
AN INTEGRATED PLANNING AND CELLULAR

AUTOMATA BASED PROCEDURAL GAME LEVEL

GENERATOR

YURI PESSOA AVELAR MACEDO

AN INTEGRATED PLANNING AND CELLULAR

AUTOMATA BASED PROCEDURAL GAME LEVEL

GENERATOR

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Ciência da Com-
putação do Instituto de Ciências Exatas da
Universidade Federal de Minas Gerais como
requisito parcial para a obtencão do título de
Mestre em Ciência da Computação

ORIENTADOR: LUIZ CHAIMOWICZ

Belo Horizonte

Agosto de 2018

YURI PESSOA AVELAR MACEDO

AN INTEGRATED PLANNING AND CELLULAR

AUTOMATA BASED PROCEDURAL GAME LEVEL

GENERATOR

Master’s Thesis presented to the Graduate
Program in Computer Science of the Federal
University of Minas Gerais in partial fulfill-
ment for the acquisition of the degree of Mas-
ter in Computer Science.

ADVISOR: LUIZ CHAIMOWICZ

Belo Horizonte

August 2018

© 2018, Yuri Pessoa Avelar Macedo.

 Todos os direitos reservados

 Macedo, Yuri Pessoa Avelar.

M141i An integrated planning and cellular automata based
 procedural game level generator [manuscrito] / Yuri Pessoa
 Avelar Macedo. – 2018.
 xxiii, 108 f. il.

 Orientador:. Luiz Chaimowicz.
 Dissertação (mestrado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação.
 Referências: f.85-90
 .
 1. Computação – Teses. 2. Geração procedural de conteúdo
 – Teses. 3.Inteligência artificial – Teses. 4.Jogos eletrônicos –
 Teses. I. Chaimowicz, Luiz. II. Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação. III.Título.

CDU 519.6*34(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6ª Região nº 1510

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITIJTO DE CIÊNCIAS EXATAS

PROGRAMA DE PÓS-GRADUAÇÃO EM crtNCIA DA COMPUTAÇÃO

FOLHA DE APROVAÇÃO

An lntegrated Planning and Cellular Automata Based Procedural Game
Level Generator

YURI PESSOA A VELAR MACEDO

Belo Hoózontc, 22 de novembro de 2018.

This work is dedicated to everyone within my friends and family that have en-
couraged me to get this far. To all of you, thanks. Your guys are awesome, and

you have helped to make me feel awesome too. I couldn’t have done this without
all of you.

Acknowledgments

Shout-outs to Dr. Luiz Chaimowicz for having an endless supply of patience to help a
eighteen-year-old me who was so unsure of things, he went to the Dr.’s office to second guess
his own academic choices no sooner than his third day of class. It was a rough beginning,
but one that made me friends I wish to carry for life, just as they carried me through the trials
of the first half of College. Only with the guidance of Chaimowicz and that of other amazing
teachers such as Gisele L. Pappa, Adriano Alonso Veloso, and Renato A. Ferreira, that the
Yuri from seven-and-a-half years ago who was pretty much uncertain about everything, was
shaped into a Yuri that is kind of less uncertain about things...Maybe...I think...Yeah.

Jokes aside, this necessity get stressed about anything and everything has cost me and
those around me dearly. A price paid with efficiency, health, sanity, and sleep. The latter of
which, for those who do not know, is regular practice that humans do a little bit of. And also
that, for almost two years now, I physically and mentally couldn’t. A state triggered by an
aggregate of scars left by my own uncertainties and fears. Many of which were ramifications
of the very early passing of my little brother, Yan, fourteen years ago.

That which shackles me is being torn, however. And I couldn’t have mustered this
strength without the help and encouragement from my mom and dad: Rosemeire Pessoa,
and Vladimir Avelar Macedo. They who did not only support me just about every day, but
also banked medical bills longer than this here chunk of paper.

Soothing to my rage was the gentle caress of my beloved one, Alice. Who I’ve had the
uncanny luck to meet, and the courage to call on a date only five months before everything
went down. She gave me the optimism I’ve never had, to the point where I now can have
some to call my own. I’m not even sure whether I would still be here, weren’t for her and
my family being by my side. A would-be gloom thought that I instead now ponder with
happiness for my luck to have them with me, rather than with dread for what could have
been.

Finally, of course, this two-and-a-half year work that you’re about to read wouldn’t be
possible without the comprehension of my professor adviser, (again) Luiz Chaimowicz, who
has also helped me keep my head cool whenever I’ve doubted my own work; To PPGCC,

ix

who has allowed me to take this long to deliver this; And to CAPES, who’s granted me the
financial support that allowed me to put all of my efforts into it. Thrice had I the opportunity
to share my academic works within and beyond my country over the years, and each was
only possible due to the exceptional aid of these three.

I’ve already gone past the first page, yet I can’t say any less. I guess my point is, thank
you. Everyone.

x

Procedural Content Generation for Games (PCG-G) is a field that in the past few years has
seen both extensive academic study and practical use in the games industry. While it isn’t
the panacea to solve the problem of suppling the endless demand for content in games, it
has proven to be a powerful tool-set that some successful games could not thrive without.
PCG-G, when properly applied, is beneficial to both large and small game companies look-
ing to optimize scalability.Likewise, when not properly applied, it can doom any project to
mediocrity. Games require very distinct types of content to be designed and implemented,
and the research field of procedural content generation aims to design, survey, contrast, and
improve, upon methods that apply to distinct domains. One of these domains is the genera-
tion of game levels, a branch of great interest for developers looking to improve their games’
replayability. With the intent of contributing to the existing discussion of procedural level
generation methods, as well as improving upon the established baseline, this work proposes
the designing of procedural levels through the integration of AI Planning and Cellular Au-
tomata. The product levels of this process are implemented and polished on the Unity Game
Engine, as to present their potential for entertainment through qualitative evaluation. Results
show that this methodology can be used for the generation of organic and cohesive game
levels.

Keywords: Procedural Content Generation, Artificial Intelligence, Digital Games

Abstract

xi

Geração Procedural de Conteúdo em jogos (PCG-G) é um campo de estudo que nos últi-
mos anos presenciou tanto extensivo estudo acadêmico quanto uso prático na indústria de
jogos. Mesmo que Geração Procedural não seja a panacéia que resolverá o problema de gerar
conteúdo infinito para jogos, este paradigma mostrou-se como uma poderosa ferramenta
pela qual diversos jogos só atingiram seu sucesso através dela. PCG-G, quando devidamente
aplicada, é beneficial para empresas grandes e pequenas de jogos que estão em busca de
otimizar a escalabilidade de seus projetos. Da mesma forma, quando indevidamente apli-
cada, Geração Procedural, pode fadar projetos à mediocridade. Jogos requerem tipos bem
distintos de conteúdo que precisam ser desenvolvidos e implementados, e a busca por méto-
dos de Geração Procedural visam propor, sondar, contrastar, e melhorar métodos aplicados
a diferentes domínios. Um destes domínios é a criação de níveis de jogo, que é um ramo de
alto interesse para desenvolvedores interessados em melhorar a re-jogabilidade de seus jogos.
Com a intenção de contribuir com a discussão existente sobre métodos de geração de níveis,
e também para melhorar o baseline existente, este trabalho se propõe o design de níveis
procedurais por meio da integração de AI Planning e Autômatos Celulares. Os níveis de
jogo criados por esse processo foram implementados e polidos na Unity Game Engine para
apresentar seu potencial para entretenimento por meio de avaliações qualitativas. Resultados
demonstraram que essa metodologia pode ser usada para geração de níveis de jogo orgânicos
e coesos.

Palavras Chave: Geração procedural de conteúdo, Inteligência artificial, Jogos eletrônicos

Resumo

xii

List of Figures

3.1 The Cellular Automata generated by rule 30, 54, and 60 of ’The 256 Rules’ by
Li and Packard [1990]. 18

3.2 Von Neumann and Moore neighborhoods for a single cell (colored in black).
The neighborhood’s size ’r’ can be increased to consider the states of additional
nearby cells. 19

3.3 A Multi-layered Cellular Automaton schematic drawing as presented by
Nakayama et al. [2015]. 20

3.4 With the production rules being applied M times to the axiom, a curve of length
M2 = N is obtained. The following Hilbert Curves are mapped to a NxN grid,
for the values of N = 1,2,4,8,16, and 32, respectively. 21

4.1 General structure and flow of our methodology. Beveled boxes represent dif-
ferent programmed modules, document shaped boxes represent text files, and
rounded boxes represent resulting constructs. Each component encapsulated
within the gray box is implemented and executed within the Unity Engine. Ar-
rows from a box source that have as their destination a construct (rounded) box
indicate that the source has generated that construct. All other arrows that have
their destination as a non-construct box indicate that their source is used as input
to their destination. 23

4.2 Example of multiple variable tree hierarchies within a ’character creator’ used
for our language’s preliminary testing, as displayed on a custom interface pro-
grammed on Unity. 27

4.3 Example of the goal function for the ’character creator’ problem represented as
a tree of logical functions. 29

xiii

4.4 Example from part of a Domain Library designed for preliminary testing. In this
test Domain Library, the planner must create a character from the game Dun-

geons & Dragons in accordance with the game’s rules. The first image contains
the group of actors that represent races. The second contains states that describe
how much of the generation process has been completed. And the third image
contains one of the actions that define one of the character’s properties. 30

4.5 Example action in the map theme generator domain library. This planning prob-
lem action takes no input parameters (meaning also that there are no constraints
to define which parameters that are acceptable). Has as a precondition function
that there are no _Temperature(), and no _Vegetation() states active. 31

4.6 Example final states configuration of the planner algorithm. The result is a set
of state(actor) that is a subset from all possible valid combinations of states and
their non-constraint violating actors. 32

4.7 Three versions of the same Cellular Automaton generated from different updat-
ing methods (see Chapter 3). From left to right, these methods are: synchronous,
asynchronous with cells updated in a random order, and asynchronous with cells
updated sequentially ordered by their position in the grid. Black cells are true,
white cells are f alse. 33

4.8 From left to right, the first four steps described in Sub-section 4.2.2 are repre-
sented: (1) Plotting, (2) Scaling, (3) Shifting, (4) Tracing. 37

4.9 To the left, the Cellular Automata marked with the Space-filling Curve’s path
(green), as well as the negative-path curve (yellow). To the Right, the resulting
automata after a number of iterations until it stabilizes. Parameters for this Au-
tomata are as follows: N = 100, M = 100, Fill = 0.5, S = 22, Pg = 1, Ng = 1.
The colored dots on the right image are the points from the Space-filling Curve. 38

4.10 The same automata presented in Figure 4.9 after rotation and shifting operations
are introduced. 40

4.11 The complete sequence of steps for the generation of the procedural map au-
tomata. The images for the ’Space-filling’ curve section are merely illustrative
and do not represent the same curve-path displayed in all other images. 40

4.12 Stacking of multiple layers of cellular automata, each responsible for one ele-
ment type in the map. 41

4.13 A base automata, a topology layer-mask generated from automata, and a mapped
version of the topology automata to 2D sprites. 42

xiv

4.14 From the base layer, to the topology layer-mask, 2D tiles are generated depend-
ing on their position in the topology mask, creating the aspect of a continuous
’natural cliff’ structure. The visual quality of the resulting tiles map (right im-
age) is the result of editing and experimenting with selected free visual assets
from Websites such as ope [2017]. As of now, we cannot present a theoretical
basis as how to optimize the visual quality of matching 2D tiles. 43

4.15 Evolution of the ’tree-generating automata’ without the introduction of space-
filling curves (Parameters: N = 100, M = 100, Fill = 0.01). The greener the
cell, the older it is compared to the other trees. As trees need to be ’5 iterations
old’ for them to start spawning other trees, the automata changes the most every 5
iterations. This age restriction also prevents trees from spreading wildly, instead
forming small forests. 44

4.16 Example of 2 layers of CA . 45

4.17 C# Script component that takes references for the planner library, the planning
solver, and the map generator (respectively), and filters 6 types of states from the
resulting planner’s solution (a previous example of a solution is as shown in 4.6).
Then, actors from the planning Domain Library are mapped (a String to Prefab
dictionary) onto an Automaton Prefab, which is stored on one of the project’s
folders. 46

4.18 Unity Component for Map Generation. Information about distinct parts of map
generation are separated in drop down menus, as is the case with the open ’Layer
Execution Order’ segment. Graphical interfaces such as this have been made for
all components of planning, map, and their integration. 47

5.1 Mosaic with different maps generated with different random seeds. Maps may
have different sizes. 56

5.2 Different versions of Map Geometry achieved by variating the random seed.
Parameters for these automata are as follows: N = 100, M = 100, Fill = 0.5,
S = 22, Pg = 1, Ng = 1 . 57

5.3 Map Geometry experiments with the Fill parameter for different values as to find
a compensation for the reduction in random cells by the imprinting of paths. . . 58

5.4 Variations of the same ’theme’ for a Map with different random seeds for its
Automata. 59

5.5 Two maps with the same random seed. On the left map, the cliff topography layer
iterates before the river generating layer. On the right map, the river generating
layer iterates first. 59

xv

5.6 A segment of the results of the tracker condensed into multiple tables. The
tracker shows, for a number of instances of the map generator (in this case
1000)), what is the frequency of each layer being in the set of layers chosen
for the final map. Certain groups of Layers, such as the ’Stage1Complete()’ and
an additional set of topography layers are used as intermediary states for the
creation of the map. 60

5.7 Plotting of the time required for the generation of maps of various sizes, with
distinct random seeds. 61

5.8 Unity’s profiler tool measuring, to the left, the CPU Usage and Allocated Mem-
ory over time for an average sized (aprox. 75x75 cells) map. To the right is
a detailed measurement of the percentage of memory consumption per type of
component in the game in the current frame (marked by the white vertical line
on the left side). The most important information to pull out from the profiler is
it’s first line: ’FixedUpdate.Physics2DFixedUpdate’ is the overhead required to
evaluate the physics properties of the map’s objects and taxes 58.5% of Unity’s
allocated memory. 61

6.1 Screenshot of the developed game. 68

xvi

List of Tables

2.1 Academic works related to games that used either the qualitative analysis
paradigm or used techniques common, but not exclusive, to qualitative analy-
sis. 12

4.1 Table of notable properties of the ADL planning language, as organized by Rus-
sell and Norvig [2016] . 26

6.1 Division of maps among volunteers of groups A and B (numbered 1 to 6). The
maps were labeled by number. Any map starting with ’S’ is a small map, and
maps starting with ’M’ are medium sized maps. Before any testing, maps were
divided into volunteers in a way that all but 2 medium sized maps were tested by
a total of 2 volunteers. 67

6.2 Data from the volunteer’s answers regarding topics about their entertainment.
Both are organized as 0’s (no) and 1’s (yes). 73

6.3 Data from the volunteers’ answers, displaying averages and totals (when rele-
vant) for each closed topic. Separated column entries for groups A, B contain
the sums and averages for each entertainment related topic in Table 6.2. 73

6.4 Data from the volunteers’ answers about topics regarding their opinions on the
maps’ aesthetics. Found maps visually engaging is organized as 0’s (no) and
1’s (yes). Number of Remembered levels is a question that emerged from the
original protocol. It accounts the number of levels the volunteer could remember
and accurately describe. 74

6.5 Data from the volunteers’ answers, displaying averages and totals (when rele-
vant) for each closed topic’s answers. Separated column entries for groups A,
and B contain the sums and averages for each aesthetic related topic in Table 6.4. 74

xvii

6.6 Data from the volunteers’ answers about topics regarding their understanding of
the maps’ structure. Most information is organized as 0’s (no) and 1’s (yes).
Two exception topics have distinct values: Room to Explore is an integer from
1 to 5: A value of 1 means that there was no freedom to explore, a 5 means
that the amount of explorable areas was overwhelming, and a 3 being the perfect
balance; Understood the Map is a simple grade from 1 to 5 of how well the
map was understood. 75

6.7 Data from the volunteers’ answers, displaying averages and totals (when rel-
evant) for each closed topic. Separated column entries for groups A, and B
contain the sums and averages for each layout related topic in Table 6.6. 75

6.8 Data from the volunteers’ answers regarding the implementation of PCG on the
generated maps. Found the maps visually interesting, Would develop a game
with this generator, Noticed it was about PCG, and Asked if it was about
PCG during play are answered as 0’s (no) and 1’s (yes). The remainder topics
were open answers that were condensed into one or two sentences for convenience 77

6.9 Data from the volunteers’ questions, displaying averages and totals (when rele-
vant) for each closed topic. Separated column entries for groups A, and B contain
the sums and averages for each PCG related topic in Table 6.8. 78

D.1 Data from the volunteers’ questions. The vertical axis contains each stated opin-
ion, while the horizontal contains answers relative to each topic. Most informa-
tion is organized as 0’s (no) and 1’s (yes). A few exception topics have distinct
values: Room to Explore is an integer from 1 to 5: A value of one means that
there was no freedom to explore, a 5 means that the amount of explorable areas
was overwhelming, and a 3 being the perfect balance; Understood the Map is
a simple grade from 1 to 5 of how well the map was understood; Got Lost is a
ternary scale with 0 meaning the volunteer did not get lost, with 2 meaning that
they have gotten lost, and 1 meaning that, while getting lost, the volunteer did
not find it to be a bothersome problem. Finally Number of Remembered levels
is just that, an accounting of the number of levels the volunteer could remember
and accurately describe. 105

D.2 Data from the volunteers’ questions, displaying averages and totals (when rel-
evant) for each topic. Separated column entries for groups A, B contain their
answers’ sums and averages. For a better understanding of the meaning of each
average, it would be best to check the information described in Table D.1’s caption.106

xviii

D.3 Data from the volunteers’ questions displayed in the same format as Table D.1.
These answers regard questions exclusive to Group B. The first and last rows are
closed binary answers, while the other remaining three have opinions condensed
into one or two sentences. 106

D.4 Data from the volunteers’ questions presented in Table D.3, displaying averages
and totals for PCG related topics presented exclusively to Group B. 107

xix

Contents

Acknowledgments ix

Abstract xi

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3

2 Literature Review 5
2.1 Presenting PCG-G . 5
2.2 Current state of PCG-G . 7
2.3 AI Planning . 8
2.4 Map Generation . 9
2.5 Integrated Map Generators . 10
2.6 Qualitative Analysis in Games . 11
2.7 Discussion . 12

3 Background 15
3.1 AI Planning . 15

3.1.1 The Basis of Planning Languages 16
3.2 Cellular Automata . 18

3.2.1 Synchronous vs. asynchronous Updating 19
3.2.2 Multi-layered Cellular Automata 19

3.3 Space-filling Curves . 20

4 Methodology 23

xxi

4.1 Level Planning . 24

4.1.1 Planning Language . 25

4.1.2 Hierarchical Classes . 26

4.1.3 ’Unknown’ Operator . 27

4.1.4 Planning Algorithm . 28

4.1.5 Domain Library . 29

4.1.6 Example: Map Theme Generator 31

4.2 Map Automata . 32

4.2.1 Cellular Automata . 32

4.2.2 Space-filling Curves . 34

4.2.3 Securing Negative Space . 37

4.2.4 Polishing . 38

4.2.5 Stacking Cellular Automata . 41

4.2.6 Example 1: Topology Layer . 42

4.2.7 Example 2: Tree Generating Layer 43

4.3 From Planning to Map Generation . 44

5 Quantitative Analysis 49
5.1 Resulting Maps . 49

5.2 Map Geometry . 50

5.3 Map Generation Variety . 51

5.4 Theme Planning Variety . 52

5.5 Performance . 53

6 Generator Analysis 63
6.1 Volunteer Selection . 65

6.1.1 Consent Form & Information security 66

6.2 Map Distribution . 66

6.2.1 Unity Game . 67

6.3 Testing Protocol . 69

6.3.1 Observation . 70

6.3.2 Interview . 71

6.3.3 Pilot Tests . 72

6.4 Results . 72

6.4.1 Engagement . 72

6.4.2 Aesthetic . 74

6.4.3 Layout . 75

xxii

6.4.4 PCG . 76
6.5 Final Observations . 79

7 Conclusion 81

Bibliography 85

Attachment A Map Generation Planning Library 91

Attachment B Consent Form 99

Attachment C Interview Diagram 103

Attachment D Qualitative collection 105

xxiii

Chapter 1

Introduction

As the games industry grows, creating sufficient content to satisfy the customers’ demands is
proving itself to be a struggle that for some companies might as well be impossible. Takat-
suki [2007] stated that the cost of manually generating content outpaces sales and revenue,
to the point where some companies are unable to follow the race for games of greater scale.
As recorded by Benson [2013], even the greatest titans in the industry are not immune to
this effect. The struggle to create ever more expensive games has lead large companies into
searching for alternatives for generating greater volumes of content.

On the other hand, Independent developers face their own struggles with creating more
for their games with fewer resources. Although their conflict is not of predatory competition,
the similar lack of resources and small teams can be the catalyst for searching alternative
methodologies for content creation. One such method for effectively dealing with resource
limitations is the paradigm of creating content automatically through algorithmic methods,
generally called Procedural Content Generation (PCG).

Procedural Content Generation is an area of computer science applied mostly on com-
puter graphics and digital games that consists of methods and algorithms that automatically
create content based on a set of rules. Within the realm of PCG, there are multiple types of
content that can be generated. Some methods are centered around the creation of environ-
ments (landscapes, mountains, trees, waterfalls, etc.) that are meant to be visually impressive
and diverse by emulating the rules of nature. In the context of games, procedural content can
be expanded into creating resources that directly affect gameplay, such as items, abilities,
enemies, Artificial Intelligence, or even the game’s rules themselves.

The topic of Procedural Content Generation for Games, which was first abbreviated
as PCG-G by Hendrikx et al. [2013], had one of its first documented cases by the end of
the 70’s. A time when most designers’ objectives were not to thoroughly optimize mone-
tary expenses, but instead to overcome storage limitations. Enter Telengrad, an Atari/DOS

1

2 CHAPTER 1. INTRODUCTION

dungeon crawler created by Lawrence [1976] that featured enemies, treasures, and dungeons
with millions of explorable rooms. This seven-digit amount of content was stored in just
about 50 KB of memory (with earlier versions of the game requiring as little as 8 kb). Being
able to achieve a game with this much content was unprecedented at the time, and it still
would be in this day for any type of handcrafted levels. Instead, to create more with less,
Telengrad had its dungeons generated during execution time algorithmically.

Despite remaining as a low-profile development methodology and as a research topic
for three decades, it was mostly within the last fifteen years that developers, both large and
Indie, have turned to PCG-G as a tool for supplying the demand for diverse, scalable content.
This rise in popularity can be attributed to several reasons: a PCG algorithm holds promise
for being able to generate an endless amount of whatever content it specializes in; it holds
the possibility of greatly reducing development costs, as documented by Lee [08 7]; finally,
having the game create unique content each time it is played could potentially bring new,
innovative experiences every time.

