0

f with P∗i and P∗f in Table 5.4, we note that, as
expected, adding valid inequalities to the formulation and lifting existing inequalities
resulted in stronger LPR gaps, although increasing root times for bigger instances.
This LPR gap reduction is more expressive for instances C1, R1 and RC1, which, as
described earlier, have short scheduling horizon, and therefore, shorter solution routes.
The overall LPR gap, however, is considerably lower for the “opposite” instances, with
large scheduling horizon: C2, R2 and RC2, for both formulations and both separation
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Table 5.5: Average number of cuts generated in the solution of LPRs in the root node
of the BC procedure for each instance set, for formulations P0 and P∗, when using the
fractional separation heuristic for IWECs.

Instance set P0
f P∗f

DCUTs IWECs DCUTs IWECs
C101-010 103.33 4.00 0.00 0.67
C201-010 258.00 0.33 52.33 8.00
R101-010 35.67 0.00 9.67 0.00
R201-010 40.33 0.00 14.00 0.00
RC101-010 169.00 1.33 76.67 1.67
RC201-010 148.67 0.00 117.00 0.00
C101-015 340.67 3.67 48.67 1.67
C201-015 683.00 0.33 142.00 28.67
R101-015 213.67 0.67 11.33 0.00
R201-015 105.33 0.00 20.33 0.00
RC101-015 191.33 1.33 148.00 3.00
RC201-015 276.33 0.33 186.00 1.00
C101-025 1479.67 2.00 432.00 2.00
C201-025 1367.00 38.00 197.33 26.33
R101-025 1102.00 1.33 27.00 0.33
R201-025 544.67 6.33 173.00 22.00
RC101-025 591.67 1.33 224.67 3.00
RC201-025 1020.67 1.00 452.00 1.00
C101-050 3136.67 2.67 636.33 3.67
C201-050 11433.67 109.67 5778.00 111.33
R101-050 5930.67 1.67 94.00 15.33
R201-050 3488.67 13.00 1095.00 3.33
RC101-050 2337.67 1.67 1077.67 4.00
RC201-050 3082.00 12.67 2007.00 0.33

approaches. It is also noteworthy that the use of the strengthened formulation consid-
erably reduced the number of DCUTs, as shown in Table 5.5. The use of the fractional
separation heuristic from Algorithm 1, as in P0

f and P∗f , did not provide significant gap
reduction for any instance, despite increasing root times, with many instances display-
ing no reduction at all when the heuristic is adopted. This observation is in accordance
with the fact that not many IWECs are found in the root node of the BC algorithm,
as seen in Table 5.5. Instances C2, that have clustered vertices and large scheduling
horizon, are the ones that generate the majority of these cuts.
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5.4 Results for the Branch-and-Cut Algorithm

We now analyze the results for the Branch-and-Cut procedure introduced in this work.
We implemented the same versions of the algorithm described in the previous section:
formulations P0 and P∗, with two separation approaches, with and without the frac-
tional separation heuristic from Algorithm 1. For all experiments described in this
section, we used CPLEX for the solution of the LPRs and management of the BC
search tree. Differently from the experiment conducted to estimate the LPR bounds in
the preceding section, for this one, we enabled all CPLEX cuts and heuristics, under
default settings. For each execution, we provided a time limit of 7200 seconds (2 hours)
and, at the end, we registered the best globally valid lower and upper bounds and the
corresponding duality gap implied by them.

As done for the LP results in the previous section, here we present compiled
results for each instance set. In Section A.2, in the Appendix, detailed computational
results regarding the BC algorithm for each instance can be found. In Tables 5.6 and
5.7, we show, for each instance set, the average execution times and average optimality
gaps obtained, given by (UB − LB)/UB, as defined earlier. For instance sets with
up to 26 vertices, we experimented the four versions of the algorithm, as displayed
in Table 5.6. For larger instances, with 51 vertices, we only tried the two separation
strategies for formulation P∗, that produced better results, shown in Table 5.7. The
first column of Table 5.6 identifies the instance set. The following two columns display
the execution time and the percentage optimality gap for formulation P0 without using
the separation heuristic from Algorithm 1. The subsequent six columns show the same
pairs of values for formulation P0 with the use of the heuristic, P∗ without the heuristic,
and P∗ with the heuristic, in that order. The columns of Table 5.7 follow the same
pattern, but only for P∗i and P∗f , in that order.

Table 5.8 displays comparative information for both separation strategies applied
to formulation P∗: using the separation heuristic from Algorithm 1 (P∗f ) and not using
it (P∗i ). The first column identifies the instance set. The next five columns contain the
following values for P∗i : BC root time, that is, the time taken until the BC algorithm
branches for the first time; BC root gap, which is the optimality gap available right
before the algorithm branches on for the first time; total execution time; percentage
optimality gap, and number of BC nodes solved. All values are taken in average for
the three instances in each set. The last five columns of Table 5.8 display the same
values for P∗f .

Table 5.9 compares the same two versions of the algorithm, in terms of number
of IWECs generated by each approach, and the time spent in separation routines for
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Table 5.6: Average solution times and optimality gaps for each instance set obtained for
formulations P0 and P∗, with and without the use of the fractional separation heuristic
for IWECs, for instance sets with up to 26 vertices.

Instance P0
i P0

f P∗i P∗f
set t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%)

C101-010 5390.6 7.73 5082.2 8.10 932.9 0.00 1453.5 0.00
C201-010 20.9 0.00 33.3 0.00 15.2 0.00 31.8 0.00
R101-010 0.7 0.00 0.5 0.00 0.3 0.00 0.3 0.00
R201-010 0.1 0.00 0.1 0.00 0.0 0.00 0.0 0.00
RC101-010 429.8 0.00 1991.4 0.00 175.8 0.00 225.7 0.00
RC201-010 0.6 0.00 0.7 0.00 0.5 0.00 0.5 0.00
C101-015 7200.0 43.96 7200.0 44.43 7200.0 31.12 7200.0 30.79
C201-015 119.0 0.00 198.9 0.00 122.7 0.00 303.0 0.00
R101-015 4800.2 19.58 4800.2 9.56 0.4 0.00 0.4 0.00
R201-015 0.7 0.00 0.8 0.00 0.7 0.00 0.7 0.00
RC101-015 7200.0 39.62 7200.0 41.30 2937.3 13.25 3134.2 12.97
RC201-015 7200.0 8.29 7200.0 6.89 7200.0 5.80 7200.0 7.24
C101-025 7200.0 42.91 7200.0 43.38 7200.0 37.80 7200.0 39.43
C201-025 7200.0 20.57 7200.0 26.13 7200.0 27.09 7200.0 39.13
R101-025 7200.0 48.58 7200.0 49.76 1.9 0.00 1.9 0.00
R201-025 7200.0 18.26 7200.0 11.61 7200.0 16.57 5782.1 12.27
RC101-025 7200.0 44.28 7200.0 44.39 5108.7 19.77 4938.3 20.10
RC201-025 7200.0 58.96 7200.0 59.92 7200.0 44.99 7200.0 53.11

Table 5.7: Average solution times and optimality gaps for each instance set obtained for
formulations P0 and P∗, with and without the use of the fractional separation heuristic
for IWECs, for instance sets with 51 vertices.

Instance set P∗i P∗f
t (s) gap (%) t (s) gap (%)

C101-050 7200.0 48.72 7200.0 51.37
C201-050 7200.0 55.74 7200.0 63.99
R101-050 229.6 0.00 307.6 0.00
R201-050 7200.0 82.99 7200.0 81.67
RC101-050 7200.0 41.18 7200.0 40.98
RC201-050 7200.0 85.38 7200.0 87.57

these cuts. The first column identifies each instance set. The next three columns
refer to P∗i . In the second and third columns, we show the average time spent in the
separation for IWECs (Algorithm 2), in seconds and in percentage values with respect
to the total execution time. The fourth column contains the average number of IWECs
generated by that algorithm for the instances in the corresponding set. The following
columns concern P∗f . For this version, we also show the average time spent in the
fractional separation heuristic for IWECs, in seconds and percentage, in the fifth and
sixth column, respectively. The two next columns display the average time spent in the
integer separation for IWECs, also in absolute and relative values respectively. The
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Table 5.8: Comparison between both separation strategies for formulation P∗: average
root times and gaps, optimality gaps and number of BC nodes explored, for each
instance set.

