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ABSTRACT 

Myocardial infarction (MI) is the irreversible injury of the myocardium caused by prolonged 

myocardial ischemia and is a major cause of heart failure and eventual death among ischemic 

patients. The current trend of mortality due to MI and shortcomings of available therapeutics 

informed the need for an alternative remedy that could make the heart more resistant to 

infarction. Andrographolide is the principal compound in Andrographis paniculata, an 

indigenous plant commonly included in herbal concoction indicated for cardiovascular 

diseases and chest pains. Therefore, the present study assessed the protective potentials of 

andrographolide against isoproterenol-induced myocardial infarction in rats. Animals were 

randomly divided into four groups: Control (Ctr) group received 0.9 % saline solution once 

daily for 21 days, Isoproterenol (Iso) group received 0.9 % saline solution once daily for 19 

days followed by 80 mg/kg/day of isoproterenol hydrochloride solution on day 20 and 21, 

Andrographolide (Andro) group received 20 mg/kg/day of andrographolide for 21 days, and 

Andrographolide plus Isoproterenol (Andro + Iso) group received 20 mg/kg/day of 

andrographolide for 21 days with co-administration of 80 mg/kg/day of isoproterenol 

hydrochloride solution on day 20 and 21. At the end of all treatments, cardiac-specific 

parameters that define cardiac health and MI were evaluated in all groups. Likewise, the 

mechanical and electrical profiles that shapes the functions of the heart were assessed in 

cardiomyocytes isolated from each group using standard assay methods. In addition, effects 

of Andro on these mechanical and electrical profiles were further substantiated with in-vitro 

tests and compared to standard drug of MI. Iso caused: ST-segment elevation and significant 

(p<0.05) increases in heart rate, QRS, QT & QTc interval; significant (p<0.05) increases in 

cardiac mass indexes; significant (p<0.05) increases in systemic troponin I (cTnI), creatine 

kinase (CK), creatine kinase-MB fraction (CK-MB), aspartate transaminase (AST) & 

leukocyte levels; significant (p<0.05) increase of infarct size; cardiac histological alterations; 

significant (p<0.05) increases in myocytes shortening, maximal velocity of contraction 

(+dL/dt) & maximal velocity of relaxation (-dL/dt); significant (p<0.05) prolongation of 

action potential duration (APD); significant (p<0.05) increase in  L-type calcium current 

(ICa,L) density and significant (p<0.05) decrease in transient outward potassium current (Ito) 

density typical of the onset of MI. Interestingly, pretreatment with Andro prevented and / or 

minimized these anomalies, notably, by reducing myocyte shortening, +dL/dt, -dL/dt, APD, 
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ICa,L density and increasing Ito density significantly (p<0.05). Furthermore, in-vitro results 

supported the in-vivo effects of Andro on myocyte shortening, +dL/dt, -dL/dt, APD, ICa,L 

density, and Ito density and indicated that the effects are concentration-dependent. Therefore, 

andrographolide could be seen as a promising therapeutic agent capable of making the heart 

resistant to infarction and it could be used as template for the development of semisynthetic 

drug(s) for cardiac protection against MI. 

Keywords: Myocardial infarction, Andrographolide, Cardiac protection, Calcium current, 

Potassium current. 
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RESUMO 

O infarto do miocárdio (IM) é a lesão irreversível do miocárdio causada por isquemia 

miocárdica prolongada e é uma das principais causas de insuficiência cardíaca e eventual 

morte entre pacientes isquêmicos. A tendência atual de mortalidade por IM e a deficiência 

da terapêutica disponível informaram a necessidade de um remédio alternativo que pudesse 

tornar o coração mais resistente ao infarto. Andrographolide é o principal composto da 

Andrographis paniculata, uma planta indígena comumente incluída na mistura de ervas 

indicada para doenças cardiovasculares e dores no peito. Portanto, o presente estudo avaliou 

o potencial protetor do andrographolide contra o infarto do miocárdio induzido por 

isoproterenol em ratos. Os animais foram divididos aleatoriamente em quatro grupos: o grupo 

controle (Ctr) recebeu solução salina 0,9% uma vez ao dia por 21 dias, o grupo isoproterenol 

(Iso) recebeu solução salina 0,9% uma vez ao dia por 19 dias seguido por 80 mg/kg/dia de 

cloridrato de isoproterenol solução nos dias 20 e 21, o grupo Andrographolide (Andro) 

recebeu 20 mg/kg/dia de andrographolide por 21 dias, e o grupo Andrographolide mais 

Isoproterenol (Andro + Iso) recebeu 20 mg/kg/dia de andrographolide por 21 dias com co- 

administração de 80 mg/kg/dia de solução de cloridrato de isoproterenol nos dias 20 e 21. No 

final de todos os tratamentos, parâmetros específicos do coração que definem a saúde 

cardíaca e IM foram avaliados em todos os grupos. Da mesma forma, os perfis mecânico e 

elétrico que moldam as funções do coração foram avaliados em cardiomiócitos isolados de 

cada grupo usando métodos de ensaio padrão. Além disso, os efeitos do Andro nesses perfis 

mecânicos e elétricos foram comprovados com testes in-vitro e comparados com a droga 

padrão de IM. Iso causou: elevação do segmento ST e aumentos significativos (p<0,05) na 

frequência cardíaca, intervalo QRS, QT e QTc; aumentos significativos (p<0,05) nos índices 

de massa cardíaca; aumentos significativos (p<0,05) na troponina I (cTnI), creatina quinase 

(CK), fração de creatina quinase-MB (CK-MB), aspartato transaminase (AST) e níveis de 

leucócitos; aumento significativo (p<0,05) do tamanho do infarto; alterações histológicas 

cardíacas; aumentos significativos (p<0,05) no encurtamento dos miócitos, velocidade 

máxima de contração (+dL/dt) e velocidade máxima de relaxamento (-dL/dt); prolongamento 

significativo (p<0,05) da duração do potencial de ação (DPA); aumento significativo 

(p<0,05) na densidade da corrente de cálcio tipo L (ICa,L) e diminuição significativa (p<0,05) 

na densidade da corrente de potássio externa transitória (Ito) típica do início do IM. 
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Curiosamente, o pré-tratamento com Andro evitou e / ou minimizou essas anomalias, 

notavelmente, reduzindo o encurtamento do miócito, +dL/dt, -dL/dt, DPA, densidade de ICa,L, 

e aumentando a densidade de Ito significativamente (p<0,05). Além disso, os resultados in-

vitro apoiaram os efeitos in-vivo de Andro no encurtamento do miócito, +dL/dt, -dL/dt, DPA, 

densidade de ICa,L, e densidade de Ito e indicaram que os efeitos são dependentes da 

concentração. Portanto, o andrographolide pode ser visto como um agente terapêutico 

promissor capaz de tornar o coração resistente ao infarto e pode ser usado como modelo para 

o desenvolvimento de fármacos semissintéticos para proteção cardíaca contra IM. 

Palavras-chave: Infarto do miocárdio, Andrographolide, Proteção cardíaca, Corrente de 

cálcio, Corrente de potássio. 
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Cardiovascular disease is a major cause of disability and premature death throughout the 

world, and contributes substantially to the escalating costs of health care. It represents a single 

family of diseases, linked by a common pathology of atherosclerosis with common risk 

factors, which develops over many years and is usually advanced by the time symptoms 

occur. The treatment of established cardiovascular disease is generally very expensive. 

Hence, prevention of cardiovascular disease is a rapidly evolving area. 

Globally, ischemic heart disease has become the leading contributor to the burden of 

cardiovascular disease. Approximately half of all cardiovascular deaths were due to 

myocardial infarction (MI), an acute necrosis of the myocardium resulting from prolonged 

ischemia. Acute myocardial infarction (AMI) mostly occur suddenly, and are often fatal 

before medical care can be given. The high risk of morbidity and mortality following an 

episode of MI underlies the importance of instituting effective preventive regimens as part 

of the overall mitigation against MI occurrence and severity. Several interventions including, 

antiplatelet drugs, β-blockers, angiotensin-converting enzyme (ACE) inhibitors and lipid 

lowering drugs have been shown in clinical trials to reduce total and cardiovascular mortality 

in patients with coronary heart disease. Nevertheless, some of these interventions have been 

proven not to be suitable in some individuals for various reasons, such as co-morbidity, 

contraindications for some drugs and side effects. 

Consequently, alternative remedies using bioactive constituents of plants are now gaining 

research interest as they are often considered effective and safer. One of such plants with 

suspected prospective anti-infarction bioactive constituents is Andrographis paniculata 

(Burm. f.) Wall. ex Nees, due to its ethnobotanical use as ingredient of herbal formulations 

indicated for chest pain and cardiovascular diseases. Here, andrographolide, a labdane 

diterpene lactone and the principal bioactive natural product isolated from the plant 

Andrographis paniculata (Burm. f.) Wall. ex Nees is evaluated for its protective potentials 

against experimental induced myocardial infarction in rats. 
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2.1 CARDIOVASCULAR PHYSIOLOGY 

2.1.1 The Heart 

The heart is a muscular organ about the size of a closed fist that functions as the body’s 

circulatory pump. The heart lies in the center of the thoracic cavity and is suspended by its 

attachment to the great vessels within a fibrous sac known as the pericardium. A small 

amount of fluid is present within the sac (pericardial/serous fluid) which lubricates the 

surface of the heart and allows it to move freely during contraction and relaxation (Fig. 2.1). 

The human heart beats approximately 72 times per minute. It takes in deoxygenated blood 

through the veins and delivers it to the lungs for oxygenation before pumping it into the 

various arteries, which provide oxygen and nutrients to body tissues by transporting the blood 

throughout the body (Weinhaus and Roberts, 2009). 

 

 

Figure 2.1. Pictorial Description of the Heart. The figure illustrates the architectural position, shape 

and size of the heart (Lumen Learning, 2021). 
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2.1.2 Structure and Function of the Heart 

At the organ level, the heart is made up of four chambers: left atrium, right atrium, left 

ventricle, and right ventricle (Fig. 2.2). The upper two chambers (atria) are divided by a wall-

like structure known as interatrial septum, while the lower two chambers (ventricles) are 

divided by a similar structure called the interventricular septum. Deoxygenated blood enters 

the heart through the right atrium from where the blood moves into the right ventricle first 

and then to the lungs through the pulmonary artery. The left atrium receives oxygenated 

blood from the lungs, which is then pumped into the left ventricle from where it moves into 

the aorta and then to the different parts of the body (Mesotten et al., 1998). 

Likewise, the heart is made up of four important valves with primary function of regulating 

the blood flow through the heart (Fig. 2.2). These valves allow blood flow in one direction 

only. Tricuspid valve is located between the right ventricle of the heart and the right atrium, 

and allows the blood to move from the right atrium to the right ventricle. The pulmonary 

(semilunar) valve is between the pulmonary artery of the heart and its right ventricle. It opens 

up when the right ventricle contracts and allows the blood to move into the pulmonary artery. 

Mitral or bicuspid valve is located in a way that it causes a separation between the left 

ventricle of the heart and the left atrium of the heart. It pumps oxygenated blood into the left 

ventricle when the left atrium contracts. The aortic (semilunar) valve separates the aorta from 

the left ventricle and regulate the flow of blood from the ventricle to the rest of the body 

(Hinton and Yutzey, 2011). 

Also, the heart consists of blood vessels which help transport blood to and from it. These 

vessels connect other organs in the body to the heart. The basic function of these vessels is 

to take deoxygenated blood from different organs, supply it to the heart, and then take 

oxygenated blood that comes from the lungs to the heart and to the rest of the body. The 

blood vessels of the heart are broadly classified into two: arteries and veins (Fig. 2.2). The 

arteries are quite tough on the outside but are smooth on the inside. There are three types of 

arteries in the heart: the aorta, the coronary artery and the pulmonary artery. The aorta is the 

main artery of the heart and help transports oxygenated blood to the rest of the body, the 

coronary arteries are attached to the heart and help transfer oxygen-rich blood to the heart 

muscles, while the pulmonary arteries are the only artery that takes deoxygenated blood from 
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the right side of the heart to the lungs. On the other hand, the veins are not as tough as the 

arteries because they don't transport blood at high pressure. The veins of the heart are also 

classified into three. The venae cavae takes deoxygenated blood from the rest of the body 

back to the heart, the cardiac veins receive deoxygenated blood from the myocardium and 

transfers it to the right atrium and the pulmonary veins transfer oxygenated blood from the 

lungs to the left side of the heart (Mesotten et al., 1998). 

At the tissue level, the wall of the heart is made up of three different layers: pericardium, 

myocardium, and endocardium (Fig. 2.2). The pericardium is the sac that protects the heart 

from the outside. It is made up of four distinct layers (fibrous pericardium, serous 

pericardium, the space and epicardium) (Arackal and Alsayouri, 2020). The myocardium is 

a thicker layer right beneath the epicardium. This muscular middle layer of the heart wall 

contains cardiac muscle tissue. Most of the thickness and mass of the heart wall is made up 

of the myocardium. This layer is part of the heart that pumps blood through the body. The 

endocardium is a thin layer under the myocardium. This layer lines the inside of the heart 

and is usually very smooth. The main role of this smooth, thin layer is to prevent the blood 

from sticking into the sides of the heart and it also helps prevent the formation of deadly 

blood clots (Tran et al., 2020). 

 



7 
 

 

Figure 2.2. The Heart Structure. The figure shows the cardiac chambers, valves, arteries, veins and 

the heart wall (Molnar and Gair, 2015). 

At the cellular level, the heart composed of several cell types that include smooth muscle 

cells, fibroblasts, and cardiomyocytes. Among all, cardiomyocytes are the fundamental 

contractile cell of the heart (Walker and Spinale, 1999). They possess unique structures and 

properties correlating to their contractile function. More importantly, they are striated, mostly 

uninucleate muscle cells and found exclusively in the heart muscle (Tran et al., 2020). A 

unique cellular and physiological feature of cardiomyocytes are intercalated discs, which 

contain three types of special structures (cell adhesions) including, fascia adherens, 

desmosomes, and gap junctions. The fascia adherens are bands of proteins that connect the actin 

filaments of the sarcomeres in each cardiac muscle fiber to the sarcomere in the neighboring cells, 

producing a single unified chain of sarcomeres. Desmosomes help to bind cardiac muscle cells 

together, but form smaller, tighter junctions compared to the fascia adherens. Intermediate fibers 

inside each muscle fiber are connected by a series of proteins in the desmosome, which form an 

interlocking protein chain. Finally, gap junctions serve as strong mechanical linkage between 

myocytes to facilitate cell-cell communication. Each gap junction is made of connexin proteins 
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that form a tunnel through the cell membranes of the cardiac muscle cells, allowing small molecules, 

including ions, to pass through (Fig. 2.3). These discs reduce internal resistance and allow action 

potentials to spread quickly throughout the entire heart muscle via the passage of charged 

ions (Walker and Spinale, 1999). Thus, cardiomyocytes within the heart contracts in unison 

in order to provide effective pump action that can ensure adequate blood perfusion of the 

various organs and tissues (Woodcock and Matkovich, 2005). 

 

 

Figure 2.3. The Structure of Cardiomyocyte. The figure shows unique features of cardiac myocytes 

(Sadasivam, 2016). 

2.1.3 Myocardial Excitability 

The heart has an intrinsic system whereby the muscle is stimulated to contract without the 

need for nerve supply from the brain. This autonomous beating of cardiac muscle cells is 

regulated by the heart’s internal pacemaker that uses electrical signals to time the beating of 

the heart (Fig. 2.4). The electrical signals and the resultant mechanical actions are intimately 

intertwined. The internal pacemaker begins at the sinoatrial node, a small mass of specialized 
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cells which lies in the wall of the right atrium near the opening of the superior vena cava. The 

impulses of contraction initiated by the sinoatrial node stimulate the myocardium of the atria 

to contract. This wave of contraction stimulates the atrioventricular node to produce impulses 

that pass to the apex of the heart through the Purkinje fibers before being transmitted to the 

ventricular muscle. In this way the ventricular contraction begins at the apex of the heart and 

blood is forced into the pulmonary artery and the aorta that leave the heart near its base 

(Mesotten et al., 1998). 

 

 

Figure 2.4. The Heart Conduction System. The figure illustrates the pathway of impulse generation 

and impulse conduction system of the heart (mdmedicine, 2011). 
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2.1.4 Cardiac Ion Channels and Action Potentials 

Ion channels are viewed as narrow, water-filled, macromolecular pores permeable to certain 

specific ions (Hille, 2001). Cardiac ion channels have two fundamental properties, ion 

permeation and gating. Ion permeation describes the movement ionic current through the 

open channel. The selective permeability of ion channels to specific ions is the basis of 

classification of ion channels, e.g. (as Na+, K+, and Ca2+ channels). Gating is the mechanism 

of opening and closing of ion channels and is their second major property. Ion channels are 

also subclassified by their mechanism of gating: voltage-dependent, ligand-dependent, and 

mechano-sensitive gating. Among these, voltage-dependent gating is the commonest 

observed in cardiac myocytes, as majority of ion channels open in response to depolarization 

(Grant, 2009). 