As a means to add to the discussion on procedural generation, this work implements a
procedural level generator that integrates a procedural map generator module, and a classical
planner module. The planner, which functions with a variation of the STRIPS and ADL
languages, decides which subset of mutually cohesive elements should be added to the level.
The map generator, which is based on stacked layers of Cellular Automata, takes this subset
of elements instantiates each one while being mindful of their interactions. As a means to
bridge the gap between academic research and game development, the proposed architecture
has been implemented onto the Unity: A professional standard game engine.

1.1 Motivation

For the game developers, a procedural generation methodology has proven not to be the
panacea for cost savings. Instead, PCG introduced itself as a game design paradigm that
presents several trade-offs, many of which are best discussed by Shaker et al. [2016b]: on
one hand, procedural content can reduce workload and consequently costs for generating
content. However, it can only do so if the amount created supersedes the cost of developing a
highly specialized and robust generation framework; second, if the target game for the PCG-
G algorithm will not make full use of hundreds, thousands, or millions of said content, then
it might be cheaper to assign resources towards having it handcrafted instead. This almost
always yields better results, as the procedural constructs today are still not as expressive,
detailed, or engaging as that which was created by experienced developers. Therefore, even
if a generator holds prestige for its quality, one must still ponder if the having more of said

1.2. GOALS 3

content compensates for the loss of the ’human touch’.
Having lightly gone over the dilemmas, advantages and disadvantages of Procedural

Content, it is important to address the importance of PCG in games. For some developers,
Procedural Content is a necessary step to meet consumer demand. For others, it is a potential
tool for lowering costs or to attain better scalability. PCG is a field with potential that still has
a long path to thread before it can consistently meet its expectations. As such, it is deserving
of the attention it receives. The amount of related academic works is steadily growing, and so
is the development of games that utilize it, both for commercial and experimental purposes.

Procedural Content Generation has been applied with critical acclaim within indie ti-
tles such as Binding of Isacc1 and Spelunky2. These projects have assumed the risk to imple-
ment procedural generation as a core feature of their games and have benefited greatly from
it. Gaming companies have been using procedural generation for creating environments for
years, but now there are games that utilize procedural content to influence gameplay such as
the encounters of The Elder Scrolls V: Skyrim3, and the item generators within the Border-

lands4 franchise, and World of Warcraft5 as well.
PCG-G as a field of research evolves as it is documented and refined taxonomies

emerge, such as the ones presented by Cheong et al. [2016]; Hendrikx et al. [2013]; To-
gelius et al. [2011]. Different methodologies are theorized, while practical implementations
are put to practice in the games industry. These examples and many others have only begun
to show the potential of procedural generation as a solid paradigm for game design.

1.2 Goals

One of the sub-topics of PCG-G that has seen great application within the industry, as sur-
veyed by Hendrikx et al. [2013], is the generation of Game Space: a category of PCG that
consists of algorithmically crafting the environment in which the game takes place. For most
games that allow the player to influence a character’s movement within in a intractable area,
this space is a ’Map’ that is contained within one of the game’s ’Levels’ (the whole of all
game elements within a section of play). There are a plethora of academic works discussing
methodologies for Map Generation, yet we feel that many still refrain from discussing how
playable, entertaining, or ’game-like’ resulting maps can be.

Cellular Automata (CA) time and again has shown to be a promising model due to its
flexibility to represent organic and populational behaviors. Case in point, CA is widely used

1http://bindingofisaac.com/
2https://www.spelunkyworld.com/
3https://elderscrolls.bethesda.net/skyrim
4https://borderlands.com/en-US/
5https://worldofwarcraft.com

4 CHAPTER 1. INTRODUCTION

for modeling vegetation, ecology, and human society dynamics, as documented by Balzter
et al. [1998]; Hogeweg [1988] and Liang and Wang [2017], respectively. Albeit a powerful
model, it still requires extensions that account for multiple types of behaviors that interact
with one another and that are possibly mutually restrictive. Furthermore, as an effort to
grow upon the field of generating procedural maps for game levels, this work establishes five
goals:

1. Improve upon the established methods of Cellular Automata Map Generation

2. Propose the use of a procedural multi-domain tool to assist procedural generators
modeled as Classical AI Planning problems.

3. Integrate the architectures developed for achieving 1 and 2.

4. Bridge the gap between game research and game development by having 3 imple-
mented onto an industry standard game engine.

5. Conduct a qualitative evaluation of the effectiveness of 1,2 and 3 through 4.

The proposed and implemented methodologies aim to be flexible enough as to be
easely adaptable to distinct domains (game genres, perspectives, themes, etc.) other than
the ones chosen for the purposes of this work. By integrating the modules for goals 1 and 2,
this work tackles two of the greatest challenges of PCG-G: (1) Interfacing & controllability
for PCG systems; (2) Interaction & opportunistic control flow between generators. By taking
the time to implement our architecture within an industry standard game engine, we intend
to reinforce our methodology as a viable, design friendly, and scalable possibility for pro-
cedural generation in commercial games. Finally, by conducting a qualitative analysis, we
measure the abstract concept of entertainment and fun achieved by our integrated procedural
generator.

The remainder of this work is divided as follows: Chapter 2 briefly covers a few of the
studies that analyze PCG as a field of research and as an industry tool. It also reviews the
progress and speculation on planning languages as game AI tools, followed by some meth-
ods that have been proposed or related to the generation of maps/levels, and to what other
procedural systems these can be integrated to. Chapter 3 goes over the basic concepts of the
research areas from which each of our methodologies draw from. Chapter 4 describes in full
detail how we have achieved goals 1 through 4, our generation processes, and the algorithms
involved with it. Chapter 5 briefly discusses the generated maps, providing a plethora of ex-
amples as well as performance data for the reader to formulate their own opinions. Chapter
6 presents details on our interview protocol, script and results. Chapter 7 elaborates on our
final considerations and possibilities for improvements and future works.

Chapter 2

Literature Review

This chapter will provide a brief overview and references for related works: (1) It refers to
those that classify, survey or otherwise offer a comprehensive entry point for understanding
the basics of Procedural Content Generation; (2) It introduces the current state of procedural
methods applied to other areas; (3) It presents how planning has been introduced as a solid
choice for the basis of artificial intelligent agents’ in the game industry, as well as its potential
for integration with procedural generators; (4) It glances over the current state of academic
research on procedural map generation as presented by the works of the last fifteen years; (5)
This chapter wraps up describing attempts to integrate procedural map generation with other
procedural methods.

2.1 Presenting PCG-G

As a general overview for most types of Procedural Generation, Shaker et al. [2016b] sum-
marizes various works within the area, comparing and contrasting them. It serves as a great
entry point onto the world of PCG-G research, and aids in consolidating much of the spo-
radic taxonomy that has emerged from different works. Hendrikx et al. [2013] covers the
practical uses of procedural content generation, defining a six-layered taxonomy that intends
to cover all types of procedural content (space, systems, scenarios, design). It also analyzes
commercial games that use PCG, discerning the types of procedural generators implemented
by each.

Togelius et al. [2013] proposes three types of PCG oriented designs that are defined
by how strongly procedural content influences the game it was designed for: (1) Multi-Level
Multi-content generation, where multiple structures of a game (terrain, vegetation, roads,

cities, people, etc.) are procedural; (2) PCG-based Game Design, where procedural content
generation is a core mechanic by which the game could not exist without (as in games that

5

6 CHAPTER 2. LITERATURE REVIEW

have ’unlimited’ areas to explore); And (3), generating complete games, where even the
game’s underlying mechanics such as physics, win conditions, and the most basic rules are
generated. Its contribution also extends to identifying the inherent problems of PCG-G, by
defining nine core challenges:

1. Non-generic, Original Content: Design generators that do not fall into generic,
uninspiring patterns.

2. Representing Style: Having the generator emerge with the concept of a perceiv-
able ’style’ of content creation.

3. General Content Generators: Dealing with the limitations of PCG systems tied
to their original game’s rules and domain.

4. Search Space Construction: Designing how changes between parameters define
the space of possible constructs.

5. Interfaces and Controllability for PCG Systems: Allowing for control of the
generated constructs through input parameters.

6. Interaction and Opportunistic Control Flow Between Generators: Interaction
between generators.

7. Overcoming the Animation Bottleneck: Supplying the high number of procedu-
ral constructs with at least mediocre animations.

8. Integrating Music and Other Types of Content: Creating dynamic sound design
that fits unforeseen game scenarios.

9. Theory and Taxonomy of PCG Systems: Comparing distinct approaches based
on their effectiveness, methods, and domains.

For games featuring more than one type of procedural content generation, Togelius
et al. [2013] suggests that blandness or incoherence can be associated to the lack of integra-
tion between generational modules. Yet, not many works are centered around integration,
even though it is one of the challenges of Procedural Content Generation. The difficulty of
integrating PCG systems stems from their lack of malleability, as most procedural genera-
tors can not afford to be designed for allowing significant input from the designer, or from
other systems into the generative process. As a result, the difficulty of integrating procedural
systems is a product of items 5 & 6 of Togelius et al. [2013] list.

2.2. CURRENT STATE OF PCG-G 7

2.2 Current state of PCG-G

Although procedural generation has grown to be a reliable paradigm of game design, it has
acquired a general reputation for creating repetitive content within some implementations, as
well as not meeting up players’ expectations, such as in the recent game No Man’s Sky. This
however cannot be generalized to every PCG algorithm, due to its strict domain dependence:
each procedural content algorithm has to be tailored or adapted to each specific game. The
academic community and the gaming industry are aware that no general purpose generators
are means by which to replace the designer, but serve as a way to increase the available
content for games that rely on having vast amounts of it.

One of the classical examples of procedural structures are Fractals. Exemplified by
the Space-filling Curves described further in this work, these recursive structures are widely
used as computationally efficient methods for procedural generation as exemplified by Ebert
[2003]’s 3D environments, as well as the impressive models for topology and erosion sim-
ulations by Olsen [2004]. Fractals, however, are not effective as parametrized systems. A
characteristic that is desired for a game map generator. This is mainly due to the fact that
they require and accept only a random seed as parameter to generate their shapes, restricting
any alterations to be done exclusively after the generation process.

One way of optimizing the quality of generated content is to explore a batch from all
possible procedural constructs, and return an instance from that group that best fits some type
of heuristic. Search based procedural content generation does just that: it is a methodology
that attempts to return the ’best’ combination of procedural elements, given a set of param-
eters. It does so by analyzing a subset from all the possible combinations of elements that
create a procedural system. This approach is greatly adaptable to distinct types of content,
and it is most interesting when the generated content aims to fulfill multiple objectives or
criteria, as in by Togelius et al. [2013]. By integrating distinct types of generated content,
Hartsook et al. [2011] attempts to tackle search based methods to integrate procedural map
configurations that support ’Quests’ and narratives.

In exploration or role-playing games, ’Quests’ or ’Missions’ that orient the player’s
objectives are a core part of the experience. Quest generating systems have been imple-
mented within games that require a large amount of content, such as Massive Multiplayer
Online Role-Playing Games (MMORPGs). These quests however can feel like chores with
no connection to what is happening in the world around them. As a means to improve the
personal engagement of procedural quests, a solution proposed by Togelius et al. [2013] is
to integrate them with story generation Systems. One such example of these systems be-
ing Ciarlini et al. [2005], which proposes a temporal logic model for storytelling that, when
stimulated by player intervention, create dynamic plots.

8 CHAPTER 2. LITERATURE REVIEW

Lastly, the topic of Player modeling is explored within many works, and can be used
to orient procedural generators. This approach is promising, as the adaptation of content to
the preferences or actions of the player increases immersion and flow when well executed,
as explained in Drachen et al. [2009]. There are many kinds of systems within a game that
can be procedural, and thus there are many areas that may benefit from player modeling.
Currently, however, player modeling and procedural generation are mostly integrated to rule
over the Artificial Intelligence of Non-Playable Characters (NPCs) as in Riedl et al. [2011],
or even the game narrative itself, as in Biggs et al. [2008a].

2.3 AI Planning

Automated Planning and Scheduling, or AI planning, has seen little association with games
in academic works, but it has stealthy introduced itself into the industry. Its first documented
instance was within the game F.E.A.R.1, which featured a STRIPS based planner applied to
the game’s enemy NPCs. Although extensive optimizations were required to plan the actions
of multiple agents, the game took its players by surprise with adversaries that had realistic
and unpredictable behaviors, and was critically acclaimed for its ’intelligent’ AI. Since then,
F.E.A.R has kept planning the core of its AI and has inspired other games to attempt similar
planning based strategies.

In a practical study of the uses of planning in games, Champandard [2013] has con-
ducted interviews with multiple game developers regarding the basis for their NPC AI, and
has concluded that there is a spectrum between the simplistic, yet effective Behavior Trees,
and planning based approaches. In broad strokes, if the project has nonlinear scripted se-
quences, or the decision space is vast enough that the combination of choices generates un-
predictable results, it benefits from planning. Otherwise, in closed/controlled environments
that present fewer choices for the AI, or games that require multiple instances of agents mak-
ing quick decisions, a classical Behavior Tree would be the better choice. In between, games
such as Killzone II2 have found that Hierarchical Task Networks (HTN), as formalized by
Erol [1996], would perform effectively as a middle ground between planning and behavior
tree strategies.

As a final commentary about this work, Champandard [2013] has established that as
short term expectations, we were likely to see planning being applied to games other than
shooters, and to domains other than enemies. As a long term expectation, agents based on
planners would generate more believable character behaviors. As of 2013, the evolution
of processing power had already been considered to have overcome the cost hindrance of

1https://www.lith.com/games/fear
2https://www.killzone.com/killzone2.html

2.4. MAP GENERATION 9

planning, and therefore planning better and for more agents could become feasible. Lastly,
one prediction that is interesting in the context of procedural content generation, is that
planners could be used to craft custom experiences and stories through Game A.I. Directors:
a concept that has been introduced and became famous with the game Left 4 Dead3, but has
otherwise been poorly explored.

Even before Champandard [2013], planning has been intuitively associated with creat-
ing stories. Establishing a procedural story consists mostly of the generation of a sequential
cohesive and possibly engaging narrative of events. In the context of games, it may also
dictate an order of tasks which the player must undergo. As noticed by Cheong et al. [2016]
this similarity in performing sound sequences of events resembles the tactics used by AI in
robotics aimed towards completing labor tasks in the physical world. Story elements, ac-
tions, and the possible events and outcomes of a narrative story are likewise defined in the
STRIPS framework [Fikes and Nilsson, 1971], or relatively more recent in the Action De-
scription Language (ADL) [Gelfond and Lifschitz, 1993]. For generating complex narratives
that consider the motivations of each character for their actions, Magerko et al. [2004] uti-
lizes an example of a fully-structured plot as a partial-order plan, and Riedl and Young [2010]
extensively explores the case for the generation of consistent fables, with their methodology
serving as a guideline for planning based procedural story generation.

2.4 Map Generation

Procedural maps face the challenge of generating untraversable, unexplorable and/or un-
reachable areas. This is usually solved during the generation process, with overhead algo-
rithms dedicated to identifying and avoiding these kinds of situations. In 3D environments,
the landscape might be properly tweaked to avoid these flaws, but it might still be too bland
for the player to navigate in. Biggs et al. [2008b] presents a strategy for combining PCG with
architectural techniques in 3D environments, generating landmarks that guide the player by
helping them to identify their location within a larger map.

Generative Grammars have been applied to map generation by Adams et al. [2002]
through the representation of a map’s structure as rules of a graph grammar. By itself, this
representation does not allow for changing specific characteristics of the terminals (rooms),
but it does allow for search algorithms to sort and determine maps appropriate for meeting
criteria such as ’global size’ and ’difficulty’. Shaker et al. [2016a] suggests two families of
map generation for rogue-like dungeon maps and for platformers: one of which is based on
recursively partitioning maps into segments of structures based of Quad-trees, connecting

3http://www.l4d.com

10 CHAPTER 2. LITERATURE REVIEW

rooms created by the partitioned units in order; The second being an agent that ’digs out’ a
dungeon by traversing a closed space while creating rooms.

Presented by Johnson et al. [2010], another computationally efficient approach is to
utilize Cellular Automata as a basis for infinite procedural 2D top-down perspective maps.
Its cave generation algorithm is proven to execute in polynomial time, with its complexity
being defined mostly by the map’s width and height. It has even shown to be effective
enough to run online (during the game’s execution). While comparable to our work we
intend to develop the discussion on Cellular Automata maps not necessarily for the purposes
of Johnson et al. [2010]’s infinite ones.

Although the methodology of combining Cellular Automata with Space-filling curves
has not seen documented use within academic works, other than our proposed approach,
this mix of procedural systems has seen an effective implementation within the commercial
game Galak-Z by Aikman [2014] from 17-bit Indie Studio, published by Sony Interactive. It
generates sub-sections, or ’chunks’, of the level with Cellular Automata while using Hilbert
curves to design the overall dungeon layout. This methodology, while interesting and ef-
fective for the game’s levels, does not fully explore the flexibility of employing Cellular
Automata and Space Filling curves for procedural generation. Therefore, our approach also
intends to expand upon the Procedural Generator implemented on Galak-Z: We introduce the
generation of the entire map from a single automata, as well as polishing methods to increase
the diversity of space-filling curves.

2.5 Integrated Map Generators

Integration of Maps and Story generative systems has been studied in Tomai [2012], Thue
et al. [2007], Hartsook et al. [2011], Valls-Vargas et al. [2013], Matthews and Malloy [2011]
among others. Each proposes a solution for connecting the map’s generation with an under-
lying story, narrative, or quest, while also being restricted by the the game domain or game
genre. Hartsook et al. [2011] makes a case for genetic algorithms as an approach to pro-
cedurally generating and rendering playable novel games based on a-priori unknown story
structures. The generated content is meant to be integrated with role-playing games with
the game level’s structure being dependent on a story formed by plot points that the player
must accomplish. With role-playing games, Tomai [2012] proposed the idea of expanding
procedural stories that alter the state of persistent worlds such as MMORPGs, where the
interference of a player on a game’s space might affect the narrative experience of another.

While not directly integrating two distinct generators, Matthews and Malloy [2011]
proposes and implements a technique that utilizes flood-fill algorithms. Based on a de-

2.6. QUALITATIVE ANALYSIS IN GAMES 11

signer’s document of restrictions, it generates over-world maps with cities, towns, and other
landmarks that characterize large scale maps. It does so in a way that is cohesive to the story
that the designer intends to transmit, but also in a geographical sense. Another work in this
context is Valls-Vargas et al. [2013], which presents a story driven map generator that focuses
on representing Plot Points and their causal relationship with the map in which their occur,
thus configuring maps through planning algorithms that support a given story and evaluate
their quality.

2.6 Qualitative Analysis in Games

Qualitative Analysis is a toolbox of methods that allow for the collection of data and views
that are hardly or not at all quantifiable. The intended purpose of research may be in some
cases only possible to be evaluated through abstract yet universally understood concepts
such as "good", "fun", "boring", "entertaining", etc. This is mostly the case for developing
content or methods that invoke feelings, which is one of the goals of most entertainment
media. Neuroscience has gone far in identifying and determining the foundations of human
emotions, such as presented in Panksepp [2004]. All can be done by presenting a situation
and collecting from our subconscious without the need for human input. Yet, were we to
collect thoughts and obtain a subjective point of view, methodologies for doing so are well
defined and tested through the study of Qualitative Analysis.

Works similar to Consalvo and Dutton [2006] that offer methodologies for evaluating
games qualitatively are still rare. Therefore, we have conducted a survey of 12 academic
papers that utilized Qualitative Analysis, which grants us a basic understanding of when
and how it is being used, with our findings being presented in Table 2.6. Also presented in
this table is the previously mentioned work by Thue et al. [2007] for interactive procedural
storytelling. While it uses the Questionnaire method to collect the opinions of volunteers,
all questions did not allow for open answers. When all answers are restricted to predefined
criteria, such as opinion agreement scales, the study in itself is not considered qualitative,
as it only evaluates a single axis that summarizes the subject’s point of view even though it
refers to the user’s subjective perceptions.

What Table 2.6 suggests to us is that most qualitative methods also rely partially on
answers limited to predefined spectra, as registered by the ’Mixed’ approach. The usage
of observational data, collected through vigilance of the subject during the intended test, is
sometimes used as the only method, or used to support others. Since there is no absolute
concept of validation within Qualitative Analysis, the concept of Triangulation is adhered to
instead, where distinct qualitative methods are used to form a holistic view of the subject’s

12 CHAPTER 2. LITERATURE REVIEW

Paper Information Qualitative Method Used
Citation Theme Interview Observation Questionnaire

Evaluation
Paradigm

Garner et al. [2010] Procedural Sound Generation X X Mixed
Kazmi and Palmer [2010] Adaptive Mechanisms X X Mixed
Browne and Anand [2012] Interface X Mixed
Scirea et al. [2014] Procedural Sound Generation X Mixed
Geurts et al. [2011] Educational Games X Qualitative
Vannaprathip et al. [2016] Educational Games X X Mixed
Dekker and Champion [2007] Biometric Information Analysis X X X Mixed
Guckelsberger et al. [2016] Intelligent Agents X Qualitative
Thue et al. [2007] Interactive Naratives X X Quantitative
Raffe et al. [2011] Interactive Environment Generation X Qualitative
Hash and Isbister [2011] Procedural Reactive Animation X X Mixed
Biggs et al. [2008b] Procedural Environment Generation X X Mixed

Table 2.1. Academic works related to games that used either the qualitative analysis
paradigm or used techniques common, but not exclusive, to qualitative analysis.

vision.

2.7 Discussion

The challenges presented by Togelius et al. [2013] guide the development of procedural
systems towards the goals we must strive to overcome. As it is, the concept of integration
between procedural generators is still in its infancy. Thus furthering this discussion should
also aid in tackling the subject of directing procedural methods through inputs. Cellular
Automata methods for Map Generation presented by Johnson et al. [2010] hint at the need
for developers to control the generated structures. A task that itself is feasible due to CA’s
far greater leniency for customization, when compared to other methods such as Fractals.

All discussions focused in integrating procedural methods gravitate towards the idea
that all or part of the inputs could, in theory, be provided by another generator. Galak-Z
proposes a commercial implementation of this by mixing Space-Filling Curves with Cellular
Automata. This method, however, requires the partitioning of the former into sub-sectors,
and furthermore uses them as outlines for multiple CA within a grid. We believe that an
approach that would make the entire level based of a single automaton could give room for
more cohesive constructs, and so that belief was one of the basis of our work.

Taking a step back from the bulk of discussion related to generating procedural maps,
we have noticed an emphasis on the creation of topography, but only rare instances of studies
regarding its theming (what kinds of identifiable environments are being created, and what
fellings they intend to instill). If a method creates geometry for a playable space, then in most
cases, the theme for it is usually fixed to a single concept like forests, mountains, caverns,
etc. Again, this is a topic we believe to be feasible, but yet unexplored.