Instance P∗i P∗f
set tr gapr (%) t gap (%) nodes tr gapr (%) t gap (%) nodes

C101-010 0.1 28.88 932.9 - 288611.0 0.1 28.88 1453.5 - 207527.0
C201-010 0.5 45.16 15.2 - 8291.7 0.6 45.16 31.8 - 7463.7
R101-010 0.2 5.50 0.3 - 3.3 0.2 5.50 0.3 - 3.7
R201-010 0.0 - 0.0 - 0.0 0.0 - 0.0 - 0.0
RC101-010 0.5 42.60 175.8 - 49220.3 0.5 42.43 225.7 - 39221.3
RC201-010 0.3 35.29 0.5 - 25.3 0.3 35.29 0.5 - 22.0
C101-015 0.5 51.78 7200.0 31.12 225254.0 0.5 51.77 7200.0 30.79 157184.0
C201-015 1.2 54.53 122.7 - 17651.7 2.0 54.53 303.0 - 19979.3
R101-015 0.4 3.33 0.4 - 4.7 0.4 3.35 0.4 - 4.7
R201-015 0.5 39.71 0.7 - 10.0 0.6 39.71 0.7 - 7.3
RC101-015 2.0 45.94 2937.3 13.25 109919.7 2.2 45.76 3134.2 12.97 69513.3
RC201-015 1.4 64.65 7200.0 5.80 393444.0 1.3 64.70 7200.0 7.24 131424.0
C101-025 2.5 50.61 7200.0 37.80 66528.0 3.3 50.60 7200.0 39.43 35976.7
C201-025 2.2 70.96 7200.0 27.09 50814.0 5.1 70.91 7200.0 39.13 22572.0
R101-025 1.0 3.30 1.9 - 1.3 1.0 3.30 1.9 - 1.3
R201-025 9.9 73.40 7200.0 16.57 57164.7 12.3 73.24 5782.1 12.27 13296.3
RC101-025 5.0 48.96 5108.7 19.77 118251.3 5.2 48.83 4938.3 20.10 55326.0
RC201-025 8.4 77.06 7200.0 44.99 69264.3 8.7 77.06 7200.0 53.11 15454.0
C101-050 38.6 52.66 7200.0 48.72 12173.7 44.0 52.66 7200.0 51.37 5764.7
C201-050 104.7 83.13 7200.0 55.74 10623.0 135.1 83.10 7200.0 63.99 2405.7
R101-050 69.1 31.44 229.6 - 471.0 70.4 31.44 307.6 - 257.3
R201-050 102.3 84.43 7200.0 82.99 7117.0 130.5 84.40 7200.0 81.67 1631.7
RC101-050 51.4 56.87 7200.0 41.18 38955.0 55.3 56.81 7200.0 40.98 11934.7
RC201-050 60.7 88.16 7200.0 85.38 8287.3 69.0 88.16 7200.0 87.57 962.0

last two columns of the table contain the average number of IWECs generated by the
fractional separation algorithm and the integer one, respectively.

Table 5.10 compares the same two approaches regarding the types of IWECs
generated by each one, for each instance set. Recall that, in Chapter 3, we classified
IWECs in three types: capacity (3.13), time window (3.14) and satellite scheduling
(3.15) constraints. We recorded the number of times a cut from each of these types (or
a lifted version of them) was generated by separation Algorithms 1 and 2. The first
column in that table contains the instance set name. The next six columns refer to
P∗i . In the second and third columns, we display the number of capacity cuts found,
in average for that instance set, and the average percentage value of that number with
respect to the total number of IWECs generated. The fourth and fifth columns show
the absolute and relative numbers of time window cuts found, respectively, also in
average values in each set. The sixth and seventh columns display these numbers for
scheduling cuts. The subsequent six columns contain the same values for P∗f .

Finally, in Table 5.11, we compare the overall performance for both separation
strategies, in terms of number of times each one obtained the best results for each
instance size. The first column shows the number of vertices in the instances. From the
second to the sixth column, we display the following values for P∗i , for the corresponding
instance size: number of instances solved to optimality by this algorithm, number of
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Table 5.9: Comparison between both separation strategies for formulation P∗: average
time spent in the IWEC separation routines and average number of IWECs generated,
for each instance set.

P∗i P∗f
Instance ti IWEC tf ti IWEC

set s % int s % s % frac int
C101-010 0.4 0.24 1087.7 192.8 10.00 0.3 0.17 2412.7 717.0
C201-010 0.1 0.39 127.0 9.2 28.94 0.1 0.31 570.3 101.3
R101-010 0.0 0.97 1.0 0.0 0.92 0.0 0.99 0.3 1.0
R201-010 0.0 1.46 0.0 0.0 0.00 0.0 1.42 0.0 0.0
RC101-010 0.7 0.33 773.3 60.1 19.46 0.3 0.20 1587.3 382.7
RC201-010 0.0 1.00 4.3 0.0 4.38 0.0 0.85 1.0 2.7
C101-015 10.7 0.15 6679.0 822.9 11.43 5.1 0.07 14740.7 2783.7
C201-015 0.8 0.38 351.7 77.9 26.88 0.5 0.27 2152.3 229.0
R101-015 0.0 0.59 1.0 0.0 2.71 0.0 0.60 1.0 1.0
R201-015 0.0 1.15 1.3 0.0 2.56 0.0 1.08 1.3 1.0
RC101-015 2.9 0.36 1010.3 511.5 20.65 0.7 0.12 6170.0 238.0
RC201-015 8.5 0.12 3125.7 1125.8 15.64 2.8 0.04 18788.3 1401.3
C101-025 29.4 0.41 4382.7 771.0 10.71 7.5 0.10 27026.7 1002.0
C201-025 45.8 0.64 4353.7 954.9 13.26 10.0 0.14 32533.0 989.3
R101-025 0.0 3.37 0.0 0.0 1.41 0.0 3.40 0.0 0.0
R201-025 31.5 0.56 2591.0 569.6 10.04 1.9 0.03 23385.7 145.3
RC101-025 17.9 0.44 2059.7 1224.0 25.09 4.3 0.10 11548.7 445.7
RC201-025 52.5 0.73 4497.0 894.6 12.43 1.8 0.03 41113.0 131.0
C101-050 136.3 1.89 1479.7 1537.9 21.36 12.5 0.17 12858.0 162.3
C201-050 241.1 3.35 1329.0 1879.5 26.10 8.2 0.11 15350.0 90.7
R101-050 5.7 1.31 20.0 85.8 22.27 2.8 1.02 251.0 10.3
R201-050 93.3 1.30 597.0 1421.2 19.74 2.4 0.03 10324.0 27.0
RC101-050 183.9 2.55 1582.7 2675.3 37.16 37.3 0.52 13865.0 352.0
RC201-050 49.8 0.69 446.0 812.8 11.29 0.1 0.00 12130.7 0.3

times this algorithm obtained the best lower bound, number of times it obtained the
best upper bound, number of times it obtained the smallest optimality gap, and average
optimality gap obtained by this algorithm. The last five columns contain the same
information for P∗f . When both algorithms reached the same lower or upper bound or
the same gap for a given instance, we counted that instance for both. The last line on
that table summarizes these values for all instances.

As seen in Tables 5.6 and 5.7, there are more instance sets with zero average
optimality gap for versions P∗i and P∗f than for P0

i and P0
f , which indicates that the use

of valid and lifted inequalities allowed to solve to proven optimality some instances that
were not solved with formulation P0. For instances still not solved with P∗, optimality
gaps were generally smaller with this formulation. Considering only instances with up
to 26 vertices that were not solved by any of the versions of the algorithm, the average
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Table 5.10: Comparison between both separation strategies for formulation P∗: average
number of IWECs of each type generated by each approach, for each instance set.

Set
P∗i P∗f

Capacity Time window Scheduling Capacity Time window Scheduling
# % # % # % # % # % # %

C101-010 67 2.1 2394 73.4 802 24.6 114 1.2 4703 50.1 4572 48.7
C201-010 0 0.0 330 86.6 51 13.4 0 0.0 524 26.0 1491 74.0
R101-010 0 0.0 3 100.0 0 0.0 0 0.0 3 75.0 1 25.0
R201-010 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
RC101-010 138 5.9 1830 78.9 352 15.2 228 3.9 2923 49.5 2759 46.7
RC201-010 0 0.0 12 92.3 1 7.7 0 0.0 8 72.7 3 27.3
C101-015 821 4.1 15123 75.5 4093 20.4 1696 3.2 27042 51.4 23835 45.3
C201-015 0 0.0 841 79.7 214 20.3 0 0.0 1533 21.5 5611 78.5
R101-015 0 0.0 3 100.0 0 0.0 0 0.0 4 66.7 2 33.3
R201-015 0 0.0 4 100.0 0 0.0 0 0.0 3 42.9 4 57.1
RC101-015 52 1.7 2371 78.2 608 20.1 277 1.4 7976 41.5 10971 57.1
RC201-015 0 0.0 6925 73.9 2452 26.1 0 0.0 31450 51.9 29119 48.1
C101-025 310 2.4 9867 75.0 2971 22.6 587 0.7 37986 45.2 45513 54.1
C201-025 26 0.2 9065 69.4 3970 30.4 47 0.0 29726 29.6 70794 70.4
R101-025 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
R201-025 0 0.0 4996 64.3 2777 35.7 0 0.0 32454 46.0 38139 54.0
RC101-025 188 3.0 4851 78.5 1140 18.4 814 2.3 14211 39.5 20958 58.2
RC201-025 0 0.0 8756 64.9 4735 35.1 0 0.0 64531 52.2 59201 47.8
C101-050 17 0.4 3069 69.1 1353 30.5 66 0.2 10207 26.1 28788 73.7
C201-050 48 1.2 2486 62.4 1453 36.4 1060 2.3 13860 29.9 31402 67.8
R101-050 9 15.0 36 60.0 15 25.0 14 1.8 73 9.3 697 88.9
R201-050 0 0.0 888 49.6 903 50.4 0 0.0 5765 18.6 25288 81.4
RC101-050 75 1.6 4079 85.9 594 12.5 544 1.3 8589 20.1 33518 78.6
RC201-050 0 0.0 584 43.6 754 56.4 0 0.0 11574 31.8 24819 68.2

Table 5.11: Comparison between both separation strategies for formulation P∗: number
of instances for which each approach obtained the optimal solution, the best bounds
and optimality gaps, and average optimality gap for each strategy.

n
P∗i P∗f

#opt #LB #UB #gap 〈gap〉 #opt #LB #UB #gap 〈gap〉
10 18/18 18 17 18 0.00% 18/18 18 18 18 0.00%
15 11/18 17 17 17 8.36% 11/18 15 12 16 8.50%
25 4/18 13 11 13 24.37% 5/18 10 11 10 27.34%
50 3/18 15 13 15 52.33% 3/18 11 8 11 54.26%

Total 36/72 63 58 63 21.27% 37/72 54 49 55 22.53%

optimality gap provided by versions P0
i and P0

f is 36.1% for both, while P∗i and P∗f
reached average gaps of 29.2% and 32.3%, respectively.

