
Universidade Federal de Minas Gerais

Instituto de Ciências Exatas

Departamento de Matemática
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Abstract

The main topic of the thesis is the study of differential geometry in (normed

or) Minkowski spaces. The thesis is divided into two Parts: (I) Some topics

in differential geometry of normed spaces; and (II) Stability of hypersurfaces

in Minkowski spaces. In part I, with a smooth norm instead of an inner

product, one can define analogous concepts of principal curvatures, with

such concepts in mind various questions appear. In this part we extend some

results already known from the Euclidean case to the Minkowski case. In part

II, we introduce the concept of Minkowski area and stability with respect to

Birkhoff normal variations and compute the formula of the second variation of

the area with respect to these variations. Finally, using the second variation

formula, we extend to Minkowsky spaces the classical result of Barbosa and

do Carmo [9] that characterizes the euclidean sphere as the unique compact

stable CMC hypersurface of R𝑛.

Key-words: geometry of normed spaces, Birkhoff-Gauss map, Minkowski

mean curvature, stability.



Resumo

O tema principal da tese é o estudo da geometria diferencial em espaços (nor-

mados ou) de Minkowski. A tese está dividida em duas partes: (I) Alguns

tópicos em geometria diferencial de espaços normados; e (II) Estabilidade de

hipersuperf́ıcies em espaços de Minkowski. Na parte I, com uma norma suave

em vez de um produto interno, podemos definir conceitos análogos de cur-

vaturas principais, com esses conceitos em mente várias questões aparecem.

Nesta parte estendemos alguns resultados já conhecidos do caso euclidiano

para o caso Minkowski. Na parte II, apresentamos o conceito de área de

Minkowski e estabilidade com relação a variações normais de Birkhoff e cal-

culamos a fórmula da segunda variação da área com relação a essas variações.

Finalmente, usando a fórmula da segunda variação, estendemos aos espaços

de Minkowsky o resultado clássico de Barbosa e do Carmo [9] que caracteriza

a esfera euclidiana como a única hipersuperf́ıcie compacta CMC estável de

R𝑛.

Palavras-Chave: geometria de espaços normados, aplicação de Birkhoff-

Gaus, curvatura média de Minkowski, estabilidade.
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Introduction

The thesis is divided into two Parts: (I) Some topics in differential geometry

of normed spaces; and (II) Stability of hypersurfaces in Minkowski spaces.

Each Part is divided into Chapters.

0.1 Some topics in differential geometry of

normed spaces

This thesis deals with the study of differential geometry on normed vector

spaces of finite dimension, that are called Minkowski spaces. According to

Thompson [32], such a geometry is called Minkowski geometry. Our goal

is to extend results from classical differential geometry of hypersurfaces to

Minkowski spaces. Such a hypersurface immersed in such a space becomes a

Finsler manifold with the induced metric of the norm of the ambient, so this

work can be seen from the perspective of Finsler Geometry. Our construction,

following Balestro, Martini and Teixeira [6, 5, 7], is a particular equiaffine

immersion (as in [25]). Therefore, from the point of view of affine differential

geometry, we can study whether our particular case has a special behavior.

The affine differential geometry approach given in the book [25] refers to

hypersurface immersed in an affine space R𝑛+1 equipped with a transversal

vector field that plays the role of a normal vector field. Following [6], in this

1



0.1 Some topics in differential geometry of normed spaces

work we provide such a hypersurface immersed in a Minkowski space with a

transversal vector obtained through Birkhoff’s orthogonality associated with

the norm, such a transversal field gives rise to immersions that are equiaffine,

which allows us to extend some concepts of geometry classic differential. To

talk a little about the chronology of Minkowski spaces, we will use the text

in [23], namely that the axioms of Minkowski spaces were introduced in

1896 by Minkowski [24], in connection with problems from number theory.

However, it seems that the earliest reference to non-Euclidean geometry in

the sense of Minkowski Geometry was made by Riemann, in 1868, in his

Habilitationsvortrag [29], where he mentioned the 𝑙4-norm. Hilbert [17] in his

famous lecture delivered before the International Congress of Mathematicians

in 1900 gives a description of Minkowski Geometry in his fourth problem.

Two papers considering Minkowski Geometry from a geometric (as opposed

to analytic) point of view are Go Lab [15] of 1932 and Go Lab and H𝑎̈rlen [16]

of 1931. Minkowski Geometry was studied, especially by Busemann [10] in

1950, in order to throw more light on Finsler Geometry, introduced by Finsler

[14] in 1918. For others developments in Finsler Geometry, see Álvarez [3].

Let us concretely explain the initial idea behind our constructions. The

approach to Minkowski geometry given in the paper [6] regards surfaces im-

mersed in an three-dimensional Minkowski space with the transversal vector

field obtained via the Birkhoff orthogonality associated to the norm. Our idea

in this thesis is to extend this theory to (𝑛 − 1)-dimensional hypersurfaces

immersed in Minkowski spaces

We begin by briefly describing the theory developed here. We work with

an immersion 𝑥 : 𝑀 → (R𝑛, || · ||) of a hypersurface 𝑀 in the space R𝑛

endowed with a norm || · ||, which is considered to be admissible. This

means that the unit sphere 𝜕B := {𝑥 ∈ R𝑛 : ||𝑥|| = 1} of the normed or

2



0.1 Some topics in differential geometry of normed spaces

Minkowski space (R𝑛, || · ||) has strictly positive Gaussian curvature as a

surface of the Euclidean space (R𝑛, ⟨·, ·⟩), where ⟨·, ·⟩ denotes the usual inner

product in R𝑛. Note that the unit sphere is the boundary of the unit ball

B := {𝑥 ∈ R𝑛 : ||𝑥|| ≤ 1}, which is a compact, convex set with interior points

centered at the origin. Respective homothetical copies are called Minkowski

spheres and Minkowski balls. We say that a vector 𝑣 ∈ R𝑛 is Birkhoff

orthogonal to a hyperplane 𝐻 ⊂ R𝑛 if for each 𝑤 ∈ 𝐻 we have ||𝑣+𝑤|| ≥ ||𝑣||

(see [2]). Geometrically, a vector 𝑣 is Birkhoff orthogonal to a plane 𝐻 if 𝐻

supports the unit ball of (R𝑛, || · ||) at 𝑣/||𝑣||.

Due to the admissibility of the norm, it follows that Birkhoff orthogonality

is unique both on left and on right. The Birkhoff-Gauss map of M is an

analogue to the Gauss map defined in terms of Birkhoff orthogonality as

follows: for each 𝑝 ∈ 𝑀, the Birkhoff normal vector to 𝑀 at 𝑝 is a vector

𝜂(𝑝) ∈ 𝜕B which is Birkhoff orthogonal to the tangent space to 𝑀 at 𝑝. Such

a vector field can be globally defined if 𝑀 is orientable, and hence we will

always assume this hypothesis.

At each point, the eigenvalues of the differential map 𝑑𝜂𝑝 are called prin-

cipal curvatures. Their product is the Minkowski Gaussian curvature, and

their arithmetic mean is the Minkowski mean curvature. We also endow 𝑀

with an induced connection ∇̃ by means of the Gauss equation

𝐷𝑋𝑌 = ∇̃𝑋𝑌 + ℎ(𝑋, 𝑌 )𝜂, (1)

where𝑋, 𝑌 are smooth vector fields in𝑀, and ℎ(𝑋, 𝑌 ) is a symmetric bilinear

form which can be regarded as the second fundamental form in our context.

For this bilinear form, we have the formula

ℎ(𝑋, 𝑌 ) = −
⟨𝑑𝑢−1

𝜂(𝑝)𝑌, 𝑑𝜂𝑝𝑋⟩
⟨𝜂, 𝜉⟩

3



0.1 Some topics in differential geometry of normed spaces

where 𝜉 denotes the usual Euclidean Gauss map of 𝑀 , and 𝑢−1 is the

Euclidean Gauss map of the unit sphere 𝜕B. Notice that we have 𝜂 = 𝑢 ∘

𝜉 (where ∘ denotes the usual composition of maps). We also define the

normal curvature 𝑘𝑀,𝑝(𝑋) of 𝑀 at a point 𝑝 in direction 𝑋 to be the circular

curvature of the curve obtained by intersecting 𝑀 with the plane spanned

by 𝜂(𝑝) and 𝑋 (translated to pass through p, of course). For the normal

curvature we have the equality

𝑘𝑀,𝑝(𝑋) =
⟨𝑑𝑢−1

𝜂(𝑝)
𝑋, 𝑑𝜂𝑝𝑋⟩

⟨𝑑𝑢−1
𝜂(𝑝)𝑋,𝑋⟩

.

Now we describe the structure of this part of the thesis. The first chapter

contains the basic concepts and results that supported the development of

the entire thesis. In chapter two we present extensions, for any dimension, of

results proposed by Balestro, Martini, Teixeira in the papers [6], [7], [8]. In

these articles, the authors generalize to three-dimensional Minkowski spaces,

some known results of classic Differential Geometry. The key point is in the

section 2.1, where we prove that the signs of the principal curvatures (positive

and negative) are, in equal quantity, in any two Minkowski geometries and

this allowed us to extend results, almost without modification, as Hadamard-

type theorems, which we present in section 2.2, Global theorems.

Section 2.3 contemplates Weyl’s tube formula. In [7] the authors ob-

served that such a formula, in this case 𝑛 = 3, could be obtained without

making use of a particular parameterization. Here we present it for a general

parametrization, for any dimension 𝑛. Lemma 2.15 is the key point for this

extension.

In [8] the authors provide a formula for the first variation of the area for a

particular variation, in dimension 𝑛 = 3. In section 2.4 we present a formula

for the first variation of the area for general variations. With our formula

4



0.2 Stability of hypersurfaces in Minkowski spaces

we can see that hypersurfaces with Minkowski mean curvature 𝐻𝑚 = 0 are

critical points of the functional area, as in the Euclidean case.

We close the chapter with section 2.5 where we present the definition

of volume in analogy with the Euclidean case and use section 2.4 to verify

that an immersion 𝑥 : 𝑀 → R𝑛 has Minkowski mean curvature 𝐻𝑚 constant

if and only if it is critical points for the functional area for variations that

preserve volume.

0.2 Stability of hypersurfaces in Minkowski

spaces

A well-known result before 1900 says that if 𝑀 is a surface in R3, with

a smaller area between all surfaces that limit the same volume, then the

mean curvature of 𝑀 should be constant. At that time, the following fact

was already known: The sphere is the surface, among all that limit the

same volume, the one with the smallest area, and that its mean curvature

is constant different from zero (H.A Schwarz, 1890, see [31]). The following

question then arises: Is a surface at R3 of constant mean curvature, different

from zero, necessarily a sphere? A physical counterpart, equipped with the

properties of the soap film, which says that a soap bubble should have a

constant mean curvature (Laplace-Young equation), would say: Can a soap

bubble have another shape if not the round sphere?

Answers came up. 1900: If a surface, strictly convex, compact in R3

has constant mean curvature, then it must be a round sphere (Liebmann,

see [21]). 1950: A compact surface simply connected with constant mean

curvature immersed in R3 is a embedded round sphere (Heinz Hopf, see

[18]). In 1962: The only closed hypersurfaces of constant mean curvature

5



0.2 Stability of hypersurfaces in Minkowski spaces

and embedded in Euclidean spaces are the round spheres (Aleksandrov, see

[1]).

Since Hopf, Aleksandrov’s theorem for immersed surfaces was believed to

be true, rather than embedded. This became known as Hopf’s conjecture.

Aleksandrov’s theorem further emphasized the idea that this conjecture was

valid. Only 35 years after Hopf’s theorem this conjecture was solved, and

given as false, by the American mathematician Henry Wente (see [33]).

Following the chronology, in 1979, do Carmo and Peng proved that the

plane is the only minimal and stable complete surface at R3. Intrigued to

know what would happen, when trying to extend to surfaces of constant mean

curvature, results involving minimal surfaces, do Carmo, in 1981, proposed

to JL Barbosa to study the problem (Revista Matemática Universitária. Nº

16, July 1994. 1-18 ). João Lucas Barbosa became interested in the subject

and then in 1984 they proved Theorem 0.1 below. First, let’s look at some

definitions.

Let 𝑀 be an 𝑛 − 1 oriented differentiable manifold and 𝑥 : 𝑀 → R𝑛 a

smooth immersion. The area of the immersion 𝑥 is defined as

𝐴(𝑥) =

∫︁
𝑀

𝑑𝑆

where 𝑑𝑆 is the area element induced by 𝑥. We can define the volume of 𝑥

as

𝑉 (𝑥) =
1

𝑛

∫︁
𝑀

⟨𝑥, 𝜉⟩𝑑𝑆

where 𝜉 denotes the unit normal vector field determined by the orientation of

𝑀 . The definition of 𝑉 is justified by the fact that when 𝑥 is an embedding

and 𝑀 is closed, 𝑉 represents the volume of the interior of 𝑀 .

A variation of 𝑥 : 𝑀 → R𝑛 is a smooth function 𝐹 : (−𝜀, 𝜀) ×𝑀 → R𝑛

such that for every 𝑡 ∈ (−𝜀, 𝜀), the function 𝐹 𝑡 = 𝐹 (𝑡, ·) is also an immersion.

6



0.2 Stability of hypersurfaces in Minkowski spaces

For such a variation, the area and volume defined above give one-parameter

functions 𝐴(𝑡) = 𝐴(𝐹 𝑡), 𝑉 (𝑡) = 𝑉 (𝐹 𝑡). We say that a variation has compact

support if 𝐹 (𝑡, 𝑝) = 𝑥(𝑝) for every 𝑝 outside a compact subset of 𝑀 .

It is known that minimal surfaces, this is, surfaces with zero mean cur-

vature, arise naturally as critical points of the area function, whereas CMC

surfaces (surfaces with constant mean curvature) correspond to the critical

points of the area with restricted volume. More precisely, we say that an

immersion is minimal if for every variation with compact support we have

𝐴′(0) = 0. It is known that for any immersion and any variation (see Theo-

rem 2.20),

𝐴′(0) =

∫︁
𝑀

(𝑛− 1)𝐻𝑒(𝑝)⟨𝐹𝑡(0, 𝑝), 𝜉(𝑝)⟩𝑑𝑆

where 𝐻𝑒 denotes the mean curvature and 𝐹𝑡(0, 𝑝) = 𝜕
𝜕𝑡
𝐹 (0, 𝑝), so mini-

mal immersions are characterized as immersions with zero mean curvature.

Minimal surfaces arise naturally as solutions of the Plateau problem, that

is finding a surface with prescribed boundary, minimizing the surface area

measure. If we restrict to immersions having a fixed volume, we see from the

well known formula

𝑉 ′(0) =

∫︁
𝑀

⟨𝐹𝑡(0, 𝑝), 𝜉(𝑝)⟩𝑑𝑆

that the immersions such that 𝐴′(0) = 0 for every volume-preserving varia-

tion of compact support, are precisely those with constant mean curvature.

Surfaces minimizing the area with restricted volume are CMC but the

converse is not true, meaning that a CMC surface may be deformed locally

into nearby surfaces with less area. This is the case for example, of cylindrical

and plane surfaces.

We say that an immersion is stable if it has constant mean curvature and if

for every variation of compact support that preserves the volume, 𝐴′′(0) ≥ 0.

7



0.2 Stability of hypersurfaces in Minkowski spaces

For a variation of any minimal immersion, it is known that the formula of

second variation holds

𝐴′′(0) =

∫︁
𝑀

𝑓(Δ𝑓 +𝐵2
𝑒𝑓)𝑑𝑆

where 𝑓(𝑝) = ⟨𝐹𝑡(0, 𝑝), 𝜉(𝑝)⟩ is the normal component of the variation, Δ is

the Laplace-Beltrami operator and 𝐵𝑒 is the norm of the second fundamental

form of 𝑀 .

If 𝑀 = 𝜕Ω is a closed smooth embedded surface that minimizes the

surface area measure among all “nearby” surfaces enclosing the same volume

as 𝑀 , then 𝑀 must be a round sphere. The same holds true if 𝑀 is only

closed and CMC. This fact is known since the classical work of Alexandrov [1]

where he introduced the moving planes method. But for immersed surfaces

this fact is false in general. In [18] Hopf showed that a CMC immersion S2 →

R3 must be a round sphere. Latter Hsiang constructed a CMC immersion

S3 → R4 that is not the round sphere, and generalized the result to higher

dimensions in [19]. In 1986 Wente exhibited in [33] a closed immersed surface

of genus one (the Wente torus) in R3 and Kapouleas [20] constructed surfaces

in R3 of higher genus. In contrast, Barbosa and do Carmo in [9] showed

that the stability property characterizes the round sphere. They proved the

following.

Theorem 0.1 (Theorem 1.3, [9]). Let 𝑀𝑛−1 be compact, orientable, and let

𝑥 : 𝑀 → R𝑛 be an immersion with non-zero constant mean curvature. Then

𝑥 is stable if and only if 𝑥(𝑀) ⊂ R𝑛 is a (round) sphere 𝑆𝑛−1 ⊂ R𝑛.

In parallel to CMC surfaces, the theory of surfaces immersed in general

𝑛-dimensional normed spaces (Minkowski spaces) was studied by Busemann

[10], Petty [28]. The aspects of differential geometry were further developed

more recently by Balestro et al. [6], [8] in a systematic way.

8



0.2 Stability of hypersurfaces in Minkowski spaces

We briefly recall the basic definitions. Let B be a compact convex set with

the origin in the interior (there is no need to assume that B is symmetric), and

suppose it has smooth boundary with positive Gauss curvature. The Gauss

map 𝜕B → S𝑛−1 is a smooth diffeomorphism and we denote the inverse by

𝑢 : S𝑛−1 → 𝜕B.

Given an immersed surface 𝑀 with Gauss map 𝜉 : 𝑀 → S𝑛−1 we define

𝜂 = 𝑢∘ 𝜉 and observe that 𝜂(𝑝) ∈ 𝜕B is the unique point such that 𝑇𝜂(𝑝)𝜕B =

𝑇𝑝𝑀 . We call 𝜂 the Birkhoff-Gauss map of 𝑀 with respect to B.

The differential 𝑑𝑝𝜂 can thus be regarded as an endomorphism of 𝑇𝑝𝑀

and can be shown to be diagonalizable with real eigenvalues 𝜆1, . . . , 𝜆𝑛−1.

This is done considering a second Riemannian metric in 𝑀 called the Dupin

metric (·, ·)𝑏. For 𝑣, 𝑤 ∈ 𝑇𝑝𝑀 define (𝑣, 𝑤)𝑏 = ⟨𝑑𝑝𝑢−1(𝑣), 𝑤⟩ and notice that

𝑑𝑝𝜂 is self-adjoint with respect to (·, ·)𝑏. The Dupin metric is shown in [8],

[5] to be a useful tool for translating properties that are valid in classical

differential geometry, to the Minkowski case.

The Minkowskian mean curvature and Minkowskian Gauss curvature are

defined by 𝐻𝑚 = 𝜆1+···+𝜆𝑛−1

𝑛−1
and 𝐾𝑚 = 𝜆1 · · ·𝜆𝑛−1 respectively.

The support function of B is defined by

ℎB(𝑣) = max
𝑥∈B

⟨𝑣, 𝑥⟩ for 𝑣 ∈ R𝑛

and, for a unit vector 𝑣, it measures the distance from the origin to the

supporting hyperplane of B perpendicular to 𝑣. Notice that ℎB(𝜉(𝑝)) =

⟨𝜂(𝑝), 𝜉(𝑝)⟩, since by definition, 𝑇𝜂(𝑝)𝜕B is this supporting hyperplane.

The Minkowskian area measure 𝜔 = 𝜔B is defined by

𝐴𝑚(𝑥) =

∫︁
𝑀

𝑑𝜔 =

∫︁
𝑀

⟨𝜂, 𝜉⟩𝑑𝑆 (2)

and if 𝐹 (𝑡, 𝑝) is a variation of 𝑀 with compact support, the first variation

9



0.2 Stability of hypersurfaces in Minkowski spaces

formula for 𝐴𝑚 is given by

𝐴′
𝑚(0) =

∫︁
𝑀

(𝑛− 1)𝐻𝑚(𝑝)𝑁𝜂(𝐹𝑡(0, 𝑝))𝑑𝜔(𝑝) (3)

where 𝑁𝜂 is the projection to the second coordinate in the direct-sum de-

composition R𝑛 = 𝑇𝑝𝑀 ⊕⟨𝜂⟩. Formula (3) was proven in [8] for variations in

a more restricted class than [9], but the formula extends easily to the general

case. We prove this in Appendix B.

If 𝑀 is the (smooth) boundary of a bounded open set Ω, this area measure

already appears in the literature as the mixed volume of Ω and B (see [30]).

The mixed volume of any two compact convex sets 𝐾 and 𝐿 with non-empty

interior, is defined as

𝑉 (𝐾,𝐿) =
1

𝑛
lim
𝜀→0

vol(𝐾 + 𝜀𝐿) − vol(𝐾)

𝜀

where 𝐾 + 𝐿 = {𝑥 + 𝑦 : 𝑥 ∈ 𝐾, 𝑦 ∈ 𝐿} is the Minkowski sum of sets. The

integral representation (see [30])

𝑉 (𝐾,𝐿) =
1

𝑛

∫︁
𝜕𝐾

ℎ𝐿(𝜉(𝑝))𝑑𝑆(𝑝)

shows that the Minkowskian area measure of 𝑀 is precisely 𝑛𝑉 (Ω,B). The

mixed volume inequality (see Theorem 7.2.1, [30]) states that

𝑉 (𝐾,𝐿) ≥ vol(𝐾)
𝑛−1
𝑛 vol(𝐿)

1
𝑛

with equality if and only if 𝐾 and 𝐿 are homothetic.

As a consequence of the mixed volume inequality we deduce that the

least possible value of the Minkowskian area measure of an embedded surface

𝑀 = 𝜕Ω with fixed volume vol(Ω) = 𝑣 is 𝐴𝑚(𝑀) = 𝑛𝑣
𝑛−1
𝑛 vol(B)

1
𝑛 , and this

value is attained if and only if Ω is homothetic to B and thus 𝑀 = 𝜕(𝑥0+𝜆B)

is a Minkowskian sphere.
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0.2 Stability of hypersurfaces in Minkowski spaces

The subject of Minkowskian differential geometry, although it was born

more than half a century ago, remains vastly unexplored from the point

of view of differential geometry. The above considerations imply that a

Minkowskian version of the usual isoperimetric inequality holds for the area

measure 𝐴𝑚. Also an immersed surface that minimizes the Minkowskian area

with restricted volume must have constant Minkowskian mean curvature, as

it is clear from the first variation formula (3).

The concept of Stability for the Minkowskian area measure was treated

by Palmer in [26], and later [27] in the non-smooth case. In [26] the author

established the corresponding stability theorem by following Wente’s proof

in [34], thus avoiding necesity of computing the Jacobi operator for B, this

is, the second order term appearing in the second variation formula. In the

paper [35], the author calculated the second variation formula. These papers

are developed from the viewpoint of Wulff shapes: a functional area is defined

having the form

ℱ(𝑥) :=

∫︁
𝑀

𝐹 (𝜉)𝑑𝑆

where 𝑥 : 𝑀𝑛−1 → R𝑛 is a smooth immersion of closed hypersurfaces, 𝐹 is

“weight” function, 𝜉 is the (usual) Gauss map and 𝑑𝑆 is the area element.

The function 𝐹 : S𝑛−1 → R+ is considered to be a smooth and positive

which is extended to R𝑛∖{0} by 𝐹 (𝑡𝑢) = 𝑡𝐹 (𝑢) for 𝑢 ∈ S𝑛−1 and 𝑡 > 0.

The authors translate the “convexity” property of 𝐹 by requiring that it is

elliptic, in the sense that for each 𝑢 ∈ S𝑛−1, the restriction of the Hessian of

𝐹 to the tangent space 𝑢⊥ is a positive definite endomorphism. Under this

hypothesis, it follows that the set

{𝑣 ∈ R𝑛 : ⟨𝑣, 𝑢⟩ ≤ 𝐹 (𝑢) for all 𝑢 ∈ S𝑛−1}

is a convex body whose boundary, 𝑊𝐹 , is called the Wulff shape of 𝐹 . Under

this viewpoint, the functional ℱ can be seen as a sort of surface area which

11



0.2 Stability of hypersurfaces in Minkowski spaces

is coeherent with “the geometry of 𝐹”. What we realized is that there is

a stronger geometric reasoning for that. If one starts with a convex body

B ⊂ R𝑛 having the origin as an interior point (not necessarily symmetric)

and whose boundary is 𝐶2
+, then the gauge function of B defined as

||𝑣||B := inf{𝜆 ≥ 0 : 𝑣 ∈ 𝜆B}

yields a geometry in R𝑛 (which is commonly called a Minkowski geometry).

This geometry has a natural orthogonality concept between directions and

hyperplanes called Birkhoff orthogonality. Instead of considering a “weight”

on a given immersed surface 𝑀 (which may seem a little bit “artificial”),

one can endow 𝑀 with its Birkhoff-Gauss map. By doing that, we have

a structure which rely solely on the geometry given by B. The “coherent”

surface area measure is not obtained from a “weight” in the Euclidean Gauss

map, but otherwise obtained via the (𝑛− 1)-form

𝑑𝜔(𝑋1, · · · , 𝑋𝑛−1) := det[𝑋1, · · · , 𝑋𝑛−1, 𝜂(𝑝)]

at each 𝑝 ∈𝑀 , where 𝜂(𝑝) denotes the Birkhoff-Gauss normal of 𝑀 at 𝑝. In

the field of affine differential geometry, it is common to introduce analogously

a surface area measure related to the affine normal field. If we are wiling to

use an auxiliary Euclidean structure (which was not needed thus far!) one

can show that ∫︁
𝑀

𝑑𝜔 =

∫︁
𝑀

⟨𝜂, 𝜉⟩𝑑𝑆

where 𝜂 and 𝜉 stands for the Birkhoff-Gauss and usual Gauss map, respec-

tively, and 𝑑𝑆 denotes the usual surface area element.

