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Resumo
Após a chegada dos primeiros povos na América do Sul, vários grupos culturais

foram formados levando ao surgimento de sociedades complexas em diferentes áreas

ecológicas. Mais tarde, a chegada dos europeus levou a um processo de miscigenação que

contribuiu para a estrutura genômica de várias populações atuais. A inclusão da variabilidade

genética dessas populações nos estudos genéticos contribui para a melhor compreensão da

história humana, bem como para resolver questões biomédicas, como suscetibilidade a

doenças, resposta a tratamentos médicos e elucidação de fenótipos complexos. No entanto, as

populações sul-americanas permanecem sub-representadas. Esta tese apresenta trabalhos que

contribuem para mudar esse cenário. O primeiro capítulo é uma revisão da história da

humanidade no continente, contada pela genética de populações atuais e antigas, desde a

chegada dos primeiros seres humanos até o processo de miscigenação. No segundo capítulo,

apresento o principal projeto que desenvolvi durante meu doutorado, focado na adaptação aos

ambientes dos Andes e da Amazônia e na relevância médica da diversidade genética dessas

populações. Ao aplicar testes de varredura genômica para seleção natural em um grande

conjunto de dados de populações nativas do Peru (177 indivíduos genotipados para 2,5 M

SNPs), identificamos: nos Andes, os genes HAND2-AS1 (relacionados à função

cardiovascular) e DUOX2 (relacionada à função tireoidiana e imunidade inata); na

Amazônia, o gene que codifica a proteína CD45, essencial para o reconhecimento de

antígenos pelos linfócitos T/B na interação vírus-hospedeiro. Através da análise da

diferenciação genética (Estatísticas F) entre populações nesses dois ambientes, identificamos

diferenças acentuadas na frequência de variantes de relevância biomédica relatadas no GWAS

Catalog (TMPRSS6) e PharmGKB (ABCG2). No terceiro capítulo, apresento três artigos nos

quais participei analisando populações americanas nativas e miscigenadas. Os dois primeiros

exploram o mosaico dos genomas das populações americanas miscigenadas para fazer

inferências sobre a história da diáspora africana no continente americano, e para detectar

variantes associadas ao IMC realizando um admixture mapping em coortes populacionais

brasileiras. Por fim, apresento um artigo desenvolvido no contexto da atual pandemia de

COVID-19 que avalia a diversidade genética de genes relacionados à SARS em nativos da

América do Sul.

10



Abstract
After the arrival of the first human beings in South America, several cultural groups

were formed leading to the emergence of complex societies in different ecological areas.

Later, the arrival of Europeans led to a process of admixture that contributed to the genomic

structure of several current populations. The inclusion of the genetic variability of these

populations in genetic studies contributes to the better understanding of human history, as

well as to solve biomedical issues such as susceptibility to diseases, response to medical

treatments and the elucidation of complex traits. However, South American populations

remain underrepresented. This thesis presents works that contribute to changing this scenario.

The first chapter is a review on the human history on the American continent told by the

genetics of current and ancient populations, from the arrival of the first humans to the process

of admixture. In the second chapter I present the main project I developed during my PhD

focused on the adaptation to the environments of the Andes and the Amazon, and the medical

relevance of the genetic diversity of these populations. By applying genome-wide scans for

natural selection on a large dataset of native populations from Peru (177 individuals

genotyped for 2.5 M SNPs), we find: in the Andes, the genes HAND2-AS1 (related to

cardiovascular function) and DUOX2 (related to thyroid function and innate immunity); in

the Amazon, the gene that encodes the CD45 protein, essential for the recognition of antigens

by T/B lymphocytes in the virus-host interaction. Through the analysis of genetic

differentiation (F-Statistics) between populations in these two environments, we identified

sharp differences in the frequency of variants of biomedical relevance reported in the GWAS

Catalog (TMPRSS6) and PharmGKB (ABCG2). In the third chapter, I present three articles

in which I participated analysing Native and Admixed American populations. The first two

explore the mosaic of the genomes of admixed American populations to make inferences on

the history of the African diaspora to the American continent, and to detect variants

associated with BMI through an admixture mapping performed on Brazilian population

cohorts. Finally, I present an article developed in the context of the current pandemic of

COVID-19 that evaluates the genetic diversity of genes related to SARS in Native South

Americans.
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Introduction
Along the journey of the human species across the continents colonizing the most

diverse environments, several evolutionary events have shaped the genetic structure of

populations, leaving footprints on the human genome. In the first chapter of this thesis I

present a review on the history of the settlement of the Americas told by the genomic

footprints that have been detected in the last years with a range of different methods applied

to current populations and ancient DNA. This review, entitled “The history behind the mosaic

of the Americas” 1, was published in the journal Current Opinion in Genetics & Development

and provides an evolutionary contextualization of the population dynamic and the events of

genetic differentiation and adaptation of the South American populations that will be treated

in the second chapter.

In the second chapter, I present the article “The genetic structure and adaptation of

Andean highlanders and Amazonians is influenced by the interplay between geography and

culture” 2, in which our group analyzes the genome of Native South American populations to

elucidate the genetic relationships between them, the history of gene flow, and the process of

adaptation to the Andean and Amazonian environments. The settlement of South America

represents the occupancy of different ecological environments and these populations are

exposed to specific selective pressures of climates, diets and pathogen diversity 3. With

increasing available genetic information and the development of new methods, such as

genome wide scans for natural selection, several signs of recent selection have been

elucidated in different world populations 4. Such signs regard human genes related to

metabolism, physical traits and disease resistance, for example: skin pigmentation 5, lactose

intolerance 6, high altitude adaptations 7 and resistance to malaria 8. However, studies with

native populations in South America are still scarce, whether in analyses of natural selection

or in genetic studies in general 4,9. In the work presented here, I address this issue by carrying

out tests of natural selection, and by identifying variants of biomedical relevance that present

discrepant frequencies among the populations that inhabit the Andean and Amazonian

environments.

The Andean populations addressed in this project live in the arid south region of the

Andes, where altitudes are higher and the environment is characterized by the cold, dryness,

high UV radiation, and lower oxygen levels (hypoxia). These factors make the Andes an
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extreme environment, ideal for the study of human adaptation. In fact, the Andean

populations have been the focus of many anthropological and physiological studies in South

America 10. The pressure exerted by hypoxia does not leave much room for cultural

adaptations, requiring biological changes 11, and several hematological and respiratory

differences between Andeans and lowlanders have already been identified in these groups.

For example: lower values of arterial-alveolar O2, greater total lung volumes, higher levels of

hemoglobin, lower leg blood flow during exercise, and greater pelvic blood flow during

pregnancy 10. Some of these adaptations are developmental, such as lowlanders who migrated

to high-altitude environments as children and have forced vital capacity (FEV) similar to that

of high-altitude natives, which is greater than that of those who migrated as adults 12. Others

result from acclimatization, as occurs when hemoglobin levels rise in lowlanders who have

spent time in high altitude environments 13. However, some of these adaptations can not be

acquired, and require a genetic explanation 10.

Genome-wide scans for natural selection in Andean populations have identified genes

related to the hypoxia-inducible factors pathway (EGLN1, ET-1) 14,15, oxidative stress

(FAM213A) 16, thyroid function (DUOX2) 17 and cardiovascular function and development

(NOS2, VEGFB, TBX5) 18,19. Both genetic and physiological studies show differences in the

adaptations found in Andean and Tibetan high altitude populations 10. Until now, methods

focused on monogenic selection have identified only one convergent region between these

populations, which is around EPAS1 gene (endothelial protein from the PAS 1 domain -

2p21) that encodes the hypoxia-inducible factor of the 2-alpha protein (HIF-2a) 14. Using a

polygenic approach that aims to detect more subtle signals in multiple correlated genes, Gouy

et al., 2017 20 identified convergent selection in Andean and Tibetan populations in pathways

related to vascular process, hypoxia response and blood coagulation.

In contrast to the long history of studies on adaptation in Andean populations,

information about natural selection in the Amazon is much more scarce. The low incidence of

light, a warm and humid climate, and the high biodiversity, including human pathogens,

found in the Amazon, are typical characteristics of the rainforests found around the world 3,9.

Amorin et al. 2015 21 explored these environmental similarities by looking for signs of natural

selection in rainforests populations in Brazil and Africa and found signals of selection in a

gene related to lipid metabolism (SCP2 - sterol transport protein 2) in America and a

convergent signal between the continents related to the immune system (CCL28 - CC Motif

Chemokine ligand 28). Other studies on adaptation to rainforest mainly targeted African
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hunters-gatherers populations and had found genetic regions under selection related to:

immune system, reproduction, lipid metabolism, thyroid function, and body growth 9,22. The

last one is related to the short stature phenotype that is typically associated with populations

living in tropical forests and was evidenced by the signs of convergent polygenic selection in

Asian and African rainforest populations 23,24. Hypotheses about the possible advantages of

this phenotype address different aspects of the environment: energy availability (despite the

high biodiversity, rainforests are not rich in resources for humans 25), improvement in

locomotion in dense vegetation, and thermoregulation. The work presented here contributes

to fill the gap regarding genomic studies in the Amazon exploring the genetic factors that

influenced the human survivor in this environment.

The effect of natural selection in these two different environments has led to the

prevalence or exclusion of different alleles in these populations. However, several variants

present discrepancies in the frequencies between these groups (showing high values of FST for

those variants) that did not necessarily arise due to the action of natural selection but may

have medical relevance, influencing disease susceptibility and response to medical

treatments. Population genetics studies are more frequently conducted in populations of

European descent, leaving other ethnic groups, such as Native South Americans,

underrepresented 26,27. This unbalance in representation creates a bias when applying new

discoveries for these different populations 27. In this context, the identification of variants

previously associated with health-related phenotypes that are highly differentiated between

these populations, can contribute to improve health policy management in these regions. In

addition to identifying genetic regions adaptive to the environments of the Andes and the

Amazon, I did a survey of the highly differentiated variants among these populations that are

deleterious mutations, or are mentioned in the PharmGKB (https://www.pharmgkb.org/) 28

and GWAS Catalog databases (https://www.ebi.ac.uk/gwas/home) 28,29.

In addition to developing the main project on the evolutionary history and adaptation

of Native South American populations, during my PhD at the Laboratory of Human Genetic

Diversity (LDGH) I had the opportunity to participate in different projects applying

population genetics for historical and biomedical studies in South American populations. In

chapter 3 I describe my contribution in analyses carried out for 3 articles: “Origins,

Admixture Dynamics, and Homogenization of the African Gene Pool in the Americas” 30,

“Admixture/fine-mapping in Brazilians reveals a West African associated potential regulatory

variant (rs114066381) with a strong female-specific effect on body mass- and fat
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mass-indexes” 31, and “Human-SARS-CoV-2 interactome and human genetic diversity:

TMPRSS2-rs2070788, associated with severe influenza-induced SARS, and its population

genetics caveats in Native Americans” 32.
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Chapter 1 - Review: The history behind the
mosaic of the Americas

Introduction

One of the main research topics of the Laboratory of Human Genetic Diversity

(LDGH) group is the human evolutionary history of Latin American populations. We aim to

increase the knowledge about how the settlement of this continent occurred since the arrival

of the first human beings, the dynamic between the complex populations and empires that

were raised there, the process of adaptation to new and diverse environments, and the

admixture process after the arrival of Europeans. In this context, we were invited by Prof.

Sarah Tishkoff from the University of Pennsylvania to write a review of the recent literature

on the human evolutionary history in the Americas, that we entitled “The history behind the

mosaic of the Americas” 1, published in the journal Current Opinion in Genetics &

Development. My contribution to this paper was writing the section “Inferences about natural

selection” and reading and critically discussing the other sections.

I was in charge of this Section because during my PhD I worked on the analysis of the

genetic differentiation and the inference of natural selection in Native South American

populations from two very distinct environments: the Andes and the Amazon. This work

required a detailed study of the demographic history of these populations and of all aspects of

the natural selection process, including the methodologies applied to detect its footprints in

the genome, which gave me a good background to collaborate on this review. This article

provides an evolutionary contextualization of the events of genetic differentiation and

adaptation of the South American population that will be treated in the next chapter. For this

reason, although this review was written in the last year of my PhD, I decided to put it in

Chapter 1 as an introduction to Chapter 2.

The literature review is a crucial step in all scientific works. It gives an overview of

the study subject allowing the contextualization and orientation of the research. The paper

presented in this chapter was very helpful to the conclusion of our manuscript (chapter 2) and

especially for the decisions regarding the next steps to be taken. Here, we highlight that the

most used methods to infer natural selection are based on allelic frequencies and their spectra,

or long-range haplotypes/linkage disequilibrium, with few studies using a gene-set approach
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to detect more subtle signals from genes in common biological networks. This inspired us to

start an exploratory analysis on polygenic selection, conducted by Carolina Silva, a master’s

student, and to write a project aiming to develop a method to detect polygenic selection and

to apply it to native populations from the Amazon and the Andes. This proposal was

submitted by me to the Brazilian National Council for Scientific and Technological

Development - CNPq to apply for a Junior Postdoctoral Scholarship (PDJ).

Methodology

The survey for the section “Inferences about natural selection” was carried out

through a search in Pubmed for articles published between 2015 and February 2020, using

combinations of the following terms: “natural selection”, “human adaptation/evolution”,

“North America”, “South America”, “Americas”, “Native American populations” and

“admixed populations” (Table 1). After an initial screening, 38 articles (Table 2) related to the

theme, including three reviews, were selected to be analyzed in depth. The content of these

papers was condensed in a text highlighting the main findings, methodologies, challenges and

perspectives in the field.

Table 1. List of filters and terms used in the search performed with Pubmed and number of results obtained.
Filters Terms Results

Year: 2015-2020
Specie: Humans

Natural Selection

Americas 820

Native American populations 34

South America 152

North America 386

Admixed populations America 15

Human adaptation
evolution

Americas 415

Native American populations 9

South America 104

North America 165

Admixed populations America 3
*These numbers refer to the results of the respective searches including papers that appear in the other

combinations of terms.
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Table 2. List of papers analyzed to produce the section “Inferences about natural selection” of the review “The
history behind the mosaic of the Americas”, published in the journal Current Opinion in Genetics &
Development. Reviews are marked with *.

Article Author Year

Detection of Convergent Genome-Wide Signals of Adaptation to
Tropical Forests in Humans.

Amorin et al. 21 2015

Ancestry variation and footprints of natural selection along the
genome in Latin American populations.

Deng et al. 33 2016

Ancient DNA reveals selection acting on genes associated with
hypoxia response in pre-Columbian Peruvian Highlanders in the last
8500 years.

Fehren-Schmitz e
Georges 34 2016

The role of natural selection in human evolution – insights from Latin
America.*

Salzano et al. 35 2016

Genetic signature of natural selection in first Americans. Amorim et al. 36 2017

Human adaptation to arsenic in Andean populations of the Atacama
Desert.

Apata et al. 36,37 2017

Natural Selection on Genes Related to Cardiovascular Health in
High-Altitude Adapted Andeans.

Crawford et al. 18 2017

Evidence of Early-Stage Selection on EPAS1 and GPR126 Genes in
Andean High Altitude Populations.

Eichstaedt et al. 38 2017

Detecting gene subnetworks under selection in biological pathways. Gouy et al. 20 2017

Strong Amerindian Mitonuclear Discordance in Puerto Rican
Genomes Suggests Amerindian Mitochondrial Benefit.

Massey 39 2017

Measuring high-altitude adaptation.* Moore 40 2017

Genome-Wide Analysis in Brazilians Reveals Highly Differentiated
Native American Genome Regions.

Mychaleckyj et al. 41 2017

Ancestral Variations in the Shape and Size of the Zygoma. Oettle et al. 42 2017

An assessment of postcranial indices, ratios, and body mass
versuseco-geographical variables of prehistoric Jomon,
Yayoiagriculturalists, and Kumejima Islanders of Japan.

Seguchi et al. 43 2017

New Insights into the Genetic Basis of Monge’s Disease
andAdaptation to High-Altitude.

Stobdan et al. 44 2017

Variation in obstetric dimensions of the human bony pelvis in relation
to age-at-death and latitude.

Auerbach et al. 45 2018

Reconstructing the Deep Population History of Central and South
America

Posth et al. 46 2018

Genetic ancestry effects on the distribution of toll-like receptors
(TLRs) genepolymorphisms in a population of the Atlantic Forest,
São Paulo, Brazil.

Guimaraes et al. 47 2018

Environmental selection during the last ice age on the
mother-to-infant transmission of vitamin D and fatty acids through
breast milk.

Hlusco et al. 48 2018

Analysis of Type 2 Diabetes and Obesity Genetic Variants in Mexican
Pima Indians Marked Allelic Diferentiation Among Amerindians at

Hsueh et al. 49 2018
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HLA.

Selection scan reveals three new loci related to high altitude
adaptation in Native Andeans.

Jacovas et al. 17 2018

Susceptibility to Plasmodium vivaxmalaria associated with DARC
(Duffy antigen) polymorphisms is influenced by the time of exposure
to malaria.

Kano et al. 50 2018

Natural Selection Has Differentiated the Progesterone Receptor
among Human Populations.

Li et al. 51 2018

FADS1 and the Timing of Human Adaptation to Agriculture.
Mathieson and
Mathieson 52 2018

Genetic ancestry, admixture and health determinants in Latin
America.

Norris et al. 53 2018

Extended HLA-Ggenetic diversity and ancestry composition in a
Brazilianadmixed population sample: Implications for
HLA-Gtranscriptional controland for case-control association studies.

Oliveira et al. 54 2018

Detecting Polygenic Adaptation in Admixture Graphs. Racimo et al. 55 2018

polymorphisms of ADMe-related genes and their implications for
drug safety and efficacy in Amazonian Amerindians.

Rodrigues et al. 56 2018

A GWAS in Latin Americans highlights the convergent evolution of
lighter skin pigmentation in Eurasia.

Adhikari et al. 57 2019

Population history and gene divergence in Native Mexicans inferred
from 76 human exomes.

Avila-Arcos et al. 58 2019

Unveiling the Diversity of Immunoglobulin Heavy Constant Gamma
(IGHG) Gene Segments in Brazilian Populations Reveals 28 Novel
Alleles and Evidence of Gene Conversion and Natural Selection.

Calonga-Solis et al. 59 2019

The Genetic Architecture of Chronic Mountain Sickness in Peru. Grazal et al. 60 2019

Evolution of Hominin Polyunsaturated Fatty Acid Metabolism: From
Africa to the New World.

Harris et al. 61 2019

Human Genetic Adaptation to High Altitude: Evidence from the
Andes.*

Julian and Moore 10 2019

Comparing signals of natural selection between three Indigenous
North American populations.

Reynolds et al. 62 2019

Complex nature of Hominin Dispersals: ecogeographical and climatic
evidence for pre-contact craniofacial Variation.

Ross and Ubelaker 63 2019

Adaptation to Extreme Environments in an Admixed Human
Population from the Atacama Desert.

Vicuna et al. 64 2019

Investigating mitonuclear interactions in human admixed populations. Zaide and Makova 64,65 2019
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The history behind the mosaic of the Americas
Marla Mendes1, Isabela Alvim1, Victor Borda2 and
Eduardo Tarazona-Santos1

Focusing on literature published in 2018–2020, we review

inferences about: (i) how ancient DNA is contributing to clarify

the peopling of the Americas and the dispersal of its first

inhabitants, (ii) how the interplay between environmental

diversity and culture has influenced the genetic structure and

adaptation of Andean and Amazon populations, (iii) how

genetics has contributed to our understanding of the Pre-

Columbian Tupi expansion in Eastern South America, (iv) the

subcontinental origins and dynamics of Post-Columbian

admixture in the Americas, and finally, (v) episodes of adaptive

natural selection in the American continent, particularly in the

high altitudes of the Andes.
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Corresponding author:

Tarazona-Santos, Eduardo (edutars@icb.ufmg.br)

Current Opinion in Genetics and Development 2020, 62:72–77

This review comes from a themed issue on Genetics of human origin

Edited by Sarah Tishkoff and Joshua Akey

https://doi.org/10.1016/j.gde.2020.06.007

0959-437X/ã 2020 Elsevier Ltd. All rights reserved.

Introduction
Focusing on post-2018 literature, we review studies on

population genetics of the Americas on: (i) the demo-

graphic history of Native Americans, (ii) the genetics of

post-Columbian admixture, and (iii) adaptive natural

selection.

The peopling of the Americas
Archaeology, cranial and dental morphology, protein

polymorphisms and DNA-uniparental markers have been

traditional sources of knowledge for the peopling of the

Americas [1–4]. Three recent advances were: develop-

ment of model-based statistical methods that simulta-

neously consider genetic drift and gene flow; access to

genome-wide data; and more recently, studies on ancient

DNA (aDNA).

The first milestone in the evolution of Native Americans

is the split of their ancestors from East Asians �36 KYA

(Kilo-Years Ago), likely in Northeast Asia, with gene flow

between the two differentiating groups persisting until

�25 KYA (likely still in Asia) [5�]. This is consistent with

results from Raghavan et al. [6]: the Asian population that

was ancestral to modern Native Americans resulted from

admixture between a population related to the Upper

Paleolithic Mal’ta boy skeleton from south-central Siberia

and an East Asian related population, ancestral to the Han

from China.

A second milestone in the settlement of the Americas was

the Beringian standstill [7,8], a period when the Ancestral

Native American populations were isolated from Asian

groups, which may have lasted between 4.6 KY [9] and

15 KY [10]. Moreno-Mayar et al. [5�], studying aDNA from

Upward Sun River dated around 11.5 KYA, inferred that an

ancient Beringian population diverged from the ancestor of

Native Americans 22�18 KYA, possibly in: (i) Northeast

Asia/Siberia (i.e. before the Beringian standstill, which

implies that the standstill population was structured); or

(ii) East Beringia (during/after the Beringian standstill)

[11]. The large number of archaeological sites dated

20 KYA or older found in northeast Asia compared to East

Beringia [12,13] supports the first scenario.

Estimates of the effective population size for the founding

population of the Americas is around a few hundred indi-

viduals [14]. Two possible southward routes for the first

Americans were: (i) The Pacific Coast, where ice retreated

�16 KYA [11], supported by the oldest radiocarbon dates of

the Cooper’s Ferry site [15] and; (ii) the ice-free corridor

between the Cordilleran and Laurentide ice sheets [13,16].

