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Abstract
This work presents new sufficient conditions for stabilization and controller synthesis to
sampled-data LPV systems. The adopted control strategy considers gain-scheduling state-
feedback controllers subject to induced time-varying input delay. The stabilization and ℒ2-
gain performance are investigated in the sense of Lyapunov by three different approaches.
After the proposition of a Lyapunov function and with the application of Wirtinger’s
inequality, the derived conditions are rewritten in terms of linear matrix inequalities.
Aiming at the enlargement of the aperiodic sampling time and at the minimization of the
ℒ2-gain, the effectiveness of the developed methodologies is assessed through numerical
simulations of LPV systems available in the control literature.

Keywords: LPV systems; Sampled-data control; Gain scheduling; ℒ2-gain performance;
Lyapunov theory.





Resumo
Este trabalho apresenta novas condições suficientes para a estabilização e síntese de con-
troladores para sistemas LPV amostrados. A estratégia de controle adotada considera
controladores por realimentação de estados com escalonamento de ganho, sujeitos a um
atraso induzido de tempo variante. A estabilização e o desempenho ℒ2 são investigados
no sentido de Lyapunov, por três abordagens distintas. A partir da definição de uma
funcão de Lyapunov e com o emprego da desigualdade de Wirtinger, as condições obtidas
são reescritas em termos de desigualdades matriciais lineares. Visando à maximização do
intervalo de amostragem aperiódico e à minimização do ganho ℒ2, a eficácia das metodolo-
gias desenvolvidas é avaliada com simulações numéricas de sistemas LPV disponíveis na
literatura.

Palavras-chaves: Sistemas LPV; Controle amostrado; Ganho escalonado; Ganho ℒ2;
Teoria de Lyapunov.
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1 Introduction

Over the past years, the study of sampled-data systems has been motivated by
the growing interest for, among others, networked control and embedded systems (Walsh;
Ye, 2001; Hespanha et al., 2007; You; Xie, 2013; Tognetti; Calliero, 2017). Sampled-
data systems are abstractions of dynamical models, whose dynamics from the controller
perspective are updated at sampling instants only. As reported in Goebel et al. (2009),
in a typical control scenario, a continuous-time system is controlled with a sampled-data
controller, which can be then implemented as a digital controller.

A key topic regarding the implementation of a digital controller is the appro-
priate determination of the sampling times. According to Longo et al. (2013), the sampling
times are often periodic in the classical sampled-data control, meaning that the informa-
tion exchange usually happens instantaneously and on predetermined time instants. On
the contrary, in real control applications, due to the interconnection and to the spatial dis-
tribution of sensors and actuators, not only the sampling times cannot be equally spaced,
but there also is an inherent time-varying delay in the information exchange.

Therefore, in the framework of sampled-data systems, a more reliable control
strategy should admit aperiodic sampling intervals. Although larger sampling intervals
are advantageous in order to save resources (processing time, sensors and data transfer,
for instance) and to provide more economical solutions, the systems must remain stable
in closed-loop (Hooshmandi et al., 2018). As a result, determining an upper bound of the
allowable sampling periods, for which the closed-loop system stability is still guaranteed,
is of greatest importance.

In control applications, some dynamical systems can be represented with linear
parameter-varying (LPV) models (Leith; Leithead, 2000; Rugh; Shamma, 2000; Lacerda
et al., 2011; Rotondo et al., 2013; Rodrigues et al., 2018). In LPV systems, the bounds of
the scheduling parameters exist and are known, whereas the bounds of the time derivatives
of the scheduling parameters can be unspecified. A purpose of representing systems with
LPV models is the obtention of (polytopic) linear time-invariant (LTI)-like models. It
then allows the application of powerful control design tools, usually dedicated to linear
systems, to LPV systems (Rugh; Shamma, 2000).

As reported in Palmeira et al. (2018), the stability analysis, the controller
synthesis and the filter project of closed-loop systems are then made simpler, provided
that the arising problems can be addressed in the framework of linear-matrix inequality
(LMI) conditions and of convex optimization. Several works have successfully applied
LMI conditions to the design of controllers and filters for LPV systems, see, for instance,
the works of Boyd et al. (1993), Gahinet and Apkarian (1994), Xie et al. (1996), de
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Souza (2019), Kim et al. (2020), Bahmani and Rahmani (2020), Aguiar et al. (2020) and
references therein.

A control strategy with increasing interest in the context of LPV systems is
the gain-scheduled control (Blanchini; Miani, 2003; de Caigny et al., 2010; Pandey; de
Oliveira, 2019; Sadeghzadeh, 2019). Its applications are wide, covering from aerospace
and automotive systems (Alcala et al., 2018; Li et al., 2019; Liu et al., 2020) up to energy
conversion system (Mani et al., 2020) and to cloud computing systems (Saikrishna et al.,
2017). According to Palmeira et al. (2018), gain-scheduling controllers have been largely
used in the control literature since they are more suitable to incorporate the variation of
the scheduling parameters and provide more accurate control actions.

An outstanding feature of gain-scheduled control is the possibility of consid-
ering performance constraints, written as well in terms of LMI-based conditions (Rugh;
Shamma, 2000). The motivation for imposing such constraints lies in guaranteeing a de-
sired behavior to the closed-loop system with the controller to be designed. In consonance
with Mohammadpour and Scherer (2012), Briat (2015), two commonly used performance
criteria are the disturbance rejection (minimization of the ℒ2-gain) and the minimization
of the system energy (also known as ℋ2 guaranteed cost).

In the literature, several sampled-data control strategies formulated for LPV
systems can be found. The available approaches can be grouped, mainly, in three major
areas: emulation, approximate discretization, and direct sampled-data. In the framework
of emulation control, a continuous-time controller is first designed and then discretized for
obtaining a sampled-data controller (Tóth et al., 2010). The application of such method
to the control of LPV systems suffers from two main drawbacks: the existence of the dis-
cretization error when discretizing the continuous-time controller, and the assumption that
the scheduling parameters do not vary in the intersample. In the approximate discretiza-
tion approach, the sampled-data controller to be synthesized requires the LPV model to
be discretized (Lam; Zhou, 2008; de Caigny et al., 2010). In this case, since the time
dependence of the scheduling parameters is neglected during the sampling intervals, the
approximate discretization is not usually suitable for the control of LPV systems. In the
direct sampled-data approach, LPV systems are controlled with an induced time-varying
input delay, which corresponds to the sampled states or outputs of the system (Ramezan-
ifar et al., 2012; Gomes da Silva Jr et al., 2018; Hooshmandi et al., 2018). This method
can cope with LPV systems modeled as continuous-time systems, and it also does not
require the designed controller to be discretized. Additionally, the scheduling parameters
can vary with time, under the assumptions that the scheduling parameters are bounded
and have limited variation rates and that such bounds are known.
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1.1 Objectives

The main objective of this work is the proposition of new sufficient LMI con-
ditions to stabilization and controller synthesis for sampled-data LPV systems, whose
scheduling parameters are bounded and have known variation rate. With an input de-
lay strategy, gain-scheduling state-feedback controllers are designed and obtained from a
semidefinite programming (SDP) problem subject to LMI constraints. The attained con-
ditions are derived after a Lyapunov function adapted from Hooshmandi et al. (2018). For
comparison purposes, the developed conditions are applied also to benchmark systems,
so that the proposed approaches can be validated.

The motivation behind this dissertation lies in investigating the role of the
sampling time on the performance of closed-loop sampled-data systems. Differently from
other similar works available in the control literature, the considered sampled-data systems
are represented in terms of LPV models.