Because of these facts, we propose to study the concept of stability in

Minkowski geometry, from the “Minkowskian differential geometry” view-

point.

Our contributions are the following:

12
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Theorem 0.2. Let 𝑥 : 𝑀 → R𝑛 be an immersed surface with Birkhoff-Gauss

map 𝜂 and constant Minkowskian mean curvature, and let 𝐹 : (−𝜀, 𝜀)×𝑀 →

R𝑛, be a volume-preserving variation of compact support given by

𝐹 (𝑡, 𝑝) = 𝐹 𝑡(𝑝) = 𝑥(𝑝) + 𝑔(𝑡, 𝑝)𝜂(𝑝). (4)

Denote 𝑓(𝑝) = 𝜕
𝜕𝑡
𝑔(𝑡, 𝑝)

⃒⃒
𝑡=0

and 𝐴𝑚(𝑡) = 𝐴𝑚(𝐹 (𝑡, ·)) the area defined by (2).

Then,

𝐴′′
𝑚(0) =

∫︁
𝑀

(︀
−𝐵2

𝑚𝑓
2 + ⟨𝜂, 𝜉⟩(∇𝑏𝑓,∇𝑏𝑓)𝑏

)︀
𝑑𝜔

= −
∫︁
𝑀

𝑓
(︀
𝐵2

𝑚𝑓 + ⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓)
)︀
𝑑𝜔 (5)

Here ∇𝑏𝑓 is the gradient of 𝑓 with respect to the Dupin metric and can be

computed as ∇𝑏𝑓 = 𝑑𝑢(∇𝑓) where ∇𝑓 is the gradient with respect to the usual

metric. Also 𝐵𝑚 is the norm of the Minkowski second fundamental form,

𝐵2
𝑚 =

∑︀𝑛−1
𝑖=1 𝜆

2
𝑖 . Finally, div𝑀 𝑋|𝑝 =

∑︀𝑛
𝑖=1⟨∇𝑒𝑖𝑋, 𝑒𝑖⟩|𝑝, where {𝑒1, · · · , 𝑒𝑛−1}

is a ortonormal basis of 𝑇𝑝𝑀.

The novelty in this formula is the term

Δ𝑚(𝑓) = ⟨𝜂, 𝜉⟩−1 div𝑀

(︀
⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓)

)︀
,

that reduces to the usual Laplace-Beltrami operator when B is the unit Eu-

clidean ball.

This formula is quite remarkable from the viewpoint of Minkowskian dif-

ferential geometry. The Dupin and weighted Dupin metrics are new concepts,

which seem to contain a lot of information regarding the geometry given by

B. So this formula shed some light into concepts which are characteristic of

the field of Minkowski geometry.
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The variational formulas obtained in [35], [26], [27] cannot, be straight-

forwardly “translated” to the “language” of Minkowski geometry. Moreover,

the fact that the Minkowskian approach leads to the same results as the

approach by Wulff shapes is not trivial at a first glance.

We also verify using formula (5), that the proof of Theorem 0.1 carries on

to the Minkowski case. We say that an immersion is stable with respect to the

Minkowskian structure if 𝐴′′
𝑚(0) ≥ 0 for every volume-preserving, Birkhoff

normal variation of compact support.

Theorem 0.3. Let 𝑥 : 𝑀 → R𝑛 be a compact immersed surface without

boundary, with constant Minkowskian mean curvature and stable with respect

to the Minkowskian structure. Then 𝑥(𝑀) is an embedded Minkowski sphere,

this is, 𝑥(𝑀) is homothetic to 𝜕B.

The proof of Theorem 0.3 follows the same lines of Theorem 0.1 with

some adaptations. The main difficulty here is to compute Δ𝑚(𝑓) when 𝑓 is

a suitable test function. This is done in Lemma 3.5.

The rest of the thesis is organized as follows: In the Section 3.1 we recall

some basic definitions and lemmas. In the Sections 3.2 and 3.3 we prove

Theorems 0.2 and 0.3 respectively. The proof of Theorem 0.3 relies on a

lengthy computation that we postpone to the Appendix A.
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Chapter 1

Preliminaries

1.1 Basic concepts

We work with a normed space (R𝑛, || · ||), whose unit ball is the set B :=

{𝑥 ∈ R𝑛 : ||𝑥|| ≤ 1}, and its boundary 𝜕B := {𝑥 ∈ R𝑛 : ||𝑥|| = 1} is the

unit sphere. Througout the text we will always assume that the norm is

admissible, meaning that the unit sphere is a embedded hypersurface whose

(Euclidean) Gaussian curvature is strictly positive everywhere, where we are

assuming that R𝑛 is equipped with the standard inner product

⟨·, ·⟩ : R𝑛 × R𝑛 → R.

In particular, we get that (R𝑛, || · ||) is a smooth and strictly convex normed

space.

In an 𝑛-dimensional normed space, we define Birkhoff orthogonality be-

tween vectors and hyperplanes stating that a vector 𝑣 ∈ (R𝑛, || · ||) is Birkhoff

orthogonal (or simply orthogonal) to a hyperplane 𝐻 ⊆ (R𝑛, || · ||) whenever

||𝑣|| ≤ ||𝑣 + 𝑤|| for any 𝑤 ∈ 𝐻. We denote this relation by 𝑣 ⊣𝐵 𝐻. Since

the normed space (R𝑛, || · ||) is smooth and strictly convex, it follows that
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1.1 Basic concepts

we have existence and uniqueness for the Birkhoff orthogonality both on left

and on right. This means that for each non-zero vector 𝑣 ∈ R𝑛, there exists

a unique hyperplane 𝐻 ⊆ R𝑛 such that 𝑣 ⊣𝐵 𝐻, and for each hyperplane

𝐻 there exists a non-zero vector 𝑣 ∈ R𝑛 with 𝑣 ⊣𝐵 𝐻, and such vector is

unique up to scalar multiplication. Geometrically, when 𝑣 ⊣𝐵 𝐻 and 𝑣 ̸= 0,

the hyperplane 𝐻 supports the unit ball at 𝑣/||𝑣||.

Figure 1.1: Birkhorff Orthogonality

As in [6], we shall use the concept of Birkhoff orthogonality to endow an

immersed hypersurface with an analogue of the Gauss map.

Let 𝑥 : 𝑀 → (R𝑛, || · ||) be an immersed hypersurface. A transversal

vector field on 𝑀 is a smooth section 𝜂 of the restriction 𝑇R𝑛|𝑀 such that

R𝑛 ≃ 𝑇𝑝𝑀 ⊕ span{𝜂𝑝}

for each 𝑝 ∈ 𝑀 , where we are naturally identifying 𝑇𝑝𝑀 ≃ 𝑥*(𝑇𝑝𝑀). A

transversal vector field induces a connection ∇̃ on 𝑀 by the decomposition

𝐷𝑋𝑌 = ∇̃𝑋𝑌 + ℎ(𝑋, 𝑌 )𝜂, (1.1)

where 𝐷 denotes the standard connection in R𝑛, and 𝑋, 𝑌 are smooth vector

fields in 𝑀 . Observe that ℎ is symmetric bilinear form and ∇̃ is torsion-free,

16



1.2 The Birkhoff-Gauss map and curvature

meaning that ∇̃𝑋𝑌 − ∇̃𝑌𝑋 − [𝑋, 𝑌 ] = 0. It is easy to see that ℎ is bilinear.

We will prove that ℎ is symmetric and ∇̃ is torsion-free. Of the previous

equation, we have

[𝑋, 𝑌 ] − (∇̃𝑋𝑌 − ∇̃𝑌𝑋) = (ℎ(𝑋, 𝑌 ) − ℎ(𝑌,𝑋))𝜂

hence

ℎ(𝑋, 𝑌 ) − ℎ(𝑌,𝑋) =
⟨[𝑋, 𝑌 ] − (∇̃𝑋𝑌 − ∇̃𝑌𝑋), 𝜉⟩

⟨𝜂, 𝜉⟩

as [𝑋, 𝑌 ] − (∇̃𝑋𝑌 − ∇̃𝑌𝑋) is tangent, the first result follows. As the con-

nection 𝐷 is torsion-free we have

∇̃𝑋𝑌 − ∇̃𝑌𝑋 = [𝑋, 𝑌 ] − (ℎ(𝑋, 𝑌 ) − ℎ(𝑌,𝑋))𝜂

follows that ∇̃ is torsion-free from the ℎ symmetry.

The map ℎ is a bilinear form which is called affine fundamental form, and

it is clear that if 𝜂 is the (Euclidean) unit normal map of 𝑀, then ℎ is the

usual second fundamental form.

We denote by det the usual determinant in R𝑛. Any transversal vector

field 𝜂 on 𝑀 induces an 𝑛-dimensional volume element by

𝜔(𝑋1, . . . , 𝑋𝑛−1) = det(𝑋1, . . . , 𝑋𝑛−1, 𝜂).

For a very complete tract on transversal vector fields (oriented towards affine

differential geometry) we refer the reader to the book [25].

1.2 The Birkhoff-Gauss map and curvature

Assume that 𝑥 : 𝑀 → (R𝑛, ||·||) is an immersed oriented hypersurface. Hence

we have two globally defined smooth vector fields 𝜂 such that ||𝜂(𝑝)|| = 1

and 𝜂(𝑝) ⊣𝐵 𝑇𝑝𝑀 for each 𝑝 ∈ 𝑀 . The choice of such a vector field is the
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1.2 The Birkhoff-Gauss map and curvature

Birkhoff-Gauss map of 𝑀 , and it can clearly be seen both as a transversal

vector field and as a map 𝜂 : 𝑀 → 𝜕B. We shall prove that 𝜂 is equiaffine,

that is, the derivative 𝐷𝑋𝜂 is always tangential.

Proposition 1.1. For any smooth vector field 𝑋 on 𝑀 and any 𝑝 ∈𝑀 , we

have that 𝐷𝑋𝜂(𝑝) ∈ 𝑇𝑝𝑀 . Consequently, regarding the natural identification

𝑇𝑝𝑀 ≃ 𝑇𝜂(𝑝)𝜕B.

Proof. If 𝛾 : (−𝜀, 𝜀) → 𝑀 is a smooth curve such that 𝛾(0) = 𝑝 and 𝛾′(0) =

𝑋, then 𝜂 ∘ 𝛾 is a smooth curve on the unit sphere 𝜕B. Therefore,

𝐷𝑋𝜂(𝑝) =
𝑑

𝑑𝑡
(𝜂 ∘ 𝛾)

⃒⃒⃒⃒
𝑡=0

∈ 𝑇𝜂(𝑝)𝜕B ≃ 𝑇𝑝𝑀.

Notice that the identification 𝑇𝑝𝑀 ≃ 𝑇𝜂(𝑝)𝜕B comes from the definition of 𝜂,

and from the uniqueness of Birkhoff orthogonality.

Recall that we consider that (R𝑛, ||·||) is endowed with the standard inner

product ⟨·, ·⟩, which induces an Euclidean norm that we shall denote by ||·||𝑒.

The corresponding Euclidean unit ball and unit sphere will be denoted by

B𝑒 and S𝑛−1, respectively. The Minkowski unit sphere 𝜕B is an embedded

hypersurface, and hence it has an outward pointing Euclidean Gauss map.

We denote the inverse of this map by 𝑢 : S𝑛−1 → 𝜕B. We also denote by

𝜉 : 𝑀 → S𝑛−1 the Euclidean Gauss map of 𝑀, note that 𝜂 = 𝑢 ∘ 𝜉. For each

𝑝 ∈𝑀 , the linear maps 𝑑𝜂𝑝, 𝑑𝑢
−1
𝜂(𝑝) and 𝑑𝜉𝑝 can be seen as endomorphisms of

𝑇𝑝𝑀 . Hence we have the natural identification 𝑇𝑝𝑀 ≃ 𝑇𝜂(𝑝)𝜕B ≃ 𝑇𝜉(𝑝)S𝑛−1,

see Figure 1.2.

Proposition 1.2. For each 𝑝 ∈ 𝑀 , the map 𝑑𝜂𝑝 : 𝑇𝑝𝑀 → 𝑇𝑝𝑀 is self-

adjoint with respect to the inner product 𝑏 = ⟨𝑑𝑢−1
𝜂(𝑝)(·), ·⟩ : 𝑇𝑝𝑀 ×𝑇𝑝𝑀 → R.

In particular, 𝑑𝜂𝑝 has a basis of orthonormal eigenvectors second 𝑏.
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1.2 The Birkhoff-Gauss map and curvature

Figure 1.2: Birkhorff normal

Proof. This is a consequence of the fact that both maps 𝑑𝑢−1
𝜂(𝑝) and 𝑑𝜉𝑝 are

self-adjoint with respect to the standard inner product, since they are usual

Gauss maps (actually, the fact that 𝑏 is symmetric comes from the self-

adjointness of 𝑑𝑢−1). We calculate

𝑏(𝑑𝜂𝑝𝑋, 𝑌 ) = ⟨𝑑𝑢−1 ∘ 𝑑𝜂(𝑋), 𝑌 ⟩ = ⟨𝑑𝜉(𝑋), 𝑌 ⟩ = ⟨𝑋, 𝑑𝜉(𝑌 )⟩

= ⟨𝑋, 𝑑𝑢−1 ∘ 𝑑𝜂𝑌 ⟩ = 𝑏(𝑋, 𝑑𝜂𝑝𝑌 ),

where we omitted some subindices for the simplicity of the notation. This

concludes the proof.

Remark 1.3. The metric 𝑏 = ⟨𝑑𝑢−1
𝜂(𝑝)(·), ·⟩ is the Dupin metric of 𝑀 defined

in [5].

As a consequence of the last proposition, it follows that for each 𝑝 ∈ 𝑀

the map 𝑑𝜂𝑝 : 𝑇𝑝𝑀 → 𝑇𝑝𝑀 has 𝑛− 1 real eigenvalues 𝜆1, . . . , 𝜆𝑛−1 (possibly

repeated). These numbers are called the (Minkowski) principal curvatures

of 𝑀 at 𝑝. The respective eigenvectors are called the (Minkowski) principal

directions of 𝑀 at 𝑝. The (Minkowski) Gaussian curvature and (Minkowski)
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1.2 The Birkhoff-Gauss map and curvature

mean curvature of 𝑀 at 𝑝 are defined as

𝐾𝑚(𝑝) := det(𝑑𝜂𝑝) = 𝜆1 · . . . · 𝜆𝑛−1 and

𝐻𝑚(𝑝) :=
1

𝑛− 1
tr(𝑑𝜂𝑝) =

𝜆1 + . . .+ 𝜆𝑛−1

𝑛− 1
.

These are clearly analogues of the corresponding concepts in the Euclidean

differential geometry, in the sense that they coincide with the Euclidean

Gaussian and mean curvatures in the case where the norm is Euclidean.

We also have an useful formula for the affine fundamental form ℎ defined

in (1.1), which was also derived for the three-dimensional case in [6].

Lemma 1.4. If 𝜂 is the Birkhoff normal field of an immersed hypersurface

𝑀, ℎ stands for its associated affine fundamental form, and 𝜉 is the Euclidean

Gauss map of 𝑀 , then

ℎ(𝑋, 𝑌 ) = −
⟨𝑑𝑢−1

𝜂(𝑝)𝑌, 𝑑𝜂𝑝𝑋⟩
⟨𝜂, 𝜉⟩

Proof. For any 𝑝 ∈ 𝑀 and any 𝑋, 𝑌 ∈ 𝑇𝑝𝑀 , we have that 𝐷𝑋𝑌 = ∇̃𝑋𝑌 +

ℎ(𝑋, 𝑌 )𝜂. Thus,

⟨𝐷𝑋𝑌, 𝜉⟩ = ⟨∇𝑋𝑌, 𝜉⟩ + ℎ(𝑋, 𝑌 )⟨𝜂, 𝜉⟩ = ℎ(𝑋, 𝑌 )⟨𝜂, 𝜉⟩.

On the other hand, ⟨𝐷𝑋𝑌, 𝜉⟩ = 𝑋⟨𝑌, 𝜉⟩ − ⟨𝑌,𝐷𝑋𝜉⟩ = −⟨𝑌, 𝑑𝜉𝑝𝑋⟩. Now,

ℎ(𝑋, 𝑌 ) =
⟨𝐷𝑋𝑌, 𝜉⟩
⟨𝜂, 𝜉⟩

= −⟨𝑌, 𝑑𝜉𝑝𝑋⟩
⟨𝜂, 𝜉⟩

= −
⟨𝑌, 𝑑𝑢−1

𝜂(𝑝) ∘ 𝑑𝜂𝑝𝑋⟩
⟨𝜂, 𝜉⟩

= −
⟨𝑑𝑢−1

𝜂(𝑝)𝑌, 𝑑𝜂𝑝𝑋⟩
⟨𝜂, 𝜉⟩

,

where the last equality justifies since 𝑢−1 is the Euclidean Gauss map of 𝜕B,

and hence 𝑑𝑢−1
𝜂(𝑝) is self-adjoint with respect to the usual inner product.
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1.2 The Birkhoff-Gauss map and curvature

Corollary. Let 𝜆, 𝜎 ∈ R be distinct Minkowski principal curvatures of 𝑀 at

a point 𝑝, and assume that 𝑉1, 𝑉2 ∈ 𝑇𝑝𝑀 are respective Minkowski principal

directions. Then, 𝑏(𝑉1, 𝑉2) = ℎ(𝑉1, 𝑉2) = 0.

Proof. First, notice that 𝑏(𝑉1, 𝑉2) = 0, since 𝑉1 and 𝑉2 are eigenvectors of a

linear map which is self-adjoint with respect to 𝑏. Therefore,

ℎ(𝑉1, 𝑉2) = −
⟨𝑑𝑢−1

𝜂(𝑝)𝑉1, 𝑑𝜂𝑝𝑉2⟩
⟨𝜂, 𝜉⟩

= −
⟨𝑑𝑢−1

𝜂(𝑝)𝑉1, 𝜆2𝑉2⟩
⟨𝜂, 𝜉⟩

= − 𝜆2
⟨𝜂, 𝜉⟩

𝑏(𝑉1, 𝑉2) = 0.

We say that two non-zero vectors 𝑋, 𝑌 ∈ 𝑇𝑝𝑀 are conjugate if 𝐷𝑋𝑌

is tangential (of course, this is independent of the considered extension of

𝑌 ). From the Gauss equation (1.1) we have that two non-zero vectors

𝑋, 𝑌 ∈ 𝑇𝑝𝑀 are conjugate if and only if ℎ(𝑋, 𝑌 ) = 0. Hence the corol-

lary above guarantees that Minkowski principal directions corresponding to

distinct Minkowski principal curvatures are conjugate.

Lemma 1.5. Let 𝑥 : 𝑀 → (R𝑛, || · ||) be an immersed hypersurface with

Birkhoff-Gauss map 𝜂 and usual Euclidean Gauss map 𝜉. For any non-zero

vectors 𝑋, 𝑌 ∈ 𝑇𝑝𝑀 , the following statements are equivalent:

(a) the vectors 𝑋 and 𝑌 are conjugate directions in the Euclidean sense,

(b) the derivative 𝐷𝑋𝑌 is tangential, and

(c) ℎ(𝑋, 𝑌 ) = 0.

Proof. From the equality 𝐷𝑋𝑌 = ∇̃𝑋𝑌 + ℎ(𝑋, 𝑌 )𝜂 we have that 𝐷𝑋𝑌 is

tangential if and only if ℎ(𝑋, 𝑌 ) = 0. Furthemore, we have

ℎ(𝑋, 𝑌 ) =
⟨𝐷𝑋𝑌, 𝜉⟩
⟨𝜂, 𝜉⟩

= −⟨𝑌,𝐷𝑋𝜉⟩
⟨𝜂, 𝜉⟩

.

Since the derivative 𝐷𝑋𝜉 at a point 𝑝 ∈ 𝑀 is precisely 𝑑𝜉𝑝(𝑋), the proof is

complete.
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1.3 An analogue of the normal curvature

Let’s define curvature line as in [6]. A regular connected curve 𝛾 : 𝐽 ⊂

R → 𝑀 is said to be a curvature line if for each 𝑡 ∈ 𝐽 the tangent vector

𝛾′(𝑡) gives a principal direction at 𝛾(𝑡). We will characterize the curvature

lines of a hypersurface in a Minkowski space in a similar manner as it is done

for the Euclidean subcase.

Proposition 1.6. Let 𝛾 : 𝐽 → 𝑀 be a regular connected curve. Then 𝛾 is

a curvature line of 𝑀 if and only if there exists a function 𝜆 : 𝐽 → R such

that

(𝜂 ∘ 𝛾)′(𝑡) = 𝜆(𝑡)𝛾′(𝑡),

for each 𝑡 ∈ 𝐽 .

Proof. First suppose that 𝛾 is a curvature line. Then, for each 𝑡 ∈ 𝐽 , we

have that 𝛾′(𝑡) is a principal direction, and therefore

(𝜂 ∘ 𝛾)′(𝑡) = 𝑑𝜂𝛾(𝑡)(𝛾
′(𝑡)) = 𝜆(𝑡)𝛾′(𝑡),

where 𝜆(𝑡) is an eigenvalue of 𝑑𝜂𝛾(𝑡).

Conversely, assume that 𝛾 is a connected curve for which (𝜂 ∘ 𝛾)′(𝑡) =

𝜆(𝑡)𝛾′(𝑡) holds for some function 𝜆 : 𝐽 → R. For each 𝑡 ∈ 𝐽 we have that

𝛾′(𝑡) is an eigenvector of 𝑑𝜂𝛾(𝑡). Thus, 𝛾 is a curvature line.

1.3 An analogue of the normal curvature

Before we define normal curvature we will define circular curvature, following

[4]. To define it, let 𝛾(𝑠) : [0, 𝑙(𝛾)] → (R2, || · ||) be a curve parametrized by

arc length, and assume that 𝜑(𝑡) : [0, 𝑙(𝑆)] → (R2, || · ||) is a parametrization

of the unit circle, 𝑆, by arc length. We let 𝑡 be the function which associates

each 𝑠 ∈ [0, 𝑙(𝛾)] to the number 𝑡(𝑠) ∈ [0, 𝑙(𝑆)] such that

𝛾′(𝑠) =
𝑑𝜑

𝑑𝑡
(𝑡(𝑠))
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1.3 An analogue of the normal curvature

In other words, 𝑡(𝑠) is the length traveled along the unit circle when the

vector field 𝛾′(𝑠) varies as its tangent field.

Figure 1.3: Circular curvature

We define the circular curvature of 𝛾 measuring the variation of the length

𝑡(𝑠) with respect to 𝑠. Formally, the circular curvature of 𝛾 at 𝛾(𝑠) is given

by

𝑘𝑐(𝑠) := 𝑡′(𝑠).

Throughout this section we still always assume that the norm fixed in

the space is admissible. As usual, we let 𝑢 : S𝑛−1 → 𝜕B be the inverse of the

Euclidean Gauss map of 𝜕B. Recall also that we are denoting by ⟨·, ·⟩ the

usual inner product in R𝑛. Given an immersed hypersurface 𝑥 : 𝑀 → R𝑛, we

still denote by 𝜂 and 𝜉 the Birkhoff-Gauss and usual Euclidean Gauss maps

of 𝑀, respectively.

In Euclidean differential geometry, the normal curvature of a surface 𝑀

in a given point 𝑝 ∈ 𝑀 and a given direction 𝑋 ∈ 𝑇𝑝𝑀 can be regarded

as the (signed) length of the projection of the normal vector of a curve in

𝑀, passing through 𝑝 with tangent vector 𝑋, onto 𝜉(𝑝). In particular, the

considered curve can be taken as the intersection of the plane spanned by
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1.3 An analogue of the normal curvature

𝜉(𝑝) and 𝑋, and therefore the normal curvature is the usual curvature of this

(plane) curve at 𝑝 (see [13]). This observation allows us to extend this notion

to our general case. Let 𝑥 : 𝑀 → (R𝑛, || · ||) be an immersed hypersurface,

and fix 𝑝 ∈𝑀 and 𝑋 ∈ 𝑆𝑝 ⊂ 𝑇𝑝𝑀, where 𝑆𝑝 denotes the unit sphere of 𝑇𝑝𝑀.

Denote by 𝜋 the plane spanned by 𝜂(𝑝) and 𝑋. Let 𝛾 : (−𝜖, 𝜖) → 𝑀 be a

local arc-length parametrization of the curve given by the intersection of the

plane 𝑝+ 𝜋 with 𝑀, and assume that 𝛾(0) = 𝑝 and 𝛾′(0) = 𝑋.

Definition 1.7. The Minkowski normal curvature of 𝑀 at 𝑝 ∈ 𝑀 in the

direction 𝑋 ∈ 𝑆𝑝 is the circular curvature of 𝛾 at 𝑝 in the plane geometry

endowed in 𝜋 by the norm || · || (in other words, the geometry in 𝜋 whose

unit circle is the intersection of 𝜕B with 𝜋). We will denote this number by

𝑘𝑀,𝑝(𝑋).

We will give a formula for the Minkowski normal curvature in terms of

the auxiliary Euclidean structure fixed in the plane. To do so, we first notice

that this is essentially a problem in the plane 𝜋. Following [4], the circular

curvature of 𝛾 at 𝑝 is the ratio between its usual plane Euclidean curvature

and the usual plane Euclidean curvature of the circle 𝜕B∩𝜋 at a point whose

tangent lies in the direction 𝑋.