Demographic modeling using aDNA suggests a third mile-

stone split of the Native American Ancestral group into two

branches associated with Northern Native Americans

(Ancestral B in sensu Scheib et al. [18]) and Central/Southern

Native Americans (Ancestral A in sensu Scheib et al. [18]),

dated 17�14.6 KYA [5�,17,18]. This split likely occurred in

the region between Eastern Beringia and the unglaciated

North America [18,19].

The divergence between Central and South Amerindians

still needs robust dates that consider back migration from

northern South America to Central America. For now, we

have the mtDNA-based estimates of 13–19 KYA for the
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divergence between Peruvian and Panamanian natives,

which is consistent with the oldest South American site of

Monteverde in Chile [20], and the estimates based on

1000 Genomes Project admixed individuals of �12�13

KYA [21]. The dispersal across South America was rapid,

occurring within a 1.5 KY span [22]. Possible routes of

dispersion were the Pacific Coast [22–24] and the Atlantic

Coast [25]. A method that evaluates the minimum num-

ber of contributing ancestral sources that better explain

the genetic diversity in South Amerindians (qpWave,

[26]) suggests four contributing populations [27�]: three

of them related to the Ancestral A (in sensu Scheib et al.
[18]) population: (i) the Ancestral A; (ii) another Ancestral

A, related to the Clovis Anzick-1 individual; (iii) another

Ancestral A related to aDNA from Californian Channel

Islands individuals (specifically to Andean populations)

and finally (iv) a minor debatable contribution present in a

few Brazilian native isolates, that Skoglund et al. [59] and

Moreno-Mayar et al. [19] attribute to an Australasian-

related source. However, studies of aDNA [27�] and

mitogenomes [22] did not replicate this biogeographic

association.

Western South America, being one of the worldwide

cradles of civilization [28], has been a focus of population

genetics studies [24,29�,30,31,32��]. The well known Inca

Empire was the tip of the iceberg of a process that lasted for

thousands of years. Notably, Western South America

hosts a rich environmental diversity encompassing a

desert coast, the Andean mountains and plateaus, as well

as its adjacent Amazonian tropical forest. Populations

from these biogeographic regions (Coast, Andean and

Amazonian populations) split around 8–12 KYA

[24,29�]. Barbieri et al. [31] have reported episodes of

gene flow between Amazonian populations, which sug-

gest that this region is not necessarily characterized by

highly isolated groups, as previously thought. Borda et al.
[32��] have revealed how the interplay between environ-

mental diversity and culture influenced the genetic struc-

ture and adaptation of Andeans and Amazonians. Borda

et al. [32��] show that the between-population homogeni-

zation of the central-southern Andes and its differentia-

tion with respect to Amazonian populations of similar

latitudes observed by Tarazona-Santos et al. [33] do not

extend northward. The east-west gene flow between the

north coast of Peru, Andes, and Amazonia was concomi-

tant with cultural and socioeconomic interactions

suggested by archeology. This geographic pattern of

genetic diversity mimics the environmental and cultural

differentiation between the fertile north Andes, where

altitudes are lower; and the arid south, where the Andes

are higher and act as a barrier to gene flow. Also, the

genetic homogenization between the populations of the

arid Andes is not only due to migration during the Inca

Empire or subsequent periods, but started at least as early

as the expansion of the important pre-Inca Wari Empire

(600–1000 years ago) [32��].

The Tupi were one of the most numerous ethnic groups

living in the XVth Century on the Brazilian coast, but in

the XVIIIth Century they were almost extinct. Castro e

Silva et al. [34] studied one of the few remanent coastal

Tupi populations and tested two alternative hypotheses

about the North-to-South Tupi Expansion (by-litoral

versus by-inland). Genomic data supports the first

hypothesis: a Pre-Columbian migration from Amazon

to the northeast coast, giving rise to Tupı́ coastal popula-

tions, and a single migration southward that originated the

Guaranı́ people from Brazil and Paraguay. Castro e Silva

et al. [34] dedicated their article to Francisco M Salzano,

who co-authored the paper, and sadly passed away in

2018 being 91 years old, and was one of the most influen-

tial and appreciated scholars studying the human biology

of the American continent populations (Figure 1).

The mosaic of the Americas
Because Latin American ancestry results from Post-

Columbian admixtures between Europeans, Africans,

and Native Americans, their genomes are like a mosaic

of fragments (i.e. tracts) deriving from those ancestries

[35]. The shift from inferences of admixture proportion to

inferences of the admixture dynamics in population

genetics is like the shift from the era of photographs to

that of filmmaking. One family of methods to infer

admixture dynamics relies on the distribution of the tract
lengths (i.e. contiguous DNA blocks inherited from a

parental population) [36–38]. Kehdy et al. [38] revealed

that the low Native American ancestry of admixed Bra-

zilians, characterized by short tracts, was almost entirely

introduced immediately after the first arrival of Eur-

opeans into the Americas, which is consistent with the

decimation of Native Americans in Brazil. Noteworthy,

methods to infer admixture dynamics do not infer when

the immigrants arrived (a demographic event), but date

intensification of biological admixture. For instance, Har-

ris et al. [29�] inferred that current Peruvian mestizos
(predominantly Native American) living in cities founded

400–500 years ago by Spaniards harbor the signature of

biological admixture with Spaniards occurring only �200

years ago. This is because individuals with predominant

European or Native American ancestries may have coex-

isted without admixing for generations, or because Native

American ancestors of current mestizos may predomi-

nantly have arrived in the cities (where admixture

occurred) only recently from rural populations where they

were isolated. Similar dates of �250 years ago have been

inferred for intensification of admixture in Mexico,

Colombia, Brazil, Chile, and Peru, using the chromopain-
ter-based method based on haplotypes [39], that relies on

the pattern of linkage disequilibrium generated by

admixture. Also using the chromopainter-based methods

to analyze the African Diaspora, Gouveia et al. [40��]
captured a continental trend: in most of the Americas,

intercontinental admixture intensification occurred

between 1750 and 1850, which correlates with the peak
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of the slave trade from Africa. Furthermore, Gouveia et al.
[40��] performed a systematic comparison of population

history inferred from genomic data to historical demo-

graphic records from SlaveVoyage database (https://www.

slavevoyages.org). This kind of comparison of genetics

and demography data may be interpreted as a tribute to

Luca Cavalli-Sforza, who passed away in 2018. Indeed,

systematic integration of genetic and demographic data

has solid roots in human populations genetics, partly in

the work by Cavalli-Sforza more than sixty years ago in

the Parma Valley [41]. However, this kind of comparison

has become rare in the era of human population genomics.

Recent studies are detecting sources of admixture at a

subcontinental geographic resolution. In Latin America

Chacón-Duque et al. [39] differentiated Spanish

contribution to Spanish-speaking populations from Por-

tuguese contribution to Brazil and detected South/East

Mediterranean ancestry across Latin America that likely

reflects the clandestine colonial migration of Christian

converts of Jews origin (Conversos). The roots of the

African Diaspora is also being mapped [38,40��,42–44]: (i)

West-Central African ancestry is predominant in the

Americas, (ii) Western African ancestry and South/East-

ern African Bantu-associated ancestries show a longitu-

dinal pattern, with the former more common in northern

latitudes of the Americas and the latter ancestry more

common in southern South America. An interesting result

by Gouveia et al. [40��] is that while African intra-popula-

tion diversity was not lost during the African Diaspora,

there was a between-population homogenization of the

African gene pool in the Americas. With respect to Native

74 Genetics of human origin
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Infographic of the key events of the evolutionary history of the Americas.

The color of the bottom horizontal arrow represents the temporal scale from past to present. Authors that present results and discuss each event

are evidenced in the gray square. The dashed arrow is related to a controversial event. A) Moreno-Mayar et al. [5�,19]; Waters et al. [11]. B)

Raghavan et al. [17]; Moreno-Mayar et al. [5�,19]. C) Potter et al. [13]; Moreno-Mayar et al. [5�,19]; Waters [11]; Pinotti et al. [9]. D) Potter et al. [13];

Waters [11]; Davis et al. [15]; Scheib et al. [18]; Moreno-Mayar [5�,19]. E) Posth et al. [27�]. F) Gravel et al. [21]; Moreno-Mayar et al. [5�,19]; Harris

et al. [29�]. G) Skoglund et al. [59]; Moreno-Mayar [5�,19]. H) Gouveia et al. [40��]; Baharian et al. [60]; Lindo et al. [24].
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American ancestry, studies in different countries show

that in Mestizo populations, Native American admixture

predominantly originates from nearby indigenous groups

[29�,39,45].

Inferences about natural selection
The most commonly used methods to infer natural selec-

tion are still based on allele frequencies or their spectra or

on long-range haplotypes/linkage disequilibrium. Some

gene sets are more often reported in Native American

populations: (i) the immune system appears very fre-

quently [24,32��,46–51], including signals of convergent

selection in tropical forests from Amazon and Africa

(CCL28) [52]; (ii) adaptation of lipid metabolism

[50,53], for example, SCP2 in Amazon [52], KCNH1 in

Alaska [51]; and (iii) adaptations to extreme environments

such as high soil concentration of Arsenicum in the

Atacama Desert, where variants in the gene AS3MT were

selected for efficiency in arsenic metabolism [54] and

with cold (HS3ST4) in Alaska [51].

Adaptation to high altitude by Andean populations is a

classic topic of physiological and anthropological studies

in South America, revealing hematological and respiratory

adaptations to hypoxia [55,56]. Genome-wide scans for

natural selection in Andean populations have identified

genes related to the hypoxia-inducible factors pathway

(EGLN1,ET-1), oxidative stress (FAM213A) and cardio-

vascular function and development (DST,NOS2,

VEGFB,TBX5,HAND2-AS1) [24,32��,56].

In admixed populations of the Americas, genomic regions

or gene sets for which the contribution of European,

African or Native American ancestry is beyond what

would be expected given their genome-wide proportions,

are signatures of natural selection by adaptive introgres-

sion. Using this concept, Norris et al. [47] identified

signals for immune system pathways such as T cell

receptors signaling, antigen processing and presentation,

and cytokine-receptors interaction, shared between four

populations from Peru, Colombia, Puerto Rico, and

Mexico. This gene-set approach is interesting, but it

posits statistical challenges related to significance tests

for gene-sets that we still need to better understand to

avoid false positives.

Prospects
Because current studies are mostly based on very few

individuals for each site, which may bias the results, we

still need aDNA studies based on more individuals

Another approach is that used by Mas-Sandoval et al.
[57], who explored an interesting reconstruction of Native

American haplotypes from admixed individuals, which is

important in places where indigenous populations no

longer exists. Methodologies to study admixture dynam-

ics would benefit if they include complexities such

as ancestry-dependent assortative mating, including

ancestry-related sex bias, which may result in interesting

questions, methods, and conclusions [58]. Signatures of

polygenic natural selection remain to be explored in

Native Americans, as well as functional validation of

natural selection claims using both candidate genes and

the developing arsenal of functional genomics.
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Chapter 2 - Natural Selection and Genetic
variability in Native South Americans

Introduction

The main project developed during my PhD aimed to analyze the genetic diversity of

native populations in South America with two focuses: (i) the identification of variants that

have suffered selective pressure since the settlement of South America, specifically in

relation to the occupation of two environments, the Andes and the Amazon; and (ii) the

analysis of the differentiation between the populations of these regions, with the aim of

identifying variants that are highly divergent and that may be of biomedical interest,

according to notes from public databases. These analyses are reported in the article “The

genetic structure and adaptation of Andean highlanders and Amazonians is influenced by the

interplay between geography and culture”2, of which I share the first authorship. In this

article, our group analyzes the evolutionary history of Native South American populations

told by the footprints left in the genome of current populations through the processes of

migration, gene flow, population isolation, genetic drift and natural selection. My

contribution was reading and critically discussing all the sections, and performing the

analyses listed below and described in detail in the Supplementary Material of the article

(Section 5).

I developed scripts in Perl and R to prepare input files, run the analyses, filter and plot

the results of the following tests:

► Population Branch Statistics (PBS) 7,18: Genome-wide scan for natural selection based

on allele frequencies. This analysis was carried out in conjunction with the PhD

student Marla Mendes. The parameters needed to run the test were decided together,

the scripts to run the PBS and p-value values were made by Marla and those to filter

and plot the results by me. The annotation and analysis of the results was performed

by me.

► Cross-population Extended Haplotype Homozygosity (xpEHH) 66: genome-wide scan

for natural selection based on haplotypes.

► F-statistics 67: Calculation of the FST to identify variants with highly differentiated

frequencies between the study populations.

26

https://paperpile.com/c/w6PfuA/qQxn
https://paperpile.com/c/w6PfuA/6DWs+ktAU
https://paperpile.com/c/w6PfuA/QwBh
https://paperpile.com/c/w6PfuA/idxJ


The following analyzes were performed by me using public softwares developed for

population genetics and genomics analysis:

► Linkage disequilibrium (LD) analysis with Haploview 68.

► Annotation of the natural selection and genetic differentiation results in public

databases with the software MASSA 69.

► Identification of regulatory elements: we used the UCSC genome browser 70 to check

for the presence of active regulatory elements around the variants with natural

selection signals. This analysis was carried out in conjunction with Dr. Marcelo

Luizon, from the Pharmacogenomics Lab of the Department of Genetics, Ecology and

Evolution at UFMG.

Supplementary tables, as well as the paper and supplementary material in PDF format

can be accessed at:

https://drive.google.com/drive/folders/1Ew2qi6FFIKz3WmU1akdgUvkVtgsrFsgY?us

p=sharing
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Western South America was one of the worldwide cradles of
civilization. The well-known Inca Empire was the tip of the iceberg
of an evolutionary process that started 11,000 to 14,000 years ago.
Genetic data from 18 Peruvian populations reveal the following: 1)
The between-population homogenization of the central southern
Andes and its differentiation with respect to Amazonian popula-
tions of similar latitudes do not extend northward. Instead, longi-
tudinal gene flow between the northern coast of Peru, Andes, and
Amazonia accompanied cultural and socioeconomic interactions
revealed by archeology. This pattern recapitulates the environ-
mental and cultural differentiation between the fertile north,
where altitudes are lower, and the arid south, where the Andes
are higher, acting as a genetic barrier between the sharply differ-
ent environments of the Andes and Amazonia. 2) The genetic ho-
mogenization between the populations of the arid Andes is not
only due to migrations during the Inca Empire or the subsequent
colonial period. It started at least during the earlier expansion of
the Wari Empire (600 to 1,000 years before present). 3) This demo-
graphic history allowed for cases of positive natural selection in
the high and arid Andes vs. the low Amazon tropical forest: in the
Andes, a putative enhancer in HAND2-AS1 (heart and neural crest
derivatives expressed 2 antisense RNA1, a noncoding gene related
to cardiovascular function) and rs269868-C/Ser1067 in DUOX2
(dual oxidase 2, related to thyroid function and innate immunity)
genes and, in the Amazon, the gene encoding for the CD45 pro-
tein, essential for antigen recognition by T and B lymphocytes in
viral–host interaction.

Native Americans | human population genetics | natural selection | gene
flow

Living Native Americans, the object of this study, are among
the most neglected populations in human genetics studies,

despite the increasing interest in the study of ancient DNA
(aDNA) of their ancestors (1, 2). Western South America was
one of the cradles of civilization in the Americas and the world
(3). When the Spanish conqueror Francisco Pizarro arrived in
1532, the pan-Andean Inca Empire ruled in the Andean region
and had achieved levels of socioeconomic development and

Significance

Native Americans are neglected in human genetics studies,
despite recent interest in the study of ancient DNA of their
ancestors. Our findings on Andean and Amazonian populations
exemplify how the current pattern of genetic diversity in hu-
man populations is influenced by the interaction of history and
environment. In the present case, this pattern is influenced by
1) altitudinal and climatic differences among the northern,
lower, and fertile Andes versus the southern, higher, and arid
Andes and 2) the sharp differences between the Andean
highlands and the Amazon lowlands, where natural selection
and other evolutionary forces acted for millennia, shaping
differences in the frequencies of genetic variants related to
immune response, drug response, and cardiovascular and
hematological functions.
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population density unmatched in other parts of South America.
The Inca Empire, which lasted for around 200 years before the
conquest, with its emblematic architecture such as Machu Picchu
and the city of Cuzco, was just the "tip of the iceberg" of a mil-
lenary cultural and biological evolutionary process (4, 5). This
process started 11,000 to 14,000 years ago (6–8) with the peo-
pling of this region, hereafter called western South America, that
involves the entire Andean region and its adjacent and narrow
Pacific coast.
Tarazona-Santos et al. (9) proposed in 2001 that cultural ex-

changes and gene flow along time have led to a current relative
genetic, cultural, and linguistic homogeneity between the pop-
ulations of western South America compared with those of
eastern South America (a term that hereafter refers to the region
adjacent to the eastern slope of the Andes and eastward,

including Amazonia), where populations remained more isolated
from each other. For instance, only two languages (Quechua and
Aymara) of the Quechumaram linguistic stock predominate in
the entire Andean region, whereas in eastern South America
natives speak a different and broader spectrum of languages
classified into at least four linguistic families (5, 9, 10). This
spatial pattern of genetic diversity and its correlation with ge-
ography and environmental, linguistic, and cultural diversity was
confirmed, enriched, and rediscussed by us and others (2, 4, 5,
9–15).
There are, however, pending issues. The first is whether the

current dichotomic organization of genetic variation character-
ized by the between-population homogeneous southern Andes
vs. between-population heterogeneous central Amazon extends
northward. This is important because scholars from different

Fig. 1. Genetic and geographic landscape for western South American natives. (A) Elevation vs. latitude plot from a cross-section line in the Andean region
from La Loja (Ecuador) to Juliaca (Peru). A vertical line indicates the division between Fertile and Arid Andes (16). The map shows the path used to create the
plot elevation and latitude plot and a green area delimiting the area of the Amazon Yunga region. Altitude data were obtained from Google Maps (https://
www.google.com.br/maps). (B) Geographic distribution and genetic structure for 18 native populations from the coast, Andes, and Amazon inferred by
ADMIXTURE result (K = 5, corresponding to the lowest cross-validation error). Pie charts show the average percentages over individuals for the five AD-
MIXTURE clusters in each population. Three clusters were related to Native American groups: one Andean (brown) and two Amazonian (green clusters). Two
clusters were associated with non-Native continental ancestries (European [red] and African [dark blue]). Blue and green dashed lines delimit the groups that
showed a highly significant D statistic value, indicating gene flow (gray arrow, |Z score| > 4, SI Appendix, Figs. S14–S17). Matsiguenkas 1= Matsiguenkas-
Sepahua, Matsiguenkas 2= Matsiguenkas-Shimaa. The gray horizontal dashed line in the center of the map shows the approximate division between the
fertile Andes and arid Andes (16).
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disciplines emphasize that western South America is not latitu-
dinally homogeneous, differentiating a northern and, in general,
lower and wetter fertile Andes and a southern, higher, and more
arid Andes (16) (Fig. 1A). These environmental and latitudinal
differences are correlated with demography and culture, in-
cluding different histories and spectra of domesticated plants
and animals. Indeed, the development of agriculture, in the first
urban centers such as Caral (3) and its associated demographic
growth, occurred earlier in the northern fertile Andes (around
5,000 years ago) than in the southern arid Andes (and their as-
sociated coast), with products such as cotton, beans, and corn
domesticated in the fertile north and the potato, quinoa, and
South American camelids domesticated in the arid south (16). In
human population genetics studies, the region where the be-
tween-population homogeneity was ascertained by Tarazona-
Santos et al. (9) was the arid Andes. Consequently, here we test
whether the between-population homogenization of western
South America and the dichotomy of arid Andes/Amazonia ex-
tend to the northward fertile Andes.
A second open issue is the evolutionary relationship between

Andean and Amazonian populations, particularly with the cul-
turally, linguistically, and environmentally different neighboring
populations of the Amazon Yunga (the rain forest transitional
region between the Andes and Lower Amazonia). Harris et al. (5)
inferred that Andean and Amazonian populations diverged
around 12,000 years ago. Archaeological findings of recent de-
cades have rejected the traditional view of the Amazonian envi-
ronment as incompatible with complex pre-Columbian societies
and have revealed that the Amazonian basin has produced the
earliest ceramics of South America, that endogenous agricultural
complex societies developed there, and that population sizes were
larger than previously thought (17). Population genetics studies
(18) have reported episodes of gene flow in Amazonia which
suggest that Amazonian populations were not necessarily isolated
groups. Moreover, the ancestors of people living on the Peruvian
coast, in the Andes, and in the Amazon Yunga had cultural and
commercial interactions during the last millennia, sharing prac-
tices such as sweet potato and manioc cultivation, ceramic ico-
nography and styles (e.g., Tutishcanyo, Kotosh, Valdivia, and
Corrugate), and traditional coca chewing (19). Therefore, here we
address whether gene flow accompanied the cultural and socio-
economic interactions between the ancestors of current Andean
and Amazon Yunga populations.
Despite some controversy about definitions and chronology,

archeologists identify a unique cultural process in western South
America which includes three temporal horizons, Early, Middle,
and Late, that correspond to periods of cultural dispersion in-
volving a wide geographic area (20) (Fig. 2). In particular, the
Middle and Late Horizons are associated with the expansions of
the Wari (∼1,000 to 1,400 years before present [YBP]) and Inca
(∼524 to 466 YBP) states, respectively (21–23). The between-
population homogeneity currently observed in the arid Andes
results from high levels of gene flow in this region, which is
commonly associated with the Inca Empire (20). However, Isbell
(22) has suggested that the former Wari expansion led to the
spread of the Quechua language in the central Andes and that
the Wari were pioneers in developing a road system in the Andes
called Wari ñam, which was later used by the Incas to develop
their network of roads (the Qapaq ñam) (16). A third relevant
question is, therefore, when the current between-population
genetic homogenization started in the context of the arid
Andean chronology (Fig. 2). Particularly, is this a phenomenon
restricted to the period of the Inca Empire (Late Horizon), or
did it extend backward to the Middle/Wari Horizon?
Finally, Native Americans had to adapt to different and con-

trasting environments and stresses. The high and arid Andes are
characterized by high ultraviolet radiation, cold, dryness, and
hypoxia (a stress that does not allow for cultural adaptations and

requires biological changes) (24, 25). The Amazon has a low
incidence of light, a warm and humid climate typical of the rain
forest, and high biodiversity, including pathogens (26). Here we
infer episodes of genetic adaptation to the arid Andes and the
Amazonian tropical forest.