The contributions proposed in this dissertation regard the obtention of less
conservative LMI conditions, with respect to the constraints imposed in similar works of
the control literature. For example, Geromel and Souza (2015) employ a standard con-
stant Lyapunov function to the synthesis of state-feedback control laws to sampled-data
systems, which are recast as hybrid systems. Gomes da Silva Jr et al. (2018) implement
gain-scheduled state-feedback controllers to sampled-data LPV systems, using a Lyapunov
function with more terms than the one adopted in Geromel and Souza (2015). To attain
the proposed conditions, Gomes da Silva Jr et al. (2018) apply Jensen’s inequality to
provide an upper-bound to an integral quadratic term arisen in the derivation process.
Hooshmandi et al. (2018) extend the results obtained in Gomes da Silva Jr et al. (2018)
as a more general Lyapunov function is used. Similarly to Gomes da Silva Jr et al. (2018),
Jensen’s inequality is also exploited by Hooshmandi et al. (2018) to introduce an upper-
bound to an intermediate integral quadratic term.

The conditions attained in this dissertation are more relaxed due to the usage
of Wirtinger’s inequality (Seuret; Gouaisbaut, 2013) and due to the inclusion of a new
term in the Lyapunov function candidate, which considers the integral of the internal
states 𝑥(𝑡) of the system. Therefore, stabilizing control actions with larger sample periods
and lower upper-bounds to the ℒ2-gain performance are synthesized.

1.2 Text organization

The remaining of this dissertation is structured as follows:

• In Chapter 2, the mathematical background regarding gain-scheduled control syn-
thesis applied to sampled-data LPV systems is presented. Concepts such as stability



26 Chapter 1. Introduction

analysis in the sense of Lyapunov are introduced, and then extended for closed-loop
sampled-data systems with guaranteed ℒ2-gain cost.

• In Chapter 3, the design of gain-scheduling controllers for LPV systems in continu-
ous time is addressed with an iterative approach, leading to the derivation of new
sufficient LMI conditions.

• Chapter 4 extends the conditions proposed in Chapter 3 by incorporating slack
variables and by avoiding the use of an iterative procedure. A possible extension of
the attained conditions to quasi-LPV systems is also discussed.

• In Chapter 5, numerical examples are used to evaluate the effectiveness of the
methodologies developed in Chapters 3 and 4, when compared to other methods
from the literature.

• Chapter 6 concludes this dissertation and provides future research directions.
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2 Mathematical background

This chapter presents theoretic aspects relevant for this dissertation. The sta-
bility concept in the sense of Lyapunov is introduced as a technique for assessing the
asymptotic stability of dynamic continuous-time LPV systems. The adopted performance
criterion for the controller synthesis is also established.

Mathematical results available in the scientific literature, e.g. Schur comple-
ment, Finsler’s lemma and Wirtinger’s inequality, are given as well for completeness. By
means of the Lyapunov theory and with the aid of such mathematical tools, stabilizing
conditions can be formulated as SDP problems, written in terms of LMIs.

2.1 Polytopic systems
In the framework of LPV models, a usual realization of the system dynamics

is made in terms of polytopic systems. A polytopic model is a representation of a system
with multiple operating conditions (Rugh; Shamma, 2000). It is assumed that the full
range of system modes are available among a finite set of leading operation points, also
called vertex systems (Rotondo et al., 2013). In fact, a polytopic system is described by
the convex combination of its vertices, under the assumption that the weighting factor 𝜂

of each vertex is available in an 𝑁 -dimensional space Λ𝑁 . Multiple definitions can be
found for Λ𝑁 in the scientific literature (Boyd et al., 1994; Cloosterman et al., 2010; de
Caigny et al., 2011; Gomes da Silva Jr et al., 2018), although the most common approach
is to define Λ𝑁 as the unit simplex described as

Λ𝑁 =
{︂

𝜂 ∈ R𝑁 |
𝑁∑︁

𝑖=1
𝜂𝑖 = 1, 𝜂𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁

}︂
. (2.1)

In the scientific literature, the polytopic description of systems is widely em-
ployed in several frameworks. As part of the Takagi-Sugeno fuzzy modeling, for instance,
the system dynamics can be evaluated alongside the defined membership functions. On
the other hand, in the LPV systems, the system behavior can be assessed with respect to
the scheduling parameters. Both membership functions and scheduling parameters replace
the role of the weighting factor 𝜂 for polytopic system.

In terms of LPV systems, the weighting factor 𝜂(𝑡) is called scheduling param-
eter, depends on time and varies along the operation of the system. Thus, the matrices
of any LPV system can be generically denoted as 𝑋(𝜂(𝑡)), with 𝜂(𝑡) ∈ Λ𝑁 .

There is a conceptual distinction between LPV systems and quasi-LPV sys-
tems. According to Rotondo et al. (2013), in the framework of LPV systems, the scheduling
parameters rely only on exogenous signals, such as the time. It implies that the values of
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the scheduling parameters are known a priori, possibly alongside the values of the time
derivative of 𝜂(𝑡). On the contrary, in quasi-LPV systems, the scheduling parameters
can depend on both exogenous and endogenous signals. Endogenous signals are system
variables, such as the internal states 𝑥(𝑡). Since the dynamics of system variables are cap-
tured only in real time, the values of scheduling parameters (or of their time derivative)
is generally unknown to quasi-LPV systems.

A recurring representation of parameter-dependent matrices in the literature
is the affine one. In this representation the matrices 𝑋(𝜁(𝑡)) are such that

X(𝜁(𝑡)) = X0 +∑︀𝑁
𝑖=1 𝜁𝑖(𝑡)X𝑖, (2.2)

with X𝑖 constant matrices, for 𝑖 = 0, . . . , 𝑁 . Any polytopic matrix discussed in this
dissertation is assumed to be affine with respect to the scheduling parameters. It is possible
to recast affine matrices (2.2) as polytopic matrices, as discussed in the following example.

Example 2.1. Let an LPV model be described by the differential equation

𝑥̇(𝑡) = A(𝜁(𝑡))𝑥(𝑡), (2.3)

with 𝑥(𝑡) ∈ R𝑛𝑥 the state vector, and A(𝜁(𝑡)) ∈ R𝑛𝑥×𝑛𝑥 the affine matrix

A(𝜁(𝑡)) =
⎡⎣ 0 1
−1 0

⎤⎦+ 𝜁(𝑡)
⎡⎣0 0
0 2

⎤⎦ , (2.4)

in which 𝜁(𝑡) = 𝑠𝑖𝑛(𝑡), such that −1 ≤ 𝜁(𝑡) ≤ 1. It is clear that the system dynamics rely
on the value of 𝜁(𝑡). The vertices of the LPV system (2.3) are:

𝜁(𝑡) = 1 ⇒ A1 =
⎡⎣ 0 1
−1 2

⎤⎦ ,

𝜁(𝑡) = −1 ⇒ A2 =
⎡⎣ 0 1
−1 −2

⎤⎦ ,

(2.5)

with A(𝜂(𝑡)) = 𝜂(𝑡)A1 + (1 − 𝜂(𝑡))A2 and 𝜂(𝑡) = (1 + 𝜁(𝑡))/2, for instance. The eigen-
values 𝜆 of the vertices of matrices (2.5) are 𝜆 = 1 (when 𝜁(𝑡) = 1) and 𝜆 = −1
(when 𝜁(𝑡) = −1). Therefore, according to the traditional control theory, two different
system behaviors can be identified to the LPV system (2.3): as 𝜁(𝑡) → 1, the LPV system
behaves as an unstable system. On the other hand, as 𝜁(𝑡) → −1, the LPV system operates
in a stable regime (Khalil, 2002).

