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Resumo

O grupo PU(n, 1) mais a operacdo de conjugacdo complexa formam o grupo completo de isometrias
do espaco hiperbolico complexo. O presente trabalho busca investigar as relagdes entre os conjuntos
limites de subgrupos discretos de PU(n, 1) conforme definidos por Chen e Greenberg e Kulkarni. Os
conjuntos limites sdo importantes ferramentas no estudos desses subgrupos, no entanto ndo existe
uma defini¢do inica de conjunto limite. Nesta dissertacdo vamos mostrar que pelo menos estas duas
definicdes estdo intimamente relacionadas, veremos que o conjunto limite conforme definido por
Chen e Greenberg nada mais é que a intercessdo entre o conjunto limite conforme definido por
Kulkarni e a fronteira do espago hiperbolico. Para mostrar isto utilizaremos como base um artigo
publicado por Navarrete em que ele mostra essa igualdade em dimensao dois estendendo alguns dos
resultados por ele encontrados para dimensdo qualquer. Demonstraremos uma série de propriedades
do conjunto limite no sentido de Chen e Greenberg, passando por dois importante resultdos
relacionados a convergéncia de grupos compactos sob a acdo de sequéncias de elementos discretos e
uma relagdo de equivaléncia para pontos no conjunto limite, para ao final concluir com o resultado

principal.

Palavras-chave: Espagco Hiperbdlico Complexo. Subgrupos Discretos de PU(n,1). Conjuntos

Limites.



Abstract

The group PU(n,1) and complex conjugation form the complete group of isometries of the complex
hyperbolic space. The present work aims to investigate how the limit sets of discrete subgroups of
PU(n,1) as defined by Chen and Greenberg and as defined by Kulkarni are related. Limit sets are
important tools in the study of these subgroups, however there is not an unique definition of what a
limit set is. In this thesis we will show that the definition of limit set as given by Chen and
Greenberg and as given by Kulkarni are intimately related, for the former definition is nothing more
than the intersection of the latter definition and the boundary of the complex hyperbolic space. In
order to show this we will rely on a paper by Navarrete in which it is shown that the above equality
is valid in dimension two. We will generalize some of the results of Navarrete for any positive
dimension. We will also show a series of properties of the limit set as defined by Chen and
Greenberg, with two important results relating to the convergence of compact sets under the action
of sequences of discrete elements and a equivalence relation for points in the limit set. We will then

conclude with the main result of the work.

Keywords: Complex Hyperbolic Space. Discrete Subgroups of PU(n, 1). Limit Sets.
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1 INTRODUCTION

The set of all the unitary transformations of C*! form a group with the operation
of composition. This group can be given a matrix representation as the group PU(n, 1)
of GL(n + 1). When we consider the actions of subgroups of PU(n,1) on Hf it becomes
apparent that, given a group, the orbits of any point p € ]I-ITE tend to accumulate at certain
positions. We define the set consisting of these accumulation points as the limit set of
the group. This natural definition of limit set was first presented by Chen and Greenberg
in [4]. In their paper they were able to prove that this definition does not depend on the
orbit we choose to observe and that this definition is the smallest invariant set under the
action of a subgroup of PU(n, 1) in a certain sense.

A lot of work has been done regarding this definition of limit set since its initial
presentation by Chen and Greenberg. However, other authors have discovered different
and equally natural definitions for limit sets in regard to subgroups of PU(n, 1). Kulkarni,
for instance, in his study of the actions of groups on Hausdorff spaces came up with a
different definition of limit set given by the union of infinite isotropy groups of points and
the closure of accumulation points of compact subsets of the space. This definition can
be applied to the same groups studied by Chen and Greenberg if we regard Hf. as a part
of P¢. Other definitions still exist for different purposes, but in the present work we will
be concerned with only those two.

Among the subgroups of PU(n,1) the most important are the discrete ones, as
the actions of these subgroups in ]HTE provide a multitude of interesting structures and
phenomena. A point of particular interest in the study of discrete subgroups is the region
where they act properly discontinuous. The limit set as defined by Chen and Greenberg
allows us to answer this question in regard to ]HT?: and the limit set as defined by Kulkarni
extends the answer to the whole of P¢. Thus a question spontaneously arises: "Are these
definitions related in some way?".

In his paper [10] Navarrete was able to prove that in the two dimensional case
the Chen and Greenberg limit set is the intersection of the Kulkarni limit set and the
boundary of the complex hyperbolic plane. Furthermore he was able to show that the
Kulkarni limit set of a discrete subgroup of PU(2,1) is given by the union of tangent
complex lines of P¢ at points of the Chen and Greenberg limit set. Navarrete continued
to work over these results in [3] with Cano and Seade, where they were able to generalize
some of Navarrete previous conclusions and prove that the complement of the Chen and
Greenberg limit set in P¢ is the subgroup’s region of equicontinuity. Afterwards, Cano
with Liu and Lopes in [2| was finally able to prove that in higher dimensions the Kulkarni
limit set is the union of tangent hyperplanes at points of the Chen and Greenberg limit
set.

We notice that in both [2] and [3] the theory used to achieve these results is no-



ticeably different than the one used in [10]. Both [2] and [3] mainly use pseudo-projective
transformations and the Cartan decomposition of elements of PU(n, 1), objects not used
by [10]. Hence in the present work we wanted to focus in the theory presented in [10]
and show that it can be used at least to show that for a n-dimensional complex hyper-
bolic space, the Chen and Greenberg limit set of a discrete subgroup of PU(n, 1) is the
intersection of its Kulkarni limit set and the boundary of HI.

In order to do this, in section 2 we will present the models of ]HT@ that will be used
throughout the thesis, nominally the projective model and the unitary ball model, and
their relation. In section 3 we will present the group PU(n, 1) and discuss its action in
the complex hyperbolic space. In section 4 we will give the definition of the Kulkarni
limit set, discuss its relevant properties and give some examples. In section 5 we will do
the bulk of the work in the thesis, giving the definition of the Chen and Greenberg limit
set, presenting its relevant properties and presenting two important results, one about
the convergence of compact set of Hf under the action of elements of PU(n, 1) and the
other about the finite subgroups of PU(n,1). Finally in section 6 we will present some

considerations about how the results of sections 4 and 5 and the main result in this work.
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2 THE COMPLEX HYPERBOLIC SPACE

2.1 THE PROJECTIVE MODEL

We first present a brief description of the projective model for a complex hyperbolic
space of dimension n.
Let C denote the complex numbers and C™! the vector space of dimension n + 1

with the following hermitian form associated to it (,) : C! x C™! — R defined as

(20, 215 -y Zn), (W, W1, .oy Wy)) = —Zowo + ({(21, .y Zn), (W1, .oy wy))),

Where

(21,0 20)s (W1, ooy wy))) = ZTWY + .o 4 Zwy,

Is the canonical hermitian form. This hermitian form divides our vector space in three
distinct sets that we define as follows Vy := {z € C™! : (2,2) = 0}, V_ := {z € C™' :
(2,2) <0} and V, := {z € C™': (z,2) > 0}. We shall refer to the points of each of these
sets as isotropic, negative or positive respectively.|4]

The set 3 := {ey, €1, ..., €, }, where e; denotes the vector that is 0 in every coordinate
except for the i-th, is an orthogonal basis of C™!. We also have that (eg, ey) = —1 and
(e;,€;) =1 for all 7 # 0, thus the hermitian form has a (n, 1) signature.

Now we consider the projectivization of C™!. We say that two elements z,w €
C™! are similar, if 3 A € C — {0} such that z = Mw, and we note z ~ w. The n-
dimensional projective complex space can now be defined as PE = P(C™!) := C™1/ ~

and we obtain|11]:

Definition 2.1. [11] P(V_) := HE, the complex hyperbolic space of dimension n and
P(Vh) := OHE the boundary of the complex hyperbolic space of dimension n.

In the projective model we will assign a metric called the Bergman metric given

indirectly by the following distance formula p(-,-) [11]:

cosh? (p('zz’“’)) _ (zw)(w,2)

This formula does not depend on the representatives chosen, if rz and sw are

different representatives of the equivalence classes of z and w, then:

cosh? (,O(rz, Sw)) _ (rz, sw)(sw, rz)

2 (rz,rz)(sw, sw)
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2.2 THE UNITARY BALL MODEL

The projective model will be the standard model for our calculations in this work,
however, on occasion we shall use a different (but related) model, the unitary ball model.
This model will prove useful in understanding some calculations by Navarrete and Chen
and Greenberg.

Consider the hermitian form with signature (n,1) and the projectivization map
defined above, a non-null element z = (2, ..., 2,) may be isotropic or negative if, and
only if, z9 # 0. If zp = 0 then there exists one z; # 0 (z is a non-null vector) and so
(z,2) = ({(215 ey 2n), (21, oy 20))) = Doiy |2:/* > 0 which implies z is positive.