Functionally, ion channels reduce the activation energy required for ion movement across the 

lipophilic cell membrane (Grant, 2009) and help maintain ionic concentration gradients and 

charge differentials between the inside and outside of the cardiomyocytes (Amin et al., 2010). 

Essentially, in cardiac myocytes, ions are distributed in such a way that there is a higher 

concentration of potassium (K+) on the inside of cells than outside, and a higher concentration 

of sodium (Na+) outside cells than on the inside. The combination of these ionic concentration 

differences and selective permeability of the membrane brings about generation of voltage - 

a measure of electrical energy that has the potential to do work. In other words, membrane 

potential (Vm) is the voltage measured when the inside of a cell is compared to the outside 

(Egri and Ruben, 2012). 

The electrical stimulation created by a sequence of ion fluxes through ion channels in 

membrane of cardiomyocytes that leads to cardiac contraction is known as Action Potential 

(Nerbonne and Kass, 2005). That is, action potential generation and propagation occurs 

through, and is regulated by, the function of voltage-gated ion channels (Egri and Ruben, 

2012). Action potential in typical cardiomyocytes is composed of 5 phases (0-4), beginning 

and ending with phase 4 (Fig. 2.5A). Phase 4 or the resting state is generally attributed with 

stable and negative resting membrane potential (-85 mV to -90 mV) in normal working 

myocardial cells due to the high conductance for K+ of the IK1 channels. Phase 0 is the phase 

of rapid depolarization. During this phase, membrane potential shifts to the positive voltage 
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range due to activation of voltage-gated Na+ channels which permit an inward Na+ current 

(INa). In addition, this phase is central to the rapid propagation of the cardiac impulse. Phase 

1 is the phase of early repolarization, accomplished by the transient outward K+ current (Ito). 

This phase sets the potential for the next phase of the action potential. Phase 2 or plateau 

phase, is the longest phase. This phase marks the phase of calcium entry into the cell and 

represents a balance between the depolarizing L-type inward Ca2+ current (ICa,L) and the 

repolarizing ultra-rapidly (IKur), rapidly (IKr), and slowly (IKs) activating delayed outward 

rectifying currents. Phase 3 is the phase of rapid repolarization that restores the membrane 

potential to its resting value. It reflects the predominance of the delayed outward rectifying 

currents after inactivation of the L-type Ca2+ channels. Final repolarization during phase 3 is 

due to K+ efflux through the IK1 channels (Amin et al., 2010; Grant, 2009; Hoffman and 

Cranefield, 1960; Nerbonne and Kass, 2005). In addition, the sum durations of all of these 

phases gives the overall duration of a particular action potential. Technically, this duration 

can also be captured on the ECG (Fig. 2.5B). For instance, the average duration of a 

ventricular action potential is reflected in the QT interval on the ECG (Grant, 2009). 
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Figure 2.5. Cardiac Electrical Activity. (A) Action potential waveform and underlying ionic 

currents (Nerbonne and Kass, 2005). (B) Relationship between ECG and action potentials (APs) of 

cardiac myocytes from different cardiac regions (Amin et al., 2010). 

2.1.5 Cardiac Excitation-Contraction Coupling 

Cardiac excitation-contraction (E-C) coupling is the process that links the electrical 

excitation of the surface membrane (action potential) to myocyte contraction (Fig. 2.6). 

Action potentials traveling along the sarcolemma and down into the transverse tubule (T-

tubule) system depolarize the cell membrane. The depolarization produced by the action 

potential caused the voltage-gated L-type (also called dihydropyridine-sensitive) Ca2+ 

channels situated in the surface membrane and transverse tubules to open (Eisner et al., 

2017). This opening of the L-type Ca2+ channel in response to membrane depolarization 

allows the passage of Ca2+ into the myocyte, mainly into a restricted subspace called the 

dyad, a region bounded by the t-tubule and sarcoplasmic reticulum (SR) (Jafri, 2012). The 

resulting entry of small amount of Ca2+ results in a large increase of intracellular Ca2+ 
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concentration ([Ca2+]i) in the dyadic space. This increase of [Ca2+]i makes the SR Ca2+ 

release channels (ryanodine receptors (RyR)) open thereby releasing a much larger amount 

(10-20 fold) of Ca2+ from the SR in a process termed calcium-induced calcium release 

(CICR) (Jafri, 2012). The combination of Ca2+ influx and this SR Ca2+ release raises the free 

[Ca2+]i, allowing Ca2+ to bind to the myofilament protein troponin-C (Bers, 2002). The 

binding of cytosolic Ca2+ to Troponin-C induces conformational changes in the regulatory 

complex such that troponin-I leading to the so-called activated state, in which myosin-

binding sites on actin are exposed (Y. Wang et al., 1999). Then, the formation of cross-

bridges produces the sliding of myofilaments one over the other, eventually resulting in 

muscle contraction (Piazzesi and Lombardi, 1996). For relaxation to occur, [Ca2+]i must 

decline, allowing Ca2+ to dissociate from troponin-C. This requires that the RyRs close and 

then that Ca2+ is pumped back into the SR, by the SR Ca2+-ATPase (SERCA) and out of the 

cell, largely by the sarcolemmal Na+/Ca2+ exchanger (NCX) (Eisner et al., 2017). 

 

Figure 2.6. Excitation-Contraction Coupling in a Cardiac Myocyte. The figure shows surface 

membrane, transverse tubule, sarcoplasmic reticulum (SR), and mitochondria, as well as the various 

channels and transporters involved in cardiac excitation-contraction coupling. Inset shows the time 

course of an action potential, Ca2+ transient and contraction (Bers, 2002). 
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2.2 CARDIOVASCULAR DISEASES 

Cardiac refers to the heart and vascular refers to the blood vessels. Therefore, cardiovascular 

diseases (CVDs) can be defined as a group of disorders that affects the heart and blood vessels 

(Olas and Bryś, 2018). That is, the spectrum of CVDs encompasses many different conditions 

which share risk factors, some of which are modifiable (Conte and Vale, 2018). 

2.2.1 Types of Cardiovascular Diseases 

2.2.1.1 Coronary Heart Disease 

Coronary heart disease (CHD) refers to disease of the blood vessels supplying the heart 

muscle, caused by the narrowing of the coronary arteries. Coronary arteries supply the heart 

with oxygen and when narrowing occurs, the flow of oxygen is reduced. A mild shortage of 

oxygen causes pain in the chest and arm, while a severe shortage may result in a heart attack, 

otherwise known as myocardial infarction (MI), a permanent damage or death of part of the 

heart muscle. 

2.2.1.2 Heart Rhythm Disorders 

Heart rhythm disorders or cardiac arrhythmias, refers to changes in heart rhythm or rate due 

to abnormal generation or conduction of electrical impulses in the heart. The abnormal 

electrical activity in arrhythmias is commonly due to dysfunction and/or structural disruption 

of the electrical conduction system of the heart (S. C. Wang et al., 2018). These abnormal 

rhythms sometimes are classified according to their origin as either ventricular arrhythmias 

(originating in the ventricles) or supraventricular arrhythmias (originating in heart areas 

above the ventricles, typically the atria). They also can be classified according to their effect 

on the heart rate, with bradycardia indicating a heart rate of less than 60 beats per minute and 

tachycardia indicating a heart rate of more than 100 beats per minute. Combining these 

classifications, supraventricular tachyarrhythmias are diverse family of cardiac arrhythmias 

that begins in parts of the heart above the ventricles and causes rapid heartbeats (S. C. Wang 

et al., 2018). Atrial fibrillation (AF) is the most common supraventricular tachyarrhythmia 

that accounts for 0.5% all emergency visits (Go et al., 2014). Ventricular tachyarrhythmias 

is an abnormal heart rhythm that begins in either the right or left ventricle and causes rapid 

heartbeats. It may last for a few seconds (non-sustained) or for many minutes or even hours 
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(sustained). A sustained ventricular tachyarrhythmias often progresses to ventricular 

fibrillation. A bradyarrhythmia is a slow heart rhythm that is usually caused by disease in the 

heart’s conduction system, types include sinus node dysfunction and heart block (S. C. Wang 

et al., 2018). 

2.2.1.3 Heart Valve Diseases 

Heart valve diseases or valvular heart diseases are characterized by damage to or a defect in 

any of the four heart valves. When it affects more than one heart valve, it is called 

multiple valvular heart disease (Zamorano et al., 2020). There are two main 

classifications of valvular heart diseases: stenosis and insufficiency. Valvular stenosis results 

from narrowing of the valve orifice, usually caused by thickening and increased rigidity of 

the valve leaflets, often accompanied by calcification (Nishimura, 2002). When this occurs, 

the valve does not open completely as blood flows across it, thereby resulting in a high 

resistance to flow and the development of a large pressure gradient across the valve when 

blood is flowing through the valve (Zamorano et al., 2020). Valvular insufficiency occurs 

when the valve leaflets do not completely seal when the valve is closed; sometimes, the valve 

bulges back into the previous chamber of the heart, a phenomenon called valve prolapse 

(Zamorano et al., 2020). This causes regurgitation of blood into the proximal chamber. For 

example, in aortic valve insufficiency blood regurgitates from the aorta into the left ventricle 

after ventricular ejection (Nishimura, 2002). These two conditions can affect any of the four 

main valves, however, the mitral and aortic valves are the two valves which are commonly 

affected (Zamorano et al., 2020). 

2.2.1.4 Congenital Heart Defects 

Congenital heart defects are a group of structural defects of the heart or the great vessels 

which are present at birth, and can often severely affects cardiac function (Sharma, 2019). 

Besides, they are the most common of all human birth defects and are the leading cause of 

neonatal and infant morbidity and mortality (Snider and Conway, 2011). There are many 

types of congenital heart defects, some are simple while others are combinations of simple 

defects, and to a greater extent, the level of complexity of the defect determines the severity 

of the condition. The most common congenital heart defects are ventricular septal defect 

(VSD) and atrial septal defect (ASD). However, the most severe congenital heart defects 
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include: double outlet right ventricle (DORV), persistent truncus arteriosus (PTA), 

transposition of the great arteries (TGA), tetralogy of fallot (TOF), atrioventricular septal 

defects (AVSDs), and large VSDs (Sharma, 2019). 

2.2.1.5 Rheumatic Heart Disease 

Rheumatic heart disease (RHD) refers to the long-term cardiac damage (mostly valvular 

damage) caused by either a single severe episode or multiple recurrent episodes of acute 

rheumatic fever (ARF), an abnormal autoimmune reaction to group A streptococcal infection 

in genetically susceptible individuals (Marijon et al., 2012; Sika-Paotonu et al., 2017). The 

valves most commonly affected are the mitral and aortic. The most serious permanent cardiac 

damage usually caused by ARF is endocarditis, characterized by swelling, edema, and 

deformity of the heart valves. When the valvulitis heals it may lead to fibrous thickening and 

adhesion of chordae tendineae and valve commissures, resulting in stenosis and/or 

regurgitation (Ueland, 1985). 

2.2.1.6 Heart Failure 

Heart failure (HF) describes an acute or chronic situation in which the heart cannot pump 

blood properly to meet the body’s demands at a normal cardiac filling pressure due to 

weakness or stiffness of the heart muscle, causing symptoms such as decreased energy, 

troubled breathing, weight gain, and swelling of the legs or abdomen (Baman and Ahmad, 

2020; Ponikowski et al., 2017). Chronic heart failure (CHF) is a common late phase in the 

natural history of many cardiovascular diseases (Drozd et al., 2020). HF is broadly classified 

into two based on the left ventricular ejection fraction (LVEF). It is classified as systolic heart 

failure when the left ventricle is unable to contract normally and is unable to pump enough 

blood into circulation, that is the LVEF is < 40 %. Systolic heart failure is the most common 

type of heart failure. Diastolic heart failure occurs when the left ventricle stiffens or bulks up 

and as a result, causing the heart an impaired relaxation during diastole but with a preserved 

LVEF  (≥ 50 %) (Ponikowski et al., 2017). 

2.2.1.7 Stroke 

Stroke is defined as a neurological deficit attributed to an acute focal injury of the central 

nervous system (CNS) by a vascular cause. That is, a sudden death of brain cells due to lack 
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of oxygen, caused by blockage of blood flow or rupture of an artery to the brain. Strokes are 

classified into three main categories including; transient ischemic attack (TIA), ischemic 

stroke, and hemorrhagic stroke. A transient ischemic attack or ministroke occurs when blood 

flow to the brain is blocked temporarily. By definition, a stroke would be classified as a TIA 

if all symptoms resolved within 24 hours. A stroke is classified as an ischemic stroke when 

the arteries supplying blood to the brain is blocked by blood clots, causing a permanent 

damage to a part of the brain. The two most common types of ischemic strokes are thrombotic 

and embolic. A thrombotic stroke occurs when blood clots (thrombus) caused a blockage to 

an artery in the brain. An embolic stroke is when a blood clot or a piece of atherosclerotic 

plaque forms in another part of the body (often the heart or arteries in the upper chest and 

neck) and then moves through the bloodstream and lodges in an artery in the brain. 

A hemorrhagic stroke happens when an artery in the brain breaks open and leaks blood into 

the surrounding brain tissue, causing swelling and severe damage to the brain cells and 

tissues. The two types of hemorrhagic strokes are intracerebral and subarachnoid. An 

intracerebral hemorrhagic stroke happens when the tissues surrounding the brain fill with 

blood after an artery burst. Whereas, in a subarachnoid hemorrhage stroke, blood 

accumulates in the space beneath the arachnoid membrane that lines the brain (Campbell and 

Khatri, 2020; Sacco et al., 2013). 

2.2.1.8 Aneurysm 

Aneurysm is an abnormal bulge or a morbid dilation of the wall of a blood vessel, usually an 

artery, due to a weakened vessel wall. It has been reported that hemodynamic stress initiates 

early stage aneurysm formation, making it to be found mostly at sites of constant 

hemodynamic stress (Yokoi et al., 2015). Aneurysms can occur in any artery of the body, but 

the most common and most serious ones are those that occurs in the brain (cerebral aneurysm) 

or along the body's largest blood vessel, the aorta (aortic aneurysm). The aorta starts on the 

left side of the heart and runs down the chest to the abdomen and the rest of the body. When 

the bulge occurs in the chest region, it is called a thoracic aortic aneurysm and when it occurs 

in the abdomen, it is called an abdominal aortic aneurysm. However, abdominal aortic 

aneurysms are much more common than thoracic aortic aneurysms (Isselbacher, 2005). 
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2.2.1.9 Peripheral Arterial Disease 

Peripheral arterial disease (PAD) or peripheral vascular disease (PVD) is defined as 

narrowing and obstruction of antegrade flow of major systemic arteries other than those of 

the cerebral and coronary circulations. It occurs most commonly in the lower limbs and is 

caused mostly by atherosclerosis (Conte and Vale, 2018; Kullo and Rooke, 2016). PAD is 

strongly an age-dependent condition, as its prevalence increases with age in both genders. 

Similarly, PAD has been found to contribute significantly to morbidity and healthcare 

expenditures in the elderly (Golomb et al., 2006). The condition itself has since been 

recognized as an independent risk factor for both myocardial infarction and stroke. Thus, 

PAD affects both quality of life and life expectancy (Abdulhannan et al., 2012). 

2.2.1.10 Deep Venous Thrombosis and Pulmonary Embolism 

Deep vein thrombosis (DVT) is the formation of a blood clot, or thrombus, in a deep vein, 

most commonly the lower leg. The blood clot restricts blood circulation through the blocked 

area, leading to symptoms that can include pain, swelling, redness of the leg, and dilation of 

the surface veins. Pulmonary embolism (PE) happens when a part of the blood clot breaks 

off and travels through the circulation to the heart and into the lungs, completely or partially 

blocking a pulmonary artery, leading to manifestation of symptoms like pain in the chest 

while breathing, circulatory instability, and difficulty breathing (Galson, 2008). Because both 

illnesses share a common pathogenesis, they are collectively referred to as venous 

thromboembolism (VTE) (Van Neste et al., 2009). Among life-threatening cardiovascular 

diseases, VTE is the third most common after myocardial infarction and stroke, indicating 

that it is associated with substantial morbidity and mortality (Di Nisio et al., 2016). For 

instance, VTE has been reported to be the leading causes of morbidity and mortality 

following surgical procedures (Ali et al., 2015). In addition, VTE disproportionately affect 

the elderly, as incidence increases exponentially with age to up to one case per hundred 

people older than 80 years (Di Nisio et al., 2016). 

2.2.2 Prevalence and Burden of Cardiovascular Diseases 

Cardiovascular diseases (CVDs) are one of the most serious problems in modern medicine. 

