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“I am tempted to give one more instance showing how plants and animals, most remote in the 

scale of nature, are bound together by a web of complex relations.”  

 

(Charles Darwin, 1860, On the Origin of Species)  
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Apresentação 

 

Contexto geral 

 

Nenhuma espécie vive isolada na natureza. Elas se associam de diferentes maneiras, 

formando interações que compõem o núcleo central da biodiversidade, especialmente dos 

ecossistemas tropicais (Jordano, 2016). Para entender o funcionamento destes ecossistemas, é 

necessário não somente avaliar a diversidade de espécies, mas também explorar como estas 

interagem umas com as outras (Jordano, 2016). Durante as últimas décadas, grandes esforços 

foram realizados para compreender a natureza das interações ecológicas, e como estas 

respondem a diferentes processos bióticos (e.g., tipo de interação - Kéfi et al., 2016) e 

abióticos (e.g., tipo de solo - Dáttilo et al., 2013). Ademais, o desenvolvimento da teoria de 

redes de interações ecológicas, permitiu uma melhor visualização e entendimento da estrutura 

de sistemas formados por múltiplas interações (Fig. 1A) (Bascompte & Jordano, 2014). 

Apesar dos avanços, a complexidade desses sistemas resulta em uma série de desafios e 

questões que permanecem inexploradas, como em que medida a variabilidade ambiental 

no tempo e espaço afeta a estrutura e dinâmica das interações entre espécies? 

(Sutherland et al., 2013).  

As interações bióticas compõem distintas funções ecossistêmicas como produção 

primária, ciclagem de nutrientes, controle de pragas, polinização e dispersão, dentre outros 

(Fontaine et al., 2011). Estima-se que até 90% das espécies de angiospermas tropicais 

dependem de associações com animais para completar seus ciclos de vida (Jordano, 2000). 

Dentre estas, as associações entre formigas e angiospermas se destacam devido à sua grande 

prevalência nos ambientes terrestres (Rico-Gray & Oliveira, 2007) e por mediarem distintos 

serviços do ecossistema (Del Toro et al., 2012). Interações formiga-planta são 

tradicionalmente classificadas de acordo com o tipo de função desempenhada (i.e, 
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polinização, dispersão, proteção), e/ou de acordo com os benefícios que geram para os 

parceiros envolvidos (i.e., mutualismo, parasitismo) (Bronstein, 1998). Entretanto, estudos 

recentes têm considerado a perspectiva de que interações ecológicas não são ecologicamente 

estáveis, e que seus resultados variam ao longo de um continuum positivo-negativo, o qual é 

dependente do contexto biótico e abiótico em que as espécies interagentes se encontram 

(Bronstein, 1994; Chamberlain & Holland, 2009).  

Por exemplo, sabe-se que um tipo de interação, tradicionalmente classificado como 

positivo (e.g., dispersão de sementes), também pode ser negativo (e.g., predação de sementes) 

dependendo das espécies envolvidas e do contexto local (Genrich et al., 2016). Determinadas 

espécies estão ligadas umas às outras por uma infinidade de associações positivas, neutras e 

negativas que se entrelaçam, formando uma rede intrincada de interações (Fig. 1B; Kéfi et al. 

2016). O desenvolvimento teórico e analítico na teoria de redes (Kivelä et al., 2014) abriu 

uma nova fronteira do conhecimento que tem propiciado a investigação de problemas que 

permaneciam no campo das ideias do estudo das interações (Fontaine et al., 2011). Por 

exemplo, a complexidade das interações biológicas e o papel das diferentes espécies que 

realizam essas interações podem melhor compreendidos quando diferentes tipos se interações 

são consideradas simultaneamente.   
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Figura 1. (A) Rede de interações representando como diferentes espécies de animais e de 

plantas interagem na natureza. A largura das linhas representa a frequência na qual a interação 

biológica ocorreu (Adaptado de Olesen et al. 2007); (B) Rede de interações representando 

como interações positivas (dispersão de sementes - linhas rosas) e negativas (predação de 

sementes - linhas azuis) ocorrem simultaneamente e são desempenhas pelas mesmas espécies 

em uma comunidade (Adaptado de Genrich et al. 2016).  

Associações formiga-planta são ótimos modelos para o estudo dessas relações 

complexas, pois suas histórias evolutivas estão interligadas há pelo menos 100 milhões de 

anos, fato que gerou uma enorme diversidade de espécies e tipos de interações (Rico-Gray & 

Oliveira, 2007). Essas interações englobam funções ambientais como polinização, dispersão, 

mutualismos de proteção, herbivoria, nutrição, dentre outras (Bronstein, 1998; Del Toro et al., 

2012). A literatura sobre interações formiga-planta é vasta (revisado por Rosumek et al., 

2009), mas a maioria dos estudos considera somete um ou dois tipos de associações, 

frequentemente só entre poucos pares de espécies (e.g., Oliveira & Del-Claro 2005). Mesmo 

quando grandes revisões são realizadas (e.g., Mayer et al. 2014), dificilmente é explorado em 

que medida um tipo de interação pode afetar outro, ou como algumas espécies desempenham 

distintos papéis ecológicos na comunidade. 
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Uma vez que a história natural dessas interações é consideravelmente conhecida (Mayer 

et al., 2014), novos estudos orientam-se a explorar como essas interações são estruturadas e 

como respondem a variações ambientais em grandes escalas. Por exemplo, sabe-se que as 

interações formiga-planta respondem a mudanças ambientais e distúrbios tais como, 

qualidade do solo (Dáttilo et al., 2013), variações no clima (Rico-Gray et al., 2012; Pringle et 

al., 2013), fragmentação florestal (Emer et al., 2013) e a presença do fogo (Paolucci et al., 

2016). Apesar dos avanços, tais abordagens consideram somente um ou dois tipos de 

interação (e.g., formiga-nectários extraflorais), e/ou não investiga como a dinâmica dessas 

interações pode ser afetada diante das atuais mudanças ambientais.  

 

O ecossistema de estudo: os campos rupestres  

 

Os campos rupestres são formações vegetais Neotropicais que em geral ocorrem entre 

900 e 2000 m de altitude (a.n.m.), principalmente nas montanhas da Cadeia do Espinhaço 

(situada no sudoeste do Brasil), embora áreas isoladas também ocorram em montanhas do 

Brasil central (estado de Goiás) e serras do estado de Minas Gerais (Alves et al., 2014; 

Fernandes, 2016) (Fig. 2). Abrangendo mais de 1200 km de extensão (norte-sul) e 50-100 km 

de largura (entre os estados de Minas Gerais e Bahia), o Espinhaço forma uma importante 

região biogeográfica do Brasil (Fig. 2). A cadeia tem complexas características topográficas 

que resultam de uma combinação de longos processos erosivos (~1.5 – 1.7 Ma) (Pedreira & 

de Waele, 2008) e recentes processos tectônicos (~500 - 600 Ma) (Abreu, 1995). Como 

resultado do processo erosivo da rocha matriz predominante (quartzito-arenito), os solos 

geralmente são superficiais e arenosos, altamente ácidos e extremamente pobres em nutrientes 

(Benites et al., 2007). Devido à ausência de expansão geográfica significativa durante o 

Holoceno médio (~6.000 anos) e o último máximo glacial (~21.000 anos); Barbosa & 

Fernandes (2016) sugerem que os campos rupestres são ambientes evolutivamente estáveis 
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provavelmente em decorrência da alta especificidade de seus solos. Como paisagens antigas, 

climaticamente tamponadas e inférteis (Teoria OCBIL – Old, Climatic Buffered and Infertile 

Landscapes - Hopper, 2009), os campos rupestres são comparáveis aos kwongkan no sudoeste 

da Austrália, fynbos na África do Sul, e aos tepuis no Escudo das Guianas presentes na 

América do Sul (Silveira et al., 2016).  

 

Figura 2. Projeção dos campos rupestres no território brasileiro (A), especificamente na 

Cadeia do Espinhaço, montanhas do Sul e Sudoeste do estado de Minas Gerais, e no Brasil 

Central no Estado de Goiás (B) (Fonte: IBGE; Barbosa & Fernandes, 2016).  

Os campos rupestres são caracterizados por um mosaico vegetacional altamente diverso, 

formado principalmente por gramíneas, herbáceas e arbustos associados a afloramentos de 

quartzito, arenito ou minério de ferro (Fig. 3; Giulietti & Pirani 1997; Silveira et al. 2016). 

Sua elevada biodiversidade e taxa de endemismo vegetal são consequências das variações 

latitudinais e altitudinais, isolamento geográfico, topografia e antiga história geológica, que 

em conjunto, promovem em uma alta diversidade de solos e microclimas nos quais as 

condições abióticas variam extremamente. A alta diversidade desses ambientes também se 
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deve à influência dos domínios do Cerrado, Mata Atlântica e Caatinga, que foram fronteiras 

biogeográficas (Giulietti & Pirani, 1997). Além disso, sua vegetação é considerada 

inflamável, por ser composta por várias espécies com estratégias adaptativas que as permitem 

suportar determinados regimes de fogo, ou até mesmo se aproveitar dos recursos disponíveis 

no ambiente pós-queima; fatores que remetem à antiga história evolutiva do ambiente com as 

queimadas (Figueira et al., 2016). Assim, condições edafo-climáticas e frequentes queimadas 

atuam como principais filtros ecológico-evolutivos que moldam a biodiversidade desses 

ecossistemas (Fernandes, 2016). 

 

Figura 3. A) Visão geral dos campos rupestres, demonstrando os afloramentos quartzíticos 

circundados por uma matriz com vegetação predominantemente graminóide; B) Visão geral 

da paisagem com evidência em foco de queimada; C) Afloramento rochoso dominado por 

plantas herbáceas e cactáceas; D) Vegetação densa com presença de arbustos e pequenas 

árvores sobre afloramento rochoso (Local: Serra do Cipó - MG; Fotos: Fernanda V. Costa).  
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Estima-se a existência de mais de 5000 espécies vasculares de plantas, que 

correspondem a quase 15% da flora vascular brasileira, em uma área geográfica muito restrita 

(inferior a 1% da superfície do país) (Rapini et al., 2008; Silveira et al., 2016). De forma 

similar, há uma considerável diversidade faunística de vertebrados tais como, anuros (Leite, 

2012), aves (Vasconcelos & Rodrigues, 2010) e mamíferos (Lessa et al., 2008). Entretanto, 

alguns grupos como microrganismos (mas veja Oki et al., 2016) e invertebrados (Callisto et 

al., 2016) são mais negligenciados. O conhecimento da mirmecofauna dos campos rupestres, 

um dos grupos focos desse estudo, até poucos anos atrás provinha de estudos restritos a 

pequenas escalas geográficas e/ou táxons (e.g., Guerra et al. 2011; Viana-Silva & Jacobi 

2012; Fagundes et al. 2013). Como objetivo de preencher essa lacuna do conhecimento sobre 

a fauna de formigas, nós compilamos registros bibliográficos e observações de campo, de 

modo que estimamos uma riqueza de ao menos 300 espécies de formigas nos campos 

rupestres (Costa et al., 2015 - Anexo I). Apesar dessa riqueza considerável, a mesma está 

subestimada devido aos grandes vazios amostrais. De fato, a maior parte da diversidade de 

formigas documentada (~90% das espécies) está concentrada na região da Serra do Cipó 

(porção sul do Espinhaço), demonstrado o quão esse ecossistema ainda é inexplorado (Costa 

et al., 2015).  

 

Interação animal-planta nos campos rupestres 

 

Grande parte dos estudos envolvendo interações antagonistas entre plantas e animais 

nos campos rupestres envolve herbivoria, especialmente a investigação de como a abundância 

e distribuição dos insetos herbívoros são afetadas pela qualidade das plantas e pressões 

exercidas por inimigos naturais (revisado por Neves et al., 2016). As interações mutualistas (a 

priori positivas) mais exploradas envolvem polinização, dispersão e mutualismos de proteção 

(revisado por Guerra et al., 2016).  
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Polinização é o principal mecanismo de fluxo gênico das plantas nesse ambiente, 

especialmente quando realizadas por animais com dispersões mais amplas como morcegos e 

aves. Levantamentos bibliográficos e observações de campo indicam que as síndromes de 

polinização predominantes nos campos rupestres do sudeste do Brasil são entomofilia, 

anemofilia e ornitofilia, respectivamente (Jacobi & Carmo, 2011; Carstensen et al., 2014). De 

fato, o único estudo empírico realizado na escala da comunidade observou que dentre os 

animais, as abelhas são o grupo predominante de polinizadores (34% das espécies 

registradas), seguidas pelas moscas, borboletas, vespas e besouros (~15% para cada grupo), e 

por fim, beija-flores e formigas (6% para cada grupo) (Carstensen et al., 2014).  

As síndromes de dispersão de sementes dominantes nos campos rupestres são 

anemocoria e autocoria, embora a zoocoria aconteça em determinados grupos de plantas das 

famílias Melastomataceae, Myrtaceae e Cactaceae (Conceição et al., 2007; Jacobi & Carmo, 

2011; Silveira et al., 2016). Dispersões zoocóricas em longa distância são majoritariamente 

realizadas por aves frugívoras não especializadas, enquanto que em curtas distâncias são 

mediadas por lagartos e formigas (revisado por Guerra et al., 2016). Sugere-se que a 

mirmecocoria é uma predominante estratégia de dispersão de sementes que evoluiu em 

similares paisagens inférteis da África do Sul e Austrália (i.e., OCBIL) (Milewski & Bond, 

1982). Todavia, somente dois estudos registraram dispersão por formigas nos campos 

rupestres (Fonseca et al., 2012; Lima et al., 2013). 

Os mutualismos de proteção envolvem principalmente o sistema multitróficos entre 

formigas,  insetos trofobiontes (normalmente hemípteros) e plantas que possuem recursos 

alimentares, como nectários extraflorais (NEFs) (Rico-Gray & Oliveira, 2007). Nos campos 

rupestres, o conhecimento sobre mutualismos entre formigas e hemípteros trofobiontes (e.g., 

Guerra et al., 2011; Fagundes et al., 2012) e entre formigas e plantas com NEFs (e.g., Dáttilo 

et al., 2014a; Fagundes et al., 2016) não é abrangente, pois deriva de estudos com táxons e 
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escalas geográficas locais. Esse cenário nos estimulou a investigar a diversidade de interações 

formiga-planta nesse ambiente (Fig. 4) e entender como diferentes tipos de interações são 

estruturados (Guerra et al., 2016 - Anexo II). O atual conhecimento sobre a diversidade de 

espécies, interações e funções ecossistêmicas documentadas para os campos rupestres só 

reafirmam a megadiversidade e o alto potencial desse ambiente para conservação e 

manutenção da biodiversidade. 

 

Figura 4. Exemplos de interações entre formigas e insetos trofobiontes (A- Cephalotes 

pusillus e Aphis spiraecola – Foto: Tadeu Guerra), flores (B – Camponotus rufipes e  Bionia 

coriaceae – Foto: Marco Mello), nectários extraflorais (C – Ectatomma tuberculatum e 

Peixotoa tomentosa – Foto: Fernanda Costa), e frutos (D – Ectatomma tuberculatum e 

Byrsonima sp1 – Foto: Fernanda Costa).  
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Atuais ameaças aos campos rupestres 

 

  Apesar dos avanços, frequentes pressões antrópicas (Kolbek & Alves, 2008), a baixa 

capacidade de recuperação após distúrbios antrópicos (e.g. mineração) (Le Stradic et al., 

2014) e alta susceptibilidade às futuras mudanças climáticas (Barbosa & Fernandes, 2016), 

advertem sobre a necessidade de enquadramento desse ecossistema como área prioritária para 

conservação.  Neste sentido, a Convenção Sobre a Diversidade Biológica (CDB) reconheceu a 

fragilidade dos ecossistemas de montanha, bem como a sua vulnerabilidade a distúrbios 

naturais e antrópicos, particularmente no atual contexto de uso da terra e alterações climáticas 

(CBB 2016).  

Modelos climáticos preveem um futuro pessimista diante de distintos cenários, onde até 

o final do século XXI, os campos rupestres do Espinhaço poderão perder grande parte da sua 

área atual adequada (~77% - ~96%) (Barbosa & Fernandes, 2016). Esse cenário negativo, 

associado à intensificação dos distúrbios ambientais, torna a situação ainda mais alarmante. 

Por décadas essas montanhas vêm sofrendo impactos antrópicos tais como, pecuária, intensas 

e frequentes queimadas (Figueira et al., 2016), mineração, turismo descontrolado, 

assentamento humano, dentre outros (Madeira, 2009; Fernandes et al., 2014; Figueira et al., 

2016). Portanto, a prevenção e mitigação desses impactos sobre a biodiversidade exigem 

grandes esforços para ampliar o conhecimento sobre a ecologia e funcionamento desses 

ecossistemas.  

 

Áreas estudadas: campos rupestres da Serra do Cipó 

 

As áreas de estudo estão localizadas na parte sul da Cadeia do Espinhaço, 

especificamente dentro da Área de Proteção Ambiental Morro da Pedreira, que corresponde à 

Zona Tampão do Parque Nacional Serra do Cipó (Fig. 5). A APA foi criada em 1990 e, 
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juntamente com o PARNA Cipó, protegem uma área de 100.000 hectares onde são 

encontradas feições do bioma Cerrado e da Mata Atlântica, associados às bacias do rio São 

Francisco e do Rio Doce que drenam o território (ICMBio, 2014). 

Elementos topográficos, vegetacionais e climáticos foram considerados na escolha das 

áreas de estudo. Assim, selecionamos sete áreas que fossem similares umas às outras em 

altitude (~1100 – 1200 m) e estrutura da vegetação (campos rupestres sobre afloramento 

quartizítco), além de estarem distantes umas das outras em pelo menos 1 km e com uma 

estação meteorológica nesse mesmo raio de alcance (Fig. 5, Tabela 1). 

 

Figura 5. Localização da APA Morro da Pedreira e PARNA Serra do Cipó na parte sul da 

Cadeia do Espinhaço (A); Mapa topográfico das áreas de estudo representadas pelos 

triângulos (B). As linhas cinzas indicam a curva do nível do terreno, a linha preta tracejada 

indica o limite da APA, a linha preta sólida indica o limite do parque, com a entrada principal 

simbolizada pela estrela. As linhas azuis são referências aos rios e a linha vermelha à rodovia 
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MG-010. Cores mais claras indicam altitudes mais elevadas (B) (Fonte: IBGE; Barbosa & 

Fernandes, 2016). 

 

Tabela 1. Descrição das sete áreas de campo rupestre selecionadas para o presente estudo (d = 

distância ao site mais próximo).  

Área 
Coordenadas 

geográficas 

Altitude 

media (m) 

Riqueza de 

plantas 

Abundância 

de plantas 

Mínima d 

(km) 

Cedro 
S19°13'51.5" 

W43°34'35.9" 
1119 37 167 1,44 

Midway 
S19°16'13.4" 

W43°32'59.7" 
1212 35 140 2,71 

Pedra do 

Elefante 

S19°17'33.9" 

W43°33'29.9" 
1232 30 119 2,67 

Paulino 
S19°15'30.8" 

W43°34'51.2" 
1108 34 124 1,58 

Q16 
S19°17'27.3" 

W43°35'40.8" 
1212 39 207 2,48 

Soizig 
S19°16'20.7" 

W43°34'55.8" 
1095 45 137 1,58 

Tinkerbell 
S19°13'11.3" 

W43°35'01.3" 
1177 49 219 1,44 
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Objetivos e apresentação dos capítulos 

 

O primeiro objetivo da tese explora a necessidade de considerarmos, simultaneamente, 

diferentes tipos de interações ecológicas para entendermos a estrutura e o funcionamento dos 

ecossistemas. Portanto, o primeiro capítulo tem como pergunta central: os atuais padrões 

estruturais descritos para interações formiga-planta se mantêm quando vários tipos de 

interações são considerados? Neste estudo, publicado na revista PLOS ONE, mostramos que 

diferentes tipos de interações são estruturalmente diferentes, apesar de serem conectadas por 

um pequeno grupo de formigas que é comum. Dessa forma, essas poucas espécies de 

formigas atuam como componentes-chave nos campos rupestres, pois mediam distintas 

funções ecossistêmicas e têm grande influência na organização dessas interações.  

No segundo capítulo questionamos se variações sazonais nas condições abióticas e o 

distúrbio causado pelo fogo não manejado são importantes filtros ambientais que 

influenciam a dinâmica temporal das interações formiga-planta. Por meio de dois anos 

observações de campo, mostramos que a dinâmica temporal das interações é sazonal e 

altamente dependente da variação temporal das condições abióticas, especialmente 

temperatura. Além disso, encontramos que o efeito do fogo sobre diversidade e frequência de 

interações é negativo, mas transitório, indicando que as interações formiga-planta nos campos 

rupestres são resilientes ao fogo. Esse estudo não está publicado e encontra-se nas normas do 

manuscrito pretendido. 

Portanto, essa tese contribui para o conhecimento sobre a diversidade e estrutura das 

interações formiga-planta e o entendimento de como as variações climáticas e distúrbios 

causados pelo fogo afetam a dinâmica temporal dessas interações nos campos rupestres. A 

seguir, encontram-se os dois capítulos, escritos em inglês e no formato do periódico publicado 

ou pretendido. Ademais, incluímos dois estudos com resultados que proporcionam um maior 
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entendimento sobre o sistema formiga-planta dos campos rupestres. O primeiro (anexo I) 

contém um compilado sobre a riqueza e distribuição da fauna de formigas dos campos 

rupestres, enquanto que o segundo (anexo II) explora de forma abrangente o atual 

conhecimento sobre interações as interações entre animais e plantas nos campos rupestres. 