For values of 𝜁(𝑡) such that |𝜁(𝑡)| ≠ 1, the LPV system (2.3) can be described
by both unstable and stable modes. One behavior should overweight the other, depending
on the value of 𝜁(𝑡).
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An alternative definition of Λ𝑁 is employed in this dissertation to guarantee
convexity of the parameters 𝜂(𝑡). Similarly to Hooshmandi et al. (2018), the adopted
representation of Λ𝑁 is described as

Λ𝑁 =
{︂

𝜂(𝑡) ∈ R𝑁 | 𝜂(𝑡) ∈ Δ𝜂, 𝜂̇(𝑡) ∈ Δ𝜂̇

}︂
, (2.6)

being Δ𝜂 and Δ𝜂̇ compact admissible sets of the parameter 𝜂(𝑡) and its derivative 𝜂̇(𝑡),
which are defined by

Δ𝜂 =
{︂

𝜂(𝑡) ∈ R𝑁 : 𝜂
𝑖

≤ 𝜂𝑖(𝑡) ≤ 𝜂𝑖, 𝑖 = 1, . . . , 𝑁
}︂

,

Δ𝜂̇ =
{︂

𝜂̇(𝑡) ∈ R𝑁 : |𝜂̇𝑖(𝑡)| ≤ 𝑣𝑖, 𝑖 = 1, . . . , 𝑁
}︂

,
(2.7)

with 𝜂
𝑖

and 𝜂𝑖, respectively, the lower and upper bounds of 𝜂𝑖(𝑡), and 𝑣𝑖 the maximum
absolute value for the variation rate of 𝜂𝑖(𝑡).

The sets Δ𝜂 and Δ𝜂̇ are a priori known. In other words, the domain of discourse
associated to the LPV model (2.3) should be given. Such domain of discourse can be
thus understood as a convex polyhedron whose vertices are either the bounds of the
parameters 𝜂𝑖(𝑡) or the bounds of the time derivatives 𝜂̇𝑖(𝑡) (Rotondo et al., 2013).

Recovering the conceptual difference between LPV and quasi-LPV systems, it
is straightforward to check that the bounds 𝜂

𝑖
, 𝜂𝑖 and 𝑣𝑖 are given when it comes to LPV

models. However, these values might be undetermined for quasi-LPV systems. If that is
the case, in order for the scheduling parameters to be described with the compact sets Δ𝜂

and Δ𝜂̇, theoretic bounds are imposed to the scheduling parameters.

2.2 Stability analysis
Several concepts of stability are available in the scientific literature. Just to

cite a few of them, one can consider the input-to-output stability (IOS), input-to-state
stability (ISS), bounded-input bounded-output (BIBO) stability and stability in the sense
of Lyapunov (Sontag, 1989; Sontag; Wang, 1999; Khalil, 2002). Some definitions of sta-
bility are applicable to LTI systems only, whereas others can be extended to nonlinear
systems.

In this dissertation, the stability analysis is evaluated in the sense of Lyapunov
due to its extensive usage in control theory (Lyapunov, 1992). A system is said to be
asymptotically stable in the sense of Lyapunov if there is an energy-like positive Lyapunov
function 𝑊 (𝑥, 𝑡), such that its derivative with respect to time 𝑊̇ (𝑥, 𝑡) = 𝑑𝑊 (𝑥,𝑡)

𝑑𝑡
is negative

for all values of 𝑡. Let the dynamics of a system be described by the differential equation

𝑥̇(𝑡) = f(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)), (2.8)

with 𝑥(𝑡) ∈ R𝑛𝑥 the state, 𝑢(𝑡) ∈ R𝑛𝑢 the control input, and 𝑤(𝑡) ∈ R𝑛𝑤 the disturbance
vectors. f : R𝑛𝑥+𝑛𝑢+𝑛𝑤 ↦→ R𝑛𝑥 is a function which maps 𝑥(𝑡), 𝑢(𝑡), and 𝑤(𝑡) to 𝑥̇(𝑡).
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On the one hand, system (2.8) is asymptotically stable if, provided 𝑤(𝑡) = 0,

lim
𝑡→∞

𝑥(𝑡) = 0, ∀ 𝑥(0) ∈ R𝑛𝑥 . (2.9)

On the other hand, system (2.8) is asymptotically stable in the sense of Lya-
punov if the sufficient conditions presented in Theorem 2.1 are satisfied.

Theorem 2.1. (Kolmanovskii; Myshkis, 1999) Given class-𝒦 functions 𝑎1, 𝑎2 and 𝑏,
if there exists a continuous and differentiable Lyapunov function 𝑊 (𝑥, 𝑡) such that, for
all 𝑥(𝑡) ̸= 0,

1. 0 < 𝑎1(‖𝑥‖) ≤ 𝑊 (𝑥, 𝑡) ≤ 𝑎2(‖𝑥‖), (2.10)

2. 𝑊̇ (𝑥, 𝑡) ≤ −𝑏(‖𝑥‖) < 0, (2.11)

then the origin is an asymptotically stable equilibrium point of the system (2.8), in the
sense of Lyapunov.

The proof of Theorem 2.1 is omitted and can be found in Kolmanovskii and
Myshkis (1999). An implementation of Theorem 2.1 is given as follows: the LPV sys-
tem (2.3) is asymptotically stable in the sense of Lyapunov if there exists a Lyapunov
function 𝑊 (𝑥) = 𝑥𝑇 (𝑡)𝑃𝑥(𝑡) such that the following LMIs are satisfied:

1. 𝑊 (𝑥) > 0 ⇐⇒ 𝑃 = 𝑃 𝑇 ≻ 0,

2. 𝑊̇ (𝑥) < 0 ⇐⇒ A𝑇 (𝜂(𝑡))𝑃 + 𝑃A(𝜂(𝑡)) ⪯ −𝜖I ≺ 0,

with 𝜖 a given positive scalar. Candidate class-𝒦 functions 𝑎1, 𝑎2 and 𝑏 ensuring asymptotic
stability of (2.3) are written as

𝑎1(‖𝑥‖) = 𝜇1𝑥
𝑇 (𝑡)𝑥(𝑡),

𝑎2(‖𝑥‖) = 𝜇2𝑥
𝑇 (𝑡)𝑥(𝑡),

𝑏(‖𝑥‖) = 𝜖𝑥𝑇 (𝑡)𝑥(𝑡),

(2.12)

with scalars 𝜇1 > 0 and 𝜇2 > 0 assumed to be the smallest and the largest eigenvalues of
matrix 𝑃 , respectively.

2.3 ℒ2-gain
In addition to the criteria established in Theorem 2.1 for ensuring asymptotic

stability to LPV systems, performance criteria can be also imposed. The performance
criteria guarantee, for instance, a desired behavior to LPV systems with a controller to
be designed.