2.7. DISCUSSION 13

Champandard [2013] points out the advent of Planning within game development,
proposing that it could be used in the near future for the creation of complex AI Directors.
These managers dictate the pace and feel of the player’s experience, all the while keeping it
cohesive. Within this work, we follow through with this idea by having a planner dictate the
theme of a map, which is then utilized to generate its layout by using a procedural generator
that integrates Space-Filling Curves and Cellular Automata.

Chapter 3

Background

This chapter will briefly cover the basics of the theoretical fundamentals of our methodology.
Our purpose is to present a bare understanding of the techniques behind Chapter 4. Each of
the topics described in the following sections are fields of study on their own and worthy of
focused research.

3.1 AI Planning

As discussed in Russell and Norvig [2016], AI Planning is the automated process of solving
a problem that has been deconstructed onto multiple classes of components: states that define
the world; actions that change the world; an initial set of states before any action is taken;
and finally, a goal to achieve through these actions. Then, a planning algorithm determines
the likely optimal course of actions that minimizes resources spent (if any), to achieve a goal
by changing the world’s states to a desired configuration. The simplest of planning problems
are defined by: (1) A single known initial state, (2) All actions take the same discrete or null
amount of time to be completed, (3) All actions are deterministic. That is, performing one
action under the same variables and circumstances will always result in the same outcome,
(4) Only a single agent or actor may perform any one action at any given time. Despite the
simplicity of such environment, factoring the outcomes of these actions starts to become a
problem once they are shown to be mutually exclusive, or that many of them do not contribute
to reach the goal.

A planning problem is usually associated with a domain, which represents a world,
and a task, such as a robot in a storage room pilling up boxes, or traversing through an
obstacle field. Normally, a set of tasks that one person or entity must complete. This style of
domain is modeled and represented onto a planning language, such as STRIPS, ADL, or the
Planning Domain Definition Language (PDDL). Outside of the limitations of the language,

15

16 CHAPTER 3. BACKGROUND

most planners are domain independent, meaning they can tackle distinct types of problems
such as logistics, robot tasks, work-flow management, etc. This flexibility makes planners
versatile problem modeling and solving tools.

That is not to say planning is a trivial task: one can intuitively comprehend how nav-
igating through the space of all possible actions with all their possible literals (locations,
obstacles, checkpoints, etc.), in all possible configurations of states, can result in a combina-
torial explosion. Most planning problems can be reduced to boolean satisfiability problems.
Being at least as hard to solve as other NP-Complete problems, various heuristic driven al-
gorithms are available depending on one’s domain. Prior to making this choice however
there is the need to first understand the basics of how a problem should be modeled through
planning.

Planning is most useful when the means to satisfy a problem’s concept of ’completion’
or ’goal’ are hard to determine. As this objective is divided into sub-problems, a logical
relationship between these sub-problems must be established. The main problem itself then
becomes to determine what configuration of bits (the binary state of a sub-problem being
solved or not) should satisfy a logical function. To accurately solve such a problem in poly-
nomial time, one must first determine whether the function itself is solvable, a problem that
is all too similar to the Constraint Satisfaction Problem (CSP).

Solving these sub-problems themselves is one that on a complex environment requires
taking steps/actions that impede others from being taken. The restriction that one or more
actions may impose on others makes it so that the problem becomes non-trivial, being it-
self also comparable to CSP. As Ghallab et al. [2004] presents, even the classical examples
of planning are EXPSPACE-complete for determining the existence of a viable plan, and
NEXPTIME-complete to determine its length.

3.1.1 The Basis of Planning Languages

The basic language for representing planning problems is the STRIPS language, developed
and documented by Fikes and Nilsson [1971]. As it becomes convenient to represent prob-
lems beyond the limitations of STRIPS, or that some functionality of the original language
is not required to solve a type of problem, variant languages such as ADL, PDDL are de-
signed. Regardless, how STRIPS described the world and the means to change it, is relevant
for understanding its variants.

3.1.1.1 States

Planners decompose the world into logical statements defined as states, which can be as
simple as describing a person through its characteristics that are relevant to the problem

3.1. AI PLANNING 17

at hand. The person in question for example could be defined by a conjunction of literal
states, such as Healthy∧Rich, that express that subject’s relevant characteristics while mak-
ing intuitively unrealistic configurations such as Healthy∧Rich∧Sick unlikely. Languages
based of STRIPS allow for negative states, so instead one could represent Sick as ¬Healthy.
Strips and other languages also define ground and function free first-order literals for detail-
ing those states. For example, Rich(Tony)∧Rich(Bruce). Before any actions are taken, a
planning problem is usually initialized with a set of states.

3.1.1.2 Actors

Some representations of problems are more concerned in defining the literals in states as
variables, and thus define the concept of ’actors’. With the problem of procedurally creating
stories, Riedl and Young [2010] have defined that the concept of an actor aids in creating
states that pertain to one or more entities. An example is having an action that kills a char-
acter be defined by a conjunction such as Killed(Vader,Ben)∧¬Alive(Ben)∧Alive(Vader).
And thus, languages will dedicate portions of code to defining classes of actors (Such as
plane, person, killer, victim, etc.) and which literals belong to each.

3.1.1.3 Representation of Actions

A problem’s set of actions defines what agency the AI planner has over the world, and how
can it can change it. For an action to be taken, the planner must first meet a conjunction of
preconditions, which then changes the world by changing its states in accordance to the ac-
tion’s effects. For example, the previous example of a conjunction of states could have likely
been defined by the initial configuration being modified by one or more actions. Actions in
most languages are written in a way similar the following pattern:

ACTION: Kill(killer,victim))
• Preconditions: Alive(killer)∧ (Alive(victim)
• Effect: Alive(killer)∧¬Alive(victim)

In languages concerned with defining types of actors, a way of defining who or what
would be able to take part in an action would be to define constraints. In this example,
if there are actors that are characters, and actors that are ob jects, it would make sense
to define that both Killer and victim are of the first type, which could be written as an
requirement parameter of the action:

• Constraints: characters(killer)∧ characters(victim)

18 CHAPTER 3. BACKGROUND

Although characters is not a State, and rather a type of actor, it is effectively used as a
restriction as well.

3.1.1.4 Goals

A goal is a partially specified set of states. A conjunction of literals that when reached,
signals that the problem has been solved. In the example above, if the goal of ’Ben’ was to
be ’Killed’ by ’Vader’, then the goal state would be the conjunction Killed(Vader,Ben)∧
¬Alive(Ben)∧ Alive(Vader), which would be reached by a number of possible available
actions and depending on the initial state.

3.2 Cellular Automata

Next, we shift our discussion to Cellular Automata: A discrete model with self-organizing
properties. It consists of grid, which can be finite or infinite in dimension, containing cells
that can exist within a finite number of states. These usually being a binary configuration
such as ’On’ or ’Off’, ’True’ or ’False’, ’Alive’ or ’Dead’, etc. Periodically, each cell has to
update its own state based on the cells around it (neighbors), which can be done one cell at
a time on a predetermined order, or all cells at once. This constant shifting of values gener-
ates distinctive results depending on the starting configuration and the rules by which cells
evolve. The resulting grid after a number of ’iterations’ or ’cycles’ can be a stable structure
or a constantly shifting landscape. This structure may eventually stabilize by reaching an
immutable end, or may end up looping into a perpetual cycle. Often, Cellular Automata
generate interesting shapes such as the ones presented in Figure 3.1.

Figure 3.1. The Cellular Automata generated by rule 30, 54, and 60 of ’The 256 Rules’
by Li and Packard [1990].

The automata’s universe starts at the ’configuration’ state: All cells starting with the
same value, except by a finite predetermined number of cells that begin at different states.
These usually act as the catalyst for change to the automata’s status quo. The state of any
single cell is determined periodically by its ’neighbors’, which itself is a concept that can
be distinct for each automata. The two most common being the Von Neumann and Moore
Neighborhoods, presented in Figure 3.2.

3.2. CELLULAR AUTOMATA 19

Figure 3.2. Von Neumann and Moore neighborhoods for a single cell (colored in black).
The neighborhood’s size ’r’ can be increased to consider the states of additional nearby
cells.

Perhaps the most common examples of Cellular Automata are Conway [1970]’s Game
of Life, and Stephen Wolfram’s Grassberger [1986] Elementary Cellular Automaton. The
latter of which has been proven to be Turing-Complete. Ever since its conception in the
1940’s, Cellular Automata have seen applications and studies in Biology, Computability
Theory, Computer Science, Mathematics, and Physics.

3.2.1 Synchronous vs. asynchronous Updating

When updating Cellular Automata, one might update the state of each cell immediately upon
discovering its immediate future, or it might update all cells at once after their following
states are determined. These are called asynchronous and synchronous updating, respec-
tively, and yield distinct results. Yet, asynchronous methods can have nuances of their own,
specifying distinct update orders which also create different effects. While the effects of
synchronous and asynchronous updating are clearly noticeable within the rule-set of our Au-
tomata, the individuality of the shapes generated by each methodology become significantly
less noticeable as the constraints that will be presented further in this work are introduced.
Therefore, while examples of different iteration methodologies in this work’s automata are
presented in Figure 4.7, the automata presented by our methodology will follow exclusively
synchronous updating. Henceforth discussion on the topic of Cellular Automata Updating
methodologies will hereafter be left for related works such as Schonfisch [1999]; Bonomi
[2009].

3.2.2 Multi-layered Cellular Automata

The concept of multi-layered cellular automata is one that has not seen as much academic
research as the general 2-dimensional definition of the model, save a few exceptions such
as Nakayama et al. [2015], and Bonomi [2009]. A multi-layered cellular automaton is com-
prised of a set of cellular automata where the rule-set for the cells of each automaton takes

20 CHAPTER 3. BACKGROUND

into account the state of the cells from other automata. A representation of a multi-layered
cellular automaton is presented in Figure 3.3

Figure 3.3. A Multi-layered Cellular Automaton schematic drawing as presented by
Nakayama et al. [2015].

The subject of multi-layered automata will be of relevance to this work when introduc-
ing methods by which to improve the generation of maps in Chapter 4.

3.3 Space-filling Curves

Space-filling curves, or Peano Curves [Sagan, 2012], are a concept in mathematical anal-
ysis first discovered by the end of the 19th century, as a special case of fractal construc-
tions. It pertains to curves whose range contains all the available space within a discrete
n-dimensional space. That is, it maps a multi-dimensional space grid (e.g. 2D) into one-
dimensional space (1D), like a continuous thread that visits every cell exactly once.

A useful property of these curves is that their tracing is generated through a func-
tion that maps information contained within one dimension to another (e.g 1D to 2D) while
preserving locality. This property allows Space-filling curves to be applicable in Computer
Science topics such as Moon et al. [2001]’s clustering, and improving data structures by
Kamel and Faloutsos [1993b,a]. The Hilbert curves are an example of the specific case of
Space-filling Curves that present interesting shapes when mapping 1D coordinates to 2D, as
shown in Figure 3.4. As a Lindenmayer System Mishra and Mishra [2007], the Fractal shape
for the Hilbert Curve is defined as below. In this representation, F means ’draw forward’,
’l’ means ’turn left 90◦’, ’r’ means ’turn right 90◦’, and ’A’ and ’B’ left are ignored during
drawing.

3.3. SPACE-FILLING CURVES 21

Aphabet: A,B

Constraints: F r l

Axiom: A

Production Rules:
• A→ lBFrAFArFBl

• B→ rAFlBFBlFAr

Figure 3.4. With the production rules being applied M times to the axiom, a curve of
length M2 = N is obtained. The following Hilbert Curves are mapped to a NxN grid, for
the values of N = 1,2,4,8,16, and 32, respectively.

Although the process described in this work could be used for any space-filling curve,
our experiments shall be limited only to Hilbert curves, as to further the discussion started
by the Galak-Z game. Exploring the diversity in the generated content by choosing from a
repertoire of distinct Space-filling Curves is something that will be explored in future work.

Chapter 4

Methodology

This chapter describes the methodology pertaining to each of our procedural modules. As
a quick overview, figure 4.1 presents a diagram that encompasses the whole of our method-
ology. As the reader progresses, the description of this diagram should become more un-
derstandable. Furthermore, even if at a first reading of this image is not entirely clear we
recommend checking back on it.

Figure 4.1. General structure and flow of our methodology. Beveled boxes represent
different programmed modules, document shaped boxes represent text files, and rounded
boxes represent resulting constructs. Each component encapsulated within the gray box
is implemented and executed within the Unity Engine. Arrows from a box source that
have as their destination a construct (rounded) box indicate that the source has generated
that construct. All other arrows that have their destination as a non-construct box indicate
that their source is used as input to their destination.

We feel that it would be appropriate to address some of the decisions regarding the

23

24 CHAPTER 4. METHODOLOGY

general implementation of our work. First, about our choice of game engine: in the de-
bate for the optimal game engine to use, most discussions end with using the Unity Engine,
the Unreal Engine, or crafting your own game engine. Engines that are created for specific
types of games excel at their job, but are far from the multi-domain approach we have aimed
for, and are expensive time and costwise and therefore a counter productive option. On the
choice of Unity vs Unreal, we have opted for Unity simply based on our previous experi-
ence, and we firmly believe both are equally capable of delivering the procedural designs
we propose. Thus, this work’s implementation has begun on the Personal Edition Unity 2D
version 5.6.1f1 (64 bit) going all the way to 2018.1.6f1 in its completion. All methods were
programmed entirely with the C# programming language.

Second, addressing the use of 2D versys 3D assets: while it is true that Cellular Au-
tomata are usually exclusively envisioned in the realm of procedural map generation as 2D
map generating methodologies, that is not necessarily true. Lague [2015] exemplifies the use
of Cellular Automata that is then converted into three dimensional geometry. Nevertheless,
3D asset libraries are not as extensive and accessible as 2D ones. Being that much of proce-
dural generation as a whole is based of creating permutations and subsets of content from a
vast library of generic assets, the choice for 2D sprites becomes much more accessible and
appealing.

Having gone over these two major design choices, the three following sections thor-
oughly describe the process for the development of the AI Planning Module, the extensive
Map Generator Automata module, and the Planning to Map module.

4.1 Level Planning

Attempting to make decisions that ultimately generate a cohesive environment is not too
different than making a set of sequential actions towards a goal. In an efficiency point of
view, the problem is looser by there being no cost for taking actions, other than the time the
planning algorithm itself takes. In this case, the goal is to achieve the completion of a map
concept. The actions taken are the decisions that lead to this goal, such as deciding which
elements to include in the environment. And the states are these elements themselves.

The idea of a completion/goal itself for any planning problem must be divisible by a set
of one or more states. In our map planning case, a state is the consequence of an action taken
to determine characteristics of the map. Therefore, a state is either a characteristic of the
map, an intermediary variable to be considered by an action at some time either to determine
another state that is itself a characteristic, or to determine the value of another variable.

Finally, the process to generate the theme of a map itself is a matter of choosing an

4.1. LEVEL PLANNING 25

appropriate approach to modeling the selection of any and all possible characteristics avail-
able to a game map. This decision process and its domain is one that is highly dependent on
the amount of available game elements that can be placed, and how complex the relationship
between such elements is.

Due to the limited graphical assets and the time available to both create the language
and the programs required for its testing and use, as well as developments regarding Cellular
Automata, its integration with these planning systems, and also our quantitative and qualita-
tive testing, the planning problem we have intended to generate for now is quite simple. One
that is easily solvable by an Heuristic-oriented planner with no current need for efficiency
optimizations, other than the bare basic.

4.1.1 Planning Language

So far we have mentioned the notion of a language needing to be implemented for tackling
our problem, and that is due to Unity’s non-existent integration to any existent planning
languages, as of the beginning of this work. Being that our goal was always to have an
implementation available to be used in commercial games, this predicament has required us
to temporarily step out of our way to first create the means by which we may model and
solve our planning problem.

PDDL, while a powerful universal language for expressing most planning problems,
has no implementation for game engines, as of the writing of this work. While planning is
ascending as a Game AI principle, no implementations that we are aware of were available
for Unity. Having an, in-engine, interpreter and executing planning outside of the engine is a
feasible option, however we have intended to avoid external plug-ins to a methodology that
otherwise functions exclusively with the engine’s resources.

Thus, this opportunity does allow us to have our intended language be one specialized
to the task at hand. Although it required a great amount of time to code and implement, it
is a tool that certainly brings benefits for this and further projects. By comparing existing
planning languages and their purposes, we have determined what characteristics should be
best suited to planning game map themes.

As described in Section 2.3, most planning languages in games are rather focused to-
wards their use in creating believable agents. Two of the most iconic of these languages are
PDDL and the Game Description Language (GDL). These focus their structure on modeling
game scenarios that allow agents to understand the current game’s state, and furthermore
make informed decisions and actions upon it. Both languages have their nuances in imple-
mentation and use. In a few words, while GDL is focused towards modeling game scenarios,
PDDL is meant to be an universal tool that takes from STRIPS, ADL, and others. Both

26 CHAPTER 4. METHODOLOGY

ADL
Positive and negative literals in states:
Rich∧Famous
Open World assumption:
Unmentioned literals are unknown.
An effect P∧¬Q(set a state P to true
and another to false Q) means add P and Q
and delete ¬P and Q
Quantified variables in goals:
∃x At(P1,x)∧At(P2,x) is the goal of
having P1 and P2 in the same place.
Goals allow for conjunction and disjunction:
¬Poor∧ (Famous∨Smart))
Conditional effects are allowed:
When P : E means E is an effect
only if P is satisfied.
Equality predicate (x = y) is built in.
Variables can have types, as in (p : Plane)

Table 4.1. Table of notable properties of the ADL planning language, as organized by
Russell and Norvig [2016]

PDDL and GDL offered us insights as how we should define our language’s syntax and
specifications, even if the basis of our planning language is mostly taken from ADL’s func-
tionalities, shown in Table 4.1. Our developed language shares many of these specifications,
save two major changes elaborated upon below.

4.1.2 Hierarchical Classes

Variables do not only have types, but each literal is a leaf node in a hierarchy tree of variable
types, as exemplified in Figure 4.2. This essentially means that variables may be of multiple
types of distinct levels of abstraction. For example, a Vegetation node, with two child nodes
Vegetation/Trees & Vegetation/Plants which have their own leaf literals. A combination of
States and Actions/Literals may only be set if the literals themselves are leaves in the types
hierarchy tree, as there would not make sense to specify something such as Exists(Tree)

without specifying exactly which tree is to be added to the map.

In this test example, he have intended to fiddle with the complexity of our language by
having it design characters for the Dungeons & Dragons tabletop role-playing game. This
presents a level of complexity that is rather easier to model than map generation, and relieves
us of the burden of designing a test example that does not rely on graphical assets, and that
is purely hypothetical.

4.1. LEVEL PLANNING 27

Figure 4.2. Example of multiple variable tree hierarchies within a ’character creator’
used for our language’s preliminary testing, as displayed on a custom interface pro-
grammed on Unity.

Although this resource has been barely used on our initial modeling of the map theme
generator, it has only been so due to the limitations in graphical assets that have halted the
creation of complex elements. Further work with our generator is sure to explore the avenue
of complex class/variable relationships.

4.1.3 ’Unknown’ Operator

Our language allows the use of a prefix ’unknown’ unary operator, much like the ’not’ opera-
tor. This ’unknown’ operator returns true if a combination of states and literals/actors has not
yet been set to a value within the world of current active states. For example, a precondition
could check for (UNK)Exists(PineTree) to see whether a map has been set to contain the
presence of one or more Pine Trees, or even (UNK)Exists(Tree) to check the existence of

28 CHAPTER 4. METHODOLOGY

any tree at all. This is mostly useful for allowing the planner to understand the difference
between something that has been set not to appear on a map, from one that could, but it
is still unknown. Additionally, allowing preconditions to check whether a state with empty
variable parameter literals is not unknown, meaning the state exists with at least one literal,
does help us in checking what elements are still to be added in the map. Another example
would be checking a state Exists(T : Tree) that expects a literal T of the Tree. By doing this
we may be able to check whether any type of tree has been set to be an asset on the map, and
perhaps place one accordingly.

4.1.4 Planning Algorithm

Determining a plan is exponentially complex, and thus requires the use of specialized and
optimized algorithms when dealing with larger problems. However, our preliminary experi-
ments are, for now, easy and short enough that a complex approach for tackling them is still
not necessary. Therefore, for the purposes of the work, a greedy approach is sufficient, and,
as shown in section 6.4, not too expensive computationally.

The basis of our initial planning algorithm is simple enough to explain in a single para-
graph: From all possible actions within the current configuration of states, choose the one
which maximizes the amount of subproblems completed. As mentioned, the goal of a prob-
lem is divisible into multiple, smaller problems that are themselves logic functions. Being
that this function is one of multiple logic unary operators (Not, and in our case, Unknown)
as well as binary operators (And,Or, and all other derivable operators based on them). The
measure of the completeness of a plan is determined by how many of these subproblems
are themselves complete. One intuitive heuristic then is attempting to act in a way that
maximizes the completion of these problems, even if doing so may not always work. A
representation of how the algorithm perceives the completion of a problem is presented in
Figure 4.3.

In this example, the goal function of having a character fully equipped with weapons
and armor is satisfied if the character has: A suit of armor; a ranged weapon; and either a two-
handed weapon or two one handed weapons. As this goal tree has been organized, choosing
the character’s suit of armor solves 50% of the problem, selecting a ranged weapon solves
25%, choosing a two-handed weapon or two one-handed weapons solves the remaining 25%,
with each one-handed weapon solving 12.5%. Therefore, by organizing the goal’s logical
tree, one may determine which objectives hold priority over others.

A certain degree of stochastic decision making is required with creating concepts that
are not common in classical planning. The goal is not to build a character as efficiently
as possible, but to simply generate diverse characters. If left to simply look for the most

4.1. LEVEL PLANNING 29

Figure 4.3. Example of the goal function for the ’character creator’ problem represented
as a tree of logical functions.

effective way to conclude the problem, priority will be always given to choices closer to the
tree’s root. Thus, and a touch of random is required to create choice diversity.

A greedy planner is prone, however, to falling into the pitfalls of the most complex
scenarios of planning. Some of which include states that require a continuous sequence of
actions to be realized for it to be set true, possibly creating a deadlock where no actions can
be taken. Or worse yet, a group of actions creating cyclical configuration of states. As our
search space is currently rather small, we have tackled this through four simple measures:
(1) Once a deadlock state is reached, our algorithm backtracks one step; (2) Each configura-
tion of states generated by a set of actions is stored, as to identify which steps have created
a deadlock, and henceforth avoiding taking these same steps again; (3) A user defined pa-
rameter R determines, from a sequence of actions, the maximum number of deadlocks that
sequence may create before the planner completely restarts its plan, while keeping the list
of actions that have generated a deadlock; (4) User defined parameter T that determines the
amount of time the planner may take before performing only the best actions to conclude
the plan. This is implemented as to avoid having the planner taking longer than a desirable
amount of time to complete.