With this result we may define a standard representation for equivalence classes in
the projective model of ]I-T?é, for every element of ]HT% is an equivalence class in C™!. Let

[z] € HE be one such class, and 2 = (2, ..., 2,) € [2] an element of this class, we choose

the standard representative as being 2’ = Ziz = (1,2, ..,2) If w= (wy,..w, is a
0 Z0 20
different element of [z] then w = Az for some A € C — {0}, so —w = (1,2, .. “) =
0 wo wo
(1, —iil ey —f\Z”) = (1,%,...,2) = 2/ and the standard representative is well defined. The
0 20 Z0 20

standard representative is also called the standard lift of the class [z]. From now on
the class [z] we will be referred simply as z, and we will assume that z is the standard
representative of [z].

With the previous definitions we have now that z is negative, if, and only if
(z,2) <0

& 14|z + ... +]z|* <0
SlalP+. <1
& (21,0, 20) € BT CC"

Where B" is the unitary ball of C". An analogous calculation show us that an element
is isotropic if, and only if, (21, z,) € 9B™ = S?"~1 C C". Thus we can identify HZ with
B" by taking the final n coordinates of the standard representation of an element of ]I-Tg.
This representation of the complex hyperbolic space is called the unitary ball model.
Similarly to the projective model, we can assign a metric in this model by defining
the distance between two points as the distance between their standard lifts associated to

them in the projective model [11].
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3 THE GROUP PU(n,1)

3.1 PRESENTATION OF PU(n,1)

Definition 3.1. [// Let g be an automorphism of HE such that (g9(z), g(w)) = (z,w) for
all z,w € C™Y, g is called an unitary transformation, and U(n, 1) is the group given by

all unitary transformations in C™!

As g € U(n, 1) is an automorphism, ¢ is C-linear, so it can be represented by an
element of GL(n+1, C) the group of (n+1) x (n+1) invertible matrices. Given g € U(n, 1)
and [ the canonical basis given in the previous section, then for each i = 0,1,...,n, we
define g(e;)” as the i-th column of the matrix representation A of g. As g is unitary, the
g(e;)T are all linearly independent, so A is invertible, then A € GL(n + 1,C). From now

on, whenever we mention an element of U(n, 1) we will assume its matrix representation.
4]

Proposition 3.2. [}/ U(n,1) acts isometrically on H.

Proof. Let A € U(n,1) and z,w € HZ then we have that

o (P(Az, Aw)\  (Az, Aw)(Aw, Az)
cosh ( 2 ) (Az, Az)(Aw, Aw)

s ()

{2, 2)(w, w) 2

— p(Az, Aw) = p(z,w)
O

Another notable feature of U(n,1) is that its elements act transitively in Hf and

doubly transitively in OH:. We present this fact as proved by .

Proposition 3.3. [4] U(n,1) acts transitively in HE and doubly transitively on the bound-
ary OHIE.

Proposition 3.4. Let A € U(n,1) be a matriz and let A* = XA with A\ € C, then
A" € U(n,1) if, and only if |\ = 1.

Proof. (A'z, A'w) = (AAz, Mw) = I\(Az, Aw) = |A\*(z,w). Now, if A’ € U(n,1),
then (A'z, Aw) = |\*(z,w) = (z,w) = |\ =1, and if |A\| = 1 then (A'z, Aw) =
A2 (z,w) = (z,w) = A" € U(n,1). O
Proposition 3.5. Let A, A’ as described in the previous proposition, then they act the

same 1n HE.

Proof. Let z € HE, then A’z = AAz = A(\z) = Az. O
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The two previous propositions make it clear that when we consider the actions of
elements of U(n, 1) in H: we will have a lot of elements with identical actions. To solve this
problem, we define an equivalence relation in U(n, 1) given by A~ B < IA € C, |\ =1
such that A = A\B.[4]

Definition 3.6. PU(n,1) =U(n,1)/ ~
Remark. [/ PU(n,1) can also be seen as the image of U(n,1) in PGL(n + 1,C).

Remark. PU(n, 1) plus the operation of complex conjugation gives us the complete group

of isometries of HE, though we will not give a proof of this fact here.

3.2 TOTALLY GEODESIC SUBMANIFOLDS

With PU(n, 1) well established, we can now present some results about totally
geodesic submanifolds that will be used throughout our work. All of the results in this

subsection were originally presented in [4], we will only give an abridged version of then.

Definition 3.7. [/] A submanifold M C HE is totally geodesic if it contains every geodesic

which is tangent to it.

Remark. [5] If M is a subspace of H: and (z,w) € R for all z,w € M, we say that M
18 a totally real totally geodesic subspace.

" -1 0 .
Definition 3.8. [}/ We call the element sy = ; € U(n, 1), where I,, is the n xn
identity matriz, the symmetry at 0. If ¢ € B™, then sc € U(n,1) is called the symmetry
at ¢ and it is given by gsog~!, where g € U(n, 1) and g(0) = (.

Proposition 3.9. [4/ M is a totally geodesic submanifold if and only if s¢(M) = M for
all ¢ € M.

Proposition 3.10. /4] The following are true:

(a) H, is a geodesic in Ht. Every geodesic is equivalent under U(n,1) to Hg;

(b) The geodesics at 0 are precisely the R-lines through 0. These are all equivalent
under the isotropy group U(1) x U(n);

(c) Let p,q € IET%. Then there is a unique geodesic which connects p to q.

3.3 CONJUGACY CLASSES OF U(n, 1)

The elements of U(n, 1) leave H—T@ invariant, thus, we can apply Brower’s fixed-point
theorem to obtain that any element of U(n, 1) fixes at least one point of HZ[4].

This fact allows us to divide the elements of U(n, 1) in three categories:
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Definition 3.11. [4] Let g be an element in U(n,1). We shall call g elliptic if it has a
fized point in Hi. We shall call g parabolic if it has exactly one fized point in IET% and it

lies on OHE. g will be called lozodromic if it has exactly two fized points in ]I-Tfé and these
belong to OHE.

We will not present a proof of the fact that the above definition covers all possi-
bilities because the calculations involved would distract from the results being presented.

If the reader is interested in seeing a proof, one can be found in [4].
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4 THE KULKARNI LIMIT SET

The Kulkarni limit set was defined in [8] with the intention of studying higher
dimensional Kleinian groups. In this section we will present its definition and some results

pertaining to its relation with discrete groups of PU(n, 1) analogous to those presented
in [10].

4.1 DEFINITIONS

We begin with a few basic definitions concerning the subject.

Definition 4.1. [8/ Let X be a locally compact Hausdorff space and let T' be a group
acting on X. The action of I is said to be properly discontinuous on a I'-invariant subset
Q of X if for any two compact subsets C' and D of Q, v(C) N D # @ only for finitely
many v € I'.

Definition 4.2. [8] Let {Ag} be a family of subsets of X where 5 runs over some infinite
indexing set B. A point p € X is said to be a cluster point of {Ag} if every neighborhood
of p intersects Ag for infinitely many 8 € B.

Definition 4.3. [8] Let p € X, we define I', := {y € I such that v(p) = p} as the
isotropy group of p with respect to I'.

Definition 4.4. [8] Let:

Lo(T") = {the closure of the set of points in X with infinite isotropy group}

Li(T") = {the closure of the set of cluster points of {yz},er where z runs over
X — Lo(I)}

Ly(T) = { the closure set of cluster points of {yK },er where K runs over compact
subsets of X — {Lo(I") U Ly (I") }}

Definition 4.5 (The Kulkarni limit set). [8/ The set A(T') = Lo(I") U Li(I') U Lo(T") is
called the limit set of I'. The set Q(I') = X — A(T") is called the domain of discontinuity
of I'.

Let us consider a simple example for the sake of fixing ideas:

Example. Let g € U(n, 1) be an element of finite order and consider the action of G = (g)
on P¢. As G is a finite group, then no point of P¢ has infinite isotropy group with respect
to G, thus Lo(G) = @. Similarly, the orbit of any compact subset of P¢ has a finite
amount of elements, thus L1(G) = @ = Ly(G). So A(G) = 2.

We present now an example given in [10], as a way of motivating the interest in
the limit set of subgroups of PU(n,1):
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Example. [10] Let g be a loxodromic element of PU(2,1) and consider the action of
G = (g9) on P4. Through the analysis of the dynamic of g on P4 we can find that G
fizes three points in P4, {a,r, s}, a an attractor in P4 — [r,s] (where [r,s] represents the
complex projective line that passes through these two points), r a repeller in P& — [a, 5]
and s a saddle point.