 Boa leitura! 
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Abstract 23 

 24 

Ant-plant associations are an outstanding model to study the entangled ecological interactions 25 

that structure communities. However, most studies of plant-animal networks focus on only 26 

one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased 27 

understanding of community structure. New approaches, however, have made possible to 28 

study several interaction types simultaneously through multilayer networks models. Here, we 29 

use this approach to ask whether the structural patterns described to date for ant-plant 30 

networks hold when multiple interactions with plant-derived food rewards are considered. We 31 

tested whether networks characterized by different resource types differ in specialization and 32 

resource partitioning among ants, and whether the identity of the core ant species is similar 33 

among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and 34 

fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian 35 

grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant 36 

network in which plants offering different resource types are connected by a few central ant 37 

species. The multilayer network had low modularity and specialization, but ant specialization 38 

and niche overlap differed according to the type of resource used. Beyond detecting structural 39 

differences across networks, our study demonstrates empirically that the core of most central 40 

ant species is similar across them. We suggest that foraging strategies of ant species, such as 41 

massive recruitment, may determine specialization and resource partitioning in ant-plant 42 

interactions. As this core of ant species is involved in multiple ecosystem functions, it may 43 

drive the diversity and evolution of the entire campo rupestre community.  44 

  45 
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Introduction 46 

Animals and plants live in a “tangled bank” of interactions [1], a network formed by 47 

different types of positive, negative, and neutral associations [2]. The nature of these 48 

multispecies systems has been illuminated by theoretical advances in community ecology [3]. 49 

Network analytical tools have allowed the operationalization of ecological concepts such as 50 

specialization [4], functional groups [5], and keystone species [6]. However, despite this 51 

boom in the field, studies of most plant-animal networks focus on a single interaction type at 52 

a time, or interactions mediated only by a single type of resource. A very few studies have 53 

attempted to model antagonistic and mutualistic interactions in the same network, but most of 54 

them without empirical data [7], and using simulation models to understand interactions 55 

structure [8,9]. To our knowledge, only one empirical study has explored how certain species 56 

have dual roles, acting both as seed dispersers, as seed predators in a network [10]. This 57 

dominant approach hinders further developments [11], especially considering that individual 58 

species are involved in many kinds of interactions at the same time [12]. 59 

Ant-plant associations are an outstanding model to study complex ecological 60 

interactions, as ants can play distinct functional roles simultaneously [13]. Many ants are 61 

considered herbivorous, with most of their food coming directly or indirectly from plants 62 

[14]. Most well-studied interactions between ants and plants are putatively mutualistic, with 63 

plants providing shelter (e.g., nesting cavities) and food (e.g., extrafloral and floral nectar, 64 

pollen, food bodies, and fruit pulp and exudates), and ants providing diverse benefits in 65 

return, including protection against natural enemies [15], seed dispersal [16], and even 66 

pollination [17]. Another widespread resource indirectly provided by plants is honeydew, an 67 

exudate rich in carbohydrates and amino acids, which is excreted by certain hemipteran 68 

insects that feed upon the phloem of several plant families [18]. In this association, the ants 69 

feed on honeydew, while the hemipterans, termed trophobionts, gain protection from their 70 
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natural enemies [18]. Although ant-trophobiont interactions are antagonistic to the plants on 71 

which they occur, when ants tend trophobionts, they might have ecological and evolutionary 72 

impacts on plant fitness [19]. Ants in turn might gain some benefits from these interactions, as 73 

has been demonstrated by higher abundance of pupae in ant colonies supplemented with 74 

elaiosomes [20] and higher growth and survivorship when workers fed upon EFNs [21] or 75 

trophobiont secretions [22].  76 

Ant-plant interactions are mediated by plant-derived food rewards that vary in quality 77 

[23], predictability, and availability in the environment [24]. These factors may influence ant 78 

behavior and foraging strategies, leading to differences in the structure of interaction networks 79 

according to resource type. In fact, recent findings have shown that ant dominance over 80 

resource usage is the main mechanism responsible for differences in specialization of 81 

networks formed by interactions between ants and extrafloral nectary (EFN)-bearing plants, 82 

and between ants and honeydew-producing hemipterans [25]. Likewise, results from 83 

compiled datasets suggest that ant-flower networks are more specialized (i.e., more modular) 84 

than ant–Hemiptera and ant-EFN networks [26].  85 

More broadly, evidence indicates that mutualistic networks have in common a 86 

fundamental property: the presence of a core formed by the most influential species, which 87 

reach high scores of centrality [27]. In ant-plant networks specifically, is known that a few 88 

central ant species form a core that strongly influences the structure of the entire community 89 

[28]; this is especially true in generalized ant-EFN networks compared to those involving 90 

specialized myrmecophytic plants [29]. This core of central ant species is consistent in space 91 

[28] and time [30], and consists mostly of dominant species displaying high recruitment rates 92 

and strong territoriality [31].  93 



34 
 

These findings have brought important insights to the understanding of ant-plant 94 

networks. However, any one ant species uses multiple kinds of plant-derived resources at a 95 

single time [14]. It is not known whether a single ant species plays a different role in the 96 

community according to the type of resource it collects. Thus, we need empirical studies that 97 

integrate different interactions into a complete ant-plant network, in order to understand plant 98 

resouce use by foliage-dwelling ants. New models of multilayer networks have recently 99 

opened the possibility of studying several interaction types simultaneously. In multilayer 100 

networks, interactions between species may be of two or more types, creating interconnected 101 

layers [32]. This breakthrough allows us to address a new question: do the structural patterns 102 

described to date for ant-plant networks hold when interactions with different resource types 103 

are considered? To investigate this issue, we studied one multilayer network formed by 104 

interactions between ants and a set of plants that provide different food rewards (EFNs, 105 

flowers, fruits), and that also host trophobionts, another food source. We tested whether 106 

networks formed by interactions between ants and different food types differ from one 107 

another in specialization and resource partitioning among ants. In addition, we tested whether 108 

the core of central ant species is similar among resource types.   109 

 110 

Materials and Methods  111 

 112 

Study area 113 

The study was carried out in Morro da Pedreira Environmental Protection Area, the buffer 114 

zone of Serra do Cipó National Park, in the southern region of the Espinhaço Mountain 115 

Range, southeastern Brazil (19°17'27.3" S, 43°35'40.8" W). We studied ant-plant interactions 116 

in rupestrian grasslands, or campo rupestre, a megadiverse mountainous ecosystem composed 117 

of grasslands and rocky outcrops occurring mainly from 900 to over 2000 m asl. in Brazil 118 
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[33,34]. It is characterized by a species-rich vegetation, high levels of plant endemism, and a 119 

large number of threatened plant species [35]. Campo rupestre are also characterized by high 120 

ant species richness (288 species), with the highest diversity found in the Cipó Mountains 121 

[36]. The vegetation is comprised mostly of small sclerophyllous evergreen shrubs and herbs 122 

associated with rock outcrops within quartzitic and sandstone soils with high levels of 123 

aluminum and low concentration of nutrients [35]. The climatic regime of this region is 124 

characterized as tropical altitudinal (Cwb) according to Köppen’s classification [37], 125 

comprising markedly dry and cold winters and hot and wet summers, with mean temperature 126 

around 22º C  and mean annual rainfall of 1,500 mm [33]. All permissions to visit and collect 127 

biological data were authorized by ICMBio of the Brazilian Ministry of Environment 128 

(SISBIO authorization number 38952-6). Data collection in sites located at private lands was 129 

authorized by the owners and ICMBio.  130 

 131 

Sampling design 132 

 133 

We selected seven sites similar to one another in altitudinal range (from 1100 to 1200 134 

m asl.), climate regime, and plant species richness, but distant by at least 1.44 km from one 135 

another. We chose these sites not for comparative purposes but in order to capture a 136 

representative sample of the area. At each site, we delimited one transect 200 m in length and 137 

1 m in width, which was divided into 20 plots (10 x 1 m). We randomly sampled five plots at 138 

least 30 m away from one another. In each plot, we marked all trees, shrubs, subshrubs, 139 

rosettes and herbs that were fully accessible to us, those 50-200 cm in height. 140 

  141 



36 
 

Assessment of ant-plant interactions  142 

 143 

We monitored the marked plants quarterly in 2014, at the peak and at the end of the 144 

rainy and dry seasons (respectively, January, April, July, and October). Between 0800–1200 145 

and 1400-1700, each plant was observed for approximately 3 min. The interaction event was 146 

recorded only when the ant was observed feeding upon the food source [38,39]. We computed 147 

interaction frequency when we observed the same pair of species interacting in a different 148 

event. We also recorded the number of worker ants using the resource at the time of 149 

monitoring to estimate the recruitment rate of each ant species.  150 

We classified interaction events according to the type of resource used by ants: 151 

extrafloral nectar and similar secretions (EFNs), floral nectar or pollen (flowers), glands and 152 

fleshy pulp of fruits (fruits), and honeydew droplets from trophobiont hemipterans 153 

(trophobionts). When we observed an ant on an individual plant that did not provide any 154 

resource, or an ant that left a plant without making contact with resources of any type, we 155 

defined the interaction as a “visit”.  156 

We collected vouchers of plants and insects for taxonomic identification. To identify 157 

ants we used the key by Baccaro et al. [40] and also consulted a specialist. We deposited ant 158 

vouchers in the entomological collection Padre Jesus Santiago Moure at the Federal 159 

University of Paraná (UFPR). Trophobiont insects were identified using the key by Rafael et 160 

al. [41], and also by consulting experts. Vouchers are deposited in the collection of the Insect 161 

Ecology Lab at the Federal University of Minas Gerais (UFMG). We identified plants with 162 

the support of botanists from UFMG, and deposited vouchers in the herbarium of the 163 

Botanical Department (UFMG).  164 

 165 

 166 
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Network structure  167 

 168 

We built a multilayer network formed by ants and their interactions with EFNs, 169 

flowers, fruits, trophobionts, as well as visit events, from five weighted matrices, with plant 170 

species as rows and ant species as columns, and cells filled with the number of interaction 171 

events of that type observed between a i plant species and a j ant species. We built one matrix 172 

for each food type incorporating interactions recorded over the entire year across the seven 173 

sites, each representing one layer of the network. Trophobiont associations with ants were 174 

analyzed from an ant-plant perspective, so the respective matrix was built only with ant and 175 

plant species connected to one another through trophobionts. Since most studies have 176 

explored trophobiosis from the trophobiont-ant viewpoint, we choose this approach in order 177 

to bring insights for indirect effects of ants on plants (see [42] for a similar approach). 178 

Moreover, in the focal habitat, plant-trophobiont interactions are very specialized and modular 179 

(S3 Table), making this approach useful to compare ways in which ants are associated with 180 

plants. Thus, the multilayer network comprised all types of events recorded in the seven sites 181 

during one year of sampling. For some analyses, we assessed the interactions as a multilayer 182 

network, while for other analyses, the data were divided by food type into five layers.  183 

To test whether different resource types are associated with different patterns of 184 

specialization and resource partitioning by ants, we chose four network metrics frequently 185 

used for this purpose: nestedness, modularity, complementary specialization, and niche 186 

overlap. Those metrics have the additional advantage of being insensitive or only moderately 187 

sensitive to sampling completeness and network size [43]. We computed those metrics for the 188 

multilayer network and for each layer separately. Nestedness may provide additional insights 189 

into feeding preferences, as in a nested network, interactions involving the least-connected 190 

species are a subset of the interactions made by species in the core [44]. We evaluate 191 
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nestedness using the WNODF metric, which is based on overlap and decreasing fill in the 192 

weighted matrix [45]. 193 

Network modularity is used to assess whether some groups of species are more 194 

densely connected to one another than to other species within the same network [46]. 195 

Modularity is positively correlated to network specificity, because distinct modules require a 196 

certain degree of specificity in the community, and thus can be used as a proxy of 197 

specialization [47,48]. We calculated modularity using the QuanBiMo algorithm, which was 198 

developed specifically for weighted bipartite networks [48] and is based on a simulated 199 

annealing approach. The level of modularity (Q) measures the extent to which species interact 200 

mainly with other species of its own or other modules, and ranges from 0 to 1. Since the 201 

algorithm is stochastic, module arrangement can vary between iterations. For this reason, we 202 

retained the optimum Q value as being the highest value after 1,000 iterations. Values of Q 203 

were standardized (standardized Q), considering the number of standard deviations above the 204 

average value recorded in 1,000 iterations. Thus, values of standardized Q indicate significant 205 

values of modularity, since they represent how many standard deviations the real Q-value is 206 

far from the mean of 1,000 Q-values generated from randomized networks using the 207 

QuanBiMo algorithm [48]. Therefore, instead of P-values, we used standardized Q-values to 208 

estimate the significance of modularity. 209 

Complementary specialization (H2’) was derived from Shannon entropy and describes 210 

interaction diversity, i.e., how evenly distributed the weighted interactions are in a network. 211 

This index is very robust to differences in sampling effort and network size [43]. Values 212 

closer to 0 indicate high generalization or redundancy of interactions, and values closer to 1 213 

indicate high specialization [29,49].  214 

Niche overlap among ant species was also calculated using the Morisita-Horn index, 215 

which varies from 0 to 1 [50]. We used the Patefield null model to estimate the significance of 216 
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the observed network metrics and expectations from 999 randomized networks [51]. All 217 

network metrics and their significances were calculated in the bipartite (Dormann et al. 2008) 218 

and vegan [52] packages for R [53]. 219 

 220 

Differences among resource types  221 

 222 

To test whether network metrics vary with food type, we compared network metrics 223 

between pairs of resource layers: ant-EFN vs. ant-trophobiont, ant-EFN vs. ant-flower, and 224 

ant-trophobiont vs. ant-flower. Ant-fruit interactions were removed from the statistical 225 

analysis because the networks formed by them were too small (S1 Table). For this reason, 226 

several metrics could not be reliably compared, as they are strongly biased by network size 227 

[43]. In this analysis, we pooled the seven sites in order to increase the robustness of the 228 

network analysis. We calculated the pairwise differences between layers, then tested whether 229 

the observed differences were lower or higher than expected by chance using a Monte Carlo 230 

procedure with 999 randomizations of pairwise differences ( = 5%).  231 

To explore differences in general descriptors of network structure among resource 232 

types, we computed network size (i.e., number of interacting species), frequency of 233 

interactions, and richness of interactions for each layer considering the site as a sampling unit 234 

(n = 7 sites). We calculated generalized linear models (GLMs) in which network descriptors 235 

(size, richness and frequency of interactions) were the dependent variables and resource type 236 

(EFNs, trophobionts and flowers) was the predictor variable. GLMs were compared with null 237 

models, and the residuals were analyzed to verify the suitability of the models based on the 238 

Poisson distribution of errors.   239 

 240 

The core formed by central species 241 
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The concept of centrality is useful to assess the relative importance of a species to the 242 

structure of the whole network [54]. There are several centrality indices proposed in the 243 

literature [28,55], most of which can be used to determine a core/periphery structure in a 244 

network. Degree centrality is the simplest, as it is measured as the number of connections 245 

(links) made by each species (nodes) [6,56]. We chose degree centrality to identify the core of 246 

central species in each resource layer so that we could test whether this core is similar across 247 

them. For each resource type, within each sampling site (n = 7) we selected the ant and plant 248 

species with degree centrality above the network average. We then calculated a permutational 249 

multivariate analysis of variance (PERMANOVA, [57]) to test whether this core of central ant 250 

and plant species is similar across resource types, and ordered the layers with nonmetric 251 

multidimensional scaling (NMDS). These analyses were made in the package vegan for R 252 

[53].  253 

All statistical analyses were performed in R 3.2.3 [53], and network drawings were 254 

prepared in Pajek 4.09 [58]. 255 

 256 

Results 257 

 258 

Species and their interactions 259 

We monitored a total of 1,114 individual plants from 108 species and 32 families. The 260 

most represented families were Asteraceae (28% of sampled plants), Velloziaceae (12%), 261 

Malpighiaceae and Melastomataceae (8% each), Lythraceae (6%) and Fabaceae (5%). In 262 

general, the sampled vegetation was 80 ± 29 cm in height (mean ± SD) and was composed 263 

mainly of subshrubs (46% of plants), shrubs (36%), rosettes (12%), trees (5%), and herbs 264 

(1%).  265 
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The multilayer network comprised 795 interaction events between 78 plant species 266 

and 30 ant species (Fig 1). Hence, 30 plant species were either not visited by ants or else 267 

lacked EFNs and other food sources used by ants (S1 Table). Sixty-six percent of all events 268 

were considered visits (i.e., ants were observed on a plant but were not seen feeding on it), 269 

20% involved ants feeding on EFNs and similar secretory structures, 8% involved ants 270 

feeding on flowers (nectar or pollen), 5% involved ants tending trophobionts, and 1% 271 

involved ants feeding on fruits (eating pulp or feeding on fruit secretory structures) (Fig 1).  272 

 273 

Fig 1. Multilayer network formed by interactions between ants and plants that provide 274 

different food types. Circles represent plant species and diamonds represent ant species. Lines 275 

represent interactions and line thickness is proportional to interaction frequency. Line color 276 

represents the type of resource used. See ant and plant species names in S1 and S2 Table, 277 

respectively. 278 
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We observed 1,770 ant workers of five subfamilies and 30 species. Of these, 18 280 

species fed on EFNs, 17 species fed on flowers, 12 species fed on trophobionts, and four 281 

species fed on fruits. Cephalotes pusillus (37% of all records), Brachymyrmex cordemoyi 282 

(12%) Camponotus rufipes (10%), Camponotus crassus (10%), and Brachymyrmex pictus 283 

(6%) together made up 75% of all records and were observed interacting with the most types 284 

of food (except fruits). The ant-EFN and ant-flower layers shared 12 ant species, the ant-EFN 285 

and ant-trophobiont layers shared 11, and the ant-flower and ant-trophobiont layers shared 286 

eight ant species. All ant species in the ant-fruit layer were found on additional resource 287 

layers as well.  288 

Visits were made to 71 plant species, among which the most important species were 289 

those that provided nesting sites (e.g., Vellozia spp.) and EFNs (when this structure was not 290 

active). Plant species with EFNs were the most represented in the multilayer network (18%, n 291 

= 14, S1 Table). The families with EFN-bearing species were Fabaceae (5 spp.), 292 

Malpighiaceae (3 spp.), Euphorbiaceae (3 spp.), Myrsinaceae (1 spp.), Araceae (1 sp.), and 293 

Polygonaceae (1 sp.). Three Asteraceae species (Baccharis concinna, Symphyopappus 294 

reticulatus, and Mikania neurocaula) secreted other substances within their leaf blades, 295 

probably resins, which the ants collected. Since ant behavior when attending these structures 296 

was similar as in the case of EFNs, we pooled these interaction types for a total of 17 species 297 

with secretory structures in the multilayer network (22%, 11 exclusive species, S1 Table). 298 

Ants used flower resources on 23% of plant species (23 spp., S1 Table). Of those species, 14 299 

were exclusive to the flower layer. Interactions with fruits were observed only between four 300 

plant species (5% of all species) and four ant species (S1 and S2 Table).  301 

Twenty-three percent of all plant species (18 spp, see S1 Table) had hemipterans 302 

feeding on them (13 spp., S3 Table), leading to networks with high specialization, high 303 

modularity, and low niche overlap among hemipterans (S4 Table). Those hemipteran species 304 
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were tended by 12 ant species, but specialization and modularity were low in this layer (S4 305 

Table). The most represented trophobionts were Aphididae (Aphis spiraecola and Aphis 306 

fabae) and Coccidae (Parasaissetia nigra and Coccidae sp 2), which together made up 77% 307 

of all interactions in the ant-trophobiont layer (S3 Table). The five most represented plant 308 

species in the ant-trophobiont layer lacked EFNs (S1 Table). 309 

 310 

Structure of the multilayer network 311 

The multilayer network formed by the five interaction types had low but significant 312 

modularity, complementary specialization, weighted nestedness, and niche overlap among 313 

ants (Fig 1, Table 1). The structure of the ant-visit layer was similar to that of the complete 314 

network: low but significant modularity, complementary specialization, weighted nestedness, 315 

and low and non-significant niche overlap among ants (Table 1). 316 

Considering the layers formed by different food sources, the ant-EFN layer had the 317 

lowest modularity and specialization, but the highest weighted nestedness and niche overlap 318 

among resource layers. The ant-flower layer had intermediate values for modularity, 319 

complementary specialization, weighted nestedness and niche overlap. The ant-trophobiont 320 

layer had the highest modularity and complementary specialization, but lower weighted 321 

nestedness and niche overlap among resource layers (Fig 2, Table 1).  322 

 323 

 324 

  325 
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Fig 2. Network layers formed by interactions between ants and plants with extrafloral 326 

nectaries, trophobionts, and flowers. Circles represent plant species and diamonds represent 327 

ant species. Lines represent interactions between species and line thickness is proportional to 328 

interaction frequency. See ant and plant species codes in S1 and S2 Table, respectively. 329 

 330 

331 
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Table 1. Values for complementary specialization (H2’), modularity (Q), weighted nestedness 332 

(WNODF), niche overlap for ants (Horn), and their respective significances (P) for different 333 

layers in a multilayer ant-plant network (symbol “*” indicates significant differences, N = 999 334 

randomizations, St. Q = standardized Q, Visit = ant-visit, EFN = ant-extrafloral nectar, Tropho 335 

= ant-trophobiont, Flower = ant-flower). 336 

Network H2’ P (H2’) Q St. Q WNODF P (WNODF) Horn P (Horn) 

Multilayer 0.27 0.001* 0.27 15.82* 27.12 0.001* 0.13 0.001* 

Visit 0.26 0.001* 0.29 7.61* 22.01 0.004* 0.14 0.312 

EFN 0.27 0.001* 0.30 4.37* 22.72 0.019* 0.26 0.002* 

Flower 0.34 0.006* 0.51 2.80* 11.29 0.687 0.13 0.144 

Tropho 0.45 0.001* 0.57 1.64 6.46 0.456 0.05 0.001* 

 337 

Differences among resource types 338 

Consistent with our first expectation, the resource layers differed in network structure. 339 

The ant-EFN layer was the largest (GLM: deviance = 189.08, df = 2, p = 0.02, n = 7 sites), 340 

and had higher interaction richness (GLM: deviance = 23.94, df = 2, p = 0.001, n = 7 sites) 341 

and higher interaction frequency (GLM: deviance = 79.34, df = 2, p = 0.0003, n = 7 sites) 342 

than the ant-flower and ant-trophobiont layers, which were similar to one another (S5 Table). 343 

Similarly, the ant-flower and ant-trophobiont layers were similar in terms of network metrics 344 