4.1.5 Domain Library

To determine how can a planning language be used to solve the problem of generating maps,
we must first discern the difference between a planning problem and its domain: a problem’s
domain contains every action, state, and entity within the abstraction of the world in which
the planning problem resides. A document containing every information on this world is its

30 CHAPTER 4. METHODOLOGY

’Domain Library’, and it contains every Action, Entity, Precondition, State, and Effect that
characterize that single domain, serving as building blocks for creating a cohesive interpreta-
tion of the world, and therefore allowing the solving of problems within it. These problems
themselves being characterized by a starting configuration of the world’s entities, and the
goal configuration which solves the problem.

For example, if a plan’s goal is to have a robot carry boxes around multiple points,
then that Domain Library would have to define several fundamental concepts: (1) The robot,
boxes, and places, which would likely be actors/literals; (2) states that determined the current
status quo of an actor. For example, a state ’IsAt(object,location)’ to be used to both store
the positions of boxes and the robot’s; (3) Actions that define what changes can be done to
the environment. Every possible change and configuration of the environment is described
by a combination of elements of the library. Another example, but this time regarding the
character generator mentioned previously is presented in figure 4.4

Figure 4.4. Example from part of a Domain Library designed for preliminary testing. In
this test Domain Library, the planner must create a character from the game Dungeons
& Dragons in accordance with the game’s rules. The first image contains the group of
actors that represent races. The second contains states that describe how much of the
generation process has been completed. And the third image contains one of the actions
that define one of the character’s properties.

Then a second file, the Planning Problem, presents the starting configuration of states
for its given domain (where the boxes and the robot are at, in this case). And an end goal:
The configuration of states by which the actions taken by the planner must strive to somehow
achieve. A Domain, and by extension its Library, are independent from the problems they are
used to solve, but not vice-versa. A Domain by itself simply represents a problem which its
solution requires a set of possibly sequential, but most times containing mutually exclusive
actions. This strong position of a Planner solver as a generalized problem solver is the
basis by which many problems requiring a cohesive set of instructions may be modeled as a
planning problem.

4.1. LEVEL PLANNING 31

4.1.6 Example: Map Theme Generator

The Planning Domain Library we have used defines a map’s theme in sets of goal states
which we call layers. Further in this we work, we present the concept of Multi-layered Cel-
lular Automata, and use the same nomenclature (’layer’) to define an individual automata as
a layer. This is intentional, as understanding both the planner’s goal states and individual au-
tomatons as layers will make comprehending the integration between Planner and Generator
much easier. The planning library for this example is presented within Appendix A.

The first step of this planning problem is comprised of subsetting abstract concepts
such as the map’s climate, and then broad concepts such as its hydrography, topography,
and vegetation density, to be options that could be placed in the map. For example, a
’Set_Forest()’ action requires that the temperature and vegetation density of the map have not
been set, so that it may set these parameters itself. If allowed to execute, this action will set
a number of states regarding the possible configurations of layer types that could be placed.
As with the ’Set_Forest()’ example, it sets the ’Hot’, ’Temperate’, and ’Cold’ temperatures
to be possible choices, and the only option for vegetation being ’Dense’, as shown in Figure
4.5.

Figure 4.5. Example action in the map theme generator domain library. This planning
problem action takes no input parameters (meaning also that there are no constraints to
define which parameters that are acceptable). Has as a precondition function that there
are no _Temperature(), and no _Vegetation() states active.

Once these layers and the map’s size have been all determined. Another action
’Set_Stage1Complete()’, that is only possible when those concepts are defined, marks the
first stage of the map generation to be complete. From then on, actions define the specific
layers of content to be added to the map’s theme, until the goal state of having a number of
layers defining all aspects of a map is achieved. One such example of all layers being defined
at the end of this planning problem is presented at Figure 4.6.

Many states other than those desired to the completion of the goal function will end
up active, as a product of the path of actions taken to reach the plan’s end. As we shall
explain further, on Section 4.3, only a few of those layers are needed and considered for the
integration of the planner’s solution, and the cellular automata maps.

32 CHAPTER 4. METHODOLOGY

Figure 4.6. Example final states configuration of the planner algorithm. The result is a
set of state(actor) that is a subset from all possible valid combinations of states and their
non-constraint violating actors.

4.2 Map Automata

This section describes the implementation, parameters and design decisions behind our Cel-
lular Automata and Space-filling Curves, as well as the methodology for integrating both.
We interpret the idea of a good automaton for designing a 2D, top-down game map, as one
that has: (1) A cohesive path structure that guides the player through the areas of the map,
while allowing for an appropriate number of parallel roads to explore; (2) These paths are not
made pointless by shortcuts; (3) The automaton’s configuration around has an organic feel
to it; (4) The automaton’s structure looks and feels distinct in comparison to other constructs
by the same generator. Furthermore, our design decisions are taken towards achieving these
criteria.

4.2.1 Cellular Automata

Our Cellular Automata for generating map elements starts off following the cave generation
method that is best introduced by Johnson et al. [2010]. This procedural cave generation
method is comprised of a 2-dimensional MxN grid, and a rule-set with two values for cells,
true and false. A cell C has its value defined by its Moore Neighborhood of r = 1 (See
Section 3.2), from which T is the number of true cells, and F is the number of false ones. For
a cell that is on the grid’s edge, positions outside of the grid count as true cells. The Cellular
Automata’s Grid is initialized with semi-random distribution of true and false cells which

4.2. MAP AUTOMATA 33

guarantees that a percentage ’Fill’ of cells are false.
Most Cellular Automata delegate to their own cells a timer with which the cell updates

itself based upon the state of its neighbors. Should all cells operate on the same timer, as it
is the case for our Automata, then all cells are updated instead within universal steps, which
are hereafter refereed to as ’Iterations’. One iteration of our Cellular Automata updates each
cell in accordance to the following rules:

C =

true, if t > 4.

f alse, if t = 4.

f alse, if t < 4.

(4.1)

Our preliminary experiments suggest that an equal number of True and False cells
(Fill = 0.5) presented better results, as the rules tend to converge to all cells becoming False
for higher filling values of Fill > 0.5 (meaning cells are mostly false), or all cells except
some of those adjacent to the edges of the automata being True for Fill < 0.5. This rule-set
converges within a reasonable linear number generations as its rules are simple enough not
to fall into a looping sequence of states. Examples of the resulting automata are presented in
Figure 4.7

Figure 4.7. Three versions of the same Cellular Automaton generated from different
updating methods (see Chapter 3). From left to right, these methods are: synchronous,
asynchronous with cells updated in a random order, and asynchronous with cells updated
sequentially ordered by their position in the grid. Black cells are true, white cells are
f alse.

Simple as it is, this methodology could already be converted to a 2D game map with
a top-down perspective. As with Johnson’s ’Cave Crawler’ [Johnson et al., 2010], which
features an additional step for generating continuous, infinite maps with adjacent grids. All
it would take is to map True cells to floor tiles such as grass, and False cells to unwalkable
tiles such as walls (or vice-versa). Yet, even should another specialized algorithm place game
elements within this map such as items, coins, enemies, etc., its design is likely to still be

34 CHAPTER 4. METHODOLOGY

lacking: there are a great number of unaccessible areas, and the geometry of the path hardly
represents progression.

To better mold and orient the generative process, we propose the introduction of space-
filling curves, such as Hilbert Curves, as a guide for the creation of paths within the map.
This step is introduced prior to iterating the automata, during the ’configuration’ step.

4.2.2 Space-filling Curves

Space-filling curves are guaranteed to generate a path that is linear (no parallel intersections)
through a grid that is at least as large and wide as the square root of the path’s length. For us,
the purpose of utilizing Space-filling curves is to create a guide-line by which the automata
updates its cells around it, while preserving the curve’s shape. This guideline could represent
the path by which the player must explore the map, and the curve’s inherent properties assist
in creating areas to place content and to explore. The methodology for generating a path out
of the points of any type of Space-filling Curve, as well as adapting it for usage with the
automata are summarized as the following steps:

1. Plot the curve within the Automata’s grid.

2. Scale the curve to increase distance between its points.

3. Shift the origin of the grid to randomize which of the curve’s shapes remains in
the grid.

4. Trace a path through the points within the grid’s limits.

5. Imprint the curve into the Grid

These steps are further explained within this sub-section. Figure 4.8 illustrates the
automata’s changes from step 1 to 4.

4.2.2.1 Definitions

Before describing the required steps, let’s first define a few terms, while giving a basic
overview of the following steps. A Cellular Automaton’s Matrix is henceforth refered to
as a ’Grid’ of dimensions M by N. This grid also contains a Space-filling curve whose great-
est dimension is defined as its ’Order’ and represented by (α = Max(M,N)). This curve is
used to draw or ’Trace’, as we call it, the player’s ’Path’ along the map. When we refer
to ’Scaling’ a curve, it means to multiply the coordinate of every point in the curve by an

4.2. MAP AUTOMATA 35

amount S, which furthers the gap from every point of the curve within the grid. Finally,
since each point of the curve has been split by an equal sized gap, by ’Shifting’, we simply
mean to increase the offset or origin of the curve in the X and Y coordinates by randomly
determined amounts. Therefore, ’shifting’ which region of the expanded curve that exists
within the Grid.

4.2.2.2 Plotting

To place the Space-filling Curve within the automata’s Grid, we have begun by generating
a Hilbert curve that fills all of the space of the grid. Therefore, to also cover grids where
M 6= N, we generate a curve of length α2 into a αxα grid. The path of the 1-dimensional
representation of the curve is stored into a list data structure that is the basis for the tracing
of the map’s path.

4.2.2.3 Scaling

The Space-filling curve that occupies all of the grid’s space is then rescaled by an integer
amount 1 < S < α as to increase the distance between the points of the curve (eg.: S = 2
would imply a distance of 1 cell between points of the path).

4.2.2.4 Shifting

Although fractals have proven to be valuable tools for generating procedural content, their
inherent predictability can be a problem for generating distinct content. For the purposes of
utilizing fractal curves as paths for game maps, some measures have to be taken to attain
the desired diversity of procedural content. The first being the definition of a random sector
from the entire curve from which to create a path upon. This is done by dividing the (N×
S)x(M× S) grid by the curve’s order, resulting in a ((N × S)/α)x((M× S)/α) grid from
which a random offset is selected. The curve is then shifted to that position. Section 4.2.4
returns to the subject of introducing random variations, once the integration between the
Automata and Space-filling Curve is complete.

4.2.2.5 Tracing

The steps taken to alter the Space-filling curve up to this point have it not filling the entirety
of the grid’s space. Instead, as the curve has been scaled, only a few of its points remain
within the grid’s bounds. Furthermore, as shown on (3) and (4) in Figure 4.8, what remains
of the curve within the grid, are split segments that are not connected within the bounds of
the grid. To find a way to connect these segments, the order by which each point of the

36 CHAPTER 4. METHODOLOGY

curve has been created (and therefore the original ’path’ created) is stored within a list that
is created as the curve is plotted. From the remaining points, a new path must be traced.

Along with the previously stated definitions, let’s define η as the set of k split segments
from the Space-filling curve that remain within the grid. To create a traversable path for the
player, all k paths from η must be combined into a single path. Each point σ that is stored
within the list has an index that indicates how early it was created, and ranges from 0 (the
first point) to α2 (the last point). In order to connect two split segments ηa,ηb, at least two
points σi ∈ ηa,σ j ∈ ηb must be connected, where i and j are indexes, and i < j < α2.

To define a criteria for connecting two points, a function λ (σi,σ j) must be established.
In our case, for preserving the non existence of diagonal paths, our function for verifying if
two points are connectible checks whether they are on the same X or Y axis in the grid.
Formally:

λ (σi(xi,yi),σ j(x j,y j)) =

true, if (xi = x j)∨ (yi = y j).

f alse, if (xi 6= x j)∧ (yi 6= y j).
(4.2)

Given the function for connecting points from paths ka and kb, for each path a and
b = a+ 1 starting from a = 0, each point σi ∈ ka and σ j ∈ kb, with 0 ≤ (i = length(ka)) <

(j = length(kb)) < α2 tries the function λ (σi,σ j). If it returns true, the points become
connected, which in turn connects both paths: kb = ka ∪ kb. If it fails, then it attempts by
brute force to connect to previous points g from ka (0 ≤ g < i). If no pair of points can be
found, then it attempts the same with kb, but instead trying to k points moving further on the
curve (i < h < j). This process of brute force in theory could bring a factorial worst case
complexity, based on the number of points within the grid. However, due to the high number
of points spread across the grid, and the regularity of the fractal’s shapes, the theoretical
worst becomes unlikely in practice. The algorithm ends when the k number of k paths within
η equals 1, meaning all paths have been connected.

4.2.2.6 Imprinting

The resulting curve from all previous steps is one that represents a linear path that may
have generated dead-ends and cycles, but mostly follows a longer, main path, as the one
presented in Figure 4.8. These possible dead-ends and cycles are not detrimental to the
map’s design, and in fact, they are useful as a basis to expand as secret or optional areas
to explore. One possibility of expanding the concept of the curve map’s path could be to
connect more segments, as to create alternative ways to reach the same place or complete the
level’s map.

4.2. MAP AUTOMATA 37

Figure 4.8. From left to right, the first four steps described in Sub-section 4.2.2 are
represented: (1) Plotting, (2) Scaling, (3) Shifting, (4) Tracing.

To have the cellular automata’s topology integrated with the curve, the configuration
step (before any iterations) must be altered to set all cells that are covered by the path to
a value. Which in the case of our rule-set is f alse. This however still presents a problem,
as the automata’s rules could cause part of the path to be erased depending on the random
configuration of the remaining cells.

To avoid this, there are two safety measures that will come in handy for future im-
provements: 1. Introduce the concept of ’locking’ cells, so that their values are not changed
during iterations, and applying it to all cells within the path; 2. Redefine which cells belong
to the the curve’s path, introducing the concept of a path’s ’girth’. Once all cells from the
curve’s path are defined, each other cell within a Moore distance of Pg of at least one cell
within the path is synchronously added to it. A value of Pg = 1 already guarantees that the
path will not be broken, as the cells from the original path are all adjacent to f alse cells.

4.2.3 Securing Negative Space

While guaranteeing paths between two points is possible with the tracing of paths through
the Cellular Automata, there is nothing stopping the automata into generating alternative,
unintentional paths which could effortlessly lead the player from the start to the end of the
map. While some games would not be bothered by this, levels that present challenges to the
player as he or she traverses from the beginning to the end of the level’s map must restrict
these alternative paths from emerging. Therefore, a safety lock to avoid unintentional paths
is required.

By the same logic that we orient the automata into organize itself around the Space-
filling Curve path, we generate a ’Negative Space’ path: a second curve that covers all the
areas of the grid that the Hilbert Curve does not. This area is then trimmed so that its girth
is no larger than a specified ’Negative Girth’ parameter Ng. This negative curve should

38 CHAPTER 4. METHODOLOGY

influence the automata as little as possible to optimize the amount of random True and False
cells the automata can work with.

The algorithm for trimming negative space is a simple one: it begins by splitting all
the cells not covered by the curve path being added to a subset of nodes γ , and all cells that
do to another subset δ . Then, for each cell c ∈ γ , if there is at least one cell d ∈ δ within
a Moore neighborhood of 1, then c is moved from subset γ to δ . This algorithm updates
synchronously each cell within γ for (S

2 −Pg−Ng) iterations, where S is the scaling of the
Space-filling curve. For the desired girth to be obtained, S must be an even number, as the
Negative-path is trimmed from both its sides at the same time. Finally, the resulting automata
setup shown in Figure 4.9 contains paths for the player to follow that are guaranteed not to
be broken by the automata’s own rules.

Figure 4.9. To the left, the Cellular Automata marked with the Space-filling Curve’s
path (green), as well as the negative-path curve (yellow). To the Right, the resulting
automata after a number of iterations until it stabilizes. Parameters for this Automata are
as follows: N = 100, M = 100, Fill = 0.5, S = 22, Pg = 1, Ng = 1. The colored dots on
the right image are the points from the Space-filling Curve.

4.2.4 Polishing

We have been able to generate the automata whilst maintaining the cohesiveness of the
player’s path, as shown in Figure 4.9. The number of unreachable areas has been mini-
mized, but the path still looks artificial: (1) The points from the curve are scattered in the
x and y axis in regular intervals, (2) There are too many straight segments, (3) Parts of the
automata’s topography become marked by the straight line segments of the path.

During the configuration of the automata, two additional steps are introduced before
the first iteration, in an effort to minimize the interference of the curves where it is not

4.2. MAP AUTOMATA 39

intended: The first is to ’rotate’ the grid, as to break the monotony of completely straight
paths; the second is to shift each point on the path by a reasonable amount and then retrace
the path through the connected points. This visually distorts the recognizable fractal shapes
of the Space-filling curves, and changes the physical distance between points in the map.

4.2.4.1 Rotating

Rotating the map’s grid presents a dilemma that requires design concessions. As the au-
tomata still requires a MxN grid, having it rotate means that one of two alternatives has to be
taken to maintain it a 2-dimensional square grid: (1) After rotating the grid, scale it down to
fit the original MxN dimensions; (2) Redefine the expected grid’s proportions in each axis,
depending on the rotation angle. Regardless of the alternative, rotating the grid is likely to
cause some information loss during floating point to integer conversions.

The first alternative introduces a myriad of problems which caused us to avoid it: when
a rotated version the original grid is rescaled to fit its original proportions, the number of
random cells it has available to generate the automata could be greatly reduced. The same is
true for the proportions of the curve-path and the negative-path: as both of them are reduced
to fit the grid, it is not guaranteed that their girths will remain near their specified values.
Assuming the worst case M = N, and a rotation of nπ

2 + π

4 radians (45◦, 135◦, 225◦, 315◦,
etc. degrees), the length in the x and y axis of the grid would become N

√
2, meaning a

29% reduction of the available map space. Having less cells to work with causes makes
it harder for the automata to create balanced, organic shapes, with reinforces the ’scarring’
effect caused by the path curves.

4.2.4.2 Shifting

Rotating the Grid breaks some of the ’sameness’ of the curve-path shapes, but the charac-
teristic fractal appearance remains noticeable. As a second polishing step, each point within
the curve-path is shifted randomly by an amount ε = S

2 −Pg−Ng. This value is the same
as the number of iterations needed to trim the negative space, and represents the closest dis-
tance between the curve-path and the negative-path. For each point σ(x,y) in the curve, its
new position is determined as σ(x+Rand(−ε,ε),y+Rand(−ε,ε)). The final result of both
polishing steps is presented in Figure 4.10.

As all points were shifted, the fifth step described on Section 4 would have to be
repeated in order to imprint onto the automata the shifted path. The original tracing of the
unshifted path is still required for the tracing of the negative-path. Therefore, the order of the
steps cannot simply be rearranged, and a second iteration of the printing sescribed in section

40 CHAPTER 4. METHODOLOGY

Figure 4.10. The same automata presented in Figure 4.9 after rotation and shifting
operations are introduced.

4.2.2.6 is required. An overview diagram summarizing all of the methodology is displayed
in Figure 4.11.

Figure 4.11. The complete sequence of steps for the generation of the procedural map
automata. The images for the ’Space-filling’ curve section are merely illustrative and do
not represent the same curve-path displayed in all other images.

Both polishing operations complete their tasks within polynomial time. In conjunc-

4.2. MAP AUTOMATA 41

tion with the other methods described in this work, the process for generating maps is still
accomplished within acceptable complexity to be executable online.

4.2.5 Stacking Cellular Automata

As a theoretical background for expanding upon the concept of Cellular Automata as a ba-
sis for map generation, this work draws from the definition of Multi-layered Cellular Au-
tomata. We propose the concept of having additional layers of content being created by
semi-independent ’Automata-Layers’ that include within their rule-sets specifications for in-
teracting with other ’Automata-Layers’. A visual example of this concept is presented in
Figure 4.12.

Figure 4.12. Stacking of multiple layers of cellular automata, each responsible for one
element type in the map.

Their functioning is as simple as having additional cellular automata generating other
features of the level such as vegetation, objects, roads, among other structures that could be
modeled. These structures then use information from the original base automata, as well as
other Automata-Layers

The benefit of having a multi-layered architecture is integrating the results of one au-
tomata with another. In this case, one could create multiple interdependent concepts, such
as a ’tree-generating automata’ and a ’cliff-generating automata’ or a ’topology layer’, as it
will be refered to henceforth. By integrating these with the already established automaton,

42 CHAPTER 4. METHODOLOGY

we define the ’base’ layer: one layer can use information from other layers to limit their own
generative process. As an example, we next provide a description for the implementation of
two types of layers that have been used on the qualitative testing of our maps.

4.2.6 Example 1: Topology Layer

While the resulting Automata conveys information by itself, it could be useful to draw spe-
cific types of information from it. While an algorithm that requires a specific type of informa-
tion from a layer could implement a method to do so by itself, it would be far more organized
to have this information stored within an accessible structure, assuming it is relevant for a
number of other algorithms.

As an example of this, if the designer were to determine the positions within the grid
where True cells change into False cells (borders), as to generate cliffs on the intersections
of cell types, having a representation of the grid that contains only that information would
be very helpful. In this example, a ’topological mask’ could check these intersections and
store it in a separate grid (or, for the sake of efficiency, store distinct classes of values within
each cell). This type of mask is exemplified in Figure 4.13. And its implementation is as
simple as determining which True (black) cells on the automata contain at least one False

cell within a Moore Neighborhood of 1.

Figure 4.13. A base automata, a topology layer-mask generated from automata, and a
mapped version of the topology automata to 2D sprites.

This topological mask by itself is already enough to generate cliffs from 2D tiles
through a simple grammar-based approach [Shaker et al., 2016a], as exemplified in Figure
4.14.

This layer defines a prominent geographical feature of the map, and thus an approach
of having additional layers such as the ’Tree Generating Layer’ detailed below is the basis of
our map generation. All we would need is to have both layers be mutually exclusive. Which
means no single cell may have a non-zero value at each of those layers at the same time.

4.2. MAP AUTOMATA 43

Figure 4.14. From the base layer, to the topology layer-mask, 2D tiles are generated
depending on their position in the topology mask, creating the aspect of a continuous
’natural cliff’ structure. The visual quality of the resulting tiles map (right image) is the
result of editing and experimenting with selected free visual assets from Websites such
as ope [2017]. As of now, we cannot present a theoretical basis as how to optimize the
visual quality of matching 2D tiles.

4.2.7 Example 2: Tree Generating Layer

A ’Tree Generating Automata’ is proposed as an example of an Automata Layer. This con-
struct is somewhat more complex than the base automata presented so far, but it represents
vegetation dynamics fairly well, as exemplified by Balzter et al. [1998]. It fulfills its purpose
as a demonstration of the capabilities of the methodology presented in this work. It simulates
the growth of trees within the map, while taking into account the player’s path and topology.

The automata of this layer has cells whose integer values range from 0 to 255: cells
with a value of 0 do not have a tree created at their position; Cells with values between 1
and 4 are spaces that are ’growing’; Cells with values of 5 and higher have grown into a tree.
Each cell with a non-zero value increases its own value by 1 at each iteration, making so that
the value of the cell represents the ’age’ of the tree.