Two commonly used performance criteria for closed-loop systems in control lit-
erature are the disturbance rejection (minimization of the ℒ2-gain) and the minimization
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of the system energy (also known as ℋ2 guaranteed cost) (Boyd et al., 1994; Mohammad-
pour; Scherer, 2012; Briat, 2015). These performance criteria consider a cost function 𝐽

to be minimized.
In this dissertation, the adopted performance criterion is the ℒ2-gain, whose

cost function 𝐽 can be defined as

𝐽 = lim
𝑡→∞

∫︁ 𝑡

0

(︁
𝑦𝑇 (𝑠)𝑦(𝑠) − 𝛾2𝑤𝑇 (𝑠)𝑤(𝑠)

)︁
𝑑𝑠 = ‖𝑦(𝑡)‖2 − 𝛾2‖𝑤(𝑡)‖2, (2.13)

with 𝑦(𝑡) ∈ R𝑛𝑦 the output, 𝑤(𝑡) ∈ R𝑛𝑤 the disturbance vectors, and 𝛾 the value for
the ℒ2-gain. Consider a class of LPV systems described by the following set of differential
equations:

𝑥̇(𝑡) = A(𝜂(𝑡))𝑥(𝑡) + B1(𝜂(𝑡))𝑤(𝑡),
𝑦(𝑡) = C(𝜂(𝑡))𝑥(𝑡),

(2.14)

with 𝑥(𝑡) ∈ R𝑛𝑥 the state vector, and A(𝜂(𝑡)), B1(𝜂(𝑡)), C(𝜂(𝑡)) polytopic matrices with
compatible dimensions, as defined in (2.2).

In the framework of LPV systems (2.14), two different definitions for the ℒ2-
gain are available: the finite ℒ2-gain and the induced ℒ2-gain norm. These are presented
in Definitions 2.1 and 2.2, respectively (Briat, 2015).

Definition 2.1. LPV systems (2.14) are said to be stable with a finite ℒ2-gain if, for 𝑥(0) =
0, there exists a constant 𝛾 ≥ 0 such that

‖𝑦(𝑡)‖2 ≤ 𝛾2‖𝑤(𝑡)‖2, (2.15)

with 𝑤(𝑡) ∈ ℒ2.

Definition 2.2. For LPV systems (2.14), 𝛾* corresponds to the induced ℒ2-gain norm
and is given by

𝛾* = sup
𝑤(𝑡)̸=0

‖𝑦(𝑡)‖
‖𝑤(𝑡)‖ , (2.16)

with 𝑤(𝑡) ∈ ℒ2.

The calculation of 𝛾, which defines the finite ℒ2-gain cost, is not easily achiev-
able. As a result, the determination of 𝛾 is usually addressed in an alternative way: by
means of the upper bound of the ℒ2-gain cost. An upper bound of 𝛾 can be determined
as part of SDP problems considering the analysis of a Lyapunov function, as shown in
Theorem 2.2.

Theorem 2.2. (Briat, 2015) If there exists a continuous and differentiable Lyapunov
function 𝑊 (𝑥, 𝑡) such that, for 𝑥(0) = 0 and for 𝑤(𝑡) ∈ ℒ2,

1. 0 < 𝑎1(‖𝑥‖) ≤ 𝑊 (𝑥, 𝑡) ≤ 𝑎2(‖𝑥‖), 𝑥(𝑡) ̸= 0, (2.17)
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2. 𝑊̇ (𝑥, 𝑡) + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡) ≤ −𝑏(‖𝑥‖) < 0, 𝑥(𝑡) ̸= 0, (2.18)

then the origin is, in the sense of Lyapunov, an asymptotically stable equilibrium point of
the system (2.14), whose ℒ2-gain is finite and bounded by 𝛾.

Proof of Theorem 2.2. Condition (2.17) is satisfied by imposing the Lyapunov function
to be positive definite. By integrating condition (2.18) from 𝑡 = 0 to 𝑡 → ∞, one has that

−𝑊 (𝑥, 0) + lim
𝑡→∞

𝑊 (𝑥, 𝑡) + ‖𝑦(𝑡)‖2 − 𝛾2‖𝑤(𝑡)‖2 ≤ 0. (2.19)

Provided that 𝑥(0) = 0 and that the LPV system (2.14) is asymptotically
stable (𝑥(𝑡) → 0 as 𝑡 → ∞), 𝑊 (𝑥, 0) = lim𝑡→∞ 𝑊 (𝑥, 𝑡) = 0. Thus, (2.19) reduces to

‖𝑦(𝑡)‖2 − 𝛾2‖𝑤(𝑡)‖2 ≤ 0 ⇐⇒ ‖𝑦(𝑡)‖2 ≤ 𝛾2‖𝑤(𝑡)‖2. (2.20)

According to Definition 2.1, (2.20) guarantees that 𝛾 is an upper bound of the
finite ℒ2-gain. This concludes the proof.

An application of Theorem 2.2 is given as follows: the LPV system (2.14) is
asymptotically stable in the sense of Lyapunov with finite ℒ2-gain bounded by 𝛾 if there
exists a Lyapunov function 𝑊 (𝑥) = 𝑥𝑇 (𝑡)𝑃𝑥(𝑡) such that the following LMIs are satisfied:

1. 𝑊 (𝑥) > 0 ⇐⇒ 𝑃 = 𝑃 𝑇 ≻ 0,

2. 𝑊̇ (𝑥) + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡) < 0(︁
𝑥̇𝑇 (𝑡)𝑃𝑥(𝑡) + 𝑥𝑇 (𝑡)𝑃𝑥̇(𝑡)

)︁
+ 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡) < 0

𝑥𝑇 (𝑡)
(︂

A𝑇 (𝜂(𝑡))𝑃 + 𝑃A(𝜂(𝑡)) + C𝑇 (𝜂(𝑡))C(𝜂(𝑡))
)︂

𝑥(𝑡) + 𝑥𝑇 (𝑡)
(︂

𝑃B1(𝜂(𝑡))
)︂

𝑤(𝑡) +

𝑤𝑇 (𝑡)
(︂

B𝑇
1 (𝜂(𝑡))𝑃

)︂
𝑥(𝑡) + 𝑤𝑇 (𝑡)(−𝛾2I𝑛𝑤)𝑤(𝑡) < 0⎡⎣A𝑇 (𝜂(𝑡))𝑃 + 𝑃A(𝜂(𝑡)) + C𝑇 (𝜂(𝑡))C(𝜂(𝑡)) *

B𝑇
1 (𝜂(𝑡))𝑃 −𝛾2I𝑛𝑤

⎤⎦ ≺ 0

Taking the Schur complement (described in Section 2.4) of the term C𝑇 (𝜂(𝑡))C(𝜂(𝑡)),
one has that⎡⎢⎢⎢⎣
A𝑇 (𝜂(𝑡))𝑃 + 𝑃A(𝜂(𝑡)) * *

B𝑇
1 (𝜂(𝑡))𝑃 −𝛾2I𝑛𝑤 *
C(𝜂(𝑡)) 0 −I𝑛𝑦

⎤⎥⎥⎥⎦ ≺ 0.

Since the ℒ2-gain performance criterion intends to minimize the finite ℒ2-gain
bounded by 𝛾, the adopted objective function of the arising SDP problem is to minimize 𝛾.
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2.4 Schur complement
In the derivation process of conditions ensuring the feasibility of Theorem 2.1,

obtaining nonlinear inequalities is common (Boyd et al., 1994). At first, these terms can-
not be considered in the framework of LMI conditions. However, when these terms are
available in quadratic form, this problem can be solved by means of the Schur complement.

The Schur complement is a key tool in matrix analysis, whose main interest
lies in its property of linearizing a product of variables, as shown in Lemma 2.1.

Lemma 2.1. (Boyd et al., 1994) If 𝑀 is a symmetric matrix defined as

𝑀 =
⎡⎣ 𝐴 𝐵

𝐵𝑇 𝐶

⎤⎦ =
⎡⎣𝐴 𝐵

* 𝐶

⎤⎦ , (2.21)

then

• 𝑀 ≻ 0 if and only if 𝐴 ≻ 0 and 𝑀 |𝐴 ≻ 0,

• 𝑀 ≻ 0 if and only if 𝐶 ≻ 0 and 𝑀 |𝐶 ≻ 0,

• 𝑀 ≺ 0 if and only if 𝐴 ≺ 0 and 𝑀 |𝐴 ≺ 0,

• 𝑀 ≺ 0 if and only if 𝐶 ≺ 0 and 𝑀 |𝐶 ≺ 0,

with 𝑀 |𝐴 = 𝐶 − 𝐵𝑇 𝐴−1𝐵 and 𝑀 |𝐶 = 𝐴 − 𝐵𝐶−1𝐵𝑇 .