Theorem 1.8. For any 𝑝 ∈𝑀 and 𝑋 ∈ 𝑇𝑝𝑀 we have

𝑘𝑀,𝑝(𝑋) =
⟨𝑑𝑢−1

𝜂(𝑝)
𝑋, 𝑑𝜂𝑝𝑋⟩

⟨𝑑𝑢−1
𝜂(𝑝)𝑋,𝑋⟩

, (1.2)

where we are considering the natural identification 𝑇𝑝𝑀 ≃ 𝑇𝜂(𝑝)𝜕B ≃

𝑇𝜉(𝑝)S𝑛−1.

Proof. Let us first look at 𝜕B as an immersed hypersurface. The Euclidean

normal curvature of 𝜕B at 𝜂(𝑝) in the direction 𝑋 is given by ⟨𝑑𝑢−1
𝜂(𝑝)𝑋,𝑋⟩
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1.4 Area and Volume

since 𝑢−1 is the Euclidean Gauss map of 𝜕B. Following [13], this normal

curvature can be obtained from the curve 𝜑 := 𝜕B ∩ 𝜋 as

−⟨𝑑𝑢−1
𝜂(𝑝)𝑋,𝑋⟩ = 𝑘𝜑(𝜂(𝑝))⟨𝜁, 𝜉(𝑝)⟩ (1.3)

where 𝑘𝜑(𝜂(𝑝)) is the (plane) Euclidean curvature of the curve 𝜑 at 𝜂(𝑝),

and 𝜁 is the unit Euclidean normal vector to 𝑋 at the plane 𝜋, which is

also the Euclidean normal vector of the curve 𝜑 at 𝜂(𝑝). On the other hand,

the Euclidean normal curvature of 𝑀 at 𝑝 in the direction 𝑋 is given by

⟨𝑑𝜉𝑝𝑋,𝑋⟩, since 𝜉 is the Euclidean Gauss map of 𝑀. As in the previous

argument, this normal curvature can be obtained from the curve 𝛾 as

−⟨𝑑𝜉𝑝𝑋,𝑋⟩ = 𝑘𝛾(𝑝)⟨𝜁, 𝜉(𝑝)⟩ (1.4)

where 𝑘𝛾(𝑝) is the (plane) Euclidean curvature of 𝛾 at 𝑝. Now, from (1.3)

and (1.4) we have

𝑘𝑀,𝑝(𝑋) =
𝑘𝛾(𝑝)

𝑘𝜑(𝜂(𝑝))
=

⟨𝑑𝜉𝑝𝑋,𝑋⟩
⟨𝑑𝑢−1

𝜂(𝑝)𝑋,𝑋⟩

Since 𝜉 = 𝑢−1 ∘ 𝜂, and since the differential of the Euclidean Gauss map

of any immersed hypersurface is self-adjoint at any point, it follows that

⟨𝑑𝜉𝑝𝑋,𝑋⟩ = ⟨𝑑𝑢−1
𝜂(𝑝)𝑋, 𝑑𝜂𝑝𝑋⟩. This gives equality (1.2).

1.4 Area and Volume

Let 𝑀 be an 𝑛 oriented differentiable manifold and 𝑥 : 𝑀 → R𝑛 a smooth

immersion. The usual determinant in R𝑛 induces an area element in 𝑥 as

𝑑𝜔(𝑋1, · · · , 𝑋𝑛−1) := det(𝑋1, · · · , 𝑋𝑛−1, 𝜂),

for each 𝑋1, · · · , 𝑋𝑛−1 ∈ 𝑇𝑀 , where 𝜂 is the Birkhorff-Gauss map of 𝑀.

With such an area element, that we will call Minkowski area measure, the
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1.4 Area and Volume

Minkowski area of an open bounded subset 𝐷 ⊂𝑀 is, following [7], given as

𝐴𝑚,𝐷(𝑥) :=

∫︁
𝐷

𝑑𝜔

Observe that if 𝜉 is the Gauss map of 𝑀 we can see

𝐴𝑚,𝐷(𝑥) =

∫︁
𝐷

⟨𝜂, 𝜉⟩𝑑𝑆

where 𝑑𝑆 is the area element induced by immersion 𝑥.

We will define the volume of 𝑥 as in the Euclidean case

𝑉𝐷(𝑥) :=
1

𝑛

∫︁
𝐷

⟨𝑥, 𝜉⟩𝑑𝑆

that seen in another way, it is written as

𝑉𝐷(𝑥) :=
1

𝑛

∫︁
𝐷

⟨𝑥, 𝜉⟩
⟨𝜂, 𝜉⟩

𝑑𝑤

where 𝜌 := ⟨𝑥,𝜉⟩
⟨𝜂,𝜉⟩ is the Birkhoff normal component of 𝑥, that is, 𝜌 is the

projection to the second coordinate in the direct-sum decomposition R𝑛 =

𝑇𝑝𝑀 ⊕⟨𝜂⟩ of 𝑥. The definition of 𝑉 is justified by the fact that when 𝑥 is an

embedding and 𝑀 is closed, 𝑉 represents the volume of the interior of 𝑀 .

Figure 1.4: 𝑛 vol(Ω) =
∫︀
Ω

div id(𝑥) 𝑑𝑥 =
∫︀
𝑀
⟨𝑥, 𝜉⟩𝑑𝑆.

A variation of 𝑥 : 𝑀 → R𝑛 is a smooth function 𝐹 : (−𝜀, 𝜀) ×𝑀 → R𝑛

such that for every 𝑡 ∈ (−𝜀, 𝜀), the function 𝐹 𝑡 = 𝐹 (𝑡, ·) is also an immersion

and 𝐹 (0, 𝑝) = 𝑥(𝑝), ∀𝑝 ∈ 𝑀. For such a variation, the area and volume

defined above give one-parameter functions

𝐴𝑚(𝑡) = 𝐴𝑚(𝐹 𝑡), 𝑉 (𝑡) = 𝑉 (𝐹 𝑡).
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1.4 Area and Volume

We say that a variation has compact support if 𝐹 (𝑡, 𝑝) = 𝑥(𝑝) for every 𝑝

outside a compact subset of 𝑀 .

It is known that minimal hypersurfaces, this is, hypersurfaces with zero

mean curvature, arise naturally as critical points of the area function, whereas

CMC hypersurfaces (hypersurfaces with constant mean curvature) corre-

spond to the critical points of the area with restricted volume. More precisely,

we say that an immersion is minimal if for every variation with compact sup-

port we have 𝐴′
𝑚(0) = 0. It is known that for any immersion and any

variation (see Theorem 2.20),

𝐴′
𝑚(0) =

∫︁
𝑀

(𝑛− 1)𝐻𝑒(𝑝)⟨𝐹𝑡(0, 𝑝), 𝜉(𝑝)⟩𝑑𝑆

where 𝐻𝑒 denotes the mean curvature and 𝐹𝑡(0, 𝑝) = 𝜕
𝜕𝑡
𝐹 (0, 𝑝) the variational

field, so minimal immersions are characterized as immersions with zero mean

curvature. Minimal hypersurfaces arise naturally as solutions of the Plateau

problem, that is finding a hypersurface with prescribed boundary, minimizing

the hypersurface area measure. If we restrict to immersions having a fixed

volume, we see from the well known formula

𝑉 ′(0) =

∫︁
𝑀

⟨𝐹𝑡(0, 𝑝), 𝜉(𝑝)⟩𝑑𝑆

that the immersions such that 𝐴′
𝑚(0) = 0 for every volume-preserving varia-

tion of compact support, are precisely those with constant mean curvature.

We will see later, in the sections 2.5 and 2.4 that such a characterization also

happens in the Minkowskian case.
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Chapter 2

Some topics in differential

geometry of normed spaces

In this chapter we present extensions for any dimension, from Differential

Geometry results with 𝑛 = 3 proposed by Balestro, Martini, Teixeira in the

articles [6], [7], [8]. The key point is in the section 2.1, where we prove that

the signs of the principal curvatures (positive and negative) are, in equal

quantity, in any two Minkowski geometries and this allowed us to extend

results, almost without modification, as Hadamard-type theorems, which we

present in section 2.2, Global theorems.

Section 2.3 contemplates Weyl’s tube formula. In [7] the authors ob-

served that such a formula, in this case 𝑛 = 3, could be obtained without

making use of a particular parameterization. Here we present it for a general

parametrization, for any dimension 𝑛. Lemma 2.15 is the key point for this

extension.

In [8] the authors provide a formula for the first variation of the area for a

particular variation, in dimension 𝑛 = 3. In section 2.4 we present a formula

for the first variation of the area for general variations. With our formula we

28



2.1 Principal curvatures: Relationship between two geometries

can see that hypersurfaces with 𝐻𝑚 = 0 are critical points of the functional

area, as in the Euclidean case.

We close the chapter with section 2.5 where we present the definition

of volume in analogy with the Euclidean case and use section 2.4 to verify

that an immersion 𝑥 : 𝑀 → R𝑛 has Minkowski mean curvature 𝐻𝑚 constant

if and only if it is critical points for the functional area for variations that

preserve volume.

2.1 Principal curvatures: Relationship between

two geometries

The Lemma 2.5 is the base result for this section, he says that vectors which

are linear combinations of Minkowski principal directions associated with

positive (negative) Minkowski principal curvatures are directions with Eu-

clidean normal curvature positive (negative). With it we prove the Theorem

2.7, which relates the signs of the principal curvatures of any two Minkowski

geometries.

Lemma 2.1. There exists a base of Minkowski principal directions of 𝑇𝑝𝑀,

namely {𝑉1, ..., 𝑉𝑛−1}, such that, for all 𝑖 ̸= 𝑗 one has

⟨𝑑𝑢−1
𝜂(𝑝)𝑉𝑖, 𝑉𝑗⟩ = 0.

In particular the affine fundamental form satisfies, ℎ(𝑉𝑖, 𝑉𝑗) = 0, but not

ℎ(𝑉𝑖, 𝑉𝑖) ̸= 0, due the existence of null eigenvalues.

Proof. For each 𝑖 = 1, ..., 𝑛 − 1 let 𝜆𝑖 consider the Minkowski principal cur-

vature associated the 𝑉𝑖, this is, 𝑑𝜂𝑝𝑉𝑖 = 𝜆𝑖𝑉𝑖. First suppose 𝜆𝑖 ̸= 𝜆𝑗, in this
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2.1 Principal curvatures: Relationship between two geometries

case, assume 𝜆𝑖 ̸= 0. Thus,

⟨𝑑𝑢−1
𝜂(𝑝)𝑉𝑖, 𝑉𝑗⟩ =

1

𝜆𝑖
⟨𝑑𝑢−1

𝜂(𝑝)𝑑𝜂𝑝𝑉𝑖, 𝑉𝑗⟩

=
1

𝜆𝑖
⟨𝑑𝜉𝑝𝑉𝑖, 𝑉𝑗⟩

=
1

𝜆𝑖
⟨𝑉𝑖, 𝑑𝜉𝑝𝑉𝑗⟩

=
1

𝜆𝑖
⟨𝑉𝑖, 𝑑𝑢−1

𝜂(𝑝)𝑑𝜂𝑝𝑉𝑗⟩

=
𝜆𝑗
𝜆𝑖
⟨𝑉𝑖, 𝑑𝑢−1

𝜂(𝑝)𝑉𝑗⟩

=
𝜆𝑗
𝜆𝑖
⟨𝑑𝑢−1

𝜂(𝑝)𝑉𝑖, 𝑉𝑗⟩,

since 𝜆𝑖 ̸= 𝜆𝑗 the result follows.

Otherwise, if 𝜆𝑖 = 𝜆𝑗, with 𝑖 ̸= 𝑗, this is, 𝑑𝜂𝑝𝑉𝑖 = 𝜆𝑖𝑉𝑖 and 𝑑𝜂𝑝𝑉𝑗 = 𝜆𝑖𝑉𝑗,

given any 𝑉 = 𝛼𝑉𝑖 + 𝛽𝑉𝑗 we have 𝑑𝜂𝑝𝑉 = 𝜆𝑖𝑉 . So choose

𝑉𝑗 = 𝑉𝑗 −
⟨𝑑𝑢−1

𝜂(𝑝)𝑉𝑗, 𝑉𝑖⟩
⟨𝑑𝑢−1

𝜂(𝑝)𝑉𝑖, 𝑉𝑖⟩
𝑉𝑖.

In this case, we have ⟨𝑑𝑢−1
𝜂(𝑝)𝑉𝑖, 𝑉𝑗⟩ = 0 and 𝑑𝑢−1

𝜂(𝑝)𝑉𝑗 = 𝜆𝑗𝑉𝑗, therefore just

change 𝑉𝑗 for 𝑉𝑗 on the base given initially.

Another way to obtain such a result is via the spectral Theorem. Once

the operator 𝑑𝜂 is self-adjoint with respect to the metric Dupin, 𝑏 : 𝑋, 𝑌 ↦→

⟨𝑑𝑢−1𝑋, 𝑌 ⟩.

Remember that we denote 𝑘𝑀,𝑝(𝑉 ) the Minkowski normal curvature of

𝑀 at 𝑝, in direction 𝑉 . We will use the equation (1.2) here, which says

𝑘𝑀,𝑝(𝑉 ) =
⟨𝑑𝑢−1

𝜂(𝑝)𝑉, 𝑑𝜂𝑝𝑉 ⟩
⟨𝑑𝑢−1

𝜂(𝑝)𝑉, 𝑉 ⟩
.

30



2.1 Principal curvatures: Relationship between two geometries

Observe that if 𝑉 ∈ 𝑇𝑝𝑀 is a Minkowski principal direction at 𝑝 ∈ 𝑀 ,

with associated Minkowski principal curvature 𝜆, then 𝑘𝑀,𝑝(𝑉 ) = 𝜆. Of

course, we have 𝑑𝜂𝑝𝑉 = 𝜆𝑉 , thus

𝑘𝑀,𝑝(𝑉 ) =
⟨𝑑𝑢−1

𝜂(𝑝)𝑉, 𝜆𝑉 ⟩
⟨𝑑𝑢−1

𝜂(𝑝)𝑉, 𝑉 ⟩
= 𝜆.

For the Theorem below denote by 𝜆𝑖 the Minkowki principal curvature of

𝑀 at 𝑝 associated with the direction 𝑉𝑖.

In the Euclidean subcase, the principal curvatures of 𝑀 at a point 𝑝 are

characterized by maximum and the minimum values of the normal curvature

in this point. This is also true in the general Minkowski case. More precisely,

we have.

Theorem 2.2. Consider 𝜆1, · · · , 𝜆𝑛−1 Minkowski principal curvatures of 𝑀

at 𝑝 ordered such that

𝜆1 ≤ 𝜆2 ≤ ... ≤ 𝜆𝑛−1,

and 𝑊𝑖 the space generated by the principal directions 𝑉1, · · · , 𝑉𝑖, as in the

Lemma 2.1. Then

𝜆𝑛−1 = max
𝑉 ∈𝑇𝑝𝑀

𝑘𝑀,𝑝(𝑉 ),

𝜆1 = min
𝑉 ∈𝑇𝑝𝑀

𝑘𝑀,𝑝(𝑉 )

𝜆𝑖 = max
𝑉 ∈𝑊𝑖

𝑘𝑀,𝑝(𝑉 ),

Proof. Choose a base for 𝑇𝑝𝑀 as in Lemma 2.1. Consider 𝑉 ∈ 𝑇𝑝𝑀 and

write 𝑉 = 𝛼1𝑉1 + ...+ 𝛼𝑛−1𝑉𝑛−1. Thus,
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2.1 Principal curvatures: Relationship between two geometries

𝑘𝑀,𝑝(𝑉 ) =
⟨𝑑𝑢−1

𝜂(𝑝)𝑉, 𝑑𝜂𝑝𝑉 ⟩
⟨𝑑𝑢−1

𝜂(𝑝)𝑉, 𝑉 ⟩

=

⟨𝑑𝑢−1
𝜂(𝑝)

(︂ 𝑛−1∑︁
𝑖=1

𝛼𝑖𝑉𝑖

)︂
, 𝑑𝜂𝑝

(︂ 𝑛−1∑︁
𝑗=1

𝛼𝑗𝑉𝑗

)︂
⟩

⟨𝑑𝑢−1
𝜂(𝑝)

(︂ 𝑛−1∑︁
𝑖=1

𝛼𝑖𝑉𝑖

)︂
,

𝑛−1∑︁
𝑗=1

𝛼𝑗𝑉𝑗⟩

=

𝑛−1∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝜆𝑗⟨𝑑𝑢−1
𝜂(𝑝)𝑉𝑖, 𝑉𝑗⟩

𝑛−1∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗⟨𝑑𝑢−1
𝜂(𝑝)𝑉𝑖, 𝑉𝑗⟩

=

𝑛−1∑︁
𝑖=1

𝜆𝑖𝛼
2
𝑖 ⟨𝑑𝑢−1

𝜂(𝑝)𝑉𝑖, 𝑉𝑖⟩

𝑛−1∑︁
𝑖=1

𝛼2
𝑖 ⟨𝑑𝑢−1

𝜂(𝑝)𝑉𝑖, 𝑉𝑖⟩

≤ 𝜆𝑛−1 = 𝑘𝑀,𝑝(𝑉𝑛−1).

It shows that 𝜆𝑛−1 = max
𝑉 ∈𝑇𝑝𝑀

𝑘𝑀,𝑝(𝑉 ) and that 𝜆1 = min
𝑉 ∈𝑇𝑝𝑀

𝑘𝑀,𝑝(𝑉 ). Now take

𝑉 ∈ 𝑇𝑝𝑀 such that ⟨𝑑𝑢−1
𝜂(𝑝)𝑉, 𝑉𝑛−1⟩ = 0, this is, 𝑉 ∈ 𝑊𝑛−2. Thus 𝑉 is of the

form 𝑉 = 𝛼1𝑉1 + ... + 𝛼𝑛−2𝑉𝑛−2. Repeating the previous process we obtain

𝑘𝑀,𝑝(𝑉 ) ≤ 𝜆𝑛−2 for such a 𝑉 and therefore 𝜆𝑛−2 = max
𝑉 ∈𝑊𝑛−2

𝑘𝑀,𝑝(𝑉 ). The

theorem follows repeating this process until obtaining 𝜆2.

Corollary 2.3. The Minkowski normal curvature of an immersed connected

hypersurface is constant if and only if this hypersurface is contained in a

hyperplane or in a Minkowski sphere. The first case occurs if and only if

𝑘𝑀,𝑝 = 0, and in the second case the radius of the sphere is given by |𝑘𝑀,𝑝|−1

32



2.1 Principal curvatures: Relationship between two geometries

.

Proof. By the previous Theorem we have that all points of 𝑀 are umbilic,

hence the result follows from Lemma 2.12, that we will see later.

Corollary 2.4. A point 𝑝 ∈ 𝑀 is umbilic if and only if 𝑘𝑀,𝑝 is constant in

𝑇𝑝𝑀∖{0}. In this case, 𝑘𝑀,𝑝(𝑉 ) equals the Minkowski principal curvature of

𝑀 at 𝑝, for all 𝑉 ∈ 𝑇𝑝𝑀.

Proof. By Theorem 2.2, if 𝑝 is umbilic, the minimum and maximum of 𝑘𝑀,𝑝

are equal, so the Minkowski principal curvatures are equal. Conversely, if

the Minkowski principal curvatures are equal, the minimum and maximum

of 𝑘𝑀,𝑝 are equal and therefore 𝑘𝑀,𝑝 is constant.

An interesting result, which we will see next, is that Minkowski’s geom-

etry preserves the amount of positive, null and negative Euclidean principal

curvatures of a hypersurface. We will be more precise in the Theorem 2.7,

before, let’s see the following lemma.

Lemma 2.5. Let 𝑉1, 𝑉2, ... , 𝑉𝑙 be Minkowski’s principal directions of 𝑀

at 𝑝 (as in Lemma 2.1) associated Minkowski’s principal curvatures 𝜆1, ... ,

𝜆𝑙, all positive (respectively, all negative). If 𝑉 = 𝛼1𝑉1 + 𝛼2𝑉2 + ... + 𝛼𝑙𝑉𝑙

then 𝑘𝐸,𝑝(𝑉 ) > 0 (respectively 𝑘𝐸,𝑝(𝑉 ) < 0), where 𝑘𝐸,𝑝(𝑉 ) is the Euclidean’s

normal curvature of 𝑀 at 𝑝 in the direction 𝑉.

Proof. Without loss of generality, consider 𝑉 unit with respect to the Eu-
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2.1 Principal curvatures: Relationship between two geometries

clidean metric.

𝐾𝐸,𝑝(𝑉 ) = ⟨𝑑𝜉𝑝𝑉, 𝑉 ⟩

= ⟨𝑑𝑢−1
𝜂(𝑝)𝑑𝜂𝑝𝑉, 𝑉 ⟩

=
⟨︀
𝑑𝑢−1

𝜂(𝑝)

(︀∑︁
𝑖

𝜆𝑖𝛼𝑖𝑉𝑖
)︀
,
∑︁
𝑗

𝛼𝑗𝑉𝑗
⟩︀

=
∑︁
𝑖𝑗

𝜆𝑖𝛼𝑖𝛼𝑗⟨𝑑𝑢−1
𝜂(𝑝)𝑉𝑖, 𝑉𝑗⟩

=
∑︁
𝑖

𝜆𝑖𝛼
2
𝑖 ⟨𝑑𝑢−1

𝜂(𝑝)𝑉𝑖, 𝑉𝑖⟩.

since the bilinear form associated with 𝑑𝑢−1
𝜂(𝑝) is positively definited, from the

above account we conclude that 𝐾𝐸,𝑝(𝑉 ) > 0 (respectively 𝐾𝐸,𝑝(𝑉 ) < 0) if

𝜆𝑖 > 0 (respectively 𝜆𝑖 < 0) for all 𝑖 = 1, ..., 𝑙.

Corollary 2.6. Let 𝑉1, 𝑉2, ... , 𝑉𝑙 be Minkowski’s principal directions of 𝑀

at 𝑝 (as in the Lemma 2.1) associated Minkowski’s principal curvatures 𝜆1,

... , 𝜆𝑙, all non negative (all non positive). If 𝑉 = 𝛼1𝑉1 + 𝛼2𝑉2 + ... + 𝛼𝑙𝑉𝑙

then 𝐾𝐸,𝑝(𝑉 ) ≥ 0 (𝐾𝐸,𝑝(𝑉 ) ≤ 0).

As mentioned above, the following theorem presents a relationship be-

tween the signs of the Minkowskinian and Euclidean principal curvatures.

Theorem 2.7. Let consider 𝑀 a hypersurface in R𝑛, and a point 𝑝 in 𝑀 .

The signs of principal curvatures of𝑀 at 𝑝 are equally distributed with respect

to any two geometries.

Proof. It is enough to show that the signs of the principal curvatures of 𝑀 in

𝑝 in any geometry are equally distributed with respect to Euclidean geometry.

Suppose the signs of Minkowski’s principal curvatures are divided as follows:

m positive; q negative and z null
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2.2 Global theorems

Note that ker 𝑑𝜉 = ker 𝑑𝜂, since 𝑑𝜉𝑝𝑉 = 𝑑𝑢−1
𝜂(𝑝)𝑑𝜂𝑝𝑉 , hence we will also

have z zero Euclidean’s principal curvatures. We claim that there are at most

q negative Euclidean’s principal curvatures. In fact, otherwise we would

have a space 𝑊− ⊂ 𝑇𝑝𝑀 generated by the principal Euclidean directions

associated with these negative Euclidean principal curvatures with dim𝑊− ≥

𝑞 + 1 e 𝐾𝐸,𝑝(𝑉 ) < 0, whenever 𝑉 ∈ 𝑊−∖{0}. In addition, by Corollary 2.6

there is a space 𝑊 ⊂ 𝑇𝑝𝑀 with 𝐾𝐸,𝑝(𝑉 ) ≥ 0, whenever 𝑉 ∈ 𝑊∖{0} and

dim𝑊 ≥ 𝑚+ 𝑧. Since 𝑚+ 𝑧 + 𝑞 + 1 > 𝑛− 1 there would be 𝑉 ∈ 𝑊 ∩𝑊−,

not null, which is absurd. The same argument tells us that we have at most

𝑚 positive Euclidean principal curvatures. This ends the demonstration.

Corollary 2.8. Assume, as usual, that || · || is an admissible norm, and let

𝑥 : 𝑀 → (R𝑛, || · ||) be an immersed hypersurface. Denote by 𝐾𝑚 and 𝐾𝑒 the

Minkowski and the Euclidean Gaussian curvatures of 𝑀 , respectively. For a

point 𝑝 ∈𝑀 , the following statements are equivalent:

(a) 𝐾𝑒(𝑝) > 0,

(b) 𝐾𝑚(𝑝) > 0.

Proof. The proof that (a) ⇐⇒ (b) follows immediately from the previous

theorem.

With the previous result we are able to prove, as in [8], the versions of

the Hadamard theorems for suitable hypotheses regarding the Minkowskian

Gauss curvature.

2.2 Global theorems

With the proof of Theorem 2.7 the results of this section are obtained almost

without modification of the Euclidean case and the Minkowski case to 𝑛 = 3,
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presented in [8].

We assume that all the immersed hypersurfaces are complete in the Eu-

clidean ambient geometry, meaning that all of the (Euclidean) geodesics are

defined for all of the values of the parameter.

Theorem 2.9. Let 𝑥 : 𝑀 → (R𝑛, || · ||) be a simply connected immersed

hypersurface. If the Minkowskian Gauss curvature of 𝑀 is non-positive, then

𝑀 is diffeormorphic to a plane.

Proof. We are assuming that 𝑀 is complete in the Euclidean geometry. From

Theorem 2.7 it follows that the Euclidean Gauss curvature is non-positive.

Hence the result comes as a consequence of the Hadamard theorem in Eu-

clidean geometry.