It becomes clear then that Lo(G) = {a,r,s} for those are the only elements with
infinite isotropy groups with respect to G. We also have that L1(G) = Lo(G), for if we take
any point p in P24 — Lo(G), then lim, o, ¢"(p) € {r, s} and then lim,_, ., ¢"(p) € {a,s}.

Finally, we have that Ly(G) = [a,s] U [r,s]. We will not give a detailed proof of
this fact, as it would involve too many calculations that would distract us from the main
parts of interest, but we will give the general idea of the proof. Consider K, a 3-sphere
in P4 which bounds a ball around s, notice that K N [a,s| # @ # K N [r,s| for any such
3-sphere. This means that as n — oo, K" — [a,s|, so [a,s] C Lao(G). Analogously as
n — —oo, K" — [r,s], so [r,s] C La(G). For any point outside of [a,s] U [r,s|, we have
that any compact subset that intersects either |a, s| or [r, s| can only have cluster points in
[a, s|U[r, s], and if it does not intersect either of those lines then it can only have {a,r, s}
as cluster points. Thus Ly(G) = [a,s] U [r, s|, and A(G) = [a, s] U [r, s].

4.2 PROPERTIES OF THE LIMIT SET

We shall discuss now a few properties of the Kulkarni limit set and its applications
regarding discrete groups. Whenever there is no risk of confusion we will write Lg, L1, La, A
and € instead of Lo(T"), Ly ("), Lo(I"), A(T") and Q(T")

Definition 4.6. [8/ T is said to have the Kleinian property if Q) # &.

Proposition 4.7. [8] Let X and T be as above where I" is equipped with the compact open
topology. Then Lg, L1, Lo, A and ) are I'-invariant and I" acts properly discontinuous on
Q. If T has the Kleinian property then it is discrete. If X has a countable base for its
topology then T" is countable.

Proof. If T, is infinite and o € T, then o',0~! is infinite and it is also the isotropy group
of o(p), thus Ly is invariant under I'. An analogous argument shows that L;, Lo, A and
Q) are also ['-invariant.

Given compact subsets C' and D of 2 then define S = {7 € I such that v(C)ND #
@}. Suppose that |S| = oo then that means there are infinitely many 7 such that
Y(C)N D # @. Choose some point d, € (C) N D for each 7. As D is a compact
subset, there exists a subsequence of d, that converges to some point d € D. This implies
that d is a cluster point of {7(C)},er, which implies that d € Lo, which is absurd, for
D C X —{Ly, L1, La}. So we can conclude that I' acts properly discontinuous in X.
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Now consider K a compact neighborhood of a point p € Q and I' a group with
the Kleinian property. If 7= {v € T such that v(p) € int(C)} then T C T' :={y €T
such that {v(p)} N C # @}. From the previous result we have that I' acts properly
discontinuous on 2 and we conclude that 7" is finite. This also means that T is finite,
therefore open in I'. Since X is Hausdorff then the topology of I is also Hausdorff. As T
is nonempty I' must be discrete.

Finally if X has a countable base for its topology so does . Let {u,} n € N be a
countable base of relatively compact neighborhoods on €2 and let I';, = { € I such that
v(Uy) N U, # @}. By the previous results each I',, is finite and |J, I = I. So T is

countable. n

With this result the usefulness of the Kulkarni limit set in considering the regions
where a groups acts properly discontinuous becomes clear. We finish this section by
presenting an example contained in [8] of a non-hyperbolic space where the traditional
definition of the limit set (the cluster points of I-orbits) does not agree with the Kulkarni

definition.

Example. [8] Consider X = R* and T' = () gwen by v(x,y) = (2x,%). The origin is
the only point fized by . Furthermore it is the only cluster point of I'-orbits of points as
lim,, 0 7"(0,y) = (0,0) for ally € R, |lim, 0o 7" (x,y)| = 00 for all z € R — {0}. Thus
in the classical sense the limit of T" is the set {(0,0)}.

In the Kulkarni sense, however, the previous reasoning only tells us that L, U
Ly = {(0,0)}, we still need to consider the action of I' in the orbits of compact sets of
R%—{(0,0)}. It is not hard to see that given any circle S with the origin as its center and
radius v that v"(S) NS # & and as n — oo the intersection points tend to (£r,0) and
as n — —oo the intersection points tend to (0,+r) thus Ly = {(z,y) € R* — {(0,0)} such
that either x =0 ory = 0}. We have then that A(T") = {(x,y) such that either x =0 or

y =0}
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5 THE CHEN-GREENBERG LIMIT SET

In this section we will present the classical notion of limit set, which we also call
the Chen-Greenberg limit set, and some of its important properties. We will begin by
giving its definition as presented in [4], then we will prove an important propositions
about Chen-Greenberg limit sets in a similar fashion to the work done in [10].

Then we will make a few considerations about the isotropy group of a boundary
point and present the notion of G-duality for limit points. This notion will allow us to
conclude that any discrete subgroup of PU(n, 1) with more than one element in its Chen-
Greenberg limit set has a loxodromic element. We will finish the section by stating a

proposition of [3| that shall be important in the next section.

5.1 DEFINITION AND BASIC PROPERTIES

With the preliminary results presented so far we can now define one of the main
points of interest in our work, the limit sets of discrete subgroups of PU(n,1). Before we
define the Chen-Greenberg limit set we need a proposition that guaranties that the limit

set 1s well defined.

Proposition 5.1. [}/ Let p be a point of H. and let {gm} be a sequence in U(n, 1) such
that limy, o0 gm (p) = ¢ € OHE. Then limy, o0 g (p') = q for all p’ € HE.

Proof. 1t is important to notice that the limit in the above definition is being considered
in the ball model with respect to the euclidean metric of B”, not the Bergman metric.

Let p € HZ and suppose that lim,, ,o gm(p’) # q. As HE can be seen as B", it is
compact, thus there exist a subsequence of {g,, (p')} that converges to a point ¢’ € HE.
Without loss of generality we can assume that the convergent subsequence is {g.(p')}
itself, so that lim,, .. gm(p') = ¢

As stated in proposition 3.10 (c), there are unique geodesics that connects p to p/
and ¢ to ¢’. Denote [(r, s) as the length of the geodesic segment connecting the points
r and s, then we have that p(p,p') = l(p,p’) = L(gm(p), 9m(P")) = Ul(q,q') = 0o, which is
absurd. Therefore lim,, oo gm(p) = ¢ = limy, 00 g (p') for all p’ € HE . O

Definition 5.2 (Chen-Greenberg limit set). [4/ Let G be a subgroup of U(n,1) and let

p € HE. The limit set of G is defined to be the set L(G) = G(p) N OHE.
Proposition 5.1 makes it clear that the definition of the Chen-Greenberg limit set

is well defined, for any choice of p in H we will give us the same set L(G). The following
result will show us that the Chen-Greenberg limit set is the smallest invariant set under

the action of a group G [10].
Proposition 5.3. [4] Let G be a subgroup of U(n,1), then L(G) is invariant under G.

Furthermore, if X is a closed subset of OHE which contains more than one point and is
invariant under G, then L(G) C X.
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Proof. Let ¢ € L(G), and h € G, then, by proposition 5.1, ¢ = lim,,— gm(p) for a
sequence of elements {g,,} C G. As h € G then, {hg,,} C G and the sequence {hg,,(p)} C

% is convergent in HE, because h acts isometrically in HZ and the sequence {g,,(p)} is
convergent in H. Therefore, h(q) = lim,, o hgm(p) implies that h(q) € L(G), proving
the first part of our proposition.

In order to prove the second part, consider a pair of distinct elements x,y € X and
assume, taking a subsequence if needed, that lim,, . gm(x) = 2/, lim,, 00 gm(y) = v’ and
x' # q # y'. Take now a point p’ in the geodesic given by x and y. As for all m, g,, acts
isometrically in Hf, then g,,(p’) lies in the geodesic given by g,,(z) and ¢,,(y). Taking the
limit as m — oo we have that lim,, . ¢, (p) is a point of the geodesic given by 2z’ and
y', which implies that lim,, o gm(p’) # ¢ a contradiction with proposition 5.1. If 2/ = ¢/,
then it is clear that lim,, .. gm(p') = 2’ = ¢’ # ¢, which also contradicts proposition 5.1.
Thus, either lim,, o gm(z) = g or lim,, o0 gm(y) = ¢. As X is closed and invariant under
G, we have that in either case ¢ € X, which implies L(G) C X. n

Corollary 5.4. [10] Let K C H be a compact subset and {g,} C U(n,1) a sequence
such that im,, o gm(p) = q € OHE for some p € HE, then the sequence of functions g, |k

converges uniformly to the constant function with value equal to q.