Proof of Lemma 2.1. The symmetric matrix 𝑀 can be represented in terms of the product
of three matrices, as shown in

𝑀 =
⎡⎣ 𝐴 𝐵

𝐵𝑇 𝐶

⎤⎦ =
⎡⎣I 𝐴−1𝐵

0 I

⎤⎦𝑇 ⎡⎣𝐴 0
0 𝑀 |𝐴

⎤⎦⎡⎣I 𝐴−1𝐵

0 I

⎤⎦ = 𝒯 𝑇 ℳ𝒯 , (2.22)

with ℳ = diag(𝐴, 𝑀 |𝐴) and 𝒯 =
⎡⎣I 𝐴−1𝐵

0 I

⎤⎦. Notice that the equivalence expressed

in (2.22) requires matrix 𝐴 to be nonsingular.
Necessity: assuming positiveness of matrix 𝑀 , the diagonal terms of 𝑀 must

be positive-definite matrices. Hence, there exists an inverse of 𝐴. Since 𝑀 ≻ 0 and 𝒯 is
of full rank, it is clear that ℳ ≻ 0. Provided that ℳ is a block-diagonal matrix, ℳ ≻ 0
if and only if its diagonal blocks, 𝐴 and 𝑀 |𝐴, are positive definite.

Sufficiency: assuming positiveness of the block-diagonal matrix ℳ, its diagonal
blocks 𝐴 and 𝑀 |𝐴 must be positive definite. It is straightforward to check that there
exists 𝐴−1. Being ℳ ≻ 0 and having 𝒯 full rank, then 𝑀 is a positive-definite matrix.

The proof for any other assertion presented in Lemma 2.1 is omitted and follows
a similar procedure as the one followed in this proof. This concludes the proof.
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2.5 Finsler’s lemma

The Finsler’ lemma is a well-known tool in the framework of SDP problems.
As presented in Lemma 2.2, it allows interchanging the representation of LMI conditions,
possibly with the introduction of new terms, called slack variables.

Lemma 2.2. (Oliveira; Skelton, 2001) Let 𝜔 ∈ R𝑛, 𝒬 ∈ R𝑛×𝑛, ℬ ∈ R𝑚×𝑛 (rank(ℬ) < 𝑛),
and ℬ⊥ be defined such that ℬℬ⊥ = 0. Then, the following four statements are equivalent:

1. 𝜔𝑇 𝒬𝜔 < 0, ∀ 𝜔 ̸= 0 : ℬ𝜔 = 0

2. ℬ⊥𝑇 𝒬ℬ⊥ ≺ 0

3. ∃𝜇 ∈ R : 𝒬 − 𝜇ℬ𝑇 ℬ ≺ 0

4. ∃𝒳 ∈ R𝑛×𝑚 : 𝒬 + 𝒳 ℬ + ℬ𝑇 𝒳 𝑇 ≺ 0

By means of Lemma 2.2, more flexible stability conditions can be obtained due
to the inclusion of slack variables.

2.6 Jensen’s inequality

In the derivation process of sufficient LMIs ensuring stability in the sense of
Lyapunov for LPV systems, obtaining integral inequalities is not unusual (Shao, 2009;
Sun et al., 2010; Hooshmandi et al., 2018). Integral quadratic terms, such as

ℓ(𝜔̇) =
∫︁ 𝑏

𝑎
𝜔̇𝑇 (𝑢)𝑅𝜔̇(𝑢)𝑑𝑢, (2.23)

where 𝑅 is a symmetric positive-definite matrix held constant in the interval [𝑎, 𝑏] and 𝜔(𝑢)
is a continuously differentiable function, are not suitable for deriving LMIs.

This problem can be overcome by means of the Jensen’s inequality, which
provides a lower bound of (2.23). The Jensen’s inequality is presented in the next Lemma.

Lemma 2.3. (Gu et al., 2003). Given a constant symmetric positive-definite matrix 𝑅,
the following inequality is verified for every function 𝜔(𝑢) continuously differentiable on
the interval [𝑎,𝑏] → R𝑛:

ℓ(𝜔̇) =
∫︁ 𝑏

𝑎
𝜔̇𝑇 (𝑢)𝑅𝜔̇(𝑢)𝑑𝑢 ≥ 1

𝑏 − 𝑎
Ω𝑇

1 𝑅Ω1, (2.24)

where Ω1 =
∫︀ 𝑏

𝑎 𝜔̇(𝑢)𝑑𝑢 = 𝜔(𝑏) − 𝜔(𝑎).
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2.7 Wirtinger’s inequality
Although Jensen’s inequality solves the problem related to integral inequalities,

it also introduces an inherent conservativeness into the derived LMIs (Briat, 2011). Such
restrictive conditions arise from the gap between these integral inequalities and the lower
bound of (2.23).

Less conservative results, leading to more accurate lower bounds for (2.23),
have been attained with the aid of Wirtinger’s inequality (Seuret; Gouaisbaut, 2013) and
of the auxiliary-function based integral inequality (Park et al., 2015). All the mentioned
inequalities are particular cases of Bessel-Legendre inequality (Seuret; Gouaisbaut, 2018),
which is shown to introduce the closest lower bound of (2.23). However, as an alternative
to Jensen’s inequality, this dissertation considers the application of Wirtinger’s inequality,
as formulated in Lemma 2.4.

Lemma 2.4. (Seuret; Gouaisbaut, 2013) Given a constant symmetric positive-definite
matrix 𝑅, the following inequality is verified for every function 𝜔(𝑢) continuously differ-
entiable in the interval [𝑎,𝑏] → R𝑛:

ℓ(𝜔̇) =
∫︁ 𝑏

𝑎
𝜔̇𝑇 (𝑢)𝑅𝜔̇(𝑢)𝑑𝑢 ≥ 1

𝑏 − 𝑎
Ω𝑇

1 𝑅Ω1 + 3
𝑏 − 𝑎

Ω𝑇
2 𝑅Ω2, (2.25)

where Ω1 = 𝜔(𝑏) − 𝜔(𝑎) and Ω2 = 𝜔(𝑏) + 𝜔(𝑎) − 2
𝑏−𝑎

∫︀ 𝑏
𝑎 𝜔(𝑢)𝑑𝑢.

Comparing the right-hand side of (2.24) and of (2.25), it is straightforward to
verify that the Jensen’s inequality is a special case of the Wirtinger’s inequality, when Ω2 is
assumed to be zero. Thanks to the additional term 3

𝑏−𝑎
Ω𝑇

2 𝑅Ω2, the Wirtinger’s inequality
manages to provide a tighter lower bound to (2.23) with respect to the Jensen’s inequality.

In similar works of the control literature, Jensen’s inequality is used as a lower
bound to (2.23) (Hooshmandi et al., 2018; Gomes da Silva Jr et al., 2018). In the upcoming
chapters of this dissertation, the Wirtinger’s inequality will be used instead when deriving
sufficient LMI conditions ensuring (2.18). As a result, one of the attained contributions
of this dissertation is the proposition of less conservative constraints to the optimization
problem, if compared to the ones available in other works from the literature.
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3 Iterative approach

This chapter introduces an iterative approach for the synthesis of sampled-data
state-feedback controllers for LPV systems in continuous time. This problem is addressed
by means of a Lyapunov function, after which sufficient conditions are derived in terms of
LMIs, ensuring system stabilization and minimization of a performance criterion. Finally,
the computational aspects regarding the implementation of the iterative approach are
explored. The approach presented in this chapter is an extension of the work available
in Hooshmandi et al. (2018). Since the iterative approach is compared with the slack
approaches to be defined in Chapter 4, the numerical simulation results are postponed to
Chapter 5.