They are the most common non-communicable diseases and leading cause of death 
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worldwide (Roth et al., 2018). Overall, the crude prevalence of CVDs was 485.6 million 

cases in 2017, an increase of 28.5% from 2007 (Virani et al., 2020). In 2017, approximately 

17.8 million deaths were attributed to CVDs globally, which amounted to an increase of 

21.1% from 2007 (Roth et al., 2018; Virani et al., 2020). On the basis of the 2017 National 

Health Interview Survey, the age-adjusted prevalence of all types of heart disease was 10.6% 

of the population in the United States (Virani et al., 2020). Each year CVDs causes 3.9 million 

deaths in Europe and over 1.8 million deaths in the European Union (EU) (Wilkins et al., 

2017). The burden of CVDs remains disproportionately larger in low-income and middle-

income countries compared to high-income countries, as more than 80% of CVD deaths 

occur in low-income and middle-income countries (Alwan and MacLean, 2009; Bovet and 

Paccaud, 2011). Particularly, sub-Saharan Africa has witnessed unprecedented increase in 

cases of CVDs over the past two decades and it is now a public health problem throughout 

the Region. In 2013, an estimated 1 million deaths were attributed to CVDs in sub-Saharan 

Africa, constituting about 5.5% of global CVD deaths and 11.3% of total deaths in Africa 

(Amegah, 2018). Besides, CVDs affects working age populations much more in sub-Saharan 

Africa. For instance, young adults in this region have tendency of developing CVDs at least 

two decades earlier than their counterparts in more developed regions (Yuyun et al., 2020) 

and cardiovascular deaths occurs among matured adults of the region at least 10 years earlier 

than their counterparts in high-income countries (Baingana and Bos, 2006). 

The global burden of CVDs is not only a health issue, but also a financial and economic 

challenge to healthcare systems (Anand and Yusuf, 2011). This is because, cardiovascular 

healthcare constitutes a significant proportion of total healthcare expenditure across the world 

and is expected to grow exponentially in future years (Timmis et al., 2020). The average 

annual direct and indirect cost of CVDs and stroke in the United States (over the period of 

2014 – 2015) was estimated to be $351.3 billion (Virani et al., 2020). CVDs was estimated 

to cost the European Union (EU) economy €210 billion a year in 2015, of which 53% (€111 

billion) is due to healthcare costs, 26% (€54 billion) to productivity losses and 21% (€45 

billion) to the informal care of people with CVD. Out of this, the total costs of ischemic heart 

disease (IHD) amounted to approximately €59 billion (Timmis et al., 2020; Wilkins et al., 

2017). Stevens and colleagues reported that heart conditions including hypertension, 

myocardial infarction, atrial fibrillation and heart failure imposed significant financial and 



20 
 

wellbeing impacts across Brazil, with the four conditions costing R$56.2 billion in 2015 

alone (Stevens et al., 2018). The World Health Organization (WHO) projected the economic 

loss due to CVDs in low-income and middle-income countries combined, to be $3.76 trillion 

over the period of 2011 – 2025 (World Health Organization, 2011). 

2.2.3 Risk Factors for cardiovascular Diseases 

Epidemiological studies have demonstrated a marked association between certain factors and 

the development of CVDs (Olas and Bryś, 2018). These factors are broadly classified as 

behavioral risk factors and intermediate risk factors. The most important behavioral risk 

factors for CVDs are unhealthy diet, physical inactivity, tobacco use and harmful use of 

alcohol. Intermediate risk factors include; dyslipidemia, hypertension, diabetes, 

overweight/obesity and inflammation. These intermediate risks factors are direct 

consequences of the behavioral risk factors and they indicate an increased risk of developing 

CVDs (Timmis et al., 2020). 

2.2.3.1 Unhealthy Diet 

Unhealthy dietary patterns are major risk factor for cardiovascular morbidity and mortality. 

Reports indicates that excessive intake of sodium and refined carbohydrates increases the 

probability of developing CVDs (Casas et al., 2018). 

2.2.3.2 Physical Inactivity 

Physical inactivity, as manifested by a sedentary lifestyle, is considered to be one of the major 

risk factors of coronary heart disease. Equally, it has been found to be associated with reduced 

functional capacity of the cardiovascular system (Halar, 1995). 

2.2.3.3 Tobacco Use 

Tobacco use is one of the avoidable risk factors for CVDs. It has been reported that smoking 

reduces the activities of nitric oxide synthase and causes coronary artery spasm (Choi et al., 

2016). Teo et al reported a linear relationship between number of cigarette smoked and the 

magnitude of risk of acute myocardial infarction (Teo et al., 2006). 
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2.2.3.4 Harmful Use of Alcohol 

Chronic alcohol use has been linked with adverse cardiac outcomes including; hypertension, 

coronary heart disease, stroke, peripheral arterial disease, and cardiomyopathy (Piano, 2017). 

A study noted that endothelial functions are impaired in individuals with history of long-term 

harmful use of alcohol even years after withdrawing from the habit (Di Gennaro et al., 2007). 

2.2.3.5 Dyslipidemia 

Dyslipidemia is recognized as a prominent risk factor for CVDs (Hedayatnia et al., 2020). 

Lipid abnormalities, including high levels of low-density lipoprotein cholesterol (LDL-C), 

elevated triglycerides and low levels of high-density lipoprotein cholesterol (HDL-C), are 

associated with an increased risk of cardiovascular events (Miller, 2009). The importance of 

low-density lipoprotein (LDL) cholesterol in the development of atherosclerosis has long 

been recognized, and LDL cholesterol remains the primary target of therapy for the 

prevention of coronary heart disease (Carmena et al., 2004). 

2.2.3.6 Hypertension 

Hypertension is the strongest risk factor for almost all different CVDs acquired during life, 

including coronary heart disease, left ventricular hypertrophy and valvular heart diseases, 

cardiac arrhythmias including atrial fibrillation, cerebral stroke and renal failure (Kjeldsen, 

2018). Hypertension accounts for an estimated 54 percent of all strokes and 47 percent of all 

ischemic heart disease events globally (Lawes et al., 2008). The management and control of 

hypertension are important to the prevention of these diseases (Kokubo and Iwashima, 2015). 

2.2.3.7 Diabetes 

Diabetes has long been recognized to be an independent risk factor for CVDs (Dokken, 

2008). Leon and Maddox reported a close link between diabetes mellitus (DM) and CVDs 

(Leon and Maddox, 2015). As such, DM appears to contribute directly to the development 

of cardiomyopathy, rather than solely via coronary atherosclerosis and hypertension (Asghar 

et al., 2009). Diabetes also affects the heart muscle, causing both systolic and diastolic heart 

failure (Dokken, 2008). 
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2.2.3.8 Overweight and Obesity 

In adults, overweight is defined as a body mass index (BMI) of 25.0 to 29.9 Kg/m2 

and obesity is defined as a BMI ≥ 30.0 Kg/m2 (Poirier et al., 2006). Both overweight and 

obesity has been reported to be strong risk factors for the development of CVDs, particularly 

heart failure and coronary heart disease (Carbone et al., 2019). In fact, a linear relationship 

has been found between adiposity and cardiovascular outcomes (Wilson et al., 2002). 

2.2.3.9 Inflammation 

Chronic inflammation, exemplified by elevated C-reactive protein, has been added to the risk 

factors for CVD as non-traditional risk factor (Katsiari et al., 2019; Lüscher, 2018). Current 

scientific evidence shows that chronic inflammation plays a key role in the pathogenesis of 

coronary artery disease, including the initiation/progression of atheroma plaque and rupture, 

post-angioplasty and restenosis. Consequently, the expression of mediators such as C-

reactive protein (CRP), interleukin (IL)-1, IL-6, IL-8, IL-1β, IL-18, monocyte 

chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF)-α has been reported to 

correlate with CAD severity (Zakynthinos and Pappa, 2009). 

2.3 MYOCARDIAL INFARCTION 

Myocardial infarction (MI) is the medical term for a heart attack, a life-threatening and most 

lethal manifestation of coronary artery diseases. It was first described patho-physiologically 

in 1912 by American physician, James B. Herrick (Herrick, 1912). Myocardial infarction 

occurs when blood flow to the heart muscle is abruptly cut off, usually due to blockage in 

one or more of the coronary arteries, and subsequent myocardial ischemia results in damage 

to the surrounding heart muscle. The blockage can be as a result of a blood clot or 

buildup/rupture of a plaque, a substance mostly made of fat, cholesterol, and cellular waste 

products, in the vessels (Torpy et al., 2008). 

2.3.1 Types of Myocardial Infarction 

Myocardial infarction is classified into five types based on the etiology and pathogenesis of 

the disease (Thygesen et al., 2007, 2012a, 2019). These classifications were first introduced 

in 2007 as an important component of the universal definition of MI (Thygesen et al., 2007). 
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2.3.1.1 Type 1 MI 

Type 1 MI, otherwise known as spontaneous MI, involves thrombotic occlusion of the 

coronary artery (Thygesen et al., 2007, 2012a, 2019). This thrombotic event occurs when a 

pre-existing atherosclerotic plaque ruptures or fissures and or eroded, thereby exposing 

underlying thrombogenic material to the circulation (Alpert, 1989). Consequently, the intact 

endothelium of the coronary artery which has vasodilatory and antiplatelet-aggregating 

effects loses its functions, leading to platelets activation and clotting cascade initiation 

(Pepine, 1989). The endothelium being sensitive to trauma, becomes damaged by high shear 

stress exerted on it as a result of narrowing of the coronary artery, leading to total occlusion 

of the coronary artery in that part of the myocardium (Pepine, 1989). Finally, the lack of 

blood supply to such part of myocardium brings about the myocardial tissue damage (Fig. 

2.7). 

2.3.1.2 Type 2 MI 

This type refers to MI secondary to an ischemic imbalance, originating from a condition other 

than coronary artery disease that contributes to an acute imbalance between oxygen demand 

and supply (Thygesen et al., 2007, 2012a). The myocardial oxygen supply/demand imbalance 

attributable to acute myocardial ischemia here may be multifactorial (Fig. 2.7), related either 

to: reduced myocardial perfusion due to fixed coronary atherosclerosis without plaque 

rupture, vasospasm, coronary microvascular dysfunction, coronary embolism, coronary 

artery dissection with or without intramural hematoma, or other mechanisms that reduce 

oxygen supply such as severe bradyarrhythmia, respiratory failure with severe hypoxemia, 

severe anemia, and hypotension/shock; or to increased myocardial oxygen demand due to 

sustained tachyarrhythmia or severe hypertension with or without left ventricular 

hypertrophy (Thygesen et al., 2019). 
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Figure 2.7. Pictorial Illustration of Type 1 and Type 2 Myocardial Infarction. The figure 

illustrates the distinction between MI types 1 and 2 from the perspectives of the condition of the 

coronary arteries (Thygesen et al., 2012b). 

2.3.1.3 Type 3 MI 

Type 3 MI refers to any sudden cardiac death, including cardiac arrest, often with symptoms 

suggestive of myocardial ischemia,  accompanied by presumed new ischemic ECG changes 

or new left bundle branch block (LBBB) or ventricular fibrillation that resulted in death 

before blood samples for biomarkers can be obtained, or before cardiac biomarker could rise 

in the blood (Thygesen et al., 2007, 2012a, 2019). 

2.3.1.4 Type 4 / Type 5 MI 

Type 4 and type 5 MI refers to cardiac procedural myocardial injuries, related to coronary 

revascularization procedures. For instance, type 4 MI are associated with percutaneous 

coronary intervention (PCI), while type 5 MI are secondary to coronary artery bypass grafting 

(CABG) (Thygesen et al., 2007, 2012a, 2019). 
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2.3.2 Symptoms of Myocardial Infarction 

The most common manifestation of MI in men and women is chest pain (Pilote, 2014). 

However, the symptoms can be quite varied in some individuals to include pressure or 

tightness in the chest, shortness of breath, sweating, nausea, vomiting, anxiety, cough, 

dizziness, fast heart rate, jaw pain, upper back pain and lightheadedness among others 

(Passinho et al., 2018). 

2.3.3 Detection and Identification of Myocardial Infarction 

Myocardial infarction can be recognized by clinical features, including electrocardiographic 

(ECG) findings, elevated values of biochemical markers (biomarkers) of myocardial 

necrosis, and by imaging, or may be defined by pathology (Thygesen et al., 2012a). 

2.3.3.1 Electrocardiographic Detection of Myocardial Infarction 

Electrocardiography (ECG) is an integral part of the diagnostic workup of individuals with 

suspected MI (Thygesen et al., 2007, 2012a, 2019). This is because MI is often associated 

with dynamic changes in ECG waveform (Thygesen et al., 2012a). The hallmarks of a MI on 

an ECG are; ST segment elevation, T wave inversion, and Q wave formation, occurring in 

that succession. This sequence of events is termed as the electrocardiographic evolution of 

an infarction (Gavaghan, 1999). A normal heart rhythm displays a P wave, QRS complex, 

and T wave. However, a profound ST-segment shift or T wave inversions involving multiple 

leads are associated with a greater degree of myocardial ischemia, and a worse prognosis 

(Thygesen et al., 2012a, 2019). On a normal ECG, the Q wave is a negative deflection, but 

not remarkable. The development of a Q wave that is about one-third the height of an R wave 

indicates irreversible myocardial damage or necrosis (Gavaghan, 1999). Other ECG 

abnormalities associated with MI include: PR segment depression (Jim et al., 2006), short 

PR interval and prolongation of QRS complex (Goldbloom and Dumanis, 1946). 

2.3.3.2 Biomarker Detection of Myocardial Infarction 

A variety of cardiac proteins and enzymes are used to evaluate myocardial cell death 

including: creatine kinase - total (CK), creatine kinase - MB fraction (CK-MB), troponin I 

(cTnI), troponin T (cTnT), Myoglobin, Lactate dehydrogenase (LDH) and Aspartate 

transaminase (AST) (Danese and Montagnana, 2016; Thygesen et al., 2007), but the most 
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specific for MI are; cardiac cTnI, cTnT, CK-MB (Ibrahim et al., 2014) and lactate 

dehydrogenase-1 isoenzyme (LDH-1) (Paloheimo and Pitkänen, 1964). Acute myocardial 

infarction (AMI) is detected when levels of these sensitive and specific biomarkers are 

increased in the blood (Thygesen et al., 2007). 

cTnI and cTnT are structural components of cardiac muscle. They are cardiac contractile 

proteins which are released into the bloodstream following myocardial injury. The nearly 

absolute myocardial tissue specificity as well as high clinical sensitivity makes them the 

preferred biomarker for myocardial necrosis than CK-MB, and helps to exclude elevations 

of CK caused by skeletal muscle trauma (Thygesen et al., 2007). 

Creatine kinase acts as a regulator of high-energy phosphate production and utilization within 

contractile tissues (Bessman and Carpenter, 1985). Cytoplasmic creatine kinase is a dimer 

composed of M and B subunits which associate to form CK-MM, CK-MB and CK-BB 

isoenzymes (Kemp et al., 2004). CK-MB is the main isoenzyme found in cardiac muscle 

while CK-MM is predominantly found in striated muscle and CK-BB is found mostly in 

brain, colon, ileum, stomach and urinary bladder (Lott and Abbott, 1986). Serum total CK 

and CK-MB activities rise in parallel following myocardial infarction, however, serum CK-

MB is considerably more specific for MI than serum total CK because serum total CK may 

be elevated in many conditions especially where skeletal muscle is damaged (Hamburg et al., 

1991). Specific quantitation of CK-MB is made possible by immunoinhibition technique 

using antibodies that inhibit M-subunit activity, with residual enzyme activity being derived 

from B-subunits only (Jockers-Wretou and Pfleiderer, 1975). 

Since LDH is present in nearly all human tissues, measurement of LDH-1 isoenzyme is 

necessary for greater specificity for cardiac injury (Danese and Montagnana, 2016). 

Sometimes, LDH-1 activities are corrected for in vivo or in vitro hemolysis by measuring the 

ratio of LDH-1&2. Ideally, the level of isoenzyme 2 is greater than isoenzyme 1 in healthy 

individuals, but with MI, the pattern changes and isoenzyme 1 is higher than isoenzyme 2, 

making the ratio to be > 1.0 in MI subjects, whereas it is usually < 1.0 in samples of subjects 

with hemolysis (Galbraith et al., 1990). 
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2.3.3.3 Histopathological Characteristics of Myocardial Infarction 

Histologically, the first ultrastructural changes detectable few minutes after the onset of 

myocardial injury are diminished cellular glycogen, relaxed myofibrils, sarcolemma 

disruption (Jennings and Ganote, 1974) and mitochondrial abnormalities (Virmani et al., 

1990). Coagulative necrosis is observed between 4-12 hours after infarction (Fishbein et al., 

1978). Pathologically, AMI is characterized by cellular infiltrations and so detection and 

identification of MI is done based on the presence of polymorphonuclear leukocytes 

(Thygesen et al., 2007), including neutrophils at about 12-24 hours after the onset of 

infarction (Fishbein et al., 1978). 

2.3.4 Prevalence and Burden of Myocardial Infarction 

Myocardial infarction is a key component of the burden of cardiovascular diseases and 

therefore occupies a central role in the assessment of the burden of heart disease (Roger, 

2007). It has been reported to be one of the most frequent causes of hospitalization in persons 

65 years of age and above in Brazil in recent years (Alves and Polanczyk, 2020). Thygesen 

and colleagues reported that MI is a major cause of death and disability worldwide (Thygesen 

et al., 2007, 2012a). Although, recent epidemiological data suggests that the incidence of MI 

is decreasing in developed countries due to improved health care systems and effective 

implementation of public health strategies (Jayaraj et al., 2018), nevertheless the incidence 

of MI is on the upsurge in the developing countries (Gaziano et al., 2010; Jayaraj et al., 2018). 