(Table 2). The ant-flower layer was also similar to the ant-EFN layer in terms of 345 

specialization and niche partition metrics, but the ant-EFN layer exhibited lower 346 

complementary specialization than did the ant-trophobiont layer (Table 2). 347 
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Table 2. Structural comparison between resource types in the ant-plant multilayer network 348 

(symbol “*” indicates significant differences, N = 999 randomizations, EFN = ant-extrafloral 349 

nectar layer, Tropho = ant-trophobiont layer, Flower = ant-flower layer). 350 

 351 

Structural 

metrics 

Observed values for 

each layer 

Differences 

among  layers 

 EFN Tropho P-value 

Q 0.30 0.57 0.853 

WNODF 22.72 6.46 0.974 

H2’ 0.27 0.45 0.032* 

Horn 0.26 0.05 0.245 

 EFN Flower P-value 

Q 0.30 0.51 0.391 

WNODF 22.72 11.29 0.984 

H2’ 0.27 0.34 0.571 

Horn 0.26 0.13 0.083 

 Tropho Flower P-value 

Q 0.57 0.51 0.842 

WNODF 6.46 11.29 0.688 

H2’ 0.45 0.34 0.839 

Horn 0.05 0.13 0.803 

 352 

 The core formed by central species 353 

The core of most central ant species in the ant-EFN layer was formed by eight ant 354 

species, followed by the ant-flower layer with five ant species, and the ant-trophobiont layer 355 

with four ant species. In total, the cores of resource layers were made up of nine ant species. 356 

Consistent with our second expectation, the species composition in these cores was similar 357 

(PERMANOVA: R2 = 0.145, p = 0.264, n = 7 sites, Fig 3A). Only Cephalotes pusillus, 358 

Camponotus rufipes, and Camponotus crassus occurred in the core of all resource layers. 359 
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Together they made up 57% of all interactions in the multilayer network. In contrast to the 360 

high overlap in ant composition, the composition of the most central plant species in the cores 361 

of the resource layers were distinctly different (PERMANOVA: R2 = 0.226, p = 0.001; n = 7 362 

sites, Fig 3B). Nineteen plant species formed the resource layer cores, with no species in 363 

common among them.  364 

 365 

 366 

 367 

368 



49 
 

Fig 3. Nonmetric multidimensional scaling ordination (NMDS) showing the similarity of 369 

most central ant species (A), and central plant species (B) among resource layers in the 370 

multilayer ant-plant network. Points represent sampling sites and the polygons indicate 371 

significant differences (EFN = ant-extrafloral nectar, Flower = ant-flower, Tropho = ant-372 

trophobiont). 373 

 374 

375 
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Discussion 376 

 377 

This study is the first to assess a multilayer network formed by ants feeding upon 378 

different food types in plants. The structure of this multilayer network follows no clear 379 

topological pattern corresponding to resource types, but when it is disentangled, interactions 380 

with distinct food sources can be seen to differ from one another in terms of specialization 381 

and resource partitioning among ants. Despite differing in structure, a core of a few ant 382 

species made up most of the interactions with resources provided by different plant species. 383 

Those findings suggest that the structural proprieties of interactions between ants and food 384 

rewards do not hold when different resource types are considered simultaneously. These 385 

results suggest a clear need to move from one single interaction to multiple types to 386 

understand communities. On the other hand, we show that the plant community is bound 387 

together by a few highly central ant species that could provide different ecological functions 388 

to plants. Below, we first discuss possible mechanisms underlying these findings, then 389 

conjecture how ant-food reward relationships can be understood from a network perspective.  390 

Consistent with our first expectation, distinct resource types formed structurally 391 

different networks. EFN was the most common resource consumed by foliage-dwelling ants, 392 

followed by flower resources (pollen and/or nectar), and then hemipteran honeydew. Fruit, 393 

however, does not seem to be a common food source for ants in campo rupestre vegetation. In 394 

fact, EFNs attracted a larger number of ant species, promoted higher recruitment, and 395 

frequency of interactions than other food types (S2 and S5 Table). EFNs also formed 396 

networks with the highest nestedness, highest niche overlap among ants, and largest ant core 397 

among resources, suggesting more interspecific co-occurrences in comparison to other 398 

resources. A nested pattern in ecological networks indicates the presence of a core in which 399 

frequent species interact with less frequent species in the network, leading to higher 400 
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persistence and stability of the mutualism [59]. The ecological and evolutionary importance of 401 

EFNs for ant-plant community has been heavily discussed in literature [19,60]. Our results 402 

support the idea that EFNs are a key resource promoting ant diversity and driving the 403 

structure of the ant-plant community not only in savannas [61,62] and rainforests [23], but 404 

also in campo rupestre. 405 

The higher specialization and non-nested pattern found in the ant-trophobiont layer 406 

would be expected if we consider that honeydew availability in campo rupestre is apparently 407 

more limited than nectar [25] and that honeydew, especially from Aphididae and Coccidae, is 408 

nitrogen-enriched and more nutritious than plant nectars [63]. As a consequence, it is likely 409 

that honeydew is a more valuable and rare resource for ants [23]. This seems likely to 410 

promote interspecific segregation, with superior competitors species dominating better quality 411 

resources [61]. In addition, the ant-trophobiont layer also had the lowest niche overlap among 412 

ants and the smallest core (four ant species) among food types, supporting the idea that 413 

honeydew promotes segregated patterns of ant species co-occurrence in campo rupestre [25]. 414 

Territorial competition among ants are well-known in tropical vegetation, where dominant 415 

ants organize interspecific interactions and drive community assembly [64]. 416 

Foraging on flowers involved similar ant diversity and frequency of interactions as did 417 

feeding on honeydew. Likewise, the structure of the ant-flower layer was very similar to the 418 

ant-trophobiont layer, both forming more specialized networks than found in the ant-EFN 419 

layer. Honeydew, floral nectar and pollen are resources of high quality and nutritional value 420 

for ants [65,66]. Since ants consume food rewards in opportunistic ways, it seems probable 421 

that resource availability and predictability across the year determine their foraging strategies: 422 

flowers normally are prevalent in the dry season, a period when trophobionts are less 423 

abundant [24,62]. This same phenological pattern might be taking place at our study site, 424 

where several plant species exhibit a flowering peak during the dry season [67]. Thus, is 425 
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likely that ants switch food sources during the year, leading to a similar structure of 426 

interactions. On flowers, ants are typically considered robbers and thieves [68], although 427 

evidence that ants can also act as pollinators does exist [17]. Trophobionts are plant 428 

herbivores that reduce plant fitness, but when attended by ants might lead to indirect positive 429 

effects for plants (reviewed by [18]). Although we have not quantified interaction outcomes, 430 

our results illustrate how interactions that likely range from negative to positive effects are 431 

tied together in the community.  432 

The core plant species belonged to different families and life forms [35], covering a 433 

wide spectrum of flower types, fruit types and secretory structure types. In contrast, a core of 434 

relatively few ant species made up most of the interactions with resources provided by 435 

different plant species, in line with our expectation. Three ant species stand out in the campo 436 

rupestre, since they were present in the cores of all resource networks. Although they 437 

encompass only 1% of the ant species recorded in the region [36], they are over-represented 438 

in the multilayer network (> 50% of records). Previous studies carried out in distinct habitats 439 

suggest that the cores of ant-EFN and ant-honeydew networks are composed by competitively 440 

superior ant species [25,31]. In fact, Camponotus crassus and Camponotus rufipes are 441 

numerically dominant and aggressive ants, which are considered truly trophobiont and plant 442 

mutualists in cerrado [69] and campo rupestre [70]. Cephalotes pusillus is a sub-dominant ant 443 

that has evolved some traits that favor its success on vegetation, such as a diet based largely 444 

on plant resources and a body morphology and a caste of soldiers specialized for nest defense 445 

[71]. We might expect that these species prevalence would reflect mostly their abundance. 446 

However, we verified that ant species centrality in this study is not influenced by their local 447 

abundance, but rather their recruitment rate (S6 Table). These evidence indicate that traits 448 

related to foraging strategies, such as massive recruitment and defense behavior, might 449 

explain the consistence of this core in different resource types.  450 
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In conclusion, we suggest that the structural patterns described so far for ant-plant 451 

networks are not consistent when interactions with multiple resources are considered. Ant 452 

interactions with EFNs, flowers and trophobionts formed networks that differed in ant 453 

diversity, specialization and niche overlap. However, a common core of a few ant species feed 454 

on these plant-derived food rewards, leading to a generalized multilayer network. This 455 

generalized structure mediated by a small core of ants may be a consequence of the 456 

opportunistic nature of ant-plant interactions [24]. On the other hand, foraging strategies of 457 

ant species appear to underlie the differences in specialization and niche partitioning in ant-458 

plant interactions. These findings point to the importance of incorporating different types of 459 

interactions in order to unveil the complexity of communities. Whether the core species 460 

function as mutualists, antagonists or a combination is an open question that needs further 461 

investigation. These ant species might play a major ecological role in campo rupestre, as they 462 

appear to be involved in a diversity of ecosystem functions.  463 
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Supporting information  690 

 691 

S1 Table. Data on plant species and their interactions in the multilayer network (Species code = plant species code in the multilayer 692 

network; E = extrafloral nectaries, FL = flowers, FR = fruits, T = trophobionts, V = visits, Recruit = ant workers recruitment, symbol “-693 

” indicates the absence of interaction with ants and absence of food resource). 694 

Plant taxa 
Species 

code 

Plant  

abundance 

Portion of 

individuals which 

interacted (%) 

Interaction 

frequency 
Resource type 

Ant richness/  

species 

Ant recruit/ 

species 

Acanthaceae 
           

Ruellia vilosa Ruevil 17 5.9 1 - - - - V 1 1 

Apocynaceae 
           

Oxypetalum sp1 - 2 0 - - - - - - - - 

Araceae 
           

Philodendron cipoense Phicip 3 100.0 14 E - - - V 4 29 

Arecaceae 
           

Syagrus glaucescens Syagla 8 87.5 18 - - - T V 2 46 

Syagrus pleioclada - 4 0 - - - - - - - - 

Asteraceae 
           

Acritopappus confertus - 4 0 - - - - - - - - 

Aspilia jolyana Aspjol 91 19.8 22 - FL - T V 5 46 

Asteraceae sp1 - 1 0 - - - - - - - - 

Baccharis concinna Baccon 44 40.9 47 E FL - T V 12 96 
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Plant taxa 
Species 

code 

Plant  

abundance 

Portion of 

individuals which 

interacted (%) 

Interaction 

frequency 
Resource type 

Ant richness/  

species 

Ant recruit/ 

species 

Chromolaena sp1 Chrsp1 7 28.6 2 - - - - V 1 2 

    Dasyphyllum reticulatum Dasret 18 11.1 2 - - - T V 2 21 

    Echinocoryne schwenkiifolia Echsch 9 11.1 1 - - - - V 1 1 

Lessingianthus warmingianum Leswar 2 50.0 1 - - - - V 1 7 

Lychnophora ramosissima Lycpas 46 30.4 18 - FL - - V 7 26 

Lychnophora rupestris Lyctri 4 50.0 2 - - - - V 2 6 

Mikania itambana Mikita 28 35.7 14 - FL - T V 4 46 

Mikania neurocaula Mikneu 2 50.0 1 E - - - - 1 1 

Porophyllum angustissimum - 7 - - - - - - - - - 

Pseudobrickellia angustissima Pseang 2 50 1 - FL - - - 1 1 

Symphyopappus reticulatus Symret 53 47.2 60 E FL - T V 11 111 

Aquifoliaceae 
           

Ilex theezans - 2 0 - - - - - - - - 

Cactaceae 
           

Pilosocereus cipoense Pilcip 2 50.0 1 - - - - V 1 1 

Clusiaceae 
           

Kielmeyera petiolaris Kiepet 3 100.0 3 - - - - V 2 3 

Kielmeyera regalis Kiereg 4 25.0 1 - - - - V 1 1 

Dilleniaceae 
           

Davila elliptica Davell 3 100.0 6 - - - - V 5 15 

Ericaceae 
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Plant taxa 
Species 

code 

Plant  

abundance 

Portion of 

individuals which 

interacted (%) 

Interaction 

frequency 
Resource type 

Ant richness/  

species 

Ant recruit/ 

species 

Gaylussacia montana Gaymon 10 50.0 5 - FL - - V 3 8 

Eriocaulaceae 
           

Paepalanthus vellozioides Paevel 4 75.0 8 - - - - V 4 13 

Erythroxylaceae 
           

Erythroxylum campestris Erycam 16 25.0 5 - - - - V 4 6 

Euphorbiaceae 
           

Bernardia similis Bersim 1 100.0 6 E - - - - 3 14 

Croton sp1 Crosp1 14 57.1 31 E - - - V 7 49 

Euphorbiaceae sp1 - 2 0 - - - - - - - - 

Sapium glandulatum Sapgla 3 66.7 7 E - - - V 5 19 

Fabaceae 
           

Bionia coriacea Biocor 12 50.0 6 E - - - V 5 16 

Chamaecrista cipoana Chacip 11 27.3 3 - - - - V 3 3 

Chamaecrista desvauxii Chades 2 50.0 2 E - - - V 2 2 

Chamaecrista papillata Chapap 12 108.3 58 E - - - V 10 58 

Chamaecrista ramosa Charam 11 54.5 11 E - - - V 6 11 

Dalbergia miscolobuim Dalmis 6 66.7 4 - - - - V 2 4 

Mimosa maguirei - 1 0 - - - - - - - - 

Lamiaceae 
           

Eriope hypoleuca Erihyp 8 25.0 3 - - - - V 2 3 

Hypenia macrantha - 3 0 - - - - - - - - 
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Plant taxa 
Species 

code 

Plant  

abundance 

Portion of 

individuals which 

interacted (%) 

Interaction 

frequency 
Resource type 

Ant richness/  

species 

Ant recruit/ 

species 

Hyptis proteoides - 7 0 - - - - - - - - 

Hyptis sp1 Hypsp1 30 16.7 7 - - - - V 4 8 

Lamiaceae sp1 Lamsp1 3 100.0 3 - - - - V 3 3 

Lamiaceae sp2 - 1 0 - - - - - - - - 

Lamiaceae sp3 - 2 0 - - - - - - - - 

Lauraceae 
           

Ocotea langsdorffii - 1 0 - - - - - - - - 

Loganiaceae 
           

Antonia ovata - 1 0 - - - - - - - - 

Spigelia sellowiana Spisel 5 20.0 1 - - - - V 1 1 

Lythraceae 
           

Cuphea ericoides Cuperi 29 20.7 8 - FL - - V 3 10 

Diplusodon hirsutus - 5 0 - - - - - - - - 

Diplusodon orbicularis Diporb 32 12.5 4 - FL - - V 3 4 

Malpighiaceae 
           

Banisteriopsis angustifolia Banang 9 55.6 9 E - - - V 5 19 

Banisteriopsis campestris Bancam 1 100.0 2 E - - T - 1 10 

Byrsonima sp1 Byrsp1 19 78.9 31 - FL FR T V 9 51 

Byrsonima vacciniifolia Byrvar 12 41.7 7 - FL FR - V 4 14 

Malpighiaceae sp1 - 1 0 - - - - - - - - 

Peixotoa tomentosa Peitom 12 66.7 15 E - - - V 6 71 
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Plant taxa 
Species 

code 

Plant  

abundance 

Portion of 

individuals which 

interacted (%) 

Interaction 

frequency 
Resource type 

Ant richness/  

species 

Ant recruit/ 

species 

Tetrapterys microphylla Tetmic 36 50.0 26 E FL - - V 10 33 

Malvaceae 
           

Ayenia angustifolia - 3 0 - - - - - - - - 

Melastomataceae 
           

Lavoisiera confertiflora Lavcon 1 100.0 2 - - - - V 2 2 

Lavoisiera cordata Lavcor 14 7.1 1 - - - T - 1 4 

Lavoisiera sp1 Melsp2 8 12.5 1 - - - - V 1 1 

Marcetia taxifolia - 15 0 - - - - - - - - 

Melastomataceae sp1 Melsp1 3 66.7 2 - FL - - V 2 2 

Melastomataceae sp2 - 1 0 - - - - - - - - 

Melastomataceae sp3 - 5 0 - - - - - - - - 

Miconia ferruginata Micfer 2 100.0 9 - - - T - 3 98 

Microlicia fulva Micful 16 18.8 3 - - - - V 2 3 

Microlicia sp1 - 3 0 - - - - - - - - 

Microlicia tetrasticha - 1 0 - - - - - - - - 

Tibouchina cardinalis Tibcar 5 20.0 2 - FL - - - 2 2 

Tibouchina heteromalla - 1 0 - - - - - - - - 

Trembleya glandulosa - 1 0 - - - - - - - - 

Trembleya laniflora Trelan 11 45.5 5 - - - - V 3 5 

Myrsinaceae 
           

Myrsine monticola Myrmon 11 100.0 46 E - - T V 11 100 
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Plant taxa 
Species 

code 

Plant  

abundance 

Portion of 

individuals which 

interacted (%) 

Interaction 

frequency 
Resource type 

Ant richness/  

species 

Ant recruit/ 

species 

Myrtaceae 
           

Campomanesia pubescens - 1 0 - - - - - - - - 

Myrcia sp1 Myrsp1 31 16.1 6 - - - T V 3 8 

Nyctaginaceae 
           

Guapira areolata - 1 0 - - - - - - - - 

Guapira noxia Guanox 3 66.7 3 - - - - V 2 3 

Neea theifera Neethe 10 50.0 9 - - - T V 3 13 

Ochnaceae 
           

Luxemburgia schwackeana Luxsch 1 100.0 1 - FL - - - 1 7 

Luxemburgia villosa - 3 0 - - - - - - - - 

Ouratea semiserrata Oursem 13 46.2 13 - - - T V 4 15 

Polygonaceae 
           

Coccoloba acrostichoides Cocacr 6 83.3 6 - - - - V 1 7 

Coccoloba cereifera Coccer 1 100.0 1 - - - - V 1 3 

Proteaceae 
           

Roupala montana Roumon 3 33.3 3 - - - - V 2 3 

Rubiaceae 
           

Declieuxia deltoidea Decdel 3 66.7 4 - FL - - - 2 8 

Declieuxia fruticosa - 4 0 - - - - - - - - 

Dioidia mello-barretoi Diomel 1 200.0 2 - FL - - V 1 2 

Palicourea rigida Palrig 8 37.5 5 - FL - - V 2 12 
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Plant taxa 
Species 

code 

Plant  

abundance 

Portion of 

individuals which 

interacted (%) 

Interaction 

frequency 
Resource type 

Ant richness/  

species 

Ant recruit/ 

species 

Remijia ferruginea Remfer 9 77.8 14 - FL FR T V 5 26 

Rubiaceae sp1 - 1 0 - - - - - - - - 

Sabiceae brasiliensis Sabbra 2 50.0 1 - - - - V 1 2 

Trigoniaceae 
           

Trigonia cipoensis Tricip 49 10.2 6 - FL - - V 4 11 

Unidentified 
           

sp1 sp1 2 50.0 3 - FL - T V 2 6 

Velloziaceae 
           

Barbacenia flava Barfla 39 59.0 46 - - - - V 12 60 

Vellozia alata Velala 12 50.0 12 - - - T V 5 95 

Vellozia cf. aloifolia Velniv 5 60.0 3 - - - - V 2 3 

Vellozia nanuzae Velcor 2 50.0 2 - - - - V 2 2 

Vellozia nivea Velnan 43 55.8 47 - - FR - V 13 146 

Vellozia varabilillis Velsp1 31 64.5 33 - FL - - V 11 76 

Verbenaceae 
           

Lippia florida Lipflo 15 6.7 1 - - - - V 1 1 

Lippia sp1 Lipsp1 6 50.0 4 - - - - V 2 4 

Vochysiaceae 
           

Qualea cordata Quacor 1 100.0 2 - - - - V 2 2 

Vochysia elliptica - 5 0 - - - - - - - - 

Vochysia thyrsoidea Vocthy 14 64.3 19 - FL - T V 6 57 
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S2 Table.  Data on ant species and their interactions with different resource types in the multilayer network (Code = species code in 695 

the network, E = extrafloral nectaries, FL = flowers, FR = fruits, T = trophobionts, V = visits, Recruitment = ant workers recruitment). 696 

Ant taxa 
Species 

code 

Interaction frequency 
Recruitment 

Recruitment / 

plant (mean ± SD) 

Partner 

richness E FL FR T V 

Formicidae 
         

Dolichoderinae 
         

Dorymyrmex goeldii Dorgoe 1 - - 1 1 3 1 3 

Dorymyrmex sp1 Dorsp1 - 1 - - 4 6 1.5 ± 1 4 

Dorymyrmex sp2 Dorsp2 - 2 - - 6 14 2 ± 0.8 5 

Linepithema micans Linmic 2 1 - - 5 15 1.9 ± 2.1 7 

Linepithema sp1 Linsp1 1 1 - 1 - 11 5.5 ± 6.4 2 

Ectatomminae 
         

Ectatomma edentatum Ectede 1 - - - 1 2 2 1 

Ectatomma tuberculatum Ecttub 3 - - 1 6 27 3.9 ± 4.2 7 

Formicinae 
         

       Brachymyrmex cordemoyi Bracor 28 10 - 1 55 388 5.7 ± 11.0 30 

Brachymyrmex pictus Brapic 12 4 1 3 25 154 3.9 ± 8.0 21 

Brachymyrmex sp1 Brasp1 1 1 - - 2 5 1.3 ± 0.5 3 

Camponotus blandus Cambla 2 1 - - 8 19 2.4 ± 1.6 5 

Camponotus crassus Camcra 10 4 2 5 59 150 2.6 ± 3.5 29 

Camponotus leydigi Camley 2 4 - 2 4 24 2 ± 1.2 9 

Camponotus rufipes Camruf 9 7 3 12 50 205 3.1 ± 8.4 36 
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Ant taxa 
Species 

code 

Interaction frequency 
Recruitment 

Recruitment / 

plant (mean ± SD) 