Results and Discussion
We used data from Harris et al. (5) for 74 indigenous individuals
and additional data from 289 unpublished individuals from 18
Peruvian Native populations, genotyped for ∼2.5 million single
nucleotide polymorphisms (SNPs) (Fig. 1B and Dataset S1). For
population genetics analyses, we created three datasets with
different SNP densities and populations (27–30) (SI Appendix,
Fig. S1 and section 1.3, and Datasets S2 and S3). The institu-
tional review boards of participants’ institutions approved this
research. The study was led by Peruvian institutions and inves-
tigators who have a long record of community engagement ac-
tivities as an intrinsic component of their research protocols.
Bioinformatics pipelines are described in (31).

The Between-Population Homogenization of Western South America
and the Dichotomy of Arid Andes/Amazonia do not Extend to the
Northward Fertile Andes. By applying ADMIXTURE (32) and
principal component analyses (Fig. 1B and SI Appendix, Figs.
S2–S7), as well as haplotype-based methods (33, 34) (SI Ap-
pendix, Figs. S8–S13 and sections 2.1.1 and 2.1.2), we confirmed
that populations in the arid Andes are genetically homogeneous,
appearing as an almost panmictic unit, with an ancestry pattern
differentiated with respect to Amazonian populations (Fig. 1B).
Conversely, populations of the northern coast (Moches and
Tallanes) and in the northern Amazon Yunga (i.e., Chacha-
poyas) share the same ancestry profile between them (Fig. 1B
and SI Appendix, Figs. S8–S13), which is different from the
populations from the arid Andes. Thus, the between-population
homogenization of the arid Andes and its differentiation with
respect to Amazonian populations of similar latitudes do not
extend northward and are not characteristic of all western South
America. Instead, the genetic structure of western South
Amerindian populations recapitulates the environmental and
cultural differentiation between the northern fertile Andes and
the southern arid Andes. Nakatsuka et al. (2) (their figure 2),
studying aDNA from 86 pre-Columbian individuals, showed that
some level of north–south population structure predates the
arrival of Spaniards to Peru in 1532. They claim that there was a
strong pre-Columbian north–south population structure in the
western Andes in pre-Columbian times. However, their claim
partly depends on removing from the results of their figure 2
sixteen out of the 86 studied pre-Columbian individuals whom
they call “outliers” (18% of their aDNA dataset). The inclusion
of these so-called outliers [see SI Appendix, figure S4 of
Nakatsuka et al. (2)] shows that the north–south pre-Columbian
population structure was not as strong as they claimed.

Longitudinal Gene Flow between the North Coast, Andes, and Amazonia
Accompanied the Well-Documented Cultural and Socioeconomic
Interactions. Haplotype-based inferences (ChromoPainter/Globe-
trotter methods) (33, 34) (Fig. 1B and SI Appendix, Figs. S11–S13
and section 2.1.3), statistical tests of treeness (35) (Fig. 1B and SI
Appendix, Figs. S14 and S15 and section 3.2.1), and admixture
graphs (35) (SI Appendix, Figs. S16–S19 and section 3.2.2) reveal
genetic signatures of gene flow between coastal/Andean and Am-
azon Yunga populations in latitudes of the northern fertile Andes
but not in the southern arid Andes. Thus, longitudinal gene flow
between the north coast, Andes, and Amazonia accompanied cul-
tural and socioeconomic interactions documented by archeology,
which include ceramic styles and crops, as well as the critical role
that Chachapoyas may have played (see Introduction and SI Ap-
pendix, section 3.1). This pattern of gene flow recapitulates the
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Fig. 2. Changes in IBD sharing over time between the Pacific coast, central Andes, Amazon Yunga, and Amazon and its relationship with the archaeological
chronology of the Andes. (A) Key historical events (cultures and archeological sites) of Peruvian history in four Peruvian longitudinal regions, coast, Andes,
Amazon Yunga, and Amazonia. This is a simplified chronology of Peruvian archaeological history based on different dating records. To account for temporal
uncertainties, we depicted the events in the chronology plot without clearly defined chronological borders. The timeline on the top and bottom is repre-
sented in years before present. IP: initial period, EH: Early Horizon, EIP: early intermediate period, MH: Middle Horizon, LIP: late intermediate period, LH: Late
Horizon. Adapted from ref. 4, which is licensed under CC BY 4.0. (B–E) Heat maps of the average pairwise relatedness (85) among Native Americans of the
Natives 1.9M dataset. Each heat map represents an interval of IBD segment lengths, which correspond to interval times (36).
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differentiation between the fertile north, where altitudes are lower,
and the arid south, where the Andes altitudes are higher (Fig. 1A)
and may have acted as a barrier to gene flow, imposing a sharper
environmental differentiation between the Andes and the Amazon
Yunga. Formal comparison of admixture graphs (35) (SI Appendix,
Figs. S16–S19) representing different scenarios shows that gene
flow was more intense from the north coast to the Amazon than in
the opposite direction and that in latitudes of the fertile north, gene
flow included important ethnic groups such as the current Cha-
chapoyas of the Amazon Yunga, as well as eastward Lower Ama-
zonian populations such as those of the Jivaro linguistic family
(Awajun and Candoshi) and Lamas (Fig. 1B and SI Appendix, Figs.
S16–S19). These results are consistent with those of Nakatsuka
et al. (2) based on current and pre-Hispanic individuals.

The Homogenization of the Central Arid Andes Started at least during
the Wari Expansion (1,400 to 1,000 YBP). We analyzed the distri-
bution of identity-by-descent (IBD) segment lengths between
individuals of different arid Andean populations, which is in-
formative about the dynamics of past gene flow (5, 36). We
observed a signature of gene flow in the interval between 1,400
and 1,000 YBP, within the Wari expansion in the Middle Hori-
zon (Fig. 2). Thus, the homogenization of the central arid Andes
is not only due to migrations during the Inca Empire or later
during the Spanish Viceroyalty of Peru, when migrations (often
forced) occurred (37). The Wari expansion (1,400 to 1,000 YBP)
was also accompanied by intensive gene flow whose signature is
still present in the between-population genetic homogeneity of the
arid central Andes region. We also observed that during the Wari/
Middle Horizon the effective population size (Ne) was rising in the
arid Andes (SI Appendix, Fig. S22), a trend that stopped with the
European contact, when Ne started to decline, consistent with
demographic records (38) and with genetic studies by Lindo et al.
(39). Because IBD analysis on current individuals does not allow
for inferences of gene flow that occurred more than 75 genera-
tions ago (36), ancient DNA analysis at the population level will
be necessary to infer whether the between-population homoge-
nization of the Andes started even earlier.

Episodes of Genetic Adaptation Occurred in the Arid Andes and the
Amazonian Tropical Forest. Populations from the high and arid
Andes and those from the Amazon (Fig. 1B) settled in these
contrasting environments more than 5,000 years ago (40) and
show little evidence of gene flow between them (i.e., that would
homogenize allele frequencies, potentially concealing the effect
of diversifying natural selection). We performed genome-wide
scans in these two groups of populations using two tests of
positive natural selection: 1) population branch statistics (PBSn)
comparing arid Andeans (Chopccas, Quechuas_AA, Qeros,
Puno, Jaqarus, and Uros; n = 102) vs. Amazonian populations
(Ashaninkas, Matsiguenkas, Matses, and Nahua; n = 75) with a
Chinese population (Dai in Xishuangbanna, China; n = 100)
from 1000 Genomes as an out-group (41) (SI Appendix, section
5.2.1) and 2) long-range haplotypes (xpEHH) (42) estimated for
the two groups of populations (Fig. 3 and SI Appendix, Figs.
S24–S27 and section 5.2.2). The complete lists of SNPs with high
PBSn and xpEHH statistics for Andean and Amazonian pop-
ulations are in Datasets S4–S7.
The gene with the consensually strongest signal of adaptation

(both from PBSn and xpEHH statistics: PBSn = 0.205, P value =
0.003; xpEHH = 4.481, P value < 0.00001) to the Andean en-
vironment (Fig. 3 and Dataset S4) is a long noncoding RNA gene
called HAND2-AS1 (heart and neural crest derivatives expressed
2 RNA antisense 1, chromosome 4), that modulates cardio-
genesis by regulating the expression of the nearby HAND2 gene
(43, 44). This result is consistent with 1) the natural selection
genome-wide scan by Crawford et al. (41), who identified three
genes related to the cardiovascular system in Andeans, including

TBX5, which works together with HAND2 in reprogramming
fibroblasts to cardiac-like myocytes (45, 46), and 2) a pattern of
adaptation of Andean populations preferentially mediated by the
cardiovascular system. The derived allele rs2877766-A (fre-
quencies: Amazonians, 0.453; Andeans, 0.880) is the core of the
extended haplotype. HAND2-AS1 is located in the antisense 5′
region of HAND2, and the positively selected six SNPs core
haplotype is ∼18-kilobase and encompasses a putative human
enhancer (GeneHancer identifier GH04J173536, SI Appendix, Fig.
S29). Considering the limitation of our data that come from
genotyping arrays, we further recovered from the sequencing data
by Harris et al. (5) all nearby SNPs in linkage disequilibrium in
Andean populations (r2 > 0.80) with the core SNP rs2877766. We
found that the positively selected haplotype includes the SNP
rs3775587, mapped within the putative enhancer GH04J173536.
Altogether, these results suggest (but do not demonstrate) that the
HAND2-AS1 signature of natural selection is related to regulation
of gene expression by an enhancer and reflects cardiovascular
adaptations. Andeans have cardiovascular adaptations to high
altitude that differ from those of lowlanders exposed to hypoxia
and from those of other highlanders, showing higher pulmonary
vasoconstrictor response to hypoxia, lower resting middle cerebral
flow velocity than Tibetans, and higher uterine artery blood flow
than Europeans and lowlanders raised in high altitude (47).
DUOX2 (dual oxidase 2, chromosome 15) is the gene with the

highest signal of adaptation to the Andean environment by PBSn
analysis (PBSn = 0.22, P value = 0.002) (Fig. 3 and SI Appendix,
Fig. S24). It has already been reported as a natural selection
target in the Andes (48, 49). DUOX2 encodes a transmembrane
component of an NADPH oxidase, which produces hydrogen
peroxide (H2O2), and is essential for the synthesis of the thyroid
hormone and for the production of the microbicidal hypoth-
iocyanite anion (OSCN−) during mucosal innate immunity re-
sponse against bacterial and viral infections in the airways and
intestines (50, 51). Mutations in DUOX2 produce inherited hy-
pothyroidism (52). Here we report the following: 1) The PBSn
signal for DUOX2 comprises several SNPs, including two mis-
sense mutations (rs269868: C > T: Ser1067Leu, C allele fre-
quencies: Amazon, 0.01, Andean, 0.53; rs57659670: T > C:
His678Arg, C allele frequencies: Amazon, 0.01, Andean, 0.53);
2) bioinformatics analysis reveals that rs269868 is located in an
A-loop, 1064-1078 amino acids, which is a region of interaction
of DUOX2 with its coactivator DUOXA2. Mutations in this re-
gion of the protein can affect the stability and maturation of the
dimer and, consequently, the conversion of the intermediate
product O2 to the final product H2O2 and their released pro-
portions (53). If the natural selection signal is related to this
effect, then the standing ancestral allele has been positively se-
lected in the Andes. It is not clear whether the DUOX2 natural
selection signal is related to thyroid function or innate immunity.
Before the introduction of the public health program of sup-
plementing manufactured salt with iodine, one of the environ-
mental stresses of the Andes for human populations was iodine
deficiency, which impairs thyroid hormone synthesis, increasing
the risk of developing hypothyroidism, goiter, obstetric compli-
cations, and cognitive impairment (54, 55).
Natural selection studies in Amazon populations are scarce.

Studies targeting rain forest populations in Africa and Asia have
found natural selection signals in genes related to height and
immune response (56). In the Amazon region, the strongest nat-
ural selection PBSn signal (PBSn = 0.302, P value = 0.002) is in a
long noncoding RNA gene on chromosome 18 with unknown
function (Dataset S5 and SI Appendix, Fig. S25). The second-
highest signal (which also shows a significant long-range haplotype
signal: PBSn = 0.265, P value = 0.004; xpEHH = −4.222, P
value = 0.0003) corresponds to the gene PTPRC (Fig. 3), which
encodes the protein CD45, essential in antigen recognition by T
and B lymphocytes in pathogen–host interaction, in particular for
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viruses such as human adenovirus type 19 (57), HIV-1-induced
cell apoptosis (58, 59), hepatitis C (60, 61), and herpes simplex
virus 1 (62), even if we cannot exclude a role for unknown viruses

endemic in the Amazon region. The core haplotype flanks the
rs16843712 derived allele A (frequencies: Amazonia, 0.811;
Andes, 0.324), within the putative human enhancer GH01J198660

Fig. 3. Sandwich-like representation of natural selection signatures in the arid Andes and the Amazon tropical forest. Manhattan plots (the bread of the sandwich)
correspond to the PBSn estimated from the sliding window in Amazon (A) and Andean (D) populations. The horizontal red line shows the 99.95th percentile of PBSn
values. The filling of the sandwich is the long-range haplotype representations. (B) Long-range haplotypes flanking the rs16843712 derived allele A (frequencies: Amazon,
0.811; Andean, 0.324) in the PTPRC gene (light green vertical shading). (C) Haplotype flanking the rs2877766 derived allele A (frequencies: Amazon, 0.453; Andean, 0.880)
in the HAND2-AS1 gene (light brown vertical shading). Green plots refer to the Amazon populations; brown plots refer to the Andean populations.
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(sensu GeneHancer; SI Appendix, Fig. S30), and includes the A
(Thr193) allele of the nonsynonymous SNP rs4915154 (A > G:
Thr193Ala) in exon 6 that affects alternative splicing and alters a
potential O- and N-linked glycosylation site. The positively se-
lected allele A (Thr193) has been associated (63) with a lower
proportion of CD45R0+ T memory cells and an increased
amount of naive phenotype T cells expressing A (exon 4), B (exon
5), and C (exon 6) isoforms. This result is consistent with the
hypothesis of CD45 evolution driven by a host–virus arms race
model (64).
In addition to the natural selection PBSn and xpEHH signals,

we used the bioinformatics platform MASSA (Multi-Agent
System for SNP Annotations) (65) to annotate the 1,985
(0.1%) most differentiated SNPs (FCT > 0.318) between the
same Andean and Amazonian groups that we tested for natural
selection. Notably, we found three TMPRSS6 (transmembrane
serine protease 6) variants, rs855791-T (2246T > C Val727Ala:
Andean = 0.60, Amazon = 0.92), rs4820268-G (Andean = 0.59
Amazon = 0,98), and rs2413450-T (Andean = 0.60, Amazon =
0.98; Dataset S8), more common in the Amazon region and
associated with a broad spectrum of hematological phenotypes
such as lower hemoglobin, iron, ferritin, and glycated hemoglo-
bin and higher hepcidin/ferritin ratio (a hormone that decreases
iron absorption and distribution) levels in blood, as well as mean
corpuscular volume (sensu Genome-Wide Association Study
[GWAS] Catalog, that includes GWASs with Latin American
admixed individuals) (66–68).
We use DANCE [Disease Ancestry Network (69)] to present

the allele frequencies of our total Native American samples for
30,270 GWAS hits and its associated complex phenotypes (sensu
GWAS Catalog, https://www.ebi.ac.uk/gwas/), in comparison with
African, European, and Asian allele frequencies from the 1000
Genome Project. While this information is relevant, we recall that
the allelic architecture of the complex diseases presented in the
GWAS Catalog is biased by the underrepresentation of individuals
with non-European ancestry in genetic studies.
In conclusion, in western South America, there is an envi-

ronmental and cultural differentiation between the fertile north
of the Andes, where altitudes are lower, and the arid south of the
Andes, where these mountains are higher, defining sharp envi-
ronmental differences between the Andes and Amazonia. This
has influenced the genetic structure of western South Amerin-
dian populations. Indeed, the between-population homogeniza-
tion of the central southern Andes and its differentiation with
respect to Amazonian populations of similar latitudes do not
extend northward. Gene flow between the northern coast of
Peru, the Andes, and Amazonia accompanied cultural and so-
cioeconomic interactions revealed by archeology, but in the
central southern Andes, these mountains have acted as a genetic
barrier to gene flow (70). We provide insights on the dynamics of
the genetic homogenization between the populations of the arid
Andes which is not only due to migrations during the Inca Em-
pire or the subsequent colonial period but started at least during
the earlier expansion of the pre-Inca Wari Empire (600 to 1,000
YBP). Nakatsuka et al. (2), comparing ancient with modern in-
dividuals from western South America, make the general claim
that the genetic structure of current populations “strongly ech-
oed” and “are most closely related to the ancient individuals
from their region” (i.e., 500 to 2,000 years ago). However, this
general statement is not supported by their own results (see their
SI Appendix, figure S7). From nine ancient (500 to 2,000 years
ago) vs. current comparisons of populations from the same re-
gion, this statement is true only for the five cases of the Southern
Highlands of Peru and for Chile (their SI Appendix, figure S7 J
and K) and not for the four comparisons from the Peruvian coast
and north of Peru (their SI Appendix, figure S7 F–I). Thus,
Nakatsuka et al.’s (2) results emphasize and add a temporal
perspective to the dichotomy observed by us between the current

northern fertile Andes (more associated with trans-Andean gene
flow) and the southern arid Andes (more homogeneous between
populations and differentiated from the Amazonia). The evolu-
tionary journey of western South Amerindians was accompanied
by episodes of adaptive natural selection to the high and arid
Andes vs. the low Amazon tropical forest: the noncoding gene
HAND2-AS1 (related to cardiovascular function and with the
positively selected haplotype encompassing a putative human
enhancer) and DUOX2 (related to thyroid function and innate
immunity) in the Andes. In the Amazon forest, the gene
encoding for the protein CD45, essential for antigen recognition
by T and B lymphocytes and viral–host interactions, shows a
signature of positive natural selection, consistent with the host–
virus arms race hypothesis. Our results and other studies (70)
continue to show how Andean highlanders and Amazonian
dwellers provide examples of how the interplay between geog-
raphy and culture influences the genetic structure and adapta-
tion of human populations.

Materials and Methods
The protocol for the Peruvian Genome Diversity Project was approved by the
Research and Ethics Committee (OI003-11 and OI-087-13) of the Peruvian
National Institute of Health, and all participants who had samples collected
in this project provided informed consent. We genotyped 289 present-day
Native Americans from Peru using the Human Omni array of Illumina for 2.5
million SNPs as part of the Peruvian Genome Diversity Project. Quality con-
trol was performed using PLINK (71) and Laboratório de Diversidade
Genética Humana bioinformatics protocols and scripts (31). We merged our
individuals with public datasets (1, 28–30) and Kaqchikel individuals from
M.D. lab from National Cancer Institute. For D statistics and admixture graph
analyses, we generate masked data, after phasing our datasets with
SHAPEIT2 (72) and inferring the non-Native DNA segments with RFMix (73).
To infer population structure, we used two approaches: 1) principal com-
ponent analysis in Eigenstrat (74) and genetic clustering on ADMIXTURE
software (32) using a linkage disequilibrium pruned dataset and 2) fineS-
TRUCTURE (33), MIXTURE MODEL (34, 75), and SOURCEFIND (76) for hap-
lotype-based analyses, after phase inference. Historical relationships were
inferred using D statistics (77) and Admixture Graphs (35). IBD was inferred
using refinedIBD (78) and IBDNe (79). For the genetic differentiation anal-
yses, the pairwise genetic distances (F statistics) between Native South
American groups (FST) and between populations within groups (FSC) were
calculated for multilocus and individual loci using 4P software (80) and the
hierfstat R package (81), respectively. The linkage disequilibrium was infer-
red by the software Haploview (82). Natural selection scans were performed
using population branch statistics (41, 83) and xpEHH from the package
Selscan (42, 84).

Data Availability. Data have been deposited in the European Genome-phenome
Archive (EGA), https://www.ebi.ac.uk/ega/home (accession nos. EGAD00010001958,
EGAD00010001990, EGAD00010001991, EGAD00010001992).
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Section 1: Sampling, quality control and Datasets 

1.1. Sampling: The present work is part of the Peruvian Genome Diversity Project (PGDP), of the 
Peruvian Institute of Health (Instituto Nacional de Salud - INS). This is a genomic initiative to explore 
the genetic composition of native and admixed Peruvians. The protocol for this study was approved 
by The Research and Ethics Committee (OI003-11 and OI-087-13) of the INS. The PGDP was funded 
by the Ministry of Health of Peru and involves the collaboration of Tarazona-Santos’s Laboratory of 
Human Genetic Diversity (LDGH) of Universidade Federal de Minas Gerais (UFMG) and INS. Fifteen 
Native American populations (INS data) were sampled as part of the PGDP including populations 
from the South Pacific Peruvian Coast (SPPC), Andean and Amazon regions (Dataset S1 and Fig. 1). 

Populations from the SPPC region were sampled in northwestern Peru and involved two native 
communities: Moche and Tallanes. In the Andes, four communities were sampled, two 
Quechua-speaking communities, Qeros and Chopccas, from South Central Andes, and two 
Aymara-speaking populations, Jaqarus and Uros. The Amazon populations were sampled in two 
different ecological areas, Amazon Yunga and lower Amazon. The Amazon Yunga corresponds to a 
cloudy forest which is a transition between the Andean mountains and the Lower Amazon. Six 
populations were sampled from Amazon Yunga: Chachapoyas, Lamas, Awajun, Candoshi, 
Ashaninkas and Matsiguenkas. Chachapoyas comprises several groups that played an important role 
for the Andean people as an open door to Amazon resources (1). The Lamas population, that lives in 
the Upper Huallaga river, started as a “reduction” (a forced concentration of Native American groups) 
during the XVIII century (2). Currently, Both Chachapoyas and Lamas groups speak Quechua. The 
Awajun population belongs to the Jivaroan linguistic family and its presence in the Amazon Yunga is 
dated back to around 1,200 years ago (3, 4). This Jivaroan population was involved in several cultural 
trades with South Pacific Coast populations from Peru and Ecuador but with conflicted interaction with 
the Inca empire (Andes). The Candoshi group is settled along the tributaries of the Pastaza River and 
its language has a controversial origin by being considered by some scholars as part of the Jivaro 
group or even independent (5). For the Arawakan linguistic group, three individuals were collected in 
the Sepahua district from the Ucayali region that belong to the Matsiguenkas tribe. For the Lower 
Amazon, three populations of the Panoan linguistic family were collected: Shipibo-Conibo, Matses 
and Nahuas. Finally, all native participants were required to be over 18 years old, for whom all four 
grandfathers were born in the selected ancestral native population. 
 