The updating method for each cell c that does not already contain a tree takes into
account the age of each cell d nearby that has a tree, which is represented by νd = valued−4.
When updating a c cell it has a 1− (0.95νd) probability of having its value change from 0
to 1, for each other within a Moore Neighborhood of 2 with νd > 0. This automata presents
no conditions for eliminating trees, as most automata that model organic behaviors, such as
the iconic Game of Life by Conway [1970]. Therefore, if left to update during a sufficiently
high number of iterations, the Automata would converge and stabilize once all positions on
the grid are filled with trees. As it is defined, the designer would have to determine a number
of iterations for the expected amount of vegetation desired, as shown in Figure 4.15.

As with the topology layer, we have set sprites for each tree: the older the tree, the taller
its sprite image becomes, trees younger than 5 iterations have alternative, smaller sprites. An
example of this are shown in 4.16.

With as little as 2 layers of content, the resulting map already shows promise. Many
more layers can be added to extend one’s desired concept of the generated level, and those
presented here are merely examples and suggestions. Other types of environments such

44 CHAPTER 4. METHODOLOGY

Figure 4.15. Evolution of the ’tree-generating automata’ without the introduction of
space-filling curves (Parameters: N = 100, M = 100, Fill = 0.01). The greener the cell,
the older it is compared to the other trees. As trees need to be ’5 iterations old’ for them
to start spawning other trees, the automata changes the most every 5 iterations. This age
restriction also prevents trees from spreading wildly, instead forming small forests.

as caves, islands, mountains, and other organic environments can be designed from this
methodology, as long as their characteristics can be reasonably modeled by the principles
of Cellular Automata, which have proven in this and many other works to be extremely
flexible. The entire process from the generation of the space-filling curve, to the end of the
tree-generating automata takes an average of 8.6 seconds.

4.3 From Planning to Map Generation

With a cohesive subset of states, and a collection of possible automata to stack, what is left
is the integration between both systems. As the planner generates a description of a map,
all that is needed for the map generator is to select a number of states from that description,
and create layers of Cellular Automata accordingly. As it will be shown in Chapter 5 the

4.3. FROM PLANNING TO MAP GENERATION 45

Figure 4.16. Example of 2 layers of CA

placement and updating order of layers is a synchronous process that may cause the final
aspect of a map to greatly change, as some layers of the stack might be limiters to the
development of others.

The technical basis for converting the plan result to a map is one that is fundamentally
easy, with a few caveats to address. Within the Unity Game Engine, the solution’s implemen-
tation is equally simple: so far, every single method and algorithm previously mentioned to
be a part of the procedural process has been implemented within Unity. In turn, this means
that every single type of automaton is stored within a Class, and so is the case for every
planning state, which is stored within a ’Solver’ class. On Unity’s Component based design
paradigm, these generative constructs can be simply passed as parameters to other classes.

As a result, an interface class is implemented that takes the resulting states from the
planner program, filters for those that are determined by the designer to be the ones that
define which layers of Cellular Automata are supposed to be added. Then, each actor within
these actions is mapped to an Automaton ’Prefab’: a generic type of object that the Unity
engine uses to instantiate almost anything, and is organizable by its intuitive drag and drop
interface, as shown in figure 4.17.

Layers are iterated through sequentially, in the order by which they are placed. Mean-
ing the first layer placed is effectively a single Cellular Automaton, while the second Layer
onwards behave as Multi-layered Automata. While the effects of having all layers iterate
at the same time is more interesting when dealing with integrated components, each layer
would have to be crafted in a way that is too time consuming for the scope of this work.

46 CHAPTER 4. METHODOLOGY

Figure 4.17. C# Script component that takes references for the planner library, the plan-
ning solver, and the map generator (respectively), and filters 6 types of states from the
resulting planner’s solution (a previous example of a solution is as shown in 4.6). Then,
actors from the planning Domain Library are mapped (a String to Prefab dictionary) onto
an Automaton Prefab, which is stored on one of the project’s folders.

The way it is, each layer has a ’priority’ parameter ranging from 0 to 1, determining
how likely this layer is to be set up first, as layers are chosen. Also, a second ’ignore prob-
ability’ parameter guarantees that, once all layers without this parameter are determined in
order, layers that ignore this random sorting are placed above all layers of lower priority.
This setting is useful for creating environments where a layer is too significant to be allowed
to iterate last. For example, an island themed map would likely need a ’Water_Island’ layer
that needs priority over other layers that fill a lot of space, such as the ’Tree’ layers. Figure
4.18 shows the planner Unity C# script component that handles all placement and iteration
of the layers, as well as their organization after generating a sample map.

Having the integration between planning solutions and Automata complete, the next
step for expansion of this methodology is to improve on the execution and design of its
components. A generated map should be only as good as the quality of the planning Domain
Library and Layers that define its creation. As the design and expansion of our Domain
Library is an arduous task that requires a shift from a research perspective to a design one,
we have refrained from investing even more time into improving the library presented at
Appendix A. Furthermore, from here onwards, we shall discuss the results and testing of all
the methodology has been already defined so far.

4.3. FROM PLANNING TO MAP GENERATION 47

Figure 4.18. Unity Component for Map Generation. Information about distinct parts of
map generation are separated in drop down menus, as is the case with the open ’Layer
Execution Order’ segment. Graphical interfaces such as this have been made for all
components of planning, map, and their integration.

Chapter 5

Quantitative Analysis

The end goal of the procedural map generator is to create maps that feel interesting. It makes
it so that evaluating the users’ opinions is our main indicator of quality. Furthermore, the
Quantitative Analysis of our results focuses on their mathematical expressiveness, and how
reliably these are results achieved. In other words, to guarantee that our generator fulfills
it’s purpose, it is necessary to evaluate its correctness and performance. Hence, this section
discusses the resulting maps’ consistency, variety, among other factors. In order, we first
present the design of the maps used for both Qualitative and Quantitative testing. Then, the
performance costs of generating these maps, and the mathematical variety and consistency
of Map and Theme generation.

5.1 Resulting Maps

The perceived quality of our generator regarding playability is directly proportional to the
designs created with it. It would be hard to argue in favor of the quality of a tool without
examples of its use. Yet, to develop a tool and to learn and master designing for it is a task
too great for our limited scope. As it is, we have designed a total of 5 layers of functional
Automata, as described below.

1. Base: The initial layer containing the base cellular automata set up presented in Sec-
tion 4.2.

2. Grass: A trivial layer that has a singular rule of setting all its cells to one.

3. Cliffs: The Topology Layer presented in Section 4.2.6.

4. Trees: The Tree Generating Layer presented in Section 4.2.7.

49

50 CHAPTER 5. QUANTITATIVE ANALYSIS

5. Water: A Flood-Fill algorithm based automaton layer which generates bodies of wa-
ter, and then shrinks and morphs that body within the confined available spaces limited
by other layers.

6. Roads: A random filling and trimming algorithm based automata layer which uses the
same smoothing techniques as the base automata layer to generate roads along some
of the Hilbert Curve’s path as a means to guide the player through the curve.

Each layer, as described in Section 3.2.2 is able to interact with others. In this case,
it can be summarized to trees not being able to grow or germinate on water, cliffs not being
able to be placed on trees or water, roads only being placed around the Hilbert Curve, and
similar interactions.

The proposed methodology allows the generation of an organic geometrical configura-
tion adapted to a player’s path through a level’s map. A completely procedural progression
for the player to explore is generated with both a path from a starting area to the goal, and par-
allel ones for exploration. Furthermore, these are not immediately noticeable by the player,
even if they are given the opportunity to see the map in its entirety. This is only possible
due to the versatile self-organizing properties of Cellular Automata. Even by adding as few
layers of content as we have, we are able to generate interesting configurations.

However, as each game has its own features, a general purpose generator can only get
so far: a decent, complete, game level requires many other resources such as enemies, items,
power-ups, and other intractable elements. It would also require other topological and envi-
ronmental elements to bring an interesting, visually appealing game. All of these domains
of content being specific to the archetype of game in question. Furthermore, introducing ad-
ditional elements to the map requires a flexible framework with which existing constructions
could be interpreted for determining where to create additional content. For a first impres-
sion of the visual aspect of the generated maps, we have provided a mosaic with distinct
generated maps in display, presented on figure 5.1.

5.2 Map Geometry

As a preliminary evaluation of our results regarding the map geometry, it is often the case
with results that are hard to evaluate quantitatively to come down to displaying examples
while attempting to minimize the authors’ bias. To counterbalance this, we have selected a
large set of maps presented in Figure 5.2 generated with random seeds, but the same param-
eters presented in Figure 4.9, to help the reader to formulate their own opinion on the basic
patterns of generated Automata.

5.3. MAP GENERATION VARIETY 51

One repercussion of adding the curve-path that we did not initially account for was how
some maps would become more claustrophobic with few open areas. This occurs mainly due
to there being less cells and space to generate topology. To compensate for this, we have per-
formed tests varying the number of cells that are generated as True during the configuration
step, as shown in Figure 5.3. Each configuration of the base cellular automaton was gener-
ated at an average of 0.8 seconds.

While it is undeniable that some of the charm of pure cellular automata is lost, we
believe is one problem that for now has to be coped with. Pure procedural systems might
generate beautiful results, but their unpredictability hamper the possibility of utilizing them
in commercial games. In no way do we intend to critique or demotivate the development of
other methods that accept the randomness of pure automata or other procedural systems. On
the contrary, we are eager to see alternatives to our methodology. But we do acknowledge
that our intent is to better harness procedural systems, and that some of its natural beauty
may be lost for it.

The general image of the Space-filling Curve is still identifiable in some of the shapes.
It is a sign that more controlled random factors need to be introduced within the curve-path
algorithm, as an attempt to introduce new, alternative paths. Yet, the generated map shapes
follow a visible progression and allow for use as a base for a completely procedural level
design. While improving upon this system is also a task for future work, still within this one
we have introduced the concepts on how to build content upon the basis of generated maps.

5.3 Map Generation Variety

One of the most important influencing factors on the map’s final appearance is the random
seed that defines the results of every purely random and of every stochastic process within
the Map’s Generation. How easy it is to replicate a previous result is a quality check-mark
for any procedural generator, and it should almost always be solvable by simply reusing
the same random seed. Our procedural method achieves this level of consistence for all its
components (planner, automata, and integration), however this raises an specific question
based of the effects of locking the results of one, and then allowing the other to experiment
with another seed. Fundamentally, it is interesting for us to see the visual aspect of generating
a set of maps that, while receiving the same configuration of states from the Planner module,
execute their automata with distinct seeds.

As shown in Figure 5.4, by changing the map’s random seed while keeping its theme,
we are able to generate maps of similar visual appearance, but distinct geographical config-
urations. Meaning our generator is consistent both with its individual components and with

52 CHAPTER 5. QUANTITATIVE ANALYSIS

their combined system.

Another crucial factor that changes the map’s geometry once all layers are placed, is
the order by which they are executed. As many layers that impose movement restrictions on
the player have limitations in occupying the same cells in the map. Thus by having a layer
be chosen to be executed first, the visual aspect of the maps can drastically change. A purely
demonstrative example is presented in figure 5.5.

In this example, a we have changed the iteration order of two layers that create move-
ment restricting obstacles, and it has caused the overall theme of the map to shift from what
we would call ’a forest with rivers’ to ’a small island’. Regarding the distinct shapes of the
player’s path despite the same random seed being reused, the random system utilized in our
process utilizes a queue of a randomly organized distribution of numbers, instead of being
reliant on time, or other mutable aspects that could be affected by performance hiccups. By
changing the layers that first take from this queue, all further non-deterministic decisions are
influenced.

5.4 Theme Planning Variety

A simplistic estimation of the amount of content that can be generated by a Map Generation
oriented Domain Library would be to consider the number of permutations of content that
could be selected from each group of layers. For example, in the library shown so far (Ap-
pendix A, we have 3 distinct map sizes, 3 types of cliffs, 3 types of ground, 4 topographical
configurations, 5 vegetation configurations (including no vegetation), and 4 configurations
of hydrography. This estimation would suggest that there are, considering only the theme,
3×3×4×5×4×4 = 2880 distinct map themes. In practice, this number is much smaller,
due to the very nature of planning problems.

While planning, there will be always mutually exclusive actions that may be spread
over any interval of time. Meaning that an action may create a configuration of states that
restrict other actions from ever being immediately executed, and so can happen that the
restricting action could be the first, and the restricted one could have been the last. On plan-
ning problems that allow for cycles, that is, sequences of actions that have a configuration
of states be created, undone, and then remade, verifying these exclusive relations becomes
much harder. Worse yet, some planning problems might see themselves having actions that
can never be performed. Not because the action is too restrictive by itself, but that the system
generated by the sum of all the domain’s actions and their repercussions make it so that these
actions become impossible.

For us, guaranteeing that every created automaton layer has a way of being chosen, and

5.5. PERFORMANCE 53

therefore appearing in the final map, requires us to only make sure that the action that sets
that layer is guaranteed to be possible, regardless of how much its restrictions, or restrictions
from other actions hamper it from showing up in the final maps. To verify this, we have
also developed a ’Tracker’ module within Unity that measures over N iterations of planning
how often certain state appears on the final configuration. Meaning that with at least these
N versions of maps, each layer is guaranteed to appear at least once, and therefore, at least
one action that could determine its appearance is not impossible. Further work experiments
should also track action calls, monitoring if each action has been chosen or not. For now, our
focus is to have every layer present on the map, and therefore it is only necessary to monitor
their incidence. A partial example of this state tracker is shown by Figure 5.6.

Still on this figure, there are cases of layers that are very likely to be set. For example,
a ’HidrographyCoastal’ layer has a 26,4% percentage of chance of appearing on the final
map based of the total of solutions verified, while others like the ’HidrographyIsland’ having
a low chance, at 7,2% chance of appearing. That may be due to the set of actions that define
what type of tree will appear being too biased, or that the possible combinations of states
taken until these actions are taken are biased instead. Likely, it is a combination of the two
possibilities.

When developing a map with this in mind, it is up to the designer to decide whether
having a layer be a rare occurrence is desired. An expanded version of our concept could
include types of treasures to be placed within the map, and by that example, having a layer
being unlikely to appear could be an interesting take on the design of the game’s planning
domain library. Likewise, experimenting with the actions and testing how it affects the end
outcome of a problem that is exponentially hard is left for future work, be it academic, or
within a functional game.

5.5 Performance

Experiments were performed on a 3.20 GHz 64 bits AMD FX-8320E Eight-Core Processor
with 8 GB RAM, and a Nvidia GeForce GTX 1060 6G graphics card. For the purposes of
testing the process adaptability to be executed during a game’s runtime, each iteration of any
Cellular Automata, planning, as well as other minor tasks, are partially divided across distinct
game frames. This means that, while it takes longer to be completed, the methodology can
be executed in the game’s background. While a considerable slowdown is still present, we
firmly believe it could be improved through a more effort on optimizing the division of tasks
across game frames.

Besides optimizing as development went, no attempts were made into developing a

54 CHAPTER 5. QUANTITATIVE ANALYSIS

basic overhead optimizer to the map generation, or even a post processing cleaner to avoid
the performance cost of the high number of objects generated. As mentioned, we did put
effort into reducing the workload of a single frame by splitting object creation along multi-
ple frames, though not enough that no considerable slowdown will be present. In this alpha
implementation of our generator, performance is a heavy burden that requires a heavier in-
vestment.

While analyzing the time cost in relation to the size of each map, we have determined
that, as expected, the amount of time required to generate a map is proportional to its size.
However, there were a high enough number of outliers to indicate that size by itself has
only a partial influence on the overall time cost. The results over the testing of 33 maps are
presented on Figure 5.7, where a function reliant on the system’s time is used to capture the
time required to create maps without being influenced by system slowdowns and hiccups.

As shown in this Figure, the time required for the Planning of the map’s theme has, in
all cases, been lower than 1 second, being even hard to see in the graph, and therefore negli-
gible when comparing to the amount of time required for the the remainder of the generation
process. The integration module that maps the planner’s results to the layers of automata to
be created also does so a very short time. What then remains is divided into two groups:
(1) Automata; (2) Other. The former represents the time required from configuration step to
completion of all Automata layers. The latter represents a number of processes required to
initialize, maintain, and terminate other systems for generating the map. The worst culprit
of all, being the calls to instantiate and delete the Game Objects required to form the map.

Within the Unity Engine, every object that exists in physical space is a member of the
’GameObject’ class, with a number of restrictions, such as having a ’Transform’ component
that represents its position within game space. The act of instantiating and deleting objects
is a costly one, and without optimizations, our generator is guilty of creating a high number
of objects. For every grid space, a single object is created. Within it, for every layer that
creates an object on that position (often by having the value of the cell being greater than 1
for that layer), one additional object is created. The process of positioning these objects and
adjusting them in other parts of the generation procedure also creates and destroys objects.

This could be resolved easily with optimization steps specific to each layer. For exam-
ple, a ground or water layer does not need one tile per grid space it occupies, instead it should
be created only if the contents of that layer are visible. A solution that would require handi-
work is to make certain tiles stretch if they occupy convex groups of adjacent tiles, in order to
reduce the number of title game objects being instantiated. This among other optimizations,
such as reducing the number of physics simulating colliders that stop the player’s movement
in the map using the same logic as reducing tiles would greatly aid our performance costs
presented in figure 5.8.

5.5. PERFORMANCE 55

Most of our memory consumption, ranged from roughly 30 Mb to 100 Mb from smaller
to larger maps. A substantial amount of memory is allocated specifically for the map’s com-
ponents. The maintenance of physics required by the number of colliders from trees, cliffs,
and water costs over half of the total memory allocated, with roughly 30% of being used
when monitoring the entire map all at once. Again, Unity provides methods for reducing
this physics maintenance cost and there exists a certain ’hygiene’ for creating physics ob-
jects while also reducing this burden. As the generator evolves and grows, optimizing these
criteria is likely to be a high priority.

56 CHAPTER 5. QUANTITATIVE ANALYSIS

Figure 5.1. Mosaic with different maps generated with different random seeds. Maps
may have different sizes.

5.5. PERFORMANCE 57

Figure 5.2. Different versions of Map Geometry achieved by variating the random seed.
Parameters for these automata are as follows: N = 100, M = 100, Fill = 0.5, S = 22,
Pg = 1, Ng = 1

58 CHAPTER 5. QUANTITATIVE ANALYSIS

Figure 5.3. Map Geometry experiments with the Fill parameter for different values as
to find a compensation for the reduction in random cells by the imprinting of paths.

5.5. PERFORMANCE 59

Figure 5.4. Variations of the same ’theme’ for a Map with different random seeds for its
Automata.

Figure 5.5. Two maps with the same random seed. On the left map, the cliff topography
layer iterates before the river generating layer. On the right map, the river generating
layer iterates first.

60 CHAPTER 5. QUANTITATIVE ANALYSIS

Figure 5.6. A segment of the results of the tracker condensed into multiple tables. The
tracker shows, for a number of instances of the map generator (in this case 1000)), what
is the frequency of each layer being in the set of layers chosen for the final map. Certain
groups of Layers, such as the ’Stage1Complete()’ and an additional set of topography
layers are used as intermediary states for the creation of the map.

5.5. PERFORMANCE 61

Figure 5.7. Plotting of the time required for the generation of maps of various sizes,
with distinct random seeds.

Figure 5.8. Unity’s profiler tool measuring, to the left, the CPU Usage and Allocated
Memory over time for an average sized (aprox. 75x75 cells) map. To the right is a de-
tailed measurement of the percentage of memory consumption per type of component
in the game in the current frame (marked by the white vertical line on the left side).
The most important information to pull out from the profiler is it’s first line: ’FixedUp-
date.Physics2DFixedUpdate’ is the overhead required to evaluate the physics properties
of the map’s objects and taxes 58.5% of Unity’s allocated memory.

Chapter 6

Generator Analysis

In this Chapter, we present our objectives for the qualitative analysis of the generated maps,
and which tests we have chosen to perform to properly address each topic. The main purpose
of these tests is to have human users navigate through the generated environment, then report
back and elaborate on their views. Offering a player an environment to simply move across
is not very entertaining unless the the environment itself is fine crafted to invoke sensations,
such as awe, curiosity, tension, dread, etc.. Procedural systems have long ways to go be-
fore reaching this level of craftsmanship, and in the scope of this research, it is simply not
achievable.

Therefore, an intermediary interface has to be placed between the player and the gen-
erated maps. One that gives the player meaning and purpose for their traversal of the en-
vironment. In lieu of this matter, we have developed a simple game in Unity that puts the
player in the role of a character looking to find an objective within the map while facing
basic challenges to keep them engaged with the experience. To offer each subject incentive
to explore areas parallel to the main level path, and thus explore the map generation’s own
ability to create divergent paths, several collectibles that aid the player in reaching their goal
are placed in each stray path generated by the Space Filling Curve. Further details of the
developed game are presented in Section 6.2.1.

To give the player a brief time and experience to navigate through the maps with ease,
three different maps are provided to each subject. The first two consist of M = N = 50 sized
grids, with the last one being of size M = N = 75. The remaining parameters as referenced
in Section 4.2 are the same for all maps: Fill = 0.5, S = 22, Pg = 1, Ng = 1. By having
the player navigate through paths that are essentially linear, we may prepare the player to
navigate with confidence on a more complex environment. Whilst many tests show that a
M = N = 100 map is feasible, a map this large takes even for us the designers too long to
travel for the purposes of experiments with multiple subjects.

63

64 CHAPTER 6. GENERATOR ANALYSIS

Concerning the Qualitative Method to use, we have come to the conclusion that the
choice of performing interviews with open questions would be most beneficial to our pur-
poses. Interviews themselves have their own variations that allow narrower or wider room
for volunteers to express their opinions, and some questions may be designed to target a spe-
cific demographic of the volunteer set. For us, it is interesting to get both the perspectives of
future users of our system, and that of other designers. Therefore, we have split our interview
questions into two groups: the first being directed at players, and second being directed at
designers who, by also being players, are addressed the questions in the first group as well.
Questions other than those directed at designers shun from mentioning procedural generation
as to avoid bias toward the repetitiveness stigma of procedural generation. Instead, if such
feelings of bore are provoked by our experiment, our interview protocol looks to determine
this through other indirect questions. Furthermore, our semi-structured interview method
was intended to be malleable enough that our open questions could be changed during the
interview to shift the player’s answer closer to covering their whole thoughts about the gen-
erated maps. Although the interview protocol had numbered questions, these numbers were
never enunciated to the subject. In case the subject did not touch on the desired answer top-
ics, a second variation of a question was asked. One that was closer to having the player
express their opinions on the maps without giving out our intentions to evaluate procedural
maps.

Our interview protocol and its questions were designed in a bottom-up approach,
meaning we first decomposed the criteria and topics that were relevant to us, and then
defined our methods. This interview method was triangulated through the Observational
method, which consisted on metrics collected during play time by the interviewer regarding
the player’s performance, tendency towards exploration, difficulty, completion time, etc. The
contribution of the observation during the analysis is twofold: (1) To assist in validating a
player’s claims and verbalized thoughts during the interview; (2) To register specific events
during the player’s experience that they might not remember while answering the interview’s
questions. And then to remind them of these events.