Partner 

richness E FL FR T V 

Camponotus trapeziceps Camtra 10 5 - - 23 44 1.3 ± 0.8 19 

Camponotus vitatus Camvit - - - - 1 1 1 1 

Camponotus westermanni Camwes 3 1 - 2 17 42 2.3 ± 2.5 10 

Myrmicinae 
         

Atta laevigata Attlae - - - - 1 9 9 1 

Cephalotes eduarduli Cepedu 1 - - - 1 5 5 1 

Cephalotes pusillus Ceppus 54 21 2 13 204 544 2.8 ± 3.3 51 

Crematogaster crinosa Crecri - - - - 1 1 1 1 

Crematogaster erecta Creere - - - 1 1 10 5 2 

Nesomyrmex sp1 Nessp1 - - - - 1 1 1 1 

Nesomyrmex spininodis Nesspi - - - - 3 7 2.3 ± 2.3 3 

Pheidole oxyops Pheoxy - 1 - - 1 2 1 2 

Pheidole triconstricta Phetri 6 - - 1 8 32 2.3 ± 2.1 9 

Wasmannia auropunctata Wasaur - 1 - - - 4 4 1 

Pseudomyrmecinae 
         

Pseudomyrmex gracilis Psegra - - - - 2 2 1 2 

Pseudomyrmex pallidus Psepal 12 1 - - 28 42 1.2 ± 0.6 19 

Pseudomyrmex termitarius Pseter - - - - 1 1 1 1 

Total 
 

158 66 8 43 519 1770     
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S3 Table.  Data on trophobionts and their interactions with plants and ants in the multilayer 697 

network. 698 

Trophobiont 

 taxa 

Frequency 

in plants 

Ant species 

interacting  

Ant workers/ 

plant 

Total ants 

recruitment 

Aphididae     

   Aphis fabae 3 3 12 ± 8.5 36 

   Aphis spiraecola 5 4 17.2 ± 29 103 

Coccidae     

   Coccidae sp1 1 1 1 1 

   Coccidae sp2 6 4 4.5 ± 8.1 27 

   Parasaissetia nigra 7 5 3.4 ± 2.7 24 

Margarodidae     

   Margarodidae sp1 2 2 3.5 ± 0.5 7 

Unidentified family   

  Hemiptera sp1 1 1 1 1 

  Hemiptera sp2 1 2 1 2 

  Hemiptera sp3 1 1 7 7 

  Hemiptera sp4 1 1 1 1 

  Hemiptera sp5 1 1 2 2 

  Hemiptera sp6 1 1 1 1 
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S4 Table. Structural metrics performed for networks formed by interactions between plant 699 

species and trophobiont species (“Plant-Tropho”), and interactions between trophobiont 700 

species and ant species (“Tropho-Ant”) (symbol “*” indicates significant differences between 701 

observed value and Monte Carlo randomizations, n=999, St. Q = standardized Q value).  702 

 

Network type 

 

 

Metric 

 

 

Real value 

 

 

Significance 

 

 

Plant-Tropho WNODF  2.21 p = 0.001* 

 

H2' 0.73 p = 0.001* 

 

Niche overlap  0.09 p = 0.001* 

  Modularity 0.70 St. Q = 22.162* 

 

Tropho-Ant WNODF  15.34 p = 0.142 

 

H2' 0.28 p = 0.929 

 

Niche overlap  0.17 p = 0.049* 

  Modularity 0.38 St. Q = 0.635 

 

S5 Table. General properties of the networks formed by interactions between ants and 703 

different food types in the multilayer network. Values are presented as average ± standard 704 

deviation for each layer (EFN = extrafloral nectar, Tropho = trophobiont). 705 

Layers Size Richness Frequency 

Ant-EFN 69.71 ± 40.89 11.85 ± 4.33 22.57 ± 14.16 

Ant-Flower 41.28 ± 34.65 7.28 ± 3.86 9.42 ± 5.62 

Ant-Tropho 21.57 ± 24.01 4.57 ± 2.76 6.14 ± 4.25 
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S6 Table. Generalized linear model (GLM) analysis showing the relationship between 706 

centrality degree of ant species (n = 30) and their abundance and recruitment. Abundance data 707 

was recorded by pitfall traps installed in the same seven studied sites (symbol “*” represents 708 

significant differences, Df = degrees of freedom).  709 

Response variable Explanatory variable Df Deviance P-value Error distribution 

Centrality degree Ant recruitment 28 55.358  < 0,001* Negative binomial 

Centrality degree Ant abundance 28 0.10802 0.7424 Poisson 

 

 

 

 

 

710 
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Summary 22 

 23 

1. Flammable ecosystems have been shaped by edapho-climatic filters that regulate plant 24 

growth, distribution, and its associated biota. Thus, the temporal dynamic of biotic 25 

interactions in these environments is very likely dependent on the effects of seasonal 26 

climate conditions and fire disturbance. 27 

2. Here, we tested whether the temporal dynamic of ant-plant interactions in Brazilian 28 

rupestrian grasslands is determined by temporal variation in climatic conditions, and 29 

whether fire disturbance may alter this dynamic. For two years, from 2014 to 2016, we 30 

monitored ant-plant interactions in 35 plots, out of which 26 were burned and 9 remained 31 

unburned, and assessed if abiotic conditions and fire affect the temporal variation of 32 

interaction diversity and frequency.  33 

3. We found that diversity and frequency of ant-plant interactions are highly seasonal and 34 

positively influenced by temperature, humidity and rainfall. Temperature was the most 35 

important abiotic predictor of ant and interaction activities. We also observed that fire 36 

negatively affected ant-plant interactions up to one month after burning, up to four months 37 

on ant community, and up to a year post fire on plant community. Thus, its overall effects 38 

on interactions were negative, but transitory.  39 

4. We observed that abiotic conditions, especially temperature, predict the temporal variation 40 

of interactions, mainly determining changes in resource availability and ant foraging 41 

activity. Fire has led to negative short-term impacts on interactions, ant community and 42 

plant community in rupestrian grasslands, suggesting their resilience to fire disturbance.  43 

5. Our study shows that ant-plant interactions in Brazilian grasslands are strongly dependent 44 

on climate and resilient to fire. We suggest that long-term experimental studies including 45 

assisted burnings are needed to forecast how fire impacts and its synergy with weather 46 

conditions would affect biodiversity as a whole. For rupestrian grasslands, further efforts 47 

are necessary to assess which fire regimes are suitable to maintain biodiversity and 48 

ecosystem functioning, as well which fire management policies would prevent damaging 49 

fires.  50 

 51 

Key-words: campos rupestres, climate changes, fire management, fire-prone ecosystems, 52 

resilience, thermal niche, tropical savanna.  53 

54 



79 
 

Introduction 55 

 56 

Despite community ecology has made great progress in understanding the assembly 57 

rules of multispecies interaction systems (Bascompte & Jordano 2014), to what extent 58 

environmental variability in space and time affects those systems still is an open question 59 

(Sutherland et al. 2013). Since interspecific interactions have a profound influence on 60 

biodiversity and ecosystem functions (Chapin et al. 2000), we need to be able to predict their 61 

temporal dynamic as a function of the major drivers that operate in a changing world. Severe 62 

climatic conditions and disturbances (e.g., fire) stand out among the environmental filters that 63 

might control species occurrence and interactions (Gibb et al. 2015; Leal & Peixoto 2016), 64 

particularly in flammable and seasonally-dry ecosystems (Fernandes 2016). 65 

The dynamic of communities in flammable ecosystems might be dependent on fire 66 

disturbance (Gibb et al. 2015), as it plays a crucial role in determining system structure and 67 

functioning (Bond & Keeley 2005). Usually, the biotas in these environments are highly 68 

resilient to fire as a result of their association over evolutionary time (Whelan 1995). Indeed, 69 

recent evidence have shown that ant community from tropical and temperate flammable 70 

environments, such as deserts, grasslands, and savannas are resilient to fire (reviwed by 71 

Vasconcelos, Maravalhas & Cornelissen 2016). Likewise, their flora has a good capacity of 72 

regeneration in post-fire environment (Maurin et al. 2014), where some species even re-sprout 73 

and bloom in response to burning (Figueira et al. 2016). Alternatively, fire promotes negative 74 

impacts on communities by simplifying vegetation structure (Kimuyu et al. 2014), decreasing 75 

the availability of nesting sites for ants, and causing direct mortality of colonies, features that 76 

together negatively impact ant-plant interactions (Fagundes et al. 2015).  77 

 78 
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Ant-plant interactions are a good model to study those effects, as ants interact with a 79 

large diversity of plants mediating many ecosystem functions (Costa et al. 2016). Besides, it 80 

is known that humidity positively affects ant activity (Kaspari 1993), as well as ant diversity 81 

is positively related to rainfall (Gibb et al. 2015) and temperature (Dunn, Parker & Sanders 82 

2007). In fact, temperature is taken to be the main abiotic predictor of insect distribution and 83 

abundance (Damos & Savopoulou-Soultani 2012), specially thermally constrained groups that 84 

display specific thermic responses, such as ants (Diamond et al. 2012; Arnan et al. 2015). On 85 

vegetation, the proximal climate effect is on plant phenology that mediates food availability 86 

for ants (Belchior, Sendoya & Del-Claro 2016). Thus, it is expected that the temporal 87 

dynamic of ant-plant interactions is very likely regulated by climate.  88 

Brazilian rupestrian grasslands (locally known as campos rupestres) are old-growth 89 

tropical vegetation that occurs in mountaintops of Espinhaço Range in Brazil (Silveira et al. 90 

2016). This ecosystem is characterized by a grassy-shrubby and fire-prone vegetation that has 91 

been shaped by edapho-climatic filters and frequent fires that regulate plant growth and 92 

distribution (Figueira et al. 2016). Its complex topography, associated with considerable 93 

geographical isolation and antiquity, resulted in a variety of strong abiotic filters (e.g. 94 

radiation incidence and microclimate conditions) that vary enormously promoting the high 95 

biodiversity and plant endemism (Silveira et al. 2016). Besides the environmental harshness, 96 

grassy ecosystems are under severe anthropogenic threats, such as frequent fires (Veldman et 97 

al. 2015), which can act synergistically with climate, causing unpredictable impacts on 98 

biodiversity (Gibb et al. 2015) and vegetation structure (Lehmann et al. 2014).  99 

Despite the considerable literature on the effects of climate and fire on plant (e.g., 100 

Veldman et al. 2015) and animal (e.g., Gibb et al. 2015) communities in fire-prone 101 

ecosystems, little is known about how these filters influence ecological interactions. Few 102 

studies in literature evaluated the effect of abiotic conditions (Rico-Gray et al. 2012; Leal & 103 
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Peixoto 2016) and fire (Parr et al. 2007; Paolucci et al. 2016) on ant-plant interactions. 104 

Moreover, no study to date has addressed to what extent both environmental drivers may 105 

affect ant-plant interaction dynamic. Here, we tested whether the temporal dynamic of these 106 

interactions in Brazilian rupestrian grasslands is determined by climate, and whether a single 107 

fire event may alter this dynamic. This study was conducted in a fire-prone ecosystem 108 

featured by strong seasonality and recurrent events of human made fires (Fernandes 2016). 109 

We have four expectations: first, we expect to find higher interaction diversity and interaction 110 

frequency when temperature, rainfall, and humidity are higher, as those are assumed to be 111 

better conditions for ant activity (Gibb et al. 2015) and resource availability (Chollet et al. 112 

2014); second, we expect a low overlap in ant species thermal responses, since ants thermic 113 

physiological constraints are species-specific (Arnan & Blüthgen 2015), and most tropical-114 

seasonal communities display narrow thermal tolerances (Kaspari et al. 2015); third, we 115 

predict that fire effects on interaction diversity and frequency to be negative, but temporary, 116 

as plant and ant communities are supposed to be resilient to fire (Andersen et al. 2014; 117 

Figueira et al. 2016); and finally, we predict that fire will lead to transitory changes in the 118 

composition of interacting species, as this disturbance is supposed to affect the structure of 119 

ant and plant communities (Hoffmann 1999; Maravalhas & Vasconcelos 2014).   120 

 121 

Materials and Methods  122 

 123 

STUDY AREA 124 

The study was carried out in seven sites at Morro da Pedreira Protection Area, a buffer 125 

zone of Serra do Cipó National Park, in the southern region of the Espinhaço Mountain 126 

Range, southeastern Brazil (19º17’49” S, 43º35”28” W). At higher altitudes (upper to 900 m 127 

asl.) the region is featured by rupestrian grasslands, a rocky montane savanna composed by 128 
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species-rich vegetation, high levels of plant endemism, large number of threatened plant 129 

species (Silveira et al. 2016), and high ant richness (Costa et al. 2015). Fire events in this 130 

region are mainly anthropogenic and superficial, which in most cases consume fine fuels of 131 

herbaceous layer (Figueira et al. 2016). The climatic regime is characterized as tropical 132 

altitudinal (Cwb) according to Köppen’s classification (Alvares et al. 2013), comprising 133 

markedly dry and cold winters and hot and wet summers, with mean temperature around 22º 134 

C  and mean annual rainfall of 1,500 mm (Fernandes 2016).  135 

 136 

SAMPLING DESIGN 137 

We selected seven sites similar to one another in terms altitude (from 1100 to 1200 m 138 

a.s.l.), climatic conditions, and vegetation structure, but distant by at least 1.44 km from one 139 

another. At each site, we delimited one transect 200 m in length and 1 m in width, which was 140 

divided into 20 plots (10 x 1 m). Five plots in each site were drawn, in a way that they were at 141 

least 30 m away apart from one another, totaling 35 plots. In each plot, we recorded ant-plant 142 

interactions on all herbs, rosettes, subshrubs, shrubs and trees that were fully accessible to us, 143 

those with 50 - 200 cm in height. We monitored the marked plants quarterly, at the peak and 144 

at the end of the rainy and dry seasons (respectively, January, May, July and October), from 145 

January 2014 to October 2015, plus one sampling during the peak for rainy season (February) 146 

of 2016, totaling nine sampling periods.  147 

 148 

CLIMATIC VARIABLES 149 

Close to each site there is a weather station (equipped with data logger Onset HOBO® 150 

U30) which records several climatic variables every five minutes. Here, we choose three 151 

variables that very likely affect ant activity and diversity (Kaspari & Valone 2002; Kaspari et 152 
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al. 2015): air temperature (ºC), air humidity (%) and rainfall (mm). Temperature and humidity 153 

values correspond to the mean values for the precise moment in which each plot was 154 

monitored, while rainfall values correspond to the accumulated rain of the sampling month.  155 

 156 

FIRE DISTURBANCE 157 

 For at least five years, these study sites have not been burned by frequent fires that 158 

take place in the region of Morro da Pedreira Environmental Protection Area. Approximately 159 

after one year of monitoring (in September 2014) an extensive unmanaged fire started in this 160 

region and persisted all over two months, affecting a wide geographical area (~ 7.300 ha) 161 

(ICMBio 2014). At the end of the burning events, 26 of the 35 plots have burned and 9 plots 162 

remained unburned. For most of plots we could conclude one year of sampling before the fire 163 

has started (see at Table S1). Thus, we continued the monitoring for one more year after fire 164 

in order to assess whether fire would affect the temporal dynamic of interactions. 165 

 166 

ASSESSING ANT-PLANT INTERACTIONS 167 

We observed each plant for approximately 3 min between 08:00–12:00 and 14:00-168 

17:00, avoiding samples during rainy periods. To get a better representativity of ant activity 169 

on plants, we recorded every type association taking place in each host plant: ants feeding 170 

upon extrafloral nectary, floral nectar or pollen, glands and fruit secretions, and honeydew 171 

droplets from trophobiont hemipterans. When we observed an ant on an individual plant that 172 

did not provide any food source, or when an ant left a plant without making contact with 173 

resources of any type, we defined the interaction as a “visit” (see (Costa et al. 2016 in press 174 
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for more details). We also recorded the number of worker ants in each plant to estimate the 175 

recruitment rate of each species.  176 

We collected vouchers of plants and insects for taxonomic identification. To identify 177 

ants we used the key by Baccaro et al. (2015) and also consulted a specialist from Federal 178 

University of Paraná (UFPR). We deposited ant vouchers in the entomological collection 179 

Padre Jesus Santiago Moure at UFPR. We identified plants with the support of many 180 

botanists from Federal University of Minas Gerais (UFMG) and deposited vouchers in the 181 

herbarium of the Botanical Department (UFMG).  182 

 183 

DATA ANALYSIS 184 

Climatic effects - To test whether the temporal dynamic of ant-plant interactions is affected by 185 

climatic conditions we built generalized linear mixed effects models (GLMMs, lmer function 186 

for data with normal distribution and glmer for non-normal ones, with lme4 package in R) 187 

with fixed and random effects which account for data temporal autocorrelation  (Crawley 188 

2013). Sampling plots within sites were grouped as random effects following a structure 189 

where the intercept vary among sites and plots are nested within it (1|sites/plots) (Bates et al. 190 

2014). As fixed effects we used all climatic variables, as they were not correlated (see Table 191 

S2): dependent variable ~ mean temperature + mean humidity + accumulated rainfall. Since 192 

those variables have distinct units and ranges they were scaled in order to standardize for 193 

those differences. 194 

As dependent variables, we used total interaction frequency per plot and Shannon 195 

interaction diversity per plot (H2 - Bersier et al. 2002; Blüthgen et al. 2008). Interaction 196 

frequency represents a quantitative component that is computed when the same pair of species 197 

is observed interacting in distinct plants. Thus, we included all observations from all 198 

interactions types that occurred between ants and plants within each plot. From those, we built 199 
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weighted matrices with plant species as rows and ant species as columns, and filled cells with 200 

the number of events observed between one plant species i and one ant species j. Each matrix 201 

was standardized and used to compute the frequency and diversity of interactions. In total, we 202 

had 315 matrices/networks that correspond to each plot (n=5 per site), within each site (n=7 203 

sites), for each sampling period (n=9 for each plot).  204 

To test whether ant fauna thermal responses are predicted by temperature variation 205 

during seasons, we performed a thermal niche model that is based on abundance-weighted 206 

temperature conditions of each species activity (see Kühsel & Blüthgen 2015). This weighted 207 

approach considers the relative temperature preferences (rates) as well as the reliability 208 

(number of observations per temperature) to characterize a species’ niche. Thus, we used the 209 

temperature during the period in which each plot was monitored and defined the abundance-210 

weighted mean temperature for each ant species across all sites as its thermal optimum. As a 211 

proxy for a species niche breadth, we calculated the abundance-weighted standard deviation 212 

of mean temperature. To test if patterns along the temperature gradient could have been 213 

produced by a random occurrence we looped a null distribution of expected thermal niche for 214 

each species, in which a species can occur on every plot with the same likelihood and 215 

describes the most probable condition (plot temperature) for that species. We performed 1000 216 

randomizations to calculate how often the expected thermal niche is higher or smaller than 217 

observed temperature for each species ( = 5%) (Kühsel & Blüthgen 2015; Chisté et al. 218 

2016). 219 

 220 

Fire effects - To evaluate to what extent fire affects the temporal dynamic of interactions and 221 

remains in the community, we fitted mixed models where fire (two levels variable with 222 

burned and unburned plots) and the interaction with sampling period (nine levels variable 223 

corresponding to sampling periods) were fixed effects: dependent variable ~ fire x sampling 224 
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period. Sites and plots were grouped as random effects following a structure were the 225 

intercept vary among sites and the plots are nested within sites (1|sites/plots) (Bates et al. 226 

2014). We built one model for interaction frequency and one for interaction diversity (H2).  227 

To test if fire leads to transitory changes in plant and ant community composition, we 228 

performed a permutational multivariate analysis of variance using Bray-Curtis dissimilarity 229 

index as distance matrix (PERMANOVA, Anderson 2001) and vegan package for R 230 

(Oksanen et al. 2016). For each sampling period, we used weighted and standardized matrices 231 

based on interaction frequency made by each species and tested whether burned and unburned 232 

plots differ in species composition. Burned plots were defined as “pre-burning” in periods 233 

before fire, in order to control its effects before disturbance. 234 

The residuals of all GLMMs models were evaluated, as well as the suitability of error 235 

distribution chosen. The complete models were simplified until minimum suitable models by 236 

backward selection based on P-value. All statistical analyses were performed in R (R 237 

Development Team 2015).  238 

 239 

Results 240 

 241 

We monitored a total of 1,113 individual plants of 106 species. Among these, 873 242 

plants of 98 species of 32 families provided food or were used as foraging substrate by 3859 243 

ants of 43 species, 16 genera, and 6 subfamilies. Those 141 species made up a total of 1,905 244 

interaction events in two years of sampling. Ants foraged on plants to consume nectar from 245 

extrafloral nectaries (23% of the records), nectar or pollen from flowers (7%), honeydew from 246 

trophobiont hemipterans (6%), and pulp or secretions from fruits (2%). The most 247 

representative plant families that provided ants with resources were Malpighiaceae (e.g., 248 

EFNs in Tetrapterys microphylla with 7% of all records), Fabaceae (e.g., EFNs in 249 
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Chamaecrista papillata with 6%), Velloziaceae (e.g., shelter in Barbacenia flava with 6% and 250 

Vellozia nivea with 5%), Myrsinaceae (e.g., EFNs in Myrsine monticola with 5%), and 251 

Asteraceae (e.g., secretory structures in Symphyopappus reticulatus with 5%). The most 252 

common ant subfamily that foraged on plants was Formicinae (50% of records) and 253 

Myrmicinae (39%), and the most common species were Cephalotes pusillus (35% of 254 

interaction events), Camponotus crassus (12%), Camponotus rufipes (10%), Brachymyrmex 255 

cordemoyi (9%), and Camponotus trapeziceps (6%). C. pusillus, C. rufipes, and C. crassus 256 

were the only species that occurred in all sampling periods, and had the highest interaction 257 

frequencies in all networks.   258 

 259 

RESPONSE OF ANT-PLANT INTERACTIONS TO CLIMATE  260 

There was marked seasonality in all climate variables studied (Fig. 1). Interaction 261 

diversity increased with temperature (22 ± 3.55 ºC, mean ± SD) and humidity (67 ± 12.6 %), 262 

and interactions frequency increased with temperature and rainfall (40 ± 30.33 mm) (Fig. 2, 263 