Proof. By proposition 5.1, for every k& € K we have that lim,, , gn(k) = ¢, further-
more B" is compact with respect to the euclidean metric, thus the functions g, converge

uniformly to the constant function with value equal to q. O

We now have a basic understanding of the Chen-Greenberg limit set so we can start

to work in proving the important propositions alluded in the beginning of this section.

5.2 SEQUENCES OF ELEMENTS IN PU(n,1) AND THE CHEN-
GREENBERG LIMIT

We state:

Proposition 5.5. [10] If {gm} is a sequence of distinct elements of a discrete subgroup
G of PU(n,1), then there exists a subsequence, still denoted {g,,}, and elements z,y €
L(G) C OHZ, such that g,,(z) — x uniformly on compact subsets of H. — {y}.

This proposition is present in [10] and [9] for HZ and PU(2,1). In the form stated
above it is generalized for dimension n. This proposition will be fundamental in proving
the main theorem of this work, that A(G) NHE = L(G) for all discrete G C PU(n,1).
Before we show a proof for it we will need some auxiliary results regarding bisectors, an

important structure of hyperbolic geometry.
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Definition 5.6. [5] Given two distinct points zy1, zo € HE we define the bisector equidistant

from z1 and zy (or the bisector of {z1,22}) as
E{z1, 20} = {z € HE such that p(z1,2) = p(29,2)}.

Bisectors are also called equidistant hypersurfaces. The boundary of a bisector is defined

as a spinal sphere in OHE.

Bisectors have a natural decomposition called the slice (Mostow) decomposition.

We will give a brief explanation of how this decomposition works.

Definition 5.7. [5] Given two distinct points zy,zo € HE, let ¥ C HE be the complex
geodesic spanned by these two points. X is called the complex spine (or C-spine) of €
(with respect to {z1,22}). The (real) spine o of € (with respect to {z1,22}) is defined as

o{z1, 22} = €{z1, 22} N X = {z € X such that p(z1,2) = p(22, 2)}.

Notice that o is the orthogonal bisector of the geodesic segment joining z1 and zo in 2.

Proposition 5.8. [5] Let L C B™ be a complex linear subspace with orthogonal projection
I1. Then for allu € B"—L and s € L, the geodesic from I1(u) to u and to s are orthogonal

and span a totally real totally geodesic 2-plane. Furthermore

We will not present a proof of this proposition, though one is found in [5]. We are

most interested in the second assertion of the proposition, that

cosh (@) — cosh (M) o (p(H(Qu), 8))7

As this equality is fundamental in proving the Slice Decomposition Theorem. It suffices
to say that given the first condition of the previous proposition, the equality is a direct

consequence of the Pythagorean theorem.|5]

Theorem 5.9 (Slice Decomposition Theorem). [5/ Let €, % and o be as above. Define
Iy : HE — X the orthogonal projection onto ¥. Then € = 115" (0) = J,., 15" (s)

Proof. Let z € HE, by the previous proposition we have that

cosh (0(32,21')) — cosh (P(Z,gz(Z))) cosh (P(Hz(;),zi))

So
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o (PIS0) _ i (H50) (o (A ISEDY) T

fort=1,2 so

z € E{z1, 20} © plz,21) = p(z, 22) (2)

By the definition of bisector
(2) & p(lls(2), z1) = p(lls(2), z2)
Because of the equations (1) and (2). And finally
& llx(z) € o{z1, 22}

By the definition of o{zy, 22}. O

Definition 5.10. /5] The complex hyperplanes 115" (s), for s € o, are called the slices of
€ (with respect to {z1, z2}).

The above results give us enough information about bisectors and their decompo-
sitions so that we may prove the results we need in this section. Though we will use it,
we remark that bisectors, slices, spines and complex spines do not depend on the choice
of {21, 22}, in other words they are intrinsic. A proof of this fact and further discussion
of its consequences can be found in [5].

A final lemma is needed before we may prove the main result of this subsection.
Navarrete gives the original proof in dimension 2 in [10], we present a generalization of

the result for dimension n.

Lemma 5.11. [10] Let {x:} be a sequence of elements of HE such that xy — q € OHE.
Consider the ball model and write 0 as the origin in B"™ then:

(i) If S; denotes the closed half-space {z € HE such that p(z,0) > p(z,x1)}, and
0S; C OHE denotes its ideal boundary, then the Euclidean diameter of Sy U 0S; goes to 0
as t — oo,

(17) If (z) is a sequence such that z, € Sy U 9S; for allt € N, then z, — q.

Proof. Before we begin the proof proper we remark on the fact that {z € H|p(z1, 2) >
p(22,2)} = IIg'({z € |p(z1,2) > p(z9,2)}) which is an immediate consequence of the

Slice decomposition theorem, for

o (PN _ (0530 (o (A1) )
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For i =1, 2, so that

cosh (P<Z;1>) cosh (M) o <p<zézz>> . (p<nz<z>, a))

Then

=

/0(217 HE(Z)) > p(ZQ, HE(Z>)

Now if we fix a point x;, we can assume without loss of generality that it has
(r,0,...,0) with 0 < r, < 1 as its coordinates. With these coordinates we have that the
complex spine ¥, of the bisector {0, z,} is equal to the disc H x {0}, and the orthogonal
projection Ily, : H — 3, is given by Ilg,((z1, ..., 2,)) = (21,0, ...,0). Define m; as the
intersection between Hf x {0} and the real spine o; of €{0,z,} and M; = {(21,0,...,0) €
HE x {0} Re(z1) > my}.

As per stated in the initial remark S, = IIg! ({z € HE x {0}]p(2,0) > p(z,,)}),
notice now that

{z € He x {0}p(2,0) = p(z,2.)} C M,

— S, C G (My) = {(z1, .., zn) € HE|Re(z1) > mu}

This implies that S; U 8S; C {(21, ..., 2,) € HE|Re(21) > my;}. As m; — 1 when t — o0
then the Euclidean diameter of the set {(z1, ..., z,) € HZ|Re(21) > m;} goes to zero. This
finishes the proof of statement (7).

For statement (i7) we have that z; — ¢ as t — oo and that the Euclidean diameter
of S;U0S; goes to 0 ast — oo. Asx, € S;UDS; for all ¢ this implies that limy; ., (S;U0DS;) =
{q} proving statement (7). O

Finally we have all the tools needed for proving proposition 5.5.

Proposition 5.5. [10] If {gm} is a sequence of distinct elements of a discrete subgroup
G of PU(n,1), then there exists a subsequence, still denoted {g,,}, and elements z,y €
L(G) C OHZ, such that g,,(z) — x uniformly on compact subsets of H: — {y}.

Proof. We begin by assuming that g,,(0) # 0 for all m. In order to do this we may discard
a finite number of elements that fixes the origin. If our sequence fixes the origin for an
infinite number of elements then we can find an isometry A of HZ such that A~'(0) is
fixed by at most a finite amount of elements of {g,,}. In this case we would have that
A(0) # 0 and that the behavior of the sequence {A™'g,, A} would be identical to the
behavior of {g,} in regards to the proposition.

As {9,n(0),g1(0)|m € N} C B™ a compact set, then there exists a subsequence of
{gm} that we will still denote by {g,,} such that g,,(0) — z and g,,'(0) — y as m — oo.
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Define
ng = {Z E H8|p(z’0) Z IO(z7g1:‘Ll(O))}

and
Sy = {z e H{|p(2,0) > p(z,9m(0))}

Then we find ourselves in the same situation of the previous lemma with the Euclidean
diameter of the sets Sy, U dS,,, and S -1 U IS 1 going to 0 as m — oo.

We also have that if z € S, US,,, then p(z,0) > p(z, g,,}(0)) which implies that
0(9m(2), gm(0)) > p(gm(2),0) so that we have that g,,(HE — S,, US,,,) C Sy-1UOS 1.
Given any K C H — {y} compact, there exists my such that K C HE — S, U0dS,,, for

all m > my, which means that
gm(K) C gm(m - Sg’m U asg'm) C Sgﬂzl U aSgﬂzl

For all m > my. The result then follows from statement (iz) of the previous proposition.
]

Corollary 5.12. [10] If {gm} is a sequence of distinct elements of a discrete subgroup G of
PU(n,1), then there ezists a subsequence, still denoted { gy}, and elements x,y € L(G) C
OHZL, such that g,(z) — = uniformly on compact subsets of HE — {y} and g;,*(z) — vy

uniformly on compact subsets of Ht — {z}

Proof. Tt suffices to apply proposition 5.5 twice, once for the sequence {g,,} and once for

the sequence {g.'} O

Corollary 5.13. If G is a discrete subgroup of PU(n,1) then L(G) = @ if and only if G

18 finite.

Proof. By proposition 5.5 if G is infinite then L(G) # @. This implies that if L(G) = @
then G is finite.

