
DETECÇÃO DE ERROS LÓGICOS EM HASKELL

VANESSA CRISTINY RODRIGUES VASCONCELOS

DETECÇÃO DE ERROS LÓGICOS EM HASKELL

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientadora: Mariza Andrade da Silva Bigonha

Belo Horizonte

Fevereiro de 2021

VANESSA CRISTINY RODRIGUES VASCONCELOS

DETECTING LOGICAL ERRORS IN HASKELL

Thesis presented to the Graduate Program
in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of
the requirements for the degree of Master
in Computer Science.

Advisor: Mariza Andrade da Silva Bigonha

Belo Horizonte

February 2021

© 2021, Vanessa Cristiny Rodrigues Vasconcelos.

 Todos os direitos reservados

 Vasconcelos, Vanessa Cristiny Rodrigues.

V331d Detecção de erros lógicos em Haskell [manuscrito] /
 Vanessa Cristiny Rodrigues Vasconcelos. – 2021.
 xiv, 57 f. il.

 Orientadora: Mariza Andrade da Silva Bigonha.
 Dissertação (mestrado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação.
 Referências: f.50-54
 .
 1. Computação – Teses. 2. Depuração na computação –
 Teses. 3. Haskell (Linguagem de programação de computador)
 – Teses. 4. Programação funcional (Computação) – Teses. I.
 Bigonha, Mariza Andrade da Silva. II. Universidade Federal de
 Minas Gerais, Instituto de Ciências Exatas, Departamento de
 Ciência da Computação. III.Título.

CDU 519.6*32(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6ª Região nº 1510

Acknowledgments

I would like to thank the following people, without whom I would not have been able
to complete this research, and without whom I would not have made it through my
masters degree!

To my family, especially to my mother Meire and my brother Pedro who always
and without a doubt support me in the projects I set as goals.

To my advisor Mariza Bigonha for always helping, advising and encouraging me
all the time.

To my friends who gracefully dealt with my absences and cheered me every step
in these years.

To the Graduate Program in Computer Science (PPGCC) and CNPQ for pro-
viding the means for me to achieve this goal.

To the dissertation committee, prof. Leonardo Vieira dos Santos Reis, prof.
Marco Túlio Oliveira Valente and prof. Vladimir Oliveira Di Iorio for their participation
at this moment.

vi

“The art of debugging is figuring out what you really told your program to do rather
than what you thought you told it to do.”

(Andrew Singer)

vii

Resumo

Compreender e utilizar o paradigma funcional é um desafio para diversos progra-
madores. Procurar por erros lógicos em um código pode tomar muito tempo de um
desenvolvedor quando o programa aumenta de tamanho.

Para facilitar ambos processos, projetamos e implementamos uma ferramenta
chamada HaskellFL, que a partir de um código contendo um erro lógico em Haskell
e alguns casos de teste, utiliza técnicas de localização de erro para calcular uma pon-
tuação estatística para cada expressão executada durante a chamada de uma função.
Esta pontuação representa o grau de probabilidade de cada expressão estar provocando
o comportamento inesperado do programa.

O subconjunto de Haskell utilizado neste projeto é suficientemente expressivo
para quem está estudando Programação Funcional conseguir auxílio imediato na depu-
ração do seu código, e assim sanar dúvidas a respeito de conceitos-chave associados ao
paradigma funcional. Adicionalmente, este subconjunto pode ser facilmente estendido
para englobar toda a gramática de Haskell 2010.

Avaliamos a eficácia de duas técnicas de localização de falhas na literatura, Taran-
tula e Ochiai, no contexto de programas Haskell. Nossos resultados mostraram que o
método Ochiai foi mais efetivo que o método Tarantula.

Nós testamos HaskellFL com trabalhos dos estudantes de Programação Funcional
de uma turma da Universidade Federal de Minas Gerais, em conjunto com exercícios
da trilha de Haskell do site Exercism, que foram resolvidos e estão disponíveis publi-
camente no GitHub.

Além disso, utilizamos a métrica EXAM para avaliar a eficácia da nossa ferra-
menta, e nossos resultados mostraram que HaskellFL ajudou a diminuir o esforço de
um programador ao procurar por um erro em um código Haskell em todos os cenários
testados.

Palavras-chave: Debug, Haskell, Localização de Erro, Programação Funcional.

viii

Abstract

Understanding and using the functional paradigm is a challenge for many programmers.
Looking for logical errors in code may take a lot of a developer’s time when a program
grows in size.

In order to facilitate both processes, we designed and implemented a tool called
HaskellFL, which from code containing a logical error in Haskell and some test cases,
uses a couple of fault localization techniques to calculate a statistical score for each ex-
pression executed during a function call. This score represents the degree of probability
that each expression is causing the unexpected behavior of the program.

The Haskell ’s subset used in this project is sufficiently expressive for those who
are studying Functional Programming to get immediate help debugging their code,
and thus answer questions about key concepts associated to the functional paradigm.
In addition, this subset can be easily extended to encompass the entire Haskell 2010
grammar.

We evaluate the effectiveness of two fault localization techniques in the literature,
Tarantula and Ochiai, in the context of Haskell programs. Our results showed that
Ochiai method was more effective than Tarantula.

We tested HaskellFL against Functional Programming assignments submitted by
students enrolled at the Functional Programming class at Federal University of Minas
Gerais and against exercises from the Exercism Haskell track that are publicly available
on GitHub.

Furthermore, we used the EXAM score to evaluate our tool effectiveness, and
our results showed that HaskellFL reduced the effort needed to locate an error for all
tested scenarios.

Palavras-chave: Debug, Fault Localization, Functional Programming, Haskell.

ix

List of Figures

1.1 Factorial function in Java (a) and in Haskell (b). 2

2.1 Data type in Haskell. 8
2.2 Pattern matching in Haskell. 8
2.3 Lazy evaluation in Haskell. 9
2.4 Short evaluation graph. 9
2.5 Y combinator in Haskell notation. 10
2.6 SKI combinators in Haskell notation. 10
2.7 Example of SKI compilation. 11
2.8 Colored code for detecting error location, extracted from Jones et al. [2002]. 12

3.1 Type error pointed by GHCi. 19
3.2 Remove function with an error in Haskell. 19
3.3 Feedback provided by Helium, extracted from Heeren et al. [2003]. 20
3.4 Factorial function with error in Haskell. 21
3.5 Graph for diagnosing type errors, extracted from Zhang et al. [2015]. . . . 22

4.1 HaskellFL architecture. 26
4.2 HaskellFL execution command using Cabal. 27
4.3 Command for HaskellFL interpreting the test cases. 27
4.4 HaskellFL high level block diagram. 29
4.5 LinkedList module. 31
4.6 LinkedList AST. 32
4.7 Pattern matching case expression. 33
4.8 test-cases-pass.txt . 33
4.9 test-cases-fail.txt . 33

5.1 Mid function in Haskell. 36
5.2 DropWhile function submitted by a student. 40
5.3 DropWhile function equivalent to the function in Figure 5.2. 41

x

5.4 SumOfMultiples module as available on GitHub. 42
5.5 SumOfMultiples module equivalent to the module in Figure 5.4. 43
5.6 Passing dropWhile test cases. 43
5.7 Failing dropWhile test cases. 44
5.8 Passing sumOfMultiples test cases. 44
5.9 Failing sumOfMultiples test cases. 44
5.10 Comparison between Ochiai and Tarantula methods for our test suite. . . . 45

B.1 Exercism’s problem extracted from our test suite. 56
B.2 Homework extracted from our test suite. 57

xi

List of Tables

2.1 Fault localization techniques’ formulas. 13

4.1 Fault localization techniques’ formulas. 27

5.1 Code coverage and fault rank for mid. 36
5.2 EXAM score for mid function. 37
5.3 Test suite. 38
5.4 EXAM score for Haskell test suite. 44
5.5 Mean, median and standard deviation of our test suite. 46

xii

Contents

Acknowledgments vi

Resumo viii

Abstract ix

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Problem Definition . 2
1.2 Objectives . 4
1.3 Contributions . 5
1.4 Publication . 5
1.5 Dissertation Roadmap . 5

2 Literature Overview 7
2.1 Haskell Basics . 7

2.1.1 Data Types . 7
2.1.2 Pattern matching . 8
2.1.3 Laziness . 8

2.2 Lambda Calculus . 9
2.3 SKI combinators . 10
2.4 Fault Localization . 11

2.4.1 Spectrum-Based Fault Localization 11
2.4.2 Mutation-Based Fault Localization 13
2.4.3 Faults Originated by Missing Code 14
2.4.4 Fault Localization Metrics . 15

xiii

2.5 Final Remarks . 16

3 Related Work 18
3.1 Compilers . 18
3.2 Fault Localization Tools . 20
3.3 Type Errors . 21
3.4 Haskell Tutors . 22
3.5 Automatic Program Repair . 23
3.6 Final Remarks . 24

4 Detecting Logical Errors in Haskell 26
4.1 Proposed Solution . 26
4.2 HaskellFL Tool . 28

4.2.1 Requirements . 28
4.2.2 Implementation . 28

4.3 Final Remarks . 33

5 Result Discussion 35
5.1 Case study . 35
5.2 Test Suite . 37

5.2.1 Test Setup . 40
5.3 Results . 44
5.4 Threats to Validity . 46
5.5 Final Remarks . 47

6 Conclusion 48

Bibliography 50

Appendix A Haskell ’s Grammar Subset 55

B Buggy Haskell programs 56

xiv

Chapter 1

Introduction

According to Mitchell et al. [2003], the functional paradigm refers to programming lan-
guages in which we do most of the computation by evaluating expressions that contain
functions. Another definition found in Bird [2014] is that functional programming is a
method of program construction that emphasizes functions and their application rather
than commands and execution. To sum up, functional programming takes advantage
of mathematics functions, organizing them to write a program without side effects.

At first sight, the functional paradigm may confuse programmers; this may hap-
pen because they usually start by learning the imperative paradigm, which has no
particular way of handling state. In light of that, several difficulties may appear when
programmers try to learn a new way to write code with different reasoning. If these
issues are not addressed early, developers may use the functional language like they are
using an imperative one for a long time. Consequently, they will take no real advantage
of the functional paradigm.

For instance, Figure 1.1(b) exhibits a simple example of functional programming,
a function named fact that implements a function to calculate the factorial of a given
n. We wrote this piece of code in Haskell, and it is as straightforward as the mathe-
matical factorial definition. In Figure 1.1(a) we may see an implementation of fact in
Java, which contrasting with the Haskell definition, demands greater knowledge of the
language constructs from the developer writing it.

Additionally, functional languages are pure or impure. Pure languages being the
ones not allowing side effects anywhere and impure languages being the ones allowing
them. Examples of pure functional languages are Haskell and Agda. Some impure ones
are Lisp, Scheme, Clojure, Standard ML, F# and OCaml. F# is integrated into the
platform .NET and reaches many users [F#, 2021]. OCaml stands for Objective-ML
and it "is an industrial-strength programming language supporting functional, imper-

1

1. Introduction 2

Figure 1.1. Factorial function in Java (a) and in Haskell (b).

ative and object-oriented styles" [OCaml, 2018]. Clojure is used by Nubank [Nubank,
2021]. Haskell is an excellent choice for a functional language because it has a large
and active community. It has built-in concurrency and parallelism, and it supports
integration with other languages [HaskellWiki, 2018a].

Other two broadly used languages that implement functional concepts are Java
and Kotlin. Java 8 introduced lambda expressions and functional interfaces, which
profoundly improved the language’s power. Kotlin offers both functional and object-
oriented concepts alongside a strong integration with Java [Kotlin, 2021]. The latter
allows us to classify Kotlin as very promising because it removes a large part of migra-
tion and integration concerns for scalable systems. Additionally, a considerable number
of large companies are already adopting Kotlin.

With that said, we may conclude that having good knowledge of the functional
paradigm is a valuable skill for developers, regardless if they work directly with a
purely functional language or with any other language offering functional concepts.
Also, Haskell is a good first functional language because it allows developers to have a
clear view of functional concepts.

1.1 Problem Definition

Bugs are reality on software development, and while experienced programmers may
know their way among several bugs, some beginners may feel discouraged by them.
Compilers are able to help catching some simpler bugs. For example, Becker et al.
[2016] conducted a study on the javac compiler messages for students’ Java code.
The top 10 student errors they found in their study are:

(i) cannot find symbol
(ii) ‘)’ expected
(iii) ‘;’ expected

1. Introduction 3

(iv) not a statement
(v) illegal start of expression
(vi) reached end of file while parsing
(vii) illegal start of type
(viii) ‘else’ without ‘if’
(ix) bad operand types for binary operator
(x) <identifier> expected.