Table S3). All over the seasons, ant species thermal optima ranged from 14ºC (Nesomyrmex 264 

sp1) to 28ºC (Cephalotes eduarduli), and species thermal breadth varied from 0,10ºC (e.g. 265 

Cephalotes eduarduli) to 13,0ºC degrees of extend (Linepithema sp1). This thermic response 266 

to seasonality mostly corresponds to the mean thermal optimum and mean thermal breadth of 267 

the whole community (i.e., 22ºC ± 2,27ºC; mean ± SD) (Fig. 3). Only a few species had their 268 

optimal thermal response and niche breadth significantly out of this range, being able to 269 

forage at colder or warmer temperatures (Fig 3).  270 

  271 
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Figure 1. Monthly values of rainfall, temperature and humidity in Brazilian rupestrian 272 

grasslands monitored for two years.  273 

 274 

  275 
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Figure 2. Relationship between climate and ant-plant interactions monitored for two years in 276 

Brazilian rupestrian grasslands. Values in x-axis are minimum, medium and maximum values 277 

of climatic variables. Points in temperature and humidity illustrations are mean values for 278 

each site in each sampling period. Points in rainfall illustration are mean values for each 279 

sampling period, considering all sites together. Vertical and horizontal gray lines are the 280 

standard errors of dependent and predictor variables, correspondingly. Curves were fitted with 281 

parameters from GLMM models. 282 
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Figure 3. Thermal characterization of ant community showing the mean temperature of plots 283 

where each species occurred (weighted by abundance) with weighted standard deviations 284 

(corresponding to niche breadth). Stars mean that ant species occurrence is significantly 285 

different from the expected by null model. Species in the right side of the red line are more 286 

heat tolerant, while species in the left side prefer cooler conditions. Numbers inside 287 

parenthesis represent species occurrence in different plots. Complete ant species name are on 288 

Table S4. 289 

 

 

290 
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FIRE EFFECTS ON THE TEMPORAL DYNAMIC OF INTERACTIONS 291 

Fire effects on the temporal dynamic of ant-plant interactions were evident only one 292 

month after the fire event (Oct 2014), period in which burned plots had less diversity and 293 

frequency of interactions than unburned plots (Table S5, Fig. 4). Likewise, fire affected ant 294 

species composition until four months after burning (Jan 2015), while in plant composition it 295 

persisted up to 10 months (July 2015) (Table 1). Thus, fire overall effects on species and their 296 

interactions were transient, since differences were no longer observed between burned and 297 

unburned plots after 10 months post-fire.  298 

299 
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Figure 4. Fire effects on the temporal dynamic of interaction diversity (A) and interaction 300 

frequency (B), both represented by mean (points) and standard deviation (vertical bars) 301 

measured for the plots in each sampling period. Stars indicate periods when burned and 302 

unburned plots differed from one another.  303 

 

304 
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Table 1. Fire effects on the composition of interacting ant and plant species. Stars represent 305 

periods in which we observed significant differences in species composition between burned 306 

and unburned plots (Bray-Curtis index – PERMANOVA, n=999).  307 

Sampling period F-value ants P-value ants F-value plants P-value plants 

Jan14 2,46 0,080 1,72 0,090 

May14 2,46 0,070 1,14 0,274 

Jul14 1,54 0,167 1,35 0,132 

Oct14 2,32 0,022* 1,73 0,021* 

Jan15 1,94 0,023* 2,14 0,001* 

May15 1,47 0,190 2,10 0,004* 

Jul15 1,41 0,200 1,88 0,007* 

Oct15 2,07 0,062 1,19 0,196 

Feb16 1,44 0,200 1,62 0,060 

 308 

  309 
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Discussion 310 

 311 

We found that the temporal activity of ant-plant interactions is highly seasonal and 312 

positively influenced by temperature, humidity and rainfall. Temperature was the most 313 

important abiotic predictor of temporal changes in interactions and species activities, although 314 

ant community exhibited high overlap in thermal niche response and no clear pattern of 315 

species constraint according to seasonal temperature variation. We also observed that fire 316 

overall effects on interactions were negative, but very transitory, suggesting the resilience of 317 

interactions under fire impacts. Indeed, the dynamic of interactions and species occurrence 318 

were affected by fire, whose effects remained less than a year on the community. These 319 

results pinpoint how climate and fire disturbance affects the temporal dynamic of ecological 320 

interactions in Brazilian rupestrian grasslands. Below, we first discuss which biological 321 

mechanisms are involved in interaction responses to these environmental filters. Then, we 322 

move forward drawing a parallel with other savanna-like environments and raise future 323 

perspectives for studies. 324 

We observed that weather conditions varied seasonally and positively affected 325 

interactions diversity and frequency, whose activity peaks matched periods of higher 326 

temperature, humidity, and rainfall (i.e., rainy seasons). It seems that at local scale, climate 327 

conditions positively influence ant activity (Kaspari & Valone 2002) and ant-plant interactions 328 

(Belchior et al. 2016), while at global scales its effects are contrasting, ranging from positive 329 

(e.g., Dunn et al. 2009) to negative (e.g., Pringle et al. 2013; Leal & Peixoto 2016). In fact, 330 

local-scale studies carried out in cerrado observed that ants feeding upon EFNs (Belchior et 331 

al. 2016) and the structure of ant-EFN networks (Lange et al. 2013) are mainly determined by 332 

nectar availability, which is related to seasonality. Likewise, we found that ant recruitment is 333 

highly correlated to the abundance of plants providing resources (see Table S6) that varied 334 

temporally according to climatic conditions (see Table S7). Moreover, ants interactions with 335 
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EFNs, which are the main plant-derived source in rupestrian grasslands (Costa et al. 2016), 336 

were higher at the onset and peak of rainy seasons, when plants are flushing new leaves and 337 

nectar availability is greater (Alves-Silva & Del-Claro 2014). These results point that resource 338 

availability and ants foraging on them are the main mechanisms that trigger climate effects on 339 

interactions dynamic.  340 

Positive effects of temperature on ecosystem productivity (Kaspari, Ward & Yuan 341 

2004), ant species distribution (Sanders et al. 2007), and ant biodiversity (Kaspari et al. 2004) 342 

are well known. Despite its positive influence on interactions, ant community exhibited low 343 

thermal complementarity, which is characterized by high overlap of species-specific thermal 344 

responses. Ants in seasonal environments are supposed to have high complementarity and low 345 

overlap in thermal responses, because temperature variability provides available thermal 346 

niches for species with different thermal optima (Arnan et al. 2015). Our results though, 347 

indicate that temperature range across seasons is not constraining species occurrence. In fact, 348 

ant recruitment on plants seems to be the main mechanism that prompts the positive 349 

relationship between climate and interactions (Table S8), indicating that temperature is 350 

triggering ant foraging activity, rather than constraining species occurrence. Communities 351 

with low thermal complementarities are likely to be more sensitive to climatic variability 352 

(Arnan et al. 2015). Also, mountainous ecosystems are more subjected to suffer shifts in their 353 

temperature ranges in response to climate changes (IPCC 2013). Thus, we might expect that 354 

future climatic changes in rupestrian grasslands will lead to shifts in species activity and 355 

community structure.  356 

Fire did promote negative and temporary impacts on species and their interactions, in 357 

line with our predictions. Interaction diversity and frequency were lower in burned plots, but 358 

they quickly recovered after four months after fire. The earliest fire impacts in fire-prone 359 

ecosystems may include the simplification of vegetation structure (Maravalhas & Vasconcelos 360 
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2014) and limitation of cavities to be used as nest (Fagundes et al. 2015). However, many 361 

plant species in rupestrian grasslands are adapted and even resistant to fire, as vegetation 362 

structure promptly recover after burning (Figueira et al. 2016; Le Stradic et al. 2016). 363 

Actually, we verified that the abundance of plants providing resource for ants is very 364 

associated with interaction activity (Table S6), and that fire did affect plant abundance in a 365 

similar temporal pattern as it did with ant-plant interactions (Table S7). Thus, it seems that 366 

fire is likely affecting resource availability that consequently prompts to changes in 367 

interactions dynamic.  368 

Changes in species composition persisted up to four months after fire in ant 369 

community and up to 10 months in plant community (Fig. 5). Short-term responses to fire are 370 

well documented for ground-dwelling ant composition in rupestrian grasslands (Anjos, 371 

Campos & Ribeiro 2015; Neves et al. 2016), cerrado (Maravalhas & Vasconcelos 2014), 372 

African (Parr et al. 2004), and Australian (Andersen, Hertog & Woinarski 2006) savannas. 373 

The most remarkable direct and transient effect of a single fire event on ants is the increasing 374 

of colony mortality, mainly for species that nest in twigs and small branches (Kimuyu et al. 375 

2014). Actually, rupestrian grasslands vegetation is mostly composed by herbs and small 376 

shrubs (Giulietti & Pirani 1997) that may not support shelter structure for most species. Thus, 377 

it appears that most ants nest on natural cavities in the ground and cavities of fire-adapted 378 

plants (e.g. Vellozia genus) that act offering protection against superficial burning. Changes in 379 

plant community are also expected since species vary in their tolerance to fire (Bond & Parr 380 

2010). Indeed, compositional and demographic responses of flora may vary extremely from 381 

few days to more than three years, depending on plant life-form and adaptive strategies 382 

(Figueira et al. 2016). These findings, associated with the evident evolutionary history of fire 383 

and savanna-like environments (Bond & Keeley 2005), support the view that ant-plant 384 
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interactions in grassy environments are very likely resilient to fire, as do ants (Parr et al. 385 

2004) and plants (Figueira et al. 2016).  386 

To our knowledge, this is the first comprehensive study that shows how climate drives 387 

the temporal dynamic of ant-plant interactions and to what extend an unmanaged fire event 388 

alters this dynamic. In summary, our results point out that weather conditions, especially 389 

temperature, predict the temporal variation of interactions mainly due to changes in resource 390 

availability and ant activity. Fire has led to short-term, though negative impacts on 391 

interactions and communities structure, which exhibited a good resilience to it. Long-term 392 

experimental studies including assisted burnings are needed to forecast fire impacts and how 393 

its synergy with weather conditions would affect biodiversity as a whole. However, studies on 394 

long-term effects of fire on rupestrian grasslands community’s dynamic is challenging (see Le 395 

Stradic et al. 2016). In this environment, the highly- heterogeneous landscape associated with 396 

fire patchiness in space and time clearly difficult to disentangle burning effects from other 397 

abiotic drivers as climate. Many studies have shown the role of prescribed fire as a 398 

fundamental management component that maintain long-term community structure and 399 

biodiversity in Brazilian, African and Australian savannas (e.g., Andersen et al. 2014; Levick, 400 

Baldeck & Asner 2015; Durigan & Ratter 2016). For rupestrian grasslands, though, additional 401 

effort are needed to assess which fire regimes are suitable to maintain biodiversity and 402 

ecosystem functioning, as well which management policies prevent fire damaging effects (but 403 

see some considerations in Figueira et al. 2016). 404 

  405 
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Supporting Information 616 

 617 

Table S1. Description of the seven rupestrian grasslands sites monitored over two years in 618 

southern Brazil (nearest d = nearest distance to the next site; # Sampling = number of 619 

samplings carried out before fire has started).  620 

Sites 
Geographical 

coordinates 

Mean 

altitude (m) 

Nearest  d 

(km) 
# Burned 

plots/total 
Fire date 

# Sampling 

Cedro 
S19°13'51.5" 

W43°34'35.9" 
1119 1,44 

5/5 October 2014 
4 

Midway 
S19°16'13.4" 

W43°32'59.7" 
1212 2,71 

5/5 October 2014 
4 

Pedra do 

Elefante 

S19°17'33.9" 

W43°33'29.9" 
1232 2,67 

5/5 October 2014 
4 

Paulino 
S19°15'30.8" 

W43°34'51.2" 
1108 1,58 

5/5 October 2014 
4 

Q16 
S19°17'27.3" 

W43°35'40.8" 
1212 2,48 

1/5 October 2014 
4 

Soizig 
S19°16'20.7" 

W43°34'55.8" 
1095 1,58 

5/5 September 2014 
3 

Tinkerbell 
S19°13'11.3" 

W43°35'01.3" 
1177 1,44 

0/5 October 2014 
4 

 

 621 

Table S2. Climatic variables have low and significant correlation. 622 

Person’s correlation Effect size (r) p-value 

Temperature x Humidity -0,574 < 0,001 

Temperature x Rainfall 0,124 0,027 

Humidity x Rainfall 0,273 < 0,001 

 623 

Table S3. Suitable minimum models (GLMMs) results showing the effects of climatic 

variables on ant-plant interactions. Error distribution fitted for each model is inside 

parentheses.  

Dependent variable Coefficients of fixed effects 
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Interaction diversity 

(Gaussian) 
Parameters Estimate Std. Error t-value p. z 

 Intercept 1,273 0,089 14,280 0,001 

 Temperature 0,186 0,041 4,522 < 0,001 

 Humidity 0,091 0,041 2,216 0,026 

Interaction frequency 

(Negative binomial) 
Parameters Estimate Std. Error z-value Pr (>|z|) 

 Intercept 1,596 0,107 14,85 < 0,001 

 Temperature 0,157 0,039 4,009 < 0,001 

 Rainfall 0,090 0,035 2,540 0,011 

624 



106 
 

Table S4. Ant species code and complete scientific name.  625 

Species code Scientific name 

Attlae Atta laevigata 

Bracor Brachymyrmex pr. cordemoyi 

Brapic Brachymyrmex pictus 

Brasp1 Brachymyrmex sp1 

Cambla Camponotus blandus 

Camcra Camponotus crassus 

Camley Camponotus pr. leydigi 

Cammel Camponotus melanoticus 

Camruf Camponotus rufipes 

Camtra Camponotus trapeziceps 

Camvit Camponotus vitatus 

Camwes Camponotus westermanni 

Cepedu Cephalotes eduarduli 

Ceppus Cephalotes pusillus 

Crecri Crematogaster crinosa 

Creere Crematogaster pr. erecta 

Dorgoe Dorymyrmex goeldii 

Dorsp1 Dorymyrmex sp1 

Dorsp2 Dorymyrmex sp2 

Ectede Ectatomma edentatum 

Ecttub Ectatomma tuberculatum 

Labpra Labidus praedator 

Linmic Linepithema micans 

Linsp1 Linepihtema sp1 

Linsp2 Linepithema sp2 

Mycgoe Mycocepurus goeldii 

Nessp1 Nesomyrmex sp1 

Nesspi Nesomyrmex spinoidis 

Phefla Pheidole (Flavens) sp1 

Pheger Pheidole gertrude 

Pheoxy Pheidole oxyops 

Phesp1 Pheidole sp1 

Phesp2 Pheidole sp2 

Phesp3 Pheidole sp3 

Phesus Pheidole susannae 

Phetri Pheidole triconstricta 

Prostr Procryptocerus striatus 

Psegra Pseudomyrmex gracilis 

Psepal Pseudomyrmex pallidus 

Pseter Pseudomyrmex termitarius 

Solsp1 Solenopsis sp1 
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Wasaur Wasmannia auropunctata 

 626 

Table S5. Suitable minimum models (GLMMs) used to test whether fire affects the temporal 627 

dynamic of ant-plant interactions. Error distribution fitted for each model is inside 628 

parentheses.  629 

Dependent variable Coefficients of fixed effects 

Interaction diversity 

(Gaussian) 
Parameters Estimate Std. Error t. value p. z 

 Intercept 1.623 0.258 6.285 < 0.0018 

 Fire -0.081 0.227 -0.357 0.721 

 May 2014 -0.265 0.128 -2.069 0.0385 

 Jul 2014 -0.666 0.128 -5.190 < 0.001 

 Oct 2014 -1.377 0.344 -4.002 < 0.001 

 Jan 2015 -0.041 0.259 -0.158 0.874 

 May 2015 -0.289 0.259 -1.115 0.265 

 Jul 2015 -0.545 0.259 -2.106 0.035 

 Oct 2015 -0.467 0.259 -1.803 0.0713 

 Feb 2016 -0.135 0.212 -0.637 0.523 

 Fire x Oct 2014 1.185 0.348 3.407 < 0.001 

 Fire x Jan 2015 0.159 0.293 0.541 0.588 

 Fire x May 2015 -0.068 0.293 -0.234 0. 815 

 Fire x Jul 2015 0.040 0.293 0.136 0.891 

 Fire x Oct 2015 0.045 0.293 0.155 0. 876 

Interaction frequency 

(Negative binomial) 
Parameters Estimate Std. Error z-value Pr(>|z|) 

 Intercept 1.962 0.264 7.419 < 0.001 

 Fire -0.051 0.228 -0.224 0.822 

 May 2014 -0.358 0.133 -2.684 0.007 

 Jul 2014 -0.759 0.143 -5.283 < 0.001 

 Oct 2014 -2.209 0.582 -3.792 0.0001 

 Jan 2015 -0.100 0.259 -0.388 0.697 

 May 2015 -0.290 0.260 -1.114 0.265 

 Jul 2015 -0.598 0.265 -2.255 0.0241 

 Oct 2015 -0.434 0.262 -1.655 0.098 

 Feb 2016 -0.137 0.210 -0.656 0.511 

 Fire x Oct 2014 1.917 0.586 3.268 0.001 

 Fire x Jan 2015 0.201 0.286 0.702 0.482 

 Fire x May 2015 -0.124 0.300 -0.416 0.677 

 Fire x Jul 2015 -0.140 0.315 -0.445 0.655 

 Fire x Oct 2015 -0.113 0.303 -0.376 0.707 

630 
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Table S6. Correlations involving ant recruitment, abundance of plants providing resources, 631 

interaction diversity, and interaction frequency.  632 

Spearman’s correlation Effect size (rho) p-value 

Ant recruitment x Plant abundance  0,84 < 0,001 

Ant recruitment x Interaction diversity 0,79 < 0,001 

Ant recruitment x Interaction frequency 0,85 < 0,001 

Plant abundance x Interaction diversity 0,92 < 0,001 

Plant abundance x Interaction frequency 0,98 < 0,001 

 633 

  634 
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Table S7. Suitable minimum models (GLMMs) showing that climatic conditions (upper part) 635 

and fire (lower part) affect the dynamic of plants providing resources for ants. Inside 636 

parentheses are error distributions fitted for each model.  637 

 638 

Explanatory variable Parameters Estimate Std. Error z-value Pr(>|z|) 

Plant abundance Intercept 1,626 0,098 16,578 < 0,001 

(Poisson) Temperature 0,200 0,030 6,589 < 0,001 

 Humidity 0,058 0,028 2,010 0,044 

 Rainfall 0,064 0,024 2,623 0,008 

Plant abundance Intercept 1,911 0,186 10,259 < 0,001 

(Poisson) Fire -0,013 0,152 -0,088 0,930 

 May 2014 -0,329 0,093 3,518 < 0,001 

 Jul 2014 -0,711 0,105 -6,748 < 0,001 

 Oct 2014 -1,701 0,438 -3,878 < 0,001 

 Jan 2015 -0,042 0,171 -0,249 0,803 

 May 2015 -0,197 0,174 -1,131 0,258 

 Jul 2015 -0,484 0,180 -2,688 0,007 

 Oct 2015 -0,277 0,175 -1,576 0,115 

 Feb 2016 -0,042 0,136 -0,315 0,752 

 Fire x Oct 2014 1,419 0,441 3,215 0,001 

 Fire x Jan 2015 0,150 0,184 0,816 0,414 

 Fire x May 2015 -0,150 0,202 -0,742 0,458 

 Fire x Jul 2015 -0,202 0,22359 -0,907 0,364 

 Fire x Oct 2015 -0,122 0,206 -0,595 0,551 

639 
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Table S8. Suitable minimum models (GLMMs) showing that ant recruitment is the main 640 

biological mechanism that mediates climatic influence on interaction frequency and diversity. 641 

When we include ant recruitment in the climatic models (i.e. = y ~ temperature + humidity + 642 

rainfall + ant recruitment) it takes most of explanation that previously were partitioned 643 

amongst climatic variables (see result without ant recruitment on Table S3). Inside 644 

parentheses is the error distribution fitted for each model.  645 

 646 

Explanatory variable Parameters Estimate Std, Error z-value Pr(>|z|) 

Interaction frequency Intercept 1,121 0,077 14,512 < 0,001 

(Negative binomial) Recruitment 0,036 0,002 12,695 < 0,001 

 Temperature 0,084 0,032 2,595 0,009 

Interaction diversity Intercept -0,144 0,075 -1,925 0,054 

(Gaussian) Recruitment 0,026 0,003 8,124 < 0,001 
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Considerações finais e perspectivas 

 

 Concluímos que os padrões estruturais das interações formiga-planta são, de certa 

forma, dependentes da escala de investigação, uma vez que diferentes estruturas emergem 

quando um ou vários tipos de interações são considerados, Diferentes recursos alimentares 

promoveram dissimilares níveis de especialização e sobreposição de nicho, que 

provavelmente são consequências das diferenças biológicas existentes nas estratégias de 

forrageamento das espécies de formigas envolvidas, Apesar dessas discrepâncias, todas as 

interações foram conectadas por um núcleo comum formado por poucas espécies de formigas 

generalista, A atuação dessas formigas centrais como “mutualistas-chave”, ou seja, realizando 

funções ecossistêmicas, como polinização, dispersão de sementes e mutualismos de proteção, 

é uma questão aberta que necessita de maiores investigações, 

 Também encontramos que as condições climáticas nos campos rupestres, 

especialmente a temperatura, influenciam positivamente a diversidade e frequência de 

interações formiga-planta, A dinâmica sazonal dessas interações é mediada pela 

disponibilidade de recursos vegetais e atividade de forrageamento das formigas que, da 

mesma forma, são dependentes pela sazonalidade climática, O fogo não manejado afetou essa 

dinâmica temporal de forma negativa, mas seus efeitos foram temporários indicando que as 

interações formiga-planta são resilientes ao fogo, Sugerimos que outros aspectos da interação 

clima vs, fogo tais como, frequência e intensidade dos incêndios (por exemplo, época da 

queimada), precisam ser mais explorados, a fim de se determinar os efeitos em longo prazo 

desses filtros ambientais na manutenção da biodiversidade dos campos rupestres,  

Portanto, essa tese traz duas principais contribuições: (1) amplia o conhecimento sobre 

a diversidade de interações formiga-planta nos campos rupestres e aponta os mecanismos 
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biológicos envolvidos na estruturação de interações mediadas por distintos recursos 

alimentares; e (2) mostra que a dinâmica temporal dessas interações é dependente da 

sazonalidade climática e que essas interações são resilientes ao efeito do fogo não manejado,  
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Abstract 

The rocky grasslands, environments locally known as campo rupestre, occur mainly along 

the Espinhaço Mountains and are considered local centers of biodiversity and endemism 

in Brazil. However, knowledge of ant species richness (Hymenoptera: Formicidae) in this 

kind of environment is still poor. Aiming at filling this gap, we compiled information from 

empirical studies and literature records. We found a total of 288 species of 53 genera and 

eight subfamilies recorded in rocky grasslands. Myrmicinae and Formicinae were the most 

representative subfamilies, with 53% and 18% of the total species richness, respectively. 