Theorem 2.10. Let 𝑥 : 𝑀 → (R𝑛, || · ||) be a compact, connected immersed

hypersurface. If the Minkowskian Gauss curvature of 𝑀 is positive, then the

Birkhoff-Gauss map 𝜂 : 𝑀 → 𝜕B is a diffeomorphism.

Proof. Again it follows from Theorem 2.7 that the Euclidean Gauss curvature

of 𝑀 is positive. Therefore, the Euclidean Gauss map 𝜉 : 𝑀 → S𝑛−1 is a local

diffeomorphism defined in a compact, consequently a covering map, whose

image is simply connected, therefore a difeomorphism (see [[13], Section 5.6 B,

Theorem 2]). Since the norm is admissible, the Minkowskian unit sphere 𝜕𝐵

is itself a compact, connected immersed hypersurface with positive Euclidean

Gauss curvature. It follows that 𝑢−1 : 𝜕B → S𝑛−1 is a diffeomorphism. Hence

also 𝜂 = 𝑢 ∘ 𝜉 is a diffeomorphism.

We continue working with the area induced by Birkhoff-Gauss map (and

the usual determinant in R𝑛). In this case, the Minkowski area of the unit

sphere 𝜕B is given by

𝐴𝑚(𝜕B) :=

∫︁
𝜕B
𝑑𝜔𝜕B
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In what follows, we say that a hypersurface is closed whenever it is com-

pact and without boundary. For the sake of simplicity, all of the immersions

are assumed to be embeddings.

Theorem 2.11. Let 𝑥 : 𝑀 → (R𝑛, ||·||) be a closed hypersurface with positive

Minkowski Gaussian curvature. Then∫︁
𝑀

𝐾𝑚𝑑𝜔 = 𝐴𝑚(𝜕B)

Proof. Since 𝑀 is compact and its Minkowski Gaussian curvature is positive,

it follows that the Birkhoff-Gauss map 𝜂 : 𝑀 → 𝜕B is a diffeomorphism (see

Theorem 2.10). Hence∫︁
𝑀

𝐾𝑚𝑑𝜔 =

∫︁
𝑀

det(𝑑𝜂)𝑑𝜔 =

∫︁
𝜕B
𝑑𝜔𝜕B = 𝐴𝑚(𝜕B),

where the second equality comes from the standard changing of variables

formula, and from the fact that, for each 𝑝 ∈ 𝑀, the Birkhoff normal is the

same for 𝑀 at 𝑝 and 𝜕B at 𝜂(𝑝).

Notice that the principal curvatures of a plane are 0 at any point. Also,

any Minkowski sphere has constant, equal principal curvatures at each of

its points. Indeed, the Birkhoff-Gauss map can be regarded as the map

𝜂 : 𝑀 → 𝜕B given by 𝜂(𝑥) = 1
𝜌
(𝑥− 𝑝), where 𝑝 is the center 𝑀 and 𝜌 is the

radius. Clearly, 𝑑𝜂𝑝 = 1
𝜌
𝐼𝑑𝑇𝑝𝑀 , and hence the principal curvatures of 𝑀 at

any point 𝑝 are 1
𝜌
.

Remember that a point 𝑝 ∈𝑀 is an umbilic point if the principal curva-

tures of 𝑀 at 𝑝 have the same value. Equivalently, a point 𝑝 ∈𝑀 is umbilic

when the differential of the Birkhoff normal vector field at 𝑝 is a multiple of

the identity map. By the previous observation, all the points of a hyperplane

or of a Minkowski sphere are umbilic. The next proposition states that, as in

the Euclidean subcase, these are the only possible hypersurfaces with such
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property. Balestro, Martini and Teixeira proved it to dimension three, but it

extends without modification to dimension 𝑛.

Lemma 2.12 ([6], Proposition 4.5). A connected hypersurface immersed R𝑛,

all whose points are umbilic is contained in a plane or in a Minkowski sphere.

Proof. For each 𝑝 ∈ 𝑀 we have that 𝑑𝜂𝑝(𝑋) = 𝜆(𝑝)𝑋 for any 𝑋 ∈ 𝑇𝑝𝑀,

where 𝜆 : 𝑀 → R is a smooth function. Our first step is to prove that

the function 𝜆 is constant. For this sake, fix linearly independent vectors

𝑋, 𝑌 ∈ 𝑇𝑝𝑀 and denote also by 𝑋 and 𝑌 the parallel transport of 𝑋 through

a curve tangent to 𝑌 at 𝑝, and the parallel transport of 𝑌 through a curve

tangent to 𝑋 at 𝑝, both with respect to the induced connection ∇̃, given by

(1). We have then ∇̃𝑋𝑌 |𝑝 = ∇̃𝑌𝑋|𝑝 = 0. Now, extending smoothly both

vector fields to an open neighborhood of 𝑝, we may calculate at 𝑝

𝐷𝑌𝐷𝑋𝜂 = 𝐷𝑌 (𝜆𝑋) = 𝑌 (𝜆)𝑋 + 𝜆ℎ(𝑌,𝑋)𝜂 and

𝐷𝑋𝐷𝑌 𝜂 = 𝑋(𝜆)𝑌 + 𝜆ℎ(𝑋, 𝑌 )𝜂.

Since 𝐷 is a flat connection, we write

0 = 𝐷𝑌𝐷𝑋𝜂 −𝐷𝑋𝐷𝑌 𝜂 −𝐷[𝑋,𝑌 ]𝜂 = 𝑌 (𝜆)𝑋 −𝑋(𝜆)𝑌 − 𝜆[𝑋, 𝑌 ].

Recalling that ∇̃ is a torsion-free connection, it follows that [𝑋, 𝑌 ] = 0 at

𝑝. Hence we have 𝑋(𝜆)𝑌 − 𝑌 (𝜆)𝑋 = 0, and this gives 𝑋(𝜆) = 𝑌 (𝜆) = 0

(since 𝑋 and 𝑌 are linearly independent). This argument shows that the

derivative of the function 𝜆 at any point 𝑝 ∈ 𝑀 and with respect to any

direction 𝑋 ∈ 𝑇𝑝𝑀 equals 0. It follows that 𝜆 is constant. 𝜆 = 0, then the

Birkhoff-Gauss map is constant, and this means that the Birkhoff normal

vector is the same for each point of 𝑀. In particular, the Euclidean normal

vector is also the same for every point, and therefore 𝑀 is contained in a

38



2.3 Weyl’s tube formula and intrisic volumes

plane. If 𝜆 ̸= 0, then the map 𝑝 ∈𝑀 ↦→ 𝑝− 1
𝜆
𝜂(𝑝) ∈ R𝑛 is clearly a constant

map. Indeed, for any point 𝑝 ∈𝑀 and any direction 𝑋 ∈ 𝑇𝑝𝑀 , we have

𝐷𝑋

(︁
𝑝− 1

𝜆
𝜂(𝑝)

)︁
= 𝑋 − 1

𝜆
(𝜆𝑋) = 0.

Thus, 𝑀 is contained in the Minkowski sphere whose center is this constant

point, and whose radius equals 1
𝜆
.

2.3 Weyl’s tube formula and intrisic volumes

In this section we extend some results from [7]. In that paper the authors

make use of a parameterization whose coordinate curves are curvature lines.

The key point here is the Lemma 2.15, that allows us to work with a general

parameterization, without using continuity arguments to deal with umbilic

points.

To begin the section we will give an interpretation, in analogy to the

Euclidean case, of the Minkowski Gaussian curvature in terms of the Birkhoff

Gauss map 𝜂. As in [13] we will make the convention that the area of a region

contained in a connected neighborhood 𝐷 ⊂𝑀 , where 𝐾𝑚 ̸= 0, and the area

of its image by 𝜂 have the same sign if 𝐾𝑚 > 0 in 𝐷, and opposite signs if

𝐾𝑚 < 0 in 𝐷 (since 𝐷 is connected, 𝐾𝑚 does not change sign in 𝐷).

Theorem 2.13. Let 𝑝 ∈𝑀 be a point where 𝐾𝑚(𝑝) ̸= 0, and let 𝑈 ⊂𝑀 be

a connected neighborhood of 𝑝 where the sign of 𝐾𝑚 does not change. Then

𝐾𝑚(𝑝) = lim
𝐷→𝑝

𝐴𝜕B(𝜂(𝐷))

𝐴𝑀(𝐷)

where 𝐷 ⊂ 𝑈 and 𝜂(𝐷) ⊂ 𝜕B denotes the image of 𝐷 under the Birkhoff-

Gauss map. 𝐴𝜕B(𝜂(𝐷)) =
∫︀
𝜂(𝐷)

𝑑𝜔𝜕B and 𝐴𝑀(𝐷) =
∫︀
𝐷
𝑑𝜔.
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Proof. Let 𝜑 : 𝑉 → 𝐷 be a local parametrization, where 𝑉 is an open of

R𝑛−1. The Minkowski area of 𝐷 writes

𝐴𝑀(𝐷) =

∫︁
𝑉

𝑑𝜔(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1)𝑑𝑢1 · · · 𝑑𝑢𝑛−1,

where 𝜑𝑢𝑖
is a coordinate vector field. Since 𝐾𝑚(𝑝) ̸= 0, by the inverse

function theorem one can take 𝐷 small enough such that the restriction 𝜂|𝐷
is a diffeomorphism onto its image. In that case, the map 𝜂 ∘ 𝜑 : 𝑉 → 𝜕B

becomes a local parametrization of 𝜂(𝐷). Using that 𝑇𝜂(𝑝)𝜕B is parallel

to 𝑇𝑝𝑀 , the Minkowski area of this region is calculated, using the above

convention, by

𝐴𝜕B(𝜂(𝐷)) =

∫︁
𝑉

𝑑𝜔𝜕B(𝑑𝜂(𝜑𝑢1), · · · , 𝑑𝜂(𝜑𝑢𝑛−1))𝑑𝑢1 · · · 𝑑𝑢𝑛−1 (2.1)

=

∫︁
𝑉

det(𝑑𝜂)𝑑𝜔𝜕B(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1)𝑑𝑢1 · · · 𝑑𝑢𝑛−1

=

∫︁
𝑉

det(𝑑𝜂)𝑑𝜔(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1)𝑑𝑢1 · · · 𝑑𝑢𝑛−1

Denoting by 𝐴(𝑉 ) the usual area of 𝑉, we get from the mean value theorem

for integrals that for each region 𝐷 there exists a point 𝑝1 ∈ 𝐷 such that

𝑑𝜔𝑝1(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1) =
1

𝐴(𝑉 )

∫︁
𝑉

𝑑𝜔(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1)𝑑𝑢1 · · · 𝑑𝑢𝑛−1

=
𝐴𝑀(𝐷)

𝐴(𝑉 )
,

and the same holds for the other integral, for some point 𝑝2 ∈ 𝐷. As 𝐷 → 𝑝,

we get that 𝑝1, 𝑝2 → 𝑝, and hence continuity yields

lim
𝐷→𝑝

𝐴𝜕B(𝜂(𝐷))

𝐴𝑀(𝐷)
= lim

𝐷→𝑝

𝐴𝜕B(𝜂(𝐷))
𝐴(𝑉 )

𝐴𝑀 (𝐷)
𝐴(𝑉 )

= lim
𝐷→𝑝

det(𝑑𝜂𝑝2)𝑑𝜔𝑝2(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1)

𝑑𝜔𝑝1(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1)

= 𝐾𝑚(𝑝)

completing the proof.
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2.3 Weyl’s tube formula and intrisic volumes

A homothety of the space is a map 𝐹 : R𝑛 → R𝑛 given as 𝐹 (𝑝) = 𝑐𝑝

for some constant 𝑐 > 0. As a consequence of the previous theorem we

will describe what happens with the Minkowski Gaussian curvature of an

immersed hypersurface under a homothety.

Corollary 2.14. Let 𝑀 be an immersed hypersurface in (R𝑛 , || · ||), and

𝑐 > 0 be a constant. For each 𝑝 ∈ 𝑀, the Minkowski Gaussian curvature

𝐾𝑚(𝐹 (𝑝)) of the image 𝑀 of 𝑀 by the homothety 𝐹 (𝑝) = 𝑐𝑝 at 𝐹 (𝑝) is

given as

𝐾𝑚(𝐹 (𝑝)) =
𝐾𝑚(𝑝)

𝑐𝑛−1

where 𝐾𝑚(𝑝), 𝐾𝑚(𝐹 (𝑝)) ̸= 0.

Proof. Let 𝑝 ∈ 𝑀 and 𝜑(𝑢1, · · · , 𝑢𝑛−1) : 𝑉 → 𝐷 be a local parametrization

of a neighborhood 𝐷 ⊂𝑀 of 𝑝. Then, 𝑐𝜑 : 𝑉 → 𝐷 is a local parametrization

of 𝐹 (𝐷) = 𝐷 around 𝐹 (𝑝), and

𝐴𝑀(𝐷) =

∫︁
𝑉

𝑑𝜔𝑀(𝑐𝜑𝑢1 , · · · , 𝑐𝜑𝑢𝑛−1)𝑑𝑢1 · · · 𝑑𝑢𝑛−1

= 𝑐𝑛−1𝐴𝑀(𝐷).

Where we use that the normal vector to 𝑀 at any 𝑝 ∈ 𝐷 is the same as the

normal vector to 𝑀 at 𝐹 (𝑝) ∈ 𝐷, thus 𝜂(𝐷) = 𝜂𝑀(𝐷), where symbol 𝜂 is

the Birkhof normal to 𝑀 and 𝜂𝑀 the Birkhoff normal to 𝑀. Therefore,

𝐴𝜕𝐵(𝜂𝑀(𝐷)) = 𝐴𝜕𝐵(𝜂(𝐷)).
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2.3 Weyl’s tube formula and intrisic volumes

Now we just calculate, by the previous theorem

𝐾𝑚(𝐹 (𝑝)) = lim
𝐷→𝐹 (𝑝)

𝐴𝜕𝐵(𝜂𝑀(𝐷))

𝐴𝑀(𝐷)

= lim
𝐷→𝑝

𝐴𝜕𝐵(𝜂(𝐷))

𝑐𝑛−1𝐴𝑀(𝐷)

=
1

𝑐𝑛−1
lim
𝐷→𝑝

𝐴𝜕𝐵(𝜂(𝐷))

𝐴𝑀(𝐷)

=
𝐾𝑚(𝑝)

𝑐𝑛−1
.

where we use the clear fact that 𝐷 → 𝐹 (𝑝) if and only if 𝐷 → 𝑝.

This can be also obtained, without restrictions on Minkowski Gaussian

curvature in 𝑝 and 𝐹 (𝑝), from the fact that the principal curvatures of 𝑀

are divided by 𝑐 under the homothety 𝑝 ↦→ 𝑐𝑝. In fact, consider 𝛾 : 𝐼 → 𝑀 ,

with 𝛾(0) = 𝑝, 𝛾′(0) = 𝑣 and 𝑑𝜂𝑝𝑣 = 𝜆𝑣, note that 𝜂𝑀(𝐹 (𝛾(𝑡))) = 𝜂(𝛾(𝑡)),

calculating the derivative at 𝑡 = 0, we have 𝑑(𝜂𝑀)𝐹 (𝑝)𝑐𝑣 = 𝑑𝜂𝑝𝑣 = 𝜆𝑣.

Given a hypersurface 𝑀 ⊂ R𝑛 (recall that we are identifying 𝑥(𝑀) with

𝑀), a parallel hypersurface of 𝑀 is a hypersurface 𝑀 := {𝑝+𝑐𝜂(𝑝) : 𝑝 ∈𝑀}

for some constant 𝑐 ∈ R. As a further consequence of Theorem 2.13 we get

a formula for the Minkowski Gaussian curvature of a parallel hypersurface

in a regular point (a parallel hypersurface can have singular points). Before,

let’s look at the following Lemma.

Lemma 2.15. Let 𝑀 be a parallel hypersurface as defined above. Then the

Minkowski area of an open bounded subset 𝐷 ⊂ 𝑀 , of the image 𝐷 of 𝐷 by

homothety 𝐹 (𝑝) = 𝑝+ 𝑐𝜂(𝑝) is given as

𝐴𝑀(𝐷) =

∫︁
𝐷

𝑛−1∏︁
𝑖=1

(1 + 𝑐𝜆𝑖)𝑑𝜔

where |𝑐| < 1

max
𝑖=1,··· ,𝑛−1

|𝜆𝑖(𝑝)|
,∀𝑝 ∈ 𝐷; and 𝜆𝑖(𝑝) denotes a Minkowski principal

curvature of 𝑀 at 𝑝.
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2.3 Weyl’s tube formula and intrisic volumes

Figure 2.1: Parallel Hypersurface.

Proof. Let 𝜑 : 𝑉 → 𝐷 be a local parametrization of neighborhood of 𝑝 ∈

𝑀. The map 𝜓 : 𝑉 → 𝐷 defined as 𝜓(𝑞) = 𝜑(𝑞) + 𝑐𝜂(𝜑(𝑞)) is a local

parametrization of the neighborhood 𝐷 of 𝑝+ 𝑐𝜂(𝑝) ∈𝑀 . We have

𝜓𝑢𝑖
= 𝜑𝑢𝑖

+ 𝑐𝑑𝜂𝜑𝑢𝑖
,

for all 𝑖 = 1, · · · , 𝑛 − 1 and also, that the Birkhof normal to 𝑀 at 𝑝 is the

same as the Birkhoff normal to 𝑀 at 𝑝 + 𝑐𝜂(𝑝). If we define 𝐺 and 𝐺 the

matrix of 𝑑𝜂𝑝 and 𝑑𝜓𝜑−1(𝑝) in the base {𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1}, we have

𝐺 = 𝐼𝑑+ 𝑐𝐺

Thus

det𝐺 = det(𝐴−1𝐴+ 𝑐𝐴−1𝐷𝐴) =
𝑛−1∏︁
𝑖=1

(1 + 𝑐𝜆𝑖(𝑝))

where 𝐴 is invertible and 𝐷 is the diagonal matrix of the principal Minkowski

curvature 𝜆𝑖 of 𝑀 . Therefore

𝑑𝜔𝐹 (𝑝)(𝜓𝑢1 , · · · , 𝜓𝑢𝑛−1) =
𝑛−1∏︁
𝑖=1

|1 + 𝑐𝜆𝑖(𝑝)|𝑑𝜔𝑝(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1),
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2.3 Weyl’s tube formula and intrisic volumes

and using the restriction on 𝑐 the result follows.

Theorem 2.16. Let 𝑀 be an immersed surface with Minkowski Gaussian

curvature 𝐾𝑚. Given a constant 𝑐 ∈ R as in the previous theorem, let 𝑀 be

the parallel surface as defined above. Then its Minkowski Gaussian curvature

is given by the formula

𝐾𝑚(𝑝+ 𝑐𝜂(𝑝)) =
𝐾𝑚(𝑝)

𝑛−1∏︁
𝑖=1

(1 + 𝑐𝜆𝑖(𝑝))

,

where 𝐾𝑚(𝑝), 𝐾𝑚(𝐹 (𝑝)) ̸= 0.

Proof. Using the notation of the previous Lemma we get that

𝐴𝑀(𝐷) =

∫︁
𝑉

𝑛−1∏︁
𝑖=1

(1 + 𝑐𝜆𝑖)𝑑𝜔(𝜑𝑢1 , · · ·𝜑𝑢𝑛−1)𝑑𝑢1 · · · 𝑑𝑢𝑛−1

and from the mean value theorem for integrals we get that

𝐴𝑀(𝐷)

𝐴(𝑉 )
=

𝑛−1∏︁
𝑖=1

(1 + 𝑐𝜆𝑖(𝑝1))𝑑𝜔𝑝1(𝜑𝑢1 , · · ·𝜑𝑢𝑛−1)

for some 𝑝1 ∈ 𝑉. From equality (2.1) and, using again the argument of

the mean value theorem for the ratio 𝐴𝜕B(𝜂(𝐷))
𝐴(𝑉 )

we calculate the Minkowski

Gaussian curvature of 𝑀 at 𝑝+ 𝑐𝜂(𝑝) as
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2.3 Weyl’s tube formula and intrisic volumes

𝐾𝑚(𝑝+ 𝑐𝜂(𝑝)) = lim
𝐷→𝑝

𝐴𝜕B(𝜂(𝐷))

𝐴𝑀(𝐷)

= lim
𝐷→𝑝

𝐴𝜕B(𝜂(𝐷))
𝐴(𝑉 )

𝐴𝑀 (𝐷)

𝐴(𝑉 )

= lim
𝐷→𝑝

𝐾𝑚(𝑝2)𝑑𝜔𝑝2(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1)
𝑛−1∏︁
𝑖=1

(1 + 𝑐𝜆𝑖(𝑝1))𝑑𝜔𝑝1(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1)

.

Follow that

𝐾𝑚(𝑝+ 𝑐𝜂(𝑝)) =
𝐾𝑚(𝑝)

𝑛−1∏︁
𝑖=1

(1 + 𝑐𝜆𝑖(𝑝))

where we again use the fact that 𝑝1, 𝑝2 → 𝑝 as 𝐷 → 𝑝.

Again, this can be also obtained, without restrictions on Minkowski Gaus-

sian curvature in 𝑝 and 𝐹 (𝑝) = 𝑝 + 𝑐𝜂(𝑝), from the fact that the princi-

pal curvatures 𝜆 of 𝑀 are divided by 1 + 𝑐𝜆 under the homothety 𝐹 . In

fact, consider 𝛾 : 𝐼 → 𝑀 , with 𝛾(0) = 𝑝, 𝛾′(0) = 𝑣 and 𝑑𝜂𝑝𝑣 = 𝜆𝑣, note

that 𝜂𝑀(𝐹 (𝛾(𝑡))) = 𝜂(𝛾(𝑡)), calculating the derivative at 𝑡 = 0, we have

𝑑(𝜂𝑀)𝐹 (𝑝)(1 + 𝑐𝜆)𝑣 = 𝑑𝜂𝑝𝑣 = 𝜆𝑣.

Now let’s get an analogue of Weyl’s tube formula, which characterizes

the volume of the set of the points 𝜖-next to a surface 𝑀 as a polynomial of

degree 𝑛 in the variable 𝜖 (> 0, say). In what follows, the volume in R𝑛 is

given by the usual determinant.

Theorem 2.17 (Weyl’s tube formula). Let 𝑀 be a surface in (R𝑛, || · ||),

and let 𝑀𝜖 be the 𝜖-tube defined as

𝑀𝜖 := {𝑧 ∈ R𝑛 : dist.(𝑧,𝑀) ≤ 𝜖},
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2.3 Weyl’s tube formula and intrisic volumes

Figure 2.2: 𝜖-tube

where dist.(𝑧,𝑀) = inf{||𝑧 − 𝑝|| : 𝑝 ∈ 𝑀}. For sufficiently small 𝜖 > 0, the

volume of 𝑀𝜖 is given by the formula

vol(𝑀𝜖) = 2𝜖𝐴𝑀(𝑀) +
𝑛−1∑︁
𝑘=1

𝑡𝑘+1

𝑘 + 1

⃒⃒⃒⃒𝜖
−𝜖

∫︁
𝑀

𝑛−1∑︁
𝑖1<···<𝑖𝑘

𝑘∏︁
𝑗=1

(𝜆𝑖𝑗) 𝑑𝜔𝑑𝑡

Proof. The idea of the proof is to see 𝑀𝜖 as a family of parallel hypersurfaces,

as in Lemma 2.15. Given a parametrization 𝜑 : 𝑉 → 𝐷 of a neighborhood

𝐷 ⊂ 𝑀 , for sufficiently small 𝜖 > 0 one can parametrize 𝐷𝜖 := {𝑧 ∈ R𝑛 :

dist.(𝑧,𝐷) ≤ 𝜖} as

𝜓(𝑞, 𝑡) = 𝜑(𝑞) + 𝑡𝜂(𝜑(𝑞)),

for (𝑞, 𝑡) ∈ 𝑉 × (−𝜖, 𝜖). Write (𝑞, 𝑡) = 𝑥 for simplicity, hence the volume of

𝐷𝜖 is calculated as

vol(𝐷𝜖) =

∫︁
𝑉×(−𝜖,𝜖)

det(𝜓𝑢1 , · · · , 𝜓𝑢𝑛−1 , 𝜓𝑡)𝑑𝑥

=

∫︁
𝐷×(−𝜖,𝜖)

𝑛−1∏︁
𝑖=1

(1 + 𝑡𝜆𝑖)𝑑𝜔𝑑𝑡

=

∫︁
𝐷×(−𝜖,𝜖)

(︃
1 +

𝑛−1∑︁
𝑘=1

𝑛−1∑︁
𝑖1<···<𝑖𝑘

𝑘∏︁
𝑗=1

(𝑡𝜆𝑖𝑗)

)︃
𝑑𝜔𝑑𝑡

= 2𝜖𝐴𝑀(𝐷) +
𝑛−1∑︁
𝑘=1

𝑡𝑘+1

𝑘 + 1

⃒⃒⃒⃒𝜖
−𝜖

∫︁
𝐷

𝑛−1∑︁
𝑖1<···<𝑖𝑘

𝑘∏︁
𝑗=1

(𝜆𝑖𝑗) 𝑑𝜔,
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where we used Fubini’s theorem. Now, using partitions of the unity we get

equality for 𝑀𝜖.

Corollary 2.18. Let Ω ⊂ R𝑛 be an open, convex set with smooth boundary

𝜕Ω = 𝑀. Consider the set

Ω𝜖 = Ω + 𝜖𝜕B = Ω ∪ 𝜓 ([0, 𝜖],𝑀)

where 𝜕B = {𝑞 ∈ R𝑛 : ||𝑞|| = 1} and 𝜓 : R×𝑀 → R𝑛 is defined by

𝜓(𝑡, 𝑝) = 𝑝+ 𝑡𝜂(𝑝).