The player’s opinion of the game is inevitably going to influence the way they per-
ceive the experience as a whole, as well as their thoughts on the generated maps. We have
addressed this bias by having the first questions cover almost exclusively the volunteer’s
opinions of of the game. These are also some of the open ended questions of our interview
protocol, and they serve to have the player express their general thoughts as early as possible
on the interview, allowing us to obtain this information as early as possible. This method had
been tested on the pilot control group, and has achieved its purpose on the test interviews.
Finally, all the topics introduced above fit within the following steps:

6.1. VOLUNTEER SELECTION 65

1. Select a group of possible volunteers.

2. Generate a subset of maps for testing.

3. Place game elements into a map as to make them playable.

4. Have the volunteer grant their written consent for the usage of collected data.

5. Present the player with 3 Maps (two small and one medium sized) in sequence, by
having them play a simple game on each of the maps.

6. While the player navigates through the maps, collect observational data.

7. After the play session, conduct the interview.

In order, the following sub-sections will address each of these items, as well as estab-
lishing all requirements and technical specifications for each.

6.1 Volunteer Selection

Based on the scope of this research and its testing, a total of 14 users was determined as the
ideal feasible goal, 2 of which were assigned to the pilot tests. To address both the views of
the players of the procedural systems, as well as to collect game designers’ perspectives on
the generation process, we divide these 12 test volunteers into 2 groups: (1) Six of them that
play games as a hobby (hereafter refereed to as group A); (2) And 6 that actively work on
game development (hereafter refereed to as group B). The volunteers’ age ranged from 23 to
32 years old, from which 12 were male, and 2 were female.

We were interested in looking for subjects that, at least seldom, critique the games
they follow or play, so that they may be comfortable in giving their inputs on the testing
experience. As to determine the concept of ’casual’ and ’hobbyist’ players with average or
higher playing experience, we had to define a favorable criteria for establishing a threshold
for the time each subject spends playing video games.

Thankfully, Andrejkovics [2016] divides professional eSports players into categories
(Amateur, Professional, Determined, Fanatic) based on their average daily and weekly play
time. This work also suggests that the hobbyist digital games player enjoys up to 8 hours a
week of playing video games. Although encompassing the hobby category into a single 0 to
8 hour weekly playtime does not inform us of the the distinct degrees of hobbyists, it does
help us to guess how to determine the type of game player we are interested in. Based on the
average hobbyist, we have then determined that our ideal volunteers adhere to the following
profile:

66 CHAPTER 6. GENERATOR ANALYSIS

• Spends an average of 4 to 8 hours weekly playing digital games.

• Consider themselves able to critique to at least some extent the video game media,
including their own experiences.

• Spends an average of 20 hours weekly developing digital games, or assets intended
for digital games.

The last requirement is only limited to the 6 subject portion that work at least part time
in game development, as determined by the minimum of a half time work schedule.

6.1.1 Consent Form & Information security

For each volunteer that qualified by the selection criteria above, a consent form was granted
to that subject. No monetary, financial, or any other type of valuable reward was offered to
any subject. This consent form is annexed both in the Portuguese and English language as
it was presented to volunteers in appendix B. The form explicitly allowed the volunteer the
right to have all their personal information, as well as the very fact that they have participated
in this experiment, to be kept confidential.

After agreeing to the established terms, Volunteers then received a copy of the consent
form with the Interviewer’s contact information. And the testing procedure began by having
them play the three game levels that take place on the generated maps.

6.2 Map Distribution

To instill a sense of progression, as well as allowing the player time do adjust to the game
before undertaking a larger map, players were given 2 small maps with N = M = 50, se-
quenced by a medium sized map with N = M = 75. The first two maps contained a more
restrained set of challenges, as well as presenting them at a more forgiving pace.

Maps for testing were initially generated one by one, and then stored onto Unity’s
’scenes’, which are essentially distinct levels. Once all maps had been generated, we had the
game elements described on Section 6.2.1 placed manually. For each subject, a number of
maps were created in a way that a sufficiently ample range of map configurations could be
tested, but rather than assigning each player a unique triplet of maps, as part of the experiment
we have chosen to form a distribution that repeats maps along distinct subjects, allowing us
to investigate on convergent or divergent opinions. This distribution is illustrated in table
6.1.

Per the choice of maps to be presented, a certain level of ’cherry-picking’ was required
in selecting which maps, from all those that had been created would be selected for testing, in

6.2. MAP DISTRIBUTION 67

Volunteer S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 M1 M2 M3 M4 M5 M6 M7 M8
VA1 X X X
VA2 X X X
VA3 X X X
VA4 X X X
VA5 X X X
VA6 X X X
VB1 X X X
VB2 X X X
VB3 X X X
VB4 X X X
VB5 X X X
VB6 X X X

Table 6.1. Division of maps among volunteers of groups A and B (numbered 1 to 6).
The maps were labeled by number. Any map starting with ’S’ is a small map, and
maps starting with ’M’ are medium sized maps. Before any testing, maps were divided
into volunteers in a way that all but 2 medium sized maps were tested by a total of 2
volunteers.

a sense that there had to be a certain variety in the themes of maps that would be presented.
As shown before in our discussion about tracking the probability of each state appearing
in the finalized map (Figure 5.3), certain layers had a much lower chance of showing up in
finalized maps. Therefore, we had to generate a higher number of maps than those presented,
and select sets of maps that presented overall different themes (combinations of layers). To
force the existence of rare layers, the state that generated that layer was introduced into the
starting state of the planning problem, in such a way that it minimized its influence on other
layers and guaranteed that it would appear on the final goal configuration of states.

6.2.1 Unity Game

Each player was instructed to play three consecutive stages of a top down action shooter
where they, under control of a character wielding a gun, must find a Helicopter to escape to
the next level. Movement was performed with the W,A,S,D keys to move Up, Left, Down,
and Right respectively, or in any combination of the four. With the mouse, players could
direct the character to aim at a certain direction and fire their gun with the left mouse button.
The choice for a Top-down action shooter came at the necessity for a quick game that allowed
the player to navigate through a map while having a sense of urgency and need to explore.
Once the player reached the helicopter, a cut-scene of the helicopter moving away would
play, fading out and into the next stage of the three (if any).

The game has only one type of enemy: A zombie with the simplistic behavior of
chasing a player within range, and then periodically dealing damage to the player if too close
to it. The zombie moves slower than the player, allowing them to avoid zombies if they felt
necessary. These non-playable characters would often be placed in waves of 3 to 6 zombies,
or in special cases like the end of a stage, hordes of 12 to 20 zombies. The number of enemies

68 CHAPTER 6. GENERATOR ANALYSIS

found at each point were progressively increased on later maps. An image representing the
overall visual aspect of the game is presented in 6.1.

Figure 6.1. Screenshot of the developed game.

Four types of weapons are available to the player: (1) a straight shooting pistol with
endless ammo; (2) a machine gun with a hundred shots that fires quickly but with a large
random spread; (3) a shotgun that fires only once per second, but in a cone burst of eight
bullets all at once; (4) a Sniper rifle with very slow shooting speed, but with a large bullet
that passes through damaging all zombies in its path. The pistol is given to the player as their
starting weapon, and the remainder are scattered across the level, positioned in parallel paths
generated by the Hilbert Curve for the player to find. Health and ammunition replenishing
pickups were also spread across the level to aid the player in finding the helicopter, and to
serve as reward for exploring. Once a player obtained a new weapon, then their old weapon
would be lost. Whenever they would reach a new level, their character would be reset, being
given full health and regaining their pistol.

Game elements were placed over generated maps as thought to be needed. Unfortu-
nately, to have the generator automatically place the game elements is feasible and desirable,
but not within the time and scope of this work. This however is but a minor setback, for
the paths generated by the Hilbert Curves automatically generate points at which we may
place game elements. The player and the Helicopter were placed at the points furthest from

6.3. TESTING PROTOCOL 69

each other, and zombies, weapons, and other pickups being placed at intermediary or parallel
points.

6.3 Testing Protocol

Between the 6th and 17th of June 2018, a meeting was scheduled for each volunteer at
a time and location of their preference, which for most game developers it was on their
own studios during work hours. Once that volunteer had confirmed themselves to be within
the requirements previously stated. The only specification for a desirable location was that
it should be reasonably silent, as to allow the interview to be recorded without excessive
background noise that would make its transcription difficult. After introductions took place,
and the volunteer appeared to be comfortably set to a position where they could properly
play the game on a portable computer brought in by the interviewer, they were orally given
the following introduction:

1. ’You will play a total of three levels of a simple game where you play as a survivor on

a zombie apocalypse, and must reach a helicopter to escape.’

2. ’You control your character through a top-down perspective. You move around with

the W,A,S,D keys, and aim your gun with your mouse, firing by pressing the left mouse

button.’

3. ’There are items such as different weapons and supplies scattered around the level that

may help you reach the goal. If you grab a weapon, you lose your previous one. If you

obtain a weapon, you still start the following stage with your starter weapon. Your

starter weapon has unlimited ammunition.’

4. ’Should you feel like skipping the level, or if you feel like you can’t beat the level,

you may skip the current level by pressing the ’P’ keyboard key. There’s absolutely no

problem in skipping the level if you feel like it.’

5. ’Should you feel like restarting the current level, you may do so by pressing the ’O’

keyboard key.’

6. ’During your gameplay session, I may ask you questions regarding your play experi-

ence. If you are comfortable in talking while you play, feel free to communicate your

opinion on the game, or any topic in general.’

70 CHAPTER 6. GENERATOR ANALYSIS

Once all doubts regarding the instructions were settled, players were also given a head-
set, keeping one ear covered to hear the game’s audio, and another one uncovered to hear the
interviewer.

6.3.1 Observation

While players interacted with the game, the interviewer filed an observational document
with information regarding that game session. This document’s topics were mostly open,
registering player’s statements about their session, or reminders of noteworthy actions taken
by the player, as well as behaviors that deviated from the norm. In addition to these open
notes, the Observation documented presented four log data topics, referring to the game
session’s information:

• Completion Time: Time taken by the player to complete each level.

• Retries: Number of additional attempts made by pressing the ’O’ key on each level.

• Given Up: For each level, a level is marked if the player had given up playing the
level.

• Deaths: Number of deaths by the player on each level.

Also, following these numeric and check-mark log data topics, we defined another
four perceptive data topics that, while had no absolute answers and were graded based on the
interviewer’s opinion, would be later useful for understanding the player’s point of view, or
to identify opinions that contradicted the registered data:

• Difficulty: A discrete grade system from 1 to 5. This topic defined a grade for the
perceived difficulty the player had with the game. A player that had at least one death
was scored with a 3, while players with more deaths or no deaths at all were split onto
each respective side of the axis.

• Engagement: The most self explanatory topic that, after all interviews, had proven to
be not very effective due to how open to interpretation it was. Players had very dis-
tinct ways of representing engagement, and other than in cases where a player would
openly complain or make excited remarks, this topic has not been as helpful as we had
planned.

• Exploration: A discrete grade system from 1 to 5. If the player went out of their way
to look for weapons or supplies during all 3 levels at least once, that player was scored

6.3. TESTING PROTOCOL 71

with a 3, while players that went out of their way to explore additional areas when
possible, or players that did not look around unless it was necessary to find the goal
were split onto each respective side of the axis.

• Got Lost: A check-mark for each level registering if the player had wandered off for
roughly 15 seconds without knowing their way back to the path they were before.

Each notable observation regarding any of the topics above was then brought up during
the interview whenever the interviewer thought it to be appropriate.

6.3.2 Interview

Questions for our interview process that was performed after each volunteer’s play session
are laid out in Appendix C. Each interview had its audio recorded and then transcribed. When
elaborating these questions, we have chosen to highlight eight question topics representing
criteria that help define the quality of our generator, and the goals we aimed to achieve with
it. All questions we have had to design for our interview adhered to at least one of these
topics, in a way that an answer to a question addresses its associated ones, or could possibly
address others, depending on the volunteer’s answer. These topics are as defined below:

• Repetitive: Do two or more mathematically distinct constructs seem to be too much
alike?

• Consistent: Interesting results appear more often than not. And it follows the intended
rules more often than it doesn’t.

• Diverse: Is the measure of repetitiveness of the procedurally generated content, low
enough to justify its implementation.

• Cohesive: Do the generated elements make sense with one another? Are there things
that are intuitively not supposed to happen?

• Perceptible: Are the Quasi-random variations of the procedural system perceptible to
the end-user?

• Scalable: Able to be improved? Is it based upon a strong foundation? Does it allow
room for content, diversity, and exploration?

Additionally, there are two extra topics about the bias derived from the player’s im-
pression of the game, and another addressing the technical opinion of game designers on the
generative process, Starting with a brief discussion where the interviewer reveals that the
purpose of this experiment was to evaluate a Procedural Generator. The former is tackled
within the first two, and last, questions of the interview, as shown in Appendix C. By having

72 CHAPTER 6. GENERATOR ANALYSIS

the first minutes of the interview be dedicated to commenting about the game, the remainder
could be more focused towards questions regarding the maps themselves. The last question
within the first group is meant to drag the designer player’s final thoughts on the game before
the questions dedicated to their group, as well as the non-designer player’s insights on what
we’ve could have done better.

6.3.3 Pilot Tests

Before any testing could be conducted and additional volunteers selected, 2 tests of the in-
terview protocol described above were performed: one for group A’s questions, and one for
both group A and B’s questions. During these pilot tests, the recorded total time for play
sessions had been stored, and then used to inform volunteers for the actual tests about how
much time their play session would likely take. These pilot interviews assisted us in many as-
pects of the Qualitative Evaluation, especially in correcting minor issues with our Interview
Protocol.

6.4 Results

This section encompasses all that was collected from our Qualitative Analysis, as well as
our impressions on our successes and failures into new categories that were derived from the
analysis. The data collected, as well as select opinions for each volunteer, are all annexed
sequentially within Attachment D. Our interpretation of this collection will be dissected
by the following sub-sections, with subtables from this data being split as relevant, and
individual opinions being diluted onto our description of each topic, not necessarily being
directly attributed to their respective volunteer.

6.4.1 Engagement

As early as the pilot tests, our interview protocol had managed to hit our 6 target topics.
Game sessions took 4 to 13 minutes, and the interviews took 12 to roughly 18 minutes.
Within the first 2 to 7 minutes of interview, the volunteers’ answers began gravitating to-
ward the game levels’ maps. The major factor that determined this 5 minute difference was
the volunteer’s criticism regarding the game, that, contrary to our expectations, was not as
exclusive to group B as we thought it would be.

Players from both groups reported the game to have too few features, with many play-
ers calling it a prototype. Regardless, once most of the volunteer’s opinions about the game
were expressed, there was rarely a case where they would return to address the same views

6.4. RESULTS 73

about the game. One topic that has been frequent enough to be worth discussion was that,
due to the game’s balancing, a considerable number of player’s thought that there was no
reason to explore the maps. Mostly due to there being no collectibles worth chasing. Also,
many have stated that their starting weapon, which was designed to be enough to allow the
player to engage the level, was considered to be the best of the 4 designed weapons.

Even with these critical opinions, most players considered the experience to be fun.
Which points towards our first favorable point regarding the generator, since the experience
of navigating through the map was not deemed to be frustrating. Given that most players had
negative impressions of the game’s completeness, and that all time spent playing was also
spent in roaming around the environment. Tables 6.2 and 6.3 show our results regarding the
entertainment factor collected from our interviews.

Volunteer\Topic VA1 VA2 VA3 VA4 VA5 VA6 VB1 VB2 VB3 VB4 VB5 VB6
Had Fun 1 1 1 1 1 1 0 1 1 0 1 1
Stated that there was
no reason to explore 1 1 1 1 0 0 1 0 0 0 0 1

Table 6.2. Data from the volunteer’s answers regarding topics about their entertainment.
Both are organized as 0’s (no) and 1’s (yes).

Summation\Topic Sum (A) Sum (B) Total Averages (A) Averages (B) Total
Had Fun 6 4 10 1.000 0.666 0.833
Stated that there was
no reason to explore 4 2 6 0.666 0.333 0.500

Table 6.3. Data from the volunteers’ answers, displaying averages and totals (when
relevant) for each closed topic. Separated column entries for groups A, B contain the
sums and averages for each entertainment related topic in Table 6.2.

One of our initial goals was to obtain a helpful answer as to the ’repetitiveness’ factor
of our generated content. Though, as even pointed out by a volunteer, the feeling of repet-
itiveness may only kick in after hours of play, and could be likely to occur considering the
amount of content in the game. Our testing is far from being able to pinpoint whether we
descend into this pitfall. Nevertheless, as a bare-bones game experience, there would still be
much to be done to have the generated product be refined and presentable as a commercial
game level, and our interview analysis shows this to be the case. This predicament would
also come into play regarding the volunteers’ opinions on the maps’ (and by extension, the
generator’s) aesthetic.

74 CHAPTER 6. GENERATOR ANALYSIS

6.4.2 Aesthetic

Our layers consisted of 1 to 4 distinct ’subtypes’ that are defined by the planner. Each being
defined to appear by the planner based on other established parts of the plan. For example,
our the Tree Generating Layer included four possible types of trees: cacti, snowy trees,
dead trees; and green trees. This, and the small variety of aesthetic, as well as all possible
layers appearing in almost all maps, have shown not to be enough to make the maps visually
pleasing, as noted by our results within Tables 6.4 and 6.5.

Volunteer\Topic VA1 VA2 VA3 VA4 VA5 VA6 VB1 VB2 VB3 VB4 VB5 VB6
Found maps visually
engaging 1 0 1 1 1 0 0 0 0 0 1 1

Number of
remembered levels 2 3 3 3 3 3 3 2 1 2 1 2

Table 6.4. Data from the volunteers’ answers about topics regarding their opinions on
the maps’ aesthetics. Found maps visually engaging is organized as 0’s (no) and 1’s
(yes). Number of Remembered levels is a question that emerged from the original
protocol. It accounts the number of levels the volunteer could remember and accurately
describe.

Summation\Topic Sum (A) Sum (B) Total Averages (A) Averages (B) Total
Found maps visually
engaging 4 2 6 0.666 0.333 0.500

Number of remembered levels - - - 2,833 1,833 2,333

Table 6.5. Data from the volunteers’ answers, displaying averages and totals (when
relevant) for each closed topic’s answers. Separated column entries for groups A, and B
contain the sums and averages for each aesthetic related topic in Table 6.4.

As shown, a little under half the volunteers did not think the maps to be visually inter-
esting. The most common opinions categorized the maps’ appearance as being ’too basic’,
’too few distinct game elements’, and ’having no uniqueness’, with some volunteers even
being able do discern all visual element types that were present. These opinions were preva-
lent in Group B, but one interesting observation is that two of the volunteers from group A,
that pointed the maps not to be aesthetically pleasing are graduated graphic designers.

This seems to show is that, from the critical point of view of those frequently engaged
with graphic or game designing, the lack of refinement from our generator is glaring and
evident. Whilst the concepts for improving our design are there, our lack of focus on refining
our graphical elements, as well as the lack of graphic designers allocated for development on
our part has been spotted and called out. Another consequence of this, is that our maps have
not shown to be very memorable, as also shown in our collected opinions describing the lack
of unique elements.

6.4. RESULTS 75

On average, players could remember only 2 of the three maps each of them played,
with volunteers from Group A remembering on average 2,8 maps, and volunteers from Group
B remembering 1,8 maps. As an additional note, the two graphic designers from Group A
were able to remember all three maps. These overall results could have suggested that the
Procedural Generator itself could have needed changes, but analyzing the improvements
suggested by Group B on their dedicated questions shows that this is likely to be mostly a
consequence of our lack of designers and the lack of unique elements, and not an inherent
flaw to the methodology of our generator.

6.4.3 Layout

Results on questions regarding the player’s impressions on our maps’ layouts suggest that
we must focus on further investment regarding the generation of natural hints meant to guide
the player toward the goal. As it is, the only elements guiding the player are the spacing
filling curve, and the ’Road’ layer that is placed and iterated over it. This is shown in Tables
6.6 and 6.7, with just over half our players noticing these hints.

Volunteer\Topic VA1 VA2 VA3 VA4 VA5 VA6 VB1 VB2 VB3 VB4 VB5 VB6
Noticed guiding tips 1 0 0 1 1 0 0 1 0 1 1 0
Intuitive layout 1 0 0 1 1 0 0 1 0 1 1 0
Room to Explore 3 4 4 3 3 4 3 3 3 2 4 4
Understood the map 4 4 3 2 4 3 5 4 5 3 4 5
Got lost 1 1 2 1 0 1 1 0 1 0 1 2

Table 6.6. Data from the volunteers’ answers about topics regarding their understanding
of the maps’ structure. Most information is organized as 0’s (no) and 1’s (yes). Two
exception topics have distinct values: Room to Explore is an integer from 1 to 5: A
value of 1 means that there was no freedom to explore, a 5 means that the amount of
explorable areas was overwhelming, and a 3 being the perfect balance; Understood the
Map is a simple grade from 1 to 5 of how well the map was understood.

Summation\Topic Sum (A) Sum (B) Total Averages (A) Averages (B) Total
Noticed guiding tips 3 3 8 0.500 0.500 0.500
Intuitive layout 3 3 7 0.500 0.500 0.500
Room to Explore - - - 3.500 3.166 3.333
Understood the map - - - 3.333 4.333 3.833

Table 6.7. Data from the volunteers’ answers, displaying averages and totals (when
relevant) for each closed topic. Separated column entries for groups A, and B contain
the sums and averages for each layout related topic in Table 6.6.

Players understood well which areas were designed to be inaccessible, with any doubts
or unclarified perceptions of accessible areas being almost all situations solved by trial and

76 CHAPTER 6. GENERATOR ANALYSIS

error within the first map, or less commonly on the second. Although even with this compre-
hension the map’s structure, save three of all volunteers, players have stated to have gotten
lost somewhere during play. This lack of direction is more associated by the players as there
being no direct hint as to where the goal was, than it being a bigger problem with the map’s
design. From our observation, players were less likely to be lost on more confined levels,
with large lakes, trees, and/or roads than with levels with open areas. This we believe to be
due to confined areas allowing for less room for the players to get lost.

Another interesting observation is that most of the players that have stated to have
gotten lost have also stated that they did not feel as if being lost was a problem, and that
they were merely attempting to find the path by moving around. This, in retrospect, is more
of a flaw in our game’s direction than with the generator. It was considered at one point of
development to add coins (or any other form of collectible) to point the player straight to the
goal or to areas they would find loot, as is the case with many games. And perhaps it could
be better to stick to this concept on future works.

Our methodology of using the space filling curve to generate a main and parallel paths
has been well evaluated by our interview’s answers. On a 1 to 5 scale about how much room
the player has found to explore on the maps. As it was explained to the players, 1 meant that
there was no room to explore, being a completely linear path, and 5 meant that there were
too many explorable areas, hampering the player’s progression, we have attained an average
answer of 3 in both groups. The highest answer has been a 4, the lowest has been a 2, and
just under half of the answers being 3’s. This could mean that we have struck a good balance
of the number of divergent, optional paths.