Some of the messages, such as ‘)’ expected and ‘;’ expected are really effec-
tive, other such as illegal start of expression may be more tricky. Additionally,
Singer and Archibald [2018] conducted a study focusing on Haskell novice programmers
and the kind of mistakes they make. Their results are:

(i) Parenthesis mismatch: unbalanced parenthesis characters.
(ii) Bad scoping: issues with let and where constructs.
(iii) Misunderstanding do blocks: for instance, trying to bind names in a do

block as the final action.
(iv) Complex constructs: their interpreter did not support data and type defini-

tions and users attempted to use it anyway. This was noted as a mistake.
(v) Incorrect syntax for enumFromThenTo syntactic sugar: there were is-

sues with the .. notation. The authors consider that may have been problems
with their tutorial material though.

All of the errors mentioned above are errors a compiler identifies automatically.
Becker et al. [2016] also enhanced error messages in their study to test how much an
improved message may help. Their results indicate that it does help. Nonetheless,
better messages do not extinguish the errors, and we have not yet considered logical
errors. These are the errors a compiler can not automatically catch, and for that reason,
they are even harder to identify.

In light of that, we projected and implemented the HaskellFL tool, which locates
logical errors in functional programming assignments written in Haskell. Considering a
source code with unexpected behavior and a few test cases, some of which outputting
an unexpected result, while others producing the expected output, we calculate and
return a list with the most likely expressions to be triggering this unpredictable be-
havior. After that, we ordered the list from most to less probable root cause. This
suspiciousness list is created using fault localization techniques, thus, we also evaluated
the effectiveness of two different techniques for the Haskell context.

1. Introduction 4

The main reason for choosing functional programming for this project is that
the functional paradigm is less spread than object-oriented concepts; consequently, the
support material for learning it is also less spread. The reasons for choosing Haskell in
particular pass through its expressiveness, great dealing of complex data, and the fact
that it is a purely functional language that may effectively help developers to grasp the
concepts present in the functional paradigm. We may also take advantage of Haskell
laziness because this provides better visibility of the code execution.

Other data serving as motivation is the work in Purushothaman and Perry [2005]
cited by Gopinath et al. [2014] where they analyzed the change history of a large
software project focusing on one line changes. Their results showed that 10% of the
total code changes involved a single line of code, and 50% were below ten lines. The
study in Gopinath et al. [2014] specifically found that for Haskell, localized changes
are 62.7% of all changes. So, a fault localization tool may be beneficial.

Adding remarks to Haskell as the right choice for studying; there are plenty of
companies using it. Enumerating few, Facebook uses it internally in its advertising and
spam filtering internal products as well as Google, which published a paper about their
experience, found in Pop [2010]. Intel has developed a Haskell compiler as part of their
research on multicore parallelism at scale, which appears in Liu et al. [2013], Microsoft
uses it in its compilers research, and Tesla also uses it in its internal products. A list
containing several companies and the respective field they use Haskell, may be found in
Haskell Cosmos website1, inclusive some of the companies mentioned above are listed
there.

1.2 Objectives

This project’s primary goal is to evaluate the effectiveness of two fault localization
techniques in the literature, Tarantula [Jones and Harrold, 2005] and Ochiai [Abreu
et al., 2009a], in the context of Haskell programs, and additionally, create a tool to aid
Functional Programming beginners while debugging their Haskell problems.

This tool will receive a code written in Haskell containing a yet unknown logical
error and some test cases divided into two sets, one set containing tests that evoke an
error and the other one containing tests that allow the code to run smoothly. With
these inputs, the tool will be able to run the tests and to locate what expression is the
error root cause.

To achieve our goals, we established the following milestones:
1https://haskellcosm.com/

https://haskellcosm.com/

1. Introduction 5

(i) build an interpreter for a subset of the Haskell 2010 grammar
(ii) implement Tarantula and Ochiai fault localization techniques
(iii) create a test suite covering the Haskell 2010 grammar’s subset chosen in (i)
(iv) implement a tool which locate logical errors in Haskell code, and
(v) evaluate the tool against the test suite.

1.3 Contributions

As the main results of this research project conducted by the author of this master
thesis, the following contributions stand out:

(i) A tool, named HaskellFL, which is able to locate logical errors in Haskell code.
(ii) The implementation of two fault localization techniques: Tarantula and Ochiai.
(iii) A test suite covering the chosen Haskell grammar’s subset.
(iv) The evaluation of HaskellFL against our test suite using the EXAM score (see

Section 2.4.4).
(v) A Haskell interpreter for a subset of Haskell 2010 grammar.

1.4 Publication

An article entitled, Detecting Logical Errors in Haskell, accepted to be published in
the proceedings of the 15th International Conference on Testing Software and Systems
(ICTSS 2021).

Additionally, the HaskellFL tool and the test suite compiled for this work are
publicly available on GitHub2.

1.5 Dissertation Roadmap

In this chapter, we presented the problem, the objective, and the dissertation’s contri-
butions. The organization of the remaining chapters of this master’s thesis is as follows.
Chapter 2 details the literature overview. It presents the theoretical foundations in-
dispensable for making this work, such as Haskell ’s and lambda calculus’ fundamental
concepts, plus an overview on the fault localization topic, enumerating the techniques
we use in HaskellFL and showing how to evaluate these techniques.

2https://github.com/VanessaCristiny/HaskellFL

https://github.com/VanessaCristiny/HaskellFL

1. Introduction 6

Chapter 3 discusses the related work and the remaining gaps that motivated the
present work. Chapter 4 presents the proposed solution to the identified problem,
discussing the requirements and implementation of the HaskellFL tool for detection of
logical errors in Haskell. Chapter 5 presents our test suite and the results we obtained
while testing HaskellFL against it.

Chapter 6 concludes this dissertation, presenting our contribution and sugges-
tions for future works. Following it, we present the bibliography and the appendices.
Appendix A exhibits the subset of Haskell 2010 grammar supported by HaskellFL,
while Appendix B displays two programs that are present in our test suite.

Chapter 2

Literature Overview

This chapter approaches topics that are central to this dissertation. We start with a
short reminder of Haskell ’s constructs in Section 2.1, following a brief lambda calculus
concepts’ revision in Section 2.2 because we relied heavily on these concepts while
building our tool. Section 2.3 goes trough SKI combinators.

Additionally, in Section 2.4 we present an overview of error localization techniques
and explain how to evaluate them. In Subsection 2.4.3 we discuss the errors originated
by missing code. Section 2.5 closes this chapter.

2.1 Haskell Basics

Haskell was chosen for this project because it is a purely functional language that
allows us to understand functional paradigm’s concepts. It is also the language used
in many Functional Programming courses in Brazilian universities.

GHC compiler (see Section 3.1) supports the entire Haskell 2010 language and a
wide variety of extensions. Nonetheless, this project works with a subset of the Haskell
2010 language, shown in full in Appendix A, which we consider is enough to absorb
critical concepts in functional programming. This section highlights these concepts.

2.1.1 Data Types

Algebraic data types are classified into: sum types and product types. Sum type
happens when a type may be an instance of different constructors; for example, in
Figure 2.1, Shape is either a Circle or a Rectangle, and this configures Shape as
sum type. On the other hand, Circle and Rectangle constructors are samples of the
product type because Circle is a combination of three float values and Rectangle is

7

2. Literature Overview 8

a combination of four. As seen, Haskell offers both flavors, which is very advantageous
when coding.

data Shape = Circle Float Float Float | Rectangle Float Float Float Float

Figure 2.1. Data type in Haskell.

2.1.2 Pattern matching

data List a = NIL | CONS a (List a)

head :: List a -> a
head (CONS x xs) = x

tail :: List a -> a
tail (CONS x xs) = xs

absolute :: (Ord a, Num a) => a -> a
absolute n

| n < 0 = -n
| otherwise = n

Figure 2.2. Pattern matching in Haskell.

Pattern matching allows us to use algebraic data types in our code effectively.
With pattern matching, we may separate the types by constructors and treat them
accordingly. In Figure 2.2, we see the data type List and two essential functions -
head and tail -, which yields the first element of a list and the list without the first
element, respectively. As seen in their implementations exhibited in Figure 2.2, they
may achieve that easily and efficiently by taking advantage of the data type structure.

Another form of pattern matching comes in form of guards, also shown in Figure
2.2 in the function absolute, which retrieves the absolute value of a given n. An
expression in a branch with a guard is only evaluated and executed if the predicate
yields True.

2.1.3 Laziness

Haskell is lazy. Thompson [2011] explains that to evaluate a function f with arguments
a1, ..., ak in Haskell, the first step is to substitute the expressions ai for the correspon-
dent variables in the definition of the function. After substitution, the function will

2. Literature Overview 9

only be evaluated if its result is needed. Figure 2.3 exhibits an example of lazy evalu-
ation. In case n is greater than 0, y will never be evaluated; otherwise, x will not; this
is possible because a Haskell program is equivalent to a large directed graph.

switch :: Integer -> a -> a -> a
switch n x y

| n > 0 = x
| otherwise = y

Figure 2.3. Lazy evaluation in Haskell.

Another important note on lazy evaluation is that expressions are evaluated at
most once, and this is also achievable because they are a graph and not specifically a
tree. Figure 2.4 exemplifies the difference; if we had the expression (5 ∗ 3) + (5 ∗ 3)
in a tree, the expression + would point to two different nodes and calculate them
individually, even though they are the same expression as showed in Figure 2.4 (a). In
a graph, exhibited in (b) in the same figure, we can point both factors of expression +

to the same node.

Figure 2.4. Short evaluation graph.

2.2 Lambda Calculus

This project relies heavily on the algorithms shown in Peyton Jones [1987] on compiling
functional languages. The first step in the process is to transform the source code into
lambda calculus expressions. This section refreshes vital concepts to this matter.

Lambda calculus is a conjunction of three terms: a variable, a lambda abstrac-
tion, and an application. These three and their recursive combinations form several
expressions.

To use lambda calculus in real-world Haskell programs, we need to add literals
as integers and booleans and case expressions to cite a couple of examples. These

2. Literature Overview 10

concepts compose the enriched lambda calculus and are also present in Peyton Jones
[1987].

Additionally, the recursion case is fascinating because the idea of recursion is
intrinsically related to naming a function, for then being able to call it from itself.
However, if using Curry’s Y combinator, also known as fixed-point combinator, we
may have the function as an argument to a new function that is no longer recursive.
Figure 2.5 shows the Y equation, and its proof of validity may be found in many
references, inclusive in Peyton Jones [1987].

Y = \f -> (\x -> f (x x)) (\x -> f (x x))

Figure 2.5. Y combinator in Haskell notation.

2.3 SKI combinators

Another key concept we used in HaskellFL is the SKI combinators, also cited in Pey-
ton Jones [1987]. S, K, I are supercombinators - functions with no free variables -
that allow us to interpret code. We are able to reduce all expressions to a combination
of these. Figure 2.6 depicts the combinators as Haskell functions. Summarizing, the
S combinator replicates one argument to two different functions. The K combinator is
used when a value is constant regarding another value. To put it another way, we may
notice in Figure 2.6 that if x is constant regards y, we may disregard y and keep x.
And last but not least, the I combinator is just the identity function.

s f g x = f x (g x)
k x y = x
i x = x

Figure 2.6. SKI combinators in Haskell notation.

To better illustrate the SKI compilation algorithm, let us observe the following
example. Given a function \x -> x * x, applied to the integer 10, the algorithm will
follow the reduction steps in Figure 2.7. First, it will apply S, spreading the input
to two instances in the body - a variable x and an application (* x) - after that,
another application of S happens, in order to further spread the input through the
multiplication operation. Now, there is two \x -> x in the code, that may be reduced
to supercombinator I. Finally, there is just multiplication, which is constant regarding

2. Literature Overview 11

x and may be reduced using the K combinator. After all the reductions, we obtain the
expression S (S (K *) I) I, which contains only operations that are straightforward
to compute.

S (\x -> * x) (\x -> x) 10
S (S (\x -> *) (\x -> x)) (\x -> x) 10
S (S (\x -> *) I) (\x -> x) 10
S (S (\x -> *) I) I 10
S (S (K *) I) I 10

Figure 2.7. Example of SKI compilation.

2.4 Fault Localization

Fault localization techniques aim to drive developer’s attention to specific parts of the
code to speed up debugging. They usually output an ordered list of suspicious program
locations. There are two main fault localization approaches; they are spectrum-based
fault localization and mutation-based fault localization.