If G is finite then |G(p)| < oo so G(p) = G(p) C HA. Then by definition L(G) =
G(p) NOHR: = @. O

Corollary 5.14. If g is an elliptic element of a discrete group of PU(n,1) then g has

finite order.

Proof. Suppose that g was an elliptic element of infinite order of the discrete group G
of PU(n,1) then there exists zy € H such that g(z9) = zp. Consider now the sequence
gm = ¢g". We have that ¢,,(z9) = zo for all m € N. As {g,,} is a sequence of distinct
elements of G' by proposition 5.5 there is z € OHg such that g,,(2) — z for all z € Hf as

m — o0, this is absurd as g,,(z0) — 20 as m — oco. Thus g must have finite order. ]
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5.3 DISCRETE FINITE SUBGROUPS OF PU(n,1)

In this subsection we will develop an interesting set of tools that will culminate in
a proof that any discrete subgroup that has at least two elements in its Chen-Greenberg

limit set has a loxodromic element.

5.3.1 THE ISOTROPY GROUP OF A BOUNDARY POINT

The second to last corollary of the previous subsection gave us an indication about
the possibilities of subgroups of PU(n,1) with empty Chen-Greenberg limit sets. An
interesting question that arises is if the size of nonempty Chen-Greenberg limit sets can
give more information about its respective groups. First we will present a convenient
transformation of the hyperbolic space that will allow us to better study groups that fix
at least one point in the boundary of Hf, then we will show that if |L(G)| > 2 then G has
a loxodromic element in it, finally we will have all the theory needed to prove the main
result of the section.

We begin by focusing on automorphisms of H that fixes one point in OHE. As
the action of U(n, 1) is doubly transitive in the boundary the choice of coordinates for the
fixed point does not matter as any choice can be made through conjugation by elements
of U(n,1). A convenient choice for this is the element f; = (1,0,...,0) € 9B™. As f;
is the standard lift of eq + e; we have that for ¢ € U(n,1), g fixes f; if and only if
gleg +e1) = Aeg + e1) for some A € C.[4]

We consider now /3 a different basis for C™! given by éy = -l ¢ = «fa and
ém = em for 2 <m < n. The fact that all the é,, are linearly independent is immediate.|4]

The matrix that corresponds to this change in basis is given by:

4 L
V2 V2
— 11
D = %5 5 0
0 0 I,

Where [,,_; is the n — 1 X n — 1 identity matrix. We wish to consider now the actions
of automorphisms in the hyperbolic space with the basis B , we will accomplish this by
considering the group U(n,1) := {D'AD|A € U(n,1)}. We consider now the following
hermitian form ®(z, w) = —(Zowr + Ziwo) + (((22, ..., 2n), (Wa, ..., wy)))[4]. We have that

®(Dz, Dw) = @((

Zo+21 —20t+ 2
yR2y ey 2m |

V2 V2
(w0+w1 —w0+w1 w w ))
\/5 ) \/§ sy W2y .oy Wn
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=—(@<-w>+<¢r><w°“”l>>

(225 s 21), (W2, ooy wy) ))

1
= —5(—zow0 + Zowy — Zrwg + Zwy — Zowy — Zowi + Zywo + Zjwy)

+ (((22, oy 2n), (Way ooy wy)))

= —Zowo + Z1wy + ({(22, .vy 20), (W2, .oy wy))) = (2, w)

Thus if D"'AD € U(n,1) then
®(D'AD(z), D' AD(w)) = (Dt A(z), D"t A(w))

= (D7'(2), D7} (w)) = ®(z,w)

We can see then that @ is the hermitian form preserved by U (n,1). The previous cal-
culations also show us that U (n,1) is the group of linear transformations which leaves
D=Y(V_) invariant. If C' = D! then the image of C' in PSL(n + 1) is called the Cayley
transforms, it maps B" to the Siegel domain C(B") := {¢ € C"|Re(¢1) > 2 >0, |G}
In this way, the action of U(n,1) in C(B") is identical to the action of U(n,1) in B" and
an element A € U(n, 1) fixes f; if and only if D™'AD(é;) = té; for some t € C[4].

Lemma 5.15. [4/ [7] Let A be an element in U(n, 1) such that A(é,) := D' AD(é;) = té
for some t € C. Then in the B basis

>

I
2w T
o > o

>~ o

A/

Where p,\,s € C, a is a (n —1) x 1 matriz, b is a 1 X (n— 1) matriz and A" € U(n —1).
Furthermore A = 1, Re(fis) = 1]al? (where |a| is the Buclidean norm of a) and b = \a* A
(where T denotes the transpose).

Proof. The proof will follow from the fact that A preserves the hermitian form ¢ and that
A(éy) = té,. Let A be

a11 te A1(n+1)
A= :
An+1)1 " A(nt1)(n+l)
In this notation we have that a;; = p, a2 = 5,a90 = A\, a’ = (agy -~ a(n+1)1),

b= (a3 --- ai(n +1)) CAs A preserves the hermitian form ®, we can derive the following
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equations for: = 1,2 and j =3,...,n+ 1:

n+1
O(AT (&), AT () = D(é1,6) =0 => —2Re(@nan) + Y _ laxl* =0 (3)
k=3

n+1
O(A" (), AT () = ®(¢5,6;) =1 = —2Re(@naz) + »_ lapl* =1 (4)
k=3

n+1
O(A(&;), A(;) = ®(é1,6;) = 0 = —2Re(@az) + Y _ |ag;* =0 (5)

k=3

n+1
O(A(¢;), Aé;)) = D(¢5,¢5) = 1 = —2Re(@naz) + Y _ |a|* =1 (6)
k=3

n+1
O(A(e1), A(é)) = P(61,62) = —1 = —(@y1a22 + Go1a12) + Zaklalﬂ =—-1 (7
k=3

n+1
D(A(er), A())) = (61, 6)) =0 = —(@i1ag; + Gzrar)) + Y _Arag; =0 (8)
k=3

Immediately from equation (5) we obtain that for i = 1 we have that Re(ajja9) =
LSS Jag|? so that Re(fis) = L|a|? holds.

As A(é)) = téy then A(é1) = (a12 -+ aguyry2) =(0 t 0 --- 0) so we conclude
that age = 0 for all k = 1,3,4,...,n+1, let us call this result (x). Applying (*) to equation
(3) for i = 1 we obtain that a5 = 0 so that > 771 |ag|? = 0 which implies that ay;, = 0 for
all £ =2,3,...,n+ 1 let us call this result (xx). Applying (x) to equation (7) we obtain
that @1a22 = 1 let us call this result (x * %).

In order to show that b = A\a’ A notice that

b=Xa' A

i

ass T a3(n+1)
(a3 - aimsn) = (a@s -+ a22G(ns1)1)

An+1)3 " A(nt1)(n+l)
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o n+1 — n+1 —
& (a3 - al(n+1)) = (as Y ops A1l - A2 o ak1ak(n+1))
n+1
< Q25 = Q22 E Eklakj
k=3

By applying (xx) to equation (8) we can see that ag; = (@)™ EZI; ar1ak;. Applying
(% * %) to this last equality we obtain that as; = as ZZI; @r1akj, then b = Xa” A holds.
Finally, to show that A’ € U(n — 1) take an element r = (ry,...,r,) € C"!

and consider the element 7 = (0,0,rs,...,r,,) in C™!. We have that ®(A(F), A(7)) =
((A'r, A'r)) = (7, 7) = ((r,7)) so A e U(n — 1). O

By giving us such a rigid shape for our matrices this lemma will facilitate tremen-
dously the calculations in the rest of the section. We take immediate advantage of this

with the following lemma.

Lemma 5.16. [4] Let A be an elliptic element in U(n,1) of finite order, and let p,q €
OHE. If A leaves p and q fized, then it fizes every point on the geodesic [p, q|.

Proof. As the action of U(n, 1) is doubly transitive in the boundary we can assume without
loss of generality that p = f; and ¢ = —f; = (—1,0,...,0). Applying lemma 5.15 we have

that with respect to the basis B our transformation has the following matrix form

>
Il
2 »w =
o > o
- o

AI

As g = € in the B basis and A fixes it, we obtain that s = 0 and a = 0, so that our

matrix can be written as follows

s
I
o O %
o > o
o o

A/

Because A has finite order then || = 1 = || so u = X. We can define now W = é,R+¢é;R.
Given w € W, we have w = rqéy + r1€1, for some ro,m; € R, so A(w) = fl(roéo +1ré1) =
ToA(éo) + TlA(él) = rotég + rité;. This means that when we consider the action in the
projective space A(P(w)) = P(w), so that the whole of P(W) is pointwise fixed by A.
Finally notice that [p, q] = [f1, f-1] = P(W NV_) so the lemma holds. O

5.3.2 LOXODROMIC ELEMENTS IN DISCRETE GROUPS

After the considerations in the previous part we wish now to prove that if G is a
discrete subgroup of PU(n, 1) and L(G) > 1 then G has at least one loxodromic element.

