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Resumo

O grupo PU(n,1) mais a operação de conjugação complexa formam o grupo completo de isometrias 

do espaço hiperbólico complexo. O presente trabalho busca investigar as relações entre os conjuntos 

limites de subgrupos discretos de PU(n,1) conforme definidos por Chen e Greenberg e Kulkarni. Os 

conjuntos limites são importantes ferramentas no estudos desses subgrupos, no entanto não existe 

uma definição única de conjunto limite. Nesta dissertação vamos mostrar que pelo menos estas duas 

definições estão intimamente relacionadas, veremos que o conjunto limite conforme definido por 

Chen  e  Greenberg nada mais é que a intercessão entre o conjunto limite conforme definido por 

Kulkarni  e a fronteira do espaço hiperbólico. Para mostrar isto utilizaremos como base um artigo 

publicado por Navarrete em que ele mostra essa igualdade em dimensão dois estendendo alguns dos 

resultados por ele encontrados para dimensão qualquer. Demonstraremos uma série de propriedades 

do  conjunto  limite  no  sentido  de  Chen  e  Greenberg,  passando  por  dois  importante  resultdos 

relacionados a convergência de grupos compactos sob a ação de sequências de elementos discretos e 

uma relação de equivalência para pontos no conjunto limite, para ao final concluir com o resultado 

principal.

Palavras-chave:  Espaço  Hiperbólico  Complexo.  Subgrupos  Discretos  de  PU(n,1).  Conjuntos 

Limites.



Abstract

The group PU(n,1) and complex conjugation form the complete group of isometries of the complex 

hyperbolic space. The present work aims to investigate how the limit sets of discrete subgroups of 

PU(n,1) as defined by Chen and Greenberg and as defined by Kulkarni are related. Limit sets are 

important tools in the study of these subgroups, however there is not an unique definition of what a 

limit  set  is.  In  this  thesis  we will  show that  the definition of  limit  set   as  given by  Chen  and 

Greenberg and as given by Kulkarni are intimately related, for the former definition is nothing more 

than the intersection of the latter definition and the boundary of the complex hyperbolic space. In 

order to show this we will rely on a paper by Navarrete in which it is shown that the above equality 

is valid in dimension two. We will generalize some of the results of  Navarrete  for any positive 

dimension.  We  will  also  show a  series  of  properties  of  the  limit  set  as  defined  by  Chen  and 

Greenberg, with two important results relating to the convergence of compact sets under the action 

of sequences of discrete elements and a equivalence relation  for points in the limit set. We will then 

conclude with the main result of the work.

Keywords: Complex Hyperbolic Space. Discrete Subgroups of PU(n,1). Limit Sets.
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1 INTRODUCTION

The set of all the unitary transformations of Cn,1 form a group with the operation

of composition. This group can be given a matrix representation as the group PU(n, 1)

of GL(n+ 1). When we consider the actions of subgroups of PU(n, 1) on H
n
C

it becomes

apparent that, given a group, the orbits of any point p ∈ Hn
C

tend to accumulate at certain

positions. We define the set consisting of these accumulation points as the limit set of

the group. This natural definition of limit set was first presented by Chen and Greenberg

in [4]. In their paper they were able to prove that this definition does not depend on the

orbit we choose to observe and that this definition is the smallest invariant set under the

action of a subgroup of PU(n, 1) in a certain sense.

A lot of work has been done regarding this definition of limit set since its initial

presentation by Chen and Greenberg. However, other authors have discovered different

and equally natural definitions for limit sets in regard to subgroups of PU(n, 1). Kulkarni,

for instance, in his study of the actions of groups on Hausdorff spaces came up with a

different definition of limit set given by the union of infinite isotropy groups of points and

the closure of accumulation points of compact subsets of the space. This definition can

be applied to the same groups studied by Chen and Greenberg if we regard Hn
C

as a part

of Pn
C
. Other definitions still exist for different purposes, but in the present work we will

be concerned with only those two.

Among the subgroups of PU(n, 1) the most important are the discrete ones, as

the actions of these subgroups in Hn
C

provide a multitude of interesting structures and

phenomena. A point of particular interest in the study of discrete subgroups is the region

where they act properly discontinuous. The limit set as defined by Chen and Greenberg

allows us to answer this question in regard to Hn
C

and the limit set as defined by Kulkarni

extends the answer to the whole of Pn
C
. Thus a question spontaneously arises: "Are these

definitions related in some way?".

In his paper [10] Navarrete was able to prove that in the two dimensional case

the Chen and Greenberg limit set is the intersection of the Kulkarni limit set and the

boundary of the complex hyperbolic plane. Furthermore he was able to show that the

Kulkarni limit set of a discrete subgroup of PU(2, 1) is given by the union of tangent

complex lines of Pn
C

at points of the Chen and Greenberg limit set. Navarrete continued

to work over these results in [3] with Cano and Seade, where they were able to generalize

some of Navarrete previous conclusions and prove that the complement of the Chen and

Greenberg limit set in P
n
C

is the subgroup’s region of equicontinuity. Afterwards, Cano

with Liu and Lopes in [2] was finally able to prove that in higher dimensions the Kulkarni

limit set is the union of tangent hyperplanes at points of the Chen and Greenberg limit

set.

We notice that in both [2] and [3] the theory used to achieve these results is no-
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ticeably different than the one used in [10]. Both [2] and [3] mainly use pseudo-projective

transformations and the Cartan decomposition of elements of PU(n, 1), objects not used

by [10]. Hence in the present work we wanted to focus in the theory presented in [10]

and show that it can be used at least to show that for a n-dimensional complex hyper-

bolic space, the Chen and Greenberg limit set of a discrete subgroup of PU(n, 1) is the

intersection of its Kulkarni limit set and the boundary of Hn
C
.

In order to do this, in section 2 we will present the models of Hn
C

that will be used

throughout the thesis, nominally the projective model and the unitary ball model, and

their relation. In section 3 we will present the group PU(n, 1) and discuss its action in

the complex hyperbolic space. In section 4 we will give the definition of the Kulkarni

limit set, discuss its relevant properties and give some examples. In section 5 we will do

the bulk of the work in the thesis, giving the definition of the Chen and Greenberg limit

set, presenting its relevant properties and presenting two important results, one about

the convergence of compact set of Hn
C

under the action of elements of PU(n, 1) and the

other about the finite subgroups of PU(n, 1). Finally in section 6 we will present some

considerations about how the results of sections 4 and 5 and the main result in this work.
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2 THE COMPLEX HYPERBOLIC SPACE

2.1 THE PROJECTIVE MODEL

We first present a brief description of the projective model for a complex hyperbolic

space of dimension n.

Let C denote the complex numbers and C
n,1 the vector space of dimension n + 1

with the following hermitian form associated to it 〈, 〉 : Cn,1 × C
n,1 → R defined as

〈(z0, z1, ..., zn), (w0, w1, ..., wn)〉 = −z0w0 + 〈〈(z1, ..., zn), (w1, ..., wn)〉〉,

Where

〈〈(z1, ..., zn), (w1, ..., wn)〉〉 := z1w1 + ...+ znwn

Is the canonical hermitian form. This hermitian form divides our vector space in three

distinct sets that we define as follows V0 := {z ∈ C
n,1 : 〈z, z〉 = 0}, V− := {z ∈ C

n,1 :

〈z, z〉 < 0} and V+ := {z ∈ C
n,1 : 〈z, z〉 > 0}. We shall refer to the points of each of these

sets as isotropic, negative or positive respectively.[4]

The set β := {e0, e1, ..., en}, where ei denotes the vector that is 0 in every coordinate

except for the i-th, is an orthogonal basis of Cn,1. We also have that 〈e0, e0〉 = −1 and

〈ei, ei〉 = 1 for all i 6= 0, thus the hermitian form has a (n, 1) signature.

Now we consider the projectivization of C
n,1. We say that two elements z, w ∈

C
n,1 are similar, if ∃ λ ∈ C − {0} such that z = λw, and we note z ∼ w. The n-

dimensional projective complex space can now be defined as P
n
C
= P(Cn,1) := C

n,1/ ∼
and we obtain[11]:

Definition 2.1. [11] P(V−) := H
n
C
, the complex hyperbolic space of dimension n and

P(V0) := ∂Hn
C

the boundary of the complex hyperbolic space of dimension n.

In the projective model we will assign a metric called the Bergman metric given

indirectly by the following distance formula ρ(·, ·) [11]:

cosh2
(

ρ(z, w)

2

)

=
〈z, w〉〈w, z〉
〈z, z〉〈w,w〉

This formula does not depend on the representatives chosen, if rz and sw are

different representatives of the equivalence classes of z and w, then:

cosh2
(

ρ(rz, sw)

2

)

=
〈rz, sw〉〈sw, rz〉
〈rz, rz〉〈sw, sw〉

=
rs〈z, w〉sr〈w, z〉
|r|2〈z, z〉|s|2〈w,w〉



11

=
(|r||s|)2〈z, w〉〈w, z〉
(|r||s|)2〈z, z〉〈w,w〉

=
〈z, w〉〈w, z〉
〈z, z〉〈w,w〉 = cosh2

(

ρ(z, w)

2

)

2.2 THE UNITARY BALL MODEL

The projective model will be the standard model for our calculations in this work,

however, on occasion we shall use a different (but related) model, the unitary ball model.

This model will prove useful in understanding some calculations by Navarrete and Chen

and Greenberg.

Consider the hermitian form with signature (n, 1) and the projectivization map

defined above, a non-null element z = (z0, ..., zn) may be isotropic or negative if, and

only if, z0 6= 0. If z0 = 0 then there exists one zi 6= 0 (z is a non-null vector) and so

〈z, z〉 = 〈〈(z1, ..., zn), (z1, ..., zn)〉〉 =
∑n

i=1 |zi|2 > 0 which implies z is positive.