In accordance to the LPR results discussed in Section 5.3, the improvement pro-
vided by the formulation strengthening is more notable for instances C1, R1 and RC1,
that have short scheduling horizon. For example, for those instances, version P∗i was
able to solve 10 additional instances when compared to P0

i , and the average optimality
gap for unsolved instances in these sets was reduced from 45.0% to 34.0%. Instances
sets R1 and RC1 are, in fact, the ones for which most of the instances were solved
to optimality: all instances from set R1 and all but five from set RC1 were solved to
optimality by at least one version of the algorithm. In contrast, for instances sets with
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large scheduling horizon, C2, R2 and RC2, the algorithm has more difficulty in lower-
ing the dual bounds. For these sets, no additional instances were solved with version
P∗i in comparison to P0

i , and the average gap reduction was significantly smaller: from
28.8% to 25.3%. This may be explained by the fact that an IWEC involving a large
number of variables is weaker and less informative. Instances with large scheduling
horizon possibly require more of such cuts, and therefore are harder to solve by this
approach.

Comparing both separation strategies, from versions P∗i and P∗f , the latter was
able to solve one additional instance, as shown in Table 5.11. Aside from that instance,
both were able to solve the same ones to optimality. Table 5.8 shows that the use of
the fractional separation heuristic from Algorithm 1 does not significantly reduce root
duality gaps, as also observed in the previous section, despite spending more time in
the root node of the BC tree. In turn, the version P∗i explores more BC nodes, which
could be expected, since IWECs are not generated for fractional LPR solutions. For
instances that were solved to optimality, Table 5.8 shows that version P∗i took less
time overall. In fact, the average solution time for instances solved to optimality by
both versions was 193.8 seconds for P∗i , and 266.5 seconds for P∗f . Although the use
of the fractional separation heuristic from Algorithm 1 has allowed to solve one more
instance, for instances left unsolved, P∗i was able to obtain better optimality gaps more
often, as displayed by Table 5.11. This version of the algorithm also provided a slightly
smaller average optimality gap overall.

The version P∗f of the algorithm generates considerably more IWECs than P∗i ,
as exposed by Table 5.9. For larger instances, P∗f expends a substantial portion of the
execution time in the fractional separation for those cuts. As already observed, this
computational effort is generally not compensated by better dual bounds. Because of
the amount of cuts added, the LPRs are certainly harder to solve with this approach,
which results in fewer BC nodes being explored. Version P∗i , on the other hand,
is able to generate less IWECs and spends more computational effort in the BC tree
management and in the solution of LPRs. Table 5.10 shows another distinction between
the two versions: the majority of IWECs found by approach P∗f are, in general, satellite
scheduling cuts (3.15). For P∗i , time window cuts are the most frequently found.

5.5 Comments

In this chapter, we presented computational experiments for four versions of the BC
algorithm introduced in this work. The results show that the valid and lifted inequal-
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ities resulted in better algorithms. The fractional separation heuristic from Algorithm
1, on the other hand, allowed to solve only one further instance to optimality, and did
not significantly help lowering optimality gaps. We can conclude that the version P∗i ,
that consists in the strengthened formulation in which IWECs are only separated for
integer LPR solutions, performed best for this test bed.

Some aspects revealed by the results point at how the fractional heuristic could
be best employed: the amount of time spent in that routine and the number of IWECs
generated by it suggest that the heuristic could be used in a more moderate way. For
instance, that procedure could only be called at the first BC nodes, or only every N
nodes, where N is an adjustable parameter. Another possibility is to modify it in such
a way that a cut is only added to the current LPR if it is sufficiently “sparse”, that is, if
it has few nonzero variable coefficients. Also, the fact that much more scheduling cuts
are generated when that procedure is used might suggest an adaptation in which it only
tries to find capacity and time windows cuts. Overall, we believe that the fractional
separation needs to be further investigated, before it can be ruled out.

We also observed that, specially for larger instances, the algorithm has difficulty
in finding feasible solutions. For six of those instances, it was not able to find any, and
the final lower bound obtained was the one given by the starting solution we provided,
with up to three customers. This strongly suggests our approach could benefit from a
heuristic, both for providing better starting solutions, and for searching for improving
feasible solutions during the Branch-and-Cut.



Chapter 6

Conclusion

In this thesis, we studied the Profitable Single Truck and Trailer Routing Problem
with Time Windows (PSTTRPTW). We introduced an Integer Programming formu-
lation for the problem, considering customer time windows, dedicated satellite depots,
coupling/decoupling times and load-dependent transfer times. The model deals with
a heterogeneous fleet of trucks and trailers, in which not only capacities and arc costs
can be different for each vehicle, but also speed values can vary. In other words, we
take into account the fact that one vehicle may take less to travel a given distance
than another, due to the first being smaller, or more powerful. When this aspect is
considered in the modeling, it is possible to exist routes for which some vehicles are
able to reach a certain customer in time, while other vehicles are not. This particular-
ity has not been tackled in previous works regarding TTRPs. The model we proposed
has a compact number of variables, and a exponentially-sized constraint set. To the
best of our knowledge, among exact approaches with these properties in the literature
for TTRPTWs, this is the first one to allow for a solution to include multiple subtours
from the same satellite depot, for a given vehicle.

In addition to the IP formulation, we described a preprocessing procedure for
problem instances and introduced valid inequalities for the formulation, along with
new inequalities that lift some of the original formulation constraints. Then, a Branch-
and-Cut algorithm was introduced, with two separation procedures for infeasible walk
elimination constraints: a heuristic for fractional LPR solutions, and an exact one,
for integer solutions. Our computational experiments show an improvement in the
algorithm with the strengthening of the formulation we described. However, the use of
the separation heuristic did not result in better solution times or optimality gaps.

We believe that adding a heuristic method to our approach has a potential for
solving larger and harder instances. Also, our algorithm can be incorporated into a
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Column Generation scheme for solving the TTRPTW, in which the subproblem consists
of finding an improving choice of vehicle and route, as described in Section 3.6. The
resulting method can be contrasted with existing Column Generation approaches for
the same problem, like the one described in [Rothenbächer et al., 2018].

In another direction for future works, there are still modeling aspects of TTRPs
that can be considered, besides the ones handled here. In our model, the truck load
collected in a subtour is always transferred to the trailer before coupling. A more elabo-
rated model could consider the choice of performing or not a load transfer, allowing for
a scenario in which that load is left in the truck, saving the load transfer time. Another
challenging improvement would be to enable trailers to be shared by different trucks
along their routes, as in the problem solved by Drexl [2014], but without restricting
the number of subtours departing from a satellite. Both these modeling refinements
would allow for more, potentially better, feasible solutions.
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Appendix A

Detailed Computational Results

In this appendix, we present detailed computational results obtained with the experi-
ments described in Chapter 5, complementing the results shown in that chapter. We
recall that we experimented four versions of the algorithm, as described in Section 5.3:
formulation P0 without the fractional separation heuristic (P0

i ), P0 with fractional sep-
aration (P0

f ), P∗ without fractional separation (P∗i ), and P∗ with fractional separation
(P∗f ). Results are displayed for all instances in the test bed developed for this work,
with the computational environment detailed in Section 5.2.

A.1 Detailed Linear Programming Results

This section shows computational results regarding LPR bounds obtained by the four
versions of the algorithm, detailing the results displayed in Section 5.3.

In Table A.1, we display root node LPR bounds, for each instance in the test
set. In the first two columns, we identify the test instances, characterized by different
truck customer percentages, as described in Section 5.1. The first column refers to the
instance set, and the second, to its identification inside that set. The following eight
columns show the BC root execution time in seconds and the upper bound obtained for
each version of the algorithm, in this order: P0

i , P0
f , P∗i , and P∗f . The last column, LB,

shows the best lower bound known for each instance, provided by our computational
experiments.
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Table A.1: Linear Programming relaxation execution times and bounds obtained for
formulations P0 and P∗, with and without the use of the fractional separation heuristic
for IWECs.