Then

vol(Ω𝜖) = vol(Ω) +
𝑛∑︁

𝑘=1

𝜖𝑘

𝑘

∫︁
𝑀

𝑛−1∑︁
𝑖1<···<𝑖𝑘−1

𝑘−1∏︁
𝑗=1

(𝜆𝑖𝑗) 𝑑𝜔.

Proof. Follow of the Theorem 2.17 that

vol(Ω𝜖) = vol(Ω) +

∫︁
𝑀

∫︁ 𝜖

0

𝑛−1∏︁
𝑖=1

(1 + 𝑡𝜆𝑖)𝑑𝜔𝑑𝑡

= vol(Ω) + 𝜖𝐴𝑀(𝑀) +
𝑛−1∑︁
𝑘=1

𝑡𝑘+1

𝑘 + 1

⃒⃒⃒⃒𝜖
0

∫︁
𝑀

𝑛−1∑︁
𝑖1<···<𝑖𝑘

𝑘∏︁
𝑗=1

(𝜆𝑖𝑗) 𝑑𝜔.

= vol(Ω) + 𝜖𝐴𝑀(𝑀) +
𝑛−1∑︁
𝑘=1

𝜖𝑘+1

𝑘 + 1

∫︁
𝑀

𝑛−1∑︁
𝑖1<···<𝑖𝑘

𝑘∏︁
𝑗=1

(𝜆𝑖𝑗) 𝑑𝜔.

= vol(Ω) +
𝑛−1∑︁
𝑘=0

𝜖𝑘+1

𝑘 + 1

∫︁
𝑀

𝑛−1∑︁
𝑖1<···<𝑖𝑘

𝑘∏︁
𝑗=1

(𝜆𝑖𝑗) 𝑑𝜔.

= vol(Ω) +
𝑛∑︁

𝑘=1

𝜖𝑘

𝑘

∫︁
𝑀

𝑛−1∑︁
𝑖1<···<𝑖𝑘−1

𝑘−1∏︁
𝑗=1

(𝜆𝑖𝑗) 𝑑𝜔.

Remark 2.19. This is a nice proof of the Steiner formula.
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Comparing to the Steiner formula

vol(Ω + 𝜖B) =
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝜖𝑘𝑉 (Ω[𝑛− 𝑘],B[𝑘])

= vol(Ω) +
𝑛∑︁

𝑘=1

(︂
𝑛

𝑘

)︂
𝜖𝑘𝑉 (Ω[𝑛− 𝑘],B[𝑘]),

where 𝑉 (Ω[𝑛 − 𝑘],B[𝑘]) is the mixed volume called 𝑘-th quermassintegral of

Ω, we obtain(︂
𝑛

𝑘

)︂
𝑉 (Ω[𝑛− 𝑘],B[𝑘]) =

1

𝑘

∫︁
𝑀

𝑛−1∑︁
𝑖1<···<𝑖𝑘−1

𝑘−1∏︁
𝑗=1

(𝜆𝑖𝑗) 𝑑𝜔.

2.4 First variation formula for the area

In [8] the authors provide a formula for the first variation of the area for a

particular variation, in dimension 𝑛 = 3. In this section we prove the first

variation formula (3) for general variations.

From this section onwards we will identify the usual Euclidean connection

notation, 𝐷, previously used, with the ∇. If 𝑋 is a vector field on 𝑀 , then we

let 𝑋⊤ and 𝑋⊤̃ denote the tangential and “Birkhoff tangential” components,

respectively. More precisely, 𝑋⊤̃ is the projection to the first coordinate in

the direct-sum decomposition R𝑛 = 𝑇𝑝𝑀 ⊕ ⟨𝜂⟩, where 𝜂 is the Birkhorff

normal field on 𝑀 . The covariant derivative ∇ on R𝑛 then induces a usual

covariant derivative ∇𝑀 on 𝑀 . That is, the induced covariant derivative ∇𝑀

is given by ∇𝑀 = (∇)⊤, to simplify the notation we will identify ∇𝑀 with

∇.

Theorem 2.20. Assume 𝑀 is a closed manifold, 𝑥 : 𝑀 → R𝑛 a smooth

immersion and 𝐹 : (−𝜀, 𝜀) ×𝑀 → R𝑛 a smooth variation of 𝑥. The first

variation of the area is given by

𝐴′
𝑚(0) =

∫︁
𝑀

(𝑛− 1)𝐻𝑚(𝑝)𝑁𝜂

(︂
𝜕𝐹

𝜕𝑡
(0, 𝑝)

)︂
𝑑𝜔(𝑝)

48



2.4 First variation formula for the area

where 𝑁𝜂 is the projection to the second coordinate in the direct-sum decom-

position R𝑛 = 𝑇𝑝𝑀 ⊕ ⟨𝜂⟩.

Before we need the following technical lemma.

Lemma 2.21. Let 𝑋⊤ denote the orthogonal projection of 𝑋 in 𝑇𝑝𝑀 .

a)
𝑑𝜉

𝑑𝑡

⃒⃒⃒⃒
0

= −∇⟨𝐹𝑡, 𝜉⟩ + ∇𝐹⊤
𝑡
𝜉

b) ∇𝜂⊤𝜉 = ∇⟨𝜂, 𝜉⟩

Proof. For the first part let {𝑒𝑖} be an orthonormal basis for 𝑇𝑝𝑀 and 𝑒𝑡𝑖 =

𝑑𝐹 𝑡
𝑝(𝑒𝑖). ⟨

𝜕

𝜕𝑡
𝜉

⃒⃒⃒⃒
𝑡=0

, 𝑒𝑖

⟩
=

𝜕

𝜕𝑡

⟨︀
𝜉𝑡, 𝑒𝑡𝑖

⟩︀⃒⃒⃒⃒
𝑡=0

−
⟨
𝜉,

𝜕

𝜕𝑡
𝑒𝑡𝑖

⃒⃒⃒⃒
𝑡=0

⟩
As 𝑒𝑡𝑖 is orthogonal to 𝜉𝑡 along 𝑡

⟨ 𝜕
𝜕𝑡
𝜉

⃒⃒⃒⃒
𝑡=0

, 𝑒𝑖⟩ = −⟨𝜉,∇𝐹𝑡𝑒
𝑡
𝑖⟩

Using that [𝐹𝑡, 𝑒
𝑡
𝑖] = 0 and 𝑑𝜉𝑝 is a self-adjoint operator⟨

𝜕

𝜕𝑡
𝜉

⃒⃒⃒⃒
𝑡=0

, 𝑒𝑖

⟩
= −⟨𝜉,∇𝑒𝑖𝐹𝑡⟩

= −(𝑒𝑖⟨𝜉, 𝐹𝑡⟩ − ⟨∇𝑒𝑖𝜉, 𝐹𝑡⟩)

= −(𝑒𝑖⟨𝜉, 𝐹𝑡⟩ − ⟨𝑒𝑖,∇𝐹⊤
𝑡
𝜉⟩)

= −𝑒𝑖⟨𝜉, 𝐹𝑡⟩ + ⟨𝑒𝑖,∇𝐹⊤
𝑡
𝜉⟩

For the second part compute for any 𝑣 ∈ 𝑇𝑝𝑀,

⟨∇𝜂⊤𝜉, 𝑣⟩ = ⟨𝜂⊤,∇𝑣𝜉⟩ = 𝑣⟨𝜂, 𝜉⟩ = ⟨∇⟨𝜂, 𝜉⟩, 𝑣⟩.
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2.4 First variation formula for the area

Proof of Theorem 2.20. We have 𝐴𝑚(𝑡) =
∫︀
𝑀
⟨𝜂𝑡, 𝜉𝑡⟩𝑑𝑆𝑡. Choose the coordi-

nate system such that at 𝑝 ∈ 𝑀 it is orthonormal, as in the lemma above.

Note that
𝜕

𝜕𝑡
⟨𝜂𝑡, 𝜉𝑡⟩

⃒⃒⃒⃒
𝑡=0

=

⟨
𝜂,

𝜕

𝜕𝑡
𝜉

⃒⃒⃒⃒
𝑡=0

⟩
,

since 𝜕
𝜕𝑡
𝜂
⃒⃒
𝑡=0

∈ 𝑇𝑝𝑀. Furthemore 𝜕
𝜕𝑡

√︁
det(⟨𝑒𝑡𝑖, 𝑒𝑡𝑗⟩)

⃒⃒⃒
𝑡=0

= div𝑀 𝐹𝑡 (see eq.

1.44, [11]). Thus

𝐴′
𝑚(0) =

∫︁
𝑀

{︂⟨
𝜂,

𝜕

𝜕𝑡
𝜉

⃒⃒⃒⃒
𝑡=0

⟩
+ ⟨𝜂, 𝜉⟩ div𝑀 𝐹𝑡

}︂
𝑑𝑆.

Writing 𝐹𝑡 = 𝐹 ⊤̃
𝑡 +

⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

𝜂, we have

div𝑀 𝐹𝑡 = div𝑀 𝐹 ⊤̃
𝑡 + div𝑀

⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

𝜂.

On the other hand,

div𝑀
⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

𝜂 =

⟨
∇⟨𝐹𝑡, 𝜉⟩

⟨𝜂, 𝜉⟩
, 𝜂

⟩
+

⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

div𝑀 𝜂

=

⟨
∇⟨𝐹𝑡, 𝜉⟩

⟨𝜂, 𝜉⟩
, 𝜂

⟩
+

⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

(𝑛− 1)𝐻𝑚.

Then

𝐴′(0) =

∫︁
𝑀

{︂⟨
𝜂,

𝜕

𝜕𝑡
𝜉

⃒⃒⃒⃒
𝑡=0

⟩
+ ⟨𝜂, 𝜉⟩ div𝑀 𝐹 ⊤̃

𝑡 + ⟨𝜂, 𝜉⟩
⟨
∇⟨𝐹𝑡, 𝜉⟩

⟨𝜂, 𝜉⟩
, 𝜂

⟩}︂
𝑑𝑆

+

∫︁
𝑀

⟨𝜂, 𝜉⟩⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

(𝑛− 1)𝐻𝑚 𝑑𝑆.

Using again the decomposition 𝐹𝑡 = 𝐹 ⊤̃
𝑡 + ⟨𝐹𝑡,𝜉⟩

⟨𝜂,𝜉⟩ 𝜂, we obtain

𝜕
𝜕𝑡
𝜉
⃒⃒
𝑡=0

= −∇⟨𝐹𝑡, 𝜉⟩ + ∇
𝐹 ⊤̃
𝑡
𝜉 + ∇ ⟨𝐹𝑡,𝜉⟩

⟨𝜂,𝜉⟩ 𝜂⊤
𝜉

= −∇⟨𝐹𝑡, 𝜉⟩ + ∇
𝐹 ⊤̃
𝑡
𝜉 + ⟨𝐹𝑡,𝜉⟩

⟨𝜂,𝜉⟩ ∇𝜂⊤𝜉.

Furthermore,

∇⟨𝐹𝑡, 𝜉⟩ = ∇
(︂
⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

⟨𝜂, 𝜉⟩
)︂

=
⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

∇⟨𝜂, 𝜉⟩ + ⟨𝜂, 𝜉⟩∇⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

. (2.2)
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2.5 First variation for the volume

Using (2.2) and the Lemma 4.2-b, the Lemma 2.21 yields

𝜕

𝜕𝑡
𝜉

⃒⃒⃒⃒
𝑡=0

= −⟨𝜂, 𝜉⟩∇⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

+ ∇
𝐹 ⊤̃
𝑡
𝜉.

Replacing in 𝐴′(0), we have:

𝐴′(0) =

∫︁
𝑀

(𝑛− 1)𝐻𝑚
⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

𝑑𝜔 +

∫︁
𝑀

{︁
⟨∇

𝐹 ⊤̃
𝑡
𝜉, 𝜂⟩ + ⟨𝜂, 𝜉⟩ div𝑀 𝐹 ⊤̃

𝑡

}︁
𝑑𝑆,

as

div𝑀⟨𝜂, 𝜉⟩𝐹 ⊤̃
𝑡 = 𝐹 ⊤̃

𝑡 ⟨𝜂, 𝜉⟩ + ⟨𝜂, 𝜉⟩ div𝑀 𝐹 ⊤̃
𝑡 = ⟨∇

𝐹 ⊤̃
𝑡
𝜉, 𝜂⟩ + ⟨𝜂, 𝜉⟩ div𝑀 𝐹 ⊤̃

𝑡 ,

we have

𝐴′(0) =

∫︁
𝑀

(𝑛− 1)𝐻𝑚
⟨𝐹𝑡, 𝜉⟩
⟨𝜂, 𝜉⟩

𝑑𝜔.

2.5 First variation for the volume

Let’s consider 𝐹 : (−𝜖, 𝜖) ×𝑀 → (R𝑛, || · ||) an variation of an immersion

𝑥 : 𝑀 → R𝑛, we can calculate the volume 𝑉 (𝑡) of each immersion 𝐹𝑡 : 𝑀 →

(R𝑛, || · ||) given by 𝐹𝑡(𝑝) = 𝐹 (𝑡, 𝑝) as follows:

𝑉 (𝑡) =
1

𝑛

∫︁
𝑀

⟨𝐹 𝑡, 𝜉𝑡⟩
⟨𝜂𝑡, 𝜉𝑡⟩

𝜔𝑡 =
1

𝑛

∫︁
𝑀

⟨𝐹 𝑡, 𝜉𝑡⟩ 𝑑𝑆𝑡.

The first variation of volume (see Rafael López, [22], p. 263) is given by:

Proposition 2.22.
𝑑𝑉

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

=

∫︁
𝑀

⟨
𝐹𝑡(0, 𝑝) , 𝜉(𝑝)

⟩
𝑑𝑆

The Lemma below is an almost immediate adaptation to the Minkowski

case of the Euclidean case (see [9], p. 341).

Lemma 2.23. Let 𝑔 : 𝑀 → R be a piecewise smooth function such that∫︁
𝑀

𝑔𝜔 = 0.
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2.5 First variation for the volume

Then there exists a volume-preserving normal variation whose variation vec-

tor is 𝑔𝜂. If, in addition, 𝑔 ≡ 0, on 𝜕𝐷, the variation can be so chosen that

it fixes the boundary 𝜕𝐷.

Proof. Let consider 𝐹 (𝑡, 𝑡) = 𝑓 + (𝑡𝑔 + 𝑡𝑔), where 𝑔 : 𝑀 → R is a piecewise

smooth function with 𝑔 = 0 on 𝜕𝐷 and∫︁
𝑀

𝑔 𝜔 ̸= 0.

Let 𝑉 (𝑡, 𝑡) be the volume determined by 𝐹 (𝑡, 𝑡) and consider the equation

𝑉 (𝑡, 𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.3)

Follows from the first variation for the volume, that at 𝑡 = 𝑡 = 0, we have

𝜕𝑉

𝜕𝑡
=

∫︁
𝑀

𝑔𝜔 ̸= 0.

Thus we can apply the implicit function theorem to equation (2.3) and

obtain that 𝑡 = 𝜑(𝑡), where 𝜑 is a smooth function of 𝑡 in a neighborhood of

𝑡 = 0. It follows that the variation

𝑦𝑡 = 𝐹 (𝑡, 𝜑(𝑡)) = 𝑓 + (𝑡𝑔 + 𝜑(𝑡)𝑔)𝜂

is volume preserving. Furthemore, the variation vector of 𝑦𝑡 is given by

𝑑𝑦𝑡
𝑑𝑡

⃒⃒⃒⃒
𝑡=0

= (𝑔 + 𝜑′(0)𝑔)𝜂 = 𝑔𝜂,

since

𝜑′(0) =

(︂
𝜕𝑉

𝑑𝑡

)︂
0

(︂
𝜕𝑉

𝜕𝑡

)︂−1

0

=

(︂∫︁
𝑀

𝑔𝜔

)︂(︂∫︁
𝑀

𝑔𝜔

)︂−1

= 0.

It is also clear from variation 𝑦𝑡 that, if 𝑔 = 0 on 𝜕𝐷, the variation 𝑦𝑡

fixes the boundary.
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2.5 First variation for the volume

Another result of the Euclidean case that extends without much difficulty

to the Minkowskian case is the following proposition (see [9], p. 342).

Proposition 2.24. Let 𝑥 : 𝑀𝑛−1 → (R𝑛, || · ||). Consider 𝐽 : (−𝜖, 𝜖) → R

defined by

𝐽(𝑡) = 𝐴𝑚(𝑡) + 𝑛𝐻0𝑉 (𝑡),

where 𝐻0 =
1

𝐴𝑚

∫︁
𝑀

𝐻𝑚𝑑𝜔. The following statements are equivalent:

(i) 𝑥 has constant Minkowski mean curvature 𝐻0 ̸= 0.

(ii) For each relatively compact domain 𝐷 ⊂ 𝑀 with smooth boundary,

and each volume-preserving variation 𝐹𝑡 : 𝐷 → (R𝑛, || · ||), that fixes

the boundary 𝜕𝐷, 𝐴′
𝑚,𝐷(0) = 0.

(iii) For each 𝐷 ⊂𝑀 as in (ii) and each (not necessarily volume-preserving)

variation that fixes the boundary 𝜕𝐷, 𝐽 ′(0) = 0.

Proof. (𝑖) ⇒ (𝑖𝑖𝑖) and (𝑖𝑖𝑖) ⇒ (𝑖𝑖) follow from 𝐽 and 𝑉 ′ formules. We will

prove that (𝑖𝑖) → (𝑖). Suppose that exist 𝑝 ∈ 𝐷 such that (𝐻𝑚−𝐻0)(𝑝) ̸= 0.

Assume (𝐻𝑚 −𝐻0)(𝑝) > 0. Set

𝐷+ = {𝑞 ∈ 𝐷; (𝐻𝑚 −𝐻0)(𝑞) > 0} and 𝐷− = {𝑞 ∈ 𝐷; (𝐻𝑚 −𝐻0)(𝑞) < 0}.

Let 𝜑 and 𝜓 nonnegative real piecewise smooth functions on 𝐷 such that

𝑝 ∈ supp𝜑 ⊂ 𝐷+, supp𝜓 ⊂ 𝐷−,

∫︁
𝐷

(𝜑+ 𝜓)(𝐻𝑚 −𝐻0)𝑑𝜔 = 0.

where supp 𝜑 denotes the support of 𝜑. Set 𝑔 = (𝜑+𝜓)(𝐻𝑚−𝐻0). Then

𝑔 = 0 on 𝜕𝐷 and
∫︀
𝑔𝑑𝜔 = 0. By previous Lemma, there is a Birkhoff-normal

variation that preserves volume whose variational field is 𝑔𝜂. By hypothesis,

for such a variation

0 = 𝐴′
𝑚,𝐷(0) = (𝑛− 1)

∫︁
𝐷

𝑔𝐻𝑚𝑑𝜔.
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2.5 First variation for the volume

Thus

0 =

∫︁
𝐷

𝑔𝐻𝑚𝑑𝜔−𝐻0

∫︁
𝐷

𝑔𝑑𝜔 =

∫︁
𝐷

𝑔(𝐻𝑚−𝐻0)𝑑𝜔 =

∫︁
𝐷

(𝜑+𝜓)(𝐻𝑚−𝐻0)
2𝑑𝜔 > 0.

a contradiction. It follows that 𝐻𝑚 = 𝐻0 in 𝐷. Since (ii) holds for each

𝐷 ⊂𝑀 , 𝐻𝑚 = 𝐻0.
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Chapter 3

Stability of hypersurfaces in

Minkowski spaces

3.1 Preliminaries

In this section we recall some observations that are important to the devel-

opment of Section 3.3.

The following lemma is proved in [9] in the Euclidean context. Its exten-

sion to the Minkowskian case is immediate, we present the proof for com-

pleteness.

Lemma 3.1. For any immersion 𝑥 : 𝑀 → R𝑛 with Minkowskian mean

curvature 𝐻𝑚 and 𝐵2
𝑚 = 𝜆21+· · ·+𝜆2𝑛−1 (𝜆1, · · · , 𝜆𝑛−1 the Minkowski principal

curvatures of 𝑥), we have 𝐵2
𝑚 ≥ (𝑛− 1)𝐻2

𝑚 with equality at a point 𝑝 if and

only if 𝑝 is an umbilic point (meaning that 𝜆1 = · · · = 𝜆𝑛−1).

Proof. Let 𝜆1, · · · , 𝜆𝑛−1 be the Minkowski principal curvatures of 𝑥 at 𝑝 ∈𝑀.
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3.1 Preliminaries

Then 𝐵2
𝑚 =

𝑛−1∑︁
𝑖=1

𝜆2𝑖 , and

𝐵2
𝑚 − (𝑛− 1)2𝐻2

𝑚 = −2
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗, 𝑖, 𝑗 = 1, · · · , 𝑛− 1.

It can easily be shown, by induction, that

∑︁
𝑖<𝑗

(𝜆2𝑖 + 𝜆2𝑗) = (𝑛− 2)
𝑛−1∑︁
𝑖=1

𝜆2𝑖 .

Thus∑︁
𝑖<𝑗

(𝜆𝑖 − 𝜆𝑗)
2 = (𝑛− 2)

𝑛−1∑︁
𝑖=1

𝜆2𝑖 − 2
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 = (𝑛− 2)𝐵2
𝑚 − 2

∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗,

hence

(𝑛− 1)(𝐵2
𝑚 − (𝑛− 1)𝐻2

𝑚) =
∑︁
𝑖<𝑗

(𝜆𝑖 − 𝜆𝑗)
2.

The characterization of umbilical surfaces in Minkowskian geometry was

done by Balestro, Martini, and Teixeira for dimension 3. The proof extends

without modification to dimension 𝑛.

Lemma (2.12). A connected hypersurface immersed R𝑛, all whose points are

umbilic is contained in a plane or in a Minkowski sphere.

Proof. For a demonstration, see Lemma 2.12.

The next lemma allows us to work with variations whose initial velocity

has zero average, but are not necessarily volume-preserving. The proof is a

standard application of the implicit function theorem.

Lemma 3.2. Let 𝑥 : 𝑀 → R𝑛 be an immersion with constant Minkowskian

mean curvature and 𝐹 a variation of compact support of the form (4) and

set 𝑓(𝑝) = 𝜕
𝜕𝑡
𝑔(𝑡, 𝑝)

⃒⃒
𝑡=0

.
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3.2 Second variation formula

Consider the functional 𝐽(𝑡) = 𝐴𝑚(𝑡)− (𝑛− 1)𝐻0𝑉 (𝑡), as in Proposition

2.24, then we have

(a) If
∫︀
𝑀
𝑓𝑑𝜔 = 0 then there exists a volume-preserving variation

𝐹 (𝑡, 𝑝) = 𝑥(𝑝) + 𝑔(𝑡, 𝑝)𝜂

such that 𝜕
𝜕𝑡
𝑔(𝑡, 𝑝)

⃒⃒
𝑡=0

= 𝑓(𝑝).

(b) For such a variation 𝐹 we have 𝐴′′
𝑚(0) = 𝐽 ′′

𝑚(0).

Proof. The proof of (a) follow of the Lemma 2.23. Proof of (b) is immediate.

As mentioned in the introduction, the Minkowskian isoperimetric inequal-

ity is proven in [36] (with different notation) by extending the concept of

mixed volume, and the mixed volume inequality to general domains.

Lemma 3.3 ([36], Lemma 3.2). Let 𝐾 ⊆ R𝑛 be a compact domain with

smooth boundary and B a compact convex set with the origin in the interior.

Then
1

𝑛

∫︁
𝜕𝐾

𝑑𝜔B ≥ vol(𝐾)
𝑛−1
𝑛 vol(B)

1
𝑛

with equality if and only if 𝐾 and B are homothetic.

3.2 Second variation formula

In this section we prove Theorem 0.2. For the sake of convenience we enun-

ciate it here again

Theorem. Let 𝑥 : 𝑀 → R𝑛 be an immersed surface with Birkhoff-Gauss map

𝜂 and constant Minkowskian mean curvature, and let 𝐹 : (−𝜀, 𝜀)×𝑀 → R𝑛,

be a volume-preserving variation of compact support given by

𝐹 (𝑡, 𝑝) = 𝐹 𝑡(𝑝) = 𝑥(𝑝) + 𝑔(𝑡, 𝑝)𝜂(𝑝).
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3.2 Second variation formula

Denote 𝑓(𝑝) = 𝜕
𝜕𝑡
𝑔(𝑡, 𝑝)

⃒⃒
𝑡=0

and 𝐴𝑚(𝑡) = 𝐴𝑚(𝐹 (𝑡, ·)) the area defined by (2).

Then,

𝐴′′
𝑚(0) =

∫︁
𝑀

(︀
−𝐵2

𝑚𝑓
2 + ⟨𝜂, 𝜉⟩(∇𝑏𝑓,∇𝑏𝑓)𝑏

)︀
𝑑𝜔

= −
∫︁
𝑀

𝑓
(︀
𝐵2

𝑚𝑓 + ⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓)
)︀
𝑑𝜔

Here ∇𝑏𝑓 is the gradient of 𝑓 with respect to the Dupin metric and can be

computed as ∇𝑏𝑓 = 𝑑𝑢(∇𝑓) where ∇𝑓 is the gradient with respect to the

usual metric. Also 𝐵𝑚 is the norm of the Minkowski second fundamental

form, 𝐵2
𝑚 =

∑︀𝑛−1
𝑖=1 𝜆

2
𝑖 .

In view of Lemma 3.2-b it suffices to compute 𝐽 ′′
𝑚.