With this result we may define a standard representation for equivalence classes in

the projective model of Hn
C
, for every element of Hn

C
is an equivalence class in C

n,1. Let

[z] ∈ Hn
C

be one such class, and z = (z0, ..., zn) ∈ [z] an element of this class, we choose

the standard representative as being z′ = 1
z0
z = (1, z1

z0
, ..., zn

z0
). If w = (w0, ..., wn) is a

different element of [z] then w = λz for some λ ∈ C − {0}, so 1
w0

w = (1, w1

w0

, ..., wn

w0

) =

(1, λz1
λz0
, ..., λzn

λz0
) = (1, z1

z0
, ..., zn

z0
) = z′ and the standard representative is well defined. The

standard representative is also called the standard lift of the class [z]. From now on

the class [z] we will be referred simply as z, and we will assume that z is the standard

representative of [z].

With the previous definitions we have now that z is negative, if, and only if

〈z, z〉 < 0

⇔ −1 + |z1|2 + ...+ |zn|2 < 0

⇔ |z1|2 + ...+ |zn|2 < 1

⇔ (z1, ..., zn) ∈ Bn ⊂ C
n

Where Bn is the unitary ball of Cn. An analogous calculation show us that an element

is isotropic if, and only if, (z1, zn) ∈ ∂Bn = S2n−1 ⊂ C
n. Thus we can identify Hn

C
with

Bn by taking the final n coordinates of the standard representation of an element of Hn
C
.

This representation of the complex hyperbolic space is called the unitary ball model.

Similarly to the projective model, we can assign a metric in this model by defining

the distance between two points as the distance between their standard lifts associated to

them in the projective model [11].
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3 THE GROUP PU(n,1)

3.1 PRESENTATION OF PU(n, 1)

Definition 3.1. [4] Let g be an automorphism of Hn
C

such that 〈g(z), g(w)〉 = 〈z, w〉 for

all z, w ∈ C
n,1, g is called an unitary transformation, and U(n, 1) is the group given by

all unitary transformations in C
n,1

As g ∈ U(n, 1) is an automorphism, g is C-linear, so it can be represented by an

element of GL(n+1,C) the group of (n+1)×(n+1) invertible matrices. Given g ∈ U(n, 1)

and β the canonical basis given in the previous section, then for each i = 0, 1, ..., n, we

define g(ei)T as the i-th column of the matrix representation A of g. As g is unitary, the

g(ei)
T are all linearly independent, so A is invertible, then A ∈ GL(n+ 1,C). From now

on, whenever we mention an element of U(n, 1) we will assume its matrix representation.

[4]

Proposition 3.2. [4] U(n, 1) acts isometrically on H
n
C
.

Proof. Let A ∈ U(n, 1) and z, w ∈ H
n
C

then we have that

cosh2
(

ρ(Az,Aw)

2

)

=
〈Az,Aw〉〈Aw,Az〉
〈Az,Az〉〈Aw,Aw〉

=
〈z, w〉〈w, z〉
〈z, z〉〈w,w〉 = cosh2

(

ρ(z, w)

2

)

=⇒ ρ(Az,Aw) = ρ(z, w)

Another notable feature of U(n, 1) is that its elements act transitively in H
n
C

and

doubly transitively in ∂Hn
C
. We present this fact as proved by .

Proposition 3.3. [4] U(n, 1) acts transitively in H
n
C

and doubly transitively on the bound-

ary ∂Hn
C
.

Proposition 3.4. Let A ∈ U(n, 1) be a matrix and let A′ = λA with λ ∈ C, then

A′ ∈ U(n, 1) if, and only if |λ| = 1.

Proof. 〈A′z, A′w〉 = 〈λAz, λAw〉 = λλ〈Az,Aw〉 = |λ|2〈z, w〉. Now, if A′ ∈ U(n, 1),

then 〈A′z, A′w〉 = |λ|2〈z, w〉 = 〈z, w〉 =⇒ |λ| = 1, and if |λ| = 1 then 〈A′z, A′w〉 =

|λ|2〈z, w〉 = 〈z, w〉 =⇒ A′ ∈ U(n, 1).

Proposition 3.5. Let A,A′ as described in the previous proposition, then they act the

same in Hn
C
.

Proof. Let z ∈ Hn
C
, then A′z = λAz = A(λz) = Az.
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The two previous propositions make it clear that when we consider the actions of

elements of U(n, 1) in Hn
C

we will have a lot of elements with identical actions. To solve this

problem, we define an equivalence relation in U(n, 1) given by A ∼ B ⇔ ∃λ ∈ C, |λ| = 1

such that A = λB.[4]

Definition 3.6. PU(n, 1) = U(n, 1)/ ∼

Remark. [4] PU(n, 1) can also be seen as the image of U(n, 1) in PGL(n+ 1,C).

Remark. PU(n, 1) plus the operation of complex conjugation gives us the complete group

of isometries of Hn
C
, though we will not give a proof of this fact here.

3.2 TOTALLY GEODESIC SUBMANIFOLDS

With PU(n, 1) well established, we can now present some results about totally

geodesic submanifolds that will be used throughout our work. All of the results in this

subsection were originally presented in [4], we will only give an abridged version of then.

Definition 3.7. [4] A submanifold M ⊂ H
n
C

is totally geodesic if it contains every geodesic

which is tangent to it.

Remark. [5] If M is a subspace of Hn
C

and 〈z, w〉 ∈ R for all z, w ∈ M , we say that M

is a totally real totally geodesic subspace.

Definition 3.8. [4] We call the element s0 =

(

−1 0

0 In

)

∈ U(n, 1), where In is the n×n

identity matrix, the symmetry at 0. If ζ ∈ Bn, then sζ ∈ U(n, 1) is called the symmetry

at ζ and it is given by gs0g
−1, where g ∈ U(n, 1) and g(0) = ζ.

Proposition 3.9. [4] M is a totally geodesic submanifold if and only if sζ(M) = M for

all ζ ∈M.

Proposition 3.10. [4] The following are true:

(a) H1
R

is a geodesic in H
n
C
. Every geodesic is equivalent under U(n, 1) to H

1
R
;

(b) The geodesics at 0 are precisely the R-lines through 0. These are all equivalent

under the isotropy group U(1)× U(n);

(c) Let p, q ∈ Hn
C
. Then there is a unique geodesic which connects p to q.

3.3 CONJUGACY CLASSES OF U(n, 1)

The elements of U(n, 1) leave Hn
C

invariant, thus, we can apply Brower’s fixed-point

theorem to obtain that any element of U(n, 1) fixes at least one point of Hn
C
[4].

This fact allows us to divide the elements of U(n, 1) in three categories:
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Definition 3.11. [4] Let g be an element in U(n, 1). We shall call g elliptic if it has a

fixed point in H
n
C
. We shall call g parabolic if it has exactly one fixed point in Hn

C
and it

lies on ∂Hn
C
. g will be called loxodromic if it has exactly two fixed points in Hn

C
and these

belong to ∂Hn
C
.

We will not present a proof of the fact that the above definition covers all possi-

bilities because the calculations involved would distract from the results being presented.

If the reader is interested in seeing a proof, one can be found in [4].
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4 THE KULKARNI LIMIT SET

The Kulkarni limit set was defined in [8] with the intention of studying higher

dimensional Kleinian groups. In this section we will present its definition and some results

pertaining to its relation with discrete groups of PU(n, 1) analogous to those presented

in [10].

4.1 DEFINITIONS

We begin with a few basic definitions concerning the subject.

Definition 4.1. [8] Let X be a locally compact Hausdorff space and let Γ be a group

acting on X. The action of Γ is said to be properly discontinuous on a Γ-invariant subset

Ω of X if for any two compact subsets C and D of Ω, γ(C) ∩ D 6= ∅ only for finitely

many γ ∈ Γ.

Definition 4.2. [8] Let {Aβ} be a family of subsets of X where β runs over some infinite

indexing set B. A point p ∈ X is said to be a cluster point of {Aβ} if every neighborhood

of p intersects Aβ for infinitely many β ∈ B.

Definition 4.3. [8] Let p ∈ X, we define Γp := {γ ∈ Γ such that γ(p) = p} as the

isotropy group of p with respect to Γ.

Definition 4.4. [8] Let:

L0(Γ) = {the closure of the set of points in X with infinite isotropy group}
L1(Γ) = {the closure of the set of cluster points of {γz}γ∈Γ where z runs over

X − L0(Γ)}
L2(Γ) = { the closure set of cluster points of {γK}γ∈Γ where K runs over compact

subsets of X − {L0(Γ) ∪ L1(Γ)}}

Definition 4.5 (The Kulkarni limit set). [8] The set Λ(Γ) = L0(Γ) ∪ L1(Γ) ∪ L2(Γ) is

called the limit set of Γ. The set Ω(Γ) = X − Λ(Γ) is called the domain of discontinuity

of Γ.

Let us consider a simple example for the sake of fixing ideas:

Example. Let g ∈ U(n, 1) be an element of finite order and consider the action of G = 〈g〉
on P

n
C
. As G is a finite group, then no point of Pn

C
has infinite isotropy group with respect

to G, thus L0(G) = ∅. Similarly, the orbit of any compact subset of P
n
C

has a finite

amount of elements, thus L1(G) = ∅ = L2(G). So Λ(G) = ∅.

We present now an example given in [10], as a way of motivating the interest in

the limit set of subgroups of PU(n, 1):
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Example. [10] Let g be a loxodromic element of PU(2, 1) and consider the action of

G = 〈g〉 on P
2
C
. Through the analysis of the dynamic of g on P

2
C

we can find that G

fixes three points in P
2
C
, {a, r, s}, a an attractor in P

2
C
− [r, s] (where [r, s] represents the

complex projective line that passes through these two points), r a repeller in P
2
C
− [a, s]

and s a saddle point.

It becomes clear then that L0(G) = {a, r, s} for those are the only elements with

infinite isotropy groups with respect to G. We also have that L1(G) = L0(G), for if we take

any point p in P
2
C
− L0(G), then limn→∞ gn(p) ∈ {r, s} and then limn→−∞ gn(p) ∈ {a, s}.