Furthermore, the prevalence of MI has been reported to be higher among men of all age 

groups than women (Jayaraj et al., 2018) and ethnic minority groups are disproportionately 

affected (Van Oeffelen et al., 2015). The reason for these disparities is not known. However, 

sex disparities in cardiovascular risk factors and the protective effect of female hormones in 

premenopausal women are considered the most likely explanatory factors (Jousilahti et al., 

1999; Kalin and Zumoff, 1990). 

2.3.5 Experimental Models of Myocardial Infarction 

After the onset of myocardial ischemia, cell death is not immediate but takes a finite period 

to develop (Thygesen et al., 2007, 2012a). However, it can be developed in some animal 

models within a short period of time. Jennings and Ganote reported an irreversible 
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histological cell death (20 to 60 minutes after the onset of ischemia) following experimental 

acute occlusion of a major branch of a coronary artery in dog (Jennings and Ganote, 1974). 

Prominently, Rona and others reported an infarct-like myocardial necrosis of uniform 

severity which resembled closely human myocardial infarction after two consecutive (24 h 

interval) acute doses (85 mg/kg/day) of isoproterenol were administered subcutaneously in 

rats (Rona et al., 1959). Isoproterenol, otherwise known as Isoprenaline is a synthetic 

catecholamine that acts on beta adrenergic receptors as agonist. Originally, it is used to 

increase the heart rate in conditions such as severe bradycardia that is unresponsive to 

atropine (Siddiqui et al., 2016). It is known to accelerate the sinus node and enhance 

atrioventricular node conduction (Vargas et al., 1975). According to Rona et al, a relative 

ischemia, elicited by exaggerated beta-adrenergic stimulation and reduced coronary blood 

flow, is responsible for the infarct-like character of the myocardial necrosis induced by 

isoproterenol in rats (Rona et al., 1959). This pharmacologic technique developed by Rona 

and colleagues does have an advantage over the occlusion method in that it requires no 

surgical procedures and so reduces fatality before experimental assessments. Thus, after 

confirmation of their observations by a number of other groups (Beznak, 1962; Handforth, 

1962; Hill et al., 1960), it has since been adopted as a reliable non-surgical animal model of 

myocardial infarction (Rona et al., 1963). 

2.4 MEDICINAL PLANTS 

Medicinal plant refers to all plants with specific ethnobotanical claims of capacity to treat or 

prevent certain illnesses (Heinrich, 2018). Others defined medicinal plants as plants which, 

in one or more of its organs, contains substance that can be used for therapeutic purposes, or 

which are precursors for chemo-pharmaceutical semi-synthesis (Karunamoorthi et al., 2013). 

Since ancient times, when there was no commercial and synthetically-manufactured drugs, 

people have used plants and plant extracts to ameliorate diseases and foster 

healing.  Historically, human beings came to the awareness of medicinal plants usage as a 

result of many years of struggles against illnesses (Petrovska, 2012). Medicinal properties 

derived from plants can come from many different parts of a plant including leaves, roots, 

bark, fruit, seeds and flowers. In fact, until the mid-nineteenth century nature’s 

pharmaceuticals, in the form of herbs, plants, roots, vines and fungi, were all that were 
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available to relieve man’s pain and suffering (Jones, 2011). It was only in 1869 that the first 

synthetic drug, chloral hydrate, was discovered and introduced as a sedative-hypnotic (Jones, 

2011), followed by creation of aspirin out of the salicylic acid extracted from willow barks 

in 1897 (Carmona and Pereira, 2013). These discoveries led to an era dominated by synthetic 

drug development, making herbal medicines to be seen as obsolete. Undoubtedly, this 

development greatly improved medical care, human health, thus extending human life 

(Carmona and Pereira, 2013). However, due to decreasing efficacy of synthetic drugs and the 

increasing contraindications of their usage (Petrovska, 2012), the interest in 

phytopharmaceutical products and herbal medicines has been a trend in recent years (de 

Oliveira et al., 2017). 

2.4.1 Andrographis paniculata (Burm. f.) Nees 

Andrographis paniculata (Burm. f.) Wall. ex Nees (Fig. 2.8), popularly known as Kalmegh 

or king of bitters, is an annual herbaceous plant belonging to the family Acanthaceae (Mishra 

et al., 2007). The plant is commonly used as ingredient of herbal formulations indicated for 

chest pain and cardiovascular diseases in India, China, Hong Kong, Philippines, Malaysia, 

Indonesia, Thailand (Akbar, 2020; C. Y. Zhang and Tan, 1997) and many regions of Africa 

(Okhuarobo et al., 2014). Other ethnobotanical used of Andrographis paniculata includes; 

treatment of snake bite, bug bite, diabetes, dysentery, fever, and malaria (Hossain et al., 

2014). The commonly utilized parts of the plant include whole plant, aerial part, leaves and 

the root (Akbar, 2011). 
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Figure 2.8. Picture of Andrographis paniculata. The mature plant (Hossain et al., 2014). 

Several studies have investigated the activities of crude and fractional extracts of this plant 

against cardiovascular diseases. Zhang and Tan reported that aqueous extract of 

Andrographis paniculata produced a dose-dependent fall in systolic blood pressure in both 

spontaneously hypertensive rats and normotensive rats, with a corresponding significant 

decrease in plasma angiotensin converting enzyme (ACE) activity and that the decrease in 

ACE activity was not significantly altered in normotensive rats, an indication that suggests 

its hypotensive effect (C. Y. Zhang and Tan, 1996). In addition, Ojha et al investigated the 

protective effects of hydroalcoholic extract of Andrographis paniculata on ischemia 

reperfusion-induced myocardial injury in rats and reported favorable modulation of 

hemodynamic and left ventricular contractile function, restoration of the myocardial 

antioxidants and prevention of myocytes injury similar to the effects of standard drug 
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(benazepril) treatment (Ojha et al., 2012). Moreover, the cardioprotective activities of both 

methanolic and alcoholic extracts of Andrographis paniculata against experimentally-

induced myocardial infarction has also been reported (Adeoye et al., 2019; Sah and 

Nagarathana, 2016). Similarly, Guo et al reported that extracts of Andrographis paniculata 

protected against Ca2+-overloading in the process of myocardial ischemic reperfusion 

through significant augmentations in activities of sarcolemma Ca2+-ATPase and Na+-K+ 

ATPase (Z. Guo et al., 1995). 

Importantly, Hossain et al reviewed the ethnobotany, phytochemistry, and pharmacology of 

Andrographis paniculata, and pointed out that the existing reports on the crude and fractional 

extracts of the plant indicated that it could be used as alternative source for the treatment of 

cardiovascular diseases. More importantly, they suggested that pharmacological 

investigation using the bioactive constituents of the plant will provide more specific evidence 

to substantiate the veracity of the ethnobotanical claims and to unravel the possible 

mechanisms of action (Hossain et al., 2014). 

2.5 BIOACTIVE NATURAL PRODUCTS 

The term “natural products” encompasses all materials and or substances that are produced 

by biological sources, including biotic materials, bio-based materials, bodily fluids and other 

natural materials that were once found in living organisms. However, within the fields 

of medicinal chemistry, natural products are often defined as secondary metabolites (Krause 

and Tobin, 2013). Secondary metabolites are organic compounds that typically do not have 

direct involvement in the normal growth, development and or reproduction of the organism 

producing them, but are in the correct chiral configuration to exert extrinsic biological 

activity or function that mainly affects other organisms outside of their producer (Zähner, 

1979). 

Plants are an important source of secondary metabolites (Kourkoutas et al., 2018). The 

pharmacologically important plant secondary metabolites are often referred to as bioactive 

natural products (Brahmkshatriya and Brahmkshatriya, 2013; Velu et al., 2018). These 

bioactive natural products are structurally and chemically diverse molecules (Pham et al., 

2019) and have provided chemical leads for the development of many drugs for diverse 
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indications (Beutler, 2009). Over the past few decades, a lot of studies have focused on the 

protective effect of bioactive natural products obtained from plants against various diseases 

such as cardiovascular, diabetes, reproductive, cancer, and neurodegenerative diseases 

(Kourkoutas et al., 2018; Sairazi and Sirajudeen, 2020). 

Plant bioactive natural products can be classified on the basis of their chemical structure, 

composition, aqueous solubility, and based on the pathway by which they are synthesized. A 

simple classification includes three main groups: terpenes, phenolics, and alkaloids. Among 

these, terpenes are the most abundant and most structurally diverse, constituting about 55 % 

of all plant bioactive natural products (Brahmkshatriya and Brahmkshatriya, 2013). 

2.5.1 Terpenes 

Terpenes are naturally occurring hydrocarbons produced by a wide variety of plants and 

animals. The term “terpene” was originally coined from turpentine (resin of pine trees) to 

describe a mixture of isomeric hydrocarbons found in several pine tree species 

(Brahmkshatriya and Brahmkshatriya, 2013). Terpenes predominantly shapes the properties 

of plants such as conifer wood, balm trees, citrus fruits, coriander, eucalyptus, lavender, 

lemon grass, lilies, carnation, caraway, peppermint species, roses, rosemary, sage, thyme, 

violet and many other plants or parts of those (roots, rhizomes, stems, leaves, blossoms, fruits, 

seed) which are well known to smell pleasantly, to taste spicy, or to exhibit specific 

pharmacological activities (Breitmaier, 2006). They are classified based on the number of 

isoprene (C5H8) units incorporated in their basic molecular skeleton (Croteau, 1998), which 

include hemiterpenes (one isoprene units), monoterpenes (two isoprene units), 

sesquiterpenes (three isoprene units), diterpenes (four isoprene units), sesterterpenes (five 

isoprene units), triterpenes (six isoprene units), tetraterpenes (eight isoprene units) and 

polyterpenes (many isoprene units) (Breitmaier, 2006). Among these classes, diterpenes has 

been recognized as fulfilling the definition of a pharmacological preconditioning class of 

compounds and give hope for the therapeutic use in cardiovascular diseases (Tirapelli et al., 

2008). 

Consequently, several diterpenes has been studied for their cardiovascular effects. Cuadrado 

et al reported cardioprotective effects of labdane diterpenes derived from hispanolone, 

isolated from Ballota hispanica (L.) Benth against anoxia/reperfusion-induced injury in 
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isolated cardiomyocytes (Cuadrado et al., 2011). Also, Garcia et al reported that neo-

clerodane and ent-clerodane diterpenes from Baccharis trimera (Less.) reduced the maximal 

contractions induced by CaCl2 in KCl depolarized rat portal vein preparations, via blockade 

of the voltage-dependent calcium channels (Garcia et al., 2014). Similarly, Jin and Li 

reported the cardioprotective effects of tanshinone, a lipophilic diterpene quinone from 

Salvia miltiorrhiza (Danshen) (Jin and Li, 2016). Most recently, Monteiro et al reported that 

manool, a labdane diterpene isolated from the plant Salvia officinalis, mediated 

antihypertensive effects through mechanism involving nitric oxide pathways (Monteiro et 

al., 2020). 

2.5.1.1 Andrographolide 

Andrographolide (Fig. 2.9), molecular formula: C20H30O5 and molecular weight: 350.4 

g/mol, is a labdane diterpene lactone compound extracted from the plant Andrographis 

paniculata (Burm. f.) Wall. ex Nees. Actually, a number of active principles are reported 

from the plant, which mainly include diterpene lactones, flavonoids, and polyphenols (Chao 

and Lin, 2010; Li et al., 2007; Rao et al., 2004). However, andrographolide has been 

established to be the major constituent and has been found to be mostly responsible for its 

key therapeutic properties (Brahmachari, 2011; Chao and Lin, 2010). This prime constituent 

is mainly concentrated in leaves of the plant and can easily be isolated from the crude plant 

extracts as crystalline solid (Kulyal et al., 2010; Lomlim et al., 2003; Rajani et al., 2000). 
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Figure 2.9. Structure of Andrographolide. The figure shows the chemical structure of 

andrographolide with carbon atoms in the compound numbered accordingly (Chao and Lin, 2010). 

2.5.1.1.1 Pharmacokinetics and Bioavailability of Andrographolide 

Andrographolide has been found to be quickly absorbed and extensively metabolized both in 

rats and humans. Panossian et al reported that andrographolide was quickly and almost 

completely absorbed into the blood following oral administration of the compound at a dose 

of 20 mg/kg body weight in rats, and that in human, maximum plasma levels of 

approximately 393 ng/ml (∼1.12 μM) were reached after 1.5 - 2 hours following oral 

administration of 80 mg of the compound (Panossian et al., 2000). Similarly, Chen et al 

reported that after a single intragastric administration of andrographolide (50mg/kg) in rats, 
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maximum plasma concentration of 1 μM was recorded in 30 min, indicating a bioavailability 

of 1.19% (H. Chen et al., 2014). Likewise, Pholphana et al reported that andrographolide was 

completely dissolved in the simulated pH of gastrointestinal tract within 60 min of dissolution 

(Pholphana et al., 2016). 

2.5.1.1.2 Pharmacological activities of Andrographolide 

Andrographolide has been reported to exhibit diverse pharmacological activities in isolation. 

For instance, it has been shown in some experimental studies that andrographolide may help 

in liver protection and regeneration (Roy et al., 2014; Trivedi et al., 2007; Ye et al., 2011). 

Similarly, the effectiveness of andrographolide against viral infections has been described in 

a number of studies (J. X. Chen et al., 2009; Wintachai et al., 2015). Also, there are scientific 

evidences suggesting andrographolide as an anti-inflammatory agent (Abu-Ghefreh et al., 

2009; Bao et al., 2009). Furthermore, Yu et al studied the ameliorative effects of 

andrographolide against streptozotocin-induced diabetes in rat, their results indicated that 

oral administration of andrographolide reduced plasma glucose concentration in diabetic rats 

in a dose-dependent manner and that andrographolide at the effective dose of 15 mg/kg 

significantly attenuated the increase of plasma glucose induced by an intravenous glucose 

challenge test in normal rats (Yu et al., 2003). Other pharmacological effects documented for 

andrographolide in the literature include antineoplastic activity (Rajagopal et al., 2003; 

Varma et al., 2011) and immunomodulatory activity (W. Wang et al., 2010). 

2.5.1.1.3 Previous Reports on The Cardiovascular effects of Andrographolide 

Earlier, there are a number of hints in the literature suggesting andrographolide as the 

cardioprotective principle in Andrographis paniculata and also suggesting the protective 

potentials of the compound against cardiac and vascular damages. Amroyan et al reported 

the inhibitory effect of andrographolide against platelet-activating factor (PAF)-induced 

platelet aggregation and linked the effect to the cardiovascular and antithrombotic activity 

described of Andrographis paniculata (Amroyan et al., 1999). Also, Woo et al investigated 

the cardioprotective effects of andrographolide and several other diterpene lactones derived 

from Andrographis paniculata against hypoxia/reoxygenation injury in neonatal rat 

cardiomyocytes; they discovered that it was only pretreatment with andrographolide that 

protected the cardiomyocytes against hypoxia/reoxygenation injury and concluded that 
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andrographolide is the cardioprotective principle in Andrographis paniculata (Woo et al., 

2008). In addition, Zhi-Tao et al reported that andrographolide inhibited intimal hyperplasia 

in a rat model of autogenous vein grafts through suppression of p65, E-selectin and MMP-9 

at the transcriptional level (Zhi-Tao et al., 2011). More recently, Zeng et al reported that 

andrographolide inhibited aconitine-induced arrhythmias in rabbits (Zeng et al., 2017). 

Likewise, Wu et al reported that andrographolide protected against aortic banding-induced 

cardiac hypertrophy in mice through inhibition of MAPKs signaling (Wu et al., 2017). 
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3.1 JUSTIFICATION 

Cardiovascular diseases are the leading cause of death globally (Mc Namara et al., 2019). 

Notable among these diseases is myocardial infarction (an acute condition of necrosis of 

myocardium) owing to its relative irreversibility (Ferrari, 2001; Kumar et al., 2017) and 

higher percentage of mortality among the affected patients (Roth et al., 2018). Myocardial 

infarction results from myocardial ischemia and is a serious problem for the ischemic patients 

as it compromises the ability of the heart to pump blood efficiently (Thygesen et al., 2012a). 

In addition, platelet-dependent thrombus formation has been identified as a key event in the 

pathogenesis of this disease (Gawaz, 2004). In the first place, arterial microthrombus 

formation results in hypoxia (Evans, 2019), chronic intermittent of which promotes 

myocardial ischemia-related ventricular arrhythmias and sudden cardiac death (Morand et 

al., 2018). Though, it is very difficult to define symptoms of myocardial infarction, it has 

been reported that myocardial infarction accounted for up to 14.7 % of hospital visits because 

of chest pain (Goldman et al., 1996). Over the past three decades, there have been concerted 

efforts in cardiology to identify interventions that could make the heart more resistant to 

infarction. These include thrombolytics, beta blockers and calcium antagonists but either not 

very effective or with serious side effects (Genoni et al., 1996; Hollenberg, 2005; Russell, 

1988). Given these hitches, alternative remedies using bioactive constituents of plants are 

now gaining popular research interest as they are often considered effective and safer. 