6.4.4 PCG

Covered mostly by our second batch of questions, directed exclusively at Group B, was the
designers’ opinions on the generative process. As a starting point, the number of volunteers
that spontaneously had the impression that the maps were procedural was very considerable,
even if it was the minority of players. A total of 6 players, 3 from Group A, and 3 from
Group B have noticed that they were playing a procedural map, as shown in Tables 6.8
and 6.8. They have communicated this perception either through openly asking if there were
algorithms involved, or by a post interview discussion (for group A), or when the interviewer
revealed that the experiment was focused on the procedural maps (for group B).

The most critical factors that gave away the procedural generation were: (1) The oc-
casional glitches that in rare cases had gone unnoticed by us had elements be placed out
of cohesion. Even a single appearance of these glitches can reveal at once that there is an
algorithm, rather than a human, involved in creating the maps; (2) The number of elements

6.4. RESULTS 77

Volunteer \Topic VA1 VA2 VA3 VA4 VA5 VA6 VB1 VB2 VB3 VB4 VB5 VB6
Found the
Procedural
maps
interesting

- - - - - - 1 1 1 0 1 1

Closest
associated
PCG method

- - - - - -

Connect
begin

and end,
Dungeon
Generator

Spelunky Spelunky

Generate
separate

areas
that limit

movement

Couldn’t
think
of a

method

Generate
outline
and fill
around

Perceived
procedural
disadvantages

- - - - - - No pacing None

Uncoherent
elements

are
aesthetically
unpleasant

It lacked
memorable
segments

Confusing
and

frustrating
level

design

It requires
refinement

but it doesn’t
present
major

problems

Suggested
improvements - - - - - -

Multiple
types of

encounters
and optional

rewards.
Handmade
encounters

More
visual

elements

Work in
the art

Use proper
algorithms

for
individual
elements

Add more
interest
points

More
visual

elements

Would develop
a game with
this generator

- - - - - - 0 1 1 1 1 1

Noticed it
was about
PCG

1 1 0 0 0 0 1 0 0 1 1 0

Asked if it
was about
PCG during
play

0 1 0 0 0 0 0 1 0 0 1 0

Table 6.8. Data from the volunteers’ answers regarding the implementation of PCG on
the generated maps. Found the maps visually interesting, Would develop a game with
this generator, Noticed it was about PCG, and Asked if it was about PCG during
play are answered as 0’s (no) and 1’s (yes). The remainder topics were open answers
that were condensed into one or two sentences for convenience

that did not seem to have a purpose, and thus generated several cases of negative possibility
space (explorable areas within reach, but with no reward); (3) The labyrinthine design of the
maps themselves, which is a common trope of Procedural Maps.

Not all players that had noticed the PCG have been vocal about it during either the
interview or their play-session. Those who did have openly asked if the the maps they were
playing were procedural, ’automatic’, or ’randomly’ generated. There were, however, two
interesting cases in Group B worth discussing on their own: The first being where one de-
signer player had been convinced that there was no procedural generation involved due to
our decision of having the maps not being different at each retry. Which is another common
trope of procedural games that have opted for a roguelike style, where death meant the game
would be completely reset, including the levels’ generation. The second was more of a lo-
gistic deduction where the designer player asked if the maps were Procedurally Generated,
but did not have the impression that the maps were generated themselves. When asked about
it, the volunteer stated that considering each level’s size and number of game elements, it

78 CHAPTER 6. GENERATOR ANALYSIS

Summation \Topic Sum (A) Sum (B) Total Averages (A) Averages (B) Total
Found the Procedural
maps interesting - 5 6 - 0,833 0,833

Would develop a game
with this generator - 5 6 - 0,833 0,833

Noticed it was about
PCG 2 3 6 0.333 0.500 0.416

Asked if it was about
PCG during play 1 2 3 0.166 0.333 0.250

Table 6.9. Data from the volunteers’ questions, displaying averages and totals (when
relevant) for each closed topic. Separated column entries for groups A, and B contain
the sums and averages for each PCG related topic in Table 6.8.

would make more sense to have it generated though algorithms, rather than by hand.

When asked about their opinions on how the designers thought that the maps were
generated, most of them have matched their descriptions with methods known and discussed
within Chapter 2. Out of the seven answers, one was indecisive. As expected, mostry an-
swers have associated the map generator to another known methods: two of them have as-
sociated it with the level generation of Spelunky, another two have associated it with the
Dungeon Generator of Shaker et al. [2016a], and the last 2 have come closer to identifying
our process by elaborating on the basic idea of revolving the generation process around a
main path that has content created around it.

Before, many of the players have stated to have noticed the bare bones nature of our
generator’s assets and game, as well as the lack of engagement with its visual. The designers’
opinions regarding improvements reflect on this. From all 7 designers, 4 have focused on
the notion that the generator requires investment on the art assets used, and the 3 remaining
designers have stated that it needs more unique elements to make maps more memorable.

For a closing discussion point to our results section, as it was for the designer’s inter-
views, we have inquired the volunteers whether they would be interested in designing games
using the generator described to them, to which the response was overwhelmingly positive.
Of all the designers, only one has stated that they would not design a game with this gener-
ator, they have done so under the argument that, even with improvements regarding the art,
design, and style, they would not be interested in playing a game that used a generator such
as this. In this particular case, this designer’s overall opinion had been notably negative.
And while it was initially positive about the development of a game with our generator, our
observational data suggested the interviewer to further inquire about this topic during the
interview, without attempting to steer the volunteer’s answer either way. After pondering
about it longer, that designer had chosen to switch their answer to ’no’.

6.5. FINAL OBSERVATIONS 79

6.5 Final Observations

Though our Qualitative Analysis had suffered due to factors beyond our designs for our
Integrated Procedural Generator, such as the game’s simplicity, poor game design decisions,
and the lack of dedicated art design, our protocol and analysis conduction has yielded very
interesting results. These are be both valuable in validating the efficiency of our generator,
as well as heading us toward the most important areas in need improvement. To which, we
now shall now discuss as we present our final thoughts and conclusions.

Chapter 7

Conclusion

We have now come to a close on this version of our Integrated Procedural Map Generator,
and we are pleased with the results and many achievements conquered over the course of
its development that meaningfully evolve the discussion of procedural levels on PCG-G. On
the topic of AI Planning, we have provided scalable means by which to describe a theme,
and presented the results of a prototype of a toolkit for designing Planing problems and
domains. With polish and a proper interface, our methodology could be published for use
in commercial games. On the field of Multi-layered CA-Map Generation with Space-filling
curves, we have proposed an alternative that improves on the standard CA-Map Generation
methods that offers better control.

Overall, combining Planning, Cellular Automata, and Space Filling curves, we have
presented an alternative for expanding upon the concept of generating procedural maps, and
thus evolving the discussion pertaining the use of each of these methods for that purpose.
Prior to the completion of this work, part of our contribution had been already been acknowl-
edged by the scientific community, as some of it was presented in Macedo and Chaimowicz
[2017]. The methodology we have presented has yielded a strong and complete foundation
for generating themed maps that allows great room for accessible expansion and improve-
ment, as shown by our Qualitative and Quantitative analyses.

Still our work is one that requires further revisions before it is able to be used on
commercial grade games. In the topic of improving structure, cohesion, and layout, it will
require us to return to the basics of our path generation: To work on the organization of the
Multi-layered Cellular Automata. Improving on its layers, and how they are laid out to guide
the player toward their goal while offering alternative and optional paths. In part, this could
be first investigated by experimenting different space filling curves, and also by designing
layers crafted to iterate in parallel with others, rather than sequentially.

To correct specific mistakes and unfortunate flaws common to Procedural Map Gener-

81

82 CHAPTER 7. CONCLUSION

ators. The best alternative should be not to nag on small imperfections of unpredictable sys-
tems, but to have additional overhead monitoring algorithms and/or post processing methods
to identify and correct purposeless and/or empty areas that both make it noticeable that they
are based of Procedural Generation, and that create negative possibility space. Despite the
effort required to oversee the many necessary optimizations our work needs, we believe that
our focus, as we work on the growth of this generator, perhaps should be directed less on the
basis of our methodology, and more on refining the resources created with it. The measure
of its potential require examples of its use, both for allowing us to discover its limitations,
and for others, who will experiment and find features and flaws we have not.

As commercial games reliant on PCG-G spread across the spectrum of success and
failure have shown, the safest and most effective approach to computerize the birth of in-
teresting interactive experiences is to mix it with the occurrence of well crafted hand-made
content, be it sporadic or integral. As such, one less academic path that is directed towards
the growth of our generator as a product, is the creation of more memorable set-pieces to be
placed by automata layers, as well as refining the planning domain library that allows them
to be placed on the map in a cohesive way. Perhaps through chunks of interesting handmade
content with small chances to be added to each map, or with fewer general purpose automata,
and more with unique rule-sets.

One investment that would aid us greatly in having more asset resources available for
our generator, both with the intent of testing, and for the intent of commercial usage, is
the development of dedicated modular art assets designed for fitting with the generation of
our procedural maps. Additional resources open doors to for allowing different ideas, to
experiment with more rule-sets of automata, and for presenting a better image of what our
generator can do. Thus, expanding on the art expands our domain of possible map themes.

Finally, testing all further change will require further qualitative play-testing. As our
Qualitative Analysis has shown, the hypothetical filter that is the reason and motivation to
travel through the environment is bound to heavily impact player opinions. Thus, it should
be polished. It cannot be impactful enough to detract the user’s attention from the maps,
but it should not be so simple that it bothers the player. This will require the next iteration
of qualitative testing to use a better developed game with proper time and resources, which
should also allow us the opportunity to have the selection and positioning of game elements
also be procedural, as the state-of-the-art AI directors have set a precedent for.

In conclusion, our Integrated Planning-Automata Procedural Map Generator has areas
to improve, but overall has yielded promising results. Which, coupled with its solid theoret-
ical foundation, and potential for expansion, should allow it to be refined past a point to be
applied to commercial Digital Games. PCG-G requires a heavy load of effort equal to, or
even surpassing that of producing original content. Designing for scale is the ideal motivation

83

for investing in procedural systems, and we have felt this weight in our own development.
Creating a solid basis, being aware and proactive in solving the system’s practical faults, and
adding the spice of hand-crafted design seems to be the most promising approach to pro-
cedural content. Whilst we have not obtained a concrete answer as to how the sum of our
methodology fares in avoiding the challenges and pitfalls of procedural content generation,
our experiments assure us that we are on the right path. And thus it is with confidence that
we explore new horizons, within related future work.

Bibliography

(2017). "opengameart". www.opengameart.org/. Accessed: 2017-08-7.

Adams, D. et al. (2002). Automatic generation of dungeons for computer games.

Aikman, Z. (2014). "unite 2014 - generating procedural dungeons in galak z".
https://www.youtube.com/watch?v=ySTpjT6JYFU. Accessed: 2017-08-7.

Andrejkovics, Z. (2016). The invisible game. In The Invisible Game: Mindset of a Winning

Team. CreateSpace Independent Publishing Platform.

Balzter, H., Braun, P. W., and Köhler, W. (1998). Cellular automata models for vegetation
dynamics. Ecological modelling, 107(2):113--125.

Benson, J. (2013). "world of warcraft team: Procedural content is totally something
we’ve talked about". www.pcgamesn.com/wow/world-warcraft-team-procedural-content-
totally-something-we-ve-talked-about.

Biggs, M., Fischer, U., and Nitsche, M. (2008a). Supporting wayfinding through patterns
within procedurally generated virtual environments. In Proceedings of the 2008 ACM

SIGGRAPH symposium on Video games, pages 123--128. ACM.

Biggs, M., Fischer, U., and Nitsche, M. (2008b). Supporting wayfinding through patterns
within procedurally generated virtual environments. In Proceedings of the 2008 ACM

SIGGRAPH symposium on Video games, pages 123--128. ACM.

Bonomi, A. (2009). Dissipative multilayered cellular automata facing adaptive lighting.

Browne, K. and Anand, C. (2012). An empirical evaluation of user interfaces for a mobile
video game. Entertainment Computing, 3(1):1--10.

Champandard, A. J. (2013). Planning in games: An overview and lessons learned.

85

86 BIBLIOGRAPHY

Cheong, Y.-G., Riedl, M. O., Bae, B.-C., and Nelson, M. J. (2016). Planning with applica-
tions to quests and story. In Procedural Content Generation in Games, pages 123--141.
Springer.

Ciarlini, A. E., Pozzer, C. T., Furtado, A. L., and Feijó, B. (2005). A logic-based tool
for interactive generation and dramatization of stories. In Proceedings of the 2005 ACM

SIGCHI International Conference on Advances in computer entertainment technology,
pages 133--140. ACM.

Consalvo, M. and Dutton, N. (2006). Game analysis: Developing a methodological toolkit
for the qualitative study of games. Game Studies, 6(1):1--17.

Conway, J. (1970). The game of life. Scientific American, 223(4):4.

Dekker, A. and Champion, E. (2007). Please biofeed the zombies: Enhancing the gameplay
and display of a horror game using biofeedback. In DiGRA Conference.

Drachen, A., Canossa, A., and Yannakakis, G. N. (2009). Player modeling using self-
organization in tomb raider: Underworld. In 2009 IEEE symposium on computational

intelligence and games, pages 1--8. IEEE.

Ebert, D. S. (2003). Texturing & modeling: a procedural approach. Morgan Kaufmann.

Erol, K. (1996). Hierarchical task network planning: formalization, analysis, and imple-

mentation. PhD thesis.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-4):189--208.

Garner, T., Grimshaw, M., and Nabi, D. A. (2010). A preliminary experiment to assess the
fear value of preselected sound parameters in a survival horror game. In Proceedings of the

5th Audio Mostly Conference: A Conference on Interaction with Sound, page 10. ACM.

Gelfond, M. and Lifschitz, V. (1993). Representing action and change by logic programs.
The Journal of Logic Programming, 17(2):301--321.

Geurts, L., Vanden Abeele, V., Husson, J., Windey, F., Van Overveldt, M., Annema, J.-H.,
and Desmet, S. (2011). Digital games for physical therapy: fulfilling the need for cali-
bration and adaptation. In Proceedings of the fifth international conference on Tangible,

embedded, and embodied interaction, pages 117--124. ACM.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning: theory and practice.
Elsevier.

BIBLIOGRAPHY 87

Grassberger, P. (1986). Long-range effects in an elementary cellular automaton. Journal of

Statistical Physics, 45(1):27--39.

Guckelsberger, C., Salge, C., and Colton, S. (2016). Intrinsically motivated general com-
panion npcs via coupled empowerment maximisation. In Computational Intelligence and

Games (CIG), 2016 IEEE Conference on, pages 1--8. IEEE.

Hartsook, K., Zook, A., Das, S., and Riedl, M. O. (2011). Toward supporting stories with
procedurally generated game worlds. In Computational Intelligence and Games (CIG),

2011 IEEE Conference on, pages 297--304. IEEE.

Hash, C. and Isbister, K. (2011). Reactive animation and gameplay experience. In Pro-

ceedings of the 6th International Conference on Foundations of Digital Games, pages
328--330. ACM.

Hendrikx, M., Meijer, S., Van Der Velden, J., and Iosup, A. (2013). Procedural content
generation for games: A survey. ACM Transactions on Multimedia Computing, Commu-

nications, and Applications (TOMM), 9(1):1.

Hogeweg, P. (1988). Cellular automata as a paradigm for ecological modeling. Applied

mathematics and computation, 27(1):81--100.

Johnson, L., Yannakakis, G. N., and Togelius, J. (2010). Cellular automata for real-time
generation of infinite cave levels. In Proceedings of the 2010 Workshop on Procedural

Content Generation in Games, page 10. ACM.

Kamel, I. and Faloutsos, C. (1993a). Hilbert r-tree: An improved r-tree using fractals. Tech-
nical report.

Kamel, I. and Faloutsos, C. (1993b). On packing r-trees. In Proceedings of the second

international conference on Information and knowledge management, pages 490--499.
ACM.

Kazmi, S. and Palmer, I. J. (2010). Action recognition for support of adaptive gameplay: A
case study of a first person shooter. International Journal of Computer Games Technology,
2010:1.

Lague, S. (2015). "[unity] procedural cave generation (tutorials)".
https://www.youtube.com/watch?v=AsR0-wCTJl8. Accessed: 2017-08-7.

Lawrence, D. (1976). Telengrad. www.aquest.com/telen.htm.

88 BIBLIOGRAPHY

Lee, J. (2014, howpublished = www.makeuseof.com/tag/procedural-generation-took-
gaming-industry/, note = Accessed: 2017-08-7). "how procedural generation took over
the gaming industry".

Li, W. and Packard, N. (1990). The structure of the elementary cellular automata rule space.
Complex Systems, 4(3):281--297.

Liang, H. and Wang, Z. (2017). Optimized distribution of beijing population based on ca-
mas. Discrete Dynamics in Nature and Society, 2017.

Macedo, Y. P. A. and Chaimowicz, L. (2017). Improving procedural 2d map generation based
on multi-layered cellular automata and hilbert curves. In 2017 16th Brazilian Symposium

on Computer Games and Digital Entertainment (SBGames), pages 116--125. IEEE.

Magerko, B., Laird, J., Assanie, M., Kerfoot, A., and Stokes, D. (2004). Ai characters and
directors for interactive computer games. Ann Arbor, 1001(48):109--2110.

Matthews, E. A. and Malloy, B. A. (2011). Procedural generation of story-driven maps. In
Computer Games (CGAMES), 2011 16th International Conference on, pages 107--112.
IEEE.

Mishra, J. and Mishra, S. (2007). L-system Fractals, volume 209. Elsevier.

Moon, B., Jagadish, H. V., Faloutsos, C., and Saltz, J. H. (2001). Analysis of the clustering
properties of the hilbert space-filling curve. IEEE Transactions on knowledge and data

engineering, 13(1):124--141.

Nakayama, A., Yamamoto, T., Morita, Y., and Nakamachi, E. (2015). Development of
multi-layered cellular automata model to predict nerve axonal extension process. In VI

International Conference on Computational Bioengineering.

Olsen, J. (2004). Realtime procedural terrain generation.

Panksepp, J. (2004). Affective neuroscience: The foundations of human and animal emo-

tions. Oxford university press.

Raffe, W. L., Zambetta, F., and Li, X. (2011). Evolving patch-based terrains for use in
video games. In Proceedings of the 13th annual conference on Genetic and evolutionary

computation, pages 363--370. ACM.

Riedl, M., Thue, D., and Bulitko, V. (2011). Game ai as storytelling. In Artificial Intelligence

for Computer Games, pages 125--150. Springer.

BIBLIOGRAPHY 89

Riedl, M. O. and Young, R. M. (2010). Narrative planning: balancing plot and character.
Journal of Artificial Intelligence Research, 39(1):217--268.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited,.

Sagan, H. (2012). Space-filling curves. Springer Science & Business Media.

Schonfisch, B. (1999). Synchronous and asynchronous updating in cellular automata.

Scirea, M., Cheong, Y.-G., Nelson, M. J., and Bae, B.-C. (2014). Evaluating musical fore-
shadowing of videogame narrative experiences. In Proceedings of the 9th Audio Mostly:

A Conference on Interaction With Sound, page 8. ACM.

Shaker, N., Liapis, A., Togelius, J., Lopes, R., and Bidarra, R. (2016a). Constructive gen-
eration methods for dungeons and levels. In Procedural Content Generation in Games,
pages 31--55. Springer.

Shaker, N., Togelius, J., and Nelson, M. J. (2016b). Procedural Content Generation in

Games. Springer.

Takatsuki (2007). Cost headache for game developers.
www.news.bbc.co.uk/1/hi/business/7151961.stm.

Thue, D., Bulitko, V., Spetch, M., and Wasylishen, E. (2007). Interactive storytelling: A
player modelling approach. In AIIDE, pages 43--48.

Togelius, J., Champandard, A. J., Lanzi, P. L., Mateas, M., Paiva, A., Preuss, M., and Stanley,
K. O. (2013). Procedural content generation: Goals, challenges and actionable steps.
Dagstuhl Follow-Ups, 6.

Togelius, J., Yannakakis, G. N., Stanley, K. O., and Browne, C. (2011). Search-based proce-
dural content generation: A taxonomy and survey. IEEE Transactions on Computational

Intelligence and AI in Games, 3(3):172--186.

Tomai, E. (2012). Towards adaptive quest narrative in shared, persistent virtual worlds.
Eighth Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2012), pages
51--56.

Valls-Vargas, J., Ontanón, S., and Zhu, J. (2013). Towards story-based content generation:
From plot-points to maps. In Computational Intelligence in Games (CIG), 2013 IEEE

Conference on, pages 1--8. IEEE.

90 BIBLIOGRAPHY

Vannaprathip, N., Haddawy, P., Suebnukarn, S., Sangsartra, P., Sasikhant, N., and Sangutai,
S. (2016). Desitra: a simulator for teaching situated decision making in dental surgery.
In Proceedings of the 21st International Conference on Intelligent User Interfaces, pages
397--401. ACM.