Instance P0
i P0

f P∗i P∗f LB
Set id t UB t UB t UB t UB

C101-010
1 0.0 122.24 0.0 122.24 0.0 114.96 0.0 114.96 106.81
2 0.0 145.02 0.1 145.02 0.0 136.80 0.0 136.71 128.69
3 0.0 136.28 0.0 136.28 0.1 134.82 0.1 134.53 128.26

C201-010
1 0.1 121.46 0.1 121.30 0.2 121.02 0.2 121.02 118.60
2 0.1 119.86 0.1 119.86 0.2 119.55 0.2 119.55 117.35
3 0.1 100.96 0.1 100.96 0.1 100.60 0.4 100.60 98.09

R101-010
1 0.1 44.22 0.1 44.22 0.0 34.75 0.1 34.75 33.50
2 0.1 44.64 0.1 44.64 0.2 33.23 0.2 33.23 28.84
3 0.0 31.80 0.0 31.80 0.0 31.80 0.0 31.80 28.80

R201-010
1 0.1 89.39 0.1 89.39 0.1 88.44 0.1 88.44 88.25
2 0.1 89.75 0.1 89.75 0.0 89.23 0.0 89.23 89.23
3 0.0 70.42 0.0 70.42 0.0 70.42 0.0 70.42 70.42

RC101-010
1 0.1 93.52 0.1 93.52 0.1 88.28 0.1 88.23 68.09
2 0.1 73.50 0.1 73.30 0.1 70.27 0.1 69.96 48.91
3 0.1 93.40 0.1 93.04 0.0 88.88 0.0 88.82 69.18

RC201-010
1 0.1 159.02 0.1 159.02 0.1 157.60 0.1 157.60 148.56
2 0.1 191.37 0.1 191.37 0.1 190.13 0.1 190.13 181.34
3 0.1 177.62 0.1 177.62 0.0 175.40 0.0 175.40 167.32

C101-015
1 0.1 209.99 0.1 209.99 0.1 176.44 0.1 176.44 127.46
2 0.1 216.76 0.2 216.74 0.1 180.05 0.2 179.99 128.69
3 0.1 215.91 0.2 215.80 0.1 178.78 0.1 178.78 128.26

C201-015
1 0.1 237.68 0.2 237.62 0.2 237.23 0.2 237.23 234.93
2 0.4 199.42 0.4 199.42 0.4 199.10 1.5 199.10 196.63
3 0.3 211.67 0.3 211.67 0.3 211.31 0.8 211.31 208.92

R101-015
1 0.1 79.64 0.1 79.06 0.1 41.23 0.1 41.23 36.07
2 0.2 80.70 0.2 80.70 0.2 48.75 0.2 48.75 41.80
3 0.1 65.56 0.1 65.56 0.0 44.81 0.0 44.81 44.81

R201-015
1 0.2 164.92 0.2 164.92 0.1 163.62 0.1 163.62 159.76
2 0.2 156.81 0.2 156.81 0.2 153.74 0.2 153.74 152.17
3 0.1 142.76 0.1 142.76 0.1 140.01 0.1 140.01 140.01

RC101-015
1 0.4 151.32 0.4 151.32 0.3 141.33 0.4 138.41 70.44
2 0.4 136.42 0.4 136.42 0.4 90.37 0.4 90.37 65.47
3 0.1 139.52 0.1 139.52 0.1 113.34 0.1 113.34 69.59

RC201-015
1 0.4 252.57 0.4 252.57 0.2 250.81 0.4 250.75 216.70
2 0.3 261.49 0.3 261.49 0.5 259.86 0.7 259.86 235.87
3 0.2 271.79 0.2 271.79 0.1 268.01 0.1 268.01 239.02

C101-025
1 1.2 233.11 1.2 233.11 0.4 207.39 0.5 207.08 156.77
2 0.9 248.96 0.9 248.96 0.4 214.98 0.5 214.98 128.69
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Instance P0
i P0

f P∗i P∗f LB
Set id t UB t UB t UB t UB

3 0.5 250.54 0.6 250.43 0.4 211.38 0.7 211.38 128.26

C201-025
1 0.7 421.50 1.2 421.46 0.4 421.36 0.7 421.03 346.68
2 0.8 388.75 1.3 388.70 0.3 388.70 0.4 388.61 343.41
3 0.8 404.06 1.0 403.85 0.3 404.06 0.4 403.39 342.63

R101-025
1 1.6 131.88 1.9 131.21 0.9 47.08 0.9 47.08 42.77
2 1.2 119.62 1.4 119.57 1.3 56.46 1.3 56.46 51.55
3 0.7 117.07 0.9 116.91 0.1 60.27 0.1 60.27 60.27

R201-025
1 1.0 247.67 1.2 247.66 1.0 243.98 1.2 243.68 205.82
2 1.3 267.35 1.6 267.21 1.1 263.70 1.1 263.70 213.47
3 0.7 232.69 0.8 232.68 0.8 224.35 2.8 223.93 209.09

RC101-025
1 1.2 154.28 1.5 154.10 1.0 144.70 1.3 144.10 70.44
2 1.7 148.88 1.9 148.88 1.5 111.86 1.6 111.79 73.86
3 0.3 141.27 0.3 141.27 0.4 122.65 0.5 122.56 72.41

RC201-025
1 0.8 446.90 0.8 446.90 1.4 443.88 1.4 443.88 301.30
2 1.2 445.64 1.5 445.59 1.5 442.32 1.5 442.32 271.05
3 0.8 449.42 0.9 449.42 0.8 445.01 1.3 445.01 297.56

C101-050
1 11.9 253.38 17.0 253.31 16.7 243.10 18.3 242.99 115.68
2 28.5 256.65 31.1 256.64 36.4 233.70 39.3 233.70 124.29
3 4.7 250.88 4.9 250.88 4.2 229.54 4.4 229.54 120.07

C201-050
1 36.6 742.48 37.9 742.46 61.2 695.34 75.7 695.01 354.08
2 43.5 722.37 65.6 721.50 64.1 669.77 136.8 668.91 284.78
3 8.0 747.68 11.9 745.75 5.2 693.48 8.0 692.73 271.26

R101-050
1 22.9 174.47 23.6 174.47 55.9 86.56 56.7 86.56 65.56
2 22.2 158.73 28.6 157.95 26.9 87.92 49.4 86.42 70.68
3 12.1 151.32 13.0 151.32 7.3 85.19 11.8 85.18 69.02

R201-050
1 17.1 521.60 20.2 521.13 67.5 501.65 71.9 501.65 94.33
2 15.3 495.85 20.2 494.52 38.0 478.79 46.7 478.79 77.63
3 6.8 473.39 10.3 472.42 6.5 455.63 8.2 455.63 103.10

RC101-050
1 9.4 165.40 10.1 165.22 17.7 143.52 25.9 143.05 74.92
2 19.5 168.11 20.9 167.84 29.4 148.69 30.6 148.69 67.72
3 4.7 161.78 5.0 161.78 7.9 146.09 9.5 146.08 78.26

RC201-050
1 15.2 719.94 17.4 719.74 17.6 681.56 18.0 681.56 78.76
2 14.2 706.53 17.3 706.48 19.5 659.16 21.4 659.16 79.74
3 6.2 716.57 6.6 716.13 7.4 655.17 7.7 655.17 125.89

Table A.2 shows the LP gap obtained for each instance. Recall that the LP gap
for a given instance is given by (UB−LB)/UB, where UB is the LP bound obtained,
and LB is the best known lower bound. Similarly to Table A.1, the first two columns
of Table A.2 identify the instances. The following columns display, for each of the
four combinations of formulation and separation approach, the gap obtained for each
instance, and the average gap for the three instances in each set.
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Table A.2: Linear Programming gaps for each instance obtained for formulations P0

and P∗, with and without the use of the fractional separation heuristic for IWECs,
along with the average LP gap for each instance set.

Instance P0
i P0

f P∗i P∗f
Set id % avg(%) % avg(%) % avg(%) % avg(%)

C101-010
1 12.62

9.92
12.62

9.92
7.09

5.96
7.09

5.872 11.26 11.26 5.92 5.86
3 5.89 5.89 4.86 4.66

C201-010
1 2.36

2.43
2.23

2.39
2.00

2.11
2.00

2.112 2.09 2.09 1.84 1.84
3 2.84 2.84 2.50 2.50

R101-010
1 24.23

23.01
24.23

23.01
3.58

8.73
3.58

8.732 35.39 35.39 13.20 13.20
3 9.42 9.42 9.42 9.42

R201-010
1 1.28

0.62
1.28

0.62
0.22

0.07
0.22

0.072 0.58 0.58 0.00 0.00
3 0.00 0.00 0.00 0.00

RC101-010
1 27.19

28.86
27.19

28.71
22.87

25.15
22.83

25.012 33.46 33.28 30.40 30.10
3 25.94 25.65 22.17 22.12

RC201-010
1 6.57

5.87
6.57

5.87
5.73

4.99
5.73

4.992 5.24 5.24 4.62 4.62
3 5.80 5.80 4.61 4.61

C101-015
1 39.30

40.18
39.30

40.16
27.76

28.18
27.76

28.172 40.63 40.62 28.52 28.50
3 40.60 40.56 28.26 28.26

C201-015
1 1.16

1.28
1.13

1.28
0.97

1.11
0.97

1.112 1.40 1.40 1.24 1.24
3 1.30 1.30 1.13 1.13

R101-015
1 54.71

44.86
54.38

44.74
12.53

8.93
12.53

8.932 48.21 48.21 14.27 14.27
3 31.65 31.65 0.00 0.00

R201-015
1 3.13

2.67
3.13

2.67
2.36

1.13
2.36

1.132 2.96 2.96 1.02 1.02
3 1.93 1.93 0.00 0.00

RC101-015
1 53.45

51.86
53.45

51.86
50.16

38.77
49.11

38.422 52.01 52.01 27.55 27.55
3 50.13 50.13 38.60 38.60

RC201-015
1 14.20

12.02
14.20

12.02
13.60

11.22
13.58

11.212 9.80 9.80 9.23 9.23
3 12.05 12.05 10.82 10.82

C101-025
1 32.75

43.29
32.75

43.28
24.41

34.62
24.29

34.582 48.31 48.31 40.14 40.14
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Instance P0
i P0

f P∗i P∗f
Set id % avg(%) % avg(%) % avg(%) % avg(%)