Andrographis paniculata (Burm. f.) Wall. ex Nees (family: Acanthaceae), popularly known 

as Kalmegh or king of bitters is a common ingredient of herbal formulations indicated for 

chest pain and cardiovascular diseases in some parts of Asia (C. Y. Zhang and Tan, 1997) 

and many regions of Africa (Okhuarobo et al., 2014). In a review on ethnobotany, 

phytochemistry and pharmacology of Andrographis paniculata, Hossain et al concluded that 

the existing reports on the crude and fractional extracts of the plant indicated that it could be 

used for the treatment of cardiovascular diseases. They however suggested that 

pharmacological investigation using the principal bioactive compound in the plant will 

provide a more specific knowledge about the veracity of the ethnobotanical claims and the 

possible mechanism of action (Hossain et al., 2014). 
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Among the single compounds isolated from Andrographis paniculata, andrographolide 

(C20H30O5, MW: 350.4 g/mol), a diterpene lactone is the principal one in terms of abundance 

and bioactivity (Jayakumar et al., 2013). Andrographolide has been reported to have diverse 

pharmacological potentials in isolation (Bao et al., 2009; Chan et al., 2010; Rajagopal et al., 

2003; Wintachai et al., 2015). Much earlier, Amroyan et al reported its dose-dependent 

antithrombotic activity (Amroyan et al., 1999) and recently, Woo and colleagues also 

reported its protective effects against hypoxia and reoxygenation injury (Woo et al., 2008). 

Considering the roles of thrombosis and hypoxia in the pathogenesis of myocardial 

infarction, we hypothesized that andrographolide could confer protective effects on the heart 

against myocardial infarction. Hence, this study assessed the protective potentials of 

andrographolide against isoproterenol-induced myocardial infarction in rats. 

3.2 OBJECTIVES 

3.2.1 General Objective 

This study had as general objective to investigate the protective potentials of andrographolide 

against isoproterenol-induced myocardial infarction in rats. 

3.2.2 Specific Objectives 

i. Evaluate the effects of andrographolide administration on cardiac 

electrocardiography (ECG) profiles in comparison with the positive and negative 

controls. 

ii. Evaluate the effects of andrographolide administration on cardiac biometrical indexes 

in comparison with the positive and negative controls. 

iii. Evaluate the effects of andrographolide administration on the systemic cardiac 

biochemical markers and hematological profiles in comparison with the positive and 

negative controls. 

iv. Evaluate the effects of andrographolide administration on cardiac antioxidant status 

in comparison with the positive and negative controls. 
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v. Examine the effects of andrographolide administration on the gross morphology and 

histological structure of the heart tissue in comparison with the positive and negative 

controls. 

vi. Evaluate the effects of treatments on the mechanical and electrical activities of 

cardiac myocytes isolated from each experimental group to unravel the mode of 

actions of andrographolide. 

vii. Validate the mode of actions of andrographolide obtained from the in-vivo study with 

an in-vitro test of andrographolide (at different concentrations) on freshly isolated 

cardiomyocytes in comparison with standard drug. 
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IV. MATERIALS AND METHODS 
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4.1 MATERIALS 

4.1.1 Chemicals and Reagents 

Andrographolide (Catalog number: 33684, purity: 95%) was purchased from AstaTech Inc 

(Bristol, PA, USA). Isoproterenol hydrochloride (Product number: 15627), bovine insulin, 

porcine pancreas trypsin, Streptomyces griseus protease, bovine serum albumin, L-aspartic 

acid, ATP disodium trihydrate, Evans blue, NaCl, CaCl2.2H2O, HCl, EGTA, Na2HPO4, 

TEA-Cl, CsCl, TEA-OH, CsOH, CdCl2 and NMDG were purchased from Sigma-Aldrich 

(St. Louis, Missouri, USA). Glucose, NaOH, KOH and NaH2PO4 were purchased from 

Labsynth (SP, Brazil). HEPES free acid and KCl were purchased from Amresco LLC (Solon, 

Ohio, USA). MgCl2.6H2O was purchased from Merck (Darmstadt, Germany). Collagenase 

(type 2) was purchased from Worthington Biochemical Corporation (Lakewood, NJ, USA). 

TTC was purchased from GFS Chemicals (Powell, Ohio, USA). Formalin was purchased 

from Cromoline Quimica Fina Ltda (SP, Brazil). Heparin was purchased from Blau 

Farmaceutica (SP, Brazil). 

4.1.2 Experimental Animals 

Male Wistar rats of body weight 250-300 g were used for the experiments. Animals were 

housed in polypropylene cages lined with husk, allowed free access to water and standard 

pellet diet and maintained under standard laboratory conditions (12 h light/dark cycle at 22 

± 50C with 60 ± 10 % relative humidity) in the departmental animal house. All animal 

procedures were approved by the Committee on Ethical Use of Animals (CEUA) of the 

Federal University of Minas Gerais, Brazil. The study was carried out in compliance with 

recommendations in the Guide for the Care and Use of Laboratory Animals of the National 

Institute of Health (NIH Pub. No. 85-23, revised 1985). 
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4.2 METHODS 

4.2.1 Preparation of Drugs 

Drug solutions (andrographolide and isoproterenol hydrochloride) were prepared in 0.9 % 

normal saline solution under sterile condition and used within 10 min of preparation. 

4.2.2 Experimental Induction of Myocardial Infarction 

Myocardial infarction was induced in rats with two consecutive doses of Isoproterenol 

hydrochloride (80 mg/kg) injected subcutaneously at an interval of 24 h (B. Y. Guo et al., 

2011; Rona et al., 1959; Saroff and Wexler, 1970). 

4.2.3 Evaluation of Maximum Tolerated Dose (MTD) 

Healthy male Wistar rats (250-300g) were randomly divided into 6 groups (n = 5 per group) 

and then received graded doses of andrographolide formulated in 0.9 % saline solution with 

one dose daily by subcutaneous administration for a period of 21 days (3 weeks). The control 

group was given only 0.9 % saline solution and the remaining groups were injected with 

andrographolide at 10, 20, 40, 80, and 160 mg/kg body weight. The body weight, clinical 

signs of distress, behavioral change and mortality of rats were observed daily during 3 weeks 

of study. Animals were anesthetized with isoflurane and humanely euthanized by 

decapitation when displayed signs of compound-related intolerance such as skin swollen and 

severe unrelieved distress. At the end of the study, all animals were anesthetized with 

isoflurane and humanely euthanized by decapitation. 

4.2.4 Experimental Design 

Animals were randomly divided into four groups: Control (Ctr), Isoproterenol (Iso), 

Andrographolide (Andro), and Andrographolide plus Isoproterenol (Andro + Iso). Ctr group 

received 0.9 % normal saline solution once daily for 21 days. The Iso group received 0.9 % 

normal saline solution once daily for a period of 19 days, and on day 20 and 21 received 80 

mg/kg/day of isoproterenol hydrochloride solution. Andro group received 20 mg/kg/day of 

andrographolide for 21 days. Likewise, Andro + Iso group were pretreated with 20 mg/kg/day 

of andrographolide for a period 21 days and in addition received 80 mg/kg/day of 

isoproterenol hydrochloride solution on day 20 and 21 respectively (Fig. 4.1). All treatments 
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were administered subcutaneously. Experimental assessments of the animals were done 24 h 

after the last administration, beginning with non-invasive assessments after which the 

animals were sacrificed and samples were collected for analysis of various parameters of 

interest to the study. 

 

 

Figure 4.1. Schematic Illustration of Experimental Design for in-vivo Studies. All treatments 

were administered through subcutaneous route and experimental assessment of impacts of all 

treatments were done 24 h after the last administration. 

4.2.5 Electrocardiography Experiments 

Real-time monitoring, acquisition and analysis of ECG pattern was performed using a 

simultaneous 12-channel ECG module for veterinary (ECG-PC TEB, São Paulo, Brazil) as 

previously described (Costal-Oliveira et al., 2016). Briefly rats were anaesthetized with 

isofluranol using Brasmed veterinary anaesthetic inhaler (Brasmed, São Paulo, Brazil). 

Animals were then placed in supine position and electrodes were attached underneath the 

forelimbs and the hindlimbs. The ECG tracings were recorded at speed of 50 mm/s and 
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sensitivity of 2 N. Then, parameters of interest to the study; heart rate (HR), PR interval 

(PRi), QRS complex duration, QT interval (QTi), corrected QT interval (QTc) and S wave 

amplitude were all analyzed on the lead II channel. 

4.2.6 Biometrical Indexes Measurement 

Cardiac hypertrophy was assessed by measuring biometrical indexes including the heart 

weight/body weight ratio and heart weight/tibia length ratio as previously described (Yin et 

al., 1982). Body weight of animals was measured prior to sacrifice. After sacrifice, the heart 

was removed and immediately placed in cold phosphate-buffered saline (PBS) (1X) solution 

for cleaning of blood remnants in the heart chambers. After which the heart was blotted dry 

and weighed. One leg was severed above the knee joint from each animal, and the muscle 

and skin of the tibia were removed by mechanical stripping. Then the length of the tibia from 

the condyles to the tip of the medial malleolus was measured using Vernier caliper. 

4.2.7 Cardiac Biochemical Markers’ Assay 

Blood sample was collected from the animals 24 h after the last administration through 

cardiac puncture. The blood was centrifuged at 4500 rpm for 15 min; the serum was aspirated 

and used for the assays. Aspartate transaminase (AST), lactate dehydrogenase (LDH), 

creatine kinase (CK) and creatine kinase-MB fraction (CK-MB) activities were determined 

in the serum by enzymatic method using commercial kit (Kovalent, RJ, Brazil) and quantified 

by spectrophotometry at 340 nm using COBAS MIRA random access biochemistry analyser 

(Roche Diagnostic Corporation, Branchburg, NJ). Troponin I (cTnI) concentration was 

determined in the serum by rapid chromatographic immunoassay using commercially 

available kit (Biocon, BH, Brazil). 

4.2.8 Hematological Analysis 

Whole blood was aliquoted into an EDTA-tube for hematological analysis. For total 

erythrocytes (RBC) and leukocytes (WBC) count, 20 µL of total blood was diluted in 3.98 

mL of Gower solution and 0.38 mL of Turk solution, respectively. Neubauer chamber was 

used for RBC and WBC count and the content of cells per microliter of sample was calculated 

from the equations: 

𝐸𝑟𝑦𝑡ℎ𝑟𝑜𝑐𝑦𝑡𝑒𝑠 𝑚𝑚3𝑜𝑓 𝑏𝑙𝑜𝑜𝑑⁄ = 𝐶𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 × 10.000 
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𝐿𝑒𝑢𝑘𝑜𝑐𝑦𝑡𝑒𝑠 𝑚𝑚3𝑜𝑓 𝑏𝑙𝑜𝑜𝑑 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 × 50⁄  

Blood slides were made and rapid panoptic staining (NewProv, Brazil) was used for 

differential leukocytes count. 100 leukocytes were counted in different sites and results were 

expressed in percentage. 

4.2.9 Oxidative Stress Assessment 

4.2.9.1 Tissue Preparation and Total Protein Determination 

Animals were sacrificed by decapitation 24 hours after the last administration and the heart 

was excised. Heart (0.2g) were weighed and homogenized (Euro Turrax T20b IKA 

LABORTECHNIK) in 1ml of PBS (pH 7.2) on ice, the homogenates were centrifuged at 

10,000g for 15min and the supernatant was used for malondialdehyde (MDA) concentration, 

superoxide dismutase (SOD) and catalase activities analysis. For glutathione peroxidase 

(GPx) activity analysis, the tissues were homogenized in ice-cold Tris·HCl buffer (50mM, 

pH 7.5, containing 5mM EDTA) and centrifuged at 10,000g (4°C) for 20min, and the 

supernatant was used for the experiment. Total protein (TP) concentrations in the samples 

were determined by Lowry method with bovine serum albumin used as standard (Lowry et 

al., 1951). 

4.2.9.2 Antioxidant Enzymes’ Assay 

4.2.9.2.1 Superoxide Dismutase Activity 

SOD activity was measured as described by Dieterich et al (Dieterich et al., 2000), with some 

modifications (Gioda et al., 2010). Briefly, aliquots of the homogenate were added in 

phosphate-buffered saline (pH 7.2), MTT (1.25mM) and pyrogallol (100mM). After 5 

minutes, the reaction was stopped by the addition of DMSO. The absorbance was read at 

570nm. The activity of the enzyme was determined from the ability of superoxide dismutase 

to inhibit autoxidation of pyrogallol and expressed in U/μg protein. Where 1U = 50% 

inhibition of autoxidation of pyrogallol. 

4.2.9.2.2 Catalase Activity 

Catalase activity was assayed following the protocol described by Nelson and Kiesow 

(Nelson and Kiesow, 1972). Briefly, the supernatant (0.05ml) was added in 50mM sodium 
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phosphate buffer (2ml, pH 7.0, 25°C). The reaction was started by adding H2O2 (6mM) and 

the reaction proceeded for 1min at room temperature. Decomposition of H2O2 by catalase 

was quantified at absorbance of 240nm and expressed in millimoles of H2O2 decomposed per 

minute per milligram of protein (E.min-1.mg-1 protein). 

4.2.9.2.3 Glutathione Peroxidase Activity 

GPx activity was measured in the supernatants as described by Paglia and Valentine (Paglia 

and Valentine, 1967), with some modifications (Gioda et al., 2010). Briefly, supernatant 

(0.004ml) was added to 0.2ml of potassium phosphate buffer (100mM, pH=7.5), contained 

2mM reduced glutathione (GSH), 0.1U/ml glutathione reductase, 0.12mM NADPH, 2mM 

H2O2 and 1mM sodium azide. Glutathione peroxidase activity was quantified at absorbance 

of 340 nm and expressed in mmol NADPH.min-1.mg-1 protein. 

4.2.9.3 Malondialdehyde Assay 

MDA concentration was measured in the supernatants as described by Ohkawa and 

colleagues (Ohkawa et al., 1979), with some modifications (Janero, 1990). Briefly, 

supernatant (0.05 ml) was added to mixture containing 0.5 ml of thiobarbituric acid reactive 

substance (0.67%) and 0.25ml tricloroacetic acid (20%). The reaction mixture was incubated 

at 100°C for 20 min, after which the absorbance was measured at 532nm and the MDA 

concentration in the sample expressed in nanomoles per milligram of protein (nmol/mg 

protein). 

4.2.10 Tissue Necrosis Assessment 

Tissue Necrosis was assessed using Evans blue/triphenyltetrazolium chloride (TTC) tissue 

enzyme double staining technique as described previously by others (Bohl et al., 2009; 

Nachlas and Shnitka, 1963). Briefly, freshly excised heart was cannulated at the aorta, 

perfused with 200 µL of 1 % Evans blue solution and freezed in a small plastic bag at -200C 

without washing. After 2 h, five transverse sections (about 2mm slice thickness each) were 

harvested from the tissue using a sharp scalpel and incubated for 20 min in 1 % TTC solution 

at 370C. Thereafter, the sections were fixed in 10 % formalin for another 20 min and then 

transferred to glass microscope slides for photograph. Infarcted region was objectively 

differentiated from viable region of the tissue through color threshold mode (healthy/less at-
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risk myocardium as dark blue color, healthy/more at-risk myocardium as deep red color and 

infarcted/most at-risk myocardium as whitish color) using ImageJ software (ImageJ, Version 

1.44p, NIH, USA). Infarct size was calculated by dividing infarcted area of each tissue 

section by their respective total area at risk (AAR) (i.e., the total volume of the tissue section) 

and expressed as percentage. 

4.2.11 Histological Assessment 

Hearts were excised immediately after sacrifice, quickly rinsed in ice-cold PBS solution (pH 

7.2), dried with blotting paper and fixed in 10 % formaldehyde solution. The fixed hearts 

were then dehydrated in graded alcohol (70-100 %), embedded with paraffin and cuts were 

made 4µm thick. Some sections were stained with hematoxylin and eosin (H&E), and others 

with Masson’s trichrome. Examinations were done under light microscope for 

histopathological changes and photomicrographs were taken. 

4.2.12 Cardiomyocytes Isolation 

Cardiomyocytes were enzymatically isolated as previously described by others (Shioya, 

2007). Animals were given 200 U of heparin (i.p.) for anticoagulation before decapitation. 

The heart was excised, cannulated through the aorta and immediately mounted on a 

temperature controlled (37oC) perfusion system. The heart was then retrogradely perfused 

with Cell Isolation Buffer (CIB) supplemented with 0.4 mM EGTA. The CIB contained 130 

mM NaCl, 5.4 mM KCl, 0.5 mM MgCl2.6H2O, 0.33 mM NaH2PO4, 22 mM glucose, 25 mM 

HEPES free acid and 50 μU/ml bovine insulin (pH set to 7.4 with NaOH). After few minutes 

of stabilization, the perfusate was switched to enzyme solution made up of CIB supplemented 

with 0.3 mM CaCl2, 1mg/ml collagenase, 0.06 mg/ml trypsin and 0.06 mg/ml protease for 6 

min. The digested heart was then excised, shredded into several pieces and further digested 

by incubation at 37oC in fresh enzyme solution for 20 min. After which the digested tissue 

was briefly subjected to gentle mechanical agitation and filtered. The filtrate containing the 

cardiomyocytes was then centrifuged at 14 x g for 3 min. The cell pellet was resuspended in 

CIB supplemented with 1.2 mM CaCl2 and 2 mg/ml BSA, incubated at 37oC for 10 min, 

centrifuged (14 x g, 3 min) and then resuspended in tyrode solution (in mM) 140 NaCl, 5.4 

KCl, 0.5 MgCl2.6H2O, 0.33 NaH2PO4, 11 glucose, 5 HEPES free acid, 1.8 CaCl2.2H2O (pH 
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set to 7.4 with NaOH) supplemented with 2 mg/ml BSA. The isolated cardiomyocytes were 

used for experiments within 8 h after isolation. 