3.1 Problem statement
Consider LPV systems described by the following set of differential equations:

𝑥̇(𝑡) =A(𝜂(𝑡))𝑥(𝑡) + B1(𝜂(𝑡))𝑤(𝑡) + B2(𝜂(𝑡))𝑢(𝑡)
𝑦(𝑡) =C(𝜂(𝑡))𝑥(𝑡) + D1(𝜂(𝑡))𝑤(𝑡) + D2(𝜂(𝑡))𝑢(𝑡)

(3.1)

in which 𝑥(𝑡) ∈ R𝑛𝑥 and 𝑢(𝑡) ∈ R𝑛𝑢 denote the state and the control input vectors,
with 𝑛𝑢 ≤ 𝑛𝑥. 𝑤(𝑡) ∈ R𝑛𝑤 represents the disturbance vector, assumed to be in ℒ2. 𝑦(𝑡) ∈
R𝑛𝑦 is the output vector. A(𝜂(𝑡)), B1(𝜂(𝑡)), B2(𝜂(𝑡)), C(𝜂(𝑡)), D1(𝜂(𝑡)), and D2(𝜂(𝑡)),
with compatible dimensions, are given matrices in the form of (2.2), which depend on the
scheduling parameter vector 𝜂(𝑡) ∈ R𝑁 .

The adopted LPV models consider both the bounds of the parameters 𝜂𝑖(𝑡)
and the bounds of the time derivatives 𝜂̇𝑖(𝑡) to be known. It is then straightforward to
check that the domain of discourse associated to the scheduling parameters 𝜂(𝑡) fits for
simplexes formulated in (2.6).

Having introduced the LPV system (3.1) to be controlled, it is important to
examine the design details of the adopted control strategy. As discussed in Chapter 1,
this dissertation considers the application of gain-scheduled sampled-data state-feedback
control law in the form

𝑢(𝑡) = 𝑢(𝑡𝑛) = 𝐾(𝜂(𝑡𝑛))𝑥(𝑡𝑛), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1) (3.2)

to stabilize system (3.1) in a closed-loop, meaning that the control input (3.2) is held
constant between two successive sampling instants by means of a zero-order holder (ZOH).
In this scenario, the control signal can be recast as an induced delayed signal, whose
delay 𝜏(𝑡) is given by

𝜏(𝑡) = 𝑡 − 𝑡𝑛 ≤ 𝑇𝑚, 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1), (3.3)
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in which 𝑇𝑚 is the chosen maximum allowable sampling period (MASP). The induced
delay 𝜏(𝑡) is the time elapsed since the last sampling instant 𝑡𝑛, and it cannot exceed 𝑇𝑚.

Supposing the structure of the gain-scheduled control law is given by (3.2), the
closed-loop LPV dynamics (3.1) are then written as

𝑥̇(𝑡) =A(𝜂(𝑡))𝑥(𝑡) + B1(𝜂(𝑡))𝑤(𝑡) + B2(𝜂(𝑡))𝐾(𝜂(𝑡𝑛))𝑥(𝑡𝑛),
𝑦(𝑡) =C(𝜂(𝑡))𝑥(𝑡) + D1(𝜂(𝑡))𝑤(𝑡) + D2(𝜂(𝑡))𝐾(𝜂(𝑡𝑛))𝑥(𝑡𝑛).

(3.4)

It is remarkable that the system matrices and the gain matrix in (3.4) do
not share a uniform representation. Such mismatch can be circumvented by adopting an
expanded parameter vector 𝜌(𝑡) =

[︁
𝜂𝑇 (𝑡𝑛) 𝛿𝑇 (𝑡)

]︁𝑇
, where 𝛿(𝑡) = 𝜂(𝑡) − 𝜂(𝑡𝑛) is the un-

certainty between the real continuous parameters 𝜂(𝑡) and the sampled parameters 𝜂(𝑡𝑛).
The expanded parameter vector 𝜌(𝑡) is defined in the space Θ, so that

Θ =
{︂

𝜌 ∈ R2𝑁 : 𝜌(𝑡) ∈ Δ𝜌, 𝜌̇(𝑡) ∈ Δ𝜌̇

}︂
, (3.5)

in which Δ𝜌 and Δ𝜌̇ are compact sets as defined in (2.7). Taking into account the expanded
parameter vector 𝜌(𝑡), the closed-loop dynamics (3.4) can be recast as follows:

𝑥̇(𝑡) =A(𝜌(𝑡))𝑥(𝑡) + B1(𝜌(𝑡))𝑤(𝑡) + B2(𝜌(𝑡))𝐾(𝜂(𝑡𝑛))𝑥(𝑡𝑛),
𝑦(𝑡) =C(𝜌(𝑡))𝑥(𝑡) + D1(𝜌(𝑡))𝑤(𝑡) + D2(𝜌(𝑡))𝐾(𝜂(𝑡𝑛))𝑥(𝑡𝑛).

(3.6)

In this dissertation, stabilization and controller synthesis for LPV models (3.6)
are carried out within the framework of SDP problems. As discussed in Sections 2.2
and 2.3, the derived conditions ensuring stabilization and minimization of the ℒ2-gain
can be written in terms of LMIs.

Remark 3.1. (Gomes da Silva Jr et al., 2015) In order to cope with the representation
of the scheduling parameter 𝜂(𝑡) with two components, 𝜂(𝑡𝑛) and 𝛿(𝑡), the compact sets Δ𝜌

and Δ𝜌̇ are defined as follows:

Δ𝜌 =
{︂

𝜌(𝑡) ∈ R2𝑁 : 𝜂
𝑖

≤ 𝜌𝑖(𝑡) ≤ 𝜂𝑖, |𝜌𝑖+𝑁(𝑡)| ≤ 𝑇𝑚𝑣𝑖, 𝑖 = 1, . . . , 𝑁
}︂

,

Δ𝜌̇ =
{︂

𝜌̇(𝑡) ∈ R2𝑁 : 𝜌̇𝑖(𝑡) = 0, |𝜌̇𝑖+𝑁(𝑡)| ≤ 𝑣𝑖, 𝑖 = 1, . . . , 𝑁
}︂

,
(3.7)

where 𝜌𝑖(𝑡) and 𝜌𝑖+𝑁(𝑡) stand, respectively, for 𝜂𝑖(𝑡𝑛) and 𝛿𝑖(𝑡), for 𝑖 = 1, . . . , 𝑁 , and 𝑇𝑚

is the chosen MASP. The determination of such bounds to 𝜂𝑖(𝑡𝑛) and 𝛿𝑖(𝑡) is borrowed
from Gomes da Silva Jr et al. (2015) and is presented below. For the sake of simplicity,
this demonstration is done for a single scheduling parameter 𝜂𝑖(𝑡), over the interval 𝑡 ∈
[𝑡𝑛, 𝑡𝑛+1).

The scheduling parameter 𝜂𝑖(𝑡) can be decomposed as follows:

𝜂𝑖(𝑡) = 𝜂𝑖(𝑡𝑛) + 𝛿𝑖(𝑡) ⇒ 𝜂̇𝑖(𝑡) = 𝛿̇𝑖(𝑡), (3.8)
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where 𝜂𝑖(𝑡𝑛) and 𝛿𝑖(𝑡) stand for the sampled and the strictly continuous components of the
scheduling parameter 𝜂𝑖(𝑡), respectively.