We also included four Native American populations (LDGH data) collected by Universidad Peruana 
Cayetano Heredia and includes two Andean (one Quechua and one Aymara-speaking) and two 
Amazonian (Ashaninkas and Matsiguenkas from Shimaa community) (Dataset S1 and Fig. S1). This 
sampling was conducted under approval of the Institutional Reviews Boards from the Universidad 
Peruana Cayetano Heredia, Asociación Benéfica PRISMA, Universidade Federal de Minas Gerais 
and Johns Hopkins University. The Quechua-speaking population was sampled in a large area 
comprising two continuous regions, Ayacucho and Apurimac, for this reason these individuals were 
grouped as Quechuas_AA. In the case of the Aymara-speaking population, individuals were collected 
near the Titicaca lake shore in Puno region. The two Amazonian populations inhabit the Amazon 
Yunga area and belong to the Arawakan linguistic family.  
 
1.2. DNA sampling: For INS data, after collecting the 10ml blood sample from participants (we 
only collect blood) we proceed to extract the DNA using commercial kits (Qiagen, USA). For this 
procedure, we travel to the community with our supplies and equipment to perform the DNA 
extraction, when we obtain the DNA purified we aliquoted, send to our Laboratory (Laboratorio de 
Biotecnología y Biología Molecular) in Lima, Perú to be stored in -80 °C until we continued with the 
next project phase genotyping. Specifically, for LDGH data, we extracted genomic DNA from blood 
samples using the Gentra Puregene blood kit (Qiagen, USA) in the LDGH. 
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1.3. Genotyping and Quality Control: A total of 289 individuals were genotyped using the 
Illumina Human Omni array 2.5M at the INS. The total number of genotyped SNPs was 2,391,739. 
Quality control was performed using the PLINK 1.7 software (6) and in-house scripts (7). We removed 
SNPs and individuals with high levels of missing data (>10%), loci with 100% of heterozygous, non 
chromosomal information and A/T-C/G genotypes. LDGH data was genotyped by the Illumina facility 
using the HumanOmni2.5–8v1 array for 127 individuals. Quality control for LDGH data was the same 
as for the INS data. We merged the INS data with LDGH data (Dataset S1 and Fig. S1). 
populations:.The merged data, INS and LDGH individuals, contain a total of 2,077,858 SNPs for 418 
individuals organized in a total of 19 populations (Dataset S1). Both groups, INS and LDGH datasets, 
include independent samples of the Ashaninka population from the same region, for this reason we 
merge these individuals in a unique Ashaninka sample and a total of 18 populations. 

Before filtering by relatedness, we removed SNPs that were in high linkage disequilibrium (LD) for 
each population, as it affects the inferences of relatedness, with PLINK 1.7 using the flag 
--indep-pairwise with the following parameters: 200 25 0.1. The first parameter indicates a window of 
200 SNPs, the second indicates that the window steps of 25 SNPs between consecutive windows and 
the third indicates the LD threshold (r2). 
 
Family structure affects the analysis of population structure as a familiar cluster can be confounded 
with a discrete population (8). To overcome this issue, we estimated the kinship coefficients (Φij) for 
each pair of individuals for each population using autosomal SNPs. For each population, we 
estimated the kinship coefficients using the option –genome in PLINK 1.7. We considered a 
thresholds of Φij 0.25 to define relatedness or not. A pair of individuals with Φij above 0.25 is≥  
defined as first-degree relatives (Parent-offspring pair and full sibling). We used a network approach 
to identify which individuals should be removed preserving a maximum number of unrelated 
individuals (9). After applying the kinship filter, we kept 358 individuals (Dataset S1) for an unrelated 
dataset (UDataset). 

 1.4. Merging datasets: We merged the UDataset with the following datasets: 

 
● 1000 Genomes project (10). 
● Human Genome Diversity Project (HGDP) (11). 
● Native Americans previously genotyped by Reich et al. (unmasked data) (12). 
● Native individuals from Guatemala (Kaqchikel population) from Michael Dean-Lab (National 

Cancer Institute). 
● Native American individuals from two public datasets (Simons Genome Diversity Project (13) 

and Raghavan et al., 2015 (14)). 
 
From the 1000 Genomes Project, we selected individuals of European (IBS, CEU), African (YRI and 
LWK) and East Asian (CHS, CDX, CHB) ancestries. The unmasked dataset from Reich et al. (12) 
included individuals from HGDP: Yakut, Karitiana, Surui, Pima, Maya, Piapoco, Papuan and 
Melanesian. From the Simons Genome Diversity Project and individuals generated by Raghavan et 
al. (14), we included all Native Americans. The available dataset of Raghavan et al. (14) included the 
ancient genome of Anzick-1 individual from the Clovis complex (hereafter Clovis). Before merging 
individuals from Reich et al. (12), we applied a relatedness filter. We removed 58 individuals with 
kinship coefficient above 0.1 using the same procedure employed for our samples. We generated 
three datasets (Datasets S1-S3, Fig. S1) considering the density of SNPs and sample size: 
 

a) Natives 1.9M Dataset (1,927,769 SNPs/673 individuals): Dataset with maximum number of 
genotyped SNPs. This dataset includes just Peruvian Native individuals from INS and LDGH 
and 107 Iberian (IBS), 108 Yoruba (YRI) and 100 East Asian individuals (CDX) from 1000 
Genomes Project (Dataset S1). 

b) Natives 500K Dataset (567,718 SNPs/849 individuals): This dataset includes individuals 
from Natives 1.9M Dataset, Native American, Siberian, South Asian (Onge) and Oceanian 
(Bougainville and Papuan), individuals from the Simons Project (13), Raghavan et al., 2015 
and 79 individuals from Guatemala of Michael Dean NCI lab (Dataset S2) genotyped for 600K 
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SNPs. The Guatemalan sample includes individuals from the Kaqchikel native population and 
non-native individuals with more than 99% of Native American ancestry.  

c) Natives 230K Dataset (235,352 SNPs/1,286 individuals): Dataset with maximum number of 
individuals. This data includes individuals from Natives 1.9M dataset and all Native Americans 
from the unmasked data of Reich et al. (2012) (~300K SNPs), which includes HGDP 
individuals (Dataset S3). 

 
The East and South Asian, Siberian and Oceanian populations were used only for population history 
analysis of the masked data and genotype based methods and not for the population structure 
analyses in order to avoid any confounding signal. 
 
Use of datasets masked for Non-Native American local ancestry: For D statistics analysis (15) 
and Admixture Graphs (16), we used a dataset where regions of European and African ancestries 
were masked. These regions were identified using RFMix software (17) and then masked. Using 
masked datasets and methods based on allele frequency correlation, we inferred genetic affinity 
among South American Natives. RFMix identifies regions of a specific ancestry in the genome of 
admixed individuals using reference panels of individuals of European, African and Native American 
ancestries. For this purpose, we used the phased Natives 500K (Dataset S2) and Natives 230K 
(Dataset S3) datasets. We used 100 African (YRI and LWK) and 100 European (CEU and IBS) 
individuals from 1000 Genomes project as parentals. For the Native American reference panel, we 
selected individuals with less than 0.002% of Non-Native ancestry (European + African ancestries) 
using the ADMIXTURE results (see Section 2) for 3 ancestry clusters (K=3). All other Native American 
individuals that have some level of European or African ancestry were used as targets. We ran RFMix 
with the option PopPhased to enable the phase correction option. We also used two rounds of the 
expectation-maximization (EM) algorithm. All other settings were used as default. After running 
RFMix, we used the forward-backward probability output to set all local ancestry inferences that have 
less than 0.95 posterior probability of being Native American as missing data. Finally, the genomic 
regions in each sample that did not contain homozygous high quality Native American ancestry 
inferences were set as missing data. 
 

In this paper, we will apply several methods on our three datasets to explore the following four 

scientific questions: 

Question 1 (Section 2): whether the between-population homogenization of Western South America, 
and the dichotomy Arid Andes/Amazonia extends to the northward Fertile Andes? 
 
Question 2 (Sections 2 and 3): whether gene flow accompanied the cultural and socioeconomic 
interactions between Andean and Amazon Yunga populations? 
 
Question 3 (Section 4): when this between-population genetic homogenization started in the context 
of the arid Andean chronology. 
 
Question 4 (Section 5): were there episodes of genetic adaptation to the Arid Andes and the 
Amazonian tropical forest? 
 
 
 
 
 

Section 2: Genetic relationships in Western South America 

To address our scientific questions: 
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Question 1: whether the between-population homogenization of Western South America, and the 
dichotomy Arid Andes/Amazonia extends to the northward Fertile Andes? 
 
and  
 
Question 2: whether gene flow accompanied the cultural and socioeconomic interactions between 
Andean and Amazon Yunga populations? 
 
We performed population structure analysis using two approaches: genotype based (ADMIXTURE 
and PCA) and haplotype based (CHROMOPAINTER and fineSTRUCTURE) methods.  
 

2.1. Methods 

2.1.1. Population Structure using genotype based methods 
We applied genetic clustering analysis and Principal Component Analysis (PCA). For the genetic 
clustering analysis, we ran ADMIXTURE (18). The ADMIXTURE algorithm assumes that the genetic 
composition of each individual is made up of up to K parental populations or ancestry clusters, where 
K is defined by the user. ADMIXTURE estimates the fraction of each K population that contributes to 
an individual, as well as the allele frequencies of each of the K populations, by fitting the Hardy 
Weinberg equilibrium in each of the K populations/clusters. We ran ADMIXTURE in unsupervised 
mode for different values of K and used a cross validation (CV) test to determine the K value with the 
best model fitting. The ADMIXTURE results are represented as a bar plot where each individual is 
represented by a vertical bar in which each color corresponds to the ancestry proportion of a specific 
cluster. The PCA is a non-model based method that reduces a complex data (i.e. genotypes and 
individuals) to few dimensions (19). 
 
ADMIXTURE analysis and PCA assume independence among SNPs, for this reason we pruned all 
datasets for linkage disequilibrium (LD). We removed highly linked SNPs using PLINK 1.7 with the 
option indep-pairwise 200 25 0.4 for each dataset. We generate three datasets pruned by LD: 
 

● Natives 1.9M dataset_LDpruned (625,736 SNPs) 
● Natives 500K dataset_LDpruned (229,895 SNPs) 
● Natives 230K dataset_LDpruned (136,797 SNPs) 

 
We ran 50 replicates of ADMIXTURE in unsupervised mode with different random seeds for each K 
value and calculated the cross validation error for each run. We ran ADMIXTURE considering from 
K=2 ancestral clusters until cross validation error started to increase for each dataset. We plot all 
ADMIXTURE runs with the higher log likelihood for each K value. We ran the PCA using EIGENSOFT 
4.21 (19) for the three LD pruned datasets. 

Natives 1.9M dataset 
ADMIXTURE results are displayed on Fig. S2. The lower CV error was obtained for the run with five 
ancestry clusters (K=5). ADMIXTURE run with K=3 infers clusters related to continental ancestry: 
Native American (green), European (IBS, red) and African (YRI, blue) clusters. This result showed 
some Native American individuals (Quechuas_AA, Chachapoyas and Moche populations) with 
European ancestry (~10%). Specifically, for the result with the lowest cross validation error (K=5), we 
observed the Andean populations as a homogeneous group (brown cluster). On the other hand, we 
observed an ancestry cluster (light green) predominant in Northern Peruvian populations that is 
shared between SPPC and Chachapoyas population (Amazon Yunga). 
 
For the PCA (Fig. S3), we excluded Africans (YRI) due to its high level of differentiation that masks 
the relationships in Native Americans. The first principal component (PC1, Variance 
explained=2.36%) showed an axis of differentiation between the European and Native American 
groups. We observed that some Andean, Moches, and Chachapoyas individuals have some degree 
of European ancestry. The PC2 (Variance explained=1.2%) separated Western (Andean and SPPC 
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populations) and Eastern (Amazon) South American natives. Chachapoyas showed affinity with 
SPPC populations. Jivaroan populations (Awajun and Candoshi), were intermediate in the axis 
Western-Eastern. Furthermore, the PC2 showed a cline for the genetic diversity of the Amazon 
populations, from North (Matses) to South (Matsiguenkas). As in ADMIXTURE, both Matsiguenkas 
groups, Shimaa (Matsiguenkas 1) and Sepahua (Matsiguenkas 2), showed high genetic affinity.  
 
For this dataset, ADMIXTURE analysis and PCA showed high differentiation between populations 
within the Amazonia and high genetic affinity among Central Arid Andean groups. Chachapoyas 
showed a close genetic relationship with SPPC populations. Moreover, North Amazon populations 
(Awajun and Lamas) share ancestry with SPCC as well as with other Amazonian populations. 

Natives 500K dataset 
ADMIXTURE results are presented on Fig. S4. For bar plot representation, we grouped Surui and 
Karitiana as Tupian. Mesoamerican individuals were divided into Guatemalan and Mexican (Mixe, 
Mixtec, Pima, Zapotec and Mayan), and we grouped the Clovis individual, two Greenland, two 
Aleutian and two Athabascan individuals as North America. Our ADMIXTURE runs showed the lowest 
CV error for eight clusters (K=8). Our description was focused on patterns not observed on the 1.9M 
dataset for the lowest cross validation. 
 
ADMIXTURE run K=8 showed 6 clusters associated with Native American groups, associated with 
Andes (brown), Mesoamerica (purple), SPPC (pink) and three Amazon related clusters (shades of 
green). SPPC populations showed a predominant pink ancestry that is also predominant in 
Chachapoyas population. The Andean populations have a predominant brown cluster. Moreover, 
central Andean populations (Jaqarus, Quechuas_AA and Chopccas) showed ~10% of SPPC related 
ancestry. Matsiguenkas individuals were observed as a highly differentiated population since it has a 
specific ancestry cluster (darkgreen) which is not shared with other populations of the same linguistic 
group (Ashaninkas). Panoan populations (Shipibo, Matses and Nahua) showed a predominant 
ancestry associated with the Ashaninkas population. Jivaroan groups showed a specific ancestry 
which was predominant in the Awajun population.  
 
For the Principal Component Analysis (Fig. S5), the PC1 separated Native Americans from 
Europeans. Some Chachapoyas, Quechuas_AA, 1 Moche, 1 Mixtec and 1 Shipibo individuals showed 
affinity to Europeans due to admixture. The PC2 separated Amazon from non-Amazon populations; 
Jivaroan and Tupian individuals were observed as intermediate between these groups. The PC3 
separates a group that includes Andean and Matsiguenkas individuals from other natives. PC4 
showed the separation between a group including Mesoamericans and Tupian individuals from other 
natives. Higher PC values showed population specific differentiation and genetic variation in the IBS 
population. 
 
For this dataset, both ADMIXTURE and PCA support the similarity between SPPC and Chachapoyas 
individuals. Awajun and Candoshi were intermediate between Andean-Amazon axis of genetic 
diversity. 

Natives 230K dataset 
The following description was focused on clusters related to South American natives. The lower CV 
error was obtained for 18 ancestral clusters (K = 18, Fig. S6). The ADMIXTURE plots (Fig. S6) from 
K=3 to K=5 inferred continental ancestry clusters. The ADMIXTURE plot K=5, five ancestry clusters 
related to each continental region were identified: Africa, Europe, Asia, Oceania (light purple, pops 
90-91) and America. ADMIXTURE K=6 showed a cluster (dark green) associated with Arawakan 
groups (Ashaninkas and Matsiguenkas). ADMIXTURE K=8 identified a cluster (light pink) for Costa 
Rican natives (Bribri, Cabecar, Chorotega, Guaymi, Huetar, Maleku, Teribe). ADMIXTURE K=9 
inferred an ancestral cluster (black) related to Mesoamericans, predominantly in Pima. ADMIXTURE 
K=10 showed an ancestry cluster (light green) related to the Awajun population which represented 
most of non Andean natives. ADMIXTURE K=12 identified an ancestry cluster (gray) associated with 
Tupian populations (Surui and Karitiana) also observed in Mesoamericans and in non Andean 
natives. Furthermore, a brown cluster is predominant in the Andean populations. ADMIXTURE K=13 
showed a light blue cluster associated with Pima natives. ADMIXTURE K=15 showed an ancestry 
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cluster, darkgreen and forest green, for each Peruvian Arawakan individuals (Ashaninkas and 
Matsiguenkas). ADMIXTURE K=17 detected a cluster (light blue) associated with the SPPC 
population, and which is also present in Chachapoyas and Lamas. The ADMIXTURE K=18 with 
lowest cross validation showed differentiation in Asian natives. ADMIXTURE K=21 showed an 
ancestry cluster related to Lamas sample. 
 
In the Principal Component Analysis (Fig. S7), the PC1 showed the differentiation between the Old 
world from the Native American ancestry. Old world ancestry included Europeans (IBS), Oceanians, 
Asians (Russian and Mongolians) and admixed Native Americans. Greenland natives were shown as 
intermediate between the Old and the New world groups. In the Native American axis, the 
Matsiguenkas individuals were the most differentiated. Considering PC1 and PC2, we discriminated 
three blocks of Native ancestry, one Eskimo-Aleut (Greenland), the second Athabaskan and Algic 
(North American group), and the third including all other Native Americans. This pattern is consistent 
with Reich et al. (12). 
 
In summary, our genotype frequency approach supports the dichotomic model between the Arid 
Andes and the adjacent Amazonia. However, this is not valid in Northern Peru in which SPPC 
populations were closely related to Amazon Yunga Chachapoyas, Moreover Jivaroan populations 
were observed as more similar to SPPC and Chachapoyas than to other Amazon populations 
Arawakan and Panoan. Furthermore, The Fertile Andes populations (SPPC and Chachapoyas) and 
Jivaroan populations, conditioning on K=17 ancestry clusters, shared some level of genetic ancestry 
with Mesoamericans. 
 

2.1.2. Population Structure using haplotype based methods 
We used haplotype-based methods (CHROMOPAINTER and fineSTRUCTURE algorithms) that 
explore the patterns of haplotype similarity among individuals (20). First, we phased our datasets 
using shapeit2 software (21). For the phasing process, we used the complete dataset (without LD 
pruning). To increase the accuracy of the phasing process, we used 200 conditioning states and 30 
main iterations of Markov chain Monte Carlo (MCMC). 
 
The haplotype-based methods are based on the identification of the LD patterns along the genome of 
individuals in order to infer the number and length of DNA chunks (CHROMOPAINTER) shared 
among them. Then, this information is exploited in the identification of clusters of individuals based on 
the pattern of genetic similarity at a fine scale (fineSTRUCTURE). The identification of shared DNA 
chunks between individuals is called chromosome painting and is performed by CHROMOPAINTER 
(20). In this process each haplotype (recipient) is reconstructed based on chunks shared (or 
“donated”) with (by) other individual haplotypes (donors) (20). For this inferences CHROMOPAINTER 
requires phased data and two scalar parameters (inferred in a previous CHROMOPAINTER run): 1) 
the recombination scaling and 2) mutation parameters. The result of the chromosome painting is 
summarized in two interindividual matrices called coancestry matrices. These matrices of putative 
donor-recipient similarity contain as their elements the total number (chunkcounts) and the length 
(chunklengths) of DNA chunks shared among individuals. 
 
After the chromosome painting, we used the chunkcounts co-ancestry matrix to infer the population 
structure using the model-based approach fineSTRUCTURE (20). Using a reversible-jump MCMC, 
fineSTRUCTURE assigns individuals into clusters that may resemble their populations. Like other 
MCMC algorithms, fineSTRUCTURE is dependent on the number of MCMC iterations so it uses a 
previous burn-in stage and then several iterations (i.e 2 millions). 
 
Since our main question is about the history of Native Americans, we excluded individuals with >5% 
of Non-Native ancestry in the Natives 230K dataset except for Chachapoyas individuals. We did this 
because Chachapoyas population has almost all individuals with more than 5% of Non-Native 
ancestry, so we maintained all individuals (see ADMIXTURE results). We removed slightly admixed 
individuals just in the 230K dataset because being the most numerous dataset, the exclusion of 202 
individuals did not represent a considerable loss. We determined which individuals had to be removed 
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based on ADMIXTURE results (K=3). For Natives 1.9M and Natives 500K datasets we maintained the 
complete dataset. 
 
To define two scalar parameters (recombination scaling and mutation) for the entire dataset analysis, 
we ran the Expectation-Maximization CHROMOPAINTER algorithm for a subset of individuals and 
chromosomes for each data set, we obtained the following values for the parameters. The 
recombination scaling and mutation were respectively: 220.324 and 0.00018 for the Natives 1.9M 
dataset, 144.362 and 0.0002 for the Natives 500K dataset, and, finally, 150 and 0.00045 for the 
Natives 230K dataset. After obtaining the co-ancestry matrix, we ran fineSTRUCTURE for all datasets 
considering 1,000,000 of burn-in steps, 2,000,000 of MCMC iterations and 100,000 of sampling. After 
the MCMC calculations, we construct the tree using 100,000 additional steps of hill-climbing steps. 
We represented the fineSTRUCTURE results as a tree and the chunklengths coancestry matrix as a 
heatmap.  

Natives 1.9M dataset 
The fineSTRUCTURE tree clusterize the native individuals in three main groups: natives with some 
European admixture (Fig. S8A), Amazon (Fig. S8B), SPPC and Andean individuals (Fig. S8C). Almost 
all Native Americans (~95%) were grouped in clusters containing individuals of the same population 
label. Most of the SPPC individuals have a close relationship with Andean populations. In the 
Amazon, we observed that Jivaroan populations (Candoshi and Awajun) were not closely related 
among them as is observed in other amazon linguistic groups (Fig. S8B). Chachapoyas population 
showed a close relationship with the admixed Native Americans. 