4.2.13 Cardiomyocytes Contractile Analysis 

The contractile properties of isolated cardiomyocytes from various groups were assessed 

using a video-based edge-motion detection system (Ionoptix, MA, USA) as previously 

described (Roman-Campos et al., 2009). Cells were placed in a coverslip chamber with 

lumini glass base, mounted on the stage of an inverted microscope (Nikon Eclipse TS100, 

Tokyo, Japan) and superfused with Tyrode solution. The cells were field stimulated with 

suprathreshold voltage at a frequency of 1 Hz and duration of 3 ms with the aid of a pair of 

platinum electrodes connected to an SD9 stimulator (GRASS Tech., Austin, Texas). Cells 

were visualized on a PC monitor with an NTSC camera (MyoCam, Ionoptix, MA, USA) 

attached to the microscope. Myocyte lengths at maximal contraction and relaxation were 

electronically captured as contractile traces by the edge motion detector. The contractile 

traces were then sampled (at least 50 consecutive contractions for each cell), analyzed with 

IonWizard software (Ionoptix, MA, USA) and the obtained cell shortening and derivatives 

indexes of contractility averaged. 

4.2.14 Patch Clamp Experiments 

Whole-cell recordings were obtained using an EPC-10plus patch clamp amplifier (HEKA 

Electronics, Rheinland-Pfalz, Germany) at room temperature (23-250C). After the 

establishment of the whole-cell configuration, the cells were maintained for 3-5 min at rest 

to give room for ionic equilibrium between the pipette solution and the intracellular medium. 

The patch pipettes were fabricated from 1.5 mm diameter thin-walled glass capillaries 

(Perfecta Ltda, SP, Brazil), using a vertical puller (PP-830, Narishige, Tokyo, Japan), and 

had a 1-4 MΩ resistance when filled with internal solution. 

4.2.14.1 Action Potential (AP) Recording 

For the recording of action potential, cardiomyocytes were maintained in external solution 

containing (in mM) 140 NaCl, 5.4 KCl, 0.5 MgCl2.6H2O, 0.33 NaH2PO4, 11 glucose, 5 

HEPES free acid and 1.8 CaCl2.2H2O (pH set to 7.4 with NaOH). Pipettes were filled with 

an internal solution containing (in mM) 130 L-aspartic acid, 20 KCl, 5 NaCl, 2 MgCl2.6H2O, 
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10 HEPES free acid and 5 EGTA (pH set to 7.4 with KOH). Action potentials were evoked 

by applying a test pulse of 1 nA current for a duration of 5 ms at 1 Hz frequency. 

4.2.14.2 L-type Calcium Current (ICa,L) Recordings 

To record L-type Ca2+ current, cardiomyocytes were maintained in external solution 

containing (in mM) 150 TEA-Cl, 0.5 MgCl2.6H2O, 1.8 CaCl2.2H2O, 10 HEPES free acid and 

11 glucose (pH set to 7.4 with TEA-OH). Pipette solution contained (in mM) 120 CsCl, 20 

TEA-Cl, 5 NaCl, 10 HEPES free acid, 10 EGTA and 1 MgCl2.6H2O (pH set to 7.4 with 

CsOH). The holding potential was set at -80 mV, prepulse was applied from -80 mV to -40 

mV for 50 ms to inactivate any remnants Na+ channels and then pulses were applied from -

50 mV to +40 mV in 10 mV increments for 400 ms. 

4.2.14.3 Total Potassium Current (IK+) Recording 

To record whole-cell potassium current, cardiomyocytes were maintained in external solution 

containing (in mM) 140 NMDG, 5.4 KCl, 1.8 CaCl2.2H2O, 0.1 CdCl2, 0.5 MgCl2.6H2O, 5.5 

glucose and 5 HEPES free acid (pH set to 7.4 with HCl). Pipette solution contained (in mM) 

130 KCl, 1 MgCl2.6H2O, 2 ATP disodium trihydrate, 10 HEPES free acid and 5 EGTA (pH 

set to 7.4 with KOH). The holding potential was set at -80 mV from which depolarizing pulse 

was applied to raise the membrane potential to +60 mV in 10 mV increments for 3 s and the 

transient outward potassium current (Ito) was measured at the peak of the depolarized test 

potential (+60 mV). 

4.2.15 Concentration-Response Assessments 

To validate the cardioprotective mode of action of andrographolide, effects of 

andrographolide on the mechanical and electrical properties of cardiac myocytes were further 

assessed in vitro in reference to a standard drug of MI (nicardipine). Briefly, cardiomyocytes 

were isolated from hearts excised from healthy male Wistar rats (that was not given any 

treatments) and the cardiomyocytes were used for the experiments.  

To investigate the concentration-response impacts of andrographolide on cardiac mechanical 

activities, cardiomyocytes were incubated in andrographolide (10-5 M, 10-4 M & 10-3 M) and 

nicardipine (10-5 M) for 10 minutes. Unincubated cardiomyocytes were used as control. Then, 
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the contractile analysis of cardiomyocytes from each group were analyzed as described 

earlier. 

To investigate the concentration-response impacts of andrographolide on cardiac action 

potential, time course of AP was recorded before and after exposure to andrographolide (10-

5 M, 10-4 M & 10-3 M) in comparison with nicardipine (10-5 M). To do this, AP was evoked 

by applying a test pulse of 1 nA current for a duration of 5 ms at 1 Hz frequency. With this 

protocol, 30 consecutive sweeps of AP (4s between each) were recorded for the control, 

followed by another 30 consecutive sweeps (4s between each) for the test in each case. 

To investigate the concentration-response impacts of andrographolide on the cardiac L-type 

Ca2+ current, time course of ICa,L peak current was recorded before and after exposure to 

andrographolide (10-5 M, 10-4 M & 10-3 M) in comparison with nicardipine (10-5 M). To do 

this, prepulse was applied from holding potential of -80 mV to -40 mV for 50ms, from which 

test pulse was applied to raise the membrane potential to 0 mV for 400ms to directly measure 

ICa,L. With this protocol, 6 consecutive sweeps of ICa,L (20s between each) were recorded for 

the control, followed by another 6 consecutive sweeps (20s between each) for the test in each 

case. 

To investigate the concentration-response impacts of andrographolide on the cardiac 

transient outward potassium current, time course of Ito peak current was recorded before and 

after exposure to andrographolide (10-5 M, 10-4 M & 10-3 M) in comparison with nicardipine 

(10-5 M). To do this, holding potential was set at -80 mV and then depolarized to +60 mV for 

600ms to directly measure Ito. With this protocol, 6 consecutive sweeps of Ito (20s between 

each) were recorded for the control, followed by another 6 consecutive sweeps (20s between 

each) for the test in each case. 

4.2.16 Statistical Analysis 

Most data were analyzed by one-way analysis of variance (ANOVA), followed by 

Bonferroni’s multiple comparisons test, others were analyzed by paired t-test using GraphPad 

Prism 8.0 (GraphPad Software, CA, USA). Results are presented as Mean ± Standard 

Deviation (SD). For all comparisons, p values lower than 0.05 were considered statistically 

significant. 
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5.1 Maximum Tolerated Dose of Andrographolide in Rats 

A maximum tolerated dose (MTD) test was performed to determine the amount of 

andrographolide which could be administered in rats (Fig. 5.1). The animals tolerated a dose 

up to 80 mg/kg with no significant changes in animal behavior and no clinical signs of 

distress. However, an animal in the group subjected to the highest dose of andrographolide 

(160 mg/kg) showed clinical signs of distress including skin swollen on day 17 of treatments 

and was euthanized. Thus, the MTD study indicated that the maximum tolerated dose of 

andrographolide is between 80 and 160 mg/kg in male Wistar rats. Therefore, informed the 

choice of 20 mg/kg/day dose for the in-vivo efficacy assays in agreement with previous 

scientific evidences (Al Batran et al., 2014; Liang et al., 2018). 

 

Figure 5.1. Rats Survival Curves from Maximum Tolerated Dose Study. All animals (n = 5 per 

group) received one dose daily for 21 days (3 weeks). 0.9% saline solution was used as the vehicle of 

administration and also served as negative control. 
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5.2 Andrographolide Pretreatment Prevents Infarction-like Changes in ECG 

Profiles 

To assess the impacts of andrographolide on the electrical activities of the heart, ECG profiles 

were measured in each experimental group. Twenty (20) complete cycles were sampled for 

each experimental group, results show unambiguous ST-segment elevation in Iso group 

compared to the Ctr, while both Andro and Andro + Iso group exhibited normal ST-segment 

similar to the Ctr when compared to the Ctr and Iso group (Fig. 5.2). In addition, results show 

a significant (p < 0.05) increase in heart rate (HR) in Iso group compared to the Ctr, while 

both Andro and Andro + Iso group exhibited a Ctr level HR when compared to Iso group 

(Fig. 5.3A). There was no significant change recorded in the PR interval across all 

experimental groups, indicating no signaling blockage from the atria to the ventricle (Fig. 

5.3B). On the other hand, QRS, QT and QTc were in similar fashion increased significantly 

(p < 0.05) in Iso group compared to the Ctr, suggesting ventricular dysfunction typical of MI. 

Interestingly, almost all of these parameters were maintained significantly (p < 0.05) at Ctr 

levels and near Ctr levels in Andro and Andro + Iso group respectively (Fig. 5.3C-E). A 

remarkable increase was also recorded in S wave amplitude in Iso group which further 

confirms the ST-segment elevation, whereas, andrographolide kept the S wave amplitude 

slightly below the isoelectric line in Andro and Andro + Iso group (Fig. 5.3F). 

Figure 5.2. Representative ECG Records for All Experimental Groups. It shows 20 complete 

cycles sampled from each experimental group with distinct ST-segment elevation in Iso group typical 

of MI while other groups exhibited normal ST-segments. 
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Figure 5.3. Effects of Andrographolide on Cardiac ECG Profiles. (A) Heart rate (HR). (B) PR 

interval. (C) QRS complex. (D) QT interval. (E) Corrected QT interval (QTc). (F) S wave amplitude. 

HR, QRS, QT and QTc were all increased markedly in Iso group as against Andro group and Andro 

+ Iso group where the parameters were maintained at control levels. Data are presented as Mean ± 

SD, n = 10 per group and analysed by one-way ANOVA followed by Bonferroni’s multiple 

comparisons test. *p < 0.05 vs Ctr and #p < 0.05 vs Iso. 
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5.3 Andrographolide Pretreatment Minimizes MI-associated Cardiac Hypertrophy 

To assess the effects of andrographolide on the heart tissue intrinsic compensatory response 

to myocardial damage (cardiac hypertrophy) usually accompanied MI, biometrical indexes 

including body weight (BW), tibia length (TL), heart weight (HW), HW/BW ratio and 

HW/TL ratio were measured for each experimental group. There were no statistically 

significant differences recorded in BW (Fig. 5.4A) as well as TL (Fig. 5.4B) across all 

experimental groups. Thus, validates that animals used for the study were indeed of the same 

age and weight range. However, the HW, HW/BW ratio and HW/TL ratio were significantly 

(p < 0.05) increased in Iso group compared to the Ctr, while the indexes were maintained at 

Ctr levels in Andro group. Consequently, the indexes were significantly (p < 0.05) reduced 

to near Ctr levels in Andro + Iso group when compared to Iso group (Fig. 5.4C-E). Hence, 

suggesting that andrographolide minimized ventricular wall stress, a major event required for 

the induction of cardiac hypertrophy in MI. 
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Figure 5.4. Effects of Andrographolide on MI-Associated Cardiac Hypertrophy. (A) Body 

weight (BW). (B) Tibia length (TL). (C) Heart weight (HW). (D) Heart weight/body weight ratio 

(HW/BW). (E) Heart weight/tibia length ratio (HW/TL). BW as well as TL were maintained at 

relatively the same range in all experimental groups. HW, HW/BW and HW/TL were remarkably 

increased in Iso group while the indexes were maintained at control levels in Andro group and near 

control levels in Andro + Iso group. Data are presented as Mean ± SD, n = 7 for Ctr and Andro, while 

n = 5 for Iso and n = 6 for Andro + Iso group, analysed by one-way ANOVA followed by Bonferroni’s 

multiple comparisons test. *p < 0.05 vs Ctr and #p < 0.05 vs Iso. 
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5.4 Andrographolide Pretreatment Prevents MI-associated Increases in Systemic 

Cardiac Markers 

To determine the impacts of andrographolide on systemic myocardial injury markers, serum 

levels of CK, CK-MB, LDH, AST and cTnI were measured in all experimental groups (Fig. 

5.5A-E). A significant (p < 0.05) increase was recorded in the levels of CK, CK-MB, AST, 

and a remarkable increase in the level of cTnI, as well as a slight increase in the level of LDH 

in Iso group compared to the Ctr. Whereas, levels of these parameters were maintained almost 

at the Ctr levels in Andro group as well as Andro + Iso group when compared to the Iso 

group. Indicating astonishing prevention of MI-associated myocardial membrane leakages 

by andrographolide.  
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Figure 5.5. Effects of Andrographolide on Systemic Cardiac Markers. (A) Total creatine kinase 

(CK). (B) Creatine kinase-MB (CK-MB). (C) Lactate dehydrogenase (LDH). (D) Aspartate 

transaminase (AST). (E) Cardiac troponin I (cTnI). Levels of these serum markers of myocardial 

injury were markedly increased in Iso group as against Andro group and Andro + Iso group where 

they were maintained almost at the control levels. Data are presented as Mean ± SD, n = 5 per group 

and analysed by one-way ANOVA followed by Bonferroni’s multiple comparisons test. *p < 0.05 vs 

Ctr and #p < 0.05 vs Iso. 
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5.5 Andrographolide Pretreatment Minimizes MI-associated Increase in Systemic 

Leukocytes 

To determine the effects of andrographolide on abnormal changes in hematological profiles 

that usually accompanied MI, levels of key systemic blood cells (RBC and WBC) were 

measured in each experimental group. There was no significant difference recorded in the 

RBC counts across various experimental groups (Fig. 5.6A). On the other hand, while WBC 

count was maintained at the Ctr level in Andro group, same was significantly (p < 0.05) 

increased in Iso group when compared to the Ctr. However, in Andro + Iso group the WBC 

count was slightly reduced to a near control level when compared to the Iso group (Fig. 5.6B). 

 

Figure 5.6. Effects of Andrographolide on MI-associated Abnormal Variation in Blood Cells. 