First we state the following
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Proposition 5.17. If A is a parabolic or loxodromic element of PU(n,1) then A has

infinite order.
Before we proceed we need a definition:

Definition 5.18. [7] Let x and y be any two not necessarily distinct points in OHE. If
there ezists a sequence {g,,} of elements of G, a discrete subgroup of PU(n, 1), such that
im0 G (P) = = and lim,, o 9.1 (p) = y for any point p € B™, then we say that x and
y are G-dual and denote this duality by x ~% .

This definition is closely related to proposition 5.5 which can be restated as "Given
any sequence of elements in G a discrete subgroup of PU(n, 1) there is a subsequence for

which z ~? y.".

Proposition 5.19. [7][10] Suppose that G is a discrete subgroup of PU(n,1) such that

x ~%y with respect to G and x # y. Then there exists a lozodromic element of G.

Proof. Let U be an open neighborhood of x and V' an open neighborhood of y such that
U NV = @. This means that the geodesic [z,] is not entirely contained in U U V. As
x ~% gy there exists a sequence such that lim,, ,o gm(p) = z and lim,, 0 9,1 (p) = ¥
for any point p € B™. Applying corollary 5.12 we can see that there is a subsequence
still denoted {g,,} such that g,,(z) — z uniformly on compact subsets of B® — {y} and
g-%(2) — vy uniformly on compact subsets of B" — {z}. As B" —V C B" — {y} is a
compact subset we have that B® — V' converges uniformly to {z} by {g,} so , there
exists mg € N such that for any m > myg, gm(ﬁ — V) c U. Thus for any m > my,
gm(U NAB™) C UNAB". By the Brouwer fixed point theorem, we have then that for
any m > mg, g, has a fixed point in U N dB™. An analogous argument shows that
there exists a number m; € N such that for any m > m; then g,! has a fixed point in
V' NoB™. This means that if g,; is an element of the subsequence such that M > mg, m,
then g, fixes two points in the boundary. This means that g,; must be either elliptic
or loxodromic, but by lemma 5.16 if gy, was elliptic, it would fix the geodesic [z,y]. As
[z,y] N (B" — U UV) # @ this contradicts the fact that gy (B™ — V) C U for any point
p € [r,y)N (B —UUV) is fixed by Gy and thus does not belong to U. So gy must be

loxodromic. [

Theorem 5.20. [6] [7] Let G be a discrete subgroup of U(n, 1), then:

(1) G-dual point x and y belong to the limit set L(G);

(ii) If v € L(G), then there is some point y € L(G) such that x ~% y;

(4ii) Denote D(x) := {y € L(G)|x ~% y}. D(X) is closed and G-invariant. If
|D(z)| > 2 then D(z) = L(G);

() If |L(G) = 1, then the point in L(G) is G-dual to itself. If |L(G)| > 2, then
any two points in L(G) are G-dual.
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Proof. (i) Is an immediate consequence of the definition of L(G);

(77) Is an immediate consequence of corollary 5.12;

(77) Suppose that there is a sequence {y;} C D(z) such that y; — y as j — oc.
Since L(G) is closed, y € L(G). Now for each j there exists a sequence {¢/,} C G such
that lim,, o ¢2,(p) = 2 and lim,, oo (¢2,) ' (p) = y; for any point p € B". We take the
sequence {g,, := g™} and then lim,, o0 g (p) = lim,, 00 ¢7(p) = x and lim,, o ;' (p) =
1im,, o0 (7)) "H(p) = liMyy 500 Y = ¥, 50  ~? 3y and we conclude D(z) is closed.

Now let us see that it is G-invariant. Take y € D(z) and let {g,,} C G be a
sequence that satisfy the condition for duality between z and y and let ¢ € G. We

1

have that for some p € B", g,,(p) — x and g,'! — y as m — oo. Consider now the

point ¢g~'(p) and the sequence {g,,g '} C G, then (g,,97 ")~ (p) = 9(g,,}(p)) — g(y) and
gm(g7Y(p)) — x by proposition 5.1, which implies that z ~? g(y) so that g(y) € D(x).
Thus D(x) is G-invariant and we conclude that is closed and G-invariant.

From statement (i) we already have that D(z) C L(G), now if |D(z)| > 1, by
proposition 5.3 we have that L(G) C D(x), so L(G) = D(x).

(iv) We divide the proof of this statement in three cases, L(G) = 1, L(G) = 2 and
L(G) > 2.

If L(G) =1 the result is immediate from corollary 5.12.

If L(G) = 2 assume L(G) = {z,y}. As L(G) is G-invariant, G cannot contain a
parabolic element because for all g € G, either g(x) = y or g(y) = = and in this case if g
was parabolic it would fix some other point z € 0B™ and thus we would have |L(G)| > 2
a contradiction, or g(z) = z and ¢(y) = y and in this case g could not be parabolic as all
parabolic elements fix a single boundary point.

If h € G is a loxodromic element then of course {z, y} must be fixed by it, otherwise
|L(G)| > 2, and in this case the sequence {¢g™} would satisfy the condition for z ~¢ y.
Thus to prove the statement, it suffices to show that there cannot be a discrete subgroup
of U(n, 1) composed only of the identity and elliptic elements.

Assume then that G was such a subgroup and define G,, = {g € Glg(z) =
z and ¢g(y) = y}. If G,, was infinite, then on one hand, by corollary 5.12 we would have
a sequence {gn,} such that g, (z) — x uniformly on compact subsets of B* — {y} and
g5 (2) — y uniformly on compact subsets of B™ — {x}, on the other hand by lemma
5.16 we would have that g, would fix every point of the geodesic [z,y], a contradiction.
Thus G, is finite. Let us show now that G — G, is finite, suppose not, then there is a
sequence of distinct elements {h;} C G — G, such that h;(z) = y and h;(y) = x for all
j € N. Consider now the sequence given by {f; := hih;}, we have that f;(z) = hih;(z) =
hi(y) = x for all j € N which implies {f;} C G, and thus that {hy, ho,...} is a finite
set, a contradiction. Hence G — G, is finite. As G = G, U (G — G,,,) we conclude G is
finite, a contradiction, as all finite sets have empty Chen-Greenberg limit sets by corollary
5.13. Hence if L(G) = {z,y}, then G has at least one loxodromic element that satisfy the
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G-duality definition for x,y so that z ~% y.

Finally we assume |L(G)| > 2. Notice that if |L(G)| > 2 then there can is at most
one element in L(G) that is fixed by all elements of G. Suppose that this did not happen,
then we would have at least two points x, y fixed by all elements of G. Define D := {z, y},
by proposition 5.3 L(G) C D a contradiction for |L(G)| > 2. Hence we can choose ¢ a
point in L(G) which is not fixed by all elements of G, let us call f one such element.
Using statement (i7) there is a point 1 such that n ~¢ ¢ (notice that we may have n = ).
By statement (ii7) we have that D(n) is G-invariant so f(¢) € D(n) and f(¢) # ¢. Then
|D(n)| > 1 and we conclude that D(n) = L(G), that is 1 is G-dual to every point in L(G).

Now choose x,y € L(G) such that n,x and y are all distinct and W,U and V'
are disjoint open neighborhoods of 1, x and y respectively. By proposition 5.19 there are
loxodromic elements g, f € G such that g has fixed points in U and W and h has fixed
points in V and W. If we show that g and f cannot have a fixed point in common in W
then either g does not fix n or f does not fix 7, so that (assume without loss of generality
that g(n) #n) n,9(n) € D(z) = D(z) = L(G) = D(n) and we conclude any two points
in L(G) are G-dual.|[7|] Thus all we have to do now is show that g and f cannot have a
fixed point in common in W.

Let us show then that if g and f have a common fixed point then G is not discrete.
Assume that g and f fix the same point. By lemmas 5.15 and 5.16 we can write both

elements in matrix form with respect to the B basis as

w 0 0 v 0 0
g=10 X 0], f=1]s ¢ b
0 0 A a 0 B
And the commutator of f and g™ as
1 0 0
fa"f g i =hp = a™ 1 A,
B, 0 C,
Where
o™ = st = AMspThT™ 4+ ATBBTrag ™ — bA™Blag

Ap = —N"DBT'AT £ bA™BTI AT
B =ay™' — BA"B tayp ™
Cp, =BA"B'A™!