2.4.1 Spectrum-Based Fault Localization

Jones et al. [2002] present a prototype tool that uses coloring statements in the code
to detect fault locations, which they classify as a spectrum-based fault localization
(SBFL) technique. The authors have a piece of code with a logical error and some test
cases. A few produce the expected result for a given input, while the other few produce
an unexpected output for a different input. While executing the code, they color the
coding statements with colors inside the green, red, and yellow spectrum.

In this scenario, red means the majority of test cases that run that line fails to
achieve the correct output; green means the opposite; most test cases running that
line succeed in achieving the correct output. Furthermore, yellow means the test cases
executing that statement are the ones that succeed sometimes and fail other times,
both near to the same percentage. It is worth remembering that the colors rely upon
a spectrum, which means that one statement that has 80% failing test cases and 20%
successful ones running it, is colored in a darker red contrasted to one with 65% failing
test cases and 35% successful test cases running it. Correspondingly, the same applies
to green in the reverse order. Figure 2.8 depicts the example shown by Jones et al.
[2002] in their paper and allows us to better demonstrate what we just explained. The

2. Literature Overview 12

mid function in the figure prints the central element among three elements and will be
used as an example again in this dissertation.

Figure 2.8. Colored code for detecting error location, extracted from Jones et al.
[2002].

Moreover, in Figure 2.8, P indicates the given test case succeeds in achieving
the expected output, i.e., it passes. F indicates that the test case did not achieve the
correct output; thus, it fails. The black bullets in the intersections between test cases
and code statements show that the given test case has executed that code statement.
For example, test case 2, 1, 3, execute lines 1, 2, 3, 6, 7, 13, and fail.

Lee et al. [2018] adopted the same method, after adapting it to functional pro-
grams, to detect possible error locations in the process of correcting OCaml code. Their
result is a set of pairs consisting of a holed program and a score for each possible error
location. The lower the score, the more suspicious the expression is. Additionally,
as the name suggests, the holed program contains holes in the expressions where an
error may occur. It is also worth mentioning that the authors consider the size of the
expression to calculate its score. They based their motivation for this on the Occam’s
razor principle, Blumer et al. [1987], meaning they want to replace an expression as
small as possible.

Table 2.1 shows two formulas from different methods - Tarantula, Jones and
Harrold [2005], and Ochiai, Abreu et al. [2009a] - that we used to calculate the error

2. Literature Overview 13

localization in this master thesis project; both fall in the SBFL category.

Tarantula:
failed(s)

totalfailed
failed(s)

totalfailed
+

passed(s)
totalpassed

Ochiai: failed(s)√
totalFailed(failed(s)+passed(s))

Table 2.1. Fault localization techniques’ formulas.

According to Jones and Harrold [2005], Tarantula utilizes all the standard in-
formation other testing tools also use: pass/fail information about each test case, the
entities that were executed by each test case, e.g., - statements, branches, methods -
and the program’s source code under test. The method intuition is that entities in a
program primarily executed by failed test cases are more likely to be faulty than those
primarily executed by passed test cases. Additionally, the method also allows some
tolerance for the fault to be occasionally executed by passed test cases because they
claim it often provides more effective results.

In Abreu et al. [2009a] they show that for software fault diagnosis, the Ochiai
similarity coefficient, known from the biology domain, outperforms several other fault
localization methods. They attribute these results to the Ochiai coefficient being more
sensitive to potential fault locations in failed runs than to activity in passed runs. This
fact suits fine for fault localization because faulty code execution does not necessarily
lead to failures, while failures always involve a fault.

2.4.2 Mutation-Based Fault Localization

Another approach for finding logical errors is mutation-based fault localization (MBFL)
techniques. In Papadakis and Le Traon [2015], the authors explain that this method
works by introducing defects - mutants - in the program under analysis. The analysis
relies on the assumption that most mutants form realistic faults, even if artificially
seeded. Furthermore, it becomes possible to analyze the new code behavior against
the test cases with the mutants in place. A big disadvantage of this method is that it
is costly.

To better measure this fact, in a technical report made by Pearson et al. [2016],
the authors evaluated different techniques for finding faults’ localization. Their dataset
was composed of 310 real faults and 2995 artificial faults in Java code. They took
100,000 CPU hours to get their results, mainly because of MBFL expensiveness.

2. Literature Overview 14

In Le et al. [2014b], the authors propose a mutation testing tool for Haskell
programs and also name mutations they consider suitable for functional programs.
These mutations are:

(i) Replacing integer constant N with one of {0, 1, -1, N + 1, N - 1}.
(ii) Replacing an arithmetic, relational, logical, bitwise logical, incre-

ment/decrement, or arithmetic-assignment operator by another of the same
class.

(iii) Negating the conditional in if statements.
(iv) Deleting a statement.
(v) Reordering pattern matching.
(vi) Mutation of lists and list expressions.
(vii) Type-aware function replacement.

More precisely, the first four items were originally applied for C programs, but Le
et al. [2014b] agree they are still valid for functional programs. They added the last
three specifically for functional programming.

2.4.3 Faults Originated by Missing Code

Sometimes, bugs may be caused by the lack of an explicit expression in the program
instead of an error in its expressions. Just et al. [2014] cited by Pearson et al. [2016]
affirm that for 30% of cases, a bug fix consists of adding new code rather than changing
existing code. Nonetheless, Wong et al. [2016] states that even if a bug originates
from a missing part in the code, such as an untreated corner case, fault localization
techniques may still be helpful to bring attention to suspicious parts of the code by
exposing possible control-flow anomalies.

Pearson et al. [2016] evaluated the different fault localization techniques regarding
the missing code scenario considering that the guideline for this case is to the technique
to report the immediately following statement. Ideally, this should be exactly where
the programmer should insert the code, and thus fault localization techniques are still
able to bring awareness to the correct part of the code.

Furthermore, Li et al. [2020] proposed a new missing code-oriented fault localiza-
tion (MCFL) approach, which intuitively says that to identify a code-omission fault,
the missing code site between two specific adjacent statements should be a candidate
of fault localization. Such a site indicates the position of missing code in the faulty
program. In other words, they consider both statements in the code and possible new
code locations to calculate their suspiciousness scores.

2. Literature Overview 15

In conclusion, bugs caused by missing code are an essential part of fault localiza-
tion research. SBFL is still valid for several scenarios, including ours; however, newer
techniques as MCFL are improvements to the field.

2.4.4 Fault Localization Metrics

As said in the previous section, there are several literature methods for fault diagnosis in
software testing. The question which arises after that is how to evaluate these different
methods. Henderson [2018] compiled several evaluation methods, and we reproduce
some of them here.

(i) EXAM Score. It calculates the percentage of program elements that a developer
would have to inspect until finding the first fault. Formally, let n be the number
of program elements and r(s) the rank of a given element for a fault localization
method, the EXAM score is:

r(s)

n

(ii) Tarantula Effectiveness Score (Expense). It calculates the percentage of
program elements that do not need to be inspected to find the fault. Formally,
let n be the number of program elements and r(s) the rank of a given element s
for a fault localization method, the Expense score is:

n− r(s)
n

(iii) LIL Probability Distribution. It uses a measure of distribution divergence
(Kullback-Leibler) to compute a score of how different the constructed distribu-
tion is from the "perfect" expected distribution. The LIL advantage framework
does not depend on a list of ranked statements and may apply to non-statistical
methods. Formally, let τ be a suspicious metric normalized to the [0,1] range
of reals. Let n be the number of statements in the program. Let S be the set of
statements. For all 1 ≤ i ≤ n let si ∈ S. The probability distribution is:

Pτ (si) =
τ(si)∑n
j=1 τ(sj)

When evaluating a suspiciousness rank list, a fact to be considered is the present
matching scores. The approach we took calculates the best and worst-case scenarios.
We consider the best-case scenario when the developer starts examining them by the

2. Literature Overview 16

line containing the bug among the several lines with the same score. Conversely, the
worst-case scenario happens when a developer chooses to examine the line with the
bug last.

To exemplify, lets suppose we have a bug in Line 2 of a four lines’ program and a
suspiciousness score list [0.5, 0.8, 0.8, 0.3], where the position in the array holds
its score, for instance Line 1 has a score of 0.5. In the best case scenario, a programmer
would find the bug at first try, choosing to check Line 2 first, and the EXAM score for
this is:

EXAM =
1

4
= 25%

Whereas for the worst-case scenario, a developer would chose to examine Line 3

before Line 2, and the EXAM score for this scenario is:

EXAM =
2

4
= 50%

Chapter 5 will present our results in terms of the EXAM score. We chose it
because we believe it is an excellent indicator of the effort level a developer needs to
locate a bug, and this is the point HaskellFL aims to contribute. Additionally, when
introducing the test suite in Section 5.2, we will also provide our problem’s length, so
it can work together with the EXAM score and contribute to a better understanding
of our results.

2.5 Final Remarks

This chapter reviewed several literature concepts we used to build the HaskellFL tool.
In this sense, we initially revised some essential concepts of Haskell language. Ad-
ditionally, we went through lambda calculus notions because one step in HaskellFL
is to transform our input into lambda calculus terms. We also explained about SKI

combinators because transforming expressions in terms of them is a key stage in our
interpreter.

Moreover, we described different types and techniques for locating faults in code,
one of the central topics of this dissertation. We mentioned two different approaches,
(i) spectrum-based fault localization and (ii) mutation-based fault localization, and
how they work. We also presented the two techniques we implemented in HaskellFL
that are Tarantula and Ochiai, both fitting in the spectrum-based category. Besides,
we discuss how to analyze bugs caused by missing code.

2. Literature Overview 17

Last but not least, we presented how to evaluate fault localization techniques.
We showed different metrics used in the literature explaining how they work, and we
also explained why we chose to use the EXAM score to measure our results. In the
next chapter, we enumerate projects similar to ours, discuss, and point out what makes
ours different from them.

Chapter 3

Related Work

This chapter presents works related to our HaskellFL tool and the process we follow
to build it. Section 3.1 talks about the state-of-the-art in Haskell compilers. Section
3.2 enumerates tools and methods on fault diagnosis not mentioned in the previous
chapter, presenting the difference of our tool regarding the existing ones with the same
aim.

In addition, Section 3.3 cites several projects on type errors and how to provide
better feedback to them. Section 3.4 mentions Haskell tutors and Section 3.5 names
some selected tools on automatic program repair. Finally, Section 3.6 concludes this
chapter.

3.1 Compilers

The most well-known and popular Haskell compiler is the Glasgow Haskell Compiler
(GHC). The default compiler on the Haskell platform also includes tools to manage
project building and packaging libraries. We may download the Haskell platform on
their website, HaskellWiki [2018b]. They also offer an interactive development environ-
ment, named GHCi, which may be used for incremental programming in the command
line and provides handy tools for debugging. The original paper, which introduced the
compiler, found in Jones et al. [1993], reinforces the fact the compiler is most written
in Haskell itself, and its target language is C. Exemplifying its popularity, GHC is
the recommended compiler on the introductory books to Haskell, "Haskell : The Craft
of Functional Programming" by Thompson [2011] and "Thinking Functionally with
Haskell" by Bird [2014].

GHC is an open-source project1, it is on Version 8.10.2 to this date, and it is
1https://gitlab.haskell.org/ghc/ghc/

18

https://gitlab.haskell.org/ghc/ghc/

3. Related Work 19

continually updated. It is an excellent tool for all the motives cited above. However,
there is still room to improve, as we may see regarding the confusing type error feedback
depicted in Figure 3.1, which we further scrutinized in Section 3.3. Another widely
known Haskell compiler is Hugs (Haskell User’s Gofer System), which was the compiler
reference for Haskell prior GHC. It is no longer in development; its last release is from
May 2006.

Figure 3.1. Type error pointed by GHCi.

Furthermore, there is a compiler named Helium created by Heeren et al. [2003],
which has educational purposes and provides more detailed feedback. For example,
given the remove function in Figure 3.2 with an error in Line 4, where a developer
wrote n = x instead of n == x, the feedback returned by Helium, according to its
creators, is the one displayed in Figure 3.3. It points to an error in the second equal
sign and says that we may not have another attribution after the first. The expected
input is an expression, an operator, or a constructor operator. It does not detect
the most probable error cause; however, it gives better feedback showing a double
attribution problem.

remove :: Int -> [Int] -> [Int]
remove n [] = []
remove n (x:xs)

| n = x = rest
| otherwise = x : rest

where rest = remove n xs

Figure 3.2. Remove function with an error in Haskell.