(A) Red blood cell (RBC) count. There was no significant variation recorded in RBC counts across 

all groups. (B) White blood cell (WBC) count. WBC counts was markedly increased in Iso group, 

whereas, same was reduced to a near control level in group pretreated with andrographolide (Andro 

+ Iso). Data are presented as Mean ± SD, n = 3 per group and analysed by one-way ANOVA followed 

by Bonferroni’s multiple comparisons test. *p < 0.05 vs Ctr and #p < 0.05 vs Iso. 
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5.6 Andrographolide Pretreatment Prevents Myocardial Oxidative Stress 

To assess the effects of andrographolide on cardiac oxidative stress commonly associated 

with MI, levels of cardiac antioxidant enzymes (SOD, catalase & GPx) and product of lipid 

peroxidation (MDA) were measured in all experimental groups. Result shows no significant 

difference in the SOD activity across all the experimental groups (Fig. 5.7A). However, 

decreases were recorded in catalase (p < 0.05) and GPx activities (Fig. 5.7B&C) in Iso group 

when compared to the Ctr group, indicating substantial oxidative stress in this group. In 

contrast, significant increases (p < 0.05) were recorded in the activities of both enzymes in 

Andro + Iso group when compared to the Iso group. This observation could be attributed to 

the antioxidant effects of andrographolide. Hence, indicative of its ability to protect cardiac 

tissue against oxidative stress. On the other hand, no evidence of lipid peroxidation was 

obtained as indicated by no significant changes in the level of MDA across all experimental 

groups (Fig. 5.7D). 
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Figure 5.7. Effects of Andrographolide on MI-associated Cardiac Oxidative Stress. (A) 

Superoxide dismutase (SOD). (B) Catalase. (C) Glutathione peroxidase (GPx). Malondialdehyde 

(MDA). While levels of SOD and MDA were not significantly changed in all groups, the activities 

of catalase and GPx were considerably decreased in Iso group as against Andro + Iso group where 

activities of both enzymes were significantly maintained at the control levels. Data are presented as 

Mean ± SD, n = 5 per group and analysed by one-way ANOVA followed by Bonferroni’s multiple 

comparisons test. *p < 0.05 vs Ctr and #p < 0.05 vs Iso. 
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5.7 Andrographolide Pretreatment Prevents Infarction-like Ventricular Necrosis 

Microscopic images of whole heart tissue taken for each group shows that heart tissues 

belonging to Ctr, Andro and Andro + Iso maintained the normal healthy heart morphology 

and color (deep red). Whereas, heart tissues belonging to Iso group appeared pale tan colors, 

indicating unprecedented levels of injuries and cell death (Fig. 5.8A). Furthermore, a 

substantial degree of Evans blue/TTC-negative area (whitish color) was observed in the 

ventricular subendocardial region of tissue sections belonging to Iso group in consistency 

with the original report of Rona et al that infarct-like necrosis was located most frequently in 

the apex and subendocardial portion of the ventricles (Rona et al., 1959, 1963). Thus, 

suggesting a reduced level of dehydrogenase enzymes and cofactors in the tissue sections 

and by implication the presence of infarction. In contrast, tissue sections from Ctr, Andro and 

Andro + Iso were mostly Evans blue/TTC-positively stained (dark blue and deep red colors), 

suggesting higher levels of dehydrogenase enzymes and cofactors which signifies vast area 

of viable myocardium (Fig. 5.8B). Infarct size quantification in the tissue sections shows that 

Iso induced significant (p < 0.05) increase in infarct size while pretreatment with Andro 

significantly maintained it at the Ctr level (Fig. 5.8C). 
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Figure 5.8. Effects of Andrographolide on MI-Associated Cardiac Tissue Necrosis. (A) 

Representative of whole heart microscopic images of each group. Heart tissues from Ctr, Andro and 

Andro + Iso groups maintained the normal fresh heart color while that of Iso group appeared mostly 

pale tan or whitish-brown color. (B) Representative of Evans blue/TTC-stained heart tissue sections 

of each group. Tissue sections from Ctr, Andro and Andro + Iso groups shows wider areas of 

positively stained viable myocardial tissue while that of Iso group shows more necrotic area in the 

ventricular subendocardial region. (C) Impact of andrographolide on infarct size. The infarct size was 

expressed as a % of areas at risk (AAR). Data are presented as Mean ± SD, n = 5 tissue sections per 

group and analysed by one-way ANOVA followed by Bonferroni’s multiple comparisons test. *p < 

0.05 vs Ctr and #p < 0.05 vs Iso. 
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5.8 Andrographolide Pretreatment Minimizes Infarction-like Cardiac Histological 

Alterations 

Impacts of treatments on histological structure of heart tissue of each experimental group are 

presented in Fig. 5.9 and Fig. 5.10. The Ctr group (Fig. 5.9&5.10A) and Andro group (Fig. 

5.9&5.10B) shows normal myocardial histological features, characterized by orderly 

arranged thin collagen fibers, void of lesions and without interstitial edema and leukocytes 

infiltrations. In contrast, tissues from Iso group (Fig. 5.9&5.10C), shows apparent myocardial 

histological alterations including: massive lesions; degeneration, disruption, nuclear 

enlargement, binucleation and loss of cardiomyocytes; replaced with disorganized fibroblasts 

and few macrophages. Additionally, was noted edema. Interestingly, these histological 

alterations were quietly minimized in the Andro + Iso group (Fig. 5.9&5.10D), suggesting 

myocardial tissue protective ability of andrographolide. 
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Figure 5.9. Effects of Andrographolide on Histological Structure of Heart Tissue as Revealed 

by Hematoxylin and Eosin (H&E) Staining. Sections were stained with H&E and visualized under 

light microscope at magnification of 400x. Micrographs of tissue sections of Ctr (A) and Andro group 

(B) shows normal heart tissue’s histological architecture. In contrast, micrographs of tissue sections 

of Iso group (C) revealed degeneration, disruption, nuclear enlargement, binucleation and loss of 

cardiomyocytes, replaced by disorganized fibroblasts and few macrophages which were quietly 

minimized in the Andro + Iso group (D). Scale = 50 µm. 
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Figure 5.10. Effects of Andrographolide on Histological Structure of Heart Tissue as Revealed 

by Masson’s trichrome Staining. Sections were stained with Masson’s trichrome and visualized 

under light microscope at magnification of 400x. Micrographs of tissue sections of Ctr (A) and Andro 

group (B) shows normal heart tissue’s histological architecture. In contrast, micrographs of tissue 

sections of Iso group (C) revealed degeneration, disruption, nuclear enlargement, binucleation and 

loss of cardiomyocytes, replaced by disorganized fibroblasts and few macrophages which were 

quietly minimized in the Andro + Iso group (D). Scale = 50 µm. 
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5.9 Andrographolide Pretreatment Averts Uncharacteristic Increases in Myocyte 

Shortening, Maximal Velocities of Contraction and Relaxation 

To determine the effects of andrographolide on the mechanical activities of the heart, 

cardiomyocytes isolated from each experimental group were subjected to field-stimulation 

and their contractile properties were recorded using edge motion detection techniques. 

Results are presented in Fig. 5.11(A-E). Significant (p < 0.05) increases were recorded in 

myocyte shortening (Fig. 5.11A-C), maximal velocity of contraction (+dL/dt) (Fig. 5.11D) 

and maximal velocity of relaxation (-dL/dt) (Fig. 5.11E) in Iso group compared to the Ctr, 

suggesting intracellular Ca2+ overload and hyper-enhanced intracellular Ca2+ cycling 

respectively. In contrast, the parameters in question were significantly (p < 0.05) decreased 

in Andro group when compared to both the Ctr and Iso group, and were as a result maintained 

significantly (p < 0.05) at the Ctr levels in Andro + Iso group when compared to the Iso 

group. Thus, our results showed for the first time that, at cellular level, shortening of 

individual surviving cardiomyocytes increases at the onset of MI and that andrographolide 

was able to avert the intracellular Ca2+ overload and hyper-enhanced intracellular Ca2+ 

cycling insinuated as underlying the phenomenon. 



69 
 

 

Figure 5.11. Effects of Andrographolide on Cardiac Contractile Properties. (A) Representative 

contraction traces obtained from cardiomyocytes isolated from each experimental group. (B) Myocyte 

shortening measured in µm. (C) Myocyte shortening expressed as % of the baseline. (D) Maximal 

velocity of contraction (+dL/dt). (E) Maximal velocity of relaxation (-dL/dt). Each of these 

parameters were markedly increased in Iso group, suggesting intracellular Ca2+ overload and hyper-

enhanced intracellular Ca2+ cycling. However, pretreatment with andrographolide maintained them 

at Ctr levels. Data are presented as Mean ± SD, n = 30 cells per group and analysed by one-way 

ANOVA followed by Bonferroni’s multiple comparisons test. *p < 0.05 vs Ctr and #p < 0.05 vs Iso. 
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5.10 Andrographolide Pretreatment Prevents MI-associated Prolongation of 

Cardiac Myocytes Action Potential Duration (APD) 

To unravel the mode of action of andrographolide, electrical profiles that shapes the functions 

of the heart were recorded in cardiomyocytes isolated from each experimental group, 

beginning with action potential (AP). Results shows a clear difference in the AP waveform 

recorded in Iso group compared to the Ctr and other treatment groups (Fig. 5.12). Despite 

this difference, we did not find alterations in the resting membrane potential (Fig. 5.13A) and 

the AP amplitude (Fig. 5.13B) across all the experimental groups. However, the APDs 

measured at 30 % (APD30), 50 % (APD50) and 90 % (APD90) repolarization (Fig. 5.13C-E) 

were significantly (p < 0.05) prolonged in Iso group compared to the Ctr, suggesting a 

perturbation of the L-type Ca2+ channel in this group which may have facilitated intracellular 

Ca2+ overload and or decreased outward potassium current. Interestingly, the aforementioned 

parameters were all maintained significantly (p < 0.05) at the Ctr levels in Andro as well as 

Andro + Iso group when compared to the Iso group. Thus, underscoring the ability of 

andrographolide to prevent MI-associated prolongation of cardiomyocytes APD. 

 

 

Figure 5.12. Representative AP Traces Obtained from Cardiomyocytes Isolated from Each 

Experimental Group. APs were elicited by applying test pulse of 1 nA current for duration of 5 ms 

at frequency of 1 Hz. 
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Figure 5.13. Effects of Andrographolide on Cardiac Action Potential (AP). (A) Resting 

membrane potential and (B) AP amplitude. Both were not significantly altered across all experimental 

group. (C) AP duration measured at 30 % repolarization (APD30), (D) AP duration measured at 50 % 

repolarization (APD50), and (E) AP duration measured at 90 % repolarization (APD90). Each of these 

durations were markedly prolonged in Iso group, whereas, they were all maintained at Ctr levels in 

Andro and Andro + Iso group. Data are presented as Mean ± SD, n = 20 cells per group and analysed 

by one-way ANOVA followed by Bonferroni’s multiple comparisons test. *p < 0.05 vs Ctr and #p < 

0.05 vs Iso. 
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5.11 Andrographolide Pretreatment Prevents Pathological Intracellular Ca2+ 

Overload 

To determine if L-type Ca2+ channel blockage is in part responsible for the prevention of 

increases in myocyte shortening and APD by andrographolide reported earlier in this study, 

we measured ICa,L in cardiomyocytes isolated from each experimental group in whole-cell 

mode using patch clamp techniques. Recordings shows a significant (p < 0.05) increase in 

ICa,L density in Iso group and significant (p < 0.05) decrease in ICa,L density in Andro group 

compared to the Ctr, and by implication ICa,L density was maintained nearly at Ctr level in 

Andro + Iso group (Fig. 5.14A&B). Further analysis of the current density-voltage 

relationship shows no shift in the voltage at which current maximum, as ICa,L density was 

peaked at test potential of 0 mV in all experimental groups, suggesting that voltage-

dependence of the channel did not differ grossly in all experimental groups, only permeability 

did (Fig. 5.14B). In order to substantiate this assertion, maximal conductance (Gmax) of ICa,L 

was determined for all the experimental groups. Our result indicated that Iso caused 

significant (p < 0.05) increase in Gmax, while Andro administration prevented Iso induce Gmax 

increase (Fig. 5.14C). Thus, suggesting andrographolide as a L-type Ca2+ channel blocker. 
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Figure 5.14. Effects of Andrographolide on Cardiac L-type Ca2+ Current (ICa,L). (A) 

Representative ICa,L Traces Obtained from Cardiomyocytes Isolated from Each Experimental Group. 

Currents were recorded by applying prepulse from holding potential of -80 mV to -40 mV for 50 ms 

and pulses from -50 mV to +40 mV in 10 mV increments for 400 ms. (B) Current density-voltage 

relationship and (C) Maximal conductance (Gmax) of all experimental groups. ICa,L density was peaked 

at test potential of 0 mV in all experimental groups, markedly increased in Iso group, while 

pretreatment with andrographolide maintains the current density at nearly control levels in Andro + 

Iso group. Data are presented as Mean ± SD, n = 20 cells per group and analyzed by one-way ANOVA 

followed by Bonferroni’s multiple comparisons test. *p < 0.05 vs Ctr and #p < 0.05 vs Iso. 
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5.12 Andrographolide Pretreatment Increases Transient Outward Potassium 

Current (Ito) in Cardiac Myocytes 

To determine whether enhanced conductance of K+ channel is involved in the ability of 

andrographolide to prevent MI-associated APD elongation reported earlier in this study, we 

measured Ito in cardiomyocytes isolated from each experimental group using the same 

protocol, and under the same assay conditions. Presented in Fig. 5.15A are representative Ito 

traces recorded in each experimental group. In Fig. 5.15B, marked differences were observed 

in Ito density among experimental groups beginning from test potential of 0 mV upwards. To 

this effect, in Fig. 5.15C, Ito density peak was significantly (p < 0.05) decreased in Iso group 

compared to the Ctr, whereas, it was significantly (p < 0.05) increased in Andro group when 

compared to either Ctr or Iso group, a development that may have facilitated similar increase 

of Ito density peak observed in Andro + Iso group. Thus, suggesting that andrographolide 

enhances conductance of cardiac transient outward K+ channel. 
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Figure 5.15. Effects of Andrographolide on Cardiac Transient Outward Potassium Current 

(Ito). (A) Representative Ito traces recorded from cardiomyocytes isolated from each experimental 

group. Currents were recorded with the holding potential set at -80 mV and then depolarized to test 

potential of +60 mV in 10 mV increments for 3 s. (B) Current density-voltage relationship and (C) 

Peak current density of all experimental groups. Ito density was markedly decreased in Iso group as 

against the Ctr, while pretreatment with Andro remarkably increased Ito density. Data are presented 

as Mean ± SD, n = 20 cells per group and analyzed by one-way ANOVA followed by Bonferroni’s 

multiple comparisons test. *p < 0.05 vs Ctr and #p < 0.05 vs Iso. 
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5.13 Andrographolide Produced Concentration-Dependent Reduction in Myocyte 

Shortening, +dL/dt and -dL/dt in Isolated Cardiomyocytes 

To further substantiate the inferences drawn from the in-vivo studies regarding 

cardioprotective mode of actions of andrographolide, different concentrations of 

andrographolide were tested on freshly isolated cardiomyocytes (in-vitro). The impacts on 

mechanical and electrical activities were assessed and compared to the control and standard 

drug. Results indicate that andrographolide had a concentration-dependent effects on key 

cardiac contractile profiles. Shown in Fig. 5.16 are the representative contraction traces 

before and after incubation in different concentrations of andrographolide and nicardipine. 

As anticipated, in-vitro application of andrographolide produced concentration-dependent 

reduction in myocyte shortening (Fig. 5.17A&B), +dL/dt and -dL/dt (Fig. 5.17C&D) similar 

to the effects of nicardipine and in consistence with in-vivo observations. 

 

Figure 5.16. Representative Contraction Traces Obtained Before and After Incubation in 

Different Concentrations of Andrographolide and Nicardipine. 
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Figure 5.17. Concentration-Response Effects of Andrographolide on Isolated Cardiomyocytes’ 

Contractile Properties. (A) Myocyte shortening measured in µm. (B) Myocyte shortening expressed 

as % of the baseline. (C) Maximal velocity of contraction (+dL/dt). (D) Maximal velocity of 

relaxation (-dL/dt). Andrographolide reduced myocyte shortening, +dL/dt and -dL/dt in a 

concentration-dependent manner. Data are presented as Mean ± SD, n = 55 cells per group and 

analysed by one-way ANOVA followed by Bonferroni’s multiple comparisons test. *p < 0.05 vs Ctr, 

$p < 0.05 vs Andro 10-5M, δp < 0.05 vs Andro 10-4M, ϕp < 0.05 vs Andro 10-3M. 
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5.14 Andrographolide Produced Concentration-Related Decreases in Action 

Potential Duration (APD) in Isolated Cardiomyocytes 

Results also show that andrographolide had a concentration-dependent effects in reducing 

APD. As indicated in Fig. 5.18 and Fig. 5.19A-E, different concentrations of andrographolide 

reduced APD significantly (p < 0.05) in similar manner as nicardipine when compared to the 

control. Furthermore, Fig. 5.19F shows progressive reduction in the APD90 with increasing 

concentration of andrographolide (10-5 M = 75.56 ± 3.572%, 10-4 M = 65.32 ± 2.793%, and 

10-3 M = 55.46 ± 6.354%). 

 

 

Figure 5.18. Representative AP Traces Obtained Before and After Exposure to Different 

Concentrations of Andrographolide and Nicardipine. APs were elicited by applying test pulse of 

1 nA current for duration of 5 ms at frequency of 1 Hz. 

 

 

 

 

 

 

 

 



79 
 

 

Figure 5.19. Concentration-Response Effects of Andrographolide on Isolated Cardiomyocytes’ 

Action Potential (AP). (A, B, C, D) Time course effects of Andro (10-5, 10-4, 10-3) M and Nicard (10-

5M) on APD90. (E) APD90 measured in ms. (F) APD90 expressed as % of the control. Andrographolide 

produced concentration-dependent decreases in APD90. Data are presented as Mean ± SD, n = 10 cells 

per group and analysed by Student’s t-test and one-way ANOVA followed by Bonferroni’s multiple 

comparisons test. *p < 0.05 vs Ctr, $p < 0.05 vs Andro 10-5M, δp < 0.05 vs Andro 10-4M, ϕp < 0.05 vs 

Andro 10-3M. 
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5.15 Andrographolide Produced Concentration-Related Decreases in L-type 

Calcium Current in Isolated Cardiomyocytes 

In what seems like repeat of the in-vivo observations, andrographolide also reduced ICa,L 

when applied in-vitro (Fig. 5.20). Besides, it was noted that the effects progressed with time, 

and was well correlated with the effects of nicardipine (Fig. 5.21A-E). Also, the ICa,L density 

expressed as percentage of the control (Fig. 5.21F) revealed that the inhibition effects of 

andrographolide on ICa,L is concentration-dependent (Andro 10-5 M = 80.51 ± 4.343%, Andro 

10-4 M = 72.90 ± 3.578%, Andro 10-3 M = 57.95 ± 5.346%, Nicard 10-5 M = 72.81 ± 2.553%). 

Thus, supports our earlier inference that ICa,L inhibition could be one of the mechanisms by 

which andrographolide protects cardiac tissue against MI. 