The genera with the largest number of species were Pheidole (41) and Camponotus (40). 

This large number of ant species recorded for the rocky grasslands surpasses those found 

in other studies conducted in several different places. Ant species richness decreased 

with altitude; most species occur below 800 m a.s.l. (171), and only a few species occur 

above1600 m a.s.l. (17). Some genera occur only at a specific altitude (e.g., Azteca and 

Dolichoderus at 800/900 m a.s.l.; Leptogenys and Labidus at 1400 m a.s.l.), which points 

out to the potential use of ants as biological indicators. Our results suggest that the rocky 

grasslands favor high ant diversity. The patterns of ant richness associated with the altitudinal 

gradient reinforce the idea of considering the rocky grasslands as priority areas for biological 

conservation. Moreover, we observed a lack of records on the occurrence of most ant species 

considered in the present study (93%), which shows that Brazilian myrmecologists need to 

invest more in taxonomy, management, and data sharing. 
 

 

 

Introduction 
 

The rocky grasslands, locally known as campo rupestre, 
are an ecosystem characterized by a montane, fire-prone 
vegetation mosaic, with rocky outcrops on quartzite, sandstone, 
or ironstone soils. They are inserted in a matrix of sandy and 
stony grasslands, and other vegetation types, such as Cerrado 
(Brazilian savanna), Atlantic Forest, and Caatinga (Giulietti & 
Pirani, 1997; Alves et al., 2014; Fernandes et al., 2014). Rocky 
grasslands occur mainly along the Espinhaço Mountains, a 
vast mountain range that has its southern limit in the state    
of Minas Gerais, southeastern Brazil, encompass important 
smaller ranges, such as Serra do Caraça and Serra do Cipó, 
and ends in Chapada Diamantina, state of Bahia, northeastern 
Brazil (Giulietti & Pirani, 1997). Rocky grasslands are also 
found in the mountains of central (e.g., Serra da Canastra) 
and southeastern Brazil (e.g., Serra da Mantiqueira), whose 
geology and flora resemble those of the Espinhaço Mountains 
(Giulietti & Pirani, 1997; Rapini et al.,    2008; Vasconcelos, 

2011). This complex geographic mosaic associated with a 
long evolutionary time turned this environment into a local 
biodiversity center, with high endemism (approximately one- 
third of its plant species are endemic) and several endangered 
species (Giulietti & Pirani 1997; Rapini et al., 2008). 

Tropical grasslands have been under severe threat and  
are consistently overlooked by conservation policies (Parr et al., 
2014). These ecosystems are subjected to several human pressures, 
such as mining, livestock raising, agriculture, road construction, 
tourism, and frequent fires (Barbosa et al., 2010; Fernandes et al., 
2014). In addition to their large number of endangered species and 
human threats, montane ecosystems are also subjected to global 
changes (IPCC, 2013). Climatic models predict a catastrophic 
future in which, by the end of this century, the rocky grasslands 
may lose up to 95% of their current area (Fernandes et  al., 
2014). In this scenario, the development of effective conservation 
strategies is crucial. Fauna and flora inventories are of fundamental 
importance, as describing the biodiversity of rocky grasslands is 
the first step towards their conservation (Pearson, 1994). 
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 Despite the information on the flora and fauna of rocky 
grasslands (Giulietti et al., 1987; Lessa et al., 2008; Rapini et al., 
2008; Rodrigues et al., 2011), sampling in those environments has 
been heterogeneous and large areas remain unexplored (Madeira 
et al., 2008). In addition, most of the literature on the biodiversity 
of rocky grasslands focus on plants and vertebrates (Silveira et al., 
unpublished data). Therefore other groups, such as invertebrates, 
remain unknown. Some of the challenges to invertebrate conservation 
are a scarce and underfunded basic research, and the overlooking 
of invertebrates in most conservation policies (Cardoso et al., 2011).

Conversely, invertebrates dominate most terrestrial 
environments and deliver several ecosystem services (Cardoso 
et al., 2011). Among invertebrates, ants (Hymenoptera: Formicidae) 
represent one of the most important and abundant terrestrial 
groups (Hölldobler & Wilson, 1990). Well known for their 
functional roles, ants have been used as bioindicators due to their 
sensitivity to environmental and climate changes (Lach et al., 2010). 
Previous studies reported changes in ant diversity along altitudinal 
gradients (Fisher, 1996; Bharti & Sharma, 2013; Bishop et al., 2014). 
Altitudinal gradients are excellent to model species distribution, due 
to differences in abiotic conditions. However, as most literature 
records came from temperate mountains, the lack of information on 
tropical mountains makes it difficult to elaborate conservation plans.

 What we know about ants from rocky grasslands comes 
from case studies on ant species associated with a particular plant 
or area (e.g., Guerra et al., 2011; Viana-Silva & Jacobi, 2012; 
Fagundes et al., 2013). However, a complete record that comprises 
the whole diversity and distribution of ants is still missing. In order 

to fill this gap of knowledge and support invertebrate conservation 
in the rocky grasslands, we need a more thorough biodiversity 
survey. In the present study, we compiled a checklist of ant species 
and their occurrence from original data and published information.

Material and Methods

Data sampling and database

We searched for studies carried out in areas of rocky 
grasslands that informed the geographic coordinates of their 
sampling sites and identified ants to the species. We compiled 
records from a total of eight datasets, most of which original and 
collected in Serra do Cipó (Lana, 2015). Seven other datasets were 
found through an online survey in the Web of Knowledge, other 
academic search engines such as Google Scholar, and Brazilian 
academic libraries. Among those sources is one unpublished 
dataset from Serra do Cipó (hereafter “Cipó”) (Soares, 2003) and 
six published datasets from Cipó (n = 1), Serra do Rola Moça 
State Park (hereafter “Rola Moça”) (n = 1), Itacolomi State Park 
(hereafter “Itacolomi”) (n = 3), and Ibitipoca State Park (hereafter 
“Ibitipoca”) (n = 1). All studied sites are located in the Espinhaço 
Mountains, except for Ibitipoca.

As we aimed at providing a broad inventory of the ant fauna, 
we used studies carried out with different sampling efforts and 
methods. Table 1 describes the samples collected from the literature, 
including information on sampling method, environment, and 
location. Details on species identification are given for each study.

Sampling sites Reference Sampling method Environment Altitudinal 
Range (m)

Geographic coordinates  
provided in the study

Serra do Cipó region Lana, 20151 pitfalls, Winkler,  
beating and sweep net

cerrado ecotones, 
rocky grasslands 800 – 1400

19°21’36.2’’ S, 43°36’25.2’’ W
19°16’17.8’’ S, 43°36’18.1’’ W
19°15’50.6’’ S, 43°35’10.3’’ W
19°13’56.5’’ S, 43°34’34.8’’ W
19°17’43.0’’ S, 43°33’17.4’’ W
19°17’49.6” S, 43°35’28.2” W
19°16’59.3’’ S, 43°32’08.9’’ W

Itacolomi State Park 
region Almeida et al., 2014*2 active capture Rocky grasslands,  

canga outcrops 1200 – 1500

20°22’30” S, 43°32’30” W
20°27’55.4” S, 43°35’59” W
20°21’47” S, 43°30’10” W
20º22’27” S, 43º32’22” W

Itacolomi State Park Fagundes et al., 2013*3 observations and active 
capture Rocky grasslands 1400 20°26’26’’ S, 43°30’52’’ W

Serra do Rola Moça 
State Park Viana-Silva & Jacobi, 2012*4 ground baits canga outcrops 1400 – 1500 20°03’35.19’’ S, 44°00’41.9’’ W

20°03’33.57’’S, 44°01’52.01’’ W

Itacolomi State Park Rosumek, 2009*5 baits, observations and 
active capture canga outcrops 1320 - 1400 20º26’18” S, 43º30’35” W

Serra do Cipó region Soares, 2003*6 baited pitfalls Rocky grasslands, 
Cerrado ecotone 800 - 1600 19º10’00’’ to 19º40’00’’ S,

43º30’00’’ to 43º 55’00’’ W

Serra do Cipó region Araújo & Fernandes, 2003*7 baits and active capture Rocky grasslands, 
Cerrado ecotone 800 – 1400 19º10’00’’  to 19º40’00’’ S,

43º30’00’’ to 43º55’00’’ W

Ibitipoca State Park Sales et al., 2014*8 active capture Rocky grasslands 1400 21º42’00’’ S, 43º53’00’’ W

*Studies found through an online survey; Superscript numbers provide reference for sources in the full list of species (Table 2).

Table 1. Sites where ants were sampled in the Brazilian rocky grasslands. 



FV Costa, R Mello, Lana TC, FS Neves – Ant fauna of rocky grasslands230

In the original dataset (Lana, 2015) ants were sampled 
in seven sites during the Long Term Ecological Research of 
the Rocky Grasslands of Serra do Cipó (PELD-CRSC, in the 
Portuguese acronym). Those seven sites were chosen along an 
altitudinal gradient in Cipó, from 800 to 1,400 m a.s.l. In each 
site, three transects of 200 m were set up and five sampling points 
were established at 50 m from each other. In 2011 and 2012, 
ants were sampled quarterly, mainly with pitfalls traps, but also 
with beating, sweep nets, and Winkler traps. Ants were identified 
using a taxonomic key (Fernández, 2003), by comparison with 
specimens deposited in the Laboratório de Mirmecologia do 
Centro de Pesquisas do Cacau (CEPEC/CEPLAC), and by 
consulting specialists (Jacques H. C. Delabie). Nomenclature 
followed Bolton et al. (2005), with posterior improvements made 
available on the Online Catalog of the Ants of the World (AntCat). 

We built a complete species checklist (Appendix) with 
information on several ant species organized by study, sampling 
locality, and altitude. As it was not possible to match the 
morphospecies hosted in different institutions and collections, we 
included in the analysis only one record for each morphospecies, 
regardless of its potential presence in more than one study, area, 
or altitude. Each morphospecies (e.g., Pheidole sp.1) probably 
represents more than one species, as the same nomenclature was 
established by different authors. However, excluding those records 
or trying to tell them apart could interfere with the estimation 
of the real diversity. Although we are aware of this taxonomic 
limitation, in face of the difficulty of assigning names to several 
Neotropical ant species (e.g., Camponotus and Pheidole) and the 
lack of current taxonomic revisions for many species-rich genera 
(e.g., Brachymyrmex, Cyphomyrmex, and Solenopsis) (Lach et al., 
2010), this is the most parsimonious option for a study that aimed 
at estimating ant species diversity on a broad scale.

Study sites

The Espinhaço Mountains are 50-100 km wide and 1,200 
km long, and encompass several mountains (up to approximately 
2,000 m a.s.l.) (Giulietti & Pirani, 1997). Rocky grasslands occur 
mostly from 900 to 2,033 m a.s.l. In the basal part of the range, at 
altitudes between 800-1,000 m a.s.l., we found ecotones between 
savanna and rocky grassland. Trees and shrubs are the most 
common life forms at lower altitudes, but their predominance 
decreases with altitude, as the soil profile also changes, and they 
gradually give way to outcrops and grasslands (Giulietti & Pirani, 
1997; Alves et al., 2014). Similarly, together with the altitudinal 
gradient there is also a climate gradient, in which the mountaintop 
is colder and moister than the base (Giulietti & Pirani, 1988).

Serra do Cipó is located in the southeastern part of the 
Espinhaço Mountains, state of Minas Gerais, southeastern Brazil 
(Fig 1). This region has a diversified mosaic of vegetations, which 
varies with soil type and altitude (from 800 to 1.600 m a.s.l.). This 
environment is covered by a low vegetation composed of shrubs 
and small trees and abundant grasses and sedges. There are also 
several watercourses, along which gallery evergreen forests grow 
(Giulietti et al., 1987).

Itacolomi State Park and Serra do Rola Moça State Park 
are characterized by rocky grasslands that grow on ironstone, 
locally known as canga. Both areas are located in the Iron 
Quadrangle of Minas Gerais, a 7,200 km2 region in the southern 
part of the Espinhaço Mountains (Fig 1). The Iron Quadrangle 
is geologically dominated by ironstone and represents one of the 
world’s main mineral provinces (Jacobi et al., 2011). Itacolomi 
comprises an altitudinal range varying from 700 to 1,772 m a.s.l. 
and a mosaic of rocky grasslands, canga, semi-deciduous montane 
forest, and associated vegetation types (Gastauer et al., 2012). Rola 

Fig 1. The location of rocky grasslands in Brazil (A). Rocky grasslands along the Espinhaço Mountains and other Brazilian mountain ranges (circum-
scribed) (B). Sampling sites in the southern part of the Espinhaço Mountains and the southern mountains of Minas Gerais (C). 
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Moça is located in an ecotone between the Cerrado and Atlantic 
Forest biomes, which comprises several vegetation types, such 
as Cerrado, semi-deciduous forest, riparian forest, and prominent 
rocky grasslands developing on canga on the mountaintops 
(1,200 –1,500 m a.s.l.) (Jacobi et al., 2008).

Ibitipoca State Park is a protected area located in Serra 
da Mantiqueira, southern Minas Gerais (Fig 1). This site 
is characterized by a vegetation type composed of grasses, 
herbs, and shrubs on outcrops of quartzite rocks associated 
with shallow soils and high sun incidence (Dias et al., 2002).

Results and Discussion

We recorded 288 ant species of 53 genera and eight 
subfamilies (Appendix). Myrmicinae was the most speciose 
subfamily, with 53% of the recorded species, followed by Formicinae 
(18%), Dolichoderinae (11%), Ponerinae (6%), and Ectatomminae 
(5%). The richest genus was Pheidole (41 species), followed by 
Camponotus (40), Crematogaster (22), Dorymyrmex (14), and 
Solenopsis (13). The largest number of ant species was found in 
Cipó (n = 265), followed by Itacolomi (48), Ibitipoca (20), and 
Rola Moça (14). Similarly, Cipó was the locality with the largest 
proportion of exclusive species (83%), which indicates that this 
site was the best sampled and the faunas of other sites are nested 
within it. The proportion of exclusive ant species in each site and 
ant species shared between at least two sites is shown in Fig 2.

Among the identified species, only Camponotus crassus 
(Mayr 1862) occurred in all sites. Only morphospecies of 
Pheidole exhibited similar distribution. Thus, Camponotus and 
Pheidole emerged as the most widespread genera currently 
recorded for rocky grasslands. The dominance of those genera 
is consistent with the patterns suggested for other Neotropical 
ants (Fernández & Sendoya, 2004) and similar ecosystems, 
such as open Cerrado (Ribas et al., 2003; Campos et al., 2011; 
Pacheco & Vasconcelos, 2012). Likewise, Myrmicinae and 
Formicinae were also the most prominent subfamilies in ant 
inventories conducted in different environments, such as Cerrado 

(Ribas et al., 2003; Campos et al., 2011), Amazon (Miranda et 
al., 2012), and Caatinga (Ulysséa & Brandão, 2013).

The large number of ant species recorded for rocky 
grasslands (288) deserves attention, as other studies carried out 
in wider geographical ranges found a smaller or similar number. 
For example, checklists made for the Caatinga (Ulysséa & 
Brandão, 2013) and Amazon (Miranda et al., 2012) found 
173 and 276 species, respectively. Although we did not find a 
comprehensive inventory for the Cerrado that could be used for 
comparison, studies carried out over large areas revealed about 
150 species (Ribas et al., 2003; Campos et al., 2011; Pacheco 
& Vasconcelos, 2012). Actually, it is hard to compare number 
of species among studies or environments, as different studies 
used different sampling efforts and methods.

Nevertheless, by analyzing the map in Fig 1, we infer that 
the rocky grasslands have several sampling gaps (e.g., Chapada 
Diamantina, Serra da Canastra, northern and southern Minas 
Gerais). Considering this gap of knowledge, high endemism, and 
complex environmental mosaic found on those mountains, we 
expect ant diversity in the rocky grasslands to be even higher than 
observed in the present study (288). Moreover, the large number 
of unidentified species together with the inclusion of only one 
record per morphospecies point out to an underestimation of the 
number of ant species in the rocky grasslands.

We observed a decrease in ant richness along the altitudinal 
range (Appendix). The lowest altitudes, 800 and 900 m a.s.l., 
contributed with 171 and 127 ant species, respectively, whereas 
the highest altitude (1,600 m a.s.l.) had a smaller number of species 
(17). Only Solenopis occurred at all altitudes. Those findings 
corroborate the general diversity pattern of ants that live on 
mountains, in which the number of species decreases with altitude 
(Fisher, 1996; Brühl et al., 1999; Longino & Colwell, 2011; Bharti 
& Sharma, 2013). Nonetheless, very few studies have documented 
the altitudinal trends of ant biodiversity in Brazilian montane 
ecosystems (but see Araújo & Fernandes, 2003).

At 800 m a.s.l., there were 18 exclusive species, whereas 
at 1,400, 1,500, and 1,600 m a.s.l. there were 21, five, and 
two, respectively. We found some genera of dominant arboreal 
ants (Azteca and Dolichoderus) restricted to the mountain base 
(800/900 m a.s.l.), which indicates that altitude may restrict ant 
occurrences. Similarly, at 1,400 m a.s.l., we recorded some unique 
genera, such as specialized predators (Leptogenys) and legionary 
ants (Labidus) (Brandão et al., 2012). Those findings corroborate 
the potential of ants as bioindicators, especially of climate change. 
Similar patterns of restriction of functional groups to particular 
altitudes have already been observed for tropical (Brühl et al., 
1999) and temperate regions (Bharti & Sharma, 2013). However, 
those findings may have been biased by the sampling effort used 
in each site. Ant responses to altitude, associated with the high 
richness found in a small geographic area, point to the importance 
of conserving the rocky grasslands. This conclusion is consistent 
with the strategies recommended for ant conservation, which 
state that efforts should be targeted to high biodiversity, high 
endemism, and extremely threatened areas (Alonso, 2010). 

Fig 2. Proportion of ant species exclusive to each site and shared between 
at least two sites. Sampling site abbreviations: Serra do Cipó (SC), Itaco-
lomi State Park (IT), Ibitipoca State Park (IB), and Serra do Rola Moça 
State Park (RM). Dark bars represent exclusive proportion and light bars 
correspond to the shared proportion of species. 
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We also bring to light the need for investing in ant 
taxonomy, database management, and data sharing, which are 
essential tools for biodiversity conservation, though they are 
neglected in most Brazilian research institutions. Those gaps of 
knowledge became clear when we searched for information on 
ant species occurrence and distribution (only those with complete 
taxonomic identification) in online databases (Antwiki, AntWeb, 
CRIA speciesLink) and specialized catalogues (Kempf, 1972; 
Brandão, 1991). We noticed that most ant records (94%) neither 
were followed by a formal record for the rocky grasslands nor 
were hosted in databases (Appendix, symbol*). Approximately 
5% of the records contained no information on geographic 
distribution and only 1% accounted this kind of information for 
the rocky grasslands. Therefore, myrmecology in Brazil needs to 
invest strongly in taxonomy and species inventories. Despite some 
recent advances, rocky grasslands still have many sampling gaps 
for ants, and, therefore, they need more efforts in conservation. 
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ANEXO II 
 

Chapter 13 

Mutualistic Interactions Among 
Free-Living Species in Rupestrian 
Grasslands 

 
Tadeu J. Guerra, Daniel W. Carstensen, 
Leonor Patricia Cerdeira Morellato, Fernando A.O. Silveira 
and Fernanda V. Costa 

 
Abstract Mutualisms such as animal pollination and seed dispersal, and protection 
of plants and insects by ants are ubiquitous in terrestrial ecosystems. Currently, 
mutualistic interactions among plants and animals are recognized for their para- 
mount importance in biodiversity maintenance, especially in tropical ecosystems. In 
this chapter, we review the literature and present unpublished data on the ecology of 
mutualistic interactions among free-living species in Brazilian megadiverse mon- 
tane Rupestrian Grasslands, the Campo Rupestre. We focus on interactions between 
plants and their pollinators and seed dispersers, and also interactions between ants, 
myrmecophilous plants and trophobiont insects. We provide basic information on 
mutualistic interactions, including data on natural history in addition to more 
advanced studies using network-based approaches. Only in the past decade mutu- 
alistic interactions have become intensively studied in Campo Rupestre, but 
information is still scattered and concentrated for a few localities. Pollination is an 
important process for reproduction of most plant species studied so far, with   bees 
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and hummingbirds acting as the main pollinators. Seemingly, animal pollination is
more important than seed dispersal for gene flow across plant populations. Most
vertebrate seed dispersal is carried out by non-specialized avian frugivorous, but
also by short-distance seed dispersers such as ants and lizards. Moreover, ants are
diversified and abundant group that seem to play a major role in these ecosystems,
acting as secondary seed dispersers, as nectar thieves, and as bodyguards of plants
and insects. We conclude this chapter by pointing out some gaps in our knowledge
and proposing avenues for future research.
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13.1 Introduction

Throughout the history of life, natural selection has repeatedly favored the evolu-
tion of traits that allow individuals to exploit the whole genomes of other species to
survive and reproduce (Thompson 2010). In fact, coevolved interactions comprise
the foundations of all species-rich ecosystems of the Earth and without such coe-
volved partnerships, highly diverse ecosystems would simply collapse (Thompson
2005). Organisms from all kingdoms are involved in mutually beneficial interac-
tions among species, or mutualisms, which may take different forms in nature and
vary from obligate to facultative (Bronstein 2009). The most well-known mutual-
istic interactions involving free-living species in terrestrial ecosystems are plant
pollination and seed dispersal by animals and plant and insect protection, mostly by
ants (Herrera and Pellmyr 2002). However, obligate and intimate relationships such
as symbiotic mutualisms that include vertebrate and invertebrate gut symbionts,
lichens, rhizobia and mycorrhizae are also important in ecosystems (Douglas 1994).