3 48.81 48.78 39.32 39.32

C201-025
1 17.75

14.87
17.74

14.85
17.72

14.86
17.66

14.782 11.66 11.65 11.65 11.63
3 15.20 15.16 15.20 15.06

R101-025
1 67.57

57.66
67.40

57.58
9.14

5.95
9.14

5.952 56.91 56.89 8.70 8.70
3 48.52 48.45 0.00 0.00

R201-025
1 16.90

15.73
16.89

15.72
15.64

13.83
15.54

13.742 20.15 20.11 19.05 19.05
3 10.15 10.14 6.80 6.63

RC101-025
1 54.34

51.16
54.29

51.14
51.32

42.08
51.12

41.992 50.39 50.39 33.97 33.93
3 48.75 48.75 40.96 40.92

RC201-025
1 32.58

35.18
32.58

35.18
32.12

34.66
32.12

34.662 39.18 39.17 38.72 38.72
3 33.79 33.79 33.14 33.14

C101-050
1 54.34

52.68
54.33

52.68
52.41

48.97
52.39

48.962 51.57 51.57 46.81 46.81
3 52.14 52.14 47.69 47.69

C201-050
1 52.31

58.87
52.31

58.82
49.08

55.81
49.05

55.772 60.58 60.53 57.48 57.43
3 63.72 63.63 60.88 60.84

R101-050
1 62.42

57.43
62.42

57.35
24.26

20.95
24.26

20.482 55.47 55.25 19.61 18.21
3 54.39 54.39 18.98 18.97

R201-050
1 81.92

81.49
81.90

81.46
81.20

80.78
81.20

80.782 84.34 84.30 83.79 83.79
3 78.22 78.18 77.37 77.37

RC101-050
1 54.70

55.35
54.65

55.31
47.80

49.56
47.62

49.502 59.72 59.65 54.46 54.46
3 51.63 51.63 46.43 46.43

RC201-050
1 89.06

86.74
89.06

86.73
88.44

85.71
88.44

85.712 88.71 88.71 87.90 87.90
3 82.43 82.42 80.78 80.78

In Table A.3, we summarize the number of cuts generated for the second approach,
in which the fractional separation for IWECs is used, for formulations P0 and P∗.
The first two columns identify the instances. In the next three columns, we show the
following values for formulation P0: the number of DCUTs generated for each instance,
the number of IWECs for each instance, and the average number of IWECs for each
instance set. The last three columns display the same values for formulation P∗.
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Table A.3: Number of cuts generated in the solution of LPRs in the root node of
the BC procedure, for formulations P0 and P∗, when using the fractional separation
heuristic for IWECs, along with the average number of IWECs for each instance set.

Instance P0
f P∗f

Set id DCUTs IWECs 〈IWECs〉 DCUTs IWECs 〈IWECs〉

C101-010
1 285 0

4.00
0 0

0.672 25 12 0 1
3 0 0 0 1

C201-010
1 280 1

0.33
9 0

8.002 206 0 9 0
3 288 0 139 24

R101-010
1 58 0

0.00
16 0

0.002 49 0 13 0
3 0 0 0 0

R201-010
1 77 0

0.00
42 0

0.002 44 0 0 0
3 0 0 0 0

RC101-010
1 197 2

1.33
119 1

1.672 211 1 102 3
3 99 1 9 1

RC201-010
1 73 0

0.00
144 0

0.002 174 0 132 0
3 199 0 75 0

C101-015
1 490 0

3.67
121 0

1.672 215 4 25 3
3 317 7 0 2

C201-015
1 585 1

0.33
157 0

28.672 719 0 103 42
3 745 0 166 44

R101-015
1 245 2

0.67
5 0

0.002 244 0 29 0
3 152 0 0 0

R201-015
1 44 0

0.00
0 0

0.002 180 0 52 0
3 92 0 9 0

RC101-015
1 231 1

1.33
243 8

3.002 214 3 172 0
3 129 0 29 1
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Instance P0
f P∗f

Set id DCUTs IWECs 〈IWECs〉 DCUTs IWECs 〈IWECs〉

RC201-015
1 349 1

0.33
180 2

1.002 249 0 259 1
3 231 0 119 0

C101-025
1 2209 0

2.00
676 3

2.002 1134 0 109 1
3 1096 6 511 2

C201-025
1 2135 7

38.00
125 26

26.332 1513 3 9 3
3 453 104 458 50

R101-025
1 1191 1

1.33
26 0

0.332 738 2 55 1
3 1377 1 0 0

R201-025
1 472 1

6.33
70 2

22.002 405 12 299 0
3 757 6 150 64

RC101-025
1 732 3

1.33
279 5

3.002 877 1 331 2
3 166 0 64 2

RC201-025
1 1109 0

1.00
612 0

1.002 1372 2 448 0
3 581 1 296 3

C101-050
1 1558 5

2.67
944 9

3.672 4615 3 822 1
3 3237 0 143 1

C201-050
1 5593 3

109.67
10114 27

111.332 19073 101 5470 221
3 9635 225 1750 86

R101-050
1 2306 0

1.67
79 0

15.332 7563 4 149 43
3 7923 1 54 3

R201-050
1 3970 7

13.00
1564 5

3.332 3642 17 148 3
3 2854 15 1573 2

RC101-050
1 2542 3

1.67
1324 7

4.002 3430 1 761 2
3 1041 1 1148 3
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Instance P0
f P∗f

Set id DCUTs IWECs 〈IWECs〉 DCUTs IWECs 〈IWECs〉

RC201-050
1 3432 3

12.67
1436 0

0.332 4063 3 1867 1
3 1751 32 2718 0

A.2 Detailed Results for the Branch-and-Cut

Algorithm

In this section presents computational results for the four versions of the BC algorithm,
for each instance, complementing the compiled results shown in Section 5.3.

In Tables A.4 and A.5, we show the lower and upper bounds obtained, along with
the corresponding optimality gap. Table A.4 displays results for instances with up to
26 vertices, for the four versions of the algorithm. The first two columns of Table A.4
identify the instance; the first one displays the set, and the second, the instance id
inside that set. The following three columns display the lower bound, the upper bound
and the percentage optimality gap for formulation P0

i . The subsequent nine columns
show the same values for P0

f , P∗i and P∗f , in that order. When an instance was solved
to optimality within the available time limit of 7200 seconds (2 hours), we display the
symbol “-” for the optimality gap. Table A.5 presents those values for larger instances,
with 51 vertices. The columns of this table follow the same pattern, but only for P∗i
and P∗f , in that order.

Table A.6 displays comparative information for both separation strategies applied
to formulation P∗: P∗f and P∗i . The first two columns show the instance set and id.
The next five columns contain the following values for P∗i : BC root time, BC root gap,
total execution time, percentage optimality gap, and number of BC nodes solved. The
last five columns of that table display the same values for P∗f .
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Table A.4: Solution bounds obtained by the BC algorithm for formulations P0 and P∗, with and without the use of the fractional
separation heuristic for IWECs, for instances with up to 26 vertices.

Instance P0
i P0

f P∗i P∗f
Set id LB UB gap (%) LB UB gap (%) LB UB gap (%) LB UB gap (%)

C101-010
1 106.81 120.74 11.54 103.80 120.94 14.17 106.81 106.81 - 106.81 106.81 -
2 126.38 143.02 11.64 128.69 143.20 10.13 128.69 128.69 - 128.69 128.69 -
3 128.26 128.26 - 128.26 128.26 - 128.26 128.26 - 128.26 128.26 -

C201-010
1 118.60 118.60 - 118.60 118.60 - 118.60 118.60 - 118.60 118.60 -
2 117.35 117.35 - 117.35 117.35 - 117.35 117.35 - 117.35 117.35 -
3 98.09 98.09 - 98.09 98.09 - 98.09 98.09 - 98.09 98.09 -

R101-010
1 33.50 33.50 - 33.50 33.50 - 33.50 33.50 - 33.50 33.50 -
2 28.84 28.84 - 28.84 28.84 - 28.84 28.84 - 28.84 28.84 -
3 28.80 28.80 - 28.80 28.80 - 28.80 28.80 - 28.80 28.80 -

R201-010
1 88.25 88.25 - 88.25 88.25 - 88.25 88.25 - 88.25 88.25 -
2 89.23 89.23 - 89.23 89.23 - 89.23 89.23 - 89.23 89.23 -
3 70.42 70.42 - 70.42 70.42 - 70.42 70.42 - 70.42 70.42 -

RC101-010
1 68.09 68.09 - 68.09 68.09 - 68.09 68.09 - 68.09 68.09 -
2 48.91 48.91 - 48.91 48.91 - 48.91 48.91 - 48.91 48.91 -
3 69.18 69.18 - 69.18 69.18 - 69.18 69.18 - 69.18 69.18 -

RC201-010
1 148.56 148.56 - 148.56 148.56 - 148.56 148.56 - 148.56 148.56 -
2 181.34 181.34 - 181.34 181.34 - 181.34 181.34 - 181.34 181.34 -
3 167.32 167.32 - 167.32 167.32 - 167.32 167.32 - 167.32 167.32 -

C101-015
1 111.77 208.77 46.46 107.61 208.77 48.46 105.22 175.14 39.92 127.46 175.16 27.23
2 128.69 216.01 40.42 119.35 216.11 44.77 128.69 178.19 27.78 108.34 178.27 39.23
3 117.76 214.09 45.00 128.26 214.03 40.07 128.26 172.54 25.66 128.26 173.10 25.90
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Instance P0
i P0

f P∗i P∗f
Set id LB UB gap (%) LB UB gap (%) LB UB gap (%) LB UB gap (%)

C201-015
1 234.93 234.93 - 234.93 234.93 - 234.93 234.93 - 234.93 234.93 -
2 196.63 196.63 - 196.63 196.63 - 196.63 196.63 - 196.63 196.63 -
3 208.92 208.92 - 208.92 208.92 - 208.92 208.92 - 208.92 208.92 -