Let 𝑝 ∈ 𝑀 , there is a neighborhood of 𝑝 where the restriction of 𝑥 is

an embedding. Without loss of generality we will assume for the local com-

putations, that 𝑀 ⊆ R𝑛 is a submanifold and 𝑥 is the identity. Take an

orthonormal basis 𝑒1, . . . , 𝑒𝑛−1, of 𝑇𝑝𝑀 consisting of euclidean principal di-

rections. For 𝑡 ∈ (−𝜀, 𝜀) the vectors 𝑒𝑡𝑖 = 𝑑𝑝𝐹
𝑡(𝑒𝑖) span the tangent space of

𝑀 𝑡 = 𝐹 𝑡(𝑀) at 𝐹 (𝑡, 𝑝). We denote by 𝑔𝑡𝑖,𝑗 the coefficients of the metric of

𝑀 𝑡, (𝑔𝑖,𝑗(𝑡)) the inverse of the matrix (𝑔𝑡𝑖,𝑗) and 𝐻 𝑡
𝑚 the Minkowskian mean

curvature of 𝑀 𝑡. Again without loss of generality the functions 𝜂𝑡, 𝑔𝑡𝑖,𝑗, 𝐻
𝑡
𝑚

can be regarded as functions defined on (neighborhoods of) 𝑀 or 𝑀 𝑡 via

composition with 𝐹 𝑡. Denote by ∇ the usual connection in R𝑛.

Proof of Theorem 0.2. Take coefficients 𝑎𝑡𝑘,𝑖 such that

𝑑𝜂𝑡(𝑒𝑡𝑖) =
∑︁
𝑘

𝑎𝑡𝑘,𝑖𝑒
𝑡
𝑘

and note that

⟨𝑒𝑡𝑗,∇𝑒𝑡𝑖
𝜂𝑡⟩ =

∑︁
𝑘

𝑎𝑡𝑘,𝑖𝑔
𝑡
𝑗,𝑘
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3.2 Second variation formula

∑︁
𝑗

⟨𝑒𝑡𝑗,∇𝑒𝑡𝑖
𝜂𝑡⟩𝑔𝑖,𝑗(𝑡) =

∑︁
𝑘,𝑗

𝑎𝑡𝑘,𝑖𝑔
𝑡
𝑗,𝑘𝑔

𝑖,𝑗(𝑡) = 𝑎𝑡𝑖,𝑖

(𝑛− 1)𝐻 𝑡
𝑚 =

∑︁
𝑖

𝑎𝑡𝑖,𝑖 =
∑︁
𝑖,𝑗

𝑔𝑖,𝑗(𝑡)⟨𝑒𝑡𝑗,∇𝑒𝑡𝑖
𝜂𝑡⟩.

Now we compute the derivative

𝜕

𝜕𝑡
(𝑛− 1)𝐻 𝑡

𝑚

⃒⃒⃒⃒
𝑡=0

=
∑︁
𝑖,𝑗

𝜕

𝜕𝑡
𝑔𝑖,𝑗(𝑡)

⃒⃒⃒⃒
𝑡=0

⟨𝑒𝑗,∇𝑒𝑖𝜂⟩ + 𝛿𝑖,𝑗
𝜕

𝜕𝑡
⟨𝑒𝑡𝑗,∇𝑒𝑡𝑖

𝜂𝑡⟩
⃒⃒⃒⃒
𝑡=0

Using that
𝜕

𝜕𝑡
𝑔𝑖,𝑗(𝑡)

⃒⃒⃒⃒
𝑡=0

= − 𝜕

𝜕𝑡
𝑔𝑖,𝑗(𝑡)

⃒⃒⃒⃒
𝑡=0

,

we have

𝜕

𝜕𝑡
(𝑛− 1)𝐻 𝑡

𝑚

⃒⃒⃒⃒
𝑡=0

=
∑︁
𝑖,𝑗

− 𝜕

𝜕𝑡
𝑔𝑖,𝑗(𝑡)

⃒⃒⃒⃒
𝑡=0

⟨𝑒𝑗,∇𝑒𝑖𝜂⟩ + 𝛿𝑖,𝑗
𝜕

𝜕𝑡
⟨𝑒𝑡𝑗,∇𝑒𝑡𝑖

𝜂𝑡⟩
⃒⃒⃒⃒
𝑡=0

=
∑︁
𝑖,𝑗

−(⟨∇𝐹𝑡𝑒𝑖, 𝑒𝑗⟩ + ⟨∇𝐹𝑡𝑒𝑗, 𝑒𝑖⟩)⟨𝑒𝑗,∇𝑒𝑖𝜂⟩

+ 𝛿𝑖,𝑗
𝜕

𝜕𝑡
⟨𝑒𝑡𝑗,∇𝑒𝑡𝑖

𝜂𝑡⟩
⃒⃒⃒⃒
𝑡=0

,

where

𝐹𝑡 =
𝜕

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

𝐹 = 𝑓𝜂.

As

∇𝐹𝑡𝑒𝑗 −∇𝑒𝑗𝐹𝑡 = [𝐹𝑡, 𝑒𝑗] = 0,
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3.2 Second variation formula

follow that

(𝑛− 1)
𝜕

𝜕𝑡
𝐻 𝑡

𝑚

⃒⃒⃒⃒
𝑡=0

=
∑︁
𝑖,𝑗

−(⟨∇𝑒𝑖𝐹𝑡, 𝑒𝑗⟩ + ⟨∇𝑒𝑗𝐹𝑡, 𝑒𝑖⟩)⟨𝑒𝑗,∇𝑒𝑖𝜂⟩ + 𝛿𝑖,𝑗
𝜕

𝜕𝑡
⟨𝑒𝑡𝑗,∇𝑒𝑡𝑖

𝜂𝑡⟩
⃒⃒⃒⃒
𝑡=0

=
∑︁
𝑖,𝑗

−(⟨∇𝑒𝑖𝑓𝜂, 𝑒𝑗⟩ + ⟨∇𝑒𝑗𝑓𝜂, 𝑒𝑖⟩)⟨𝑒𝑗,∇𝑒𝑖𝜂⟩ + 𝛿𝑖,𝑗
𝜕

𝜕𝑡
⟨𝑒𝑡𝑗,∇𝑒𝑡𝑖

𝜂𝑡⟩
⃒⃒⃒⃒
𝑡=0

=
∑︁
𝑖,𝑗

−(⟨𝑒𝑖(𝑓)𝜂 + 𝑓∇𝑒𝑖𝜂, 𝑒𝑗⟩ + ⟨𝑒𝑗(𝑓)𝜂 + 𝑓∇𝑒𝑗𝜂, 𝑒𝑖⟩)⟨𝑒𝑗,∇𝑒𝑖𝜂⟩

+
∑︁
𝑖

⟨𝑒𝑖(𝑓)𝜂 + 𝑓∇𝑒𝑖𝜂,∇𝑒𝑖𝜂⟩ + ⟨𝑒𝑖,∇𝐹𝑡∇𝑒𝑡𝑖
𝜂𝑡⟩.

As ∑︁
𝑖,𝑗

⟨∇𝑒𝑖𝜂, 𝑒𝑗⟩⟨𝑒𝑗,∇𝑒𝑖𝜂⟩ =
∑︁
𝑖

‖∇𝑒𝑖𝜂‖2,

we have

(𝑛− 1)
𝜕

𝜕𝑡
𝐻 𝑡

𝑚

⃒⃒⃒⃒
𝑡=0

= −𝑓

(︃∑︁
𝑖

‖∇𝑒𝑖𝜂‖2 +
∑︁
𝑖,𝑗

⟨𝑒𝑖,∇𝑒𝑗𝜂⟩⟨𝑒𝑗,∇𝑒𝑖𝜂⟩

)︃
+ 𝑓

∑︁
𝑖

‖∇𝑒𝑖𝜂‖2

−
∑︁
𝑖,𝑗

(⟨𝑒𝑖(𝑓)𝜂, 𝑒𝑗⟩ + ⟨𝑒𝑗(𝑓)𝜂, 𝑒𝑖⟩)⟨𝑒𝑗,∇𝑒𝑖𝜂⟩ +
∑︁
𝑖

⟨𝑒𝑖(𝑓)𝜂,∇𝑒𝑖𝜂⟩

+
∑︁
𝑖

⟨𝑒𝑖,∇𝐹𝑡∇𝑒𝑡𝑖
𝜂𝑡⟩

= −𝑓𝐵2
𝑚 −

∑︁
𝑖

𝑒𝑖(𝑓)⟨
∑︁
𝑗

⟨𝜂, 𝑒𝑗⟩𝑒𝑗,∇𝑒𝑖𝜂⟩ −
∑︁
𝑖,𝑗

𝑒𝑗(𝑓)⟨𝜂, 𝑒𝑖⟩⟨𝑒𝑗,∇𝑒𝑖𝜂⟩

+
∑︁
𝑖

⟨𝑒𝑖(𝑓)𝜂,∇𝑒𝑖𝜂⟩ + ⟨𝑒𝑖,∇𝐹𝑡∇𝑒𝑡𝑖
𝜂𝑡⟩.

Note that ∑︁
𝑖

𝑒𝑖(𝑓)⟨
∑︁
𝑗

⟨𝜂, 𝑒𝑗⟩𝑒𝑗,∇𝑒𝑖𝜂⟩ = ⟨𝜂𝑇 ,∇∇𝑓𝜂⟩,
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3.2 Second variation formula

hence

𝜕

𝜕𝑡
(𝑛− 1)𝐻 𝑡

𝑚

⃒⃒⃒⃒
𝑡=0

= −𝑓𝐵2
𝑚 − ⟨𝜂𝑇 ,∇∇𝑓𝜂⟩ −

∑︁
𝑖

⟨𝜂, 𝑒𝑖⟩⟨∇𝑓,∇𝑒𝑖𝜂⟩ + ⟨𝜂𝑇 ,∇∇𝑓𝜂⟩

+
∑︁
𝑖

⟨𝑒𝑖,∇𝐹𝑡∇𝑒𝑡𝑖
𝜂𝑡⟩

= −𝑓𝐵2
𝑚 − ⟨∇𝑓,∇𝜂𝑇 𝜂⟩ +

∑︁
𝑖

⟨𝑒𝑖,∇𝐹𝑡∇𝑒𝑡𝑖
𝜂𝑡⟩.

Recording that 𝑑𝜂 = 𝑑𝑢 ∘ 𝑑𝜉, we have

𝜕

𝜕𝑡
(𝑛− 1)𝐻 𝑡

𝑚

⃒⃒⃒⃒
𝑡=0

= −𝑓𝐵2
𝑚 − ⟨∇𝑓, 𝑑𝑢(∇𝜂𝑇 𝜉)⟩ +

∑︁
𝑖

⟨𝑒𝑖,∇𝑒𝑖∇𝐹𝑡𝜂
𝑡⟩.

Using that ∇𝜂𝑇 𝜉 = ∇(⟨𝜂, 𝜉⟩) and 𝜕
𝜕𝑡
𝜂
⃒⃒
𝑡=0

= −⟨𝜂, 𝜉⟩𝑑𝑢(∇𝑓) (see Proposition

4.3 in the Appendix), follow that

𝜕

𝜕𝑡
(𝑛− 1)𝐻 𝑡

𝑚

⃒⃒⃒⃒
𝑡=0

= −𝑓𝐵2
𝑚 − ⟨𝑑𝑢(∇𝑓),∇(⟨𝜂, 𝜉⟩)⟩ + div𝑀

(︂
𝜕

𝜕𝑡
𝜂

⃒⃒⃒⃒
𝑡=0

)︂
= −𝑓𝐵2

𝑚 − ⟨𝑑𝑢(∇𝑓),∇(⟨𝜂, 𝜉⟩)⟩ − div𝑀(⟨𝜂, 𝜉⟩𝑑𝑢(∇𝑓)).

Now observe that

⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓)) = ⟨𝑑𝑢(∇𝑓),∇(⟨𝜂, 𝜉⟩)⟩ + div𝑀(⟨𝜂, 𝜉⟩𝑑𝑢(∇𝑓)),

(see Proposition 4.3 in the Appendix). Therefore

𝜕

𝜕𝑡
(𝑛− 1)𝐻 𝑡

𝑚

⃒⃒⃒⃒
𝑡=0

= −𝑓𝐵2
𝑚 − ⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓)).

Finally we observe that

𝐽 ′(𝑡) = 𝐴′(𝑡) − (𝑛− 1)𝐻0
𝑚𝑉

′(𝑡)

= (𝑛− 1)

∫︁
𝑀

𝑔𝑡(𝐻
𝑡
𝑚 −𝐻0

𝑚)𝑑𝜔.

Hence

𝐽 ′′(0) = (𝑛− 1)

∫︁
𝑀

𝑓

(︂
𝜕

𝜕𝑡
𝐻 𝑡

𝑚

⃒⃒⃒⃒
𝑡=0

)︂
𝑑𝜔,

and the result follows.
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3.3 Stability

We start by showing that the Minkowski sphere is stable.

Theorem 3.4. Let 𝐵 = 𝑥0 + 𝜆(B) and 𝐹𝑡 a volume-preserving variation of

𝜕𝐵, then 𝐴′
𝑚(0) = 0 and 𝐴′′

𝑚(0) ≥ 0.

Proof. By Lemma 3.2 we may assume without loss of generality that 𝐹 (𝑡, 𝑝) =

𝑝+ 𝑔(𝑡, 𝑝)𝜂𝑝.

Since 𝜂 is a transversal vector field we have that for small values of 𝑡,

𝐹 (𝑡, 𝜕𝐵) is the (smooth) boundary for some compact domain 𝐵𝑡. By Lemma

3.3,

𝐴𝑚(𝑡) ≥ 𝑛 vol(𝐵𝑡)
𝑛−1
𝑛 vol(B)

1
𝑛 = 𝑛 vol(𝐵)

𝑛−1
𝑛 vol(B)

1
𝑛 = 𝐴𝑚(0)

and the result follows.

The following lemma is the key component of our stability theorem. The

proof is a lengthy computation and will be presented in Appendix A, to

improve readability.

Lemma 3.5. Let 𝑥 : 𝑀 → R𝑛 have constant Minkowskian mean curvature

and let 𝜌(𝑥) = ⟨𝜂, 𝜉⟩−1⟨𝑥, 𝜉⟩. Then

⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌)) = (𝑛− 1)𝐻𝑚 − 𝜌𝐵2
𝑚 (3.1)

We shall verify the Minkowski identity for the function 𝜌 in (3.1) (see

equation (5.2), [7]). To this end, consider the variation 𝑥(𝑡, 𝑝) = (𝑡+ 1)𝑝 and

notice that

𝐴𝑚(𝑡) = (𝑡+ 1)𝑛−1𝐴𝑚(0)

𝐴′
𝑚(0) = (𝑛− 1)

∫︁
𝑀

𝑑𝜔.
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On the other hand, by formula (3) we have

𝐴′
𝑚(0) = (𝑛− 1)

∫︁
𝑀

𝐻𝑚(𝑝)𝜌(𝑝)𝑑𝜔

then we obtain ∫︁
𝑀

𝜌𝐻𝑚𝑑𝜔 =

∫︁
𝑀

𝑑𝜔.

Thus taking 𝑓(𝑝) = 1 − 𝜌(𝑝)𝐻𝑚 we have∫︁
𝑀

𝑓𝑑𝜔 = 0. (3.2)

Now we are in conditions to prove our main theorem, the Theorem 0.3,

which we will state again here:

Theorem. Let 𝑥 : 𝑀 → R𝑛 be a compact immersed surface without bound-

ary, with constant Minkowskian mean curvature and stable with respect to

the Minkowskian structure. Then 𝑥(𝑀) is an embedded Minkowski sphere,

this is, 𝑥(𝑀) is homothetic to 𝜕B.

Proof of Theorem 0.3. Let 𝜌 be as in Lemma 3.5. By (3.2) and by Lemma

3.2-a there is a volume-preserving variation

𝐹 (𝑡, 𝑝) = 𝑝+ 𝑔(𝑡, 𝑝)𝜂

with 𝑔𝑡(0, 𝑝) = 𝑓 = 1 − 𝜌𝐻𝑚.

The second variation formula reads

0 ≤ 𝐴′′(0) =

∫︁
𝑀

𝑓
(︀
−𝐵2

𝑚𝑓 − ⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓))
)︀
𝑑𝜔.

Using that 𝐻𝑚 is constant and the Lemma 3.5, we compute

⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓)) = ⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(−𝐻𝑚∇𝜌))

= −(𝑛− 1)𝐻2
𝑚 + 𝜌𝐵2

𝑚𝐻𝑚.
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Multiplying by −𝑓 and subtracting 𝐵2
𝑚𝑓

2 in the previous equation, we have

−𝐵2
𝑚𝑓

2 − ⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓)𝑓 = −𝐵2
𝑚𝑓

2 + (𝑛− 1)𝐻2
𝑚𝑓 − 𝜌𝐻𝑚𝐵

2
𝑚𝑓

= −𝐵2
𝑚𝑓

2 + (𝑛− 1)𝐻2
𝑚𝑓 − (1 − 𝑓)𝐵2

𝑚𝑓

= ((𝑛− 1)𝐻2
𝑚 −𝐵2

𝑚)𝑓.

And using that
∫︀
𝑀
𝑓𝑑𝜔 = 0 we obtain

𝐴′′
𝑚(0) = −

∫︁
𝑀

𝐵2
𝑚𝑓𝑑𝜔 = −

∫︁
𝑀

𝐵2
𝑚(1 − 𝜌𝐻𝑚)𝑑𝜔. (3.3)

For other side, as 𝑀 has no boundary, we have

0 =

∫︁
𝑀

div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌))𝑑𝑆

=

∫︁
𝑀

⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌))𝑑𝜔.

Using (3.1) and the fact that 𝐻𝑚 is constant we obtain

0 =

∫︁
𝑀

⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌))𝑑𝜔 =

∫︁
𝑀

(︀
(𝑛− 1)𝐻𝑚 − 𝜌𝐵2

𝑚

)︀
𝑑𝜔

0 =

∫︁
𝑀

(︀
(𝑛− 1)𝐻2

𝑚 − 𝜌𝐻𝑚𝐵
2
𝑚

)︀
𝑑𝜔.

Hence ∫︁
𝑀

(𝑛− 1)𝐻2
𝑚𝑑𝜔 =

∫︁
𝑀

𝐵2
𝑚𝜌𝐻𝑚𝑑𝜔.

Substituting in (3.3) we get

𝐴′′
𝑚(0) = −

∫︁
𝑀

(︀
𝐵2

𝑚 − (𝑛− 1)𝐻2
𝑚

)︀
𝑑𝜔 ≤ 0

where the integrand is non-negative by Lemma 3.1, implying that 𝐵2
𝑚 =

(𝑛− 1)𝐻2
𝑚 for every 𝑝 ∈𝑀 , since the immersion 𝑥 is stable, hence all points

of 𝑀 are umbilic. Since 𝑀 is compact, Lemma 2.12 implies that 𝑥(𝑀) ⊂ R𝑛

is a Minkowski sphere.
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3.4 An alternative proof for the Stability The-

orem

Consider 𝑀 a compact oriented 𝑛-manifold and 𝑥 : 𝑀 → R𝑛 an immersion.

For a such immersion we compute the area 𝐴𝑚(𝑥),

𝐴𝑚(𝑥) =

∫︁
𝑀

𝑑𝜔,

where 𝑑𝜔 is the Minkowski area element of 𝑀 induced for the immersion 𝑥.

Also we compute the “oriented” volume, 𝑉 (𝑥), enclosed by 𝑥(𝑀). It is given

by formula

𝑉 (𝑥) =
1

𝑛

∫︁
𝑀

⟨𝑥 , 𝜉⟩
⟨𝜂, 𝜉⟩

𝑑𝜔,

where 𝜉 is the normal Euclidean unit vector field determined by the orienta-

tion of 𝑀 and the imersion 𝑥 and 𝜂 the Birkhoff-normal field of 𝑀.

Theorem 3.6. Let 𝑀 be a compact oriented 𝑛-manifold and 𝑥 : 𝑀 → R𝑛

an immersion with non-zero Minkowski mean constant curvature 𝐻𝑚. Then

𝑥 is stable if and only if 𝑥(𝑀) ⊂ R𝑛 is a Minkowski sphere 𝜕𝐵 in R𝑛.

Proof. Let 𝑥 : 𝑀 → R𝑛 be a compact immersion, where we suppose that

𝑥(𝑀) has non-zero Minkowski mean constant curvature 𝐻𝑚. Let 𝐹 (𝑡) =

𝑥+ 𝑡𝜂 be one-parameter family of surfaces. Observe that 𝐹 (𝑡) has the same

Birkhoff-normal unit vetorial field as 𝑥, because

𝜕𝐹 (𝑡)

𝜕𝑢
=
𝜕𝑥

𝜕𝑢
+ 𝑡

𝜕𝜂

𝜕𝑢
,

and then, ⟨
𝜉,
𝜕𝐹 (𝑡)

𝜕𝑢

⟩
=

⟨
𝜉,
𝜕𝑥

𝜕𝑢

⟩
+ 𝑡

⟨
𝜉,
𝜕𝜂

𝜕𝑢

⟩
= 0.

Therefore 𝑇𝐹 (𝑡,𝑝)𝑀 is parallel to 𝑇𝑝𝑀 . Hence 𝜂(𝑡) is parallel to 𝜂(0) = 𝜂 at

𝑝.
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Furthemorer, the area 𝐴𝑚(𝑡) = 𝐴𝑚(𝐹 (𝑡)) is given by:

𝐴𝑚(𝑡) =

∫︁
𝑀

𝑛−1∏︁
𝑖=1

(1 + 𝜆𝑖𝑡) 𝑑𝜔, (3.4)

where 𝜆1, · · · , 𝜆𝑛−1 are Minkowski’s principal curvatures of 𝑥 = 𝐹 (0).

We shall give proofs of this in the appendix.

The right side of the equation (3.4) is a polynomial of degree 𝑛 − 1 in 𝑡

and maybe expanded in the form

𝐴𝑚(𝑡) = 𝑎0 + 𝑎1𝑡+ 𝑎2𝑡
2 + · · · + 𝑎𝑛−1𝑡

𝑛−1

𝑎0 =

∫︁
𝑑𝜔 = 𝐴𝑚(𝑥)

𝑎1 =

∫︁
(𝜆1 + 𝜆2 + · · · + 𝜆𝑛−1)𝑑𝜔 = (𝑛− 1)𝐻𝑚𝑎0

𝑎2 =

∫︁
𝐻𝑚,2 𝑑𝜔, where 𝐻𝑚,2 =

∏︁
𝜆𝑖<𝜆𝑗

𝜆𝑖𝜆𝑗

𝑎𝑘 =

∫︁
𝐻𝑚,𝑘 𝑑𝜔, where 𝐻𝑚,𝑘 =

∏︁
𝜆𝑖1

<···<𝜆𝑖𝑘

𝜆𝑖1 · · ·𝜆𝑖𝑘

Notice that 𝑎𝑛−1 =
∫︀
𝐾𝑚 𝑑𝜔 where 𝐾𝑚 is a Minkowski Gauss curvature of

𝑀 .

Notice also that the volume function satisfies

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝐴𝑚(𝑡)

For a proof see the appendix.

Thus, we have:

𝑉 (𝑡) = 𝑣0 + 𝑣1𝑡+ 𝑣2𝑡
2 + · · · + 𝑣𝑛𝑡

𝑛,

where

𝑣1 = 𝑎0, 2𝑣2 = 𝑎1 = (𝑛− 1)𝐻𝑚𝑎0, etc. (3.5)
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3.4 An alternative proof for the Stability Theorem

The family 𝐹 (𝑡) is not volume preserving. In order to obtain a volume-

preserving family we apply the appropriate homothety. Namely, 𝑦 = 𝑠𝐹 (𝑡) =

𝑠(𝑥+ 𝑡𝜂) a two-parameter family of immersions. Thus:

𝐴𝑚(𝑠𝐹 (𝑡)) = 𝑠𝑛−1𝐴𝑚(𝑡) = 𝑠𝑛−1(𝑎0 + 𝑎1𝑡+ 𝑎2𝑡
2 + · · · + 𝑎𝑛−1𝑡

𝑛−1). (3.6)

𝑉 (𝑠𝐹 (𝑡)) = 𝑠𝑛𝑉 (𝑡) = 𝑠𝑛(𝑣0 + 𝑣1𝑡+ 𝑣2𝑡
2 + · · · + 𝑣𝑛𝑡

𝑛). (3.7)

We will now determine 𝑠 = 𝑠(𝑡) such that 𝑉 (𝑠𝐹 (𝑡)) = 𝑣0.

By use of formula (3.7), we have:

𝑠𝑛(𝑣0 + 𝑣1𝑡+ 𝑣2𝑡
2 + · · · + 𝑣𝑛𝑡

𝑛) = 𝑣0

𝑠𝑛−1(𝑡) =

(︂
𝑣0

𝑣0 + 𝑣1𝑡+ 𝑣2𝑡2 + · · · + 𝑣𝑛𝑡𝑛

)︂𝑛−1
𝑛

𝑠𝑛−1(𝑡) =

(︂
1 +

𝑣1
𝑣0
𝑡+

𝑣2
𝑣0
𝑡2 + · · · +

𝑣𝑛
𝑣0
𝑡𝑛
)︂−𝑛−1

𝑛

Using the binomial theorem (see Theorem 4.5) we obtain the serie for 𝑠𝑛−1

(needing terms only through 𝑡2),

𝑠𝑛−1(𝑡)

= 1 +

(︂
− 𝑛− 1

𝑛

)︂(︂
𝑣1
𝑣0
𝑡+

𝑣2
𝑣0
𝑡2 + · · · +

𝑣𝑛
𝑣0
𝑡𝑛
)︂

+

+
1

2
· −(𝑛− 1)

𝑛
· −2(𝑛− 1) − 1

𝑛

(︂
𝑣1
𝑣0
𝑡+

𝑣2
𝑣0
𝑡2 + · · · +

𝑣𝑛
𝑣0
𝑡𝑛
)︂2

+ · · ·

= 1 + 𝑡

(︂
−(𝑛− 1)

𝑛

𝑣1
𝑣0

)︂
+ 𝑡2

(︂
−(𝑛− 1)

𝑛

𝑣2
𝑣0

+
(𝑛− 1)(2(𝑛− 1) + 1)

2𝑛2

𝑣21
𝑣20

)︂
+ · · ·

Substituing 𝑠𝑛−1(𝑡) in (3.6), and calling 𝐴𝑚(𝑡) ≡ 𝐴𝑚[𝑠(𝑡)𝐹 (𝑡)] we find (need-
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ing terms only through 𝑡2)

𝐴𝑚(𝑡) =𝑎0 + 𝑡

[︂
−(𝑛− 1)

𝑛

𝑣1
𝑣0
𝑎0 + 𝑎1

]︂
(3.8)

+𝑡2

{︃[︂
−(𝑛− 1)

𝑛

𝑣2
𝑣0

+
(𝑛− 1)(2(𝑛− 1) + 1)

2𝑛2

𝑣21
𝑣20

]︂
𝑎0

+

[︂
−(𝑛− 1)

𝑛

𝑣1
𝑣0

]︂
𝑎1 + 𝑎2

}︃
+ · · · .