Mutualisms typically involve conflict of interests among interacting species and
rise from mutual exploitation between selfish individuals (Axelrod and Hamilton
1981). Indeed, mutualistic systems are usually exploited by cheater species
(Bronstein 2001). Even supposed mutualisms can be conditional, or context
dependent, and they are usually contingent on the balance between costs and
benefits for those individuals that interact, with the outcomes varying from positive
to negative according to biotic and abiotic conditions (Bronstein 1994; Bronstein

292 T.J. Guerra et al.

fecostabio@gmail.com



et al. 2003). Furthermore, other kinds of mutualisms may be observed when we
consider the complexity of natural communities where species are also linked to
each other by indirect interactions (van Ommeren and Whitham 2002; Romero and
Vascocelos-Neto 2004; Verdú and Valiente-Banuet 2008).

In his classic book on orchid pollination, Charles Darwin established a natural-
istic approach that led to the field of mutualism ecology (Darwin 1862). This mostly
adaptive agenda were focused on understanding how traits of animals and plants
favored survival and reproduction of interacting species. After the publication of a
seminal paper by Janzen (1966), the mutualistic relationships among animals and
plants became more intensively studied and the first landmark publications regarding
mutualisms appeared in the 80s (Beattie 1985; Boucher 1985; Estrada and Fleming
1986). The knowledge accumulated over the past 50 years paved the current view
that mutualistic interactions among plants and animals play a central role in the
generation and maintenance of biodiversity (Bascompte and Jordano 2007).
Moreover, mutualistic interactions such as pollination and seed dispersal are now
recognized as important services providing processes that are essential for sustaining
natural and agricultural ecosystems (Valiente-Banuet et al. 2015).

Understanding the identity of interacting species, what adaptations are involved
in these interactions and the outcomes for the interacting partners is still of para-
mount importance in basic and applied ecology. Nevertheless, new ideas and
approaches have emerged in the past years. For instance, network theory has played
a major role in the understanding of mutualistic interactions among free-living
species (Bascompte and Jordano 2014). The use of network metrics and structural
properties such as nestedness, modularity, centrality, and link asymmetry allows the
exploration, and comparison of patterns in structure and organization of ecological
interactions within and between communities (Bascompte and Joradno 2007;
Olesen et al. 2007; Gonzalez et al. 2010). Jordano et al. (2003) identified invariant
properties of mutualistic networks that reveals some major ecological patterns of
community organization. First, there is always a core of generalists in communities,
those species that interact among themselves and with a set of more specialized
species that consistently interact with that generalist core. Second, interactions are
generally weak in terms of reciprocal dependence, but the few of them that are
stronger tend to be quite asymmetric, which means that one partner is more
dependent upon the interaction than the other (Bascompte et al. 2006). Finally, most
networks show distinct modules or compartments, meaning that distinct subsets of
species interact more strongly among themselves than with species form other
modules (Olesen et al. 2007).

The Rupestrian Grasslands or Campo Rupestre comprise megadiverse montane
fire-prone vegetation that occur on Brazilian ancient landscape mosaics
(Fig. 13.1a), which include rocky outcrops of quartzite, sandstone or ironstone
along with sandy, stony and waterlogged grasslands. Campo Rupestre ecosystems
predominate in those areas above 900 m and up to 2000 m a.s.l. in disjoint areas,
mostly within Espinhaço Mountain Range in Brazilian States of Minas Gerais and
Bahia (Giulietti et al. 1997; Alves et al. 2014) and are recognized as an important
center of biological diversity and endemism of flora (Giulietti et al. 1997; Rapini
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Fig. 13.1 a A typical landscape encompassing Campo Rupestre ecosystems in Lapinha da Serra,
southern Espinhaço Range. b The endemic bee-pollinated orchid Constantia cipoensis. The
ornithocorich fruits of (c) Miconia irwinii and (d) Struthanthus flexicaulis. e The flowers of the
hummingbird-pollinated mistletoe Psittacanthus robustus. f The aphid Aphis spiraecola attended
by the ant Cephalotes pusillus. g The trophobiont stinkbug Eurystethus microlobatus attended by
the ant Camponotus rufipes. h Bionia coriaceum with ant bodyguards associated to its extra-floral
nectaries. (Photos by T.J. Guerra)
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et al. 2008; Echternacht et al. 2011) and fauna (Alves et al. 2008; Leite et al. 2008;
Chaves et al. 2015). Despite the relevance of Campo Rupestre for biodiversity
conservation in Brazil (Fernandes et al. 2014; Silveira et al. in press), currently,
there is no published compilation of studies concerning mutualistic interactions for
these unique ecosystems.

13.2 Scope

In this chapter, we review the literature and present unpublished information on
ecology of mutualistic interactions among free-living species in the Campo
Rupestre (CR hereafter) ecosystems. We focus on interactions among plants and
their pollinators and seed dispersers, and on interactions between ants, myrme-
cophilous plants and trophobiont insects, i.e. those that produce sugar- and amino
acid-rich honeydew as rewards for their bodyguards. Our aim is to provide basic
information on mutualistic interactions in CR, presenting data from those more
naturalistic studies as well more advanced studies using network-based approaches.
We conclude this chapter by pointing out some major gaps in the study of mutu-
alisms in CR and propose avenues for future research.

13.3 Linking Plants to Their Pollinators

Biotic pollination, i.e., animals harvesting resources from flowers and in return
providing pollination services, is ubiquitous to all terrestrial ecosystems. On average
in tropical communities 94 % of the plant species are estimated to be pollinated by
animals (Ollerton et al. 2011). There are few studies of animal and abiotic polli-
nation mechanisms for the CR flora, but existing information are congruent with a
predominance of biotic pollination. Jacobi and Carmo (2011) showed that insect
pollinated species, mostly those pollinated by bees, comprise nearly 70 % of the
plant species in the community, whereas bird pollinated plants represent almost
13 % and wind pollination 16 % in ironstone outcrop site in southern Espinhaço
Range. In addition, Conceição et al. (2007) found that animal pollinated species also
outweigh abiotic mechanisms of pollinationin Chapada Diamantina, northern
Espinhaço Range. However, the authors observed a marked seasonal pattern, with
entomophily occurring mostly from summer through autumn, ornithophily pre-
dominating during winter, whereas anemophily prevailed in the spring.

Existing work on pollination is sparse and restricted mostly to studies on the
reproductive biology of a single or few species (e.g., Sazima 1977; Jacobi et al.
2000; Guerra et al. 2014). However, those studies offer valuable insight into the
natural history of CR vegetation, including some extraordinary cases of mutu-
alisms. For instance, the epiphytic orchid Constantia cipoensis (Fig. 13.1b), which
grows only on two species of Vellozia (V. piresisana and V. compacta), is
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exclusively pollinated by the carpenter bee Xylocopa artifex, which also build its
nests inside the branches of V. piresiana and V. compacta (Matias et al. 1996). This
endemic and threatened orchid is restricted to growing on Vellozia trunks and
several other poorly known orchids are found in connection with Vellozia, such as,
Cattleya brevipedunculata, which grows on V. gigantea, which itself has a narrow
geographical distribution (Lousada et al. 2011). Such highly specific requirements
for growth and reproduction constrain gene flow and dispersal of individuals across
populations and likely contribute to the strong heterogeneity in species distributions
across CR landscapes.

Pollination systems of endemic species vary from highly specialized (e.g. few
pollinator species within an animal group) to more generalized (e.g. many species
from distinct taxonomic groups) and include both invertebrates and vertebrates as
pollinators. For example, some endemic orchids are highly specific regarding their
fly pollinator species and this specialization is consistent among populations (Borba
and Semir 2001; Melo et al. 2011), with fly-pollination as the main mechanism
favoring maintenance of high genetic variability in the populations studied by
Borba et al. (2001). In contrast, the endemic bromeliad Echolirium glaziovii is
pollinated by the nectarivorous bat Lochophylla bokermani in Serra do Cipó, but
the authors also recorded visits by two hummingbird species during the day and
noctuid and sphingid moths during the night (Sazima et al. 1989). Other CR spe-
cies, Paliavana sericiflora (Gesneriaceae), represent an interesting case of transition
between bat and hummingbird pollination. This species has features related to
attraction of both groups, but in the field hummingbirds were observed as the main
pollinators (San Martin-Gajardo and Sazima 2005). Some endemic species are
pollinated exclusively by bees (Matias et al. 1996; Jacobi et al. 2000; Franco and
Gimenes 2011), while other species have generalized systems involving bees and
hummingbirds as pollinators (Sazima and Sazima 1990; Jacobi and del Sarto 2007;
Jacobi and Antonini 2008; Ferreira and Viana 2010; Hipólito et al. 2013).

Interactions among hummingbirds and flowers are fairly common in CR and
occur in plants from several families, including many endemic genera (Vasconcelos
and Lombardi 2001; Machado et al. 2007; Santana and Machado 2010; Rodrigues
and Rodrigues 2014). Nevertheless, the studies mentioned above raised two
remarkable points related to interactions among plants and hummingbirds in CR.
First, hummingbird species are more commonly reported as visitors of
non-ornithophilous than ornithophilous species, e.g. plants with red, orange or
yellow flowers that are tubular shaped and produce nectar as reward (Vasconcelos
and Lombardi 2001; Machado et al. 2007; Santana and Machado 2010; Rodrigues
and Rodrigues 2014). For example, the Espinhaço Range endemic hummingbird
Augastes scutatus was commonly observed visiting species in the primarily insect
pollinated family Asteraceae (Vasconcelos and Lombardi 2001; Rodrigues and
Rodrigues 2014). Although only a subset of CR plants are considered ornitho-
philous, hummingbirds could play a major role in reproduction of some species, as
thieves or pollinators. Second, nectar rich species in CR along the Espinhaço Region
seem to concentrate some highly territorial hummingbird species that defend flower
resources against other visitors (Sazima 1977; Sazima and Sazima 1990;
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Vasconcelos and Lombardi 2001; Machado et al. 2007; Jacobi and Antonini 2008;
Guerra et al. 2014). This common behavioral pattern of hummingbirds could result
in restriction of gene flow to plants within some rock outcrop patches and,
thus, reducing the variability in some hummingbird pollinated species. In fact, the
bee pollinated Vellozia epidendroides has higher genetic variability than hum-
mingbird pollinated V. leptopetala (Franceschinelli et al. 2006), suggesting that bees
could be more effective in long distance dispersal of pollen than territorial
hummingbirds.

The open, high altitude vegetation that characterizes the CR could be connected
to an expectation of higher proportion of wind-pollinated plants (Culley et al.
2002). However, the spatial heterogeneity of the landscape, a mosaic of rocky
outcrops embedded in a matrix of sandy or rocky soils, is another typical charac-
teristic of CR. This causes patchy distribution patterns in most plant species, and
has likely selected for animal pollination as an essential means to obtain gene flow
between populations that are spatially constrained by environmental heterogeneity,
reflected in substrate, hydrology, and local climate (see Giulietti et al. 1997; Silveira
et al. in press). Even so, species confined to rocky outcrops seem to show lower
genetic diversity than species associated with sandy soils (Franceschinelli et al.
2006; Lousada et al. 2011). The patchy distribution of populations translates into a
high turnover of plants and pollinator species across space; this spatial variation
being larger for plants than pollinators (Carstensen et al. 2014). Plant phenology
patterns across the year are complex and likely affected by both regional and local
climatic factors as well as occasional fires (Chap. 12). Pollinators, in turn, likely
track this variation in flower resources in space and time, resulting in complex
dynamics of local plant-pollinator interactions.

Plant-pollinator interactions within communities are analyzed and visualized
using networks, in which plant and pollinator species (the network nodes) are
connected (or linked) to each other if they are observed interacting (Jordano et al.
2003). While network-scale properties, such as nestedness and modularity, seem to
be conserved, it has also been shown that detailed network structures, such as species
and interaction composition (Dupont and Olesen 2009; Carstensen et al. 2014) and
functional roles (Gonzalez et al. 2010), can change dramatically in both time and
space (Trøjelsgaard et al. 2015). In Serra do Cipó rocky outcrops, communities seem
to abide by the generalities of plant-pollinator networks found elsewhere (Fig. 13.2).
The only existing community-scale dataset on plant-pollinator interactions from CR
consists of seven sampled networks across rocky outcrop vegetation sites within CR
landscape in Serra do Cipó (Carstensen et al. 2014). While network properties seem
to be relatively constant across space (Carstensen et al. in prep) species and inter-
action turnover are large even across small distances (Carstensen et al. 2014). All
sites combined showed a rich community with 101 flowering species visited by 199
pollinator species. In this dataset gathered in the beginning of the rainy season (from
October to December), bees were dominant in terms of species richness and overall
number of interactions, comprising 34 % of all species and 60 % of all interactions
observed. Flies, butterflies, wasps, and beetles all had a strong presence in the data
set, each group accounting for 13–18 % of the species observed. Hummingbirds and
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Fig. 13.2 The local
plant-pollinator network
sampled in the Campo
Rupestre of Serra do Cipó,
southeastern Brazil. Black
boxes on the left represent
plant species; boxes on the
right represent pollinator
species. The size of the boxes
represents the total degree of
the species in the network,
that is, the number of
interactions observed for a
given species. Species are
connected with lines if they
were observed interacting, the
thickness of the line
representing the frequency of
interaction. Notice the nested
organization of interactions,
where species with few
interaction partners tend to
interact with species with
many interaction partners
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ants were less diverse, only each comprising 6 % of the total species richness of the
flower visitors. Only one plant species was found in all sites, Cuphea ericoides
(Lythraceae), while others such as Paepalanthus bromeliodes (Eriocaulaceae) and
Aspilia jolyana (Asteraceae) were widely common as well. On the other hand,
several pollinators were found in all sites, e.g. Apis mellifera, Bombus pauloensis as
well as six of other bee species, and hummingbirds such as Chlorostilbon lucidus
and Heliactin bilophus were both observed in five out the seven sites.

In that unique dataset from Carstensen et al. (2014), flower visitors were
regarded as pollinators if they touch the reproductive organs of the flowers, but not
all flower visitors “follow the rules”. Some can be classified as illegitimate visitors,
that is, they visit the flower and harvest floral resources but do not return any
immediate service in the form of pollination. This can be a result of either mor-
phological mismatches or because they circumvent the floral system by puncturing
the corolla and accessing nectar directly, without getting into contact with the
reproductive organs of the plant. This puncturing, or an otherwise destructive
behavior to access floral nectar, is termed nectar robbing (Inouye 1980) and can be
observed in several types of flower visitors, but especially bees and hummingbirds.
However, the role of flower visitors as pollinators and robbers or thieves in CR
remains poorly known.

13.4 Frugivory and Seed Dispersal

To understand the ecology of seed dispersal in CR, first we need to understand the
natural history and ecology of their fruits and frugivores. According to Silveira
et al. (2016), the CR can be classified as a geologically old, climatically stable,
infertile landscapes of the Earth (Hopper 2009). In those landscapes, reduced dis-
persal ability should be favored by natural selection, because recruitment is strongly
controlled by soil conditions and the safe sites for establishment are usually near the
parent-plants (Hopper 2009). As expected, most species from the CR have no
conspicuous mechanism for seed dispersal. Unassisted dispersal is the prevalent
dispersal mode among dominant (e.g. Poaceae, Cyperaceae, and Fabaceae) and
herb families with many endemic species (e.g. Xyridaceae, Eriocaulaceae, and
Velloziaceae). In fact, Conceição et al. (2007) observed that few species in CR site
in Chapada Diamantina produce fleshy fruits, with those individuals representing
21 % of vegetation cover.

The production of fleshy fruits by CR plants seems to be restricted to a few
Neotropical clades that are typically vertebrate-dispersed (e.g. Melastomataceae,
Myrtaceae and Cactaceae), most of them which occur in woody vegetation, such as
gallery forests and natural forest patches (locally known as capões de mata, see
Chap. 7). However, plant species from at least 16 families that produce fleshy fruits
were reported to occur in CR sites, mostly bird dispersed berries (Faustino and
Machado 2006; Conceição et al. 2007; Silveira et al. 2012; Guerra and Pizo 2014).
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In fact, even some endemic species (e.g. Coccoloba cereifera) typical from CR
rocky outcrops produce fleshy fruits. Most of those fruits are small, and have
dark-crimson or red color, but yellow, rose, brown, orange, and purple fruits are not
uncommon (Faustino and Machado 2006; Guerra and Pizo 2014).

Birds and mammals are the predominant vertebrate seed dispersers worldwide
(Fleming and Kress 2011). In CR, primates are virtually absent in the open vege-
tation areas, so seed dispersal by mammals is probably mostly carried out by bats,
yet there is no study to support this idea. Although there are records of carnivorous
species such as the maned wolf (Chrysocyon brachyurus) and the crab-eating fox
(Dusicyon thous) serving as seed dispersers, the role of large mammals in seed
dispersal is also unexplored. The scarce available evidence suggests that in CR
birds are the main seed dispersers among vertebrates. However, the avifauna pre-
sent in these ecosystems is characterized by the dominance of generalist species and
the lack of specialized avian frugivores (Faustino and Machado 2006; Guerra and
Pizo 2014). Seed dispersal by lizards is considered a predominantly oceanic island
phenomenon (Olesen and Valido 2004). However, it has been recently observed in
a CR site, where two cactus species are dispersed by two lizard species, but also by
ants (Fonseca et al. 2012).

A useful starting point to unveil the complexity of seed dispersal in CR is the
seminal paper by McKey (1975). He defined two opposing seed dispersal strategies
that, rather than representing mutually exclusive categories, are best viewed as
extremes of a continuum. The specialist plant syndrome comprises species that
produce few, lipid rich fruits that contain a few (or a single) large seeds. The
generalist syndrome, in turn, is observed in species with massive production of
small-sized fruits with high sugar and low nutrient content, which often have
several tiny seeds. The former are dispersed by effective, reliable and specialized
frugivores, while the latter are dispersed by a wider range of non-specialized fru-
givorous species (Howe 1993). Studies focused on the Miconieae
(Melastomataceae) species, plants which are the archetype of the generalist syn-
drome, have been the primary study model of seed dispersal in CR.

Studies on frugivory and seed dispersal in CR have focused on Miconieae not
only because of their dominance and diversity, but also because of their key role in
providing resources to several disperser groups (Silveira et al. 2013a). This com-
bination offers the unique opportunity to compare seed dispersal effectiveness
(sensu Schupp et al. 2010) among different taxonomic groups of frugivores.
Miconieae is a species-rich Neotropical tribe of Melastomataceae that comprises
nearly 2200 species (Goldenberg et al. 2008), which are commonly found in most
Neotropical vegetation (Silveira et al. 2013a). Fruit morphology in Miconieae is
extraordinarily diverse, with species showing marked differences in crop size, fruit
size, color, water and sugar content, seed number, pulp/seed ratio, and contrasting
displays. All those traits have been shown to directly influence removal rates
(Blendinger et al. 2008; Christianini and Oliveira 2009; Camargo et al. 2013).

The primary seed consumers of those berries are a taxonomically diverse
community of small-to-medium-sized birds (Silveira et al. 2013a) that include
thrushes, tanagers, and Elaenia. The number of birds foraging on fruits of each
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Miconia species ranges from two to ten (Guerra and Pizo 2014), which suggests a
reduced number of seed dispersers for CR plants when compared to those of
lowland tropical forests (Ellison et al. 1993). For instance, in tropical forest up to 36
bird species may feed onMiconia fruits (Galletti and Stotz 1996). Data on frugivory
of two Miconia species in ironstone rocky outcrops in southern Espinhaço Range,
indicate a reduced number of seed dispersers. The thrusher Mimus saturninus and
the tanager Schystoclamys ruficapillus as the most effective dispersers of M.
ligustroides, tough, most interestingly, the rufous-collared sparrow Zonotrichia
capensisis an effective seed disperser of M. pepericarpa (Silveira, F.A.O. unpub-
lished data). This result suggests that even typically granivorous birds may be
important to the dispersal of small-sized seeds in CR vegetation, as suggested by
Faustino and Machado (2006).

The probability that a dispersed seed will grow into a new reproductive indi-
vidual depends on the site of seed deposition and on the quality of handling in the
mouth and gut of the frugivore (Schupp et al. 2010). Therefore, we should disen-
tangle the effects of seed cleaning (pulp removal), seed coat scarification, and
fertilization effects (Samuels and Levey 2005). Seeds within berries of Miconieae
cannot germinate because of the inhibition effect, i.e., the presence of germination
inhibitors in the fleshy placentas and the dark pigmentation that prevents light from
reaching the positively photoblastic seeds (Silveira et al. 2013b). It has been
experimentally demonstrated that gut-passed seeds have similar germination per-
centages and germination time than hand-extracted seeds. Those results led to the
conclusion that germination enhancement deriving from gut scarification does not
play a role in recruitment of Miconieae. However, seed cleaning is an important
service delivered by birds, and varies according plant and bird species involved in
these mutualistic interactions (Silveira et al. 2012).

The large crop produced by Miconieae plants is usually not consumed by their
primary seed dispersers. As a consequence, the fruits that fall to the ground become
available for consumption by secondary seed dispersers (Christianini and Oliveira
2009). Myrmecochory (dispersal by ants) is a common phenomenon in sclero-
phyllous, fire-prone, nutrient-poor shrublands such as CR (Milewski and Bond
1982). Primary myrmecochory is rare in the Neotropics, with no reports for CR.
However, a study on secondary seed dispersal by ants of Miconia irwinii
(Fig. 13.1c), a primarily bird-dispersed commonly found in CR areas, suggests that
ants in several genera could play an important role in seed fate (Lima et al. 2013).
The ants transport fallen fruits to their nests, clean the seeds, and discard them
outside the refuse piles, thereby rescuing many seeds that were not primarily dis-
persed by birds (Lima et al. 2013).