 

 

Figure 5.20. Representative ICa,L Traces Obtained Before and After Exposure to Different 

Concentrations of Andrographolide and Nicardipine. Currents were recorded by applying 

prepulse from holding potential of -80 mV to -40 mV for 50 ms from which pulses were applied to 

raise the membrane potential to 0 mV for 400 ms. 
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Figure 5.21. Concentration-Response Effects of Andrographolide on Isolated Cardiomyocytes’ 

L-type Ca2+ Current (ICa,L). (A, B, C, D) Time course effects of Andro (10-5, 10-4, 10-3) M and Nicard 

(10-5M) on ICa,L density. (E) ICa,L density measured in pA/pF. (F) ICa,L density expressed as % of the 

control. Andrographolide produced concentration-related decreases in ICa,L density. Data are 

presented as Mean ± SD, n = 10 cells per group and analysed by Student’s t-test and one-way ANOVA 

followed by Bonferroni’s multiple comparisons test. *p < 0.05 vs Ctr, $p < 0.05 vs Andro 10-5M, δp 

< 0.05 vs Andro 10-4M, ϕp < 0.05 vs Andro 10-3M. 
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5.16 Andrographolide Produced Concentration-Related Increases in Transient 

Outward Potassium Current in Isolated Cardiomyocytes 

Fig. 5.22 shows the representative of Ito traces obtained before and after exposure to different 

concentrations of andrographolide and nicardipine. The time course effects are presented in 

Fig 5.23A-D, results show that the effects of andrographolide on Ito progresses with time. 

Equally, it was observed that andrographolide at various test concentrations increased Ito 

density significantly (p < 0.05) when compared to the control, while nicardipine did not (Fig 

5.23E). More importantly, the Ito density calculated as percentage of the control (Fig. 5.23F), 

indicated that the Ito increase facilitated by andrographolide in isolated cardiomyocytes is 

concentration-related (Andro 10-5 M = 108.2 ± 2.015%, Andro 10-4 M = 113.6 ± 2.422%, 

Andro 10-3 M = 125.3 ± 6.547%, Nicard 10-5 M = 99.52 ± 2.289%). Hence, corroborates the 

in-vivo interpretation that Ito upregulation could be one of the mechanisms by which 

andrographolide protects cardiac tissue against MI. 

 

 

Figure 5.22. Representative Ito Traces Recorded Before and After Exposure to Different 

Concentrations of Andrographolide and Nicardipine. Currents were recorded with the holding 

potential set at -80 mV and then depolarized to test potential of +60 mV for 600ms. 
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Figure 5.23. Concentration-Response Effects of Andrographolide on Isolated Cardiomyocytes’ 

Transient Outward Potassium Current (Ito). (A, B, C, D) Time course effects of Andro (10-5, 10-

4, 10-3) M and Nicard (10-5M) on Ito density. (E) Ito density measured in pA/pF. (F) Ito density 

expressed as % of the control. Andrographolide produced concentration-related increases in Ito 

density. Data are presented as Mean ± SD, n = 10 cells per group and analysed by Student’s t-test and 

one-way ANOVA followed by Bonferroni’s multiple comparisons test. *p < 0.05 vs Ctr, $p < 0.05 vs 

Andro 10-5M, δp < 0.05 vs Andro 10-4M, ϕp < 0.05 vs Andro 10-3M. 
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Myocardial infarction is the injury of the myocardium caused by prolonged myocardial 

ischemia (Thygesen et al., 2012a). The goal to develop interventions against MI has been 

long sought, with some breakthroughs recorded over decades. However, the increasing 

number of reported side effects of existing interventions motivates a strong need for new and 

improved interventions. This study demonstrated for the first time, the protective effects of 

andrographolide against isoproterenol-induced myocardial infarction in rats. Precisely, the 

effects of the compound on cardiac-specific parameters that defines MI, and those that shapes 

cardiac functions were explored using both biophysical and pharmacological assay methods. 

Tolerability is the first in-vivo safety criteria for new drug candidates. The maximum 

tolerated dose (MTD) test by dose escalation scheme is a common test used for the dose 

selection and identification of the dose at which target organ toxicity is likely to be observed 

(Andrade et al., 2016). To this effect, we found andrographolide to be well tolerated in rats 

(up to 80 mg/kg/day for 3 weeks) with non-observed adverse effects. In agreement with this, 

Al-Batran et al reported that andrographolide was well tolerated in rabbits even up to the 

maximum dose of 500 mg/kg/day for 4 weeks (Al Batran et al., 2014). 

Electrocardiography is pivotal in the diagnosis of cardiac ischemia and infarction as it 

provides information about the health of the electrical system of the heart (Sampson and 

McGrath, 2015). In this study, we found that andrographolide prevented infarction-like 

changes in ECG profile. The significant increase recorded in the HR, coupled with 

unambiguous ST-segment elevation in Iso group are typical of the onset of MI. Previous 

report on MI indicated that elevated heart rate in susceptible subjects predicts risk of 

developing MI and that a sustained elevated heart rate after MI is well correlated with higher 

mortality (Hjalmarson et al., 1990). The stabilization of the HR at the control level in Andro 

+ Iso group can be linked to the ability of andrographolide to reduce HR. This is consistent 

with the report of others that agents that exclusively reduced heart rate are important as anti-

ischemic, antianginal and anti-infarction agents on the basis of their ability to reduce 

myocardial oxygen consumption (Singh, 2003). The unaltered PR interval among 

experimental groups, including Iso group, can be interpreted as absence of signalling 

alterations between the atria and the ventricle. This is because, the PR interval is 

characterized as the time necessary for the electrical impulse to be conducted from the SA 

node to the ventricle (Schwarzwald et al., 2009). QRS complex measured on an ECG 
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signifies ventricular depolarization while the QT and QTc intervals are indicative of action 

potential duration of ventricular myocyte. Significant prolongation of these parameters, as 

recorded in Iso group, has since been interpreted to mean ventricular dysfunction in MI 

patients (Karahan et al., 2016). Nonexistence of such prolongations in Andro and Andro + 

Iso group underscores the ability of andrographolide to prevent ventricular systolic and 

diastolic dysfunction. 

Pathological hypertrophy and remodelling of cardiac tissue has been frequently linked with 

MI (Kehat and Molkentin, 2010). It was reported to be characterized by excessive increase 

in ventricular dimensions (Samak et al., 2016), functional perturbations of cellular Ca2+ 

homeostasis and ionic currents (Frey et al., 2004), which contribute to impaired post-

infarction prognosis (Nepper-Christensen et al., 2017). Our results indicate that 

andrographolide minimized MI-associated cardiac hypertrophy. The unprecedented 

increases recorded in the HW and cardiac mass indexes (HW/BW and HW/TL ratios) in Iso 

group undoubtedly signified cardiac hypertrophy, while the ability of andrographolide to 

maintain the HW and cardiac mass indexes at control levels in Andro group and near control 

levels in Andro + Iso group signified its efficacy at preventing and or minimizing ventricular 

wall stress, a major event required for the induction of cardiac hypertrophy in MI. In 

agreement with our report, Xie et al reported that andrographolide protected against MI-

associated adverse cardiac remodelling in mice through enhancing Nrf2 signalling pathway 

(Xie et al., 2020). Similarly, Wu et al reported that andrographolide protected against 

pressure overload-induced cardiac hypertrophy in mice by inhibiting MAPKs signalling (Wu 

et al., 2017). 

Systemic elevation of biomarkers of myocardial injury including CK, CK-MB, LDH, AST 

and cTnI are key diagnostic features of MI (Mythili and Malathi, 2015). In line with this, 

significant increases were recorded in the levels of CK, CK-MB, AST and cTnI in Iso group. 

This development can be attributed to destabilization and loss of functional integrity of 

myocardial membrane sequel to cardiac damage (Panda et al., 2017). Hence, the decreased 

levels of these biomarkers in Andro group as well as Andro + Iso group implies that 

andrographolide prevented MI-associated myocardial membrane destabilization and enzyme 

leakages. 
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Leukocyte count has long been established as a predictor myocardial infarction (Friedman et 

al., 1974). The significant elevation of WBC counts recorded in Iso group connotes clear 

indication of myocardial damage. In agreement with this, others have reported association 

between leukocyte elevation and impaired epicardial and myocardial perfusion (Sabatine et 

al., 2002). Likewise, others have found leukocyte levels to be characteristically elevated 

among patients with myocardial infarction and unstable angina (Avramakis et al., 2007). 

More specifically, Filho et al reported that MI induction with isoproterenol raised leukocyte 

and neutrophil counts in Wistar rats (Filho et al., 2011). Thus, the leukocyte level that was 

maintained at the control level in Andro group and relatively near control level in Andro + 

Iso group indicate that andrographolide is capable of minimizing MI-associated elevation of 

systemic leukocytes. In corroboration of this claim, most anti-MI drugs have been reported 

to reduce leukocyte infiltration after MI (Ertl and Frantz, 2005). 

Cardiac oxidative stress occurs when the manifestation of free radicals surpasses the cardiac 

antioxidant machineries and it has been identified as one of the risk factors of MI (Dhawan 

et al., 2019). Antioxidant enzymes are important for maintaining cells and tissue integrity 

against deleterious effects of free radicals (Hassan et al., 2017). Even though, there was no 

significant difference recorded in the activity of SOD across all the experimental groups, the 

increases recorded in the activities of catalase and GPx in Andro + Iso group as against the 

Iso group where the activities of both enzymes were remarkably decreased underscores the 

ability of andrographolide to boost cardiac antioxidant status and protect cardiac tissue 

against MI-associated cardiac oxidative stress. 

Infarct size is a major determinant of MI prognosis and it depends on the myocardial region 

supplied by the obstructed coronary artery (McKay et al., 1986). The pale tan appearance of 

the heart, which others described as pale gray (Jennings and Ganote, 1974), coupled with 

patches of whitish color in cardiac tissue sections, as well as significant increase in infarct 

size obtained in Iso group indicates necrosis of significant portion of myocardium in this 

group. In agreement with this, Panda et al reported similar observations in cardiac tissue 

slices of Iso treated rats and characterized their observations as areas of necrosis due to non-

reduction of tetrazolium salt (Panda et al., 2017). Therefore, the apparently normal 

appearance of the heart tissue, positively stained cardiac tissue section with Evans blue/TTC 
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and control level infarct size recorded in Andro group and Andro + Iso group underscored 

the potency of andrographolide at preventing infarction-like ventricular necrosis. 

Similarly, histopathological assessment of myocardial sections of various experimental 

groups corroborates the biochemical observations reported in this study. Most importantly, 

the histological alterations, characterized by remarkable degree of lesions, degeneration, 

disruption, nuclear enlargement, binucleation and loss of cardiomyocytes, replaced by 

disorganized fibroblasts and few macrophages, as well as edema observed in Iso group is 

similar to those reported by others in experimental models of MI (Acikel et al., 2005; Filho 

et al., 2011; Goyal et al., 2015; Panda et al., 2017). Hence, the absence of such alterations in 

Andro group and the apparent minimization of them in Andro + Iso group could be seen as 

the ability of andrographolide to abate MI-associated cardiac histological alterations. In 

support of this, Zhang et al previously informed that andrographolide minimized myocardial 

histological alterations in an experimental model of autoimmune myocarditis by inhibiting 

infiltration of inflammatory cells (Q. Zhang et al., 2019). 

Cardiomyocytes contractility is the hallmark of cardiac function and is a predictor of healthy 

or diseased cardiac tissue (Gaitas et al., 2015). Here, andrographolide was found to avert 

pathological increases in myocyte shortening, maximal velocities of contraction and 

relaxation. The unprecedented increases in cardiomyocytes shortening, maximal velocities 

of contraction and relaxation recorded in Iso group was attributed to intracellular Ca2+ 

overload and hyper-enhanced intracellular Ca2+ cycling consequent of positive ionotropic 

effects. In agreement with this, Zhang and colleagues reported that myocytes contractility is 

increased after MI in regions of the heart where blood flow is maintained, through activation 

of sympathetic reflex responses and that the phenomenon is responsible for the exacerbation 

of cardiac injury and pump dysfunction that will eventually lead to heart failure (H. Zhang et 

al., 2010). Therefore, the sustained myocytes shortening, maximal velocities of contraction 

and relaxation at the control level in Andro + Iso group can be linked to the ability of 

andrographolide to reduce these parameters when applied singly. This is consistent with the 

report of Zeng et al that andrographolide reduced maximum upstroke velocity in rabbit left 

ventricular and left atrial myocytes (Zeng et al., 2017). 
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Furthermore, results from this study indicated that andrographolide prevented MI-associated 

cardiac myocytes APD prolongation. The non-significant changes recorded in the resting 

membrane potential and the AP amplitude across all the experimental groups correlates with 

the unaltered PR interval of the ECG and suggests that fast sodium current (INa+) was 

unaffected in all the groups. This is because, change in membrane potential as well as the 

upstroke of the AP is dependent on the flow of ion through channels specific for Na+ and the 

steepest portion of the AP upstroke occurs at maximal Na+ ion flow (Berecki et al., 2010; 

Kleber, 2005; Weidmann, 1955). Also, the prolongation of APD recorded in Iso group 

correlates with the QT and QTc interval elongation of the ECG and suggestive of perturbation 

of L-type Ca2+ channel and or downregulation of K+ channel. In agreement with this result, 

prolongation of action potential duration has been reported in rat left ventricular myocardium 

following infarction (Qin et al., 1996) and it has been established as a hallmark feature of 

myocardial infarction (Kaprielian et al., 1999). Besides, these folks and others have also 

correlated the cause of APD prolongation in cells from infarcted heart with an increased 

[Ca2+]i transient amplitude (Kaprielian et al., 1999) and a decreased outward K+ current (Qin 

et al., 1996; Rozanski et al., 1998). Therefore, the preserved APDs at the control levels in 

Andro group and Andro + Iso group could be seen as the ability of andrographolide to prevent 

perturbation of L-type Ca2+ channel and or facilitate upregulation of K+ channel. 

L-type Ca2+ channels are the primary pathway for Ca2+ influx into cardiac cells (Satin and 

Schroder, 2009). It has been reported that subtle perturbation of its function may cause 

intracellular Ca2+ overload leading to profound cardiac diseases (Betzenhauser et al., 2015; 

Nejatbakhsh and Feng, 2011). Results from this study emphasized that andrographolide 

prevented pathological intracellular Ca2+ overload through blockage of L-type Ca2+ channels. 

This is consistent with the findings of Zeng et al who reported that andrographolide inhibited 

ICa,L in a concentration-dependent manner in left atrial and ventricular myocytes (Zeng et al., 

2017). Another remarkable note taken from these results is that ICa,L density of each 

experimental group correlates with their corresponding myocytes shortening results. 

Interestingly, it has been reported that there is a close correlation between ICa,L and cardiac 

myocytes contraction (Bodi et al., 2005). Therefore, inhibition of ICa,L can be seen as one of 

the mechanisms by which andrographolide protects cardiac tissue against MI. 
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In rat cardiac myocytes, Ito is the major K+ current that contributes to the rapid membrane 

repolarization, and the peak current predominantly reflects Ito (Apkon and Nerbonne, 1991). 

In this study, we stressed that andrographolide increased (Ito) in cardiac myocytes. The 

significant reduction of Ito density in Iso group explains, in part, the prolongation of the APD 

recorded in this group. In agreement with our findings, post-MI myocytes has been reported 

to exhibit significant reductions in Ito and IK1 densities (Kaprielian et al., 1999). Therefore, 

with the Ito density being significantly elevated in Andro group, it is conceivable that 

andrographolide prevented pathological APD prolongation in Andro + Iso group by 

enhancing conductance of cardiac transient outward K+ channel. Therefore, increase of Ito 

could also be seen as one of the mechanisms by which andrographolide protects cardiac tissue 

against MI. 
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VII. CONCLUSION AND PERSPECTIVES 
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7.1 CONCLUSION 

The results obtained in this study contributed new evidence that andrographolide was well 

tolerated in-vivo and that: 

• Andrographolide pretreatments prevented morphological changes in the heart and 

attenuated infarction-like ventricular necrosis while preserving ECG profile. 

 

• Andrographolide pretreatments prevented MI-associated increases in systemic 

cardiac markers. 

 

• Andrographolide pretreatments minimized infarction-like cardiac histological 

alterations. 

 

• Andrographolide pretreatments preserved excitation-contraction coupling in cardiac 

myocytes. 

 

• Inhibition of L-type Ca2+ Current and increase of transient outward K+ current are 

involved in the mechanism of cardiac protection facilitated by andrographolide 

against MI. 

Therefore, andrographolide could be seen as a promising therapeutic agent capable of making 

the heart resistant to infarction and it could be used as template for the development of 

semisynthetic drug(s) for cardiac protection against MI. 

7.2 PERSPECTIVES 

Finally, the results of this study open perspectives for future investigations of the 

cardioprotective benefits of andrographolide against other cardiovascular diseases whose 

pathogenesis are associated with intracellular Ca2+ overload. We have as future goal to 

investigate the signalling cascades activated by andrographolide to facilitate inhibition of L-

type Ca2+ current and upregulation of cardiac transient outward K+ current. 
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