Natives 500K dataset 
The arrangement of the clusters was similar to the resulting tree of Natives 1.9M dataset except (Fig. 
S9): 1) the Moche cluster and the Chachapoyan cluster were more similar to Andean clusters (Fig. 
S9A), 2) West Mesoamerican natives (Mixe, Mixtec, Zapotec and Pima) clustered together with some 
Amazon Tupian (Surui and Karitiana) individuals (Fig. S9B), 3) Peruvian Arawakan natives 
(Matsiguenkas and Ashaninkas) were shown as the most differentiated clusters (Fig. S9D). 

Natives 230K dataset 
The fineSTRUCTURE tree (Fig. S10A and S10B) showed a more external cluster that contains IBS, 
Chipewyan and Greenland natives, reflecting the high level of admixture of these North Native 
American populations. The second more external clusters include Arawakan speakers as the most 
differentiated populations (Fig. S10B). Other Native Americans were organized in two macro clusters, 
Andean (Fig. S10B) and non-Andean clusters (Fig. S10A and S10B). The Andean cluster (Fig. S10B) 
showed no major differences from the clustering of the other datasets, showing Uros as the most 
differentiated Andean population. Costa Rican populations (Fig. S10B) showed close affinity to 
Northern South American populations (Embera, Wayuu, Waunana and Kogi). Moreover, Mayan 
populations (Mayan and Kaqchikel individuals) showed close affinity to Northern Peruvian (Lamas and 
SPPC) and Inga individuals (Fig. S10A). Panoan individuals (Matses and Nahua) clusterize with other 
Eastern populations (Fig. S10A). 
 
Summarizing the fine-scale population structure analyses, we inferred that Mesoamericans (Maya and 
Kaqchikel) share more ancestry with SPPC natives than with Arid Andes populations. The Arid Andes 
populations showed high similarity among them. Moreover, Chachapoyas populations were highly 
similar to SPPC individuals. 

2.1.3. Ancestry profiles inferred by GLOBETROTTER and SOURCEFIND 
We performed a Chromosome painting inference for each Native American population, setting a 
population as recipient from all other populations (CHROMOPAINTER “-f” switch). This inference 
result in a chunklengths matrix that summarizes the contribution (shared DNA) from the donor 
populations to the recipient. Then, with this matrix, we applied two approaches to infer the ancestry 
proportions: a regression model (non-negative least squares) implemented on GLOBETROTTER 
software (MIXTURE MODEL) (22–24) and a Bayesian model implemented in SOURCEFIND (25). To 
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generate the chunklengths output for each Native American groups, we used the same two scaling 
parameters inferred in the last subsection. Furthermore, since fineSTRUCTURE and ADMIXTURE 
showed no differences among Matsiguenkas individuals, Matsiguenkas 1 (Shimaa) and Matsiguenkas 
2 (Sepahua), for GLOBETROTTER inferences we considered these two groups as one single 
Matsiguenkas group. 
 

Natives 1.9M dataset 
The MIXTURE MODEL (Fig. S11) revealed a particular pattern in Andean populations. Each Andean 
population shares a high proportion of DNA with other Andean populations showing a homogeneous 
pattern. Specifically, the ancestry profile of the Uros population showed that 95% of its DNA is shared 
with the Puno population indicating lower genetic variability of Uros. Moreover, Aimara-speaking 
Jaqarus showed high genetic affinity with Quechua-speaking groups. The SPPC populations have 
more affinities with northern Amazon populations. These affinities are related to the similar ancestry 
proportions and the ancestry related to Chachapoyas. Also, the three North Amazon populations 
(Candoshi, Awajun, Lamas and Chachapoyas) showed a significant proportion of ancestry related to 
SPPC populations (>10%). Furthermore, we observed that SPPC and North Amazon populations 
have a significant proportion of shared DNA with Andean population (>20%). Simulations suggest that 
SOURCEFIND tends to eliminate contributions that could be due to background noise (25). For this 
particular dataset, SOURCEFIND identifies the SPPC ancestry in north Amazon populations and that 
most of the Andean ancestry is explained by Quechua related ancestry (Fig. S11). For this dataset, 
that has the advantage of being the more dense in terms of number of SNPs, it is important to 
consider the poor representation of other native populations, Mesoamericans and South Americans. 
The Amazon populations showed a common pattern of genetic composition among them. Only 
Quechuas_AA, Jaqarus, Moche and Chachapoyas showed European ancestry. 
 

Natives 500K Dataset 
The MIXTURE MODEL (Fig. S12) showed the Andean populations with the same pattern as was 
observed with the Natives 1.9M dataset, they share a high proportion of DNA with other Andean 
populations showing a homogeneous pattern. Furthermore, it is possible to observe Mesoamerican 
related ancestry in almost all Peruvian natives. The ancestry composition of SPPC populations 
showed more similarity to Chachapoyas population. Moreover, Jivaroan and Lamas populations 
showed very similar patterns of ancestries. We observed that Moche and Chachapoyas populations 
have a significant proportion of shared DNA with Andean population (~30%). All SPPC and Amazon 
populations (except Ashaninkas and Matsiguenkas) showed more ancestry related to Mesoamerican 
(>18%) than to the Andean populations. Matsiguenkas showed more ancestry related to Ashaninkas, 
indicating a close genetic affinity among Arawakan populations. SOURCEFIND (Fig. S12) showed 
that the Mesoamerican related ancestry is particularly high in SPPC and Karitiana populations. The 
Andean contribution in the Amazon was reduced and restricted to the Chachapoyas population. 
Moreover, Jivaroan (Awajun and Candoshi) populations showed some contribution from the SPPC 
group. 

Natives 230K Dataset 
Using fineSTRUCTURE results (Fig. S10A and S10B), we organize Native American populations in 
the following clusters: 
 

● Chopccas (n=17) 
● Quechuas_Per (n=13) [Quechuas_AA 

and Quechua_R2] 
● Aimaras_PB (n=29)  
● Qeros (n=12)  
● Uros (n=13) 
● Quechuas_Bol (n=10) 
● Ashaninkas (n=35) 
● Matsiguenkas (n=26) 

● Matses (n=11) 
● Nahua (n=2) 
● Awajun (n=23) 
● Lamas (n=21) 
● Chachapoyas (n=9) 
● Moche (n=25) 
● Tallanes (n=34) 
● Pima (n=21) 
● Tepehuano (n=21) 
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● Maya (n=29) 
● Kaqchikel (n=6) 
● Mixe (n=17) 
● Zapotec1 (n=6) 
● Zapotec2 (n=21) 
● Mixtec (n=5) 
● Karitiana (n=8) 
● Surui (n=10) 
● Guahibo (n=6) 
● Palikur (n=3) 
● Piapoco (n=6) 
● Ticuna (n=4) 
● Embera (n=4) 
● Kogi (n=3) 
● Waunana(n=3) 
● Wayuu (n=2) 
● Toba (n=4) 

● East_Amazon_Brazil [ Arara (n=1) - 
Parakana (n=1)] 

● Inga (n=2) 
● 1 Chaco cluster [Guarani (n=3) - 

Chane (n=2)] 
● Wichi (n=4) 
● Maleku (n=2) 
● Cabecar (n=16) 
● Guaymi (n=5) 
● Teribe (n=3) 
● Chipewyan (n=3) 
● East Greenland (n=3) 
● IBS cluster (n=107) 
● CDX cluster (n=93) 

 

 
The number in parenthesis indicates the number of individuals after filtering the ones with more than 
5% of European ancestry. We did not include Chono and Huilliche as donors for two reasons 1) Due 
to the low probability that they were involved in gene flow events with Central Andes or Amazonia (12, 
26), and 2) almost all individuals have higher levels of European ancestry (>5%). Furthermore, the 
Quechuas individuals from our dataset that clustered with Quechuas R2 from Reich et al. (2012) (12) 
were included as Quechuas Per and all Quechuas R1 were considered as Quechuas Bol (from 
Bolivia). Although Jamamadi samples form a cluster with Arara and Parakana, these individuals are 
geographically distant from Arara and Parakana, for this reason we excluded them from the 
GLOBETROTTER analysis. After the contribution inferences, and just to improve the visualization of 
the results, we made an arbitrary merge of clusters as follow: 
 

● North Amazon 1: Inga and Ticuna. 
● North Amazon 2: Guahibo, Palikur and Piapoco. 
● Caribbean: Embera, Kogi, Wayuu and Waunana. 
● Chaco natives: Wichi, Guarani and Chane. 
● Pampas: Toba. 
● Central America: Cabecar, Maleku, Guaymi and Teribe. 
● Mayan: Maya1 and Maya 2. 
● West Mesoamericans: Mixe, Mixtec, Zapotec1 and Zapotec2. 
● North American: East Greenland and Chipewyan. 

 
The MIXTURE MODEL (Fig. S13) showed a contrasting pattern between Western (SPPC and Arid 
Andes) and Amazon groups. The SPPC populations as well as Amazonian groups showed shared 
haplotypes with Mesoamerican groups. Differently, SOURCEFIND (Fig. S13) only detected sharing 
with Mesoamerican haplotypes for Chachapoyas, Awajun and Inga groups. Moreover Chachapoyas 
and Inga groups showed some level of Andean related ancestry. 
 

2.2. Conclusions 

Considering our Question 1, we conclude that the genetic dichotomy between populations living on 
the Arid Andes and adjacent Amazonia does not extend to the Fertile Andes. Furthermore, 
Chachapoyas, an Amazon Yunga population, is more genetically similar to SPPC populations than to 
Arid Andes or other Amazon populations. Regarding our Question 2, GLOBETROTTER results 
suggest longitudinal (west/east) gene flow in the northern of Peru. 
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Section 3: Cultural interactions were accompanied by gene flow events across the Andes 

3.1. Introduction 

Further evidence of commercial interaction between populations of the Coast, Andes and 
Amazon of fertile Northern Peru: Archaeological evidence suggests an intensive interaction across 
the Fertile Andes in contrast to the Arid Andes. Cultural and commercial interactions involve the South 
Pacific Coast, Andean and Amazonian populations (3, 4, 27, 28). Archaeological data point out that 
the Fertile Andes (involving Southern Ecuador and Northern Peru) was a main crossroads for the 
Andes-Amazon interaction (27), which could be facilitated since the Andean mountain chain has its 
lowest altitude in this region (29, 30). These cultural and commercial interactions involved the trade of 
Spondylus shells from the Coast and medicinal plants and herbs from the Amazon. Particularly, 
Chachapoyas, an Amazon Yunga, was part of a significant interregional exchange network during the 
Early Intermediate period (around 2300 YBPto 1400 YBP) and that extended to the Inca period 
(around 1500 AD) (1). Also, it was suggested a socioeconomic exchange between Moche (Coast) and 
Awajun (Amazon Yunga) natives (3). Nowadays, Chachapoyas and Lamas populations both living in 
the Amazon Yunga speak Quechua, which could be adopted as a lingua franca in the last centuries. 
Specifically, Lamas population is an intriguing case since it was attributed to have an Andean Origin 
(related to Chanka population). A recent study demonstrated that Lamas population has a closer 
genetic affinity to surrounding Amazon populations than with Chanka population, suggesting a 
possibly Amazonic origin instead of Andean (31), which is consistent with our results in this paper 
(Figs S2-S13). In the latter section, we showed that Jivaroan populations were more similar to Fertile 
Andes populations (SPPC and Chachapoyas) than to Arid Andes populations. This genetic proximity 
could be related to the historical interactions. Here we address:  
 
Question 2: whether gene flow accompanied the cultural and socioeconomic interactions 
between Andean and Amazon Yunga populations?.  
 
To address this question we performed Patterson’s statistics analyses: D statistics and Admixture 
graphs analyses on the masked data. The D statistics determine if two populations have an excess of 
alleles sharing due to gene flow. The admixture graphs explore the best model of relationships among 
populations taking into account gene flow events in a statistical framework. 
 

3.2. Methods 

3.2.1. D statistics 
The D statistics (15, 32), or ABBA-ABAB test, is a method to detect gene flow among closely related 
populations. It evaluates four populations: P1, P2, P3  and an Outgroup: 
 

Outgroup (P3 (P1, P2))  
 

This treeness test considers, as a null hypothesis, that P1, P2, P3 and an outgroup have a tree 
relationship. In this null hypothesis, P1  and P2 diverged earlier from the ancestor of P3, with no gene 
flow between P3 and P1  or P2 after the divergence. The alternative hypothesis is that P3 was involved 
in gene flow with P1 or P2  after the divergence. This analysis is restricted to biallelic sites and 
considered an allele “A” as the ancestral allele of the outgroup (O) and an alternative allele “B” in P3. 
Considering the order O-P3-P1-P2, the D test is focused on the ABBA or ABAB pattern. The first 
pattern (ABBA) corresponds to the total number of sites with the alternative allele (B) shared only by 
P1 and P3 . The second configuration (ABAB) is the total number of sites with the alternative allele (B) 
shared only by P2 and P3 . The D statistic is calculated by the relationship of: the difference of 
ABBA-ABAB counts (numerator) and the total count ABBA+ABAB (denominator). The numerator of 
this relationship indicates the signal of the statistic which is interpreted as the direction of gene flow. If 
the D statistic is not significantly different from zero, we accept the null hypothesis of treeness. If the 
result differs significantly from zero, we reject the null hypothesis and consider the possibility of gene 
flow between P3 with P1 or P2. For D statistics estimation we used ADMIXTOOLS (16). The results are 
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interpreted as follows: negative values of D are interpreted as gene flow between P1  and P3 and 
positive values indicate a gene flow between P2  and P3. A D value is considered statistically significant 
if the absolute value of the relationship between the D value and its standard deviation is equal or 
above 3 (|Z-score|  3). We applied D statistics to the masked Datasets 500K and 230K. Considering 
the huge number of combinations for D inferences and even obtaining highly significant values, we 
construct Q-Q plots to analyze the Z-score distribution, which is expected to be approximately normal 
under the hypothesis that our results could be expected by chance (H0) (33). 
 
Cultural interactions and gene flow across the Andes 
 
Considering the divergence between Western (including Andean, SPPC) and Eastern (Amazon) 
groups, we tested the following configurations: 
 

● (Outgroup, Eastern (Western2, Western1)) 
● (Outgroup, Western (Eastern1, Eastern2, )) 

 
Outgroup: For both masked datasets, we used Africans (YRI). 

Natives_500K Dataset (Masked) 
Configuration (Outgroup, Western (Eastern2, Eastern1)): 
We explored the gene flow among populations in South America. This configuration explores if one 
western population shares more alleles with one population from the Amazon (Amazon Yunga or 
Lower Amazon) than another. Deviation from the diagonal of the Q-Q plot indicates that some 
populations in this configuration are involved in gene flow events. We observed that the major signals 
of gene flow involved Chachapoyas, Lamas and Jivaroan populations (Awajun and Candoshi) with 
SPPC (Fig. S14A).  

 
Configuration (Outgroup, Eastern (Western2, Western1)): 
When we explored the possible signal of gene flow from Eastern (Amazon yunga and Lower Amazon) 
to Western, we found results similar to the first configuration, a significant deviation from the diagonal 
involving SPPC, with Chachapoyas, Lamas and Jivaroan populations (Fig. S14B). 

Natives_230K Dataset (Masked) 
For this dataset, both configurations showed congruent results with the Dataset 500K (Fig. S15A - B) 
and no new signals of gene flow appeared. 
 
In conclusion, regarding Question 2: whether gene flow accompanied the cultural and 
socioeconomic interactions between Andean and Amazon Yunga populations?, D statistics 
show evidence of longitudinal gene flow between the north Coast of Peru (part of the so-called 
northern Fertile Andes) and Amazonian populations of similar latitudes. 
 

3.2.2. Admixture graphs 
 
Rationale: Population Structure Analysis (Section 2) and D statistics showed high genetic affinity 
among Native American groups of Fertile Andes. Strong signals of D statistics involved SPPC and 
Jivaroan populations, Chachapoyas and Lamas suggesting gene flow among these groups (Fig 
S14-S15). In order to determine the direction and parameters (contributions) of the gene flow or 
admixture events we applied admixture graphs using qpGraphs in ADMIXTOOLS (16). qpGraph 
evaluates the fit of a priori suggested tree and the f-statistics applied on a set of populations included 
in the tree.  
 
We test two contrasting hypotheses of gene flow. The first one (W→E), Amazon groups (Eastern) 
receives a contribution from the Coast (Western) and the second one (E→W), Coast (Western) 
receives a contribution from Amazon (Eastern). As a result, qpGraph offers a log-likelihood of the fit, 
Z-score values for the f-statistics and the parameters involved in admixture events (contributions) if 
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these are tested. We accept an hypothetical tree if the absolute value of the highest f-statistic is less 
than 3 (|Z-score| < 3). Moreover, if we obtain trees with similar Z-score values, we select the tree with 
fewer zeroed branches and lower log-likelihood. 
 
First, we selected a small group of populations from the masked Natives 500K dataset and we 
merged it with the MA1 sample (34). Our final dataset included 235,402 SNPs. The MA1 sample is 
important due its relationship with one of the dual ancestries that gave origin to Native Americans 
(34). To create a draft tree in which admixture events will be fitted, we select the following 
populations: 
 
African: YRI 
Siberian: MA1 
South Asian: Onge 
East Asian: CDX 
North America: Clovis 
Mesoamerican: Mixe 
Amazon: Ashaninkas and Matses 
Andes: Uros 
 
The second step was to add the Tallanes population from the Peruvian Coast (Western) and a 
Northern Amazon population (Awajun, Candoshi, Lamas, Chachapoyas). We test each of these 
populations as unadmixed and admixed. We selected Tallanes since this population showed the most 
of the highest values of D statistics and therefore, was likely involved in gene flow. We tested our 
hypotheses for 4 combinations: 
 
-Tallanes-Awajun 
-Tallanes-Candoshi 
-Tallanes-Lamas 
-Tallanes-Chachapoyas 
 
Results: All graphs (data not shown) that fit Tallanes and Northern Amazonas as unadmixed showed 
poor fit. When we allowed for gene flow considering our two contrasting hypotheses, the best fit was 
for the hypothesis 1 (W→E) (Fig S16A,S17A,S18A,S19A). Admixture graphs for hypothesis 1 and 2 
showed the same value for the worst f-statistic (Z-score), but hypothesis 2 (E→W) included zeroed 
length branches, except for the Tallanes-Chachapoyas combination. In this last combination the 
hypothesis 1 has the best fit with the lower Z-score (Fig S19A). These admixture graphs support a 
predominant contribution from Coast related populations to the North Amazon. 
 

 

3.3. Conclusion 

● Populations around the Fertile Andes were involved in gene flow events. Specifically, North 
Coast populations showed a significant contribution to the genetic ancestry or North Amazon 
populations.  
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Section 4: Dating the between-population homogenization of the arid Andes 

Question 3 (Section 4): when the Andean between-population genetic homogenization started in the 
context of the arid Andean chronology. 

4.1. Methods 

4.1.1 Identical-by-descent segment analysis 
We analyzed the pattern of segments identical-by-descent (IBD) to infer the relationship among 
populations across the time. If two DNA segments are identical and have the same ancestral origin 
they are considered Identical-by-descent (35, 36). From one generation to another, large segments of 
DNA are inherited, but in successive generations recombination events break these regions (37). The 
relationship between the size of an IBD segment found between two individuals and the time in 
generations until coalescence have the following approximation (38, 39): 
 

E ⋍ 3/2L 
Where: 
E: time in generations to the most recent common ancestor. 
L: length of IBD segments (in units of Morgan). 
 
To infer the pattern of gene flow along the time, we ran RefinedIBD software (40) with the Natives 
1.9M Dataset and Natives 500K Dataset. To analyze the demographic evolution in Central Andes, 
we used IBDne software (41) with the Natives 1.9M Dataset, both approaches are described below. 

RefinedIBD 
To infer IBD segments, we used RefinedIBD (40). This software performs two steps: first, it uses the 
GERMLINE algorithm (42) for IBD detection, and second, a refinement step, that calculates the 
probability of each segment to be IBD (40). We removed all missing data in the specific dataset 
selected for this analysis using PLINK (--geno parameter). We used the genetic map GRCh37 from 
HapMap and we restricted our analyses to segments larger than 3.2cM. We organized the IBD 
segments in four intervals that could be related to historical periods, considering one generation as a 
period of 28 years: 
 

1) 3.2 to 4.2cM (50 to 36 generations before present) 
2) 4.2 to 7.8cM (36 to 19 generations before present) 
3) 7.8 to 9.3cM (19 to 16 generations before present) 
4) all segments greater than 9.3cM (16 generations before present to present 

day) 
 
The first interval is related to pre-Inca times, more specifically to the Middle Horizon and Late 
Intermediate, that correspond to the Wari-Tiwanaku Empire. The second interval involves the rise and 
fall of the Inca Empire. Finally, the last interval is related to colonial times until the present day (Fig. 2, 
Fig. S20). 
 
We calculated the average amount of shared DNA between two individuals from the same (aaIBD) or 
different populations (abIBD), for each interval(40). Considering a specific pair of populations (a and 
b), we calculated the total amount of shared DNA between one sample from “a” and another from “b”. 
After that, we sum all pairwise values and divided by the number of pairs between a and b: 
 

abIBD = Σ ijLij′
Npairs  

Where: 
abIBD: average of the total shared IBD length between two individuals from different populations (or 
the same population if it is aaIBD). 
i and j: the two individuals. 
L: total IBD length shared between each pair of individuals 
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Npairs: Na * Nb (for different populations), and Na(Na-1)/2 (For same population). Where N is the 
number of individuals in the respective population (a or b). 
 
The representation of IBD relationships was presented as a similarity heatmap constructed with the 
log of the abIBD values (Fig. 2, Fig. S21). 
 