In CR, fallen fruits of Miconieae can also be exploited by marsupials, rodents
(Lessa et al. 2013), and lizards. Marsupials could also provide important benefits to
plants, since many of the small seeds can pass unharmed through their guts (Lessa
et al. 2013). However, more work is necessary to evaluate the role of small
mammals in Miconieae seed dispersal.
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13.5 Mutualistic Interactions Between Birds
and Mistletoes

Mistletoes comprise a polyphyletic group of parasitic plants that infect the aerial
parts of their hosts, mostly trees and shrubs (Nickrent et al. 2010). Those plants are
mostly hemiparasites, as they attach themselves to the host’s shoots via haustorial
roots, in order to obtain water and minerals, but are able to photosynthesize their
own carbohydrates (Ehleringer et al. 1985). Mistletoes are important elements of
natural communities, because they provide structural and nutritional resources
within the canopy (Watson 2001), and their positive influence on diversity led to
their recognition as keystone resources for animals (Watson and Herring 2013).
Loranthaceae is the largest family among parasitic angiosperms with nearly 900
species distributed in approximately 70 genera, which occur in most terrestrial
ecosystems of the world, including tropical and temperate forests, mangroves,
savannas, semi-arid vegetation, and deserts (Calder and Bernhardt 1983). Most
species produce nectar as a reward to pollinating birds (Kuijt 1969). The effec-
tiveness of mistletoe pollinators, the quality of the floral reward, and the conse-
quences of their interactions for plant reproduction are still poorly known (Aizen
2003). For example, plant breeding system, nectar availability and secretion
dynamics are key traits to understand the behavior of pollinators, and may help us
to determine costs and benefits of such interactions (Gill and Wolf 1975).

The mistletoe Psittacanthus robustus (Loranthaceae) has tubular and colorful
flowers (Fig. 13.1e), which produce copious dilute nectar as the main reward for
pollinators throughout the rainy season in the CR areas of Serra do Cipó (Guerra
et al. 2014). Indeed, nectar of P. robustus represented an exceptional resource for
birds. The local guild of nectarivorous birds that feed on P. robustus include eight
hummingbirds and two passerines, which represents the largest guild reported for
an ornithophilous plant species in the CR sites.

Mistletoe flowers secrete most of their nectar right after flower opening, with
little sugar replenishment after experimental removal. The experiments with
exclusion of flower visitors revealed that flowers quickly reabsorbed the nectar,
which is evidence of the high costs of nectar secretion (Guerra et al. 2014).
Surprisingly, flowers naturally exposed to pollinators produced less seeds than
hand-, self-, and cross-pollinated flowers, which suggests some degree of pollina-
tion limitation. However, hummingbird-pollinated flowers still produce signifi-
cantly more seeds than flowers excluded from pollinators. Because P. robustus
cannot produce seeds spontaneously without pollinators, hummingbirds seem to be
crucial for seed production. In effect, the low values of nectar recorded in open
flowers are consistent the high hummingbird visitation rates reported. Thus,
reproductive limitation in this mistletoe does not seem to be related to pollinator
scarcity. Indeed, the high frequency of visitation by hummingbird pollinators seem
to be costly, because they leave almost no nectar for reabsorption and the subse-
quent use of sugars to produce seeds in the plants. The pollination system involving
the mistletoe P. robustus and hummingbirds in rocky outcrops illustrates that the

302 T.J. Guerra et al.

fecostabio@gmail.com



costs and benefits of pollination mutualisms are influenced by the strength of the
interaction among flowers and their pollinators (Guerra et al. 2014).

Mistletoes are known for their particular mutualistic associations with narrow
bird guilds that disperse their seeds worldwide (Reid 1991). Birds obtain nutrients
from mistletoe fruits, which in turn receive the service of directional seed dispersal
onto the host twigs, which are safe sites for establishment (Roxburgh and Nicolson
2005). Seeds require pericarp removal by birds to germinate, as well as deposition
on branches with specific diameters on live compatible host species (Sargent 1995).
Thus, interaction with seed dispersers is obligate for mistletoes. Nevertheless,
mutualism strength among mistletoes and their avian seed dispersers is still poorly
known (Watson and Rawsthorne 2013). In this context, Guerra and Pizo (2014)
evaluated simultaneously the effectiveness of the avian seed dispersers of the
mistletoe Struthanthus flexicaulis (Loranthaceae) and the contribution of its fruits to
their diets in a CR site at Serra do Cipó.

Fruits are yellow, small, lipid-rich pseudo-berries (Fig. 13.1d) produced asyn-
chronously among individual plants and available throughout the year. Although
four bird species were observed feeding on mistletoe fruits, the plain-crested
elaenia Elaenia cristata (Tyrannidae) was the most effective disperser, responsible
for more than 96 % of the seeds dispersed. This bird swallowed fruits whole,
expelling and depositing undamaged seeds by regurgitation and bill wiping on
perches. Seeds can be dispersed up to 100 m, but most were dispersed within 30 m
from the parent-plants, because seed retention time in the disperser’s gut is short
(*6 min on average). Fifty-six percent of the dispersed seed land on safe sites: the
thin live twigs of 38 potential host species. The avian seed dispersers were pre-
dominantly frugivorous, and feed on typically ornithocoric fruits of at least 12
species, but also on arthropods on the foliage. In fact, fruits represented 75 % of the
plain-crested elaenia´s diet throughout the year, but the fruits of S. flexicaulis
represented nearly 34 % of its diet. Those results, published by Guerra and Pizo
(2014) corroborated predictions from network studies (Bascompte et al. 2006)
highlighting the asymmetrical nature of seed dispersal mutualisms, with the
mistletoe life cycle locally linked to one highly effective seed disperser that is
weakly dependent on mistletoe fruits.

13.6 Linking Ant Bodyguards to Their Plant and Animal
Partners

Ant-plant mutualisms have played a major role in shaping our broad understanding
of mutualism (Bronstein et al. 2006). In the tropics, several ant species use plants as
a foraging substrate to search for prey and food resources, such as extrafloral nectar
and honeydew from trophobiont insects (Blüthgen et al. 2000; Rico-Gray and
Oliveira 2007; Rosumek et al. 2009). Those associations between ants and plants
can result in obligate or facultative mutualisms, whose mutual benefits will depend
on the nature of the interacting species (Bronstein et al. 2006; Rico-Gray and
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Oliveira 2007). Moreover, the outcomes of interactions between ants and plants
bearing extrafloral nectaries (EFNs hereafter) or trophobiont insects are contro-
versial, and most of them are facultative and dependent on biotic and abiotic
conditions (Bronstein 1994).

Two main factors contribute to the high ant abundances found in tropical veg-
etation. First, the high availability of nesting sites, which are provided by galleries
in trunks built by bark beetles and by unoccupied galls after the emergence of
insects (Oliveira and Freitas 2004), and second, the high food availability provided
by EFNs and insect trophobionts (Blüthgen et al. 2000, 2004). Studies carried out in
the Cerrado (Brazilian savanna) showed that plants with EFNs (of at least
15 families) may represent up to 25 % of the species and individual trees in some
vegetation (Oliveira and Leitão-Filho 1987; Oliveira and Freitas 2004) and around
30 % of the plants with insect trophobionts (Lopes 1995). Such conditions have
made it possible to gather a large amount of information on multitrophic interac-
tions involving ants in this biome (see Del-Claro et al. 2006; Rico-Gray and
Oliveira 2007), although some vegetation within the Cerrado domain, such as CR,
remain poorly studied. The first survey of extra-floral nectarines is the study from
Morellato and Oliveira (1991) for iron-stone outcrops on North Brazil (Serra dos
Carajás, Pará). They report 53 % of species (7 out of 13) bearing extrafloral nec-
taries. However the role of these plant resources on ant community organization
still is in the beginning for CR.

The current knowledge on the ant-trophobiont mutualisms in CR is limited to a
few studies (Fagundes et al. 2012; Guerra et al. 2011). The sap-feeding stinkbug
Eurystethus microlobatus (Heteroptera: Pentatomidae) is exclusively associated
with woody mistletoes in Serra do Cipó. These stinkbugs have cryptic coloration
and maternal care, are gregarious, and produce allomone volatiles, but their most
conspicuous defense strategy is ant protection (Guerra et al. 2011). In their study,
stinkbugs produced honeydew and four ant species attended to their aggregations.
However, Camponotus rufipes was the most frequent and aggressive ant species,
and the only species that protected stinkbugs by night and day (Fig. 13.1 g). Other
ants such Cephalotes pusillus and Camponotus crassus were less aggressive and
mostly diurnal, whereas Camponotus melanoticus were was mostly nocturnal. The
authors observed that aggregation size positively affect the number of ant attending
stinkbugs, but per capita attendance were actually reduced in those very large
aggregations. This remarkable interaction represents the only known case of tro-
phobiosis between ants and stinkbugs, and it is the first report of such an association
between heteropterans and ants in the American continent (Guerra et al. 2011).

Fagundes et al. (2012) found the trophobiont treehopper Calloconophora
pugionata (Hemiptera: Membracidae) feeding on Myrcia obovata (Myrtaceae) in
CR site. They observed that an increase in the number of trophobionts positively
affected ant abundance, but negatively affected ant richness. They observed 10 ant
species interacting with trophobionts, but C. rufipes and C. crassus were the most
frequent and dominant, and had a negative influence on the occurrence of other
species. In another study (Fagundes et al. 2013), the authors evaluated experi-
mentally the role of ant protection against predators and showed that ants increased
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the survivorship and reproductive success of the trophobiont C. pugionata. Such
case studies are highly important, as they describe a new and uncommon
ant-hemipteran association and reveal a new kind of mutualism, although the
benefits for ants are seldom evaluated (but see an example from the Cerrado, Byk
and Del-Claro 2011).

Ants are assumed to be nectar robbers and have limited potential as pollinators
(Hölldobler and Wilson 1990; Peakall et al. 1991). However, floral nectar is an
essential food for many ant species (Davidson et al. 2003; Blüthgen et al. 2004),
and studies on the relationship between ant activities and consumption of floral
nectar in CR are scarce. Romero (2002) using termite baits to simulate herbivores
on Vochysia elliptica (Vochysiaceae) found higher rates of removal by ants in
leaves and inflorescences compared to plants without ant access, suggesting that
even ant nectar thieves could protect those shrubs from herbivores. Flower-visiting
ants may have positive or negative effects on the reproductive success of plants,
depending on the context in which the interactions take place (Willmer et al. 2009).

Dáttilo et al. (2014) recorded 20 ant species associated with two plants with
EFNs that occur in CR: Chamaecrista mucronata (Fabaceae) and Stachytarpheta
glabra (Verbenaceae). The authors utilized a network approach to show how dif-
ferent ant species are linked to individuals of these two plant species and observed
that the core of highly interacting species changed significantly between day and
night. These results are important as they demonstrate daily partition of resources
by ants, and highlight the need of nocturnal observations to understand the eco-
logical dynamics of ant-plant interactions.

During ongoing studies on ant-plant interactions in CR sites in Serra do Cipó,
Costa et al. (in prep.) recorded a multi-relation network formed by 5 types of
interaction (subnetworks), 992 interaction events, 79 plant species, and 29 ant
species. Seventy percent of those interaction events are neutral visits (ants foraging
on the plant), whereas 15 % of interactions involve ants and EFNs, 7 % of inter-
actions are between ants and nectar or pollen, 6 % of interactions are among ants
and trophobiont insects, and 1 % of interactions is with fruits(frugivory or visit to
extrafloral nectaries on fruits). This myriad of interaction types indicates that ants
foraging on vegetation is a common phenomena and that ants could play a major
role in interaction networks in CR.

A recent study carried out by Costa et al. (in prep.) in CR of Serra do Cipó indicates
a total of 20 % of plants species with secretory structures considered extrafloral
nectaries (16 out of 79-species), a result consistent with surveys from Cerrado, which
indicate a total of 25 % of plants with have EFNs (Oliveira and Leitão-Filho 1987;
Oliveira and Freitas 2004). Six plant families stand out due to the predominance of
EFNs at CR: Fabaceae (5 species—e.g., Bionia coriaceum Fig. 13.1h), Malpighiaceae
(4 species—e.g., Peixotoa tomentosa and Banisteriopsis angustifolia), Euphorbiaceae
(3 species—e.g., Sebastiania sp), Asteraceae (2 species—Symphyopapus reticulatus
and Baccharis concinna), Araceae (1 species—Philodendron cipoense), and
Myrsinaceae (1 species—Myrsine sp.). The most common plant families utilized by
ants, including all types of resources and neutral interactions were Asteraceae,
Velloziaceae, Malpighiaceae, Fabaceae and Myrsinaceae.
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At present, most studies focused in the organization of ant trophobiont inter-
actions at the community level in tropical forests (Blüthgen et al. 2000), with no
data available for CR sites. In areas of CR, 26 % of the plant species have estab-
lished aggregations of hemipteran trophobionts (Costa et al. in prep), most of them
members of the families Aphididae (e.g., Aphis spiraecola Fig. 13.1f) and Coccidae
(e.g., Parasaissetia nigra). Considering together the ant fauna associated with
EFNs and honeydew, a total of five subfamilies in which the most frequent ant
species were C. pusillus, C. crassus, C. rufipes and two species of Brachymyrmex
genus (unidentified). Together these five species were responsible for 73 % of the
observed interactions during daily samplings, with C. pusillus and C. crassus being
the most frequent species (29 and 13 % respectively) (Costa et al. in prep).

Structural organization of ant-EFNs interactions in CR (Fig. 13.3), suggest that
network topology is not modular with low level of specialization. In the contrary,

Fig. 13.3 The network formed between ants (circles) and plants with extrafloral nectaries
(diamonds) in Campo Rupestresite atSerra do Cipó, southeastern Brazil. Lines represent
interactions, and line thickness is proportional to interaction frequency. Plant species—Baccon:
Baccharis concinna; Banaug: Banisteriopsis angustifolia; Bersim: Bernardia similis; Biocor:
Bionia coriacea; Camcor: Camptosema coriaceum; Chades: Chamaecrista desvauxii; Chapap:
Chamaecrista papillata; Charam: Chamaecrista ramosa; Malsp1: Malpiguiaceae sp1; Myrsp1:
Myrsine sp1; Peitom: Peixotoa tomentosa; Phicip: Philodendron cipoensis; Quacor: Qualea
cordata; Sapgla: Sapium glandulatum; Sebsp1: Sebastiania sp1; Symret: Symphyopapus reticu-
latus; Ant species—Brasp1: Brachymyrmex sp1; Brasp2: Brachymyrmex sp2; Brasp3:
Brachymyrmex sp3; Brasp4: Brachymyrmex sp4; Camcra: Camponotus crassus; Camruf:
Camponotus rufipes; Camsp1: Camponotus(Tanaemyrmex) sp1; Camsp2: Camponotus
(Myrmaphaenus) sp2; Camsp3: Camponotus(Myrmaphaenus) sp3; Cepedu: Cephalotes eduarduli;
Ceppus: Cephalotes pusillus; Dorsp1; Dorymyrmex sp1; Ecttub: Ectatomma tuberculatum; Linsp1;
Linepithema sp1; Phesp1: Pheidole sp1; Psesp1: Pseudomyrmex sp1; Psesp2: Pseudomyrmex sp2
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ant-trophobiosis subnetwork (Fig. 13.4) are modular and have higher specialization
values. Through network structure it is possible to visualize that ant-trophobiont
interactions, in opposition to ant-EFNs, forms distinct modules or groups of
interactions, which suggest certain resource partitioning by ants. In fact, some field
observations at Serra do Cipó, as well as previous studies performed in other
ecosystems (Del-Claro and Oliveira 1993; Blüthgen et al. 2000), suggest that amino
acid-rich honeydew is a more valuable resource than extrafloral nectar, being fre-
quently monopolized by colonies of dominant ants.

Despite structural differences between EFN and trophobionts subnetworks, they
share the five most central ant species (measured by number of interactions made by
the species): C. pusillus, C. rufipes, C. crassus, and two unidentified species of
Brachymyrmex genus. It seems that relatively few ant species are involved in those
interactions with EFN-producing plants and trophobionts insects in CR sites,
especially when we consider the huge richness recently proposed for these

Fig. 13.4 The network formed between ants (circles) and plants with trophobiont insects (diamonds)
in Campo Rupestre vegetation of Serra do Cipó, southeastern Brazil. Lines represent interactions, and
line thickness is proportional to interaction frequency. Plant species—Aspjol: Aspilia jolyana;
Baccon: Baccharis concinna; Byrsp1: Byrsonima sp1; Dasret: Dasyphyllum reticulatum; Kiepet:
Kielmeyera petiolaris; Lavcor: Lavoisiera cordata; Malsp1: Malpighiaceae sp1; Micfer: Miconia
ferruginata; Mikita: Mikania itambana; Mycsp1: Myrcia sp1; Myssp1: Myrsine sp1; Neethe:
Neeatheifera; Oursem: Ouratea semiserrata; Remfer: Remijia ferruginea; Sebsp1: Sebastiania sp1;
Sp1: unidentified; Syagla: Syagrus glaucescens; Symret: Symphyopapus reticulatus; Velala: Vellozia
alata; Velniv: Vellozia nivea; Vocthy: Vochysia thyrsoidea; Ant species—Brasp1: Brachymyrmex
sp1; Brasp2: Brachymyrmex sp2; Brasp3: Brachymyrmex sp3; Camcra: Camponotus crassus;
Camruf: Camponotus rufipes; Camsp1: Camponotus(Tanaemyrmex) sp1; Camsp3: Camponotus
(Myrmaphaenus) sp3; Ceppus: Cephalotes pusillus; Crepro: Crematogasterprox. erecta; Ecttub:
Ectatomma tuberculatum; Linsp1: Linepithema sp1; Phesp1: Pheidole sp1
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environments—around 288 species (Costa et al. 2015). In fact, the same ant species,
C. rufipes, C. crassus and C. pusillus have consistently been associated to different
liquid resources in different localities in CR and Cerrado sites, suggesting that they
can be considered keystone species for ant-plant interactions, mainly mutualisms
involving extrafloral nectar and honeydew. However, the role of these ants as
bodyguards of plants and insect trophobionts, the benefits provided by these liquid
sources for ant colony fitness as well the degree of interactions intimacy need
further investigations in CR.

13.7 Concluding Remarks

The investigations regarding mutualisms among free-living species in CR started
with pollination studies in the 70s, but only in the past decade have these inter-
actions received more attention by ecologists. Despite an increase in the number of
studies, the information remains scattered and concentrated for few localities, such
Serra do Cipó and Chapada Diamantina mountains. The compilation presented in
this chapter clearly indicates that the ecology of mutualisms in CR is still in its
infancy and that there is lot of work ahead. However, some patterns have emerged
and could serve as starting points for further investigations.

Despite the relatively crescent number of studies regarding interactions between
flowers and theirs visitors in CR, the role of animals as effective pollinators or
cheaters (e.g. thieves or robbers) remain poorly known. Bees and hummingbirds
have been reported as the main flower visitors of CR plants, but pollination by other
groups such, butterflies, moths, and bats need better evaluation in the future.
Breeding biology of few species have been studied in detail so far, the available
data indicate that pollination systems are diverse varying form highly specialized to
more generalized. In the future it would be very important to determine the degree
of specialization in pollination systems and the degree of plant dependence on their
pollinators, especially for those endemic and threatened species.

Seed dispersal of CR plants is virtually unknown, as there is information
available for too few species. For now we can only conclude that most vertebrate
seed dispersal is carried out by birds, and to a lesser extent by ants and lizards.
Because bird communities encompasses mostly non specialized frugivorous spe-
cies, with few species relying only partially on fruits, we could expect a weak
degree of interdependence among CR plants and avian frugivores, or at best, highly
asymmetric degrees of interdependence among them. Nevertheless, the role of
birds, lizards, mammals and ants as primary and secondary seed dispersers, or
predators, remain poorly investigated. Additional studies determining structure of
plant-frugivore networks in CR are deeply needed.

Ants seem to play a major hole in CR ecosystems, due their abundance and the
diversity of interactions in which they are involved. Ants may act as seed dis-
persers, as nectar thieves, as bodyguards of myrmecophilous plants and trophobiont
insects in CR. The studies encompassing a network approach applied to ant-plant
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and ant-insect interactions at the community level, associated with knowledge of
natural history of these interactions, could bring insights on the ecology and evo-
lution of protective mutualisms, particularly in megadiverse environments such as
the CR. The next step is to extend the studies of ant-plant mutualisms to larger
scales along the Espinhaço range and experimentally explore the possible outcomes
of these interactions subjected to context-dependent variations.

The results of Carstensen et al. (2014) have provided important insight into the
ecology of mutualisms in CR. The authors observed that even in small spatial scales
there is a high site turnover in plant-pollinator interactions and this pattern could be
a pervasive feature of all mutualistic interactions reported in this chapter, not only
pollination. Many CR species have restricted distribution, while other species are
more widespread. Besides, species distribution in CR are subject to high variation
due the altitudinal and latitudinal gradients (Chap. 15). The matches and mis-
matches in partners` distributions could generate selection mosaics of interactions,
thus CR could be a natural laboratory to explore predictions from the theory of
coevolutionary mosaics proposed by Thompson (2005). To understand how
coevolutionary processes shape the mutualistic interactions in CR is important to
start long term studies of mutualistic interactions on broader spatial and temporal
scales.

The study of community organization using mutualistic networks in CR is just at
the beginning. Now is the time to start applying these ecological tools for biodi-
versity conservation. Campo Rupestre ecosystems are subject to intensification of
fire regimes, mining, road construction and biological invasion (Fernandes et al.
2014). The way these negative impacts affect community organization and structure
of mutualistic networks will require further investigations. Besides, mountain tops
all around the world figure amongst the most threatened ecosystems by the global
warming predicted for the next century (Colwell et al. 2008). Therefore, we suggest
that standardized protocols for assessment and long term monitoring of mutualistic
networks involving animals and plants in Campo Rupestre could be a useful tool for
the evaluation of global warming effects on the biodiversity of tropical mountain
tops.
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