GHCi also points to a parser error on the second equal sign with no hints to
fix it. Some other interesting remarks about Helium are that as the compiler aims to
stimulate functional languages, they look for being as modular and straightforward as
possible. Their code and idea are not very hard to follow, and as usual, type inference

3. Related Work 20

(4,16): Syntax error:
unexpected '='
expecting expression, operator, constructor operator, '::',
'|', keyword 'where', next in block (based on layout), ';'
or end of block (based on layout)

Figure 3.3. Feedback provided by Helium, extracted from Heeren et al. [2003].

is the challenging and compelling section of their work. Their solution passes by tight
constraint solving and global constraint solving.

3.2 Fault Localization Tools

Section 2.4 presented some relevant works on fault diagnosis. It presented the tech-
niques we used in HaskellFL and described an alternative approach to calculate fault
localization that is mutation-based. This section presents other techniques and tools
on error localization for several programming languages.

To begin with, Thompson and Sullivan [2020] introduced ProFL, a command-
line fault localization tool for Prolog models. As happens for HaskellFL, ProFL takes
a faulty Prolog model and a test suite for that model and calculates which statements
are most likely to be faulty. It performs both Spectrum-Based Fault Localization and
Mutation-Based Fault Localization.

Chesley et al. [2007] presented Crisp, an Eclipse plug-in tool that allows a pro-
grammer to run regression tests after some change in her Java code. If a test fails
unexpectedly, the programmer may edit parts of the code to ensure it still compiles
and rerun the test focusing on the modified part. The programmer may interact with
changes until finding the set originating the fault.

The work in Dallmeier et al. [2005] uses a method that takes advantage of the
information regarding method calls’ sequences during program execution to calculate
fault localization. It collects execution data from Java programs considering incoming
method calls, i.e., how to use an object, and outgoing calls, i.e., how to implement it.

Moreover, Wong et al. [2008] presented a cross-tabulation statistical method tak-
ing advantage of code coverage for test cases. The authors used a hypothesis test to
infer if execution results and each statement’s coverage are dependent or independent.
Each statement’s suspiciousness score depends on the degree of association between its
coverage and the execution results.

Le et al. [2014a] presentedMuCheck, a mutation testing tool for Haskell programs.

3. Related Work 21

The tool implements mutation operators that are specifically designed for functional
programs (see Section 2.4.2), and makes use of Haskell ’s type system to achieve a more
relevant set of mutants.

Besides that, there are other relevant works on error localization. Jose and Ma-
jumdar [2011] present an algorithm for error cause localization based on a reduction
to the MAX-SAT2 problem; Ball et al. [2003] show an algorithm that explores the
existence of correct error traces among all the error traces pointed out by a compiler in
order to localize what is causing the error, and Groce et al. [2006] use distance metrics
in order to better explain the error location. Distance metrics for program executions
means a function d(a,b), where a and b are executions of the same program, and
d(a,b) is equal to the number of variables to which a and b assign different values.

Finally, Wong et al. [2016] compiled several Ph.D. and Master’s Theses, tech-
niques, and tools on fault localization, which makes it an excellent reference for related
work. It contains the majority of the works mentioned above.

3.3 Type Errors

There are several works on compilation errors and how to provide appropriate feedback
to them. To cite a few, there are Zhang et al. [2015], Charguéraud [2015], Heeren [2005],
Sakkas et al. [2020] and Becker et al. [2016].

To exemplify the topic, let us look at the following function in Haskell to calculate
the factorial of n:

fac n = if n == 0
then 1
else n * fac (n == 1)

Figure 3.4. Factorial function with error in Haskell.

This function has a type error on Line 2, more precisely, in the expression fac

(n == 1), but as depicted in Figure 3.1, the error accused by GHCi, the interactive
development environment provided by GHC compiler, is in Line 1 when n is checked
against 0; this happens because, in the else clause, fac is called with a boolean
parameter, binding the input to the boolean type. The comparison with integer 0

fails on the following iteration. To solve it, it is necessary to explicitly declare the
2MAX-SAT is the problem of determining the maximum number of clauses of a Boolean formula

in conjunctive normal form, that may be made valid by an assignment of truth values to its variables.

3. Related Work 22

function’s type instead of allowing the compiler to infer it. However, this will most
likely confuse novice programmers, who may not be aware of this behavior.

In Zhang et al. [2015], the authors propose improving compiler error messages by
looking at all possible errors as a whole and just reporting the most likely error instead
of the first one encountered; the latter is how compilers handle their error messages
usually. Their work uses Haskell. Figure 3.5, illustrated in their paper, is used to
explain their approach to the problem.

Figure 3.5. Graph for diagnosing type errors, extracted from Zhang et al. [2015].

A brief explanation: first, they model the set of constraints in the code as a
constraint graph. The graph in Figure 3.5 represents the erroneous factorial code,
depicted in Figure 3.4. The nodes α0, α1, αn and α∗ represents the types of 0, 1,

n and the first parameter of multiplication (∗), respectively. The bidirectional edges
mean type equality between nodes, for instance, αn and α0 are supposed to have the
same type.

Each edge is also annotated with the expression that generates it. The direct
edges represent type classes, the edge between α1 and Num indicates that α1 must be of
type Num. The dashed edges are derived by transitivity. Furthermore, the edges are then
classified as satisfiable or unsatisfiable. The red X means unsatisfiable. Exemplifying,
Bool, and Num may not be the same.

The last pass uses Bayesian principles, from probability domain, to detect which
edge is the most likely error source; the correct answer is (n == 1). In conclusion, it
is easy to follow method that may improve type error localization and help users in a
topic that traditionally causes great confusion.

3.4 Haskell Tutors

In this section, we mention researches in building systems that offer more driven feed-
back for tutoring functional programming apprentices, such as Heeren et al. [2003],

3. Related Work 23

Gerdes et al. [2017] and Handley and Hutton [2018].
The tutor created by Gerdes et al. [2017] is an excellent tool for Haskell and

functional programming beginners. Their tutor offers incremental feedback, which
means that at any point a student feels stuck with a problem, he may ask the tutor
for a hint. The tricky part is that an instructor must provide well-written solutions to
the tutor. Besides that, he also needs to provide a configuration file customizing the
feedback with tips that he believes would help his students to better comprehend the
proposed solution and the process leading to it; these are a must to make the tutor
effective. Otherwise, students may continue confused about the best path to follow
to solve their problems. If more than one solution is applicable, the instructor must
submit all the solutions he wants his students to know. Another remark about their
project is that their tutor is a web application, making it accessible to everybody.

They also use a compiler with improved error feedback, described in Section
3.1. Their model tracing and property-based test strategies have similarities with the
strategies adopted by Lee et al. [2018]. Their goal is to provide correct guidance that
will allow the programmer to fill the holes he may have left in his code by not knowing
what expression to use in a specific part of the program. To achieve that, they rely
on the provided instructor’s solution and in the language grammar; trying to fill the
blanks with constructs available in the target functional language and with lambda
calculus concepts, explored in Section 2.2. The latter may find equivalent expressions
in the code, making it more straightforward for the tutor to interpret.

Finally, there is the project Try Haskell, Done [2018], which is worth to be men-
tioned. This project does not provide customized feedback about the logical errors in
the code. However, it is an excellent way to start with Haskell, having a friendly and
interactive tutorial about its basics.

3.5 Automatic Program Repair

Automatic program repair is likely the next step for research after finding code bugs
automatically. This section brings up works on automatic program repair.

Lee et al. [2018] created a system named FixML to diagnose and correct logical
errors in OCaml. To do so, they need four inputs: an incorrect resolution for a program,
a solution, the function name for the problem, and a file containing passing and failing
test cases. As a result, FixML produces a repaired program consisting of the incorrect
program modified to function correctly. The provided solution not necessarily follows
the same structure of the program the system is trying to fix. The authors used the

3. Related Work 24

solution while rebuilding the code, but it is not a plain copy.
Kneuss et al. [2015] wrote other paper on the subject to repair programs written

in a Scala subset. Their process to locate a code fault starts by doing dynamic analysis
using test inputs generated automatically. They combine enumeration and SMT-based
techniques. Additionally, they collect traces from erroneous executions and compute
common prefixes of branching decisions. On the program repair angle, they use the
existing program structure as a hint to guide it. They rely on user-specified tests and
automatically generated ones to localize the fault and speed up synthesis.

Moreover, Tondwalkar [2016] presents a tool to find and fix bugs in Liquid Haskell.
As stated in Tondwalkar [2016], Liquid Haskell is a framework for annotating Haskell
programs with refinement types, which are types decorated with predicates. In their
master thesis, the authors introduced a fault localization algorithm for constraint-based
type systems, which searches for a minimal unsatisfiable constraint set using the type
checker as guidance. To optimize the search process, they exploited the structure of
Liquid Haskell constraint sets. They also presented a predicate discovery algorithm
for constraint-based type systems, which allows the type checker to verify additional
correct implementations.

3.6 Final Remarks

This chapter went through works that are related to any part of HaskellFL develop-
ment. We started by citing the Haskell compiler GHC because it was a reference while
choosing the tools to build our interpreter and handling Haskell layout rules.

Secondly, we enumerate works on fault localization that were not used for building
HaskellFL directly but play a similar role for other languages that not Haskell. We also
mentioned different methods for calculating fault location and we cited the MuCheck
tool, provided by Le et al. [2014a], with locates bugs on Haskell code but following a
mutant-based approach. Secondly, we enumerate works on fault localization that were
not used for building HaskellFL directly but play a similar role for other languages that
not Haskell. We also mentioned different methods for calculating fault location, and
we cited the MuCheck tool, provided by Le et al. [2014a], with locates bugs on Haskell
code but following a mutant-based approach.

Thirdly, we talked about type errors because they are traditionally a source of
confusion for programmers, and they play an essential role in repairing code automati-
cally. Furthermore, we dedicated a section to interactive tools created to tutor Haskell
apprentices.

3. Related Work 25

Our HaskellFL tool differs from the works in Thompson and Sullivan [2020], Ches-
ley et al. [2007] and Dallmeier et al. [2005] in the language we support. Additionally,
Thompson and Sullivan [2020] implement a mutation-based algorithm that we do not.
The work in Chesley et al. [2007] is different in the sense that their work is an interac-
tive guide for helping to locate an error root cause. Similarly, the works mentioned in
Section 3.4 also serve as a guide for programming apprentices, as our work does, but
they work as an interactive Haskell guide instead of looking for the error automatically.

Furthermore, Dallmeier et al. [2005] implements a different fault localization tech-
nique that we did not use in HaskellFL. Wong et al. [2008] also presented a new method
which they compare and contrast against Tarantula, that is a method we studied. Le
et al. [2014a] also used Haskell in their work, however, they implemented mutation-
based fault localization while HaskellFL offers spectrum-based fault localization. With
that said, Chapter 4 effectively presents our work.

Chapter 4

Detecting Logical Errors in Haskell

This chapter presents our solution to locate logical errors in Haskell programs. Section
4.1 presents an overview of our proposed solution and Section 4.2 explains how we built
the HaskellFL tool from the previous mentioned solution. We detail HaskellFL require-
ments in subsection 4.2.1 and its implementation in subsection 4.2.2. To dive deeper
into our implementation, subsection 4.2.2.1 uses an example to demonstrate step-by-
step what HaskellFL does in order to locate a bug. Finally, Section 4.3 concludes this
chapter.

4.1 Proposed Solution

Figure 4.1. HaskellFL architecture.

Figure 4.1 exhibits the architecture of our proposed solution to locate logical
errors in Haskell. We named our tool HaskellFL.

26

4. Detecting Logical Errors in Haskell 27

HaskellFL expects three file paths as inputs, (i) one for the faulty Haskell code,
(ii) another for the text file containing the passing test cases, and (iii) the last one for
the text file with the failing test cases. We used Cabal, the standard package system for
Haskell in HaskellFL. Figure 4.2 exhibits an example of HaskellFL execution using this
package. In other words, we invoke cabal run indicating the target we want to execute,
which is in our case HaskellFL followed by the args expected by the program itself,
i.e., the three files enumerated above. Optionally, we may also specify the technique of
choice: the Tarantula or Ochiai. If we omit this information here, we will be prompted
for it later in the program.

cabal run HaskellFL faulty-code.hs tests-pass.txt tests-fail.txt [method]

Figure 4.2. HaskellFL execution command using Cabal.

Furthermore, HaskellFL can also interpret the test cases, and expose their results.
To do that, we must call HaskellFL as in Figure 4.3, with the code and test case paths,
followed by the keyword run and the name of the function to be interpreted.

cabal run HaskellFL faulty-code.hs tests-pass.txt tests-fail.txt run
function-name

Figure 4.3. Command for HaskellFL interpreting the test cases.