Finally, we have that L2(G) = [a, s] ∪ [r, s]. We will not give a detailed proof of

this fact, as it would involve too many calculations that would distract us from the main

parts of interest, but we will give the general idea of the proof. Consider K, a 3-sphere

in P
2
C

which bounds a ball around s, notice that K ∩ [a, s] 6= ∅ 6= K ∩ [r, s] for any such

3-sphere. This means that as n → ∞, Kn → [a, s], so [a, s] ⊂ L2(G). Analogously as

n → −∞, Kn → [r, s], so [r, s] ⊂ L2(G). For any point outside of [a, s] ∪ [r, s], we have

that any compact subset that intersects either [a, s] or [r, s] can only have cluster points in

[a, s]∪ [r, s], and if it does not intersect either of those lines then it can only have {a, r, s}
as cluster points. Thus L2(G) = [a, s] ∪ [r, s], and Λ(G) = [a, s] ∪ [r, s].

4.2 PROPERTIES OF THE LIMIT SET

We shall discuss now a few properties of the Kulkarni limit set and its applications

regarding discrete groups. Whenever there is no risk of confusion we will write L0, L1, L2,Λ

and Ω instead of L0(Γ), L1(Γ), L2(Γ),Λ(Γ) and Ω(Γ)

Definition 4.6. [8] Γ is said to have the Kleinian property if Ω 6= ∅.

Proposition 4.7. [8] Let X and Γ be as above where Γ is equipped with the compact open

topology. Then L0, L1, L2,Λ and Ω are Γ-invariant and Γ acts properly discontinuous on

Ω. If Γ has the Kleinian property then it is discrete. If X has a countable base for its

topology then Γ is countable.

Proof. If Γp is infinite and σ ∈ Γ, then σΓpσ
−1 is infinite and it is also the isotropy group

of σ(p), thus L0 is invariant under Γ. An analogous argument shows that L1, L2,Λ and

Ω are also Γ-invariant.

Given compact subsets C and D of Ω then define S = {γ ∈ Γ such that γ(C)∩D 6=
∅}. Suppose that |S| = ∞ then that means there are infinitely many γ such that

γ(C) ∩ D 6= ∅. Choose some point dγ ∈ γ(C) ∩ D for each γ. As D is a compact

subset, there exists a subsequence of dγ that converges to some point d ∈ D. This implies

that d is a cluster point of {γ(C)}γ∈Γ, which implies that d ∈ L2, which is absurd, for

D ⊂ X − {L0, L1, L2}. So we can conclude that Γ acts properly discontinuous in X.
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Now consider K a compact neighborhood of a point p ∈ Ω and Γ a group with

the Kleinian property. If T = {γ ∈ Γ such that γ(p) ∈ int(C)} then T ⊂ T ′ := {γ ∈ Γ

such that {γ(p)} ∩ C 6= ∅}. From the previous result we have that Γ acts properly

discontinuous on Ω and we conclude that T ′ is finite. This also means that T is finite,

therefore open in Γ. Since X is Hausdorff then the topology of Γ is also Hausdorff. As T

is nonempty Γ must be discrete.

Finally if X has a countable base for its topology so does Ω. Let {un} n ∈ N be a

countable base of relatively compact neighborhoods on Ω and let Γn = {γ ∈ Γ such that

γ(U1) ∩ Un 6= ∅}. By the previous results each Γn is finite and
⋃

n∈N Γn = Γ. So Γ is

countable.

With this result the usefulness of the Kulkarni limit set in considering the regions

where a groups acts properly discontinuous becomes clear. We finish this section by

presenting an example contained in [8] of a non-hyperbolic space where the traditional

definition of the limit set (the cluster points of Γ-orbits) does not agree with the Kulkarni

definition.

Example. [8] Consider X = R
2 and Γ = 〈γ〉 given by γ(x, y) = (2x, y

2
). The origin is

the only point fixed by γ. Furthermore it is the only cluster point of Γ-orbits of points as

limn→∞ γn(0, y) = (0, 0) for all y ∈ R, | limn→∞ γn(x, y)| = ∞ for all x ∈ R− {0}. Thus

in the classical sense the limit of Γ is the set {(0, 0)}.
In the Kulkarni sense, however, the previous reasoning only tells us that L1 ∪

L2 = {(0, 0)}, we still need to consider the action of Γ in the orbits of compact sets of

R
2−{(0, 0)}. It is not hard to see that given any circle S with the origin as its center and

radius r that γn(S) ∩ S 6= ∅ and as n → ∞ the intersection points tend to (±r, 0) and

as n→ −∞ the intersection points tend to (0,±r) thus L2 = {(x, y) ∈ R
2 −{(0, 0)} such

that either x = 0 or y = 0}. We have then that Λ(Γ) = {(x, y) such that either x = 0 or

y = 0}
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5 THE CHEN-GREENBERG LIMIT SET

In this section we will present the classical notion of limit set, which we also call

the Chen-Greenberg limit set, and some of its important properties. We will begin by

giving its definition as presented in [4], then we will prove an important propositions

about Chen-Greenberg limit sets in a similar fashion to the work done in [10].

Then we will make a few considerations about the isotropy group of a boundary

point and present the notion of G-duality for limit points. This notion will allow us to

conclude that any discrete subgroup of PU(n, 1) with more than one element in its Chen-

Greenberg limit set has a loxodromic element. We will finish the section by stating a

proposition of [3] that shall be important in the next section.

5.1 DEFINITION AND BASIC PROPERTIES

With the preliminary results presented so far we can now define one of the main

points of interest in our work, the limit sets of discrete subgroups of PU(n, 1). Before we

define the Chen-Greenberg limit set we need a proposition that guaranties that the limit

set is well defined.

Proposition 5.1. [4] Let p be a point of Hn
C

and let {gm} be a sequence in U(n, 1) such

that limm→∞ gm(p) = q ∈ ∂Hn
C
. Then limm→∞ gm(p

′) = q for all p′ ∈ H
n
C
.

Proof. It is important to notice that the limit in the above definition is being considered

in the ball model with respect to the euclidean metric of Bn, not the Bergman metric.

Let p′ ∈ H
n
C

and suppose that limm→∞ gm(p
′) 6= q. As Hn

C
can be seen as Bn, it is

compact, thus there exist a subsequence of {gmk
(p′)} that converges to a point q′ ∈ Hn

C
.

Without loss of generality we can assume that the convergent subsequence is {gm(p′)}
itself, so that limm→∞ gm(p

′) = q′.

As stated in proposition 3.10 (c), there are unique geodesics that connects p to p′

and q to q′. Denote l(r, s) as the length of the geodesic segment connecting the points

r and s, then we have that ρ(p, p′) = l(p, p′) = l(gm(p), gm(p
′)) → l(q, q′) = ∞, which is

absurd. Therefore limm→∞ gm(p) = q = limm→∞ gm(p
′) for all p′ ∈ H

n
C

.

Definition 5.2 (Chen-Greenberg limit set). [4] Let G be a subgroup of U(n, 1) and let

p ∈ H
n
C
. The limit set of G is defined to be the set L(G) = G(p) ∩ ∂Hn

C
.

Proposition 5.1 makes it clear that the definition of the Chen-Greenberg limit set

is well defined, for any choice of p in H
n
C

we will give us the same set L(G). The following

result will show us that the Chen-Greenberg limit set is the smallest invariant set under

the action of a group G [10].

Proposition 5.3. [4] Let G be a subgroup of U(n, 1), then L(G) is invariant under G.

Furthermore, if X is a closed subset of ∂Hn
C

which contains more than one point and is

invariant under G, then L(G) ⊂ X.
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Proof. Let q ∈ L(G), and h ∈ G, then, by proposition 5.1, q = limm→∞ gm(p) for a

sequence of elements {gm} ⊂ G. As h ∈ G then, {hgm} ⊂ G and the sequence {hgm(p)} ⊂
H

n
C

is convergent in Hn
C
, because h acts isometrically in H

n
C

and the sequence {gm(p)} is

convergent in Hn
C
. Therefore, h(q) = limm→∞ hgm(p) implies that h(q) ∈ L(G), proving

the first part of our proposition.

In order to prove the second part, consider a pair of distinct elements x, y ∈ X and

assume, taking a subsequence if needed, that limm→∞ gm(x) = x′, limm→∞ gm(y) = y′ and

x′ 6= q 6= y′. Take now a point p′ in the geodesic given by x and y. As for all m, gm acts

isometrically in H
n
C
, then gm(p′) lies in the geodesic given by gm(x) and gm(y). Taking the

limit as m → ∞ we have that limm→∞ gm(p
′) is a point of the geodesic given by x′ and

y′, which implies that limm→∞ gm(p
′) 6= q a contradiction with proposition 5.1. If x′ = y′,

then it is clear that limm→∞ gm(p
′) = x′ = y′ 6= q, which also contradicts proposition 5.1.

Thus, either limm→∞ gm(x) = q or limm→∞ gm(y) = q. As X is closed and invariant under

G, we have that in either case q ∈ X, which implies L(G) ⊂ X.

Corollary 5.4. [10] Let K ⊂ H
n
C

be a compact subset and {gm} ⊂ U(n, 1) a sequence

such that limm→∞ gm(p) = q ∈ ∂Hn
C

for some p ∈ H
n
C
, then the sequence of functions gm|K

converges uniformly to the constant function with value equal to q.

Proof. By proposition 5.1, for every k ∈ K we have that limm→∞ gm(k) = q, further-

more Bn is compact with respect to the euclidean metric, thus the functions gm converge

uniformly to the constant function with value equal to q.

We now have a basic understanding of the Chen-Greenberg limit set so we can start

to work in proving the important propositions alluded in the beginning of this section.

5.2 SEQUENCES OF ELEMENTS IN PU(n, 1) AND THE CHEN-

GREENBERG LIMIT

We state:

Proposition 5.5. [10] If {gm} is a sequence of distinct elements of a discrete subgroup

G of PU(n, 1), then there exists a subsequence, still denoted {gm}, and elements x, y ∈
L(G) ⊂ ∂Hn

C
, such that gm(z) → x uniformly on compact subsets of Hn

C
− {y}.