Natives 1.9M dataset 
In the first interval (3.2 to 4.2 cM, Fig. 2B) it is possible to observe homogeneous patterns among 
Andean populations. We did not observe differences between the intra and interpopulation sharing in 
the arid Andes. In a temporal view, this interval coincides with the Middle Horizon (43) that included 
the expansion of Tiwanaku-Wari and its falling. This society, which dominated the political landscape 
of the central highlands of the Andes, was probably an ancestor of Quechua-speaking populations 
(44), which may be related to the fact that 3 of the 6 Andean studied populations speak this language 
today. Posteriorly, the difference between intra and interpopulational sharing ratio for Andean 
populations gradually increased until the most recent interval, but remains smaller than other groups. 
However, the hypothesis that the Andean homogenization already existed before the Incas was 
evidenced by the visualization of the high degree of sharing of IBD segments between these groups 
during the Tiwanaku-Wari expansion.  
 

Natives 500K dataset 
In the earliest interval (Fig. S21A), the Andean region already appears homogeneous, corroborating 
the Natives 1.9M dataset results. The SPPC populations showed high internal affinity degrees. The 
Amazon group in general has some relations with other groups, but the diagonal is very intense, 
evidencing its high degree of intrapopulation IBD. In the second interval (Fig. S21B), corresponding to 
the period between the falling of Tiwanaku-Wari Empire and the beginning of the Inca Empire, the arid 
Andes stay homogeneous. The next period  (Fig. S21C) comprises the entire duration of the Inca 
Empire, which remains, in general, homogeneous. In the last interval (Fig. S21D), after the Europe 
conquest, Andes is apparently more structured. SPPC populations remain connected since the first 
interval, as do Matses and Lamas. Like the first dataset, the genetic affinity between Chachapoyas 
and Andean and SPPC is constant along the intervals. 
 

4.1.2. IBDne 
To understand the demographic dynamics of populations in the arid Andean, we calculated the 
pattern of effective population size (Ne) with software IBDne (41). This algorithm infers the pattern of 
Ne along the generations, allowing us to study how demographic changes make the genetic diversity 
of a population vulnerable to genetic drift. This method has some particularities that need to be taken 
into account: 1) it tends to smooth over sudden changes in Ne, 2) it assumes a closed population, 3) it 
assumes a homogenous population. For this reason we performed the analysis just for the arid 
Andean group. To avoid the underestimate of effective population size, we restricted the analysis to 
segments larger than 4cM, as suggested by the authors for array data (41). We inferred this 
parameter (Ne) only between 4 and 50 generations before the present, because segments related to 
the last 3 generations are not informative for the dynamic of the population. As our arid Andean 
populations are genetically homogeneous, we grouped as a unique population for the IBDne 
inference, which would not be acceptable for the other groups. Moreover, as the density of SNPs is 
also an important factor for these inferences, we only applied this method for Natives 1.9M dataset. 

Natives 1.9M dataset 
In the earliest heatmap interval, approximately between 50 to 36 generations before present, we can 
see an expansion period in the population effective population size. After approximately 27 
generations, the Ne decreased (Fig. S22), which can mean a bottleneck or continuous population 
structuring, this reduction stopped in the last 10 generations. 
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4.2. Conclusions 

● The Andean homogenization already existed before the Late Intermediate. Probably related 
to the Tiwanaku-Wari expansion. 

. 
● Inferences on the dynamics of the effective population size based on IBD suggest that the 

decline in population size that followed the European conquest (~1500 AD) affected the 
genetic diversity of Andean populations, making it more vulnerable to be affected and lost by 
genetic drift. 
 

● The effective population size (Ne), estimated from IBD segments, shows the dynamics (Fig. 
S22) characterized by a Post-Contact decline to around one-third the level observed around 
1250 years ago (Middle Horizon), when it was rising likely due to an increase in population 
size in the arid Andean regions. 
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Section 5: Genetic Differentiation and Natural Selection in the Andes and Amazon 

5.1. Introduction 

The evolutionary mapping of genetic variants is an efficient approach to identify functional genomic 
regions that have played an essential role in survival, and possibly have consequences for human 
health (45, 46). The evolutionary history of modern humans is marked by major migration events for 
environments with different climates, diets, and diseases (47). These factors compose the selective 
pressures that act on variants that affect biological mechanisms that influence the adaptation process 
(48, 49). The process of natural selection leaves genetic signatures that can be detected, making it 
possible to identify regions of the human genome related to these mechanisms. 
 
In the following section, we applied statistical methods based on population differentiation (Population 
Branch Statistic - PBS) and linkage disequilibrium (cross population extended haplotype 
homozygosity - xpEHH) to identify genomic regions under natural selection in Andean and Amazon 
populations. For this purpose, we used the Natives 1.9M dataset considering only the following 
populations organized in two groups: 
 

1) Arid Andean group: Chopccas, Quechuas_AA, Qeros, Puno, Jaqarus, and Uros.We 
excluded 2 Quechua individuals who had more than 10% non-native ancestry according to 
the ADMIXTURE analysis. 

 
2) Amazon group : Ashaninkas, Matsiguenkas (including Matsiguenkas 1 and 2), Matses and 

Nahua. We did not include Awajun, Candoshi, Lamas and Chachapoyas in this analysis 
because our previous results (Section 2 and 3) demonstrated that these populations were 
involved in gene flow and this may mask differentiation signals. 

 

5.2. Methods 

Natural Selection Candidate SNPs 

5.2.1. Population Branch Statistic  
PBS is a statistical test to identify changes in the allele frequencies of a target population since its 
divergence from an ancestral population. PBS is based on the comparison of differentiation (FST) 
values among three groups: 1) the target population; 2) a population closely related to the target, and 
3) an outgroup (50). 
 
Before the PBS analysis we applied a MAF (Minimum Allele Frequency > 0.05) filter with PLINK. 
Since we are searching for evidence of differentiation between Andes and Amazon, we considered 
only SNPs with low differentiation inside these groups (FSC<0.15) (51). The FSC for each SNP for each 
group was estimated with varcomp function from the hierfstat R package (52). 4P software (53) was 
used to calculate FST for each SNP. The F-statistics estimated through varcomp function and 4P rely 
on the Weir and Cockerham (1984) algorithm (54). Subsequently, the FST values were transformed as 
following (55): 
 

FSTT = -log(1-FST) 
 
To the transformed FST values, we applied the PBS formula (50): 
 

PBS = (FSTT1+FSTT2-FSTT3)/2 
Where: 
FSTT1: transformed FST between the target population and the closely related population. 
FSTT2: transformed FST between the target population and the distant population. 
FSTT3: transformed FST between the close population and the distant population. 
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To avoid spurious outliers when the branches were long or short in all groups, we applied a 
normalized version from PBS (56): 
 

PBSn = PBS1 / (1 + PBS1 + PBS2 + PBS3) 
Where: 
PBSn: normalized PBS. 
PBS1: estimated PBS when the PBS is calculated for the target population. 
PBS2: estimated PBS when PBS is focused on the closely related population. 
PBS3: estimated PBS when PBS is focused on the distant population. 
Our final result is based on the PBSn. 
 
We performed PBS with the following configurations: 1) Andes as a target group, Amazon as a closely 
related group; and 2) Amazon as a target group, and Andes as a closely related group; in both 
approaches the CDX (Chinese Dai in Xishuangbanna, China), a population from 1000 Genomes (57) 
was used as an outgroup. We analyzed the results in windows of 20 SNPs with 5 SNPs of overlap. To 
determine the probability that a PBS value occurs under the null hypothesis of genetic drift, we 
simulated 10,000 chromosomal regions of 1Mb under the neutral model for the three populations 
involved (Andes, Amazon and CDX) (Fig. S23) using the Recosim program to simulate the 
recombination maps and Cosi2 (58) to simulate the genetic data under a neutral model as described: 
 
 
 
####################### NEUTRAL MODEL #######################  
 
#DETAILS: In this model the split in Native Americans is Andean (source) and Amazon (new population) 
#Andean and Coast events are based on the inference of Ne performed on IBDNe based on IBD segments 
#split <label> <source pop id> <new pop id> <T>  516 generations ~ 12900 Andes-Amazon 12700 AndesCosta years 
estimated by Harris et al. 2018 (1 generation = 25 years) 
 
gene_conversion_relative_rate 0.0000000045 
 
# mu,  
mutation_rate 1.5e-8 
length 1000000 
# population info 
# for each population, include a line: 
# pop_define pop-index pop-label 
 
pop_define 1 amazon 
pop_define 2 andean 
pop_define 3 asian 
pop_define 4 coast 
 
#init sample pops 
# for each sample set, include 
# pop_size pop-label pop-size 
# sample_size pop-label sample-size 
 
#amazon 
pop_size 1 2749 
## Ne is the mean of three values obtained for Matses population in Harris et al. 2018 (N1=2848,N2=2881,N3=2518) 
sample_size 1 206 
## 206 Considering 103 samples 
 
#andean 
pop_size 2 8064 
## Ne is the mean of six values obtained for Chopccas  (N1=7774,N2=7070,N3=9348), populations in Harris et al. 2018 
sample_size 2 166 
## 166 considering 83 diploid samples 
 
#asian 
pop_size 3 7700 
sample_size 3 240 
# 240 considering 120 diploid samples 
 
#coast 
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pop_size 4 6975 
sample_size 4 62 
# 62 considering 31 diploid samples 
 
pop_event exp_change_size "Andean second expansion" 2 4 9 8064 2500 
pop_event bottleneck "Andean bottleneck due to European conquest" 2 29 0.067 
pop_event bottleneck "Coast bottleneck due to European conquest" 4 29 0.067 
pop_event bottleneck "Amazon bottleneck" 1 479 0.067 
pop_event exp_change_size "Andean expansion" 2 30 450 7000 2426 
pop_event exp_change_size "Coast expansion" 4 4 9 6975 1500 
pop_event split "andean and amazon split" 2 1 516 
pop_event split "andean and coast split" 2 4 508 
pop_event bottleneck "native bottleneck" 2 959 0.067 
pop_event split "asian and native split" 3 2 960 
pop_event bottleneck "asian bottleneck" 3 1998 0.067 
 
random_seed 2022747205 
####################### END OF FILE #######################  
 
After this, we estimated the PBSn values for the simulated data with the same methodology used for 
empirical data. For each observed PBSn result, we calculated the p value as a proportion of simulated 
PBSn values that are equal or greater than the observed value (50). We considered as candidates for 
natural selection those SNPs in the 0.05% higher values of PBSn (PBSn > 0.150 for the Andes and 
PBSn > 0.191 for the Amazon) that were encompassed in the windows in the 0.05% higher PBSn 
mean values (PBSn mean > 0.095 for the Andes and PBSn mean > 0.116 for the Amazon). We found 
142 signals comprising 16 genes in the Andes and 137 signals comprising 15 genes in the Amazon 
(Tables S1, S2; Fig. 3). 
 

5.2.2. xpEHH: cross population extended haplotype homozygosity 
Positive selection events increase the frequency of a genetic variant and, consequently, the frequency 
of the variants around it (59). This process occurs faster than the haplotypes are broken down by 
recombination, leading to the emergence of an unusual high frequency long-range haplotype. 
Considering this, we decided to perform an extended haplotype homozygosity (EHH) test to select the 
most likely candidates for natural selection. 
Sabeti et al. (60, 61) developed methods to detect natural selection signatures calculating the EHH, 
defined as the probability of finding homozygosity of all SNPs around the haplotype of interest 
choosing two random chromosomes containing this haplotype in a population: 

Where C(xi) is the number of all possible distinct haplotypes considering the extension from de core 
SNP to the i-th SNP, and nh is the number of observed haplotypes of a specific type h (62). 
 
The method xpEHH defines a core SNP and calculates the EHH for all SNPs in 1MB of distance 
forwards and backwards considering the chromosomes of two target populations, A and B. When the 
EHH decays to 0.03-0.05 before reaching 1MB of distance this point is defined as SNP X, if this score 
is not reached in this range the core SNP is discarded from the next analyzes. Next, the populations 
are separated and the EHH parting from the core SNPs selected in the first step is calculated again 
until it reaches the value of 0.03-0.05 (SNP X) in each population. Then the integral of the EHH in 
respect to the distance from the core SNP to the SNP X is calculated giving the results called IA (for 
population A) and IB (for population B). The xpEHH log ratio is defined as ln(IA/IB). The results are 
genome-wide normalized. Extreme positive values are indicative of selection in population A, and 
negative values in population B. The xpEHH analysis was performed with the software Selscan (62).  
 
We considered as positive signals for natural selection the SNPs representing the 99.5 percentile of 
the xpEHH results of an Andean vs Amazon comparison (xpEHH > 2.97 for the Andes and xpEHH < 
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-3.34 for the Amazon). For each observed xpEHH result, we calculated the empirical p value as the 
proportion of values that are equal or greater than the observed value. Only concordant results 
between PBS and xpEHH were considered as strong candidates for natural selection, with this 
approach we found 22 candidate SNPs comprising 3 genes in the Andes and 21 SNPs comprising 1 
gene in the Amazon (Tables S3, S4; Fig. S26, S27).  
 
To assess whether the results obtained from xpEHH analysis between Andean and Amazon 
populations are corroborated when comparing each group with an outgroup, we performed xpEHH 
analysis between each group and East Asian populations from 1000 genomes (xpEHHANDvsEAS and 
xpEHHAMZvsEAS). The results for Andean populations show a high score for gene HAND2-AS1 (higher 
xpEHHANDvsEAS=1,59, p-value=0.001), but not for gene RARS (higher xpEHHANDvsEAS=0,79 
p-value=0,105). For Amazon populations, the highest signal was from an intergenic region near the 
gene PTPRC (rs1326288 higher xpEHHAMZvsEAS=-1,23 p-value=0.026)(Tables S3, S4). 
 
The candidate loci for natural selection were annotated with MASSA (Multi-agent Annotation System) 
(63), that mines the following datasets for SNPs (based on rs code): dbSNP (64), OMIM (65) [Online 
Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns 
Hopkins University (Baltimore, MD), 2020. World Wide Web URL: https://omim.org/], Reactome (66) , 
HGNC (HGNC Database (67)), GWAS Catalog (68), PolyPhen2 (69), Provean (70), SIFT (71); and 
the following datasets for genes: UCSC (72), Gene Ontology (73, 74) , PharmGKB (75). 
 
It is interesting to note that the strongest signal for PBS analysis for the Andean populations was from 
the DUOX genes (Fig. S24), previously suggested as a candidate gene for natural selection by 
Jacovas et al. (76). However, this signal does not appear in the xpEHH results.  
 

5.2.3 Linkage Disequilibrium Patterns in natural selection signals 
 

To find other possible candidate SNPs under natural selection, we look for linkage disequilibrium (LD) 
patterns associated with our strongest natural selection signals. We had access to sequencing data 
from 60 Andean native individuals (30 Chopccas and 30 Uros) for the genes DUOX2 and 
HAND2-AS1 from Harris et al. (77) . The Amazon sample (12 individuals) was not large enough to 
allow LD inferences. We calculated LD using the software Haploview 4.2 version (7821). We only 
consider in LD those variants with r2 ≥ 0.80. We found 37 no genotyped SNPs in LD with our two 
missense signals of natural selection (rs269868 and  rs57659670) in the DUOX2 region in 
chromosome 15 including three missense mutations: one in the DUOX2 gene (rs2001616: G>A,T: 
Pro138Leu), one in the DUOXA2 gene (rs2252371: C>T: Pro126Leu), and one in the DUOXA1 gene 
(rs61751061: C>G,T: Arg478Pro). The SNP rs2001616 is located in the Peroxidase Homologue 
Domain (aa 26-601) of DUOX2 protein, and rs2252371 is located in an extracellular strep of the 
DUOXA2 protein (aa 78-183). In these domains occur disulfide bridges between specific cysteines 
that are essential to the stability and function of the DUOX complex (7989).  
 
In the gene HAND2-AS1 we found 23 no genotyped SNPs in LD with our 4 natural selection signals, 
all of them in intronic regions, including rs3775587, mapped within a putative enhancer (Fig. S28). 
These SNPs were used in the analysis of regulatory elements described below. 
 

5.2.4 Identification of regulatory elements located around HAND2-AS1 locus 
GeneHancer track available in the UCSC Genome Browser (90 80) was used to identify active 
regulatory elements (enhancers and promoters) that may target HAND2-AS1 (Fig. S29). GeneHancer 
database was created by integrating >1 million regulatory elements from seven genome-wide 
databases: ENCODE project Z-Lab Enhancer-like regions (version v3); Ensembl regulatory build 
(version 92); functional annotation of the mammalian genome (FANTOM5) atlas of active enhancers; 
VISTA Enhancer Browser; dbSUPER super-enhancers; Eukaryotic Promoter Database (EPDnew) 
promoters; and UCNEbase ultra-conserved noncoding elements. Genes were linked to enhancers by 
GeneHancer using five methods: eQTLs from GTEx (v6p); Capture Hi-C promoter-enhancer long 
range interactions; FANTOM5 co-expression of enhancers in the form of noncoding enhancer RNA; 
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transcription factor co-expression; and gene target distance. For this analysis a “double elite” dataset 
was considered, which is composed of regulatory elements derived from more than one database 
(elite enhancers) that are associated to genes from more than one method (elite association). 

Highly Differentiated Variants Between Andean and Amazon Populations and its Medical 
Relevance 

5.2.5 F-statistics 
We searched for functionally relevant SNPs differentiated between the Arid Andes and Amazon 
populations of similar latitudes (i.e. the same groups of populations tested for natural selection) using 
the classical F statistics for each SNP as defined by Weir and Cockerham (54). These SNPs are 
differentiated between the two groups not necessarily due to the action of natural selection, but their 
sharp differences in frequencies in the Andean vs. the Amazon environments may be biomedically 
relevant. We found 1,985 highly differentiated SNPs between the two groups of populations (0.1% 
highest values of FCT distribution: > 0.318, estimated with the 4P software19), but relatively 
homogeneous within the groups (FSC<0.15, estimated with hierfstat software20). We annotated the 
1,985 SNPs usIng our bioinformatics MASSA platform (63), that mines the following datasets based 
on SNPs rs code): dbSNP (64), Ensembl (81), GWAS Catalogue (68), PharmGKB (75), SIFT (71), 
PolyPhen (69). SNPs that are GWAs hits, related to drug response and missense mutations, are 
listed in Tables S5-7. 
 

5.3. Conclusions 

● We have confirmed a natural selection signal from a gene previously reported in Andean 
populations, DUOX2 (76) (PBSn=0.22 p-value=0.002, xpEHH=-2.647 p-value=0.991). 
 

● We identified Natural selection signals Andeans in genes related to (Tab. S4): 
● High altitude adaptation: SULT1A1: PBSn=0.167 p-value=0.007; RARS: PBSn=0.15 

p-value=0.010, xpEHH=2.980 p-value=0.0025 (82, 83), 
● Heart development: HAND2-AS1: PBSn=0.21 p-value=0.003, xpEHH=4.481 

p-value<2e-5 (84), 
● Immune response: UBQLN4: PBSn=0.17 p-value=0.007, xpEHH=-0.217 

p-value=0.607; SSR2: PBSn=0.17 p-value=0.007, xpEHH=-0.215 p-value=0.606; 
DUOX2: PBSn=0.22 p-value=0.002, xpEHH=-2.647 p-value=0.991 (85–87). 

 
● We identified Natural selection signals in Amazon populations related to (Tab. S5): 

● Immune response: PTPRC: PBSn=0.265 p-value=0.004, xpEHH=-4.222 
p-value=0.0003 (88), 

● Food intake regulation: MCHR1: PBSn=0.26 p-value=0.004 (89), 

● Lipid transport: ABCA9: PBSn=0.21 p-value=0.008, xpEHH=-1.570 p-value=0.060, 
ABCA6: PBSn=0.19 p-value=0.011, xpEHH=-1.362 p-value=0.084 (90, 91).  
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Supplementary Figures 
 
 
 

 
Figure S1. Geographical distribution for the 18 Peruvian Native populations sampled, plus the 65 
sampled Native American populations and public data sets (Mallick et al. 2016, Raghavan et al. 2015, 
Reich et al. 2012). All samples except Clovis and Athabascan were included in a data set of ~ 
230,000 SNPs. Peruvian samples and (*) were included in a data set of ~ 500,000 SNPs.  
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Figure S2. ADMIXTURE analysis for 18 Native American populations, as well as Iberian (IBS) and 
Yoruba (YRI) populations from 1000 Genomes Project (Natives 1.9M Dataset). Figure shows results 
for 2 to 8 ancestral clusters (K) and a plot (Bottom) with the ADMIXTURE cross-validation errors as a 
function of K. The lowest cross validations error corresponds to K=5 in which we observed four Native 
American, one European and one African cluster. 
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Figure S3. Principal Component Analysis for 18 Native American Peruvian populations and Iberian 
individuals (IBS) from 1000 Genomes Project (Natives 1.9M Dataset). Shades of blue are related to 
Coast populations. Orange-brown colors are related to Andean populations and green colors are 
related to Amazon. 
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Figure S4. ADMIXTURE analysis for 18 Natives American Peruvian populations, Guatemala 
samples, Native Americans from Raghavan et al. 2015 and the Simons Project (Mallick et al. 2016) 
Iberian (IBS) and Yoruba (YRI) populations from 1000 Genomes Project (Natives 500K Dataset). 
Figure shows results for 2 to 10 ancestral (K) clusters and a plot (Bottom) with the ADMIXTURE 
cross-validation errors as a function of K. The lowest cross validation error corresponds to K=8. 
 