Once we have the needed inputs to run HaskellFL, it is necessary to obtain the
code coverage for the buggy Haskell code regarding every test case separately. We
divide the count between two independent sets representing the passing and the failing
test cases. In possession of these two sets’ data, the next step is to feed them to
the formulas exhibited in Table 2.1, and replicated in Table 4.1 for completeness, to
calculate the suspiciousness rank for each fault localization method.

Tarantula:
failed(s)

totalfailed
failed(s)

totalfailed
+

passed(s)
totalpassed

Ochiai: failed(s)√
totalFailed(failed(s)+passed(s))

Table 4.1. Fault localization techniques’ formulas.

4. Detecting Logical Errors in Haskell 28

4.2 HaskellFL Tool

This section goes through HaskellFL details. We explain the reasoning behind our
design decisions, which requirements we chose to cover and why, and what tools we
used to implement HaskellFL. Additionally, we explain the actual process HaskellFL
executes via a short example extracted from our test suite.

4.2.1 Requirements

Firstly, we decided the Haskell ’s 2010 grammar subset to be contemplated by
HaskellFL. The chosen subset is available in full in Appendix A. It is important to
say that HaskellFL handles Haskell ’s layout rules. The notable parts of Haskell 2010
we left out of our tool are list comprehensions and do notation. However, they may
be included as extensions for future work. Nevertheless, HaskellFL covers abstract
data types, pattern matching, guards, case, if-then-else, let and lambda expres-
sions among other features which we believe are enough to support and guide Haskell
beginners.

Secondly, we needed to calculate the fault location using one or more fault local-
ization techniques. To do that, we calculate and make available the coverage count for
each statement, making note if the generated coverage is for a passing or a failing test
case. This feature’s implementation allows us to insert additional fault localization
methods to our tool in the future easily.

Thirdly, we chose to create our Haskell interpreter to obtain the code coverage
map. The primary reason behind this choice is to allow the extension of HaskellFL in
the future to repair Haskell code, as it is done for other programming languages as we
have described in Section 3.5. Another viable extension to HaskellFL is to implement
mutation-based fault localization techniques, also mentioned before in Section 2.4.

4.2.2 Implementation

Figure 4.4 exhibits HaskellFL high level block diagram. We divided the diagram into
four main blocks representing four processes: Parser, Transformation, Interpreter, and
Fault Localization.

The first block encapsulates the parsing process. We built the lexer using Alex1

and the parser using Happy2. These are the Haskell equivalents for Lex and YACC

respectively, and they also are the same tools used by Haskell compiler GHC. We
1https://www.haskell.org/alex/
2https://www.haskell.org/happy/

https://www.haskell.org/alex/
https://www.haskell.org/happy/

4. Detecting Logical Errors in Haskell 29

Figure 4.4. HaskellFL high level block diagram.

could have picked an alternative approach using one of the several libraries of parser
combinators available such as Parsec3. The first option is restricted to LALR parsing,
and the latter favors LL parsing, Fernandes [2004]. We chose to go with the combo
Alex and Happy because besides being more robust and offering better support for LR
grammars, it also offers better visibility and control of each step, facilitating HaskellFL
extension to repair logical errors in the future. It is also worth mentioning the BNF
Converter4, which is a powerful tool with uncomplicated implementation, even though
it is not suitable to Haskell grammar.

Moreover, the parser step maps tokens to a set of Haskell abstract data types. It
was critical to HaskellFL to keep the expressions’ lines while parsing to calculate code
coverage further.

The second block is responsible for transforming the data types generated during
3https://wiki.haskell.org/Parsec
4http://bnfc.digitalgrammars.com/

https://wiki.haskell.org/Parsec
http://bnfc.digitalgrammars.com/

4. Detecting Logical Errors in Haskell 30

the parsing process into SKI combinators. These data types are as close as the lambda
calculus terms, mentioned in Section 2.2, as possible. The parser already returns
application, variable and lambda abstraction types, but it also returns data types
corresponding to let, case and if-then-else expressions, that are later transformed
in terms of the first three during the desugar phase. We obtained all the needed rules to
translate a high-level functional language into lambda calculus in Peyton Jones [1987].
Additionally, before reaching the desugar step, we needed to handle pattern matching.
We achieved that goal by implementing the match function, also provided in detail in
Peyton Jones [1987]. Moreover, desugar step was also responsible for simplifying the
fixed-point combinator and our other built-in functions.

Compile step for its turn, is the real responsible for transforming our desugared
code into SKI combinators. This function implements the transformation rules pre-
sented in Section 2.2. With that said, we formed the second block outcome with a set
containing the SKI combinators alongside our final literals and the new local functions.

There is the interpreter step in the following block, where the evaluator function
orchestrates calls to the previous blocks’ functions. Evaluator extends our small pre-
lude with the locally declared functions. This step is composed of constant exchanges
between its internal blocks, represented with dashed arrows in Figure 4.4 for organiza-
tion purposes. These exchanges reflect the process of getting and adding functions to
the prelude and the constant update of our execution stack.

Furthermore, in the fourth block, we were able to calculate the faulty line in the
Haskell code using our chosen techniques, which manipulates the coverage map exposed
by the third block. This step may easily include other different coverage-based fault
localization methods.

An absence in HaskellFL tool is type checking. We did not implement a type
checker for our tool for believing this would be an overkill for our need to obtain code
coverage. However, to extend HaskellFL for repairing Haskell code, this is an important
step. One important heuristic used to speed up finding a new bugless expression to
replace a bug is to cut all candidates that do not type compliant out of the search.

4.2.2.1 Walkthrough

To better understand the complete process we implemented for HaskellFL, let us look
at the example in Figure 4.5. We extracted a small piece of LinkedList module that
is a problem present in our test suite. This small part does not contain any bugs,
but it serves to understand our whole process. The module has a generic data type
LinkedList a, written using record syntax, and a function fromList that creates a

4. Detecting Logical Errors in Haskell 31

LinkedList from a regular Haskell list.

module LinkedList (LinkedList, fromList) where

data LinkedList a =
Nul
| LinkedList { datum :: a,

next :: LinkedList a }
deriving (Eq, Show)

fromList [] = Nul
fromList (x:xs) = LinkedList x (fromList xs)

Figure 4.5. LinkedList module.

Figure 4.6 shows the generated AST for LinkedList source code after the pars-
ing process. We omit some details such as every terminal knowing its own position
for better clarity in the figure, nonetheless, we may see that we have one data type
declaration under the DataDecl set and two function bindings under FunDecl set. The
LinkedList DataDecl has two constructors, Nul and LinkedList, with different ar-
ities and fromList FunDecl has two different bindings, one matching an empty list,
i.e. Nil, and the other matching a non-empty list, i.e. Cons x xs. MatchPat is the
label indicating the pattern matching for each specific function binding and MatchBody

keeps the function result for that respective pattern.
In the example, we have Nul as MatchBody for the empty list, and an applica-

tion of two other applications as MatchBody for the non-empty list. We displayed the
internal nodes representing the lambda calculus applications in yellow. Adding to the
MatchBody for the non-empty list, we have the first application being of the constructor
LinkedList to the head of its MatchPat and the second application being of the func-
tion fromList to the tail of its MatchPat. In light of that, we restate that MatchBody
already transformed into a lambda calculus expression.

Once parsing is done, we are able to call match function which transforms our
pattern matching function bindings in a case expression such as the one exposed
in Figure 4.7. Colored in blue in our diagram, there are two concepts presented in
Peyton Jones [1987] and introduced to our code during this step. Firstly, the idea of
pattern matching failing, i.e. a pattern mismatch, represented by Fail. Secondly, the
FatBar operator, also represented for [], which obeys the following rules:

4. Detecting Logical Errors in Haskell 32

Figure 4.6. LinkedList AST.

a[]b = a, if a 6= Fail

Fail[]b = b

In other words, if we apply the FatBar operator to two expressions, the result
will be the first expression that is not Fail. It is essential to say that if the first
expression fails to terminate, [] will also fail. Finally, we attached our resultant case
expression to a lambda abstraction, as the body of the same, and added it to our
extended prelude, after being wrapped to another layer composed of the fixed-point
combinator, responsible for taking care of recursion.

In sum, after the process demonstrated in this section, we are able to call
fromList from another function in the LinkedList module, or with input test cases
from HaskellFL, such as the illustrative examples shown in Figures 4.8 and 4.9, and
this way to obtain LinkedList code coverage.

4. Detecting Logical Errors in Haskell 33

Figure 4.7. Pattern matching case expression.

fromList ["UFMG", "UFV"]
fromList [False, True, True, True]

Figure 4.8. test-cases-pass.txt

fromList [1, 2, 3]
fromList [1.9, 2.4, 3.8, 0]

Figure 4.9. test-cases-fail.txt

4.3 Final Remarks

This chapter showed how we implemented the HaskellFL tool. It started by displaying
a high-level overview of our proposed solution and discussing the trade-offs of choosing
which tools would better aid us in the long run. Besides, we explained how to use our
tool.

Secondly, we described the steps HaskellFL takes to obtain code coverage with
the help of an example extracted from our test suite that we will adequately introduce

4. Detecting Logical Errors in Haskell 34

in Section 5.2. The tool is publicly available on GitHub5, together with our test suite.
With that said, the next chapter will present our test suite and the quantitative

results we obtained while testing HaskellFL against it.

5https://github.com/VanessaCristiny/HaskellFL

https://github.com/VanessaCristiny/HaskellFL

Chapter 5

Result Discussion

This chapter presents our test suite and the results we obtained when running
HaskellFL against it. In Section 5.1 we introduce a case study with mid function
in two different faulty versions, showing the coverage for the chosen test cases and the
calculated scores for each statement in both methods we are studying. Section 5.2
presents the test suite we used to evaluate our work, and Section 5.3 shows our tool
results tested against our suite. Section 5.4 discusses the threats to the validity of our
work, and Section 5.5 concludes this chapter.

5.1 Case study

We studied two different buggy versions of mid function displayed in Figure 5.1. As
the name suggests, mid calculates the middle element among three given elements. In
the first faulty version, mid has a bug in Line 2. The if block is if y < z - 1 instead
of if y < z. The second buggy version presents a bug in Line 6 where we have then

y instead of then x.
Table 5.1 maps the code coverage for each function call for a given input. For

instance, a mid Version 1 call with inputs 3, 3 and 5 run lines 2, 3, 5 and 6. The
P/F column indicates if the output for the given input is the expected one of a non-
faulty version of the code, i.e., it is a passing test case represented by P, or if it is an
unexpected output for the specified input, i.e., it is a failing test case, represented here
by F.

Finally, we calculated the suspiciousness scores for each statement for Tarantula
and Ochiai techniques according to the formulas presented in Table 4.1. We present
them under their respective labels Tarantula and Ochiai.

35

5. Result Discussion 36

1 module Main where
2 mid x y z = if y < z
3 then if x < y
4 then y
5 else if x < z
6 then x
7 else z
8 else if x > y
9 then y

10 else if x > z
11 then x
12 else z

Figure 5.1. Mid function in Haskell.

Test cases/Lines 1 2 3 4 5 6 7 8 9 10 11 12 P/F

V
er
si
on

1

3 3 5 P
1 2 3 F
3 2 1 P
5 5 5 P
5 3 4 F
2 1 3 P

Tarantula 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.67 0.67 0.67 0.00 0.67
Ochiai 0.00 0.58 0.00 0.00 0.00 0.00 0.00 0.71 0.50 0.50 0.00 0.50

V
er
si
on

2

3 3 5 P
1 2 3 P
3 2 1 P
5 5 5 P
5 3 4 P
2 1 3 F

Tarantula 0.00 0.50 0.63 0.00 0.71 0.83 0.00 0.00 0.00 0.00 0.00 0.00
Ochiai 0.00 0.41 0.5 0.00 0.58 0.71 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.1. Code coverage and fault rank for mid.

To describe the calculus, we may take for instance the fifth line from second mid

version. We have in total one failing and five passing test cases, thus totalfailed =

1 and totalpassed = 5. Two passing test cases cover Line 5, as well as one failing test
case, therefore, failed(5) = 1 and passed(5) = 2, with this, we are able to calculate
Tarantula score:

Tarantula(5) =

failed(5)
totalfailed

failed(5)
totalfailed

+ passed(5)
totalpassed

=
1

1 + 2
5

=
5

7
≈ 0.71

Similarly, we may calculate the Ochiai suspiciousness score:

5. Result Discussion 37

Ochiai(5) =
failed(5)√

totalfailed(failed(5) + passed(5))
=

1√
3
≈ 0.58

Furthermore, the scores highlighted in bold are the ones for the statement con-
taining the error. We may notice that for Version 2, both methods assign a higher
score for Line 6, finding the correct error localization. On the other hand, for Version
1, the methods do not rank the line with the error first. Ochiai assigns the highest
score for Line 8, and Tarantula ranks Lines 8, 9, 10, and 12 higher than the correct
error localization, that is Line 2.