This proposition is present in [10] and [9] for H2
C

and PU(2, 1). In the form stated

above it is generalized for dimension n. This proposition will be fundamental in proving

the main theorem of this work, that Λ(G) ∩ Hn
C
= L(G) for all discrete G ⊂ PU(n, 1).

Before we show a proof for it we will need some auxiliary results regarding bisectors, an

important structure of hyperbolic geometry.
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Definition 5.6. [5] Given two distinct points z1, z2 ∈ H
n
C

we define the bisector equidistant

from z1 and z2 (or the bisector of {z1, z2}) as

E{z1, z2} = {z ∈ H
n
C

such that ρ(z1, z) = ρ(z2, z)}.

Bisectors are also called equidistant hypersurfaces. The boundary of a bisector is defined

as a spinal sphere in ∂Hn
C
.

Bisectors have a natural decomposition called the slice (Mostow) decomposition.

We will give a brief explanation of how this decomposition works.

Definition 5.7. [5] Given two distinct points z1, z2 ∈ H
n
C
, let Σ ⊂ H

n
C

be the complex

geodesic spanned by these two points. Σ is called the complex spine (or C-spine) of E

(with respect to {z1, z2}). The (real) spine σ of E (with respect to {z1, z2}) is defined as

σ{z1, z2} = E{z1, z2} ∩ Σ = {z ∈ Σ such that ρ(z1, z) = ρ(z2, z)}.

Notice that σ is the orthogonal bisector of the geodesic segment joining z1 and z2 in Σ.

Proposition 5.8. [5] Let L ⊂ Bn be a complex linear subspace with orthogonal projection

Π. Then for all u ∈ Bn−L and s ∈ L, the geodesic from Π(u) to u and to s are orthogonal

and span a totally real totally geodesic 2-plane. Furthermore

cosh

(

ρ(u, s)

2

)

= cosh

(

ρ(u,Π(u))

2

)

cosh

(

ρ(Π(u), s)

2

)

.

We will not present a proof of this proposition, though one is found in [5]. We are

most interested in the second assertion of the proposition, that

cosh

(

ρ(u, s)

2

)

= cosh

(

ρ(u,Π(u))

2

)

cosh

(

ρ(Π(u), s)

2

)

,

As this equality is fundamental in proving the Slice Decomposition Theorem. It suffices

to say that given the first condition of the previous proposition, the equality is a direct

consequence of the Pythagorean theorem.[5]

Theorem 5.9 (Slice Decomposition Theorem). [5] Let E,Σ and σ be as above. Define

ΠΣ : Hn
C
→ Σ the orthogonal projection onto Σ. Then E = Π−1

Σ (σ) =
⋃

s∈σ Π
−1
Σ (s)

Proof. Let z ∈ H
n
C
, by the previous proposition we have that

cosh

(

ρ(z, zi)

2

)

= cosh

(

ρ(z,ΠΣ(z))

2

)

cosh

(

ρ(ΠΣ(z), zi)

2

)

So
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cosh

(

ρ(ΠΣ(z), zi)

2

)

= cosh

(

ρ(z, zi)

2

)(

cosh

(

ρ(z,ΠΣ(z))

2

))−1

(1)

for i = 1, 2 so

z ∈ E{z1, z2} ⇔ ρ(z, z1) = ρ(z, z2) (2)

By the definition of bisector

(2) ⇔ ρ(ΠΣ(z), z1) = ρ(ΠΣ(z), z2)

Because of the equations (1) and (2). And finally

⇔ ΠΣ(z) ∈ σ{z1, z2}

By the definition of σ{z1, z2}.

Definition 5.10. [5] The complex hyperplanes Π−1
Σ (s), for s ∈ σ, are called the slices of

E (with respect to {z1, z2}).

The above results give us enough information about bisectors and their decompo-

sitions so that we may prove the results we need in this section. Though we will use it,

we remark that bisectors, slices, spines and complex spines do not depend on the choice

of {z1, z2}, in other words they are intrinsic. A proof of this fact and further discussion

of its consequences can be found in [5].

A final lemma is needed before we may prove the main result of this subsection.

Navarrete gives the original proof in dimension 2 in [10], we present a generalization of

the result for dimension n.

Lemma 5.11. [10] Let {xt} be a sequence of elements of Hn
C

such that xt → q ∈ ∂Hn
C
.

Consider the ball model and write 0 as the origin in Bn then:

(i) If St denotes the closed half-space {z ∈ H
n
C

such that ρ(z, 0) ≥ ρ(z, xt)}, and

∂St ⊂ ∂Hn
C

denotes its ideal boundary, then the Euclidean diameter of St ∪ ∂St goes to 0

as t→ ∞;

(ii) If (zt) is a sequence such that zt ∈ St ∪ ∂St for all t ∈ N, then zt → q.

Proof. Before we begin the proof proper we remark on the fact that {z ∈ H
n
C
|ρ(z1, z) ≥

ρ(z2, z)} = Π−1
Σ ({z ∈ Σ|ρ(z1, z) ≥ ρ(z2, z)}) which is an immediate consequence of the

Slice decomposition theorem, for

cosh

(

ρ(z,ΠΣ(z))

2

)

= cosh

(

ρ(z, zi)

2

)(

cosh

(

ρ(ΠΣ(z), zi)

2

))−1
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For i = 1, 2, so that

cosh

(

ρ(z, z1)

2

)

cosh

(

ρ(ΠΣ(z), z2)

2

)

= cosh

(

ρ(z, z2)

2

)

cosh

(

ρ(ΠΣ(z), z1)

2

)

Then

ρ(z1, z) ≥ ρ(z2, z)

m

ρ(z1,ΠΣ(z)) ≥ ρ(z2,ΠΣ(z))

Now if we fix a point xt, we can assume without loss of generality that it has

(rt, 0, ..., 0) with 0 < rt < 1 as its coordinates. With these coordinates we have that the

complex spine Σt of the bisector E{0, xt} is equal to the disc H1
C
×{0}, and the orthogonal

projection ΠΣt
: Hn

C
→ Σt is given by ΠΣt

((z1, ..., zn)) = (z1, 0, ..., 0). Define mt as the

intersection between H
1
C
× {0} and the real spine σt of E{0, xt} and Mt = {(z1, 0, ..., 0) ∈

H
1
C
× {0}|Re(z1) ≥ mt}.

As per stated in the initial remark St = Π−1
Σt
({z ∈ H

1
C
× {0}|ρ(z, 0) ≥ ρ(z, xt)}),

notice now that

{z ∈ H
1
C
× {0}|ρ(z, 0) ≥ ρ(z, xt)} ⊂Mt

=⇒ St ⊂ Π−1
Σt
(Mt) = {(z1, ..., zn) ∈ H

n
C
|Re(z1) ≥ mt}

This implies that St ∪ ∂St ⊂ {(z1, ..., zn) ∈ Hn
C
|Re(z1) ≥ mt}. As mt → 1 when t → ∞

then the Euclidean diameter of the set {(z1, ..., zn) ∈ Hn
C
|Re(z1) ≥ mt} goes to zero. This

finishes the proof of statement (i).

For statement (ii) we have that xt → q as t→ ∞ and that the Euclidean diameter

of St∪∂St goes to 0 as t→ ∞. As xt ∈ St∪∂St for all t this implies that limt→∞(St∪∂St) =

{q} proving statement (ii).

Finally we have all the tools needed for proving proposition 5.5.

Proposition 5.5. [10] If {gm} is a sequence of distinct elements of a discrete subgroup

G of PU(n, 1), then there exists a subsequence, still denoted {gm}, and elements x, y ∈
L(G) ⊂ ∂Hn

C
, such that gm(z) → x uniformly on compact subsets of Hn

C
− {y}.

Proof. We begin by assuming that gm(0) 6= 0 for all m. In order to do this we may discard

a finite number of elements that fixes the origin. If our sequence fixes the origin for an

infinite number of elements then we can find an isometry A of Hn
C

such that A−1(0) is

fixed by at most a finite amount of elements of {gm}. In this case we would have that

A(0) 6= 0 and that the behavior of the sequence {A−1gmA} would be identical to the

behavior of {gm} in regards to the proposition.

As {gm(0), g−1
m (0)|m ∈ N} ⊂ Bn a compact set, then there exists a subsequence of

{gm} that we will still denote by {gm} such that gm(0) → x and g−1
m (0) → y as m → ∞.
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Define

Sgm := {z ∈ H
n
C
|ρ(z, 0) ≥ ρ(z, g−1

m (0))}

and

Sg−1
m

:= {z ∈ H
n
C
|ρ(z, 0) ≥ ρ(z, gm(0))}

Then we find ourselves in the same situation of the previous lemma with the Euclidean

diameter of the sets Sgm ∪ ∂Sgm and Sg−1
m

∪ ∂Sg−1
m

going to 0 as m→ ∞.

We also have that if z ∈ Sgm ∪ ∂Sgm then ρ(z, 0) ≥ ρ(z, g−1
m (0)) which implies that

ρ(gm(z), gm(0)) ≥ ρ(gm(z), 0) so that we have that gm(Hn
C
− Sgm ∪ ∂Sgm) ⊂ Sg−1

m
∪ ∂Sg−1

m
.

Given any K ⊂ Hn
C
− {y} compact, there exists mK such that K ⊂ Hn

C
− Sgm ∪ ∂Sgm for

all m ≥ mK , which means that

gm(K) ⊂ gm(Hn
C
− Sgm ∪ ∂Sgm) ⊂ Sg−1

m
∪ ∂Sg−1

m

For all m ≥ mK . The result then follows from statement (ii) of the previous proposition.

Corollary 5.12. [10] If {gm} is a sequence of distinct elements of a discrete subgroup G of

PU(n, 1), then there exists a subsequence, still denoted {gm}, and elements x, y ∈ L(G) ⊂
∂Hn

C
, such that gm(z) → x uniformly on compact subsets of Hn

C
− {y} and g−1

m (z) → y

uniformly on compact subsets of Hn
C
− {x}

Proof. It suffices to apply proposition 5.5 twice, once for the sequence {gm} and once for

the sequence {g−1
m }

Corollary 5.13. If G is a discrete subgroup of PU(n, 1) then L(G) = ∅ if and only if G

is finite.