 
 
 

25 
 

61



 

 
Figure S5. Principal Component Analysis for 18 Native American Peruvian populations, Guatemala 
samples, Native Americans from Raghavan et al. 2015 and the Simons Project (Mallick et al. 2016) 
and Iberian (IBS) populations from 1000 Genomes Project (Natives 500K Dataset). Shades of blue 
are related to Peruvian Coast populations. Orange-brown colors are related to Andean populations 
and green colors are related to Amazon. Shades of purple are related to Mesoamericans. Shades of 
beige are related to North American natives. 
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Figure S6. (Top) ADMIXTURE analysis for 90 worldwide populations including 71 Native American 
populations, 18 Asian, 2 Oceanian, Iberian (IBS) and Yoruba (YRI) populations from 1000 Genomes 
Project (Natives 230K Dataset). Figure shows results for 3 to 21 ancestral clusters (K). (Bottom) 
ADMIXTURE cross-validation errors as a function of K and list of populations included. The lowest 
cross validation corresponds to ADMIXTURE K=18. 
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Figure S7. Principal Component Analysis for 89 worldwide populations including 68 Native American 
populations, 18 Asian populations, 2 Oceanian populations, Iberian (IBS) populations (Native 230K 
Dataset). 
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Figure S8. fineSTRUCTURE clustering analysis for the Dataset 1.9M dataset. The tree shows the 
haplotype sharing between Native Americans and East Asian samples. Figures A, B, and C represent 
the clusters A, B, and C, respectively, in the tree on the right. East Asian clusters grouped all Asian 
samples. Shades of blue are related to Peruvian Coast populations. Orange-brown colors are related 
to Andean populations and green colors are related to Amazon. Shades of purple are related to 
Mesoamericans. Shades of beige are related to North American natives. 
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Figure S9. fineSTRUCTURE clustering analysis for the Dataset 500K dataset. The tree shows the 
haplotype sharing between Native Americans and East Asian samples. Figures A, B, C and D 
represent the clusters A, B, C and D, respectively, in the tree on the right. East Asian clusters grouped 
all Asian samples. Shades of blue are related to Peruvian Coast populations. Orange-brown colors 
are related to Andean populations and green colors are related to Amazon. Shades of purple are 
related to Mesoamericans. Shades of beige are related to North American natives. 
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Figure S10. fineSTRUCTURE clustering analysis for the Dataset 230K dataset. A) Branch A of the 
tree showing the clustering of the Non Andean populations of South America. B) Branches B (Central 
Americans and Mesoamericas), C (Andean populations) and D (Peruvian Arawakan Ashaninkas and 
Matsiguenkas). 
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Figure S10 (Continued). fineSTRUCTURE clustering analysis for the Dataset 230K dataset. A) 
Branch A of the tree showing the clustering of the Non Andean populations of South America. B) 
Branches B (Central Americans and Mesoamericas), C (Andean populations) and D (Peruvian 
Arawakan Ashaninkas and Matsiguenkas). 
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Figure S11. Proportions of haplotype sharing for each target population respect to Native Americans, 
Europeans and Africans donors populations, for the Dataset Natives 1.9M, inferred by two 
approaches: A non negative regression (MIXTURE MODEL) and a Bayesian approach 
(SOURCEFIND). Colored bars indicate a proportion of shared haplotypes shared DNA between the 
target population and a specific donor. 
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Figure S12. Proportions of haplotype sharing for each target population respect to Native Americans, 
Europeans and Africans donors populations, for the Dataset Natives 500K, inferred by two 
approaches: A non negative regression (MIXTURE MODEL) and a Bayesian approach 
(SOURCEFIND). Colored bars indicate a proportion of shared haplotypes shared DNA between the 
target population and a specific donor. 
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Figure S13. Proportions of haplotype sharing for each target population respect to Native Americans, 
Europeans and Africans donors populations, for the Dataset Natives 230K, inferred by two 
approaches: A non negative regression (MIXTURE MODEL) and a Bayesian approach 
(SOURCEFIND). Colored bars indicate a proportion of shared haplotypes shared DNA between the 
target population and a specific donor. 
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Figure S14. Quantile-quantile plot comparing Z-scores from D-statistics relating Western (Northern 
Coast and Arid Andes) and Eastern Andean slope (Amazon Yunga and Amazon Yunga) populations 
to those expected under a normal distribution (green diagonal) for the Dataset 500K. Red dashed 
circles show the Eastern populations with significant values of D statistics . A) We tested the 
configuration (outgroups (Western (Eastern1, Eastern2))). We detected evidence of gene flow 
between the Northern Coast and Amazon Yunga populations. B) We test the configuration (outgroups 
(Eastern (Western1, Western2))). We detected strong genetic affinity between Awajun, Candoshi, 
Lamas and Chachapoyas with Western populations. 
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Figure S15. Quantile-quantile plot comparing Z-scores from D-statistics relating Western (Northern 
Coast and Arid Andes) and Eastern Andean slope populations (Amazon Yunga, Lower Amazon and 
other eastern groups) to those expected under a normal (green diagonal) distribution for the Dataset 
230K.  Red dashed circles show the Eastern populations with significant values of D statistics. A) We 
test the configuration (outgroups (Western (Eastern1, Eastern2))). We detected evidence of gene flow 
between Peruvian Coast and Eastern populations in the North Fertile Andes. B) We test the 
configuration (outgroups (Eastern (Western1, Western2))). We detected strong genetic affinity 
between Awajun, Candoshi, Lamas and Chachapoyas with Western populations. 
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Figure S16. Admixture graphs and their parameters to test two hypotheses for gene flow 
across the Fertile Andes. We explore the relationship of the Tallanes-Awajun and the direction of 
the gene flow. White balls in the intermediate nodes represent hypothetical ancestors for each 
divergence event. A) Admixture graph for testing the Hypothesis 1 (from Western to Eastern): the 
gene flow from the Northern Coast to Awajun. B) Admixture graph for testing the Hypothesis 2 (From 
Eastern to Western) the gene flow event into Tallanes. Hypothesis 1 is better supported considering 
its lower final score and number of zeroed branches in contrast to Hypothesis 2. 
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Figure S17. Admixture graphs and their parameters to test two hypotheses for gene flow 
across the Fertile Andes. We explore the relationship of the Tallanes-Candoshi and the direction of 
the gene flow. White balls in the intermediate nodes represent hypothetical ancestors for each 
divergence event. A) Admixture graph for testing the Hypothesis 1 (from Western to Eastern): the 
gene flow from the Northern Coast into Candoshi. B) Admixture graph for testing the Hypothesis 2 
(From Eastern to Western) the gene flow event from Candoshi into Tallanes. Hypothesis 1 is better 
supported considering its number of zeroed branches in contrast to Hypothesis 2. 
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Figure S18. Admixture graphs and their parameters to test two hypotheses for gene flow 
across the Fertile Andes. We explore the relationship of the Tallanes-Lamas and the direction of the 
gene flow. White balls in the intermediate nodes represent hypothetical ancestors for each divergence 
event. A) Admixture graph for testing the Hypothesis 1 (from Western to Eastern): the gene flow from 
the Northern Coast into Lamas. B) Admixture graph for testing the Hypothesis 2 (From Eastern to 
Western) the gene flow event from Lamas into Tallanes. Hypothesis 1 is better supported considering 
that it does not include any zeroed branches in contrast to Hypothesis 2. 
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Figure S19. Admixture graphs and their parameters to test two hypotheses for gene flow 
across the Fertile Andes. We explore the relationship of the Tallanes-Chachapoyas and the 
direction of the gene flow. White balls in the intermediate nodes represent hypothetical ancestors for 
each divergence event. A) Admixture graph for testing the Hypothesis 1 (from Western to Eastern): 
the gene flow from the Northern Coast into Chachapoyas. B) Admixture graph for testing the 
Hypothesis 2 (From Eastern to Western) the gene flow event from Chachapoyas into Tallanes. 
Hypothesis 1 is better supported considering its significant f statistic, lower final score and just one 
zeroed branch lengths. 
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Figure S20. Key historical events of Peruvian prehistory in four longitudinal regions: Peruvian 
Coast, Andes, Amazon Yunga and Amazonia. Pottery and cultivars symbols represent the earliest 
archaeological record for the region. To account for time uncertainties, This figure showed the events 
in the chronology plot without clearly defined chronological borders. Timeline on the top and bottom is 
represented in Years before present. LH: Late Horizon, LIP: Late Intermediate Period, MH: Middle 
Horizon, EIP: Early Intermediate Period, EH: Early Horizon, IP: Initial Period. *Controversial 
geographic region of Arawak origin. Each step in Agriculture and Camelids representations shows an 
increase in their relative importance. Adapted from ref. 92, which is licensed under CC BY 4.0. 
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Figure S21. Heatmap representation of the shared Identical by descent (IBD) segments among 
Native Americans of the Natives 1.9M dataset. Each heatmap represents an interval of segments 
size and is correlated with time generation for the most common recent ancestor. A) An interval from 
3.2 to 4.2 cM correlated with 50 to 36 generations ago. B) The second interval from 4.2 to 7.8 cM 
correlated with 36 to 19 generations ago. C) The third interval from 7.8 to 9.3 cM correlated with 19 to 
16 generations ago. D) And the last interval for all segments longer than 9.3 cM correlated with 16 
generations ago to the present day. 
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Figure S22. IBDNe analysis to infer the dynamic of the effective population size (Ne) from 4 
generations ago to the last 50 generations for the Andean populations (Quechuas_AA, 
Aimaras_P, Chopccas, Qeros and Uros) as a whole. We used the Natives 1.9M dataset. The x axis 
represents the number of generations from the present to the past. The y axis represents the 
estimated value of the Ne. Blocks separated by red lines in the graph correspond to the intervals of 
the IBD heatmaps (Fig 2). GBP: Generations before present. 
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Figure S23. Demographic model of the Andean, Amazonian and East Asian populations. This 
model was used for the simulations made to calculate the p-value of the obtained PBSn values. 
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Figure S24. PBSn mean values Andean populations. Genes related to SNPs inside the 99.95th 
percentile of PBSn values and the 99.95th percentile of PBSn mean (red line). 
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Figure S25. PBSn mean values Amazon populations. Genes related to SNPs inside the 99.95th 
percentile of PBSn values and the 99.95th percentile of PBSn mean (red line). 
 
 
 
 
 
 
 
 
 

 

 
Figure S26. PBSn mean values for windows of 20 SNPs with five SNPs of overleap in Andean 
populations. Genes related to SNPs inside the 99.95th percentile of PBSn values and the 99.95th 
percentile of windows PBSn mean (red line) that also present high values for xpEHH are labeled. 
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Figure S27. PBSn mean values for windows of 20 SNPs with 5 SNPs of overleap in Amazon 
populations. Genes related to SNPs inside the 99.95th percentile of PBSn values and the 99.95th 
percentile of windows PBSn mean (red line) that also present high values for xpEHH are labeled. 
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Figure S28. Linkage Disequilibrium between rs3775587 and the SNPs found to be under 
selection in the gene HAND2-AS1. SNPs with signals in PBS and xpEHH analysis are in red and 
SNP rs3775587, mapped within the putative enhancer GH04J173536 is in green. 
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Figure S29. UCSC Genome Browser view of HAND2-AS1 locus with the SNPs located in 
regions found to be under selection, DNase I hypersensitivity clusters, Transcription Factor 
ChIP-seq binding sites, and the histone modifications H3K27ac (Often Found Near Active Regulatory 
Elements), H3K4me1 (Often Found Near Regulatory Elements) and H3K4me3 (Often Found Near 
Promoters) on cell lines from the ENCODE Project, and GeneHancer (see Supplementary Methods) 
and vertebrate conservation data. According to GeneHancer, rs2877766 and other SNPs lie within an 
~2.5Kb intronic region of HAND2-AS1, which is located between a promoter/enhancer 
(GH04J173520) and an enhancer (GH04J173536). 
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Figure S30. UCSC Genome Browser view of PTPRC locus with the SNPs located in regions 
found to be under selection, DNase I hypersensitivity clusters, Transcription Factor ChIP-seq 
binding sites, and the histone modifications H3K27ac (Often Found Near Active Regulatory 
Elements), H3K4me1 (Often Found Near Regulatory Elements) and H3K4me3 (Often Found Near 
Promoters) on cell lines from the ENCODE Project, and GeneHancer (see Supplementary Methods) 
and vertebrate conservation data. According to GeneHancer, rs16843712 and other SNPs lie within 
an intronic enhancer (GH01J198660) of PTPRC. 
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Legends for Datasets S1 to S3 

Dataset S1: Description of 19 studied Native American populations from Peruvian National            
Institute of Health and from Laboratory of Human Genetic Diversity. Ashaninka population            
was sampled twice independently, for this reason, we merge these samples in a unique              
Ashaninka group and a total of 18 studied populations. 
 

Dataset S2:  List of all samples included in the Native 500K dataset. 
 

Dataset S3:  List of all samples included in the Native 230K dataset. 
 
Dataset S4: SNPs under selection in Andean populations according to Population Branch            
Statistic (PBS) test. 
 

Dataset S5: SNPs under selection in Amazon populations according to Population Branch            
Statistic (PBS) test. 
 

Dataset S6: SNPs under selection in Andean populations according to Population Branch            
Statistic (PBS) and Cross-Population Extended Haplotype Homozygosity (XP-EHH) tests 
 
Dataset S7: SNPs under selection in Amazon populations according to Population Branch 
Statistic (PBS) and Cross-Population Extended Haplotype Homozygosity (XP-EHH) tests 

Dataset S8: Highly Differentiated Variants Between Andean and Amazon Populations: 
Annotation from GWAs Catalog. CHR: chromosome, FST: Level of genetic differentiation 
between groups, A1: alternative allele, AMZ: Amazon populations, AND: Andean 
populations, PEL: Peruvians from Lima, EAS: East asian populations, EUR: European 
populations, WAFR: West African populations.  

Dataset S9: Highly Differentiated Variants Between Andean and Amazon Populations:          
Annotation from PharmGKB. CHR: chromosome, FST: Level of genetic differentiation          
between groups, A1: alternative allele, AMZ: Amazon populations, AND: Andean          
populations, PEL: Peruvians from Lima, EAS: East asian populations, EUR: European           
populations, WAFR: West African populations.  
 
Dataset S10: Highly Differentiated Variants Between Andean and Amazon Populations: 
Annotation from Sift and Polyphen. CHR: chromosome, Wild.AA: Wild Aminoacid, 
Mutant.AA: Mutant Aminoacid, FST: Level of genetic differentiation between groups, A1: 
alternative allele, AMZ: Amazon populations, AND: Andean populations, PEL: Peruvians 
from Lima, EAS: East asian populations, EUR: European populations, WAFR: West African 
populations. 
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Complementary Discussion

Some of the results of the analyses of natural selection and genetic differentiation

were presented only in the supplementary tables of the article, so they will be discussed in

more detail in this section.

Natural Selection Analyses

In the intersection between PBS and xpEHH analyses, other 2 to genes were pointed

as strong candidates in Andean populations (Table S6, Figure S26): RARS (Arginyl-tRNA

synthetase; PBSn=0.151 and p-value=0.01, xpEHH=2.98 and p-value<0.0025) and CA10

(carbonic anhydrase 10; PBSn=0.163 and p-value=0.008, xpEHH=3.09 and p-value<0.001).

The Arginyl-TRNA Synthetase (RARS) is an essential protein for RNA translation that links

amino acids to the appropriate tRNAs. RARS proteins also play a role in hypoxia resistance.

Lori L. et al (2009)71 performed a genetic screen that identified the Arginyl-TRNA

Synthetase gene of C. elegans (rrt-1) as a relevant gene implicated in the control of hypoxia

sensitivity. In the same study, they demonstrated that the knockdown of Arginyl-TRNA

Synthetase gene through RNAi before or after hypoxia injury prevented animal death. Further

studies conducted in rats demonstrated significant alterations in Arginyl-TRNA Synthetase

expression and activity in models of induced cerebral 72 and retinal ischemia 73.

Aminoacyl-tRNA synthetase genes were pointed as those with the most prominent altered

expression in animals submitted to induced ischemia when comparing control groups to

animals submitted to protective ischemic preconditioning 73. These studies indicate that

RARS protein is important to hypoxia response and resistance. Although the mechanisms

underlying the role of RARS in the response to hypoxia are still not well established, variants

that alter its expression may have been favored in high-altitude populations for helping to

prevent cell injury due to the low O2 concentration.

The CA10 is a gene highly conserved within vertebrates that encodes a protein

member of the carbonic anhydrase family. Carbonic anhydrases catalyze the conversion of

CO2 to HCO3- and H+, participating in the pH regulation in several tissues and in the

transport of ions across the membrane by transporter proteins. However, CA10 proteins are

catalytically inactive 74. This protein has remained many years since its discovery without an

established function, mainly because it does not have the characteristic catalytic function of

the carbonic anhydrase protein family. Recent studies have identified its role in the central
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nervous system, where they are mainly expressed, facilitating the transport of neurexins in

transsynaptic interaction networks 75. The USCS Genome browser 70 shows that SNPs

rs16951028 (nPBS = 0.163 and p-value = 0.008, xpEHH = 3.097and p-value = 0.002) and

rs5010295 (nPBS = 0.160 and p-value = 0.008, xpEHH = 3.354 and p-value = 0.001) lie

to a region with H3K4Me1 marks (often found near regulatory elements) (Attachment 1) in

Human Lung Fibroblasts analysed for the the ENCODE project. However, according to

GTEx Portal (ref) CA10 is not expressed in the lungs, and none of the SNPs around CA10

region under selection according to our analyses are eQTLs.

In a Genome-wide association study about asthma in Asian children, Perin and

Potočnik 76 identified a correlation between one variant in gene CA10 (rs967676-G, not

present in our data) and greater pulmonary obstruction, as well as with a better response to

glucocorticoid therapy. Other GWAS also claim that variants in this gene are related to

increased risk of metabolic syndrome in African ancestry populations 77, and osteoarthritis 78

and osteoporosis 79 in Asian populations. However, there is no stronger evidence on the role

of CA10 in phenotypic characteristics whose function can be directly related to the

individual's fitness. The lack of information makes it difficult to hypothesise on the possible

reason why this allele has been selected in the Andes. This is an example of how the current

high availability of genomic data, that allows us to explore the genome in many ways, can be

limited by the lack of in vivo and in vitro studies that do not develop at the same pace. The

same can be said for the long non-coding RNA on chromosome 18 (LOC400655) with

extreme PBS values (nPBS=0.30 p-value=0.002) for the Amazon populations (discussed in

the article), which has not yet been functionally characterized.

Genetic Differentiation Analyses

Regarding the genetic differentiation analyses, The annotation in PharmGKB database

returned information on variant-drug associations for 6 highly differentiated SNPs

(FST>0.318) (Table S8). Of these, only one is classified in PharmGKB Clinical Annotation

(level 3 - significant association in multiple studies but lacking clear evidence): the genotypes

CC and CT for rs3114020 in gene ABCG2 (CC+CT frequency: Andes=0.74, Amazon=1) are

associated with higher blood levels of the antiepileptic lamotrigine. According to the GTEx

Portal 80, this SNP is an eQTL for gene ABCG2 in whole blood samples. Although the

associations regarding the variants in table S8 still need do be replicated, two of the genes on

the list are important pharmacogenes with substantial evidence supporting other clinically
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relevant polymorphisms 81,82, ABCG2 and ABCB1 (also known as multidrug resistance

protein 1 - MDRP1), both from the superfamily of ATP-binding cassette (ABC) transporters.

A further investigation on these genes revealed 2 SNPs with PharmGKB Clinical Annotation

level 2A (Annotation for a variant-drug association with moderate evidence where the variant

is within a VIP - Very Important Pharmacogene) with FST values that do not pass our

threshold (top 0.1%) but are within the top 0.5% higher values: rs2231142 (FST = 0.22, Allele

T frequency: Andes=0.14, Amazon=0.47) in gene ABCG2, and rs1045642 (FST = 0.27, Allele

T frequency: Andes=0.27, Amazon=0.67) in gene ABCB1 (Figure 1).

Figure 1. Manhattan plot showing FST values between Andean and Amazon populations. The red line delimits
the 0,01% highest values (FST>0.318). Only SNPs undifferentiated within each group (FSC<0.15) are shown.
Labels indicate SNPs with high FST values (>0.22) within the pharmacogenes ABGG2 and ABCB1.

The variant rs2231142 (ABCG2) influences the metabolism of rosuvastatin, used to

reduce cholesterol levels in patients with hypercholesterolemia, and allopurinol, used to treat

gout reducing uric acid synthesis (PharmGKB Clinical Annotation level 2A). The variant

rs2231142-T is associated with higher plasma concentrations of rosuvastatin and a better

response regarding the reduction in LDL-C 83–87. The label of rosuvastatin from the company

Swissmedic advertises that people with the genotype rs2231142-TT may have increased

exposure (blood levels of the drug after the administration) to the medication 88. On the other

hand, the same allele is associated with worse response to allopurinol treatment 89–92. This

indicates that a larger fraction of this population may need a dose adjustment when treated
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with rosuvastatin or allopurinol, which are medications regularly prescribed for

hypercholesterolemia and gout 93 94.

The polymorphism rs1045642 (ABCB1) is in LD with the highly differentiated SNPs

(Table S8) rs6949448 (FST = 0.34, Allele T frequency: Andes=0.24, Amazon=0.69) and

rs4148738 (FST = 0.34, Allele C frequency: Andes=0.24, Amazon=0.69) in Andean (r2 >

0.69) and Amazonian (r2 > 0.85) populations (Attachment 2, Table 1). rs1045642 has been

associated with the dosage, efficiency and toxicity of several drugs. The ones with higher

levels of evidence (PharmGKB Clinical Annotation level 2A) are listed in table 2. The

association with methotrexate is particularly important because it is used in the treatment of

Acute Lymphoblastic Leukemia (ALL) 95. This is the most common cancer subtype in

children and around 20% of them present severe toxicological reactions to methotrexate.

ALL incidence is associated with Native American ancestry 96, às well as ALL relapse after

treatment, in part due to pharmaco-alleles highly prevalent in most if not all Native American

populations 97,98. A recent study showed that 9 markers in pharmacogenes linked to the

metabolism of methotrexate and 6-mercaptopurine (also used in ALL treatment) have

discrepant frequencies in Native Americans from the Brazilian Amazon compared to

European, Asian, African and North American populations 98. The gene ABCB1 was not

evaluated in this study that limited the analyses to variants with known functional

consequences such as nucleotide changes or alternative splicing promoter regions. These data

indicate that further studies to assess the diversity of these markers, including the ABCB1

gene, in different Native American populations are important to determining the treatment to

Acute Lymphoblastic Leukemia in children with Native American ancestry. Moreover,

differences in biomarkers frequencies in Native Americans are important not only with

respect to other populations, but also between different Native American populations.