By assumption, the bounds of 𝜂𝑖(𝑡𝑛) consist of the bounds imposed to 𝜂𝑖(𝑡),
such that

𝜂
𝑖

≤ 𝜂𝑖(𝑡𝑛) ≤ 𝜂𝑖. (3.9)

From (3.8), it is straightforward to certify that 𝜂̇𝑖(𝑡𝑛) = 0 and that |𝜂̇𝑖(𝑡)| ≡
|𝛿̇𝑖(𝑡)| ≤ 𝑣𝑖. Considering |𝜂̇𝑖(𝑡)| ≤ 𝑣𝑖 and using the mean-value theorem, one has that

|𝜂𝑖(𝑡) − 𝜂𝑖(𝑡𝑛)| ≤ 𝑣𝑖(𝑡 − 𝑡𝑛) ≤ 𝑣𝑖𝑇𝑚. (3.10)

Since 𝛿𝑖(𝑡) = 𝜂𝑖(𝑡) − 𝜂𝑖(𝑡𝑛), (3.10) is equivalent to

|𝛿𝑖(𝑡)| ≤ 𝑣𝑖𝑇𝑚. (3.11)

3.2 Definition of a Lyapunov function
In Sections 2.2 and 2.3, it is shown that both stabilization and controller

synthesis consider the stability in the sense of Lyapunov.
The Lyapunov function 𝑊 (𝑥, 𝑡) to be defined might consider not only parameter-

dependent Lyapunov functions 𝑃 (𝜂(𝑡)), but also a non-exhaustive number of additional
terms (Kolmanovskii; Myshkis, 1999; Cloosterman et al., 2010; Souza, 2013; Gomes da
Silva Jr et al., 2018).

As a result, the choice of an appropriate Lyapunov function 𝑊 (𝑥, 𝑡), which
fulfills the requirements presented in Theorem 2.1 (or in Theorem 2.2), is usually a chal-
lenging task. For the sake of simplicity, the Lyapunov function 𝑊 (𝑥, 𝑡) adopted in this
dissertation is adapted from the one proposed in Hooshmandi et al. (2018).

Consider the following time-dependent Lyapunov function:

𝑊 (𝑥, 𝑡) = 𝑉 (𝑥) + 𝑉0(𝑥, 𝑡) = 𝑉 (𝑥) +
3∑︁

𝑖=1
𝑉𝑖(𝑥, 𝑡), (3.12)

in which1

𝑉 (𝑥) = 𝑥𝑇 (𝑡)𝑃 (𝜌)𝑥(𝑡) (3.13)

𝑉1(𝑥, 𝑡) = (𝑡𝑛+1 − 𝑡)
∫︁ 𝑡

𝑡𝑛

⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦𝑇 ⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸
𝑇

2 (𝜂(𝑡𝑛))
𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦ 𝑑𝑞 (3.14)

𝑉2(𝑥, 𝑡) = (𝑡𝑛+1 − 𝑡)
⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦𝑇 ⎡⎣ 𝑋1(𝜌) 𝑋
𝑇
2 (𝜌) − 𝑋1(𝜌)

𝑋2(𝜌) − 𝑋1(𝜌) 𝑋1(𝜌) − 𝑋
𝐻
2 (𝜌)

⎤⎦ ⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦ (3.15)

𝑉3(𝑥, 𝑡) = (𝑡𝑛+1 − 𝑡)(𝑡 − 𝑡𝑛)𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡) (3.16)

1 The symbol 𝐴𝐻 is a short-hand form for 𝐴 + 𝐴𝑇 .
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with 𝜈(𝑡) = 1
𝜏(𝑡)

∫︀ 𝑡
𝑡𝑛

𝑥(𝑞)𝑑𝑞, and 𝑃 (𝜌), 𝐹 (𝜂(𝑡𝑛)), 𝐸1(𝜂(𝑡𝑛)), 𝐸3(𝜂(𝑡𝑛)), 𝑋1(𝜌) ∈ R𝑛𝑥×𝑛𝑥

symmetric matrices, and 𝐸2(𝜂(𝑡𝑛)), 𝑋2(𝜌) ∈ R𝑛𝑥×𝑛𝑥 .
Depending on the approach to be developed for the stabilization and for

the controller synthesis, different assumptions might be made for matrices 𝑃 (𝜌), 𝑋1(𝜌),
and 𝑋2(𝜌). These premises are discussed in the next sections of this dissertation.

One of the main contributions from this dissertation is the inclusion of the
term 𝑉3(𝑥, 𝑡) in the Lyapunov function (3.12). The decision making behind such compo-
nent consists of three goals:

1. As it will be further shown in Section 3.2.2, a subproduct of the derived LMI con-
ditions ensuring (2.18) is a component related to the integral of the states. This
component comes from the application of the Wirtinger’s inequality, in which Ω2

(see Section 2.4) presents some dependence on
∫︀ 𝑏

𝑎 𝑤(𝑢)𝑑𝑢. As a result, the new
term 𝑉3(𝑥, 𝑡) is introduced to deal with such term.

2. In order for the Lyapunov function 𝑊 (𝑥, 𝑡) to be recast in the framework of a looped
functional (see upcoming Remark 3.3), the proposed term 𝑉3(𝑥, 𝑡) should respect
the boundary condition 𝑉3(𝑥, 𝑡𝑛) = 𝑉3(𝑥, 𝑡𝑛+1) = 0.

3. Assuming that the Lyapunov function 𝑊 (𝑥, 𝑡) contains a looped functional, the
analysis of 𝑊̇ (𝑥, 𝑡) can be made simpler if it shows an affine dependence of 𝑊̇ (𝑥, 𝑡)
with respect to the variable t. If that is the case, sufficient conditions ensuring (2.18)
can be attained by evaluating 𝑊̇ (𝑥, 𝑡) at the extreme values of the variable 𝑡 ∈
[𝑡𝑛, 𝑡𝑛+1), i.e., at 𝑡 = 𝑡𝑛 and at 𝑡 = 𝑡𝑛+1.

Several alternatives to 𝑉3(𝑥, 𝑡) were exploited in place of (3.16), as displayed
below. All of them failed in the derivation process of LMI conditions ensuring negativeness
of 𝑊̇ (𝑥, 𝑡), considering at least one of the three desired properties.

• 𝑉3(𝑥, 𝑡) =
(︁ ∫︀ 𝑡

𝑡𝑛
𝑥𝑇 (𝑠)𝑑𝑠

)︁
𝐹 (𝜂(𝑡𝑛))

(︁ ∫︀ 𝑡
𝑡𝑛

𝑥(𝑠)𝑑𝑠
)︁

does not satisfy the boundary condi-
tion 𝑉3(𝑥, 𝑡𝑛) = 𝑉3(𝑥, 𝑡𝑛+1) = 0. There is no relationship between 𝑉3(𝑥, 𝑡𝑛) ≥ 0 and
𝑉3(𝑥, 𝑡𝑛+1) ≥ 0.

• Both 𝑉3(𝑥, 𝑡) = 𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡) and 𝑉3(𝑥, 𝑡) = (𝑡 − 𝑡𝑛)𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡) do not
satisfy the boundary condition 𝑉3(𝑥, 𝑡𝑛) = 𝑉3(𝑥, 𝑡𝑛+1) = 0, since 𝑉3(𝑥, 𝑡𝑛) = 0
and 𝑉3(𝑥, 𝑡𝑛+1) ≥ 0.