Proof. By proposition 5.5 if G is infinite then L(G) 6= ∅. This implies that if L(G) = ∅

then G is finite.

If G is finite then |G(p)| < ∞ so G(p) = G(p) ⊂ H
n
C
. Then by definition L(G) =

G(p) ∩ ∂Hn
C
= ∅.

Corollary 5.14. If g is an elliptic element of a discrete group of PU(n, 1) then g has

finite order.

Proof. Suppose that g was an elliptic element of infinite order of the discrete group G

of PU(n, 1) then there exists z0 ∈ H
n
C

such that g(z0) = z0. Consider now the sequence

gm := gm. We have that gm(z0) = z0 for all m ∈ N. As {gm} is a sequence of distinct

elements of G by proposition 5.5 there is x ∈ ∂Hn
C

such that gm(z) → x for all z ∈ H
n
C

as

m→ ∞, this is absurd as gm(z0) → z0 as m→ ∞. Thus g must have finite order.
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5.3 DISCRETE FINITE SUBGROUPS OF PU(n, 1)

In this subsection we will develop an interesting set of tools that will culminate in

a proof that any discrete subgroup that has at least two elements in its Chen-Greenberg

limit set has a loxodromic element.

5.3.1 THE ISOTROPY GROUP OF A BOUNDARY POINT

The second to last corollary of the previous subsection gave us an indication about

the possibilities of subgroups of PU(n, 1) with empty Chen-Greenberg limit sets. An

interesting question that arises is if the size of nonempty Chen-Greenberg limit sets can

give more information about its respective groups. First we will present a convenient

transformation of the hyperbolic space that will allow us to better study groups that fix

at least one point in the boundary of Hn
C
, then we will show that if |L(G)| ≥ 2 then G has

a loxodromic element in it, finally we will have all the theory needed to prove the main

result of the section.

We begin by focusing on automorphisms of Hn
C

that fixes one point in ∂Hn
C
. As

the action of U(n, 1) is doubly transitive in the boundary the choice of coordinates for the

fixed point does not matter as any choice can be made through conjugation by elements

of U(n, 1). A convenient choice for this is the element f1 = (1, 0, ..., 0) ∈ ∂Bn. As f1
is the standard lift of e0 + e1 we have that for g ∈ U(n, 1), g fixes f1 if and only if

g(e0 + e1) = λ(e0 + e1) for some λ ∈ C.[4]

We consider now β̂ a different basis for C
n,1 given by ê0 = e0−e1

2
, ê1 = e0+e1

2
and

êm = em for 2 ≤ m ≤ n. The fact that all the êm are linearly independent is immediate.[4]

The matrix that corresponds to this change in basis is given by:

D =







1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 In−1







Where In−1 is the n − 1 × n − 1 identity matrix. We wish to consider now the actions

of automorphisms in the hyperbolic space with the basis β̂, we will accomplish this by

considering the group Û(n, 1) := {D−1AD|A ∈ U(n, 1)}. We consider now the following

hermitian form Φ(z, w) = −(z0w1 + z1w0) + 〈〈(z2, ..., zn), (w2, ..., wn)〉〉[4]. We have that

Φ(Dz,Dw) = Φ

((

z0 + z1√
2

,
−z0 + z1√

2
, z2, ..., zn

)

,

(

w0 + w1√
2

,
−w0 + w1√

2
, w2, ..., wn

))
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= −
(

(

z0 + z1√
2

)(−w0 + w1√
2

)

+

(−z0 + z1√
2

)(

w0 + w1√
2

)

)

+ 〈〈(z2, ..., zn), (w2, ..., wn)〉〉

= −1

2
(−z0w0 + z0w1 − z1w0 + z1w1 − z0w0 − z0w1 + z1w0 + z1w1)

+ 〈〈(z2, ..., zn), (w2, ..., wn)〉〉

= −z0w0 + z1w1 + 〈〈(z2, ..., zn), (w2, ..., wn)〉〉 = 〈z, w〉

Thus if D−1AD ∈ Û(n, 1) then

Φ(D−1AD(z), D−1AD(w)) = 〈D−1A(z), D−1A(w)〉

= 〈D−1(z), D−1(w)〉 = Φ(z, w)

We can see then that Φ is the hermitian form preserved by Û(n, 1). The previous cal-

culations also show us that Û(n, 1) is the group of linear transformations which leaves

D−1(V−) invariant. If C = D−1 then the image of C in PSL(n + 1) is called the Cayley

transforms, it maps Bn to the Siegel domain C(Bn) := {ζ ∈ C
n|Re(ζ1) > 1

2

∑n

i=2 |ζi|2}.
In this way, the action of Û(n, 1) in C(Bn) is identical to the action of U(n, 1) in Bn and

an element A ∈ U(n, 1) fixes f1 if and only if D−1AD(ê1) = tê1 for some t ∈ C[4].

Lemma 5.15. [4] [7] Let A be an element in Û(n, 1) such that Â(ê1) := D−1AD(ê1) = tê1

for some t ∈ C. Then in the β̂ basis

Â =







µ 0 0

s λ b

a 0 A′







Where µ, λ, s ∈ C, a is a (n− 1)× 1 matrix, b is a 1× (n− 1) matrix and A′ ∈ U(n− 1).

Furthermore µλ = 1, Re(µs) = 1
2
|a|2 (where |a| is the Euclidean norm of a) and b = λaTA

(where T denotes the transpose).

Proof. The proof will follow from the fact that Â preserves the hermitian form Φ and that

Â(ê1) = tê1. Let Â be

Â =









a11 · · · a1(n+1)

...
. . .

...

a(n+1)1 · · · a(n+1)(n+1)









In this notation we have that a11 = µ, a21 = s, a22 = λ, aT = (a31 · · · a(n+1)1),

b = (a13 · · · a1(n+1)) . As Â preserves the hermitian form Φ, we can derive the following
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equations for i = 1, 2 and j = 3, ..., n+ 1:

Φ(ÂT (êi), Â
T (êi)) = Φ(êi, êi) = 0 =⇒ −2Re(ai1ai2) +

n+1
∑

k=3

|aik|2 = 0 (3)

Φ(ÂT (êj), Â
T (êj)) = Φ(êj, êj) = 1 =⇒ −2Re(aj1aj2) +

n+1
∑

k=3

|ajk|2 = 1 (4)

Φ(Â(êi), Â(êi)) = Φ(êi, êi) = 0 =⇒ −2Re(a1ia2i) +
n+1
∑

k=3

|aki|2 = 0 (5)

Φ(Â(êj), Â(êj)) = Φ(êj, êj) = 1 =⇒ −2Re(aj1aj2) +
n+1
∑

k=3

|akj|2 = 1 (6)

Φ(Â(ê1), Â(ê2)) = Φ(ê1, ê2) = −1 =⇒ −(a11a22 + a21a12) +
n+1
∑

k=3

ak1ak2 = −1 (7)

Φ(Â(ê1), Â(êj)) = Φ(ê1, êj) = 0 =⇒ −(a11a2j + a21a1j) +
n+1
∑

k=3

ak1akj = 0 (8)

Immediately from equation (5) we obtain that for i = 1 we have that Re(a11a21) =
1
2

∑n+1
k=3 |ak1|2 so that Re(µs) = 1

2
|a|2 holds.

As Â(ê1) = tê1 then Â(ê1) = (a12 · · · a(n+1)2) = (0 t 0 · · · 0) so we conclude

that ak2 = 0 for all k = 1, 3, 4, ..., n+1, let us call this result (∗). Applying (∗) to equation

(3) for i = 1 we obtain that a12 = 0 so that
∑n+1

k=3 |aik|2 = 0 which implies that a1k = 0 for

all k = 2, 3, ..., n + 1 let us call this result (∗∗). Applying (∗) to equation (7) we obtain

that a11a22 = 1 let us call this result (∗ ∗ ∗).
In order to show that b = λaTA notice that

b = λaTA

m

(a13 · · · a1(n+1)) = (a22a31 · · · a22a(n+1)1)









a33 · · · a3(n+1)

...
. . .

...

a(n+1)3 · · · a(n+1)(n+1)








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⇔ (a13 · · · a1(n+1)) = (a22
∑n+1

k=3 ak1ak3 · · · a22
∑n+1

k=3 ak1ak(n+1))

⇔ a2j = a22

n+1
∑

k=3

ak1akj

By applying (∗∗) to equation (8) we can see that a2j = (a11)
−1
∑n+1

k=3 ak1akj. Applying

(∗ ∗ ∗) to this last equality we obtain that a2j = a22
∑n+1

k=3 ak1akj, then b = λaTA holds.

Finally, to show that A′ ∈ U(n − 1) take an element r = (r2, ..., rn) ∈ C
n−1

and consider the element r̂ = (0, 0, r2, ..., rn) in C
n,1. We have that Φ(Â(r̂), Â(r̂)) =

〈〈A′r, A′r〉〉 = Φ(r̂, r̂) = 〈〈r, r〉〉 so A′ ∈ U(n− 1).

By giving us such a rigid shape for our matrices this lemma will facilitate tremen-

dously the calculations in the rest of the section. We take immediate advantage of this

with the following lemma.

Lemma 5.16. [4] Let A be an elliptic element in U(n, 1) of finite order, and let p, q ∈
∂Hn

C
. If A leaves p and q fixed, then it fixes every point on the geodesic [p, q].

Proof. As the action of U(n, 1) is doubly transitive in the boundary we can assume without

loss of generality that p = f1 and q = −f1 = (−1, 0, ..., 0). Applying lemma 5.15 we have

that with respect to the basis β̂ our transformation has the following matrix form

Â =







µ 0 0

s λ b

a 0 A′







As q = ê0 in the β̂ basis and Â fixes it, we obtain that s = 0 and a = 0, so that our

matrix can be written as follows

Â =







µ 0 0

0 λ 0

0 0 A′







Because Â has finite order then |µ| = 1 = |λ| so µ = λ. We can define now W = ê0R+ê1R.