The fact that 𝐴′
𝑚(0) = 0 (see appendix), (3.8) and (3.5) leads us to

−(𝑛− 1)

𝑛

𝑣1
𝑣0
𝑎0 + 𝑎1 = 0,

multiplying by − 𝑛

𝑛− 1

𝑣0
𝑎0

−(𝑛− 1)

𝑛

𝑎0
𝑣0
𝑎0 + (𝑛− 1)𝐻𝑚𝑎0 = 0.

Then

𝑣0 =
𝑎0
𝑛𝐻𝑚

(3.9)

Substituing the identities (3.5) and (3.9) into the coefficient of 𝑡2 em (3.8)
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we obtain

𝐴′′
𝑚(0)

2
=

[︂
−(𝑛− 1)

𝑛

𝑣2
𝑣0

+
(𝑛− 1)(2(𝑛− 1) + 1)

2𝑛2

𝑣21
𝑣20

]︂
𝑎0

+

[︂
−(𝑛− 1)

𝑛

𝑣1
𝑣0

]︂
𝑎1 + 𝑎2

=

[︂
−(𝑛− 1)

𝑛

1
2
(𝑛− 1)𝐻𝑚𝑎0

𝑣0
+

(𝑛− 1)(2(𝑛− 1) + 1)

2𝑛2

𝑎20
𝑣20

]︂
𝑎0

+

[︂
−(𝑛− 1)

𝑛

𝑎0
𝑣0

]︂
(𝑛− 1)𝐻𝑚𝑎0 + 𝑎2

=

[︃
−(𝑛− 1)

𝑛

1
2
(𝑛− 1)𝐻𝑚𝑎0

𝑎0
𝑛𝐻𝑚

+
(𝑛− 1)(2(𝑛− 1) + 1)

2𝑛2

𝑎20
( 𝑎0
𝑛𝐻𝑚

)2

]︃
𝑎0

+

[︃
−(𝑛− 1)

𝑛

𝑎0
𝑎0

𝑛𝐻𝑚

]︃
(𝑛− 1)𝐻𝑚𝑎0 + 𝑎2

=

[︂
−(𝑛− 1)2𝐻2

𝑚

2
+

(𝑛− 1)(2(𝑛− 1) + 1)𝐻2
𝑚

2

]︂
𝑎0

− [(𝑛− 1)𝐻𝑚] (𝑛− 1)𝐻𝑚𝑎0 + 𝑎2

=

[︂
(𝑛− 1)2𝐻2

𝑚

2
+

(𝑛− 1)𝐻2
𝑚

2

]︂
𝑎0 − (𝑛− 1)2𝐻2

𝑚𝑎0 + 𝑎2

= − ((𝑛− 1)2 − (𝑛− 1))𝐻2
𝑚

2
𝑎0 + 𝑎2

= −
∫︁ [︂

((𝑛− 1)2 − (𝑛− 1))𝐻2
𝑚

2
−𝐻𝑚,2

]︂
𝑑𝜔.

Thus

𝐴′′
𝑚(0)

2
= −

∫︁
𝑀

⎡⎣(︂(𝑛− 1)2 − (𝑛− 1)

2

)︂(︃𝑛−1∑︁
𝑖=1

𝜆𝑖
(𝑛− 1)

)︃2

−
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

⎤⎦ 𝑑𝜔
= − 1

2(𝑛− 1)

∫︁
𝑀

(︃∑︁
𝑖<𝑗

(𝜆𝑖 − 𝜆𝑗)
2

)︃
𝑑𝜔.

The last equality above is seen as follows (multiplying member to member
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by 2(𝑛− 1).)

(𝑛− 2)(𝑛− 1)2𝐻2
𝑚 − 2(𝑛− 1)𝐻𝑚,2

=(𝑛− 2)(𝑛− 1)2

(︃∑︁
𝑖

𝜆𝑖

)︃2
1

(𝑛− 1)2
− 2(𝑛− 1)

(︃∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

)︃

=(𝑛− 2)

(︃
𝑛−1∑︁
𝑖=1

𝜆2𝑖

)︃
+ 2(𝑛− 2)

∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 − 2(𝑛− 1)
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

=(𝑛− 2)

(︃∑︁
𝑖

𝜆2𝑖

)︃
− 2

∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

=
∑︁
𝑖<𝑗

(𝜆𝑖 − 𝜆𝑗)
2.

In the last account we use that, by induction, it is worth:(︃
𝑛−1∑︁
𝑖=1

𝜆𝑖

)︃2

=
∑︁

𝜆2𝑖 + 2
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗.

We conclude then that:

𝐴′′
𝑚(0) = − 1

2(𝑛− 1)

∫︁
𝑀

(︃∑︁
𝑖<𝑗

(𝜆𝑖 − 𝜆𝑗)
2

)︃
𝑑𝜔. (3.10)

From (3.10) we see that if 𝑥 is not all umbilic then 𝐴′′(0) is negative and the

immersion is unstable

With this we prove that 𝑥(𝑀) is the Minkowski sphere in R𝑛 (see Lemma

2.12).
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Appendix

4.1 Appendix A: Proof of Lemma 3.5

The proof is divided in several lemmas. Let 𝑝 ∈ 𝑀 and 𝑒1, . . . , 𝑒𝑛−1 an or-

thonormal basis of 𝑇𝑝𝑀 consisting of euclidean principal directions. Trans-

late the basis, by parallel transport along geodesics issuing from 𝑝, to all

points in a geodesic neighborhood in 𝑀 . Extend the vector fields {𝑒𝑖} to a

neighbourhood of 𝑝 in R𝑛 and notice that ∇𝑒𝑖𝑒𝑗(𝑝) = 0, [𝑒𝑖, 𝑒𝑗](𝑝) = 0 and

thus ∇𝑒𝑖∇𝑒𝑗𝑋 −∇𝑒𝑗∇𝑒𝑖𝑋 = ∇[𝑒𝑖,𝑒𝑗 ]𝑋 = 0.

Recall that 𝑢 : S𝑛−1 → 𝜕B is the inverse of the euclidean Gauss map of

𝜕B, 𝜂 = 𝑢 ∘ 𝜉 and that 𝜌 = ⟨𝜂, 𝜉⟩−1⟨𝑥, 𝜉⟩.

Lemma 4.1. Consider 𝑋 ∈ 𝑇𝑝𝑀 and {𝑒𝑖} as above. Then

a) ⟨𝑒𝑘,∇𝑒𝑗∇𝑒𝑖𝜉⟩ = ⟨𝑒𝑖,∇𝑒𝑗∇𝑒𝑘𝜉⟩

b)
∑︀

𝑖,𝑗⟨𝑋, 𝑒𝑖⟩⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑗∇𝑒𝑖𝜉⟩ =
∑︀

𝑖,𝑗⟨𝑋,∇𝑒𝑗∇𝑒𝑖𝜉⟩⟨𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩

Proof. For the first item, recall that 𝑑𝜉 is self-adjoint

⟨𝑒𝑘,∇𝑒𝑗∇𝑒𝑖𝜉⟩ = 𝑒𝑗⟨𝑒𝑘,∇𝑒𝑖𝜉⟩

= 𝑒𝑗⟨𝑒𝑖,∇𝑒𝑘𝜉⟩

= ⟨𝑒𝑖,∇𝑒𝑗∇𝑒𝑘𝜉⟩.
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For the second item, we will use the first item, which 𝑑𝑢 is self-adjoint

∑︁
𝑖

⟨𝑋,∇𝑒𝑗∇𝑒𝑖𝜉⟩⟨𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩ =
∑︁
𝑖,𝑘

⟨⟨𝑋, 𝑒𝑘⟩𝑒𝑘,∇𝑒𝑗∇𝑒𝑖𝜉⟩⟨𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩

=
∑︁
𝑖,𝑘

⟨𝑋, 𝑒𝑘⟩⟨𝑒𝑘,∇𝑒𝑗∇𝑒𝑖𝜉⟩⟨𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩

=
∑︁
𝑖,𝑘

⟨𝑋, 𝑒𝑘⟩⟨𝑒𝑖,∇𝑒𝑗∇𝑒𝑘𝜉⟩⟨𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩

=
∑︁
𝑖,𝑘

⟨𝑋, 𝑒𝑘⟩⟨⟨𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩𝑒𝑖,∇𝑒𝑗∇𝑒𝑘𝜉⟩

=
∑︁
𝑘

⟨𝑋, 𝑒𝑘⟩⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑗∇𝑒𝑘𝜉⟩

=
∑︁
𝑖

⟨𝑋, 𝑒𝑖⟩⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑗∇𝑒𝑖𝜉⟩.

and the result follows.

Lemma 4.2. Concerning 𝜌 we have the following properties:

a) 𝑒𝑖(𝜌) = ⟨𝜂, 𝜉⟩−1⟨𝑥− 𝜌𝜂,∇𝑒𝑖𝜉⟩

b)
∑︀

𝑗⟨∇𝑒𝑗𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩∇𝑒𝑖𝜉 = −
∑︀

𝑗⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑗∇𝑒𝑖𝜉⟩𝑒𝑖

c)
∑︀

𝑖,𝑗 𝑒𝑖(𝜌)⟨𝜂, 𝜉⟩⟨∇𝑒𝑗𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩ = −
∑︀

𝑖,𝑗⟨𝑥− 𝜌𝜂,∇𝑒𝑗∇𝑒𝑖𝜉⟩⟨𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩

Proof. The first assertion is a direct calculation:

𝑒𝑖(𝜌) = 𝑒𝑖(⟨𝜂, 𝜉⟩−1⟨𝑥, 𝜉⟩)

= ⟨𝜂, 𝜉⟩−1𝑒𝑖(⟨𝑥, 𝜉⟩) + ⟨𝑥, 𝜉⟩𝑒𝑖(⟨𝜂, 𝜉⟩−1)

= (⟨𝑒𝑖, 𝜉⟩ + ⟨𝑥,∇𝑒𝑖𝜉⟩)⟨𝜂, 𝜉⟩−1 + ⟨𝑥, 𝜉⟩(−1)⟨𝜂, 𝜉⟩−2⟨𝜂,∇𝑒𝑖𝜉⟩

= ⟨𝜂, 𝜉⟩−1⟨𝑥− 𝜌𝜂,∇𝑒𝑖𝜉⟩.

For the second assertion we use that, in 𝑝 ∈ 𝑀, {𝑒𝑖} are eigenvalues of

𝑑𝜉, that ∇𝑒𝑖𝑒𝑗 = 0, ∇𝑒𝑖∇𝑒𝑗 = ∇𝑒𝑗∇𝑒𝑖 and that 𝑑𝑢 is self-adjoint.
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⟨∇𝑒𝑗𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩∇𝑒𝑖𝜉 = 𝑒𝑗(⟨𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩)∇𝑒𝑖𝜉

= 𝑒𝑗(⟨𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩)𝑘𝑖𝑒𝑖

= ⟨∇𝑒𝑗𝑑𝑢(𝑒𝑗),∇𝑒𝑖𝜉⟩𝑒𝑖

= (−⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑗∇𝑒𝑖𝜉⟩ + 𝑒𝑗(⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑖𝜉⟩))𝑒𝑖∑︁
𝑗

𝑒𝑗(⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑖𝜉⟩) =
∑︁
𝑗

𝑒𝑗(⟨𝑒𝑗,∇𝑒𝑖𝜂⟩)

=
∑︁
𝑗

⟨𝑒𝑗,∇𝑒𝑗∇𝑒𝑖𝜂⟩

=
∑︁
𝑗

⟨𝑒𝑗,∇𝑒𝑖∇𝑒𝑗𝜂⟩

= 𝑒𝑖(
∑︁
𝑗

⟨𝑒𝑗,∇𝑒𝑗𝜂⟩)

= 𝑒𝑖((𝑛− 1)𝐻𝑚) = 0,

since 𝐻𝑚 is constant. Also note that from the above calculation and 𝐻𝑚

constant, it is worth: ∑︁
𝑗

⟨𝑒𝑗,∇𝑒𝑗∇𝑒𝑖𝜂⟩ = 0 (4.1)

The third one follows directly from the calculation below.

From the first statement, we have

𝑒𝑖(𝜌)⟨𝜂, 𝜉⟩⟨∇𝑒𝑗𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩ = ⟨𝑥− 𝜌𝜂,∇𝑒𝑖𝜉⟩⟨∇𝑒𝑗𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩

as 𝑑𝑢 is self-adjoint and ∇𝑒𝑖𝑒𝑗 = 0 in 𝑝, we obtain

⟨∇𝑒𝑗𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩ = 𝑒𝑗⟨𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩ − ⟨𝑑𝑢(𝑒𝑖),∇𝑒𝑗𝑒𝑗⟩

= 𝑒𝑗⟨𝑒𝑖, 𝑑𝑢(𝑒𝑗)⟩

= ⟨𝑒𝑖,∇𝑒𝑗𝑑𝑢(𝑒𝑗)⟩
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Thus

𝑒𝑖(𝜌)⟨𝜂, 𝜉⟩⟨∇𝑒𝑗𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩

= ⟨𝑥− 𝜌𝜂,∇𝑒𝑖𝜉⟩⟨∇𝑒𝑗𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩

= ⟨𝑥− 𝜌𝜂, 𝑘𝑖𝑒𝑖⟩⟨∇𝑒𝑗𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩

= ⟨𝑥− 𝜌𝜂, 𝑒𝑖⟩⟨∇𝑒𝑗𝑑𝑢(𝑒𝑗),∇𝑒𝑖𝜉⟩

= ⟨𝑥− 𝜌𝜂, 𝑒𝑖⟩
(︀
𝑒𝑗⟨𝑑𝑢(𝑒𝑗), 𝑑𝜉(𝑒𝑖)⟩ − ⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑗∇𝑒𝑖𝜉⟩

)︀
= ⟨𝑥− 𝜌𝜂, 𝑒𝑖⟩

(︀
𝑒𝑗⟨𝑒𝑗, 𝑑𝜂(𝑒𝑖)⟩ − ⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑗∇𝑒𝑖𝜉⟩

)︀
= ⟨𝑥− 𝜌𝜂, 𝑒𝑖⟩

(︀
⟨𝑒𝑗,∇𝑒𝑗∇𝑒𝑖𝜂⟩ − ⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑗∇𝑒𝑖𝜉⟩

)︀
By equation (4.1) in statement two, we obtain∑︁

𝑗

𝑒𝑖(𝜌)⟨𝜂, 𝜉⟩⟨∇𝑒𝑗𝑑𝑢(𝑒𝑖), 𝑒𝑗⟩ = −
∑︁
𝑗

⟨𝑥− 𝜌𝜂, 𝑒𝑖⟩⟨𝑑𝑢(𝑒𝑗),∇𝑒𝑗∇𝑒𝑖𝜉⟩,

and the result follow from the 4.1-b.

Remember the statement of the Lemma 3.5:

Lemma (3.5). Let 𝑥 : 𝑀 → R𝑛 have constant Minkowskian mean curvature

and let 𝜌(𝑥) = ⟨𝜂, 𝜉⟩−1⟨𝑥, 𝜉⟩. Then

⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌)) = (𝑛− 1)𝐻𝑚 − 𝜌𝐵2
𝑚.

Proof of Lemma 3.5. Using Lemma 4.2-a compute

𝑒𝑗𝑒𝑖(𝜌) = 𝑒𝑗(⟨𝜂, 𝜉⟩−1⟨𝑥− 𝜌𝜂,∇𝑒𝑖𝜉⟩)

= −⟨𝜂, 𝜉⟩−2⟨𝜂,∇𝑒𝑗𝜉⟩⟨𝑥− 𝜂𝜌,∇𝑒𝑖𝜉⟩

+ ⟨𝜂, 𝜉⟩−1⟨𝑒𝑗 − 𝜌∇𝑒𝑗𝜂 − 𝑒𝑗(𝜌)𝜂,∇𝑒𝑖𝜉⟩

+ ⟨𝜂, 𝜉⟩−1⟨𝑥− 𝜌𝜂,∇𝑒𝑗∇𝑒𝑖𝜉⟩.
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Again applying Lemma 4.2-a in the first term above, we have

𝑒𝑗𝑒𝑖(𝜌) = ⟨𝜂, 𝜉⟩−1
(︀
−𝑒𝑖(𝜌)⟨𝜂,∇𝑒𝑗𝜉⟩ + ⟨𝑒𝑗 − 𝜌∇𝑒𝑗𝜂 − 𝑒𝑗(𝜌)𝜂,∇𝑒𝑖𝜉⟩

)︀
(4.2)

+ ⟨𝜂, 𝜉⟩−1⟨𝑥− 𝜌𝜂,∇𝑒𝑗∇𝑒𝑖𝜉⟩.

Since {𝑒𝑖} is orthonormal we compute the divergence as

div𝑀(𝑋) =
∑︁
𝑖

⟨∇𝑒𝑖𝑋, 𝑒𝑖⟩.

In the following we will omit the summation sings

div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌)) = ⟨∇(⟨𝜂, 𝜉⟩2), 𝑑𝑢(∇𝜌)⟩ + ⟨𝜂, 𝜉⟩2 div𝑀(𝑑𝑢(∇𝜌))

= 2⟨⟨𝜂, 𝜉⟩∇⟨𝜂, 𝜉⟩, 𝑑𝑢(∇𝜌)⟩ + ⟨𝜂, 𝜉⟩2⟨∇𝑒𝑖(𝑑𝑢(∇𝜌)), 𝑒𝑖⟩

= 2⟨⟨𝜂, 𝜉⟩⟨𝜂,∇𝑒𝑖𝜉⟩𝑒𝑖, 𝑒𝑗(𝜌)𝑑𝑢(𝑒𝑗)⟩

+ ⟨𝜂, 𝜉⟩2⟨∇𝑒𝑖(𝑒𝑗(𝜌)𝑑𝑢(𝑒𝑗)), 𝑒𝑖⟩

= 2⟨𝜂, 𝜉⟩⟨𝜂,∇𝑒𝑖𝜉⟩𝑒𝑗(𝜌)⟨𝑒𝑖, 𝑑𝑢(𝑒𝑗)⟩

+ ⟨𝜂, 𝜉⟩2𝑒𝑖𝑒𝑗(𝜌)⟨𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩

+ ⟨𝜂, 𝜉⟩2𝑒𝑗(𝜌)⟨∇𝑒𝑖(𝑑𝑢(𝑒𝑗)), 𝑒𝑖⟩.

Using the equation (4.2)

⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌))

= 2⟨𝜂,∇𝑒𝑖𝜉⟩𝑒𝑗(𝜌)⟨𝑒𝑖, 𝑑𝑢(𝑒𝑗)⟩

+
(︀
−𝑒𝑖(𝜌)⟨𝜂,∇𝑒𝑗𝜉⟩ + ⟨𝑒𝑗 − 𝜌∇𝑒𝑗𝜂 − 𝑒𝑗(𝜌)𝜂,∇𝑒𝑖𝜉⟩

)︀
⟨𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩

+ ⟨𝑥− 𝜌𝜂,∇𝑒𝑗∇𝑒𝑖𝜉⟩⟨𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩

+ ⟨𝜂, 𝜉⟩𝑒𝑗(𝜌)⟨∇𝑒𝑖(𝑑𝑢(𝑒𝑗)), 𝑒𝑖⟩.

Applying Lemma 4.2-c
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⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌))

= 2⟨𝜂,∇𝑒𝑖𝜉⟩𝑒𝑗(𝜌)⟨𝑒𝑖, 𝑑𝑢(𝑒𝑗)⟩

+
(︀
−𝑒𝑖(𝜌)⟨𝜂,∇𝑒𝑗𝜉⟩ + ⟨𝑒𝑗 − 𝜌∇𝑒𝑗𝜂 − 𝑒𝑗(𝜌)𝜂,∇𝑒𝑖𝜉⟩

)︀
⟨𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩.

Recalling that 𝑑𝑢 is self-adjoint and canceling the terms 𝑒𝑖(𝜌)⟨𝜂,∇𝑒𝑗𝜉⟩⟨𝑑𝑢(𝑒𝑗), 𝑒𝑖⟩,

follow that

⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌)) = ⟨𝑒𝑗 − 𝜌∇𝑒𝑗𝜂,∇𝑒𝑖𝜉⟩⟨𝑒𝑗, 𝑑𝑢(𝑒𝑖)⟩.

Finally, using that 𝑒𝑖 are eigenvectors of 𝑑𝜉, we have

⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝜌)) = ⟨𝑒𝑗 − 𝜌∇𝑒𝑗𝜂, 𝑒𝑖⟩⟨𝑒𝑗, 𝑑𝜂(𝑒𝑖)⟩

= ⟨𝑒𝑖, 𝑑𝜂(𝑒𝑖)⟩ − 𝜌⟨𝑑𝜂(𝑒𝑗), 𝑒𝑖⟩⟨𝑒𝑗, 𝑑𝜂(𝑒𝑖)⟩.

Since 𝑑𝜂 is diagonalizable, [𝑑𝜂] = 𝐶.𝐷.𝐶−1 where [𝑑𝜂] is the matrix of 𝑑𝜂 in

the basis {𝑒𝑖}, 𝐷 is diagonal and 𝐶 is invertible. Then∑︁
𝑖,𝑗

⟨𝑑𝜂(𝑒𝑗), 𝑒𝑖⟩⟨𝑒𝑗, 𝑑𝜂(𝑒𝑖)⟩ = tr([𝑑𝜂]2) = tr(𝐶.𝐷2.𝐶−1) =
∑︁
𝑖

𝜆2𝑖

and the result follows.

4.2 Appendix B: Details of proof for Second

variation of Area

Proposition 4.3. Let 𝑥 : 𝑀 → R𝑛 be an immersed surface with Birkhoff-

Gauss map 𝜂 and constant mean curvature, and let 𝐹 : (𝜖, 𝜖) ×𝑀 → R𝑛, be

a volume-preserving variation of compact support given by

𝐹 (𝑡, 𝑝) = 𝐹 𝑡(𝑝) = 𝑥(𝑝) + 𝑔(𝑡, 𝑝)𝜂(𝑝).

Denote 𝑓(𝑝) = 𝜕
𝜕𝑡
𝑔(𝑡, 𝑝)

⃒⃒
𝑡=0

. Then
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a) ∇𝜂⊤𝜉 = ∇⟨𝜂, 𝜉⟩, where 𝜂⊤ is the orthogonal projection of 𝜂 on 𝑇𝑝𝑀

b) 𝜕
𝜕𝑡
𝜂
⃒⃒
𝑡=0

= −⟨𝜂, 𝜉⟩𝑑𝑢∇𝑓

c) ⟨𝜂, 𝜉⟩−1 div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓)) = ⟨𝑑𝑢(∇𝑓),∇(⟨𝜂, 𝜉⟩)⟩+div𝑀(⟨𝜂, 𝜉⟩𝑑𝑢(∇𝑓)),

where div𝑀 𝑋 =
∑︀𝑛

𝑖=1⟨∇𝑒𝑖𝑋, 𝑒𝑖⟩, and {𝑒1, · · · , 𝑒𝑛−1} a ortonormal ba-

sis of 𝑇𝑝𝑀.

Proof. The first item is the letter (a) of the Lemma 2.21.

For the second item, we combine the letter (b) of the Lemma 2.21 with

the present particular variation, and then

𝜕

𝜕𝑡
𝜉

⃒⃒⃒⃒
𝑡=0

= −∇⟨𝐹𝑡, 𝜉⟩ + ∇𝐹⊤
𝑡
𝜉

= −∇⟨𝑓𝜂, 𝜉⟩ + ∇𝑓𝜂⊤𝜉

= − ⟨𝜂, 𝜉⟩∇𝑓 − 𝑓∇⟨𝜂, 𝜉⟩ + 𝑓∇⟨𝜂, 𝜉⟩

= − ⟨𝜂, 𝜉⟩∇𝑓.

Hence 𝜕
𝜕𝑡
𝜂
⃒⃒
𝑡=0

= 𝑑𝑢 ∘ 𝜕
𝜕𝑡
𝜉
⃒⃒
𝑡=0

= −⟨𝜂, 𝜉⟩𝑑𝑢∇𝑓.