Despite scores for the buggy lines in both versions of mid not being repeated in
the results, we may observe several other statements receiving matching suspiciousness
scores. As explained in Section 2.4.4, one approach is to calculate the best and worst-
case scenarios.

In the first case, we consider a programmer would guess right the line containing
the bug the first time while going through the list of even scores. In the latter, we
consider the programmer would verify all the other lines with the same score before
examining the buggy line.

In the final analysis, we calculated the EXAM score introduced in Section 2.4.4.
This score indicates the percentage of the program that should be checked until we
reach the error location. We will better observe its application for different scenarios
in Section 5.3. Nonetheless, the results for mid function are displayed in Table 5.2. For
mid Version 1, we would have to analyze 42% of the program if we follow Tarantula
scores and 17% of it if we follow Ochiai scores. For mid Version 2 the results are even
better. We would have to analyze 8% of the program for both methods. To put it
another way, in the worst of the studied scenarios, a Haskell programmer would have
to look for the bug in less than half the original amount of code lines before finding it.

Tarantula Ochiai
Mid Version 1 42% 17%
Mid Version 2 8% 8%

Table 5.2. EXAM score for mid function.

5.2 Test Suite

The examples we used to run our tests were the students’ final submitted versions.
Considering that they did not have errors that need to be fixed in their majority, we

5. Result Discussion 38

Program #Lines #Tests Ranking
Tarantula Ochiai

mid (Version 1) 12 6 5 2
mid (Version 2) 12 6 1 1
dropWhileClone 33 10 3 1

dropWhile 10 9 1 1
break (Version 1) 27 5 1 1
break (Version 2) 27 8 1 1

toTuples 28 10 1 1
remdupsReducer 27 7 1 1

joinr 16 12 1 1
separateTuplesByType 23 7 1 1

flip 20 5 1 1
unzip 13 3 1 1

maxSumLength 8 11 1 1
binary-search-tree 55 8 2 2

grade-school 67 7 1 1
luhn 45 6 2 2

raindrops 34 8 1 1
resistor-color-duo 44 7 1 1
robot-simulator 69 9 1 1
roman-numerals 23 8 1 1
simple-linked-list 40 6 1 1

space-age 28 7 1 1
sum-of-multiples 34 7 3 1

triangle 35 8 6 5

Table 5.3. Test suite.

decided to introduce bugs in their code to be later detected by our fault localization
technique. The bugs introduced were not repeated.

Table 5.3 names all the programs on our suite. As explained before, mid calculates
the middle element among three elements. Regarding the Functional Programming
class submissions, we kept the names chosen by the students, and their content is as
follows:

(i) dropWhileClone/dropWhile. It drops elements while a condition is true and
then stops returning the remaining elements once the condition is false.

(ii) break. It divides a list into a tuple of lists, breaking it at the point where a
given condition is true.

(iii) toTuples. It transforms two lists into a list of tuples.
(iv) remdupsReducer. It removes the first element of a list if it is equal to the

5. Result Discussion 39

second one.
(v) joinr. It adds an element to the head of a list if it is not equal to the list’s

current head.
(vi) separateTuplesByType. It transforms a list of tuples into a tuple of lists,

one list with all the first components and the other one with the second’s tuple
components.

(vii) unzip. Same functionality as separateTuplesByType.
(viii) flip. It flips a function chain order.
(ix) maxSumLength. It calculates a tuple with three elements. The first one being

the maximum between two elements, the second being their sum and the third
being a given length increased by one.

Besides, we have the problems from Exercism, their description in Exercism web-
site is as follows:

(i) binary-search-tree. It inserts and searches for numbers in a binary search
tree.

(ii) grade-school. It creates a roster for the school given students’ names and the
grade they are in.

(iii) luhn. It determines whether or not a given number is valid per the Luhn
formula.

(iv) raindrops. It converts a number to a string depending on the number’s factors.
(v) resistor-color-duo. It converts color codes, as used on resistors, to a numeric

value.
(vi) robot-simulator. It writes a robot simulator.
(vii) roman-numerals. It converts natural numbers to Roman Numerals.
(viii) simple-linked-list. It implements a singly linked list.
(ix) space-age. It calculates how old someone is in terms of a given planet’s solar

years.
(x) sum-of-multiples. It finds the sum of all the multiples of a particular number

up to, but not including that number itself.
(xi) triangle. Given three sides lengths, it determines if they can form an equilat-

eral, isosceles or scalene triangle, or if they can not be a triangle at all.

Moreover, Table 5.3 displays the programs’ length in our test suite. This infor-
mation works alongside our EXAM score results, which will be detailed in Section 5.3,
to offer a more precise dimension of the effort level needed by a programmer while

5. Result Discussion 40

locating a bug using HaskellFL tool. Our test suite’s mean program length is 30.4
lines, and the median program length is 27.5 lines.

The test cases used to run our suite were manually chosen and written and ranged
between 3 and 12 test cases per problem, as detailed in Table 5.3. Even though we
are not tracking time execution in this master thesis, we tried balancing our test cases
between passing and failing. We have based that on what is said in Rao et al. [2013]
that the expense of fault localization for most formulas will increase with the increase
of class imbalance1. In light of that, this a factor to be considered.

Furthermore, Table 5.3 also presents the faulty line rank for both Tarantula and
Ochiai methods, considering the best case scenario among drawing statements for every
program we tested.

5.2.1 Test Setup

To allow our tests to be interpreted by HaskellFL, we rewrote some small code pieces
in our test suite. An example is shown in Figure 5.2, which is a real submission from a
student enrolled at the UFMG Functional Programming class. In the second line of the
dropWhile function, the student originally wrote dropWhile p xs@[] = []. Similarly,
in the third line, the student wrote dropWhile p xs@(x:xs’). Both statements use
pattern matching with the notation @. In Line 3, this notation allows dropWhile to
be aware of three different values: the head of the list, kept in variable x, the list tail,
kept in the variable xs’ and the complete list, kept in variable xs. DropWhile is also
aware of a given input function, which is kept in variable p. For Line 2, dropWhile
has access to the empty list in variable xs if the empty list is matched in the input.
The notation @ is not available in HaskellFL, however this program can be rewritten
without any loss in its semantics. An example of that may be seen in Figure 5.3. The
second version is the one present in our test suite, after being further modified to insert
a bug, and this version is equivalent to the original definition exhibited in Figure 5.2.

1 dropWhile :: (a->Bool) -> [a] -> [a]
2 dropWhile p xs@[] = []
3 dropWhile p xs@(x:xs')
4 | p x = dropWhile p xs'
5 | otherwise = xs

Figure 5.2. DropWhile function submitted by a student.

1Class imbalance is the phenomenon of some classes having far more samples than other classes.
The same applies to passing test cases being more straight-forward to find than failed test cases.

5. Result Discussion 41

1 dropWhile :: (a->Bool) -> [a] -> [a]
2 dropWhile p [] = []
3 dropWhile p (x:xs)
4 | p x = dropWhile p xs
5 | otherwise = (x:xs)

Figure 5.3. DropWhile function equivalent to the function in Figure 5.2.

This new instance of dropWhile function does not know the complete list via an
exclusive variable at the beginning of the function in Line 3, however the otherwise

clause can have access to the complete list via the operator : which inserts an el-
ement at the beginning of a list. The list’s head and tail are available through the
variables x and xs respectively, then they may be concatenated. Likewise, the empty
list knowledge is not duplicated in Line 2 but the pattern matching still works. With
that said, this new dropWhile instance can reproduce the original dropWhile expected
behavior, concatenating the list head and tail in the otherwise clause and dropping
the @ notation in Lines 2 and 3.

Figure 5.4 shows in the SumOfMultiples module, another example of a change
made in an original test in our test suite to allow its interpretation by HaskellFL. This
example was extracted from the problems in the Exercism’s Haskell track. HaskellFL
still does not interpret the operator $, which is an operator indicating precedence among
operations. Thus, this operator can be safe replaced by parenthesis without any loss
in the program semantics, as shown in Figure 5.5. The version using parenthesis is the
one present in our test suite after a bug insertion.

It is important to say that the Haskell Prelude module is absent from HaskellFL.
Prelude is a standard Haskell module that is generally imported by default into all
Haskell modules. It implements and exports several basic functions. This absence leads
to the need to create our own Prelude functions when using HaskellFL, as may be seen
in Figure 5.5, with the functions filter and sum. They were imported from Haskell
Prelude in the first SumOfMultiples module in Figure 5.4. Similarly, nub function
was imported from Data.List module in the original version of SumOfMultiples and
it was implemented in the version used in HaskellFL. We are able to implement several
Prelude functions with the constructs offered by HaskellFL, so this absence does not
prevent our tool from being used. Additionally, the creation of a similar standard
module for HaskellFL should not take much extra effort.

Furthermore, the bugs inserted into the programs in our test suite followed the
techniques mentioned in Section 2.4.2. For instance, for the SumOfMultiples module

5. Result Discussion 42

1 module SumOfMultiples (sumOfMultiples) where
2

3 import Data.List(nub)
4

5 sumOfMultiples :: [Integer] -> Integer -> Integer
6 sumOfMultiples [] limit = 0
7 sumOfMultiples factors limit =
8 sum $ distinctFactors factors limit
9

10 distinctFactors :: (Integral a) => [a] -> a -> [a]
11 distinctFactors [] limit = []
12 distinctFactors (x:xs) limit =
13 nub $
14 (distinctFactors xs limit) ++
15 (appendFactor x limit 1)
16

17 appendFactor :: (Integral a) => a -> a -> a -> [a]
18 appendFactor factor limit index
19 | factor * index >= limit = []
20 | factor == 0 = []
21 | otherwise = (factor * index) :
22 appendFactor factor limit (index + 1)

Figure 5.4. SumOfMultiples module as available on GitHub.

shown in Figure 5.5, we inserted a bug into Line 19, in the appendFactor function.
We replaced the operator >= with the operator >. Another example is the dropWhile

function in Figure 5.3. For this program, we inserted a bug in Line 4, where we returned
only the list tail in the otherwise branch, represented by xs, instead of the complete
list.

Finally, we wrote the passing and failing test cases for every problem present in
our test suite. To illustrate the process, we may see the passing test cases for the
dropWhile function in Figure 5.6 and the failing test cases for the same function in
Figure 5.7. As previously mentioned, we tried to keep the number of tests balanced
between passing and failing test cases, and we also tried to cover every branch in the
code. Nonetheless, this is not always possible. For instance, none of the passing test
cases for the dropWhile function covers the otherwise branch, as an input executing
this branch would immediately expose the bug.

Similarly, for the sumOfMultiples test cases, we also worked on balancing the
number of tests between passing and failing test cases, as may be seen in figures 5.8
and 5.9 respectively. Contrasting with the dropWhile function, for sumOfMultiples,

5. Result Discussion 43

1 module SumOfMultiples (sumOfMultiples) where
2

3 filter :: (a -> Bool) -> [a] -> [a]
4 filter _ [] = []
5 filter f (x:xs)
6 | f x = x : (filter f xs)
7 | otherwise = filter f xs
8

9 nub :: (Eq a) => [a] -> [a]
10 nub [] = []
11 nub (x:xs) = x : nub (filter (\y -> y /= x) xs)
12

13 sum :: [Int] -> Int
14 sum [] = 0
15 sum (x:xs) = x + sum xs
16

17 appendFactor :: (Integral a) => a -> a -> a -> [a]
18 appendFactor factor limit index
19 | (factor * index) >= limit = []
20 | factor == 0 = []
21 | otherwise = (factor * index) :
22 appendFactor factor limit (index + 1)
23

24 distinctFactors :: (Integral a) => [a] -> a -> [a]
25 distinctFactors [] limit = []
26 distinctFactors (x:xs) limit =
27 nub ((distinctFactors xs limit) ++ (appendFactor x limit 1))
28

29 sumOfMultiples :: [Integer] -> Integer -> Integer
30 sumOfMultiples [] limit = 0
31 sumOfMultiples factors limit = sum (distinctFactors factors limit)

Figure 5.5. SumOfMultiples module equivalent to the module in Figure 5.4.