Given w ∈ W , we have w = r0ê0 + r1ê1, for some r0, r1 ∈ R, so Â(w) = Â(r0ê0 + r1ê1) =

r0Â(ê0) + r1Â(ê1) = r0tê0 + r1tê1. This means that when we consider the action in the

projective space Â(P(w)) = P(w), so that the whole of P(W ) is pointwise fixed by Â.

Finally notice that [p, q] = [f1, f−1] = P(W ∩ V−) so the lemma holds.

5.3.2 LOXODROMIC ELEMENTS IN DISCRETE GROUPS

After the considerations in the previous part we wish now to prove that if G is a

discrete subgroup of PU(n, 1) and L(G) > 1 then G has at least one loxodromic element.

First we state the following
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Proposition 5.17. If A is a parabolic or loxodromic element of PU(n, 1) then A has

infinite order.

Before we proceed we need a definition:

Definition 5.18. [7] Let x and y be any two not necessarily distinct points in ∂Hn
C
. If

there exists a sequence {gm} of elements of G, a discrete subgroup of PU(n, 1), such that

limm→∞ gm(p) = x and limm→∞ g−1
m (p) = y for any point p ∈ Bn, then we say that x and

y are G-dual and denote this duality by x ∼d y.

This definition is closely related to proposition 5.5 which can be restated as "Given

any sequence of elements in G a discrete subgroup of PU(n, 1) there is a subsequence for

which x ∼d y.".

Proposition 5.19. [7][10] Suppose that G is a discrete subgroup of PU(n, 1) such that

x ∼d y with respect to G and x 6= y. Then there exists a loxodromic element of G.

Proof. Let U be an open neighborhood of x and V an open neighborhood of y such that

U ∩ V = ∅. This means that the geodesic [x, y] is not entirely contained in U ∪ V . As

x ∼d y there exists a sequence such that limm→∞ gm(p) = x and limm→∞ g−1
m (p) = y

for any point p ∈ Bn. Applying corollary 5.12 we can see that there is a subsequence

still denoted {gm} such that gm(z) → x uniformly on compact subsets of Bn − {y} and

g−1
m (z) → y uniformly on compact subsets of Bn − {x}. As Bn − V ⊂ Bn − {y} is a

compact subset we have that Bn − V converges uniformly to {x} by {gm} so , there

exists m0 ∈ N such that for any m ≥ m0, gm(Bn − V ) ⊂ U . Thus for any m ≥ m0,

gm(U ∩ ∂Bn) ⊂ U ∩ ∂Bn. By the Brouwer fixed point theorem, we have then that for

any m ≥ m0, gm has a fixed point in U ∩ ∂Bn. An analogous argument shows that

there exists a number m1 ∈ N such that for any m ≥ m1 then g−1
m has a fixed point in

V ∩ ∂Bn. This means that if gM is an element of the subsequence such that M > m0,m1

then gM fixes two points in the boundary. This means that gM must be either elliptic

or loxodromic, but by lemma 5.16 if gM was elliptic, it would fix the geodesic [x, y]. As

[x, y] ∩ (Bn − U ∪ V ) 6= ∅ this contradicts the fact that gM(Bn − V ) ⊂ U for any point

p ∈ [x, y] ∩ (Bn − U ∪ V ) is fixed by GM and thus does not belong to U . So gM must be

loxodromic.

Theorem 5.20. [6] [7] Let G be a discrete subgroup of U(n, 1), then:

(i) G-dual point x and y belong to the limit set L(G);

(ii) If x ∈ L(G), then there is some point y ∈ L(G) such that x ∼d y;

(iii) Denote D(x) := {y ∈ L(G)|x ∼d y}. D(X) is closed and G-invariant. If

|D(x)| ≥ 2 then D(x) = L(G);

(iv) If |L(G) = 1, then the point in L(G) is G-dual to itself. If |L(G)| ≥ 2, then

any two points in L(G) are G-dual.
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Proof. (i) Is an immediate consequence of the definition of L(G);

(ii) Is an immediate consequence of corollary 5.12;

(iii) Suppose that there is a sequence {yj} ⊂ D(x) such that yj → y as j → ∞.

Since L(G) is closed, y ∈ L(G). Now for each j there exists a sequence {gjm} ⊂ G such

that limm→∞ gjm(p) = x and limm→∞(gjm)
−1(p) = yj for any point p ∈ Bn. We take the

sequence {gm := gmm} and then limm→∞ gm(p) = limm→∞ gmm(p) = x and limm→∞ g−1
m (p) =

limm→∞(gmm)
−1(p) = limm→∞ ym = y, so x ∼d y and we conclude D(x) is closed.

Now let us see that it is G-invariant. Take y ∈ D(x) and let {gm} ⊂ G be a

sequence that satisfy the condition for duality between x and y and let g ∈ G. We

have that for some p ∈ Bn, gm(p) → x and g−1
m → y as m → ∞. Consider now the

point g−1(p) and the sequence {gmg−1} ⊂ G, then (gmg
−1)−1(p) = g(g−1

m (p)) → g(y) and

gm(g
−1(p)) → x by proposition 5.1, which implies that x ∼d g(y) so that g(y) ∈ D(x).

Thus D(x) is G-invariant and we conclude that is closed and G-invariant.

From statement (i) we already have that D(x) ⊂ L(G), now if |D(x)| > 1, by

proposition 5.3 we have that L(G) ⊂ D(x), so L(G) = D(x).

(iv) We divide the proof of this statement in three cases, L(G) = 1, L(G) = 2 and

L(G) > 2.

If L(G) = 1 the result is immediate from corollary 5.12.

If L(G) = 2 assume L(G) = {x, y}. As L(G) is G-invariant, G cannot contain a

parabolic element because for all g ∈ G, either g(x) = y or g(y) = x and in this case if g

was parabolic it would fix some other point z ∈ ∂Bn and thus we would have |L(G)| > 2

a contradiction, or g(x) = x and g(y) = y and in this case g could not be parabolic as all

parabolic elements fix a single boundary point.

If h ∈ G is a loxodromic element then of course {x, y} must be fixed by it, otherwise

|L(G)| > 2, and in this case the sequence {gm} would satisfy the condition for x ∼d y.

Thus to prove the statement, it suffices to show that there cannot be a discrete subgroup

of U(n, 1) composed only of the identity and elliptic elements.

Assume then that G was such a subgroup and define Gx,y := {g ∈ G|g(x) =

x and g(y) = y}. If Gx,y was infinite, then on one hand, by corollary 5.12 we would have

a sequence {gm} such that gm(z) → x uniformly on compact subsets of Bn − {y} and

g−1
m (z) → y uniformly on compact subsets of Bn − {x}, on the other hand by lemma

5.16 we would have that gm would fix every point of the geodesic [x, y], a contradiction.

Thus Gx,y is finite. Let us show now that G−Gx,y is finite, suppose not, then there is a

sequence of distinct elements {hj} ⊂ G−Gx,y such that hj(x) = y and hj(y) = x for all

j ∈ N. Consider now the sequence given by {fj := h1hj}, we have that fj(x) = h1hj(x) =

h1(y) = x for all j ∈ N which implies {fj} ⊂ Gx,y and thus that {h1, h2, ...} is a finite

set, a contradiction. Hence G−Gx,y is finite. As G = Gx,y ∪ (G−Gx,y) we conclude G is

finite, a contradiction, as all finite sets have empty Chen-Greenberg limit sets by corollary

5.13. Hence if L(G) = {x, y}, then G has at least one loxodromic element that satisfy the
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G-duality definition for x, y so that x ∼d y.

Finally we assume |L(G)| > 2. Notice that if |L(G)| > 2 then there can is at most

one element in L(G) that is fixed by all elements of G. Suppose that this did not happen,

then we would have at least two points x, y fixed by all elements of G. Define D := {x, y},
by proposition 5.3 L(G) ⊂ D a contradiction for |L(G)| > 2. Hence we can choose ζ a

point in L(G) which is not fixed by all elements of G, let us call f one such element.

Using statement (ii) there is a point η such that η ∼d ζ (notice that we may have η = ζ).

By statement (iii) we have that D(η) is G-invariant so f(ζ) ∈ D(η) and f(ζ) 6= ζ. Then

|D(η)| > 1 and we conclude that D(η) = L(G), that is η is G-dual to every point in L(G).

Now choose x, y ∈ L(G) such that η, x and y are all distinct and W,U and V

are disjoint open neighborhoods of η, x and y respectively. By proposition 5.19 there are

loxodromic elements g, f ∈ G such that g has fixed points in U and W and h has fixed

points in V and W . If we show that g and f cannot have a fixed point in common in W

then either g does not fix η or f does not fix η, so that (assume without loss of generality

that g(η) 6= η) η, g(η) ∈ D(x) =⇒ D(x) = L(G) = D(η) and we conclude any two points

in L(G) are G-dual.[7] Thus all we have to do now is show that g and f cannot have a

fixed point in common in W .

Let us show then that if g and f have a common fixed point then G is not discrete.