R101-015
1 36.07 48.24 25.23 36.07 37.69 4.29 36.07 36.07 - 36.07 36.07 -
2 41.80 62.87 33.51 41.80 55.27 24.38 41.80 41.80 - 41.80 41.80 -
3 44.81 44.81 - 44.81 44.81 - 44.81 44.81 - 44.81 44.81 -

R201-015
1 159.76 159.76 - 159.76 159.76 - 159.76 159.76 - 159.76 159.76 -
2 152.17 152.17 - 152.17 152.17 - 152.17 152.17 - 152.17 152.17 -
3 140.01 140.01 - 140.01 140.01 - 140.01 140.01 - 140.01 140.01 -

RC101-015
1 70.44 130.17 45.88 70.44 130.80 46.14 70.44 116.91 39.75 70.44 115.29 38.90
2 65.47 118.04 44.54 58.36 117.96 50.52 65.47 65.47 - 65.47 65.47 -
3 69.18 96.67 28.44 68.09 93.56 27.22 69.59 69.59 - 69.59 69.59 -

RC201-015
1 210.81 238.40 11.57 210.81 238.69 11.68 216.70 238.16 9.01 216.60 238.63 9.23
2 235.87 249.09 5.31 235.87 249.20 5.35 235.87 248.89 5.23 235.87 249.23 5.36
3 230.02 249.98 7.99 239.02 248.09 3.65 239.02 246.81 3.15 231.62 249.40 7.13

C101-025
1 155.82 231.52 32.70 156.77 231.14 32.17 134.91 206.30 34.61 128.00 205.96 37.85
2 128.69 246.34 47.76 128.69 246.08 47.70 127.45 213.21 40.22 128.12 213.08 39.87
3 127.96 247.32 48.26 123.26 247.78 50.25 128.26 208.83 38.58 124.77 209.94 40.57

C201-025
1 284.91 420.47 32.24 346.68 420.31 17.52 286.56 420.17 31.80 279.41 420.10 33.49
2 343.41 387.65 11.41 226.04 387.60 41.68 252.95 387.44 34.71 129.10 387.40 66.68
3 329.51 402.07 18.05 324.95 402.09 19.19 342.63 402.02 14.77 332.81 402.08 17.23

R101-025
1 42.77 114.93 62.78 42.77 114.64 62.69 42.77 42.77 - 42.77 42.77 -
2 51.55 103.30 50.10 51.01 102.86 50.40 51.55 51.55 - 51.55 51.55 -
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Instance P0
i P0

f P∗i P∗f
Set id LB UB gap (%) LB UB gap (%) LB UB gap (%) LB UB gap (%)

3 60.27 89.76 32.86 58.52 91.73 36.20 60.27 60.27 - 60.27 60.27 -

R201-025
1 149.44 238.23 37.27 202.81 237.50 14.61 198.41 236.78 16.21 205.82 236.63 13.02
2 213.47 254.16 16.01 206.90 254.25 18.62 182.28 253.23 28.02 193.08 253.33 23.78
3 209.09 212.26 1.49 209.09 212.46 1.59 198.73 210.25 5.48 209.09 209.09 -

RC101-025
1 68.12 134.52 49.36 67.31 135.37 50.28 70.44 116.70 39.64 68.09 116.93 41.77
2 65.47 128.86 49.19 65.04 129.35 49.72 73.86 91.94 19.66 73.86 90.64 18.51
3 68.72 104.58 34.29 68.77 102.93 33.19 72.41 72.41 - 72.41 72.41 -

RC201-025
1 196.67 436.81 54.98 119.58 436.61 72.61 301.30 435.06 30.75 168.03 435.23 61.39
2 165.15 429.82 61.58 103.28 430.72 76.02 203.40 428.73 52.56 271.05 429.43 36.88
3 170.30 429.22 60.32 297.56 432.05 31.13 207.37 429.06 51.67 167.31 429.78 61.07
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Table A.5: Solution bounds obtained by the BC algorithm for formulation P∗, with
and without the use of the fractional separation heuristic for IWECs, for instances with
51 vertices.

Instance P∗i P∗f
Set id LB UB gap (%) LB UB gap (%)

C101-050
1 115.68 241.73 52.14 109.47 241.68 54.70
2 124.29 231.89 46.40 124.29 232.42 46.52
3 120.07 229.22 47.62 108.01 229.28 52.89

C201-050
1 352.30 693.28 49.18 354.08 693.64 48.95
2 284.78 666.32 57.26 270.78 667.02 59.40
3 271.26 691.42 60.77 113.05 690.35 83.62

R101-050
1 65.56 65.56 - 65.56 65.56 -
2 70.68 70.68 - 70.68 70.68 -
3 69.02 69.02 - 69.02 69.02 -

R201-050
1 94.33 492.07 80.83 74.60 493.30 84.88
2 77.63 465.30 83.32 77.63 464.72 83.30
3 67.48 445.00 84.84 103.10 445.28 76.85

RC101-050
1 71.91 120.44 40.29 74.92 121.52 38.35
2 67.72 131.00 48.31 62.50 128.99 51.55
3 78.26 120.27 34.93 78.26 116.87 33.04

RC201-050
1 78.76 675.61 88.34 78.76 677.33 88.37
2 79.74 641.42 87.57 79.74 646.75 87.67
3 125.89 636.70 80.23 85.65 641.75 86.65

Table A.6: Comparison between both separation strategies for formulation P∗: root
times and gaps, optimality gaps and number of BC nodes explored.

Instance P∗i P∗f
Set id tr gapr (%) t gap (%) nodes tr gapr (%) t gap (%) nodes

C101-010
1 0.2 44.43 1916.8 - 494609 0.2 44.43 3670.2 - 470877
2 0.2 42.23 881.8 - 371224 0.2 42.22 690.2 - 151704
3 0.0 - 0.1 - 0 0.0 - 0.1 - 0

C201-010
1 0.4 45.06 31.1 - 19493 0.4 45.06 69.9 - 17450
2 0.6 41.53 9.5 - 3454 0.6 41.53 16.9 - 3284
3 0.6 48.89 5.0 - 1928 0.8 48.89 8.7 - 1657

R101-010
1 0.0 - 0.1 - 0 0.0 - 0.1 - 0
2 0.6 16.51 0.7 - 10 0.6 16.51 0.7 - 11
3 0.0 - 0.0 - 0 0.0 - 0.0 - 0

R201-010
1 0.0 - 0.1 - 0 0.0 - 0.1 - 0
2 0.0 - 0.0 - 0 0.0 - 0.0 - 0
3 0.0 - 0.0 - 0 0.0 - 0.0 - 0

RC101-010
1 0.6 43.92 325.9 - 67277 0.8 43.72 356.4 - 58761
2 0.4 50.66 201.0 - 80362 0.4 50.62 320.2 - 58877
3 0.4 33.22 0.5 - 22 0.4 32.96 0.5 - 26

RC201-010
1 0.4 53.02 0.8 - 48 0.4 53.02 0.8 - 38
2 0.5 52.84 0.6 - 28 0.5 52.84 0.7 - 28
3 0.0 - 0.1 - 0 0.0 - 0.1 - 0
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Instance P∗i P∗f
Set id tr gapr (%) t gap (%) nodes tr gapr (%) t gap (%) nodes

C101-015
1 0.4 51.14 (tl) 39.92 177434 0.5 51.14 (tl) 27.23 157290
2 0.5 50.12 (tl) 27.78 155600 0.7 50.06 (tl) 39.23 131300
3 0.4 54.10 (tl) 25.66 342728 0.3 54.10 (tl) 25.90 182962

C201-015
1 0.6 56.42 76.1 - 20464 0.7 56.42 396.4 - 37633
2 1.6 51.42 284.2 - 30325 3.5 51.42 489.0 - 20421
3 1.5 55.75 8.0 - 2166 1.8 55.76 23.5 - 1884

R101-015
1 0.4 1.68 0.5 - 3 0.5 1.72 0.5 - 3
2 0.7 8.32 0.7 - 11 0.7 8.32 0.8 - 11
3 0.0 - 0.0 - 0 0.0 - 0.0 - 0

R201-015
1 0.7 59.00 0.9 - 19 0.7 59.00 1.0 - 19
2 0.9 60.13 1.0 - 11 1.1 60.13 1.1 - 3
3 0.0 - 0.1 - 0 0.0 - 0.1 - 0

RC101-015
1 2.7 53.89 (tl) 39.75 179175 3.2 53.18 (tl) 38.90 123100
2 2.7 36.45 1590.3 - 143326 2.8 36.45 2188.5 - 83403
3 0.6 47.48 21.7 - 7258 0.6 47.64 14.2 - 2037

RC201-015
1 1.3 66.60 (tl) 9.01 251174 1.3 66.60 (tl) 9.23 101006
2 2.0 60.12 (tl) 5.23 243285 1.9 60.14 (tl) 5.36 88568
3 0.9 67.23 (tl) 3.15 685873 0.5 67.37 (tl) 7.13 204698

C101-025
1 1.5 53.32 (tl) 34.61 58582 2.3 53.32 (tl) 37.85 41529
2 3.4 50.27 (tl) 40.22 79072 4.0 50.27 (tl) 39.87 35012
3 2.6 48.24 (tl) 38.58 61930 3.7 48.20 (tl) 40.57 31389

C201-025
1 2.6 73.20 (tl) 31.80 55265 4.0 73.18 (tl) 33.49 18972
2 2.0 71.09 (tl) 34.71 50380 6.5 71.08 (tl) 66.68 13408
3 2.1 68.58 (tl) 14.77 46797 4.8 68.47 (tl) 17.23 35336