Table 1. Frequency of SNPs in LD in gene ABCB1. A1: minor allele, PEL: Peruvians from Lima, EAS: East
asian populations, EUR: European populations, WAFR: West African populations.
CHR SNP Gene FST A1 Andes Amazon PEL EAS EUR WAFR

7 rs4148738 ABCB1 0.340 T 0.76 0.307 0.706 0.594 0.565 0.838

7 rs6949448 ABCB1 0.339 C 0.76 0.313 0.682 0.609 0.584 0.842

7 rs1045642 ABCB1 0.272 C 0.7255 0.3311 0.6235 0.6022 0.4821 0.8543
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Table 2. PharmGKB annotations level 2A* for SNP rs1045642 in gene ABCB1. Adapted from tables in 99 and
100. *Level 2A: Annotation for a variant-drug combination with moderate evidence of an association where the
variant is within a VIP (Very Important Pharmacogene) as defined by PharmGKB.

Molecule Effect Phenotype Pgkb drug sentence

Methotrexate Toxicity/ADR

Burkitt Lymphoma, Drug
Toxicity, Lymphoma, T-Cell,
Precursor Cell Lymphoblastic
Leukemia-Lymphoma, Toxic

liver disease

Patients with the AA genotype and lymphoma or leukemia who are treated
with methotrexate may have increased concentrations of the drug and may
have an increased risk of toxicity as compared to patients with the GG
genotype, although this is contradicted in some studies. Other genetic and
clinical factors may also influence a patient's risk of methotrexate-induced
toxicities.

Nevirapine Toxicity/ADR HIV Infections

Patients with the GG genotype and HIV-1 infection who are treated with
nevirapine may have an increased risk for nevirapine hepatotoxicity as
compared to patients with the AA genotype. Other genetic and clinical factors
may also influence a patient's risk for hepatotoxicity with nevirapine
treatment.

Ondansetron Efficacy Nausea and vomiting

Patients with genotype GG may have increased likelihood of nausea and
vomiting shortly after being treated with ondansetron as compared to patients
with genotype AA. Other genetic and clinical factors may also influence a
patient's response to ondansetron.

Digoxin Other -

Patients with GG genotype may have increased metabolism and decreased
serum concentration of digoxin as compared to patients with the AA
genotype. Other genetic and clinical factors may also impact the metabolism
of digoxin.

Fentanyl Dosage PainPain, Postoperative

Patients with the GG genotype may have increased fentanyl opioid dose
requirements as compared to patients with the AA or AG genotypes.
However, one study did not find an association between this variant and
fentanyl dosing. Other genetic and clinical factors may also affect a patient's
fentanyl dose requirements.

Perspectives

Genetic differentiation in Native South Americans

Population genetics studies are more frequently conducted in populations of European

descent, leaving other ethnic groups underrepresented. Considering the diversity in genetic

structure among different populations, this unbalance in representation creates a bias when

applying new discoveries for these underrepresented groups 26,101 as illustrated in the previous

section. The large dataset presented in Borda et al. (2020) 2 represents a great opportunity to

evaluate how the biomedical discoveries made in other ethnic groups affect Native American

populations. With that in mind, we are developing an analysis of genetic differentiation based

on F-statistics, similar to that held between Andean and Amazonian groups, to determine

highly differentiated variants between Native Americans and populations that are better

represented in genetic studies (of European and Asian ancestry) 26. In this way, we will be
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able to identify genetic regions previously reported in biomedical studies and analyse the

possible impacts of frequency differences for Native American populations. In this context,

the Native American frequencies from the database described in the article 2 were

incorporated to the software DANCE 69. This tool integrates information about complex traits

and genetic variability with a network-based approach, making it easier to interpret and

contextualize the data.

Functional characterization of natural selection candidate variants

Functional studies to verify the effect of natural selection candidate variants found in

genetic analyses are often left behind due to the high cost and the need of robust candidate

targets, as well as the need to use the appropriate cells with the appropriate genotypes. This

limits the knowledge about the process of adaptation to inferences based on functions of a

few well known genes, and leaves the contribution of several signals in less studied genes and

noncoding regions unexplained. In order to evaluate the functional effects of the variants for

which we found signs of selection, I wrote a project in cooperation with Dr. Irene Gallego

Romero (specialist in functional human genomics studies) at the University of Melbourne,

Australia, that was contemplated in the CAPES-PRINT program. The aim of the project was

to evaluate the levels of expression of genes under selection in the Andes in cell cultures

subjected to different concentrations of oxygen. In Dr. Irene's laboratory I had access to cells

collected from individuals in Lima, Peru, in the context of the 1000 Genomes Project. I

identified cell lines with the selected and alternative genotypes for the DUOX2 and RARS

genes and submitted them to Oxygen concentrations of 2.5%, 5% and 20% (atmospheric

concentration) for 4hrs, 24hrs and 48hrs. Unfortunately, due to the COVID-19 pandemic, the

University of Melbourne was closed and I had to return to Brazil before starting RNA

extraction for the analysis of gene expression. I am in contact with Dr. Irene to define a

strategy for the experiment to be completed when possible.

Continuing the initiative to functionally characterize the selection signals, we wrote a

project submitted to the Collaborative Research Program (CRP) - ICGEB (International

Center for Genetic Engineering and Biotechnology) and to the Leakey Foundation Research

Grants, with the following objectives:

(1) DUOX2 encodes a trans-membrane component of an NADPH oxidase, which

produces the hydrogen peroxide (H2O2) essential for the synthesis of the thyroid

hormone 102,103 and for the production and the microbicidal hypothiocyanite anion
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(OSCN–) during mucosal innate immunity response against bacterial and viral

infections in the airways 103,104. The non-synonymous SNP rs269868 (C&gt;T,

Ser1067Leu) is located in a region of the molecule that interacts with its coactivator

DUOXA2, and has two alleles rs269868-C (common and positively selected in the

Andes [frequency: 0.53] and rare in the Amazon [frequency: 0.01]) and rs269868-T

(common in the Amazon). To test the hypothesis that alternative alleles of DUOX2

are associated with functional differences, we will perform CRISPR/cas9 gene editing

on human primary thyroid follicular epithelial cells (Nthy-ori 3-1 - Sigma-Aldrich),

that express DUOX2, to create two sub-lineages, rs269868-CC (positively selected in

the Andes) and rs269868-TT, and compare the level of gene and protein expression

and production of H2O2 between the two lineages.

(2) The haplotype in gene PTPRC that flanks the rs16843712-A allele (frequencies:

Amazon: 0.81, Andes: 0.32), identified as under selection in Amazon populations in

the xpEHH analyses, lies within the putative human intronic enhancer GH01J198660

(in sensu Genehancer). It comprises the A (Thr193) allele of the non-synonymous

SNP rs4915154 (A&gt;G: Thr193Ala) that affect alternative splicing and alter a

potential O- and N-linked glycosylation site. The positively selected allele A (Thr193)

has been associated in functional studies 105 with a lower proportion of CD45R0+ T

memory cells and an increased amount of naive phenotype T cells expressing A (exon

4), B (exon 5), and C (exon 6) isoforms. Because the functional effect of rs4915154

has been already established, we will perform a gene reporter assay to verify if the

alternative haplotypes (positively selected in the Amazon vs. alternative haplotypes)

that comprise the putative enhancer GH01J198660 are also associated with different

transcription rates.
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Chapter 3 - Collaborations in other
projects on American populations

Introduction

During my PhD I had the opportunity to participate in other projects of the LDGH

group. In this process I was able to apply the knowledge acquired during the development of

my main project (described in the previous chapters) to new datasets with different

objectives, and to acquire new skills that contributed to my training in population genetics. In

this chapter I will describe my contributions in three articles on the following topics: the

genetic history of the African diaspora on the American continent 30; the detection of variants

associated with BMI through an admixture mapping analysis in Brazilian populations 31; and

the genetic variability of genes related to SARS in Native South Americans 32.

The first two articles include data from the EPIGEN-Brasil Initiative 106, a project by

the Ministry of Health that aims to study the genomic diversity of Brazilian populations and

their effects on complex diseases. Socioeconomic data were collected and 2.5 million SNPs

were genotyped from 6,487 Brazilians from the three largest population-based cohorts in the

country, representing three regions: Salvador - BA (Northeast) , Bambuí - MG (Southeast)

and Pelotas - RS (South). These data allowed not only the advancement of epidemiological

genetic studies in Brazil, but also the study of the history of these admixed populations. One

of the several products of the EPIGEN initiative, that includes many research groups around

the country, is the analysis of an admixture mapping for BMI performed in these cohorts,

reported in an article published in the International Journal of Obesity 31. The EPIGEN data

was also combined with those of 23 other populations to conduct a study on the origins of

American populations in the context of the African diaspora, published in Molecular Biology

and Evolution 30.

The last article presented here analyzes data from South American Natives in the

current context of the COVID-19 pandemic. Even with the great current increase in the

availability of genomic data, non-European populations are still underrepresented in genetic

studies. In the midst of a pandemic, the lack of knowledge about genetic diversity in

pathways related to the disease is a gap that harms the populations that are left out, but can

also affect global initiatives to combat the virus. In an effort to contribute to this issue, we
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conducted analyses on the genetic diversity of Native South Americans regarding genes

important to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This

article was preprinted in Authorea 32 and submitted to Genetics and Molecular Biology.

Origins, Admixture Dynamics, and Homogenization of the African
Gene Pool in the Americas
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This paper is focused on three main topics: (i) the relation between the origin and destination
of African populations; (ii) the association between the admixture process in the Americas
and the dynamics of arrivals of Africans in the continent; and (ii) the between-populations
genetic differentiation regarding the African gene pool in the Americas. I participated in the
analyses on the third topic by calculating the genetic differentiation (FST

67) between African
populations and between American populations shown in Figure 2C (figure 3C in the original
paper). The purpose of this analysis was to evaluate the diversity of variants with African
origin between American populations and compare it to the diversity between African
populations. For this, we selected SNPs with >90% probability a posteriori for African
ancestry (estimated by the RFMix method 107). To avoid problems related to sample size, only
the SNPs present in at least 20 haplotypes from each of the American populations were
included in the analysis (21,078 SNPs). The FST for each SNP was calculated between
African populations and between American populations with the following formula (ref):

Where the p is a vector with the minor-allele frequencies of a SNP i for all the considered
populations, var(p) is p variance, and p is the average of p.

The comparison of the FST distributions for populations from each continent
(Kolmogorov-Smirnov D = 0.30 and p-value < 10 -16) shows that the average differentiation
between American populations (FST = 0.02) is two-thirds of the average between African
populations (FST = 0.03). This result corroborates with the analysis of African-Specific
Genetic Distance (ASGD) that shows a greater genetic distance between African populations
(mean: 0.057), followed by the African populations in relation to the American ones (mean:
0.043), and a smaller distance between the American populations (mean : 0.018, 32% of the
ASGD between African populations) (Figure 2A). Regarding diversity within populations,
the measurement of average heterozygosity for SNPs in African fragments reveals similar
patterns for populations on both continents (Figure 2C). Together, these results indicate that,
although the intra-population diversity in African genomic fragments of American
populations is similar to that seen in the ancestral populations, there was a homogenization of
fragments from different African ancestral populations in America represented by the lower
level of differentiation between these populations.
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Figure 2. Pairwise genetic distances of the African gene pool between populations of the American
continent and Africa. (A) Heatmap Matrix and (B) multidimensional scaling of the African gene pool genetic
distances. We used solid squares, triangles, and circles to represent populations associated with WCA,
West-Central Africa; SEA, South/East Africa; WA, Western Africa ancestry clusters. CLM, Colombians from
Medellin; PUR, Puerto Ricans from Puerto Rico; ACB, African Caribbeans in Barbados; ASW, Americans of
African ancestry in South western United States; PLCO, African-Americans from Eastern United States. (C)
SNPs FST distributions between: 1) African populations that contributed to the African Diaspora (dark gray) and
2) American continent populations (gray), considering only chromosome fragments of African origin; and the
within-population African genetic heterozygosity in the Americas and Africa. The CLM population was not
included in this analysis because it did not have enough SNPs inferred as being of African origin.
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Admixture/fine-mapping in Brazilians reveals a West African
associated potential regulatory variant (rs114066381) with a strong
female-specific effect on body mass- and fat mass-indexes

Abstract

Admixed populations are a resource to study the global genetic architecture of
complex phenotypes, which is critical, considering that non-European populations are
severely under-represented in genomic studies. Leveraging admixture in Brazilians,
whose chromosomes are mosaics of fragments of Native American, European and
African origins, we used genome-wide data to perform admixture
mapping/fine-mapping of Body Mass Index (BMI) in three population-based cohorts
from Northeast (Salvador), Southeast (Bambuí) and South (Pelotas) of the country.
We found significant associations with African-associated alleles in children from
Salvador (PALD1 and ZMIZ1 genes), and in young adults from Pelotas (NOD2 and
MTUS2 genes). More importantly, in Pelotas, rs114066381, mapped in a potential
regulatory region, is significantly associated only in females (p= 2.76 e-06). This
variant is very rare in Europeans but with frequencies of ~3% in West Africa, and has
a strong female-specific effect (95%CI: 2.32-5.65 kg/m2 per each A allele). We
confirmed this sex-specific association and replicated its strong effect for an adjusted
fat-mass index in the same Pelotas cohort, and for BMI in another Brazilian cohort
from São Paulo (Southeast Brazil). A meta-analysis confirmed the significant
association. Remarkably, we observed that while the frequency of rs114066381-A
allele ranges from 0.8 to 2.1% in the studied populations, it attains ~9% among
morbidly obese women from Pelotas, São Paulo, and Bambuí. The effect size of
rs114066381 is at least five-times the effect size of the FTO SNPs rs9939609 and
rs1558902, already emblematic for their high effects, and for which we replicated
associations in Pelotas. We demonstrate how, after a decade of GWAS mostly
performed in European-ancestry populations, non-European and admixed
populations are a source of new relevant phenotype-associated genetic variants.

The Admixture mapping is a method that analyzes whether or not there is an association

between a specific phenotype and the ancestry of a small chromosomal fragment. Despite

being an excellent tool for the study of complex traits in admixed populations, one of the

issues of this analysis is that the method implies that the association found refers to a region

rather than a causal variant. GWAS share the same issue because they are usually performed

with array data, which means that the hits are tag-SNPs that may not be the causal variant,

but may be in linkage disequilibrium (LD) with it. To arrive at a more accurate result it is

important to: do the association analysis for the region where the signal was found with more

dense data (fine mapping); perform LD analyzes that will indicate if multiple significative

SNPs in the same region represent the same signal (they are in LD) or two different hits 108.
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LD analyzes also serve to identify functional relevant variants around the signal, and to

assess whether there is a relationship between the hits found in the study in question and in

previous studies carried out in different populations. In this article we replicated 28 hits for

BMI from GWAS Catalog 29 and identified six new hits. My contribution was to conduct LD

analysis (r2), with the software Haploview 68, between close significant SNPs identified in the

fine mapping analysis, and between these SNPs and variants reported in GWAS Catalog that

have been associated with BMI. We found that the SNP with the strongest effect on BMI in

females (beta = 3.99 ± 0.84 6kg/m2 per allele, 95% CI: 2.32-5.65, p = 2.76x10-6),

rs114066381, is not in LD (r2 <0.001) with rs113214936 (beta = 2,48, p = 1.51e-05), which is

located in the same region, indicating that they are independent signals. In addition, we found

that none of the six new hits identified in this study are in LD with the 389 BMI

GWAS-Catalog-hits (r2<0.022) in the 3 Brazilian cohorts, mining that the association between

these regions and BMI were not identified before.
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Human-SARS-CoV-2 interactome and human genetic diversity:
TMPRSS2-rs2070788, associated with severe influenza-induced
SARS, and its population genetics caveats in Native Americans

Abstract

The current search for host-susceptibility variants for COVID-19 contrasts with the
fact that the study of the genetic architecture of Severe Acute Respiratory Syndrome
(SARS) has been neglected. For human/SARS-CoV-2 interactome genes ACE2,
TMPRSS2 and BSG, there is only one convincing evidence of association in Asians
with influenza-induced SARS for TMPRSS2-rs2070788, tag-SNP of the eQTL
rs383510. This case illustrates the importance of population genetics and of
sequencing data in the design of genetic association studies in different human
populations: the high linkage disequilibrium (LD) between rs2070788 and rs383510
is Asian-specific. Leveraging on a combination of genotyping and sequencing data for
Native Americans (neglected in genetic studies), we show that while their frequencies
of the Asian tag-SNP rs2070788 is, surprisingly, the highest worldwide, it is not in LD
with the eQTL rs383510, that therefore, should be directly genotyped in genetic
association studies of SARS in populations with Native American ancestry.

In the context of the worldwide scientific effort to understand all aspects of the

infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this

article highlights the importance of considering the genetic diversity of human populations

illustrated by the patterns found for the SNP rs2070788-G in the TMPRSS2 gene. This

variant is a tag-SNP for rs383510, which is uncommon in arrays and is an eQTL for the

TMPRSS2 gene 80. The rs383510 has been associated with severe lung damage caused by

influenza (A(H7N9) and A(H1N1)) in Asian populations 109. A regression analysis performed

with several world populations showed a strong association between rs2070788-G and Native

American ancestry. My role in this article was to carry out the pairwise FST analysis between

Native South American and East Asian populations (EAS from 1000 Genomes 110) with the

hierfstat R package 111. We found that rs2070788 is among the 5% most differentiated SNPs

between these populations (FST = 0.30) (Figure 1, figure 1C of the paper). The rs2070788-G

frequency in Asians is 30-40% while in Native Americans is 76-94%. Interestingly, when

analyzing sequencing data from Native South Americans to access rs383510, we found that

this SNP is not in LD with rs2070788 in this population. Therefore, the first impression that

South American Natives could be more susceptible to SARS due to the high frequency of the

tag-SNP rs2070788-G is mistaken and it is not a tag-SNP for rs383510 in Native Americans,

so it is essential to do a control for ancestry in studies focused on these SNPs.
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Figura 1. FST values distribution of Native Americans vs East Asian populations for 71 SNPs of
TMPRSS2 gene
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Final remarks
This thesis focused on the study of American populations that are underrepresented in

genetic studies. In the first chapter, I present a review of the human history on the American

continent told by the genetics of current and ancient populations, from the arrival of the first

humans to the process of admixture that occurred after the arrival of Europeans 1. We saw

that the increase in the availability of genetic data and bioinformatic tools allowed a great

advance in studies on the history of the human species. Still, there are many to be discovered

and the generation of datasets from populations that are usually neglected is an essential step

for it. In chapters 2 and 3 I present articles that exemplify the importance of this diversity by

revealing new information on human history and health through the analysis of large datasets

of native and admixed American populations.

The merging of datasets from the Peruvian Genome Project and the LDGH into a

large dataset of Native South Americans enable us to increase the knowledge about the

demographic history of these populations and their adaptation to the Andean and the

Amazonian environment. Even though adaptation to the high altitude is a classical topic of

evolutionary anthropology, we identify new genes with signals of natural selection, in

addition to replicating a previously reported result (DUOX2) 17. On the other hand, studies

focused on adaptation in the Amazon are very scarce and here we were able to contribute to

fill this gap by identifying an important gene for immune response under selection in

populations from this environment. However, as illustrated by the literature review and the

lack of information available for some genes reported in chapter 2, there is a lack of

functional studies to characterize the selection signals found in genome scans, and of

polygenic studies that detect more subtle signals in gene networks 112,113. Therefore, the work

presented in this thesis led to the development of two new projects addressing these topics.

The first with the objective of developing a polygenic selection test (submitted to CNPq as a

postdoctoral proposal), and the second to perform functional studies for the genes

HAND2-AS1, DUOX2 and PTPRC (submitted to The Leakey Foundation to apply for a

grant).

The identification of loci that evolved under the effect of natural selection is an

efficient method of identifying functional genomic regions that have played an essential role

in survival, and possibly have consequences for human health 114,115. However, other
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evolutionary factors generate genetic diversity that is associated with different outcomes in

medical treatments and diseases development 116. The lack of diversity in genetic studies

makes it difficult to understand the real effect of new discoveries 101, and how to project this

knowledge to different populations 27. We exemplified that with the survey and annotation of

the highly differentiated variants between Andean and Amazonian populations, reported in

chapter 2. We were able to identify discrepancies in the frequency of variants of biomedical

relevance that may affect the health of these populations differently. The same issue is

addressed in the article presented in chapter 3, were we show that, due to differences in the

pattern of linkage disequilibrium, an Asian tag-SNP for a SARS-related variant 109 (the

genetically closest continental group of Native Americans) cannot be used as a tag-SNP in

Native South American populations.

Exploring the diversity of human genetics is not only important for the neglected

populations, it is also essential for increasing the capacity to make new discoveries 101. The

first two articles 30,31 in chapter 3 are examples of how the genomic mosaic of American

populations is a rich source of information. Performing an admixture mapping in Brazilian

cohorts we were able to make a contribution to the issue of missing heritability of complex

traits identifying a non-European variant with a large effect size on BMI. Moreover, by

mapping and analysing the patterns behind the genomic fragments from different source

populations we were able to put more details on an important part of human history: the

African diaspora to the American continent.

The work presented here shows in several ways how the effort to generate data from

underrepresented populations, as done by the Peruvian Genome Project and the EPIGEN

initiative 106, bring important contributions to science. These results are a practical example

that reinforce the importance of diversity in genetic studies, which in recent years has been

declared by population geneticists in several journals 26,101,117–120, but which is still very low.

The vast majority of studies are still focused on populations of European origin. This

prevents new discoveries, such as the locus related to BMI discovered in Brazilian

miscegenated populations reported in Scliar et al. 31, and the clinical application of results of

genetic studies to other populations due to the lack of knowledge of their allelic frequencies

and population structure. We have shown that Native American populations, which are often

treated as a single group in genetic studies, have a structure that implies differences in

important pharmacogenetic variants and needs to be considered. We took one more step to fill

the need for studies in non-European/North American populations, not only bringing new
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insights into the history of American populations and the genetics of complex traits, but by

(which may be our greatest contribution) making public available the largest database of

non-admixed South American native populations that we have today, which will allow our

and other groups around the world to develop more inclusive studies.
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Attachment 1. UCSC Genome Browser view of CA10 locus.
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Attachment 2. Linkage disequilibrium (r2) between SNPs with high FST values
associated with drug metabolism (>0.27) in the pharmacogene gene ABCB1 in (A) Andean
and (B) Amazon populations.
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