First let us see that all the h,, are pairwise distinct. Suppose that h, = hy with k # k.
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Then if k" = k — k’, we have that fg* f~'g~*" = I (where I is the identity matrix). So,

from the equations above we have that
Bp = ap™t — BAM' B layp 'y =0

— B—law—l — Ak,,B_1a¢_1M_k/l

Substituting this relation in our equation for agi”), and remembering that g\ = 1, we can

express it in terms of u, ), a,b and B such that
agi ) _ Swil o ﬁfk”swfllu/fk” 4 ﬁfk"belawflufk" o bela¢fl =0
Comparing real parts in the equation above we have that

Re(ay ) = Re(s) [0 — Re(st)[w] [l — (1 = |ul ") Re(¢a" BB ay™")
1
(5) 1ol = bl ool ")

= (=)l = a2 =0

Thus we conclude that either || = 1 or @ = 0. However if |u| = 1 then g would
not be loxodromic for we would have © = X and so g would fix the entire geodesic
connecting the points [ég, é1] meaning it would be elliptic. It follows that a = 0 and then
ol = sp=1 — Re(s)|tb|2|p|"*" = 0. As |p| # 1 we conclude that s = 0 and therefore
we would have that f would fix éy so g and f would have two fixed point in common
which contradicts our hypothesis. Thus all the h,, are distinct.

We can assume, taking a subsequence if necessary, that there exists a € C and

o' € C such that o{7 = o and oy

ul < 1)

Assume |\| < 1, as U(n — 1) is compact, we can assume that C,,, — C € U(n — 1)
as m — 00.And with this we can conclude that A,, — bB~1C because —\"bB~1A™™ —
and BA"B1A™ — C = A™B'A™™ — B7!C as m — oo. Similarly we also have

that o™ — syp~! and B,, — ayp~! as m — 0o, hence as m — oo:

— o asm — oo (if |u| > 1) or as m — —oo (if

1 0 0
hw —s h= | =1 1 bB-LC
ap™t 0 C

Notice now that h € U(n,1) as ®(hz, hw) = (z,w) for all z,w. Let us show this by



32

calculating the hermitian form of each line of hA:

O((sy~',1,0B71C), (s, 1,bB71C)) = —(sp=1 + syp™ 1) + ((bB~'C,bB~'C))
= —2Re(s¢™") + ((b,))
= —2Re(spp™") + ((YaT, Pal))
= —2Re(sy™") + |[val* = 0

Write a” = (a; -+ a,_,) and ¢; for line j of C, j =1,...,n — 1 then

®((aj,0,¢5), (a;,0,¢5)) = {(¢j,¢;)) >0

for C € U(n — 1) Hence h preserves each of the elements of 3 so h € U(n,1) and G is not
discrete. The calculation are identical if |A] > 1, except that we take our sequence with
m — 0.

Therefore we conclude that g and f do not have a common fixed point in W,

otherwise G would not be a discrete group and the proof of the theorem is finished. [
Corollary 5.21. [10] If |L(G)| > 1 then G has a lozodromic element.

Proof. By theorem 5.20 there are points x,y € L(G) such that z ~% y and = # y. By

proposition 5.19 then G has a loxodromic element. O

Remark. [7] The condition that |D(x)| > 1 in statement (iii) of theorem 5.20 is necessary
as if G = (g), g a lozodromic element, then we have that D(z) = {y}, D(y) = = and

L(G) = {=z,y}.
We may now present the final result of this chapter.

Theorem 5.22. [3] If G is a discrete subgroup of PU(n,1) then G is finite if and only if

all of its elements have finite order.

We will not present a proof for this theorem, but one can be found in [3]. The
authors in [3| were able to prove the theorem for any discrete subgroup of PSL(n+1,C),
however the proof involves theory outside the scope of the present thesis. We remark
however that given the results presented so far, we are able to show that if a subgroup
G is such that |L(G)| > 1 then G has a loxodromic element and thus cannot be finite or
have only elements of finite order. We were also able to prove that if L(G) = @ then G is
finite. Hence the only case that needs further verification in order to prove the theorem
is the case |L(G)| = 1. In [10] he was able to show that in PU(2,1) if |L(G)| = 1 then
G has a parabolic element. So far we were unable to generalize his proof to the higher

dimensional case, but we still believe that with the theory developed so far it is possible.
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6 EQUALITY OF LIMITS

We open this section by making a few observations about discrete subgroups of

PU(n,1) and discontinuous action.

Definition 6.1. /9] We say that a subgroup G' of PU(n, 1) acts discontinuously at a point
x € HY if there is a neighborhood U of x, so that g(U) NU = & for all but finitely many
geq.

Proposition 6.2. [9] Let x be a point of B™, and let G be a subgroup of PU(n,1). Then
G acts discontinuously at x if and only if G is a discrete subgroup of PU(n,1).

Proof. Assume G not discrete and let {g,,} C G be a sequence such that g,, - g € G
as m — oo. Consider now the sequence given by {f, = ¢ng~'}. It is clear that
gmg H(z) = x as m — oo so that given any neighborhood U of x there is some M € N
such that if m > M then g,,g7*(z) € U. This means that G does not act discontinuously
at x.

Let G now be a discrete subgroup of PU(n,1) and {g,,} any sequence of distinct
elements of G. Assume now that there was some sequence of G and a neighborhood U
of x such that ¢,,(U) N U # @ for a infinite amount of g,,. We take the subsequence
consisting only of the elements g,, such that g,,(U)NU # @ (we will call this subsequence
{gr}). As U is a compact set, by corollary 5.12 we have that there exists a subsequence
of {gx} such that gi(z) — y uniformly for some y € 9B™ a contradiction. Let 2¢ > 0 be
the Euclidean distance between y and U, ¢,,(U) N U # & implies that for all m there
exists a point u,, € U such that the Euclidean distance of g,,(u) to y is greater than € a

contradiction with the uniform convergence of the sequence {g}. O

Corollary 6.3. [9] Let G be a subgroup of PU(n,1). Then G acts discontinuously at

some point of B™ if and only if G acts discontinuously at every point of B™

Proof. If G acts discontinuously at some point of B" then G is not discrete so G acts

discontinuously at every point of B™ by proposition 6.2. The converse is immediate. [
Lemma 6.4. [10] If G is a discrete subgroup of PU(n,1) then Hf C Q(G)

Proof. We begin by noticing that Lo(G) NHE = @ and L;(G) NHE = & as a consequence
of proposition 6.2, for if any point z € B™ was a cluster point with respect to G then G
would not act discontinuously at x and so would not be discrete.

Hence it suffices to prove that Ly(G) NHE = & to show that Hi C Q(G). Assume
there exists K C P{ — (Lo(G) U Lo(G)) discrete such that x € HE is a cluster point of
{gm(K)} for some sequence of distinct elements of G. As all elements of PU(n,1) leave
IET% invariant we may assume that K C Hf. Let U be any neighborhood of z, then U has

nonempty intersection with an infinite amount of {g,,,(K)}. Define the subsequence {g,,,, }
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of all the elements such that g,,(K) NU # @. By proposition 5.5 there is a subsequence
of {gm,;} that converges uniformly to a boundary point a contradiction with the fact
that g,,(K) NU # & for all elements of the subsequence. Thus Ly(G) NHE = & and so
H2NA(G) = HEN (Lo(G)ULy(G)UL(G)) = (HRULy(G)) N(HAUL, (G)) N (HEUL(G)) =
o = Hi C Q(G). O

Corollary 6.5. If G is a discrete subgroup of PU(n, 1) then G has the Kleinian property.
Proof. By lemma 6.4 HE C Q(G) = Q(G) # @ so G has the Kleinian property. O

These results already point in the direction of the main result of this work, as they
indicate that cluster points cannot exist in H for discrete subgroups of PU(n,1). Let us

show now a proposition regarding the convergence of points in P¢ — HT@.

Definition 6.6. [5/ Let x € C™' — Vj then we define P({(x)*) as the polar hyperplane to
P(z). If y € Vo we call P({y)1) the tangent polar hyperplane at P(y).

Proposition 6.7. If y € Vj then P({y)*) NHE = P(y).

This statement will be familiar to anybody that has already studied hyperbolic
geometry, it suffices to say that the orthogonal subspace given by an isotropic point must

be degenerate.

Proposition 6.8. [10] Let {w,,} C PL—HZ be a sequence such that w,, — w as m — oc.
Define W, as the intersection between ﬁ@ and the polar hyperplane to wy,. Let {v,,} be
a sequence such that v,, € W,, for all m and v,, — v as m — oco. Then:

(1) If w € OHE then w = v;

(id) If w € PR —HE then v € W UOW, where W denotes the polar hyperplane to
w. In particular, if v € OHE then w € V where V is the polar hyperplane tangent to v.

Proof. Notice first that if we take the standard lift of w,, and v,, we have that (v, w,,) =0
for all m € N so that (v, w) = 0.