R101-025
1 3.0 9.90 3.1 - 4 3.1 9.90 3.2 - 4
2 0.0 - 2.4 - 0 0.0 - 2.5 - 0
3 0.0 - 0.1 - 0 0.0 - 0.1 - 0

R201-025
1 11.7 72.46 (tl) 16.21 50546 10.5 72.29 (tl) 13.02 13190
2 13.7 75.00 (tl) 28.02 52300 14.4 74.94 (tl) 23.78 11253
3 4.3 72.75 (tl) 5.48 68648 12.2 72.48 2946.1 - 15446

RC101-025
1 8.0 55.47 (tl) 39.64 156025 7.3 55.21 (tl) 41.77 62239
2 5.1 46.72 (tl) 19.66 101663 5.7 46.72 (tl) 18.51 77361
3 2.0 44.68 926.2 - 97066 2.8 44.55 414.7 - 26378

RC201-025
1 8.1 78.96 (tl) 30.75 69893 9.2 78.96 (tl) 61.39 17584
2 13.2 76.51 (tl) 52.56 61100 12.7 76.51 (tl) 36.88 13466
3 4.0 75.71 (tl) 51.67 76800 4.0 75.71 (tl) 61.07 15312

C101-050
1 31.4 54.83 (tl) 52.14 11064 36.6 54.82 (tl) 54.70 6398
2 77.6 50.23 (tl) 46.40 9237 87.9 50.23 (tl) 46.52 2437
3 6.8 52.93 (tl) 47.62 16220 7.5 52.93 (tl) 52.89 8459

C201-050
1 176.2 83.37 (tl) 49.18 6575 194.5 83.36 (tl) 48.95 1287
2 124.9 80.96 (tl) 57.26 9011 181.5 80.93 (tl) 59.40 1690
3 13.0 85.05 (tl) 60.77 16283 29.5 85.01 (tl) 83.62 4240

R101-050
1 138.5 31.58 535.9 - 1276 138.1 31.58 726.2 - 610
2 39.5 33.36 88.1 - 67 44.4 33.36 131.8 - 62
3 29.3 29.37 64.7 - 70 28.8 29.37 64.8 - 100

R201-050
1 135.5 84.95 (tl) 80.83 4006 164.8 84.94 (tl) 84.88 927
2 127.6 83.41 (tl) 83.32 6652 184.7 83.34 (tl) 83.30 626
3 43.8 84.93 (tl) 84.84 10693 41.9 84.93 (tl) 76.85 3342

RC101-050
1 53.0 56.06 (tl) 40.29 27387 59.4 55.88 (tl) 38.35 7763
2 74.8 56.80 (tl) 48.31 27078 79.5 56.78 (tl) 51.55 7264
3 26.5 57.76 (tl) 34.93 62400 27.0 57.76 (tl) 33.04 20777

RC201-050
1 62.7 88.37 (tl) 88.34 4227 81.6 88.37 (tl) 88.37 691
2 85.8 87.68 (tl) 87.57 7195 91.3 87.68 (tl) 87.67 703
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Instance P∗i P∗f
Set id tr gapr (%) t gap (%) nodes tr gapr (%) t gap (%) nodes

3 33.5 88.43 (tl) 80.23 13440 34.1 88.43 (tl) 86.65 1492

Table A.7 compares the same two versions of the algorithm, in terms of number
of IWECs generated by each approach, and the time spent in separation routines for
these cuts. The first two columns identify each instance. The next three columns refer
to P∗i . In the third and fourth columns, we show the time spent in the separation for
IWECs (Algorithm 2), in seconds and in percentage values with respect to the total
execution time. The fifth column contains the number of IWECs generated by that
algorithm for each instance. The following columns concern P∗f . For this version, we
also show the time spent in the fractional separation heuristic for IWECs, in seconds
and percentage, in the sixth and seventh column, respectively. The two next columns
display the time spent in the integer separation for IWECs, also in absolute and relative
values respectively. The last two columns of the table contain the number of IWECs
generated by the fractional separation algorithm and the integer one, respectively.

Table A.7: Comparison between both separation strategies for formulation P∗: time
spent in the IWEC separation routines and number of IWECs generated.

Instance
P∗i P∗f

ti IWEC tf ti IWEC
Set id s % int s % s % frac int

C101-010
1 0.7 0.02 1884 465.5 12.68 0.5 0.01 5339 1121
2 0.4 0.06 1378 112.8 16.34 0.3 0.05 1898 1030
3 0.0 0.63 1 0.0 0.98 0.0 0.45 1 0

C201-010
1 0.1 0.16 225 20.1 28.75 0.1 0.14 1069 182
2 0.1 0.41 82 4.9 28.86 0.1 0.37 296 72
3 0.1 0.61 74 2.5 29.21 0.0 0.43 346 50

R101-010
1 0.0 1.27 1 0.0 0.00 0.0 1.28 0 1
2 0.0 0.11 1 0.0 2.03 0.0 0.12 1 1
3 0.0 1.52 1 0.0 0.72 0.0 1.58 0 1

R201-010
1 0.0 0.62 0 0.0 0.00 0.0 0.65 0 0
2 0.0 1.90 0 0.0 0.00 0.0 1.91 0 0
3 0.0 1.86 0 0.0 0.00 0.0 1.71 0 0

RC101-010
1 1.3 0.36 1478 89.9 25.23 0.7 0.19 2250 719
2 0.7 0.21 840 90.5 28.26 0.4 0.11 2510 428
3 0.0 0.42 2 0.0 4.88 0.0 0.30 2 1

RC201-010
1 0.0 1.36 7 0.1 7.92 0.0 0.88 2 2
2 0.0 0.67 4 0.0 3.91 0.0 0.67 0 4
3 0.0 0.97 2 0.0 1.32 0.0 1.00 1 2

C101-015
1 7.9 0.11 5707 761.5 10.58 3.1 0.04 15414 2103
2 17.1 0.24 7214 992.7 13.79 8.6 0.12 15799 3073
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Instance
P∗i P∗f

ti IWEC tf ti IWEC
Set id s % int s % s % frac int

3 7.1 0.10 7116 714.6 9.92 3.6 0.05 13009 3175

C201-015
1 0.5 0.13 458 104.2 26.29 0.5 0.12 3737 395
2 1.8 0.36 503 122.6 25.07 0.8 0.17 2171 223
3 0.2 0.66 94 6.9 29.28 0.1 0.50 549 69

R101-015
1 0.0 0.45 2 0.0 2.03 0.0 0.47 1 2
2 0.0 0.34 1 0.0 6.10 0.0 0.33 2 1
3 0.0 0.98 0 0.0 0.00 0.0 0.99 0 0

R201-015
1 0.0 0.72 2 0.0 4.73 0.0 0.71 0 2
2 0.0 0.97 2 0.0 2.95 0.0 0.75 4 1
3 0.0 1.75 0 0.0 0.00 0.0 1.78 0 0

RC101-015
1 5.7 0.08 2050 1028.3 14.28 1.5 0.02 12342 508
2 2.8 0.13 799 502.8 22.97 0.5 0.02 5321 145
3 0.1 0.86 182 3.5 24.70 0.0 0.31 847 61

RC201-015
1 11.6 0.16 3714 1182.4 16.42 2.5 0.03 22989 650
2 11.2 0.16 2737 1242.1 17.25 1.1 0.01 15201 231
3 2.6 0.04 2926 952.9 13.23 4.9 0.07 18175 3323

C101-025
1 15.3 0.21 3414 658.7 9.15 5.0 0.07 30603 944
2 37.4 0.52 4789 938.2 13.03 11.3 0.16 27673 1194
3 35.4 0.49 4945 715.9 9.94 6.1 0.09 22804 868

C201-025
1 39.2 0.54 3435 934.5 12.98 6.1 0.09 34844 472
2 53.6 0.74 3574 835.9 11.61 4.4 0.06 30532 282
3 44.6 0.62 6052 1094.3 15.20 19.3 0.27 32223 2214

R101-025
1 0.0 0.71 0 0.1 4.23 0.0 0.74 0 0
2 0.0 1.68 0 0.0 0.00 0.0 1.75 0 0
3 0.0 7.70 0 0.0 0.00 0.0 7.70 0 0

R201-025
1 31.6 0.44 2525 632.7 8.79 1.2 0.02 23812 92
2 43.7 0.61 2723 757.4 10.52 3.5 0.05 35516 201
3 19.1 0.65 2525 318.7 10.82 1.0 0.03 10829 143

RC101-025
1 21.1 0.29 2410 1480.7 20.57 3.4 0.05 14272 366
2 30.0 0.42 2610 2084.3 28.95 8.8 0.12 15726 715
3 2.5 0.61 1159 106.9 25.76 0.6 0.14 4648 256

RC201-025
1 52.1 0.72 4252 1012.9 14.07 2.6 0.04 45388 185
2 66.0 0.92 4191 992.6 13.79 1.9 0.03 31062 112
3 39.4 0.55 5048 678.5 9.42 0.9 0.01 46889 96

C101-050
1 123.1 1.71 1322 1764.6 24.51 16.6 0.23 14958 173
2 171.8 2.39 892 1543.4 21.44 6.0 0.08 9727 29
3 114.0 1.58 2225 1305.9 18.14 14.8 0.21 13889 285

C201-050
1 203.1 2.82 574 1871.6 25.99 2.8 0.04 13156 5
2 350.4 4.87 1021 2372.4 32.95 2.2 0.03 10056 5
3 169.9 2.36 2392 1394.5 19.37 19.4 0.27 22838 262
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Instance
P∗i P∗f

ti IWEC tf ti IWEC
Set id s % int s % s % frac int

R101-050
1 15.2 2.09 51 223.5 30.77 6.5 0.89 529 20
2 1.2 0.87 4 20.9 15.87 1.2 0.89 148 4
3 0.6 0.95 5 13.1 20.17 0.8 1.27 76 7