1 dropWhile (\x -> x < 10) [2,5]
2 dropWhile (\x -> x /= 0) []
3 dropWhile (\x -> False) []
4 dropWhile (\x -> x == 0) [0,0,0]
5 dropWhile (\x -> True) ["Hamilton", "Vettel"]

Figure 5.6. Passing dropWhile test cases.

the test cases cover all branches present in the code.
In conclusion, for the dropWhile function, both Ochiai and Tarantula techniques

5. Result Discussion 44

1 dropWhile (\x -> x > 5) [6,7,4,3]
2 dropWhile (\x -> x == 5) [5,6,7]
3 dropWhile (\x -> x <= 6) [5,6,7]
4 dropWhile (\x -> False) ["Hamilton", "Vettel"]

Figure 5.7. Failing dropWhile test cases.

1 sumOfMultiples [4,5] 6
2 sumOfMultiples [] 5
3 sumOfMultiples [2,5] 3
4 sumOfMultiples [0,2,5] 3

Figure 5.8. Passing sumOfMultiples test cases.

1 sumOfMultiples [2,5] 2
2 sumOfMultiples [0,2,4] 2
3 sumOfMultiples [2,4] 4

Figure 5.9. Failing sumOfMultiples test cases.

ranked the erroneous line first. On the other hand, for the sumOfMultiples function,
the Ochiai method ranked the buggy line first, tied with several other lines, and the
Tarantula method ranked it in the third position, also in a tie with other lines.

5.3 Results

EXAM Score Tarantula Best Tarantula Worst Ochiai Best Ochiai Worst
(0-4.9)% 58.33% 33.33% 66.67% 33.33%
(5-9.9)% 25.00% 20.83% 16.67% 20.83%
(10-14.9)% 8.33% 12.50% 12.50% 16.67%
(15-19.9)% 4.17% 8.33% 4.17% 16.67%
(20-24.9)% 0.00% 8.33% 0.00% 4.17%
(25-29.9)% 0.00% 4.17% 0.00% 0.00%
(30-34.9)% 0.00% 0.00% 0.00% 0.00%
(35-39.9)% 0.00% 0.00% 0.00% 4.17%
(40-44.9)% 4.17% 8.33% 0.00% 0.00%
(45-49.9)% 0.00% 0.00% 0.00% 0.00%
(50-54.9)% 0.00% 0.00% 0.00% 4.17%
(55-59.9)% 0.00% 4.17% 0.00% 0.00%

Table 5.4. EXAM score for Haskell test suite.

5. Result Discussion 45

Table 5.4 shows EXAM score distribution for our test suite, considering best and
worst-case scenarios, for Tarantula and Ochiai methods. It shows which percentage
of our test suite programs is inside a specific EXAM score segment. We divided the
table into segments of 5%. To demonstrate, considering the Tarantula formula and
the best-case scenario, we observe that 58.33% of the programs in our suite secured an
EXAM score between 0% and 4.9%. To put it more simply, for 58.33% of the programs
in our suite in the best-case scenario, a student would have to examine less than 5% of
his Haskell code to find the buggy line in his assignment.

Figure 5.10. Comparison between Ochiai and Tarantula methods for our test
suite.

Figure 5.10 illustrates Tarantula Ochiai methods’ effectiveness for best and worst-
case scenarios. The graph is built in a way that for a given x value, its corresponding
y value is the cumulative percentage of the faulty versions whose EXAM score is less
than or equal to x, similarly to what Wong et al. [2008] did. Table 5.4 displays the
scores used to build the graph.

5. Result Discussion 46

To better exemplify, we may notice in the Ochiai method in the best-case scenario;
we could find all the incorrect statements in our suite examining less than 20% of the
source code for each problem.

Furthermore, in Table 5.5 we present the mean, median, and standard deviation
of the calculated EXAM scores for our test suite. We notice that the highest median
value is 8.7% of the source code for the Tarantula method in the worst-case scenario.
The smaller median value appeared for the Ochiai method in the best-case scenario
with 3.7% of the source code. Its standard deviation is equal to 4.0%, which indicates
that the results are close to the median value.

Mean Median Standard Deviation
Tarantula Best 7.2% 4.0% 8.1%
Tarantula Worst 14.4% 8.7% 14.0%
Ochiai Best 5.5% 3.7% 4.0%
Ochiai Worst 12.0% 7.7% 11.7%

Table 5.5. Mean, median and standard deviation of our test suite.

5.4 Threats to Validity

In this section, we discuss the main threats to the validity of our work and the strategies
we took to mitigate them.

As previously mentioned, our test suite programs did not have bugs that need to
be found, so we introduced them into the code. To mitigate this threat, we followed the
mutants’ guidelines shown in Section 2.4.2. The guidelines assume that most mutants
form realistic faults, even if they are artificially seeded. Therefore, we also confidently
assume that our inserted bugs represent mistakes that real students make.

Another threat is related to the passing and failing test cases used as input for
the fault localization techniques we are studying; we wrote them. To mitigate this
threat, we balanced the number of tests between passing and failing test cases. We
carefully and manually worked on finding test cases to cover every branch in the code,
whenever this was possible, to keep the odds as fair and unbiased as possible.

Additionally, one of our work goals is to aid beginning students with the functional
paradigm, so we tested our tool with smaller and simpler Haskell code. With that said,
there are no guarantees that the results we found will be applicable for larger and more
complex programs.

Finally, in this project, we used Tarantula and Ochiai fault localization tech-
niques. There are several different techniques in the literature, for instance, Barinel

5. Result Discussion 47

[Abreu et al., 2009b], Op2 [Naish et al., 2011] and DStar [Wong et al., 2013]. Neverthe-
less, Jones and Harrold [2005] conducted a study on the Siemens suite which showed
that Tarantula is a more effective fault localization technique when compared to oth-
ers such as set union, set intersection, nearest neighbor, and cause transition. Hence,
it is a great and recognized baseline for our tests. Furthermore, the Ochiai similarity
coefficient-based technique is generally considered more effective than Tarantula; hence
it is a great choice to measure the effectiveness of fault localization techniques in the
Haskell context.

5.5 Final Remarks

In this chapter, we began with the two mid function versions’ case study, showing its
respective inputs and the code coverage for each one. Provided that, we were able to
calculate both Tarantula and Ochiai suspiciousness scores for all the lines. The fault
localization methods attributed the highest score for the correct line in 2 out of 4 studied
scenarios. We also calculate the EXAM score for each method and scenario to measure
the effort someone would have to locate a bug when following the suspiciousness scores.

Secondly, we detailed our test suite, composed of 24 Haskell problems, which are
real Functional Programming students’ submissions at UFMG, plus code available on
GitHub. We mostly introduced bugs in the problems on our test suite. Subsection
5.2.1 describes the process we followed while doing so. Our suite encloses the whole
grammar shown in Appendix A and Appendix B displays two programs extracted from
our test suite.

Thirdly, we presented the results we got by running HaskellFL against our test
suite. The results are in terms of the EXAM score. Ochiai method achieved better
results than Tarantula. In the best-case scenario, Ochiai could locate the errors for
the 24 problems examining less than 20% of the code. The less favorable scenario we
studied was the worst-case scenario Tarantula, where triangle ranked almost 60% in
the EXAM score.

Finally, we discussed the threats to the validity for our work. In the following
chapter, we will conclude this dissertation.

Chapter 6

Conclusion

Bugs are a reality in software development, and while experienced programmers may
know their way among several bugs, some beginners may feel discouraged by them.
Considering, for instance, the functional paradigm, at first sight, it may confuse
programmers; this happens because they usually start by learning the imperative
paradigm, which has no particular way of handling state. Therefore, several difficulties
may appear when programmers try to learn a new way to write code with different rea-
soning. If programmers do not address these issues early, they may use the functional
language like they are using an imperative one for a long time. Consequently, they
will take no real advantage of the functional paradigm. This work was conducted in
this context, aiming to evaluate the effectiveness of two fault localization techniques in
the literature, Tarantula [Jones and Harrold, 2005] and Ochiai [Abreu et al., 2009a], in
Haskell programs. Additionally, create a tool to aid Functional Programming beginners
while debugging their Haskell problems.

To achieve our goals, we conducted this dissertation as follows. Initially, we pre-
sented our motivation, defined our problem, and enumerated our objectives. After that,
we approached several central topics to this dissertation. For instance, we remembered
some key Haskell concepts addressed by HaskellFL, and we also refreshed some lambda
calculus concepts needed to build our tool. Additionally, we explained two well-known
fault localization approaches, spectrum-based and mutation-based, while explaining
the two spectrum-based techniques we used for this work.

We presented several works related to the one we made for this dissertation and
pointed out the differences, emphasizing the importance of our tool and why our work
is relevant to the field. We enumerated different methods for calculating fault location,
and the ones on fault localization that were not used for building HaskellFL directly
but play a similar role for other languages that not Haskell. We also talked about

48

6. Conclusion 49

type errors because they are traditionally a source of confusion for programmers, and
they play an essential role in repairing code automatically. Furthermore, we mention
interactive tools created to tutor Haskell apprentices.

We showed that the proposed HaskellFL tool differs from the works in Thompson
and Sullivan [2020], Chesley et al. [2007] and Dallmeier et al. [2005] in the language
supported. The work in Chesley et al. [2007] is different in the sense that their work
is an interactive guide for helping to locate an error root cause. Similarly, the works
mentioned in Section 3.4 also serve as a guide for programming apprentices, as our
work does, but they work as an interactive Haskell guide instead of looking for the error
automatically. Dallmeier et al. [2005] implements a different fault localization technique
that we did not use in HaskellFL. Wong et al. [2008] also presented a new method that
they compare and contrast against Tarantula, a method we studied and analyzed. Le
et al. [2014a] also used Haskell in their work; however, they implemented mutation-
based fault localization while HaskellFL offers spectrum-based fault localization.

After the description of the full process HaskellFL utilizes to interpret Haskell
code and calculate the suspiciousness expressions’ rank, we presented our results.

As the main results of this research project we provided HaskelFL. This command-
line tool successfully locates logical errors in Haskell code using spectrum-based fault
localization methods, examining very few lines in Haskell code for most of our test suite.
Besides, we evaluated the Tarantula and Ochiai techniques, and we also evaluated the
HaskellFL tool against our test suite using the EXAM score. In this context, Ochiai
presented better results than Tarantula. Our work compiled a test suite suitable to our
Haskell chosen subset. This set is diverse and contains abstract data types that were
not supported on Singer and Archibald [2018]. This test suite, together with HaskellFL
is available as an open-source project.

Finally, HaskellFL was carefully designed to allow its future extension. Potential
areas for future work are:

(i) Extend the grammar to include do notation and list comprehensions. Two con-
structs that novices to Haskell may find confusing.

(ii) Implement additional spectrum-based fault localization techniques.
(iii) Implement missing code-oriented fault localization techniques.
(iv) Share HaskellFL with Haskell beginners and measure how much our tool is able

to aid in real time.
(v) Implement techniques to repair the code.

Bibliography

Abreu, R., Zoeteweij, P., Golsteijn, R., and Van Gemund, A. J. (2009a). A practical
evaluation of spectrum-based fault localization. Journal of Systems and Software,
82(11):1780--1792.

Abreu, R., Zoeteweij, P., and Van Gemund, A. J. (2009b). Spectrum-based multi-
ple fault localization. In 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 88--99. IEEE.

Ball, T., Naik, M., and Rajamani, S. K. (2003). From symptom to cause: localizing
errors in counterexample traces. In ACM SIGPLAN Notices, volume 38, pages 97--
105. ACM.

Becker, B. A., Glanville, G., Iwashima, R., McDonnell, C., Goslin, K., and Mooney,
C. (2016). Effective compiler error message enhancement for novice programming
students. Computer Science Education, 26(2-3):148--175.

Bird, R. (2014). Thinking functionally with Haskell. Cambridge University Press.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1987). Occam’s
razor. Information processing letters, 24(6):377--380.

Charguéraud, A. (2015). Improving type error messages in ocaml. Electronic Proceed-
ings in Theoretical Computer Science, 198:80–97. ISSN 2075-2180.

Chesley, O. C., Ren, X., Ryder, B. G., and Tip, F. (2007). Crisp–a fault localization
tool for java programs. In 29th International Conference on Software Engineering
(ICSE’07), pages 775--779. IEEE.

Dallmeier, V., Lindig, C., and Zeller, A. (2005). Lightweight defect localization for java.
In European conference on object-oriented programming, pages 528--550. Springer.

Done, C. (2018). Try haskell. http://tryhaskell.org/.

50

http://tryhaskell.org/

Bibliography 51

F# (2021). About f#. https://fsharp.org/about/.

Fernandes, J. (2004). Generalized lr parsing in haskell. Informal Proceedings of the
Summer School on Advanced Functional Programming, students’ presentation, pages
24--37.