The third item is a simple calculation.

div𝑀(⟨𝜂, 𝜉⟩2𝑑𝑢(∇𝑓)) =⟨∇⟨𝜂, 𝜉⟩2, 𝑑𝑢(∇𝑓)⟩ + ⟨𝜂, 𝜉⟩2 div𝑀(𝑑𝑢(∇𝑓))

=2⟨𝜂, 𝜉⟩⟨∇⟨𝜂, 𝜉⟩, 𝑑𝑢(∇𝑓)⟩ + ⟨𝜂, 𝜉⟩2 div𝑀(𝑑𝑢(∇𝑓))

=2⟨𝜂, 𝜉⟩⟨∇⟨𝜂, 𝜉⟩, 𝑑𝑢(∇𝑓)⟩ + ⟨𝜂, 𝜉⟩ div𝑀(⟨𝜂, 𝜉⟩𝑑𝑢(∇𝑓))

−⟨𝜂, 𝜉⟩⟨∇⟨𝜂, 𝜉⟩, 𝑑𝑢(∇𝑓)⟩

=⟨𝜂, 𝜉⟩⟨∇⟨𝜂, 𝜉⟩, 𝑑𝑢(∇𝑓)⟩ + ⟨𝜂, 𝜉⟩ div𝑀(⟨𝜂, 𝜉⟩𝑑𝑢(∇𝑓)).
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4.3 Appendix C: Details of alternative proof

for Stability Theorem

We will show that, for the variation 𝐹 (𝑡) = 𝑥+ 𝑡𝜂, we have

𝐴𝑚(𝑡) =

∫︁
𝑀

𝑛−1∏︁
𝑖=1

(1 + 𝜆𝑖𝑡) 𝑑𝜔.

Proof. In fact, let 𝜑 : 𝑉 → 𝐷 be a local parametrization of neighborhood of

𝑝 ∈ 𝑀. The map 𝜓 : 𝑉 → 𝐷 defined as 𝜓(𝑞) = 𝜑(𝑞) + 𝑐𝜂(𝜑(𝑞)) is a local

parametrization of the neighborhood 𝐷 of 𝑝+ 𝑐𝜂(𝑝) ∈𝑀 . We have

𝜓𝑢𝑖
= 𝜑𝑢𝑖

+ 𝑐𝑑𝜂𝜑𝑢𝑖
,

for all 𝑖 = 1, · · · , 𝑛 − 1 and also, that the Birkhof normal to 𝑀 at 𝑝 is the

same as the Birkhoff normal to 𝑀 at 𝑝 + 𝑐𝜂(𝑝). If we define 𝐺 and 𝐺 the

matrix of 𝑑𝜂𝑝 and 𝑑𝜓𝑝 in the base {𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1}, we have

𝐺 = 𝐼𝑑+ 𝑐𝐺

Thus

det𝐺 = det(𝐶−1𝐶 + 𝑐𝐶−1𝐷𝐶) =
𝑛−1∏︁
𝑖=1

(1 + 𝑐𝑘𝑖)

where 𝐶 is invertible and 𝐷 is the diagonal matrix of the principal Minkowski

curvature 𝑘𝑖 of 𝑀 . Therefore

𝜔𝑡(𝜓𝑢1 , · · · , 𝜓𝑢𝑛−1) =
𝑛−1∏︁
𝑖=1

(1 + 𝑐𝑘𝑖)𝜔(𝜑𝑢1 , · · · , 𝜑𝑢𝑛−1).

For the same variation given above, we see that

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝐴𝑚(𝑡)
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Proof. In fact, it is well known that

𝑉 ′(𝑡) =

∫︁
𝑀

⟨𝐹𝑡(𝑡), 𝜉(𝑡)⟩ 𝑑𝑀𝑡

Using that 𝐹𝑡(𝑡) = 𝜂 and that 𝜂(𝑡) is parallel the 𝜂, since fixed 𝑝 ∈ 𝑀 ,

for each 𝑡, 𝑇𝑝𝑀 is parallel to 𝑇𝐹 (𝑡,𝑝)𝑀𝑡, follows that

𝑉 ′(𝑡) =

∫︁
𝑀

𝑑𝜔𝑡 = 𝐴𝑚(𝑡).

Proposition 4.4. Consider the variation 𝑦(𝑡) = 𝑠(𝑡)𝐹 (𝑡) = 𝑠(𝑡)(𝑥 + 𝑡𝜂)

presented in the Stability Theorem alternative statement. Given that

𝐴𝑚(𝑡) =

∫︁
𝑀

⟨𝜂(𝑡), 𝜉(𝑡)⟩𝑑𝑀𝑡.

We affirm that

𝐴′
𝑚(0) = 0.

Proof. In fact, as 𝜂(𝑡) = 𝜂 e 𝜉(𝑡) = 𝜉, just calculate
𝑑

𝑑𝑡

⃒⃒⃒⃒
0

𝑑𝑀𝑡. We know, of

the first variation of area, that

𝑑

𝑑𝑡

⃒⃒⃒⃒
0

𝑑𝑀𝑡 = div𝑀

(︂
𝑑𝑦

𝑑𝑡

⃒⃒⃒⃒
0

)︂
𝑑𝑀.

Now,
𝑑𝑦

𝑑𝑡

⃒⃒⃒⃒
0

= 𝑠′(0)𝑥+ 𝑠(0)𝜂 = −𝐻𝑚𝑥+ 𝜂.

For the calculation of 𝑠′(0), we derive the equation (3.7), to obtain

0 =
𝑑(𝑉 (𝑠𝐹𝑡))

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

=
𝑑(𝑠𝑛+1𝑉 (𝐹𝑡))

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

=(𝑛+ 1)𝑠(0)𝑛𝑠′(0)𝑣0 + 𝑠𝑛+1(0)
𝑑(𝑉 (𝐹𝑡))

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

=(𝑛+ 1)𝑠′(0)𝑣0 + 𝑎0,
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since 𝑠(0) = 1. Remember that 𝑎0 and 𝑣0 are Minkowksi area and volume of

the immersion 𝑥, as in section 3.4. Thus, using that
∫︀
𝑀

(1 − 𝜌𝐻) 𝑑𝜔 = 0, we

have
−1

(𝑛+ 1)

𝑎0
𝑣0

= −𝐻𝑚,

Using that 𝐻𝑚 is constant, div𝑀(𝑥) = 𝑛 and div𝑀(𝜂) = 𝑛𝐻𝑚, we have:

div𝑀

(︂
𝑑𝑦

𝑑𝑡

⃒⃒⃒⃒
0

)︂
= −𝑛𝐻𝑚 + 𝑛𝐻𝑚 = 0.

To conclude the section, we present the binomial theorem, which allowed

us to obtain the expression of 𝑠𝑛 by specifying the coefficients up to 𝑡2.

Theorem 4.5 (Binomial Theorem). If 𝛼 ∈ R and 𝑧 ∈ C, with |𝑧| < 1.

Then:

(1 + 𝑧)𝛼 =
∞∑︁
𝑘=0

(︂
𝛼

𝑘

)︂
𝑧𝑘,

where

(︂
𝛼

𝑘

)︂
=
𝛼(𝛼− 1)(𝛼− 2) · · · (𝛼− (𝑘 − 1))

𝑘(𝑘 − 1)(𝑘 − 2) · · · 1
.

4.4 Basic tools of Riemannian Geometry

A good reference, which we indicate for this section, is the book by Manfredo

Perdigão do Carmo (see [12])

Tangent space

Definition 4.6. A smooth manifold of dimension 𝑛 is a Hausdorff topological

space 𝑀 with an enumerable base equipped with a maximal atlas.

Definition 4.7. Let 𝛾 : 𝐼 →𝑀 be a differentiable curve with 𝛾(𝑡0) = 𝑝. Let

𝐷𝑝(𝑀) = {𝑓 : 𝑀 → R : 𝑓 is differentiable in 𝑝}
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be the vectorial space of the reals functions in 𝑀 differentiable in 𝑝. The

tangent vector to curve 𝛾 in 𝑝 is the function 𝛾′(𝑡0) : 𝐷𝑝(𝑀) → R definided

by 𝛾′(𝑡0)𝑓 = (𝑓 ∘ 𝛾)′(𝑡0).

A tangent vector in 𝑝 is the tangent vector in 𝑡 = 0 of any curve 𝛼 :

(−𝜖, 𝜖) →𝑀 with 𝛼(0) = 𝑝. The set of the tangent vectors to 𝑀 in 𝑝 will be

indicated by 𝑇𝑝𝑀 .

A base for 𝑇𝑝𝑀 can be given choosing a local chart 𝑥 : 𝑈 → 𝑥(𝑈) in 𝑝

and considering the map 𝜕(𝑝)
𝜕𝑥𝑖

: 𝐶∞(𝑀) → R defined by,

𝜕

𝜕𝑥𝑖
(𝑝)𝑓 =

𝜕

𝜕𝑥𝑖
𝑓 ∘ 𝑥(𝑥−1(𝑝))

Thus, the functions
𝜕

𝜕𝑥𝑖
(𝑝) according to definition, they are tangent vec-

tors to 𝑀 in 𝑝 and the set

{︂
𝜕

𝜕𝑥1
(𝑝), ...,

𝜕

𝜕𝑥𝑚
(𝑝)

}︂
form a basis for 𝑇𝑝𝑀 .

We can see the tangent vectors to 𝑀 in 𝑝 in another way:

Definition 4.8. Let 𝑀 be a smooth manifold and 𝑝 ∈ 𝑀 . The linear map

𝑋𝑝 : 𝐶∞(𝑀) → R, defined in the set of all the infinitely differentiable func-

tions in a neighborhood of 𝑝 is called a derivation in 𝑝 if the product rule is

satisfied,

𝑋𝑝(𝑓𝑔) = 𝑓(𝑝)𝑋𝑝(𝑔) + 𝑔(𝑝)𝑋𝑝(𝑓)

for all 𝑓 , 𝑔 ∈ 𝐶∞(𝑀).

𝑋𝑝 is called a tangent vector to 𝑀 in 𝑝.

The set of all derivations from 𝐶∞(𝑀) in 𝑝 has a vector space structure,

called tangent space to 𝑀 in 𝑝, denoted by 𝑇𝑝𝑀 . An element from 𝑇𝑝𝑀 is

called tangent vector to 𝑀 in 𝑝.

The tangent bundle 𝑇𝑀 is defined by 𝑇𝑀 :=
⋃︀

𝑝∈𝑀 𝑇𝑝𝑀 .
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Definition 4.9. A vectors field 𝑋 in a smooth manifold𝑀 is a correspondece

that at each point 𝑝 ∈ 𝑀 associates a vector 𝑋(𝑝) ∈ 𝑇𝑝𝑀 . The field 𝑋 is

differentiable if the map 𝑋 : 𝑀 → 𝑇𝑀 is differentiable.

Definition 4.10. A point 𝑝 ∈𝑀 is said to be a regular point of 𝑓 : 𝑀 → 𝑁

when the derivative 𝑓 ′(𝑝) : 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁 is injective. Otherwise, 𝑝 is said

a singular or critical point of 𝑓 .

Definition 4.11. A differentiable map 𝑓 : 𝑀 → 𝑁 is said to be an immer-

sion if every point 𝑝 ∈ 𝑀 is a regular point for 𝑓 , that is, the derivative

𝑓 ′(𝑝) : 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁 is injective for each 𝑝 ∈𝑀 .

Definition 4.12. Given two fields 𝑋, 𝑌 ∈ 𝒯 (𝑀), vector field [𝑋, 𝑌 ] defined

by,

[𝑋, 𝑌 ]𝑝𝑓 = (𝑋𝑌 − 𝑌 𝑋)𝑓 = 𝑋𝑝(𝑌 (𝑓)) − 𝑌𝑝(𝑋(𝑓))

it’s called a bracket.

Riemannian manifolds

Definition 4.13. A Riemannian metric in a smooth manifold 𝑀 is a cor-

respondence that associates to each point of 𝑝 of 𝑀 an internal product ⟨, ⟩𝑝
in the tangent space 𝑇𝑝𝑀 . Sometimes we use the notation 𝑔(, ) = 𝑔𝑝(, ) for

the Riemannian metric.

The above definition requires that the metric ⟨, ⟩𝑝 is differentiable in the

following sense: if 𝑥 : 𝑈 → 𝑥(𝑈) is a system of local coordinate in 𝑝 ∈ 𝑥(𝑈),

for 𝑞 ∈ 𝑥(𝑈) with 𝑞 = 𝑥(𝑥1, ..., 𝑥𝑚) we should have that the function of 𝑈

in R,
⟨

𝜕
𝜕𝑥𝑖

(𝑞), 𝜕
𝜕𝑥𝑗

(𝑞)
⟩
𝑞

: 𝑥(𝑈) → R to be a differentiable function for all

𝑖, 𝑗 = {1, ... ,𝑚}.
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Definition 4.14. The functions 𝑔𝑖𝑗(𝑥1, ..., 𝑥𝑚) =
⟨

𝜕(𝑞)
𝜕𝑥𝑖

, 𝜕(𝑞)
𝜕𝑥𝑗

⟩
𝑞
are called ex-

pression of the Riemannian metric in the coordinate system 𝑥. A differen-

tiable manifold with a given Riemannian metric is called Riemannian mani-

fold.

Affine connection

Definition 4.15. A affine connection ∇ in a smooth manifold 𝑀 is a map

∇ : 𝒯 (𝑀) × 𝒯 (𝑀) → 𝒯 (𝑀)

which is indicated by ∇(𝑋, 𝑌 ) = ∇𝑋𝑌 and which satisfies the following prop-

erties:

(i) ∇𝑓𝑋+𝑔𝑌𝑍 = 𝑓∇𝑋𝑍 + 𝑔∇𝑌𝑍,

(ii) ∇𝑋(𝑌 + 𝑍) = ∇𝑋𝑌 + ∇𝑋𝑍,

(iii) ∇𝑋(𝑓𝑌 ) = 𝑓∇𝑋𝑌 +𝑋(𝑓)𝑌,

where 𝑋, 𝑌, 𝑍 ∈ 𝒯 (𝑀), 𝑓, 𝑔 ∈ 𝐶∞(𝑀). The symbol ∇𝑋𝑌 reads: covariant

derivative 𝑌 in direction of 𝑋. When the affine connection satisfies the

following properties:

(i) 𝑋 ⟨𝑌, 𝑍⟩ = ⟨∇𝑋𝑌, 𝑍⟩ + ⟨𝑌,∇𝑋𝑍⟩ , (metric compatibility)

(ii) ∇𝑋𝑌 −∇𝑌𝑋 = [𝑋, 𝑌 ] , (symmetry)

it is called Levi-Civita connection (or Rimannian connection).

Curvature

Definition 4.16. The 𝑅 curvature of a𝑀 Riemannian manifold corresponds

to each pair 𝑋, 𝑌 ∈ 𝒯 (𝑀) a map 𝑅(𝑋, 𝑌 ) : 𝒯 (𝑀) → 𝒯 (𝑀) given by,

𝑅(𝑋, 𝑌 )𝑍 = ∇𝑋∇𝑌𝑍 −∇𝑌∇𝑋𝑍 −∇[𝑋,𝑌 ]𝑍, 𝑍 ∈ 𝒯 (𝑀)

where ∇ is the Riemannian connection of 𝑀 .
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Proposition 4.17. The 𝑅 curvature in 𝑀 has the following properties

(a) 𝑅 is bilinear in 𝒯 (𝑀) × 𝒯 (𝑀), that is,

𝑅(𝑓𝑋1 + 𝑔𝑋2, 𝑌1) = 𝑓𝑅(𝑋1, 𝑌1) + 𝑔𝑅(𝑋2, 𝑌1)

𝑅(𝑋1, 𝑓𝑌1 + 𝑔𝑌2) = 𝑓𝑅(𝑋1, 𝑌1) + 𝑔𝑅(𝑋1, 𝑌2)

with 𝑓, 𝑔 ∈ 𝐶∞(𝑀), and 𝑋1, 𝑋2, 𝑌1, 𝑌2 ∈ 𝒯 (𝑀)

(b) For all 𝑋, 𝑌 ∈ 𝒯 (𝑀), the curvature operator 𝑅(𝑋, 𝑌 ) : 𝒯 (𝑀) →

𝒯 (𝑀) is linear, that is,

𝑅(𝑋, 𝑌 )(𝑍 +𝑊 ) = 𝑅(𝑋, 𝑌 )𝑍 +𝑅(𝑋, 𝑌 )𝑊

𝑅(𝑋, 𝑌 )𝑓𝑍 = 𝑓𝑅(𝑋, 𝑌 )𝑍

with 𝑓 ∈ 𝐶∞(𝑀), 𝑍,𝑊 ∈ 𝒯 (𝑀)

(c) (Bianchi’s first identity)

𝑅(𝑋, 𝑌 )𝑍 +𝑅(𝑌, 𝑍)𝑋 +𝑅(𝑍,𝑋)𝑌 = 0

A demonstration of this result can be found at[12].

Proposition 4.18. Given a Riemannian manifold (𝑀, 𝑔) with a curvature

𝑅, using the notation 𝑅(𝑋, 𝑌, 𝑍, 𝑇 ) = 𝑔(𝑅(𝑋, 𝑌 )𝑍, 𝑇 ) for any fields 𝑋, 𝑌, 𝑍, 𝑇 ∈

𝒯 (𝑀) we have the following properties:

(a) 𝑅(𝑋, 𝑌, 𝑍, 𝑇 ) +𝑅(𝑌, 𝑍,𝑋, 𝑇 ) +𝑅(𝑍,𝑋, 𝑌, 𝑇 ) = 0

(b) 𝑅(𝑋, 𝑌, 𝑍, 𝑇 ) = −𝑅(𝑌,𝑋,𝑍, 𝑇 )

(c) 𝑅(𝑋, 𝑌, 𝑍, 𝑇 ) = −𝑅(𝑋, 𝑌, 𝑇, 𝑍)

(d) 𝑅(𝑋, 𝑌, 𝑍, 𝑇 ) = 𝑅(𝑍, 𝑇,𝑋, 𝑌 )
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Proposition 4.19. Let 𝜎 ⊂ 𝑇𝑝𝑀 be a two-dimensional subspace of space

𝑇𝑝𝑀 e sejam 𝑋, 𝑌 ∈ 𝜎 two linearly independent vectors. So

𝐾(𝑋, 𝑌 ) =
(𝑋, 𝑌, 𝑌,𝑋)

|𝑥 ∧ 𝑌 |2

onde |𝑋 ∧𝑌 |2 =
√︀

|𝑋|2|𝑌 |2 − 𝑔(𝑋, 𝑌 )2, independent of the choice of vectors

𝑋, 𝑌 ∈ 𝜎.

Definition 4.20. Given a point 𝑝 ∈ 𝑀 and a two-dimensional subspace

𝜎 ⊂ 𝑇𝑝𝑀 the real number 𝐾(𝑋, 𝑌 ) = 𝐾(𝜎), where {𝑋, 𝑌 } is a any base of

𝜎 is called seccional curvature of 𝜎 in 𝑝

Definition 4.21. Let 𝑀 be a Riemannian manifold. The Ricci’s curvature

tensor of𝑀 (or simply Ricci tensor) denoted Ric, is the covariant tensor field

of order 2 defined as the trace of endomorfism curvature tensor in relation

to its first covariant index and its only contravariant index or, equivalently,

as the trace in relation to the metric of the curvature tensor in its first and

last indexes. Therefore, the components of the Ricci curvature are given by

𝑅𝑖𝑗 =
𝑛∑︁

𝑘=1

=
𝑛∑︁

𝑘,𝑚=1

𝑔𝑘𝑚𝑅𝑘𝑖𝑗𝑚

Due to the symmetries of the curvature endomorphism tensor, using dif-

ferent traces would not make a difference or would only imply a signal ex-

change.

Definition 4.22. Let 𝑀 be a Riemannian manifold. The scalar curvature

of 𝑀 , denoted 𝑆, is the real function 𝑆 : 𝑀 → R defined by the trace in

relation to the metrics of the Ricci tensor:

𝑆 = tr𝑔Ric =
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗𝑅𝑖𝑗.
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Definition 4.23. Let 𝑀𝑛 and 𝑀
𝑛+𝑘

(𝑘 ≥ 1) be Riemannian manifolds.

A immersion 𝜑 : 𝑀𝑛 → 𝑀
𝑛+𝑘

is called isometric if ⟨𝑑𝜑𝑝(𝑣), 𝑑𝜑𝑝(𝑤)⟩𝑀 =

⟨𝑣, 𝑤⟩𝑀 ,∀𝑣, 𝑤 ∈ 𝑇𝑝𝑀.

Given an isometric immersion 𝜑 : 𝑀𝑛 → 𝑀
𝑛+𝑘

, we can establish rela-

tionships between objects defined in both manifolds. Let us remember that

if 𝜑 : 𝑀𝑛 → 𝑀
𝑛+𝑘

is an immersion, then 𝜑 is locally embedding. In these

conditions, we can identify an open 𝑈 of 𝑀 with 𝜑(𝑈), and said that 𝜑 is

the inclusion map locally. Moreover, we can consider 𝑈 as a submanifold of

𝑀 . In particular, we are identifying 𝑝 ∈ 𝑈 with 𝜑(𝑝) ∈ 𝜑(𝑈).

Consequently, for each 𝑝 ∈ 𝑀 , the tangent space 𝑇𝑝𝑀 is considered a

vector subspace of 𝑇𝑝𝑀 of dimension 𝑛 (already considering the identification

above).

Take now, local vector fields 𝑋 and 𝑌 tangents to 𝑀 . How 𝜑|𝑈 is a

embedding, there are local extensions 𝑋 and 𝑌 of 𝑋 and 𝑌, respectively, in

a neighborhood of 𝑈 in 𝑀 . Thus, if ∇ is the connection of Levi-Civita of

𝑀 , it makes sense to calculate ∇𝑋𝑌 , or even ∇𝑋𝑌 .

It can be shown that ∇𝑋𝑌 does not depend on the extension 𝑌 of 𝑌

that we take, and therefore, for simplicity of notation, we will denote ∇𝑋𝑌

by ∇𝑋𝑌, remembering that this means taking an extension of 𝑌 to calculate

the covariant derivative.

We then have:

∇𝑋𝑌 = (∇𝑋𝑌 )⊤ + (∇𝑋𝑌 )⊥.

However, it is possible to verify that (∇..)
⊤ is the 𝑀 Levi-Civita connec-

tion (which we will denote by ∇), this is, (∇𝑋𝑌 )⊤ = ∇𝑋𝑌 .

Let us denote by 𝒯 (𝑀𝑛)⊥ the space of the differentiable vector fields

normal to 𝑀𝑛. The second fundamental form of immersion 𝑥 is the map
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II : 𝒯 (𝑀𝑛) × 𝒯 (𝑀𝑛) → 𝒯 (𝑀𝑛)⊥, defined by

II(𝑋, 𝑌 ) = ∇𝑋𝑌 −∇𝑋𝑌, ∀𝑋, 𝑌 ∈ 𝒯 (𝑀𝑛).

Since, for every 𝑝 ∈𝑀𝑛, II is a symmetric bilinear map, for each unit vector 𝑁

normal to the 𝑀𝑛 in 𝑝, we can associate it with a self-adjoint linear mapping

𝑆𝑁 : 𝑇𝑝𝑀
𝑛 → 𝑇𝑝𝑀

𝑛, given by

⟨𝑆𝑁(𝑋), 𝑌 ⟩ = ⟨II(𝑋, 𝑌 ), 𝑁⟩, ∀𝑋, 𝑌 ∈ 𝑇𝑝𝑀
𝑛.

Then, let’s define the mean curvature 𝐻 of the immersion 𝑥 : 𝑀𝑛 → R𝑛+1

by

𝐻 =
1

𝑛
tr(𝑆𝑁).

Here tr(𝑆𝑁) means the trace of the matrix of 𝑆𝑁 .

Let 𝑁 ∈ 𝒯 (𝑀𝑛)⊥ and 𝑋, 𝑌 ∈ 𝒯 (𝑀𝑛) be vector fields, then ⟨𝑁, 𝑌 ⟩ = 0.

This implies that

⟨∇𝑋𝑌,𝑁⟩ = ⟨−∇𝑋𝑁, 𝑌 ⟩.

Thus

⟨𝑆𝑁(𝑋), 𝑌 ⟩ = ⟨II(𝑋, 𝑌 ), 𝑁⟩ = ⟨∇𝑋𝑌,𝑁⟩ = ⟨−∇𝑋𝑁, 𝑌 ⟩,

because ⟨II(𝑋, 𝑌 ), 𝑁⟩ = ⟨∇𝑋𝑌−∇𝑋𝑌,𝑁⟩ = ⟨∇𝑋𝑌−(∇𝑋𝑌 )𝑇 , 𝑁⟩ = ⟨∇𝑋𝑌,𝑁⟩.

Now, knowing that 𝑛𝐻 = tr(𝑆𝑁) and that each entry in the 𝑆𝑁 matrix

is given by

⟨𝑆𝑁(𝑒𝑖), 𝑒𝑗⟩ = ⟨II(𝑒𝑖, 𝑒𝑗), 𝑁⟩ = ⟨∇𝑒𝑖𝑒𝑗, 𝑁⟩,

we can write 𝑛𝐻 as follows:

𝑛𝐻 =
𝑛∑︁

𝑖=1

⟨𝑆𝑁(𝑒𝑖), 𝑒𝑖⟩ =
𝑛∑︁

𝑖=1

⟨∇𝑒𝑖𝑒𝑖, 𝑁⟩.

Definition 4.24. Let 𝑀 be a hypersurface of R𝑛+1 and 𝑝 ∈𝑀 , we say that

𝑝 is an umbilic point of 𝑆, if in 𝑝, the principal curvatures coincide.
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Definition 4.25. Let 𝑀 be a hypersurface of R𝑛+1, we say that 𝑀 is an

umbilic hypersurface, if all point 𝑝 ∈𝑀 is umbilic.

Theorem 4.26. Let 𝑥 : 𝑀 → R𝑛+1 be an umbilic isometric immersion of a

connected Riemannian manifold 𝑀𝑛 in R𝑛+1. Then, 𝑥(𝑀) is an open subset

of an affine hyperplane or sphere. In case the hypersurface is compact, the

hypersurface is the sphere.

Proof. See [12], exercise 6.c, page 183.
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[18] Heinz Hopf. Über Flächen mit einer Relation zwischen den Haup-
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