Assume that g and f fix the same point. By lemmas 5.15 and 5.16 we can write both

elements in matrix form with respect to the β̂ basis as

g =







µ 0 0

0 λ 0

0 0 A






, f =







ψ 0 0

s φ b

a 0 B







And the commutator of f and gm as

fgmf−1g−m := hm =







1 0 0

αm 1 Am

Bm 0 Cm







Where

α(m) = sψ−1 − λmsψ−1µ−m + λmbB−1aψ−1µ−m − bAmB−1aφ−1µ−m

Am = −λmbB−1A−m + bAmB−1A−m

Bm = aψ−1 − BAmB−1aψ−1µ−m

Cm = BAmB−1A−1

First let us see that all the hm are pairwise distinct. Suppose that hk = hk′ with k 6= k′.
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Then if k′′ = k − k′, we have that fgk
′′

f−1g−k′′ = I (where I is the identity matrix). So,

from the equations above we have that

Bk′′ = aψ−1 − BAk′′B−1aψ−1µ−k′′ = 0

=⇒ B−1aψ−1 = Ak′′B−1aψ−1µ−k′′

Substituting this relation in our equation for α(k′′)
21 , and remembering that µλ = 1, we can

express it in terms of µ, ψ, a, b and B such that

α
(k′′)
21 = sψ−1 − µ−k′′sψ−1µ−k′′ + µ−k′′bB−1aψ−1µ−k′′ − bB−1aφ−1 = 0

Comparing real parts in the equation above we have that

Re(α
(k′′)
21 ) = Re(sψ)|ψ|−2 −Re(sψ)|ψ|−2|µ|−2k′′ − (1− |µ|−2k′′)Re(φaTBB−1aψ−1)

(

1

2

)

|a|2|ψ|−2(1− |µ|−2m)− |a|2|ψ|−2(1− |µ|−2m)

=

(

−1

2

)

|a|2|ψ|−2(1− |µ|−2m) = 0

Thus we conclude that either |µ| = 1 or a = 0. However if |µ| = 1 then g would

not be loxodromic for we would have µ = λ and so g would fix the entire geodesic

connecting the points [ê0, ê1] meaning it would be elliptic. It follows that a = 0 and then

α
(k′′)
21 = sψ−1 − Re(sψ)|ψ|−2|µ|−2k′′ = 0. As |µ| 6= 1 we conclude that s = 0 and therefore

we would have that f would fix ê0 so g and f would have two fixed point in common

which contradicts our hypothesis. Thus all the hm are distinct.

We can assume, taking a subsequence if necessary, that there exists α ∈ C and

α′ ∈ C such that α(m)
11 → α and α

(m)
22 → α′ as m → ∞ (if |µ| > 1) or as m → −∞ (if

|µ| < 1).

Assume |λ| < 1, as U(n− 1) is compact, we can assume that Cm → C ∈ U(n− 1)

as m→ ∞.And with this we can conclude that Am → bB−1C because −λmbB−1A−m → 0

and BAmB−1A−m → C =⇒ AmB−1A−m → B−1C as m → ∞. Similarly we also have

that αm → sψ−1 and Bm → aψ−1 as m→ ∞, hence as m→ ∞:

hm −→ h =







1 0 0

sψ−1 1 bB−1C

aψ−1 0 C







Notice now that h ∈ Û(n, 1) as Φ(hz, hw) = (z, w) for all z, w. Let us show this by
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calculating the hermitian form of each line of h:

Φ((1, 0, ..., 0), (1, 0, ..., 0)) = 0

Φ((sψ−1, 1, bB−1C), (sψ−1, 1, bB−1C)) = −(sψ−1 + sψ−1) + 〈〈bB−1C, bB−1C〉〉

= −2Re(sψ−1) + 〈〈b, b〉〉

= −2Re(sψ−1) + 〈〈ψaT , ψaT 〉〉

= −2Re(sψ−1) + |ψa|2 = 0

Write aT = (a1 · · · an−1) and cj for line j of C, j = 1, ..., n− 1 then

Φ((aj, 0, cj), (aj, 0, cj)) = 〈〈cj, cj〉〉 > 0

for C ∈ U(n− 1) Hence h preserves each of the elements of β̂ so h ∈ Û(n, 1) and G is not

discrete. The calculation are identical if |λ| > 1, except that we take our sequence with

m→ ∞.

Therefore we conclude that g and f do not have a common fixed point in W ,

otherwise G would not be a discrete group and the proof of the theorem is finished.

Corollary 5.21. [10] If |L(G)| > 1 then G has a loxodromic element.

Proof. By theorem 5.20 there are points x, y ∈ L(G) such that x ∼d y and x 6= y. By

proposition 5.19 then G has a loxodromic element.

Remark. [7] The condition that |D(x)| > 1 in statement (iii) of theorem 5.20 is necessary

as if G = 〈g〉, g a loxodromic element, then we have that D(x) = {y}, D(y) = x and

L(G) = {x, y}.

We may now present the final result of this chapter.

Theorem 5.22. [3] If G is a discrete subgroup of PU(n, 1) then G is finite if and only if

all of its elements have finite order.

We will not present a proof for this theorem, but one can be found in [3]. The

authors in [3] were able to prove the theorem for any discrete subgroup of PSL(n+1,C),

however the proof involves theory outside the scope of the present thesis. We remark

however that given the results presented so far, we are able to show that if a subgroup

G is such that |L(G)| > 1 then G has a loxodromic element and thus cannot be finite or

have only elements of finite order. We were also able to prove that if L(G) = ∅ then G is

finite. Hence the only case that needs further verification in order to prove the theorem

is the case |L(G)| = 1. In [10] he was able to show that in PU(2, 1) if |L(G)| = 1 then

G has a parabolic element. So far we were unable to generalize his proof to the higher

dimensional case, but we still believe that with the theory developed so far it is possible.
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6 EQUALITY OF LIMITS

We open this section by making a few observations about discrete subgroups of

PU(n, 1) and discontinuous action.

Definition 6.1. [9] We say that a subgroup G of PU(n, 1) acts discontinuously at a point

x ∈ H
n
C

if there is a neighborhood U of x, so that g(U) ∩ U = ∅ for all but finitely many

g ∈ G.

Proposition 6.2. [9] Let x be a point of Bn, and let G be a subgroup of PU(n, 1). Then

G acts discontinuously at x if and only if G is a discrete subgroup of PU(n, 1).

Proof. Assume G not discrete and let {gm} ⊂ G be a sequence such that gm → g ∈ G

as m → ∞. Consider now the sequence given by {fm := gmg
−1}. It is clear that

gmg
−1(x) → x as m → ∞ so that given any neighborhood U of x there is some M ∈ N

such that if m > M then gmg−1(x) ∈ U . This means that G does not act discontinuously

at x.

Let G now be a discrete subgroup of PU(n, 1) and {gm} any sequence of distinct

elements of G. Assume now that there was some sequence of G and a neighborhood U

of x such that gm(U) ∩ U 6= ∅ for a infinite amount of gm. We take the subsequence

consisting only of the elements gm such that gm(U)∩U 6= ∅ (we will call this subsequence

{gk}). As U is a compact set, by corollary 5.12 we have that there exists a subsequence

of {gk} such that gk(z) → y uniformly for some y ∈ ∂Bn a contradiction. Let 2ǫ > 0 be

the Euclidean distance between y and U , gm(U) ∩ U 6= ∅ implies that for all m there

exists a point um ∈ U such that the Euclidean distance of gm(u) to y is greater than ǫ a

contradiction with the uniform convergence of the sequence {gk}.

Corollary 6.3. [9] Let G be a subgroup of PU(n, 1). Then G acts discontinuously at

some point of Bn if and only if G acts discontinuously at every point of Bn

Proof. If G acts discontinuously at some point of Bn then G is not discrete so G acts

discontinuously at every point of Bn by proposition 6.2. The converse is immediate.

Lemma 6.4. [10] If G is a discrete subgroup of PU(n, 1) then H
n
C
⊂ Ω(G)

Proof. We begin by noticing that L0(G)∩H
n
C
= ∅ and L1(G)∩H

n
C
= ∅ as a consequence

of proposition 6.2, for if any point x ∈ Bn was a cluster point with respect to G then G

would not act discontinuously at x and so would not be discrete.

Hence it suffices to prove that L2(G)∩H
n
C
= ∅ to show that Hn

C
⊂ Ω(G). Assume

there exists K ⊂ P
n
C
− (L0(G) ∪ L0(G)) discrete such that x ∈ H

n
C

is a cluster point of

{gm(K)} for some sequence of distinct elements of G. As all elements of PU(n, 1) leave

Hn
C

invariant we may assume that K ⊂ H
n
C
. Let U be any neighborhood of x, then U has

nonempty intersection with an infinite amount of {gm(K)}. Define the subsequence {gmU
}
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of all the elements such that gm(K) ∩ U 6= ∅. By proposition 5.5 there is a subsequence

of {gmU
} that converges uniformly to a boundary point a contradiction with the fact

that gm(K) ∩ U 6= ∅ for all elements of the subsequence. Thus L2(G) ∩ H
n
C
= ∅ and so

H
n
C
∩Λ(G) = H

n
C
∩(L0(G)∪L1(G)∪L2(G)) = (Hn

C
∪L0(G))∩(Hn

C
∪L1(G))∩(Hn

C
∪L2(G)) =

∅ =⇒ H
n
C
⊂ Ω(G).

Corollary 6.5. If G is a discrete subgroup of PU(n, 1) then G has the Kleinian property.

Proof. By lemma 6.4 H
n
C
⊂ Ω(G) =⇒ Ω(G) 6= ∅ so G has the Kleinian property.

These results already point in the direction of the main result of this work, as they

indicate that cluster points cannot exist in H
n
C

for discrete subgroups of PU(n, 1). Let us

show now a proposition regarding the convergence of points in P
n
C
−Hn

C
.

Definition 6.6. [5] Let x ∈ C
n,1 − V0 then we define P(〈x〉⊥) as the polar hyperplane to

P(x). If y ∈ V0 we call P(〈y〉⊥) the tangent polar hyperplane at P(y).

Proposition 6.7. If y ∈ V0 then P(〈y〉⊥) ∩Hn
C
= P(y).

This statement will be familiar to anybody that has already studied hyperbolic

geometry, it suffices to say that the orthogonal subspace given by an isotropic point must

be degenerate.

Proposition 6.8. [10] Let {wm} ⊂ P
n
C
−Hn

C
be a sequence such that wm → w as m→ ∞.

Define Wm as the intersection between Hn
C

and the polar hyperplane to wm. Let {vm} be

a sequence such that vm ∈ Wm for all m and vm → v as m→ ∞. Then:

(i) If w ∈ ∂Hn
C

then w = v;

(ii) If w ∈ P
n
C
− Hn

C
then v ∈ W ∪ ∂W , where W denotes the polar hyperplane to

w. In particular, if v ∈ ∂Hn
C

then w ∈ V where V is the polar hyperplane tangent to v.

Proof. Notice first that if we take the standard lift of wm and vm we have that 〈vm, wm〉 = 0

for all m ∈ N so that 〈v, w〉 = 0.