Let us prove now (7). If w € OHE then we have that v belongs to the polar
hyperplane tangent at w. As the intersection of the polar hyperplane tangent at w with
HZ is {w} by proposition 6.7 and all the W,, are contained in Hf then v € JHZ and so
v =w.

Now let us prove statement (7). Then, by the initial observation, we have that
ve WUoOW. If v € OHE then v € OW hence w € V. m

We now have all the necessary tools needed to prove the main result of this work,

so we begin:

Proposition 6.9. [10] If G is a discrete subgroup of PU(n, 1) then L(G) = Lo(G) NOHE.
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Proof. Let us divide the proof in three different cases.

First assume that Ly(G) N OHE = &. Then no point in OHE has infinite isotropy
group with respect to GG. In particular this means that all g € G have finite order,
otherwise there would be a point in the boundary fixed by an infinite amount of elements
of ¢ (all infinite order elements are either parabolic or loxodromic and both of these
cases fixes points in the boundary). By theorem 5.22 this means that G is finite, hence
L(G) = @. Thus we conclude L(G) = @ = Lo(G) N OHE.

The second case is if |Lo(G) NOHE| = 1. Let Lo(G) NOHE = {z}, by corollary 5.12
there is a sequence of elements of G such that g,,(z) — = uniformly in compact subsets
of HE — {y} for some y € L(G) then z € L(G) and so Lo(G) NOHE C L(G). Assume now
that |L(G)| > 1 then, by corollary 5.21 G has a loxodromic element. Let z,w (2 # w)
be the points fixed by this loxodromic element. As any loxodromic element has infinite
order, both z and w must have infinite isotropy groups with respect to G. This means that
|Lo(G) NOHE| > 1 a contradiction with our initial assumption that |Lo(G) N OHE| = 1.
Thus we conclude |L(G)| = 1 and Ly(G) N OHE = L(G).

For the final case, assume that |Ly(G) NOHE| > 1. Let € Lo(G) NOHE and {g¢,,}
a sequence of elements in G,. By corollary 5.12 we have that there exists a subsequence
of {gn} and points z;,x5 € L(G) such that the subsequence converges uniformly to
z1 in compacts of HE — {z2}. As all g,, € G, then g,(r) = z implies that either
r = x; or £ = X9 hence x € L(G) = Lo(G)NIOHE C L(G). We notice now
that Lo(G) N OHE is G-invariant for if x and {g,,} are as stated above and h € G is
an arbitrary element of G then the group generated by {f,, := hg,h '} is infinite and
fm(h(2)) = hgmh ' (h(z)) = hgm(z) = h(z) so h(z) € Ly(G) N OHE. This means that
Lo(G) N OHE is a closed (by definition), G-invariant set with more than two elements so
L(G) C Lo(G) N OHE and we conclude L(G) = Lo(G) N OHE O

Proposition 6.10. [10] If G is a discrete subgroup of PU(n, 1) then L(G) = L;(G)NOHE.

Proof. If G is finite then L(G) = @ and L,(G) N OHE = @ trivially. So we have L(G) =
Li(G) N OHE in this case.

Let us show that L;(G) N 0HE C L(G). Assume G infinite and let z € OHE,
¢ € PE — Lo(G) and {gm} a sequence of distinct elements in G such that ¢,,(() — z. In
this case we must consider three situations.

For the first case, consider ¢ € H — Lo(G) then, by definition, z € L(G) and there
is nothing more to show.

For the second case, consider ¢ € OHE — Lo(G). By proposition 6.9 L(G) =
Lo(G) NOHE so ¢ € OHE — Lo(G) = (¢ € OHE — L(G). But by corollary 5.12 the
sequence ¢,,(¢) converges uniformly to some point in L(G). As g,,(¢) — z then z € L(G).

For the final case, consider ¢ € P% — (HZ U Lo(G)). Let W be the intersection of
the polar hyperplane to ¢ and Hf. As all g, are unitary then g¢,,(W) is the intersection
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of the polar hyperplane to g,,(¢) with H. Now, let w € W and consider the sequence
{gm(w)}. By corollary 5.12 some subsequence must converge to a boundary point in L(G),
define ¢ as the convergence point of this subsequence. As ¢,,(() — z and g,,(w) — ¢, by
proposition 6.8 we must have z = ¢ and thus z € L(G).

Hence L, (G) N OHE C L(G). Now notice that L(G) = G(p) N OHE so any point of
G is a cluster point of {g(p)}seq thus L(G) C Li;(G)NOHE and L(G) = L(G)NoHE O

Proposition 6.11. [10] If G is a discrete subgroup of PU(n, 1) then L(G) = Lo(G)NOHE.

Proof. 1f GG is finite then both sets are empty and the equality holds. Let us assume that G
is infinite. By lemma 6.4 we have that (Lyo(G)U L, (G))NHE = @ so L(G) C Ly(G) NOHE
as for any point © € L(G), z is a cluster point of the compact set {p} C Hf by definition,
so x € Lo(G) N OHE.

All we have to do now is see that Lo(G) N OHE C L(G). Let K be a compact
subset of P — (Lo(G) U L1 (G)) and let z € OHE be a cluster point for K with respect to
G. Now we can choose sequences {k,,} C K and {g,,} C G such that k,, - k € K and
9m(km) — 2z as m — oo. With this setup we need to consider four distinct situations.

The first is if £ € HE — (Lo(G) U L1(G)). In this case we may assume without loss
of generality that all the k,, € Hg. So, by corollary 5.12, there are points z,y € L(G)
such that ¢,,,(k;,) — x uniformly, so z =z € L(G).

The second case is if k € OHE — (Lo(G) U Li(G)) e some subsequence of {gn,},
still denoted by {g,,}, is entirely contained in HZ. Then by propositions 6.9 and 6.10
k € OHZL— L(G) and we can apply corollary 5.12 to the compact set given by {k, ki, .. JNHZ,
so that there are points x,y € L(G) such that g,,(k,,) — « uniformly. This implies that
z=ux € L(G).

The third case is if & € JHE — (Lo(G) U L1(G)) and only a finite amount of
elements of {k,,} belongs to Hg. Then we denote by W,, the intersection between the
polar hyperplane to k,, and Hf and by w,, a convergent sequence such that w,, € W,
for all m (we may need to take a subsequence). Let w,, — w as m — oo. Applying
proposition 6.8 we see that w = k. We consider now the action of {g,,} on the sequence
{w,,}, and by corollary 5.12 we see that for some g,,(w,,) converges uniformly to some
zr € L(G). As all g, are unitary we have that if w,,, € W,,, then g,,(W,,) is the intersection
of the polar hyperplane to g,,(k,,) and HZ. Hence, as g, (k) — 2 and g,,(w,,) — z, by
proposition 6.8 z = x € L(G) (remember that by definition z € OHR).

The final case is if k € P¢ — (Lo(G) U L1(G)). In this situation we may assume
without loss of generality that all the k,, are in P{ —]I-Tg. Let W, be the intersection of the
polar hyperplane of k,, and IPT%, W be the intersection of the polar hyperplane of k& and
HT% and let w,, be a sequence such that w,, € W,, for all m and w,, = w € W NHE. By
corollary 5.12, there is a point € L(G) such that ¢,,(w,,) — x uniformly. As all g,, are
unitary we have that if w,, € W,, then g,,(W,,) is the intersection of the polar hyperplane
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to gm(km) and H—T@ Thus g (km) — 2z and g, (w,,) — @ implies that z = x € L(G) by
proposition 6.8 (remember that by definition z € JH).
Hence Lo(G) NOHE C L(G) and Lo(G) NOHE = L(G). O

Corollary 6.12. [10] If G is a discrete subgroup of PU(n,1) then L(G) = A(G) N OHE.

Proof. The result follows from the three previous propositions as A(G)OHE = (Lo(G) U
Li(G) U Ly(G)) NOHE = (Lo(G) N OHE) U (L1 (G) NOHR) U (Lo(G) NOHE) = L(G). O

We finish by proving that :
In [2]| they were able to prove the equality of the limit sets and further elaborate
that that A(G) is the union of all hyperplanes tangent to some point of L(G).
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7 CONCLUSION

With the previous section we finally conclude the thesis with the proof that the
Chen-Greenberg limit set is the intersection of the Kulkarni limit set and the boundary
of H¢. We believe, though we were still unable to show it conclusively that we can use
the tools developed in this work to show that the Kulkarni limit set is the union of all
tangent hyperplanes at a point of the Chen-Greenberg limit set.

Finally we would like to point out that for any non-elementary discrete subgroup of
PU(n, 1) the complement of the Kulkarni limit set is the maximal set where the subgroup

acts discontinuously.|2]
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