Gerdes, A., Heeren, B., Jeuring, J., and van Binsbergen, L. T. (2017). Ask-elle: an
adaptable programming tutor for haskell giving automated feedback. International
Journal of Artificial Intelligence in Education, 27(1):65--100.

Gopinath, R., Jensen, C., and Groce, A. (2014). Mutations: How close are they to
real faults? In 2014 IEEE 25th International Symposium on Software Reliability
Engineering, pages 189--200. IEEE.

Groce, A., Chaki, S., Kroening, D., and Strichman, O. (2006). Error explanation with
distance metrics. International Journal on Software Tools for Technology Transfer,
8(3):229--247.

Handley, M. and Hutton, G. (2018). Improving haskell. In Palka, M. H. and Myreen,
M. O., editors, Trends in Functional Programming - 19th International Symposium,
TFP 2018, volume 11457 of Lecture Notes in Computer Science, pages 114--135,
Gothenburg, Sweden, June 11-13. Springer.

HaskellWiki (2018a). Haskell. https://wiki.haskell.org/Haskell.

HaskellWiki (2018b). Haskell: An advanced, purely functional programming language.
https://www.haskell.org/.

Heeren, B., Leijen, D., and van IJzendoorn, A. (2003). Helium, for learning haskell.
In Proceedings HW03: Haskell Workshop 2003, pages 62--71, Co-Located with ICFP
2003 and PPDP 2003 Conferences) Uppsala, Sweden August. ACM.

Heeren, B. J. (2005). Top quality type error messages. Utrecht University.

Henderson, T. A. (2018). How to evaluate statistical fault localization.

Jones, J. A. and Harrold, M. J. (2005). Empirical evaluation of the tarantula automatic
fault-localization technique. In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages 273--282.

Jones, J. A., Harrold, M. J., and Stasko, J. (2002). Visualization of test information
to assist fault localization. In Software Engineering, 2002. ICSE 2002. Proceedings
of the 24rd International Conference on, pages 467--477. IEEE.

https://fsharp.org/about/
https://wiki.haskell.org/Haskell
https://www.haskell.org/

Bibliography 52

Jones, S. P., Hall, C., Hammond, K., Partain, W., and Wadler, P. (1993). The glasgow
haskell compiler: a technical overview. In Proc. UK Joint Framework for Information
Technology (JFIT) Technical Conference, volume 93.

Jose, M. and Majumdar, R. (2011). Cause clue clauses: error localization using maxi-
mum satisfiability. ACM SIGPLAN Notices, 46(6):437--446.

Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4j: A database of existing faults
to enable controlled testing studies for java programs. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, pages 437--440.

Kneuss, E., Koukoutos, M., and Kuncak, V. (2015). Deductive program repair. In
Lecture Notes in Computer Science, 9207, 217-233. Presented at: 27th International
Conference on Computer-Aided Verificationn, pages 217--233, San Francisco, CA,
USA, July 18-24. Springer.

Kotlin (2021). Learn kotlin. https://kotlinlang.org/docs/reference/.

Le, D., Alipour, M. A., Gopinath, R., and Groce, A. (2014a). Mucheck: An extensible
tool for mutation testing of haskell programs. In Proceedings of the 2014 international
symposium on software testing and analysis, pages 429--432.

Le, D., Alipour, M. A., Gopinath, R., and Groce, A. (2014b). Mutation testing of
functional programming languages. Oregon State University, Tech. Rep.

Lee, J., Song, D., So, S., and Oh, H. (2018). Automatic diagnosis and correction of
logical errors for functional programming assignments. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):158.

Li, Z., Zhang, L., Zhang, Z., and Jiang, B. (2020). Mcfl: Improving fault localization by
differentiating missing code and other faults. In 2020 IEEE 44th Annual Computers,
Software, and Applications Conference (COMPSAC), pages 943--952. IEEE.

Liu, H., Glew, N., Petersen, L., and Anderson, T. A. (2013). The intel labs haskell
research compiler. In ACM SIGPLAN Notices, volume 48, pages 105--116. ACM.

Mitchell, J. C., John, C., and Apt, K. (2003). Concepts in programming languages.
Published by the Press Syndicate of the University of Cambridge, The Pitt Building,
Trumpington Street, Cambridge, United Kingdom.

Naish, L., Lee, H. J., and Ramamohanarao, K. (2011). A model for spectra-based
software diagnosis. ACM Transactions on software engineering and methodology
(TOSEM), 20(3):1--32.

https://kotlinlang.org/docs/reference/

Bibliography 53

Nubank, R. (2021). O que é clojure? o que isso tem a ver com o nubank? https:

//blog.nubank.com.br/o-que-e-clojure/.

OCaml (2018). Ocaml is an industrial-strength programming language supporting
functional, imperative and object-oriented styles. https://ocaml.org/.

Papadakis, M. and Le Traon, Y. (2015). Metallaxis-fl: mutation-based fault localiza-
tion. Software Testing, Verification and Reliability, 25(5-7):605--628.

Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M. D., Pang, D., and
Keller, B. (2016). Evaluating & improving fault localization techniques. University of
Washington Department of Computer Science and Engineering, Seattle, WA, USA,
Tech. Rep. UW-CSE-16-08-03.

Peyton Jones, S. L. (1987). The implementation of functional programming languages
(prentice-hall international series in computer science). Prentice-Hall, Inc.

Pop, I. (2010). Experience report: Haskell as a reagent. In ACM SIGPLAN Interna-
tional Conference on Funtional Programming. Citeseer.

Purushothaman, R. and Perry, D. E. (2005). Toward understanding the rhetoric of
small source code changes. IEEE Transactions on Software Engineering, 31(6):511-
-526.

Rao, P., Zheng, Z., Chen, T. Y., Wang, N., and Cai, K. (2013). Impacts of test
suite’s class imbalance on spectrum-based fault localization techniques. In 2013 13th
International Conference on Quality Software, pages 260--267. IEEE.

Sakkas, G., Endres, M., Cosman, B., Weimer, W., and Jhala, R. (2020). Type error
feedback via analytic program repair. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 16--30.

Singer, J. and Archibald, B. (2018). Functional baby talk: Analysis of code fragments
from novice haskell programmers. arXiv preprint arXiv:1805.05126.

Thompson, G. and Sullivan, A. K. (2020). Profl: a fault localization framework for
prolog. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 561--564.

Thompson, S. (2011). Haskell: The Craft of Functional Programming. Icss Series.
Addison Wesley. ISBN 9780201882957.

https://blog.nubank.com.br/o-que-e-clojure/
https://blog.nubank.com.br/o-que-e-clojure/
https://ocaml.org/

Bibliography 54

Tondwalkar, A. (2016). Finding and Fixing Bugs in Liquid Haskell. PhD dissertation,
University of Virginia.

Wong, E., Wei, T., Qi, Y., and Zhao, L. (2008). A crosstab-based statistical method for
effective fault localization. In 2008 1st international conference on software testing,
verification, and validation, pages 42--51. IEEE.

Wong, W. E., Debroy, V., Gao, R., and Li, Y. (2013). The dstar method for effective
software fault localization. IEEE Transactions on Reliability, 63(1):290--308.

Wong, W. E., Gao, R., Li, Y., Abreu, R., and Wotawa, F. (2016). aurvey on software
fault localization. IEEE Transactions on Software Engineering, 42(8):707--740.

Zhang, D., Myers, A. C., Vytiniotis, D., and Peyton-Jones, S. (2015). Diagnos-
ing haskell type errors. Technical report, Technical Report http://hdl. handle.
net/1813/39907, Cornell University.

Appendix A

Haskell’s Grammar Subset

〈program〉 ::= ‘module’ X ‘where’ ‘{’ decls ‘}’
| decls

〈decls〉 ::= decl decls | d decls | decl | d

〈decl〉 ::= var ‘=’ e ‘where’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’ | var ‘=’ e
| var ‘=’ p ‘where’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’ | var ‘=’ p
| var ‘|’ ei ‘=’ ej ... ‘|’ e(i+ k) ‘=’ e(j+ k) ‘where’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’
| var ‘|’ ei ‘=’ ej ... ‘|’ e(i+ k) ‘=’ e(j + k)

〈d〉 ::= ‘data’ X ‘=’ C1 τ1 ... τk | ... | Cn τ1 ... τk
| ‘newtype’ X ‘=’ C τ

〈e〉 ::= τ | λ p ‘->’ e | e1 ‘+’ e2 | e1 ‘-’ e2 | e1 ‘*’ e2 | e1 ‘\’ e2 | e1 ‘^’ e2
| ‘[’e1‘]’ ‘++’ ‘[’e2‘]’ | e1 ‘:’ ‘[’e1‘]’ | e1 ‘||’ e2 | e1 ‘&&’ e2 | e1 ‘>’ e2
| e1 ‘<’ e2 | e1 ‘<=’ e2 | e1 ‘>=’ e2 | e1 ‘==’ e2 | e1 ‘\=’ e2 | e1 e2
| ‘(’e1‘,’ ... ‘,’ ek‘)’ | ‘[’e1‘,’ ... ‘,’ ek‘]’ | ‘if’ e1 ‘then’ e2 ‘else’ e3
| ‘case’ e ‘of’ ‘{’ p1 ‘->’ e1 ... pk ‘->’ ek ‘}’
| ‘let’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’ ‘in’ e

〈p〉 ::= const | var | C p1 ... pk | _

〈τ〉 ::= Integer | Boolean | String | Char | Float | [τ] | (τ1, ..., τk)
| C τ1 ... τk

55

Appendix B

Buggy Haskell programs

module SpaceAge where
data Planet = Mercury

| Venus
| Earth
| Mars
| Jupiter
| Saturn
| Uranus
| Neptune

orbitalPeriod :: Planet -> Float
orbitalPeriod planet =

let
earthYear = 31557600

in
case planet of

Mercury -> 0.24084670 * earthYear
Venus -> 1.61519726 * earthYear -- BUG
Earth -> 1.00000000 * earthYear
Mars -> 1.88081580 * earthYear
Jupiter -> 11.8626150 * earthYear
Saturn -> 29.4474980 * earthYear
Uranus -> 84.0168460 * earthYear
Neptune -> 164.791320 * earthYear

ageOn :: Planet -> Float -> Float
ageOn planet age = age / (orbitalPeriod planet)

Figure B.1. Exercism’s problem extracted from our test suite.

56

B. Buggy Haskell programs 57

module Main () where
import Prelude hiding (map)
import Data.Char

map f [] = []
map f (a:b) = f a : map f b

dropWhileClone p [] = []
dropWhileClone p (x:xs)

| p x = dropWhileClone p xs
| otherwise = x:xs

splitWith p [] = []
splitWith p x = x1 : splitWith p x2

where (x1 ,x2) = break p x

isSpace s = if s == "" -- BUG
then True
else False

break _ [] = ([],[])
break p (a:x)

| p a = ([],a:x)
| otherwise = (a:x1,x2)
where (x1,x2) = break p x

wordsClone s = if s' == []
then []
else (word : wordsClone rest)

where s' = dropWhileClone isSpace s
(word, rest) = break isSpace s'

concatClone [] = []
concatClone ([]:vs) = concatClone vs
concatClone ((x:xs):vs) = x:concatClone (xs:vs)

Figure B.2. Homework extracted from our test suite.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Definition
	1.2 Objectives
	1.3 Contributions
	1.4 Publication
	1.5 Dissertation Roadmap

	2 Literature Overview
	2.1 Haskell Basics
	2.1.1 Data Types
	2.1.2 Pattern matching
	2.1.3 Laziness

	2.2 Lambda Calculus
	2.3 SKI combinators
	2.4 Fault Localization
	2.4.1 Spectrum-Based Fault Localization
	2.4.2 Mutation-Based Fault Localization
	2.4.3 Faults Originated by Missing Code
	2.4.4 Fault Localization Metrics

	2.5 Final Remarks

	3 Related Work
	3.1 Compilers
	3.2 Fault Localization Tools
	3.3 Type Errors
	3.4 Haskell Tutors
	3.5 Automatic Program Repair
	3.6 Final Remarks

	4 Detecting Logical Errors in Haskell
	4.1 Proposed Solution
	4.2 HaskellFL Tool
	4.2.1 Requirements
	4.2.2 Implementation

	4.3 Final Remarks

	5 Result Discussion
	5.1 Case study
	5.2 Test Suite
	5.2.1 Test Setup

	5.3 Results
	5.4 Threats to Validity
	5.5 Final Remarks

	6 Conclusion
	Bibliography
	A Haskell's Grammar Subset
	B Buggy Haskell programs