Let us prove now (i). If w ∈ ∂Hn
C

then we have that v belongs to the polar

hyperplane tangent at w. As the intersection of the polar hyperplane tangent at w with

Hn
C

is {w} by proposition 6.7 and all the Wm are contained in Hn
C

then v ∈ ∂Hn
C

and so

v = w.

Now let us prove statement (ii). Then, by the initial observation, we have that

v ∈ W ∪ ∂W . If v ∈ ∂Hn
C

then v ∈ ∂W hence w ∈ V .

We now have all the necessary tools needed to prove the main result of this work,

so we begin:

Proposition 6.9. [10] If G is a discrete subgroup of PU(n, 1) then L(G) = L0(G)∩∂Hn
C
.
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Proof. Let us divide the proof in three different cases.

First assume that L0(G) ∩ ∂Hn
C
= ∅. Then no point in ∂Hn

C
has infinite isotropy

group with respect to G. In particular this means that all g ∈ G have finite order,

otherwise there would be a point in the boundary fixed by an infinite amount of elements

of g (all infinite order elements are either parabolic or loxodromic and both of these

cases fixes points in the boundary). By theorem 5.22 this means that G is finite, hence

L(G) = ∅. Thus we conclude L(G) = ∅ = L0(G) ∩ ∂Hn
C
.

The second case is if |L0(G)∩∂Hn
C
| = 1. Let L0(G)∩∂Hn

C
= {x}, by corollary 5.12

there is a sequence of elements of G such that gm(z) → x uniformly in compact subsets

of Hn
C
−{y} for some y ∈ L(G) then x ∈ L(G) and so L0(G)∩ ∂Hn

C
⊆ L(G). Assume now

that |L(G)| > 1 then, by corollary 5.21 G has a loxodromic element. Let z, w (z 6= w)

be the points fixed by this loxodromic element. As any loxodromic element has infinite

order, both z and w must have infinite isotropy groups with respect to G. This means that

|L0(G) ∩ ∂Hn
C
| > 1 a contradiction with our initial assumption that |L0(G) ∩ ∂Hn

C
| = 1.

Thus we conclude |L(G)| = 1 and L0(G) ∩ ∂Hn
C
= L(G).

For the final case, assume that |L0(G)∩∂Hn
C
| > 1. Let x ∈ L0(G)∩∂Hn

C
and {gm}

a sequence of elements in Gx. By corollary 5.12 we have that there exists a subsequence

of {gm} and points x1, x2 ∈ L(G) such that the subsequence converges uniformly to

x1 in compacts of Hn
C
− {x2}. As all gm ∈ Gx then gm(x) = x implies that either

x = x1 or x = x2 hence x ∈ L(G) =⇒ L0(G) ∩ ∂Hn
C

⊂ L(G). We notice now

that L0(G) ∩ ∂Hn
C

is G-invariant for if x and {gm} are as stated above and h ∈ G is

an arbitrary element of G then the group generated by {fm := hgmh
−1} is infinite and

fm(h(x)) = hgmh
−1(h(x)) = hgm(x) = h(x) so h(x) ∈ L0(G) ∩ ∂Hn

C
. This means that

L0(G) ∩ ∂Hn
C

is a closed (by definition), G-invariant set with more than two elements so

L(G) ⊆ L0(G) ∩ ∂Hn
C

and we conclude L(G) = L0(G) ∩ ∂Hn
C

Proposition 6.10. [10] If G is a discrete subgroup of PU(n, 1) then L(G) = L1(G)∩∂Hn
C
.

Proof. If G is finite then L(G) = ∅ and L1(G) ∩ ∂Hn
C
= ∅ trivially. So we have L(G) =

L1(G) ∩ ∂Hn
C

in this case.

Let us show that L1(G) ∩ ∂Hn
C

⊂ L(G). Assume G infinite and let z ∈ ∂Hn
C
,

ζ ∈ P
n
C
− L0(G) and {gm} a sequence of distinct elements in G such that gm(ζ) → z. In

this case we must consider three situations.

For the first case, consider ζ ∈ H
n
C
−L0(G) then, by definition, z ∈ L(G) and there

is nothing more to show.

For the second case, consider ζ ∈ ∂Hn
C
− L0(G). By proposition 6.9 L(G) =

L0(G) ∩ ∂Hn
C

so ζ ∈ ∂Hn
C
− L0(G) =⇒ ζ ∈ ∂Hn

C
− L(G). But by corollary 5.12 the

sequence gm(ζ) converges uniformly to some point in L(G). As gm(ζ) → z then z ∈ L(G).

For the final case, consider ζ ∈ P
n
C
− (Hn

C
∪ L0(G)). Let W be the intersection of

the polar hyperplane to ζ and H
n
C
. As all gm are unitary then gm(W ) is the intersection



36

of the polar hyperplane to gm(ζ) with H
n
C
. Now, let w ∈ W and consider the sequence

{gm(w)}. By corollary 5.12 some subsequence must converge to a boundary point in L(G),

define q as the convergence point of this subsequence. As gm(ζ) → z and gm(w) → q, by

proposition 6.8 we must have z = q and thus z ∈ L(G).

Hence L1(G)∩ ∂Hn
C
⊆ L(G). Now notice that L(G) = G(p)∩ ∂Hn

C
so any point of

G is a cluster point of {g(p)}g∈G thus L(G) ⊆ L1(G)∩∂Hn
C

and L(G) = L1(G)∩∂Hn
C

Proposition 6.11. [10] If G is a discrete subgroup of PU(n, 1) then L(G) = L2(G)∩∂Hn
C
.

Proof. If G is finite then both sets are empty and the equality holds. Let us assume that G

is infinite. By lemma 6.4 we have that (L0(G)∪L1(G))∩H
n
C
= ∅ so L(G) ⊆ L2(G)∩∂Hn

C

as for any point x ∈ L(G), x is a cluster point of the compact set {p} ⊂ H
n
C

by definition,

so x ∈ L2(G) ∩ ∂Hn
C
.

All we have to do now is see that L2(G) ∩ ∂Hn
C
⊆ L(G). Let K be a compact

subset of Pn
C
− (L0(G) ∪ L1(G)) and let z ∈ ∂Hn

C
be a cluster point for K with respect to

G. Now we can choose sequences {km} ⊂ K and {gm} ⊂ G such that km → k ∈ K and

gm(km) → z as m→ ∞. With this setup we need to consider four distinct situations.

The first is if k ∈ H
n
C
− (L0(G)∪L1(G)). In this case we may assume without loss

of generality that all the km ∈ H
n
C
. So, by corollary 5.12, there are points x, y ∈ L(G)

such that gm(km) → x uniformly, so z = x ∈ L(G).

The second case is if k ∈ ∂Hn
C
− (L0(G) ∪ L1(G)) e some subsequence of {gm},

still denoted by {gm}, is entirely contained in Hn
C
. Then by propositions 6.9 and 6.10

k ∈ ∂Hn
C
−L(G) and we can apply corollary 5.12 to the compact set given by {k, k1, ..}∩Hn

C
,

so that there are points x, y ∈ L(G) such that gm(km) → x uniformly. This implies that

z = x ∈ L(G).

The third case is if k ∈ ∂Hn
C
− (L0(G) ∪ L1(G)) and only a finite amount of

elements of {km} belongs to Hn
C
. Then we denote by Wm the intersection between the

polar hyperplane to km and H
n
C

and by wm a convergent sequence such that wm ∈ Wm

for all m (we may need to take a subsequence). Let wm → w as m → ∞. Applying

proposition 6.8 we see that w = k. We consider now the action of {gm} on the sequence

{wm}, and by corollary 5.12 we see that for some gm(wm) converges uniformly to some

x ∈ L(G). As all gm are unitary we have that if wm ∈ Wm then gm(Wm) is the intersection

of the polar hyperplane to gm(km) and Hn
C
. Hence, as gm(km) → z and gm(wm) → x, by

proposition 6.8 z = x ∈ L(G) (remember that by definition z ∈ ∂Hn
C
).

The final case is if k ∈ P
n
C
− (L0(G) ∪ L1(G)). In this situation we may assume

without loss of generality that all the km are in P
n
C
−Hn

C
. Let Wm be the intersection of the

polar hyperplane of km and Hn
C
, W be the intersection of the polar hyperplane of k and

Hn
C

and let wm be a sequence such that wm ∈ Wm for all m and wm → w ∈ W ∩H
n
C
. By

corollary 5.12, there is a point x ∈ L(G) such that gm(wm) → x uniformly. As all gm are

unitary we have that if wm ∈ Wm then gm(Wm) is the intersection of the polar hyperplane



37

to gm(km) and Hn
C
. Thus gm(km) → z and gm(wm) → x implies that z = x ∈ L(G) by

proposition 6.8 (remember that by definition z ∈ ∂Hn
C
).

Hence L2(G) ∩ ∂Hn
C
⊆ L(G) and L2(G) ∩ ∂Hn

C
= L(G).

Corollary 6.12. [10] If G is a discrete subgroup of PU(n, 1) then L(G) = Λ(G) ∩ ∂Hn
C
.

Proof. The result follows from the three previous propositions as Λ(G)∂Hn
C
= (L0(G) ∪

L1(G) ∪ L2(G)) ∩ ∂Hn
C
= (L0(G) ∩ ∂Hn

C
) ∪ (L1(G) ∩ ∂Hn

C
) ∪ (L2(G) ∩ ∂Hn

C
) = L(G).

We finish by proving that :

In [2] they were able to prove the equality of the limit sets and further elaborate

that that Λ(G) is the union of all hyperplanes tangent to some point of L(G).
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7 CONCLUSION

With the previous section we finally conclude the thesis with the proof that the

Chen-Greenberg limit set is the intersection of the Kulkarni limit set and the boundary

of Hn
C
. We believe, though we were still unable to show it conclusively that we can use

the tools developed in this work to show that the Kulkarni limit set is the union of all

tangent hyperplanes at a point of the Chen-Greenberg limit set.

Finally we would like to point out that for any non-elementary discrete subgroup of

PU(n, 1) the complement of the Kulkarni limit set is the maximal set where the subgroup

acts discontinuously.[2]
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