R201-050
1 101.3 1.41 219 2109.0 29.29 0.8 0.01 10652 1
2 79.8 1.11 286 930.0 12.92 0.2 0.00 7804 0
3 98.8 1.37 1286 1224.7 17.01 6.3 0.09 12516 80

RC101-050
1 251.0 3.49 1614 2825.8 39.25 58.0 0.81 13542 368
2 217.3 3.02 1287 2944.8 40.90 29.1 0.40 10728 175
3 83.3 1.16 1847 2255.2 31.32 24.7 0.34 17325 513

RC201-050
1 37.5 0.52 194 822.2 11.42 0.1 0.00 11124 0
2 47.0 0.65 315 723.7 10.05 0.1 0.00 9251 0
3 64.9 0.90 829 892.6 12.40 0.2 0.00 16017 1

Table A.8 compares the same two approaches regarding the three types of IWECs
generated by each one, for each instance: capacity, time window and satellite scheduling
constraints. The first two columns in that table contain the instance set and id. The
next six columns refer to P∗i . In the third and fourth columns, we display the number
of capacity cuts found and the percentage value of that number with respect to the
total number of IWECs generated. The fifth and sixth columns show the absolute
and relative numbers of time window cuts found, respectively. The seventh and eighth
columns display these numbers for scheduling cuts. The subsequent six columns contain
the same values for P∗f .



A
.2.

D
eta

iled
R

esu
lt

s
fo

r
t
h
e

B
r
a
n
c
h
-a

n
d
-C

u
t

A
lg

o
r
it

h
m

97

Table A.8: Comparison between both separation strategies for formulation P∗: number of IWECs of each type generated by each
approach.

Instance
P∗i P∗f

Capacity Time window Scheduling Capacity Time window Scheduling
Set id # % # % # % # % # % # %

C101-010
1 25 1.3 1389 73.7 470 24.9 33 0.5 3246 50.2 3181 49.2
2 42 3.0 1004 72.9 332 24.1 80 2.7 1457 49.8 1391 47.5
3 0 0.0 1 100.0 0 0.0 1 100.0 0 0.0 0 0.0

C201-010
1 0 0.0 196 87.1 29 12.9 0 0.0 343 27.4 908 72.6
2 0 0.0 72 87.8 10 12.2 0 0.0 116 31.5 252 68.5
3 0 0.0 62 83.8 12 16.2 0 0.0 65 16.4 331 83.6

R101-010
1 0 0.0 1 100.0 0 0.0 0 0.0 1 100.0 0 0.0
2 0 0.0 1 100.0 0 0.0 0 0.0 1 50.0 1 50.0
3 0 0.0 1 100.0 0 0.0 0 0.0 1 100.0 0 0.0

R201-010
1 0 - 0 - 0 - 0 - 0 - 0 -
2 0 - 0 - 0 - 0 - 0 - 0 -
3 0 - 0 - 0 - 0 - 0 - 0 -

RC101-010
1 121 8.2 1126 76.2 231 15.6 186 6.3 1473 49.6 1310 44.1
2 17 2.0 702 83.6 121 14.4 42 1.4 1448 49.3 1448 49.3
3 0 0.0 2 100.0 0 0.0 0 0.0 2 66.7 1 33.3

RC201-010
1 0 0.0 6 85.7 1 14.3 0 0.0 2 50.0 2 50.0
2 0 0.0 4 100.0 0 0.0 0 0.0 4 100.0 0 0.0
3 0 0.0 2 100.0 0 0.0 0 0.0 2 66.7 1 33.3
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Instance
P∗i P∗f

Capacity Time window Scheduling Capacity Time window Scheduling
Set id # % # % # % # % # % # %

C101-015
1 206 3.6 4303 75.4 1198 21.0 334 1.9 9707 55.4 7476 42.7
2 304 4.2 5268 73.0 1642 22.8 667 3.5 8426 44.6 9779 51.8
3 311 4.4 5552 78.0 1253 17.6 695 4.3 8909 55.0 6580 40.7

C201-015
1 0 0.0 418 91.3 40 8.7 0 0.0 901 21.8 3231 78.2
2 0 0.0 341 67.8 162 32.2 0 0.0 505 21.1 1889 78.9
3 0 0.0 82 87.2 12 12.8 0 0.0 127 20.6 491 79.4

R101-015
1 0 0.0 2 100.0 0 0.0 0 0.0 2 66.7 1 33.3
2 0 0.0 1 100.0 0 0.0 0 0.0 2 66.7 1 33.3
3 0 - 0 - 0 - 0 - 0 - 0 -

R201-015
1 0 0.0 2 100.0 0 0.0 0 0.0 2 100.0 0 0.0
2 0 0.0 2 100.0 0 0.0 0 0.0 1 20.0 4 80.0
3 0 - 0 - 0 - 0 - 0 - 0 -

RC101-015
1 19 0.9 1626 79.3 405 19.8 79 0.6 5861 45.6 6910 53.8
2 9 1.1 593 74.2 197 24.7 23 0.4 1921 35.1 3522 64.4
3 24 13.2 152 83.5 6 3.3 175 19.3 194 21.4 539 59.4

RC201-015
1 0 0.0 2496 67.2 1218 32.8 0 0.0 13414 56.7 10225 43.3
2 0 0.0 1970 72.0 767 28.0 0 0.0 5902 38.2 9530 61.8
3 0 0.0 2459 84.0 467 16.0 0 0.0 12134 56.4 9364 43.6

C101-025
1 29 0.8 2676 78.4 709 20.8 124 0.4 19906 63.1 11517 36.5
2 75 1.6 3645 76.1 1069 22.3 222 0.8 12731 44.1 15914 55.1
3 206 4.2 3546 71.7 1193 24.1 241 1.0 5349 22.6 18082 76.4
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Instance
P∗i P∗f

Capacity Time window Scheduling Capacity Time window Scheduling
Set id # % # % # % # % # % # %

C201-025
1 3 0.1 2389 69.5 1043 30.4 9 0.0 9039 25.6 26268 74.4
2 0 0.0 1734 48.5 1840 51.5 0 0.0 7664 24.9 23150 75.1
3 23 0.4 4942 81.7 1087 18.0 38 0.1 13023 37.8 21376 62.1

R101-025
1 0 - 0 - 0 - 0 - 0 - 0 -
2 0 - 0 - 0 - 0 - 0 - 0 -
3 0 - 0 - 0 - 0 - 0 - 0 -

R201-025
1 0 0.0 1504 59.6 1021 40.4 0 0.0 8415 35.2 15489 64.8
2 0 0.0 1650 60.6 1073 39.4 0 0.0 20143 56.4 15574 43.6
3 0 0.0 1842 73.0 683 27.0 0 0.0 3896 35.5 7076 64.5

RC101-025
1 13 0.5 1940 80.5 457 19.0 138 0.9 5678 38.8 8822 60.3
2 38 1.5 1974 75.6 598 22.9 189 1.1 6986 42.5 9266 56.4
3 137 11.8 937 80.8 85 7.3 487 9.9 1547 31.5 2870 58.5

RC201-025
1 0 0.0 3082 72.5 1170 27.5 0 0.0 25534 56.0 20039 44.0
2 0 0.0 2401 57.3 1790 42.7 0 0.0 12480 40.0 18694 60.0
3 0 0.0 3273 64.8 1775 35.2 0 0.0 26517 56.4 20468 43.6

C101-050
1 4 0.3 903 68.3 415 31.4 13 0.1 4742 31.3 10376 68.6
2 6 0.7 464 52.0 422 47.3 8 0.1 2444 25.1 7304 74.9
3 7 0.3 1702 76.5 516 23.2 45 0.3 3021 21.3 11108 78.4

C201-050
1 10 1.7 271 47.2 293 51.0 55 0.4 7302 55.5 5804 44.1
2 23 2.3 444 43.5 554 54.3 195 1.9 338 3.4 9528 94.7
3 15 0.6 1771 74.0 606 25.3 810 3.5 6220 26.9 16070 69.6
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Instance
P∗i P∗f

Capacity Time window Scheduling Capacity Time window Scheduling
Set id # % # % # % # % # % # %

R101-050
1 8 15.7 28 54.9 15 29.4 7 1.3 52 9.5 490 89.3
2 1 25.0 3 75.0 0 0.0 4 2.6 7 4.6 141 92.8
3 0 0.0 5 100.0 0 0.0 3 3.6 14 16.9 66 79.5

R201-050
1 0 0.0 83 37.9 136 62.1 0 0.0 3215 30.2 7438 69.8
2 0 0.0 83 29.0 203 71.0 0 0.0 87 1.1 7717 98.9
3 0 0.0 722 56.1 564 43.9 0 0.0 2463 19.6 10133 80.4

RC101-050
1 58 3.6 1324 82.0 232 14.4 114 0.8 4419 31.8 9377 67.4
2 1 0.1 1044 81.1 242 18.8 211 1.9 1480 13.6 9212 84.5
3 16 0.9 1711 92.6 120 6.5 219 1.2 2690 15.1 14929 83.7

RC201-050
1 0 0.0 105 54.1 89 45.9 0 0.0 4502 40.5 6622 59.5
2 0 0.0 111 35.2 204 64.8 0 0.0 232 2.5 9019 97.5
3 0 0.0 368 44.4 461 55.6 0 0.0 6840 42.7 9178 57.3
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