Attachment A

Map Generation Planning Library

91

Starting State
<<start>>
None

Goal
<<goal>>
[_Cliff(Layer/Cliffs) {AND} _Ground(Layer/Ground)] {AND} [_Tree(Layer/Trees) {AND} _Water(Layer/Water)]

Actors
<<type>>

>MapSize
MapSizeSmall
MapSizeMedium
MapSizeLarge

>Temperature
TemperatureScalding
TemperatureHot
TemperatureTemperate
TemperatureCold
TemperatureFreezing

>Topography
TopographyUp
TopographyDoubleUp
TopographyMixed
TopographyDown
TopographyDoubleDown

>Hidrography
HidrographyIsland
HidrographyCoastal
HidrographyRivers
HidrographyPonds
HidrographyDry

>Vegetation
VegetationDense
VegetationFocused
VegetationSparse
VegetationSporadic
VegetationNone

>Layer/Cliffs
CliffSand
CliffEarth
CliffCold

>Layer/Ground
GroundSand
GroundDirt
GroundGrass
GroundSnow

>Layer/Trees
TreeCactus
TreeRegular
TreeLeafless
TreeSnowy

>Layer/Water
WaterIsland
WaterCoastal
WaterRivers
WaterPonds
WaterDry

States
<<state>>

_Temperature(Temperature)
_Topography(Topography)
_TopographyChoice(Topography)
_Hidrography(Hidrography)
_Vegetation(Vegetation)
_MapSize(MapSize)

_Stage1Complete()

_Cliff(Layer/Cliffs)
_Ground(Layer/Ground)
_Tree(Layer/Trees)
_Water(Layer/Water)

Actions
<<action>>

Action = Set_Grassland()

Constraints =
Precondition = [[{UNK}_Temperature(Temperature)] {AND} [{UNK}_Topography(Topography)]] {AND}

[[{UNK}_Hidrography(Hidrography)] {AND} [{UNK}_Vegetation(Vegetation)]]
Effect = _Temperature(TemperatureHot)

 _Temperature(TemperatureTemperate)
 _Temperature(TemperatureCold)
 _Topography(TopographyUp)
 _Topography(TopographyMixed)
 _Topography(TopographyDown)
 _Vegetation(VegetationSparse)
 _Vegetation(VegetationSporadic)
 _Vegetation(VegetationNone)
 _Hidrography(HidrographyRivers)
 _Hidrography(HidrographyPonds)
 _Hidrography(HidrographyDry)

<ACT_END>

Action = Set_Rainforest()

Constraints =
Precondition = [[{UNK}_Temperature(Temperature)] {AND} [{UNK}_Topography(Topography)]] {AND}

[[{UNK}_Hidrography(Hidrography)] {AND} [{UNK}_Vegetation(Vegetation)]]
Effect = _Temperature(TemperatureHot)

 _Temperature(TemperatureTemperate)
 _Topography(TopographyUp)
 _Topography(TopographyDown)
 _Vegetation(VegetationDense)
 _Vegetation(VegetationFocused)
 _Hidrography(HidrographyCoastal)
 _Hidrography(HidrographyRivers)

<ACT_END>

Action = Set_Tundra()

Constraints =
Precondition = [[{UNK}_Temperature(Temperature)]] {AND} [[{UNK}_Hidrography(Hidrography)] {AND}

[{UNK}_Vegetation(Vegetation)]]
Effect = _Temperature(TemperatureFreezing)

 _Temperature(TemperatureCold)
 _Hidrography(HidrographyRivers)
 _Hidrography(HidrographyPonds)
 _Hidrography(HidrographyDry)
 _Vegetation(VegetationSparse)
 _Vegetation(VegetationSporadic)
 _Vegetation(VegetationNone)

<ACT_END>

Action = Set_Chaparral/Savannah()

Constraints =
Precondition = [{UNK}_Temperature(Temperature)] {AND} [[{UNK}_Hidrography(Hidrography)] {AND}

[{UNK}_Vegetation(Vegetation)]]
Effect = _Temperature(TemperatureHot)

 _Temperature(TemperatureTemperate)
 _Hidrography(HidrographyPonds)
 _Hidrography(HidrographyDry)
 _Vegetation(VegetationSparse)
 _Vegetation(VegetationSporadic)

<ACT_END>

Action = Set_HotDesertDesert()

Constraints =
Precondition = [{UNK}_Temperature(Temperature)] {AND} [[{UNK}_Hidrography(Hidrography)] {AND}

[{UNK}_Vegetation(Vegetation)]]
Effect = _Temperature(TemperatureScalding)

 _Temperature(TemperatureHot)
 _Hidrography(HidrographyCoastal)
 _Hidrography(HidrographyPonds)
 _Hidrography(HidrographyDry)
 _Vegetation(VegetationSparse)
 _Vegetation(VegetationSporadic)
 _Vegetation(VegetationNone)

<ACT_END>

Action = Set_Polar()

Constraints =
Precondition = [{UNK}_Temperature(Temperature)] {AND} [[{UNK}_Hidrography(Hidrography)] {AND}

[{UNK}_Vegetation(Vegetation)]]
Effect = _Temperature(TemperatureFreezing)

 _Hidrography(HidrographyIsland)
 _Hidrography(HidrographyCoastal)
 _Vegetation(VegetationNone)

<ACT_END>

Action = Set_Taiga()

Constraints =
Precondition = [[{UNK}_Temperature(Temperature)] {AND} [{UNK}_Vegetation(Vegetation)]]

Effect = _Temperature(TemperatureCold)
 _Vegetation(VegetationDense)
 _Vegetation(VegetationFocused)

<ACT_END>

Action = Set_Forest()

Constraints =
Precondition = [[{UNK}_Temperature(Temperature)] {AND} [{UNK}_Vegetation(Vegetation)]]

Effect = _Temperature(TemperatureHot)
 _Temperature(TemperatureTemperate)
 _Temperature(TemperatureCold)
 _Vegetation(VegetationDense)

<ACT_END>

Action = Set_Mountain()

Constraints =
Precondition = {UNK}_Topography(Topography)

Effect = _Topography(TopographyDoubleUp)
<ACT_END>

Action = Set_Canyon()

Constraints =
Precondition = {UNK}_Topography(Topography)

Effect = _Topography(TopographyDoubleDown)
<ACT_END>

Action = Set_Island()

Constraints =
Precondition = [{UNK}_Hidrography(Hidrography)] {AND} [[{UNK}_Topography(Topography)] {OR}

[_Topography(TopographyUp)]]
Effect = _Hidrography(HidrographyIsland)

 _Topography(TopographyUp)
<ACT_END>

Action = Set_Coast()

Constraints =
Precondition = {UNK}_Hidrography(Hidrography)

Effect = _Hidrography(HidrographyCoastal)
<ACT_END>

Action = Set_TopographyChoice(?t)

Constraints = Topography(?t)
Precondition = [{UNK}_TopographyChoice(Topography)] {AND} _Topography(?t)

Effect = _TopographyChoice(?t)
<ACT_END>

Action = Set_MapSize(?s)

Constraints = MapSize(?s)

Precondition = [{UNK}_MapSize(MapSize)]
Effect = _MapSize(?s)
<ACT_END>

##STAGE 1 END##

Action = Set_Stage1Complete()

Constraints =
Precondition = [[{UNK}_Stage1Complete()] {AND} [[_Temperature(Temperature) {AND}

_TopographyChoice(Topography)] {AND} [_Hidrography(Hidrography) {AND} _Vegetation(Vegetation)]]] {AND}
[_MapSize(MapSize)]
Effect = _Stage1Complete()
<ACT_END>

###STAGE 2 START

Action = Set_CliffSand()

Constraints =
Precondition = [[[{UNK}_Cliff(Layer/Cliffs)] {AND} _Stage1Complete()] {AND}

[[_Temperature(TemperatureScalding)] {OR} [_Temperature(TemperatureHot)]]]
Effect = _Cliff(CliffSand)
<ACT_END>

Action = Set_CliffEarth()

Constraints =
Precondition = [[[{UNK}_Cliff(Layer/Cliffs)] {AND} _Stage1Complete()] {AND}

[[{UNK}_Temperature(TemperatureFreezing)] {AND} [{UNK}_Temperature(TemperatureScalding)]]]
Effect = _Cliff(CliffEarth)
<ACT_END>

Action = Set_CliffCold()

Constraints =
Precondition = [[[{UNK}_Cliff(Layer/Cliffs)] {AND} _Stage1Complete()] {AND}

[[_Temperature(TemperatureCold)] {OR} [_Temperature(TemperatureFreezing)]]]
Effect = _Cliff(CliffCold)
<ACT_END>

#Ground

Action = Set_GroundSand()

Constraints =
Precondition = [[[{UNK}_Ground(Layer/Ground)] {AND} _Stage1Complete()] {AND}

[_Temperature(TemperatureScalding)]]
Effect = _Ground(GroundSand)
<ACT_END>

Action = Set_GroundDirt()

Constraints =
Precondition = [[[{UNK}_Ground(Layer/Ground)] {AND} _Stage1Complete()] {AND}

[[_Temperature(TemperatureScalding)] {OR} [_Temperature(TemperatureHot)]]]

Effect = _Ground(GroundDirt)
<ACT_END>

Action = Set_GroundSnow()

Constraints =
Precondition = [[[{UNK}_Ground(Layer/Ground)] {AND} _Stage1Complete()] {AND}

[[_Temperature(TemperatureCold)] {OR} [_Temperature(TemperatureFreezing)]]]
Effect = _Ground(GroundSnow)
<ACT_END>

Action = Set_GroundGrass()

Constraints =
Precondition = [[[{UNK}_Ground(Layer/Ground)] {AND} _Stage1Complete()] {AND}

[[{UNK}_Temperature(TemperatureFreezing)] {AND} [{UNK}_Temperature(TemperatureScalding)]]]
Effect = _Ground(GroundGrass)
<ACT_END>

#Trees

Action = Set_TreeSnowy()

Constraints =
Precondition = [[{UNK}_Tree(Layer/Trees)] {AND} _Stage1Complete()] {AND}

[[_Vegetation(VegetationDense) {OR} _Vegetation(VegetationFocused)] {AND} [_Temperature(TemperatureCold)]]
Effect = _Tree(TreeSnowy)
<ACT_END>

Action = Set_TreeCactus()

Constraints =
Precondition = [[[{UNK}_Tree(Layer/Trees)] {AND} _Stage1Complete()] {AND}

[[_Temperature(TemperatureHot) {OR} _Temperature(TemperatureScalding)] {AND} [[_Vegetation(VegetationSparse)
{OR} _Vegetation(VegetationSporadic)]]]] {AND} [_Ground(GroundDirt) {OR} _Ground(GroundSand)]
Effect = _Tree(TreeCactus)
<ACT_END>

Action = Set_TreeRegular()

Constraints =
Precondition = [[{UNK}_Tree(Layer/Trees)] {AND} _Stage1Complete()] {AND}

[[_Vegetation(VegetationDense) {OR} _Vegetation(VegetationFocused)] {AND}
[[{UNK}_Temperature(TemperatureFreezing)] {OR} [{UNK}_Temperature(TemperatureScalding)]]]
Effect = _Tree(TreeRegular)
<ACT_END>

Action = Set_TreeLeafless()

Constraints =
Precondition = [[{UNK}_Tree(Layer/Trees)] {AND} _Stage1Complete()] {AND}

[[_Vegetation(VegetationSparse) {OR} _Vegetation(VegetationSporadic)] {OR} [[_Temperature(TemperatureFreezing)
{OR} _Temperature(TemperatureScalding)]]]
Effect = _Tree(TreeLeafless)
<ACT_END>

#Action = Set_TreeNone()
Constraints =
Precondition = [{UNK}_Tree(Layer/Trees)] {AND} [_Vegetation(VegetationNone)]
#Effect = _Tree(TreeNone)
#<ACT_END>

Action = Set_WaterIsland()

Constraints =
Precondition = [[{UNK}_Water(Layer/Water)] {AND} _Stage1Complete()] {AND}

[_Hidrography(HidrographyIsland)]
Effect = _Water(WaterIsland)
<ACT_END>

Action = Set_WaterCoastal()

Constraints =
Precondition = [[{UNK}_Water(Layer/Water)] {AND} _Stage1Complete()] {AND}

[_Hidrography(HidrographyCoastal)]
Effect = _Water(WaterCoastal)
<ACT_END>

Action = Set_WaterDry()

Constraints =
Precondition = [[{UNK}_Water(Layer/Water)] {AND} _Stage1Complete()] {AND}

[_Hidrography(HidrographyDry)]
Effect = _Water(WaterDry)
<ACT_END>

Action = Set_WaterPonds()

Constraints =
Precondition = [[{UNK}_Water(Layer/Water)] {AND} _Stage1Complete()] {AND}

[_Hidrography(HidrographyPonds)]
Effect = _Water(WaterPonds)
<ACT_END>

Action = Set_WaterRivers()

Constraints =
Precondition = [[{UNK}_Water(Layer/Water)] {AND} _Stage1Complete()] {AND}

[_Hidrography(HidrographyRivers)]
Effect = _Water(WaterRivers)
<ACT_END>

Attachment B

Consent Form

99

Termo de Consentimento

1. Você está sendo convidado/a para par�cipar de um procedimento de avaliação qualita�va para a
dissertação de mestrado de “Yuri Pessoa Avelar Macedo” pelo Departamento de Ciência da Computação da
Universidade Federal de Minas Gerais (UFMG).

2. Você foi selecionado/a pois a seu perfil foi considerado de ser desejado para os testes da pesquisa em
questão. Sua par�cipação não é obrigatória, e a qualquer momento você pode desis�r de par�cipar e
imediatamente re�rar seu consen�mento. Sua recusa não trará nenhum prejuízo em sua relação com o
pesquisador ou com a ins�tuição.

3. Os obje�vos deste estudo são obter informações sobre sua experiência com um jogo simples. Sua
par�cipação nesta pesquisa consis�rá em jogar um jogo durante 10 a 30 minutos e descrever suas
experiências de acordo com perguntas que serão feitas pelo pesquisador .

4. À sua vontade, informações ob�das através dessa pesquisa poderão ser confidenciais. Neste caso,
asseguramos o sigilo sobre sua par�cipação, e as informações coletadas não serão divulgadas de forma a
possibilitar sua iden�ficação.

5. Você receberá uma cópia deste termo onde consta o telefone e o endereço do pesquisador principal,
podendo �rar suas dúvidas sobre o Projeto de Pesquisa de sua par�cipação, agora ou a qualquer momento.

DADOS DO PESQUISADOR

Nome

Assinatura

Endereço completo

Telefone

Declaro que entendi os objetivos, riscos e benefícios de minha participação na pesquisa e concordo em

participar.

Belo Horizonte, _____ de _______________ de ______

Par�cipante da pesquisa

Consent Form

1. You’re invited to par�cipate in a qualita�ve evalua�on procedure for the master’s thesis of “Yuri Pessoa
Avelar Macedo”, from the department of computer Science (DCC) of the Universidade Federal de Minas Gerais
(UFMG).

2. You’ve been chosen due to your profile being considered desirable for this research’s tests. Your
par�cipa�on is not obligatory and you may stop it at any �me and remove your consent. Your refusal will not
bring any loss to your rela�onship with the researcher and/or with their ins�tu�on.

3. This study’s objec�ve is to collect informa�on based on your experience with a simple game. Your
par�cipa�on will consist of you playing a game for ten to thirty minutes, and then to describe your experiences
based on ques�ons asked by the researcher.

4. At your will, informa�on acquired through this research may be confiden�al. At which case, we assure
secrecy about your par�cipa�on. The collected informa�on will then not be divulged in a way that allows or
assists in your iden�fica�on.

5. You’ll receive a copy of this form that contains the researcher’s phone number and home address, allowing
you to query about this research project and your par�cipa�on in it. Now, or at any �me.

RESEARCHER’S INFORMATION

Name

Signature

Full home address

Contact phone

I hereby declare to understand the objectives, risks, and benefits of my participation in this research, and

agree to participate.

Belo Horizonte, ______________ (Month) ____ (day), ______ (year)

Par�cipant’s Signature

Attachment C

Interview Diagram

103

Scalable?

Consistent?

Cohesive?

Repetitive?

Diverse?

Perceptible?

Quantitative
Experiments

What can you comment about the difficulty of the
game?

Did you find the level layout to be intuitive? Why?

Did you feel lost while navigating through the
level? When and why?

Did you notice any hints on the level’s structure
guiding you to where you were meant to go?

Describe within a sentence of up to seven words the
theme of each level you played.

Present your thoughts on the game’s ambience.

[5-interval Likert Scale] Over the play session, how
clear it was to you the areas of the level you could

or could not reach?

What kinds of similarities would you point
out from the three levels you have played?

[5-interval Likert Scale] Over the play session,
much room did you find to explore paths and areas

parallel to the end goal?

Have you spotted any game bugs or glitches? If so,
what, when and how?

Identify problems that can
impact the analysis

How did your perception of the areas you could
reach change over the course of the levels.

What can you comment about your engagement
with the game? (Did you have fun? Did you find

elements of the game boring or repetitive?)

The map you have been playing on each level
has been

procedurally generated.

Obtain the technical
perspective of Game

Developers

Did it look like to you that the maps you have
played on were procedurally generated?

Briefly, and in broad terms. How would you guess
these maps were generated?

How would you improve and/or expand upon the
procedurally generated levels?

Based on your previous answers, what downsides
would you point out on using a procedural

generation that you have noticed on these maps?

Would you develop a game that utilized a
procedural level generator such as this one?

Did you find the procedurally generated levels to be
interesting.

Attachment D

Qualitative collection

Includes the results from the pilot tests’ volunteers.

Volunteer\Topic VPA1 VA1 VA2 VA3 VA4 VA5 VA6 VPB1 VB1 VB2 VB3 VB4 VB5 VB6
Noticed guiding tips 1 1 0 0 1 1 0 1 0 1 0 1 1 0
Intuitive layout 0 1 0 0 1 1 0 1 0 1 0 1 1 0
Room to Explore 2 3 4 4 3 3 4 2 3 3 3 2 4 4
Understood the map 4 4 4 3 2 4 3 5 5 4 5 3 4 5
Got lost 1 1 1 2 1 0 1 0 1 0 1 0 1 2
Had Fun 0 1 1 1 1 1 1 1 0 1 1 0 1 1
Stated that there was
no reason to explore 0 1 1 1 1 0 0 0 1 0 0 0 0 1

Found maps visually
engaging 0 1 0 1 1 1 0 0 0 0 0 0 1 1

Number of
remembered levels 2 2 3 3 3 3 3 2 3 2 1 2 1 2

Noticed it was PCG 0 1 1 0 0 0 0 0 1 0 0 1 1 0
Asked if it was about
PCG during play 0 0 1 0 0 0 0 0 0 1 0 0 1 0

Table D.1. Data from the volunteers’ questions. The vertical axis contains each stated
opinion, while the horizontal contains answers relative to each topic. Most information
is organized as 0’s (no) and 1’s (yes). A few exception topics have distinct values: Room
to Explore is an integer from 1 to 5: A value of one means that there was no freedom
to explore, a 5 means that the amount of explorable areas was overwhelming, and a 3
being the perfect balance; Understood the Map is a simple grade from 1 to 5 of how
well the map was understood; Got Lost is a ternary scale with 0 meaning the volunteer
did not get lost, with 2 meaning that they have gotten lost, and 1 meaning that, while
getting lost, the volunteer did not find it to be a bothersome problem. Finally Number
of Remembered levels is just that, an accounting of the number of levels the volunteer
could remember and accurately describe.

Group A, Pilot Test Volunteer
• ’Zombies always come from the same places.’

• ’The zombies’ positioning should be randomly generated.’

• Noticed cohesion between level elements.

105

106 ATTACHMENT D. QUALITATIVE COLLECTION

Summation\Topic Sum (A) Sum (B) Total Averages (A) Averages (B) Total
Noticed guiding tips 4 4 8 0.571 0.571 0.571
Intuitive layout 3 4 7 0.429 0.571 0.500
Room to Explore - - - 3.286 3.000 3.143
Understood the map - - - 3.529 4.429 3.929
Got lost 1 2 3 1.000 0.714 0.857
Had Fun 6 5 11 0.857 0.714 0.786
Stated that there was
no reason to explore 4 2 6 0.571 0.286 0.429

Found maps visually
engaging 4 2 6 0.571 0.286 0.429

Number of remembered levels - - - 2,714 1,671 2,143
Noticed it was PCG 2 3 6 0.285 0.429 0.357
Asked if it was about
PCG during play 1 2 3 0.143 0.286 0.214

Table D.2. Data from the volunteers’ questions, displaying averages and totals (when
relevant) for each topic. Separated column entries for groups A, B contain their answers’
sums and averages. For a better understanding of the meaning of each average, it would
be best to check the information described in Table D.1’s caption.

Volunteer\Topic VPB1 VB1 VB2 VB3 VB4 VB5 VB6
Found the Procedural
maps interesting 1 1 1 1 0 1 1

Closest associated
PCG method Dungeon Generator

Connect begin and
end. Dungeon

Generator
Spelunky Spelunky

Generate separate
areas that limit

movement

Couldn’t think
of a method

Generate outline
and fill around

Perceived procedural
disadvantages

None, it seems like
a map a person

would make
No pacing None

Uncoherent
elements are
aesthetically
unpleasant

It lacked
memorable
segments

Confusing and
frustrating level

design

It requires
refinement

but it doesn’t
present
major

problems

Suggested
improvements

Cover more empty
areas with loot.
Improve the art

Multiple types of
encounters and

optional rewards.
Handmade
encounters

More visual
elements Work in the art

Use proper
algorithms

for individual
elements

Add more
interest points

More visual
elements

Would develop a game
with this generator 1 0 1 1 1 1 1

Table D.3. Data from the volunteers’ questions displayed in the same format as Table
D.1. These answers regard questions exclusive to Group B. The first and last rows are
closed binary answers, while the other remaining three have opinions condensed into
one or two sentences.

Group A, Volunteer 1
• Noticed a sense of progression with the maps’ structures.

• Noticed no relation of themes between different maps.

• Noticed the Procedural Generation through elements that did not seem coherent or
have a purpose.

107

Volunteer \Topic Sum Total Average Total
Found the Procedural
maps interesting 6 0,857

Would develop a game
with this generator 6 0,857

Table D.4. Data from the volunteers’ questions presented in Table D.3, displaying aver-
ages and totals for PCG related topics presented exclusively to Group B.

Group A, Volunteer 2
• During Question 3, the volunteer managed to identify all the Layers while answer-

ing.

• Noticed the Procedural Generation through elements that did not seem coherent or
have a purpose

Group A, Volunteer 3
• Believes that there was no replayablity (game) due to it being too simple.

• Noticed that there was a pattern, but couldn’t figure out what.

• Has called the game an ’obvious beta’.

Group A, Volunteer 4
• Noticed the road layer guiding to the the main path.

Group A, Volunteer 5
• ’If the game was 10 stages long, it would be repetitive.’

• Thought two or more levels to be too much alike.

Group A, Volunteer 6
• Thought two or more levels to be too much alike.

• Noticed the PG due to it being a labyrinthine Stage, with many paths that lead
nowhere, as well as the object’s formations.

Group B, Pilot Test Volunteer
• ’I Did not identify a lore behind the levels and the game.’

• ’The map and the mechanics could have been applied to any game.’

• ’In retrospect, the empty areas could have been generated by an algorithm.’

108 ATTACHMENT D. QUALITATIVE COLLECTION

Group B, Volunteer 1
• ’I Don’t believe (improving the content) would make it (the experience) better.’

• Did think the levels were cohesive

• Thought exploring was counter productive, for there were no worthwhile rewards.

Group B, Volunteer 2
• Supposed Procedural Generation had been used since it would be easier to generate

maps this large and with this many sprites the to create it by hand.

• Missed a city environment for a zombie game.

Group B, Volunteer 3
• Missed a city environment for a zombie game.

Group B, Volunteer 4
• Thought the ambiance to be consistent.

• Identified that the generator defined a theme to the map.

• Found nonsensical formations to be identifiable as procedural.

Group B, Volunteer 5
• Thought the ambiance to be too generic.

Group B, Volunteer 6
• ’The graphic style pushed me away from thinking of procedural generation’

	d5a0d6fe3343cd6ed61feaa1eff056f475b0894b44802224a5471c6cac549da6.pdf
	d5a0d6fe3343cd6ed61feaa1eff056f475b0894b44802224a5471c6cac549da6.pdf
	d5a0d6fe3343cd6ed61feaa1eff056f475b0894b44802224a5471c6cac549da6.pdf
	d5a0d6fe3343cd6ed61feaa1eff056f475b0894b44802224a5471c6cac549da6.pdf
	d5a0d6fe3343cd6ed61feaa1eff056f475b0894b44802224a5471c6cac549da6.pdf