• The time derivative of any functional 𝑉3(𝑥, 𝑡) = (𝑡𝑛+1−𝑡)𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡), 𝑉3(𝑥, 𝑡) =
(𝑡𝑛+1 − 𝑡)(𝑡 − 𝑡𝑛)

(︁ ∫︀ 𝑡
𝑡𝑛

𝑥𝑇 (𝑠)𝑑𝑠
)︁
𝐹 (𝜂(𝑡𝑛))

(︁ ∫︀ 𝑡
𝑡𝑛

𝑥(𝑠)𝑑𝑠
)︁
, or 𝑉3(𝑥, 𝑡) = (𝑡𝑛+1 − 𝑡)(𝑡 −

𝑡𝑛)𝜈𝑇 (𝑡)𝐹 (𝜌)𝜈(𝑡) is not affine with respect to the variable t. Their derivatives should
provide terms that are either rational or quadratic with respect to t.
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Remark 3.2. Notice that the choice of matrices 𝐹 (𝜂(𝑡𝑛)), 𝐸1(𝜂(𝑡𝑛)), 𝐸2(𝜂(𝑡𝑛)), and
𝐸3(𝜂(𝑡𝑛)) dependent only on the sampled-data scheduling parameter vector 𝜂(𝑡𝑛) is of
greatest importance. Admitting 𝐸1(𝜂(𝑡𝑛)), 𝐸2(𝜂(𝑡𝑛)), and 𝐸3(𝜂(𝑡𝑛)) to depend on 𝜂(𝑡𝑛) im-
plies that these matrices are constant in the interval 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1). It is a necessary require-
ment for applying the Wirtinger’s inequality in (3.30). Besides, provided that 𝐹 (𝜂(𝑡𝑛)) is
also constant in the interval 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1), one has 𝐹̇ (𝜂(𝑡𝑛)) = 0 and, as a result, the
time derivative of (3.16) is still affine with respect to 𝑡, as it will be further shown.

Remark 3.3. (Seuret; Gouaisbaut, 2013) The adopted Lyapunov function (3.12) is a
looped functional, provided that 𝑉1(𝑥, 𝑡) = 𝑉2(𝑥, 𝑡) = 𝑉3(𝑥, 𝑡) = 0 for all 𝑡 = 𝑡𝑛 and for
all 𝑡 = 𝑡𝑛+1. At any jump instant, it is then guaranteed that 𝑊 (𝑥, 𝑡) ≡ 𝑉 (𝑥). The interest
behind looped functionals lies in the fact that expansive jumps are allowed within a sample
interval, as long as the storage function 𝑊 (𝑥, 𝑡) accordingly accommodates the jumps
and reaches 𝑉 (𝑥) in the next sampling time 𝑡𝑛+1. If a monotonically decreasing 𝑉 (𝑥) is
considered, then system stability is ensured.

By adopting the Lyapunov function (3.12), deriving conditions guaranteeing
the feasibility of Theorems 2.1 and 2.2 is possible. Before moving on to one of the main
results attained by this dissertation, two preliminary steps are of interest: the development
of sufficient conditions ensuring both 𝑊 (𝑥, 𝑡) > 0 and 𝑊̇ (𝑥, 𝑡) < 0. These steps are taken
in the Subsections 3.2.1 and 3.2.2.

3.2.1 Positiveness of adopted Lyapunov function

As discussed in Khalil (2002), the direct method of Lyapunov stability theory
usually requires the Lyapunov function (3.12) to be positive, apart from the equilibrium
point 𝑥(𝑡) = 0. Typically, this requirement is translated into the imposition of positiveness
for all terms of the Lyapunov function 𝑊 (𝑥, 𝑡), so that

𝑉 (𝑥) > 0, 𝑉1(𝑥, 𝑡) > 0, 𝑉2(𝑥, 𝑡) > 0, 𝑉3(𝑥, 𝑡) > 0 ⇒ 𝑊 (𝑥, 𝑡) > 0. (3.17)

Although the conditions presented in (3.17) ensure positiveness of the Lya-
punov function (3.12), they also introduce an inherent conservativeness. If that approach
is followed, every matrix available in the Lyapunov function (3.12) would have to be
definite positive.

More relaxed conditions could be attained if one imposes positiveness to a sum
of terms from the Lyapunov function (3.12), as performed in

𝑉 (𝑥) + 𝑉2(𝑥, 𝑡) > 0, 𝑉1(𝑥, 𝑡) > 0, 𝑉3(𝑥, 𝑡) > 0 ⇒ 𝑊 (𝑥, 𝑡) > 0. (3.18)

Although (3.17) and (3.18) introduce sufficient conditions ensuring positive-
ness of 𝑊 (𝑥, 𝑡), it is important to reconsider that the adopted Lyapunov function (3.12)



42 Chapter 3. Iterative approach

is a looped functional. According to Seuret (2012), the positiveness of the Lyapunov func-
tion (3.12) is made simpler, as it can be evaluated with the following Lemma.

Lemma 3.1. (Seuret, 2012) Let a continuously differentiable Lyapunov function 𝑉 (𝑥) > 0
and class-𝒦 functions 𝑎1, 𝑎2 be such that

𝑎1(‖𝑥‖) ≤ 𝑉 (𝑥) ≤ 𝑎2(‖𝑥‖). (3.19)

As a result, for 𝑡𝑛+1 − 𝑡𝑛 ≤ 𝑇𝑚, with 𝑇𝑚 a given positive scalar, the following
two statements are equivalent:

1. The increment of the Lyapunov function is strictly negative for all 𝑡𝑛+1 > 𝑡𝑛, such
that

Δ𝑛𝑉 (𝑥) = 𝑉 (𝑥(𝑡𝑛+1)) − 𝑉 (𝑥(𝑡𝑛)) < 0. (3.20)

2. There exists a continuous and differentiable looped functional 𝑉0(𝑥, 𝑡), such that both
conditions below apply:

• 𝑉0(𝑥, 𝑡𝑛) = 𝑉0(𝑥, 𝑡𝑛+1)

• 𝑊̇ (𝑥, 𝑡) = 𝑑
𝑑𝑡

(︁
𝑉 (𝑥) + 𝑉0(𝑥, 𝑡)

)︁
< 0

If one of the statements above apply, then the solutions of the closed-loop sys-
tem (3.6) are asymptotically stable.

The proof of Lemma 3.1 is omitted and can be found in Seuret (2012). In Sub-
section 3.2.2, the negativeness of the adopted Lyapunov function (3.12) will be imposed.
Provided that this Lyapunov function is also a looped functional, the second statement
of Lemma 3.1 applies. Therefore, by means of Lemma 3.1, the condition

𝑉 (𝑥) > 0 ⇐⇒ 𝑃 (𝜌) = 𝑃
𝑇 (𝜌) ≻ 0 ⇒ 𝑊 (𝑥, 𝑡) > 0 (3.21)

is a sufficient condition ensuring positiveness of the adopted Lyapunov function (3.12).

3.2.2 Negativeness of time derivative of adopted Lyapunov function

Considering also the generic representation of (3.12), the time derivative of the
adopted Lyapunov function (3.12) can be written as

𝑊̇ (𝑥, 𝑡) = 𝑉̇ (𝑥) +
3∑︁

𝑖=1
𝑉̇𝑖(𝑥, 𝑡) < 0, (3.22)
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with

𝑉̇ (𝑥) = 𝑥𝑇 (𝑡)𝑃̇ (𝜌)𝑥(𝑡) +
(︁
𝑥̇𝑇 (𝑡)𝑃 (𝜌)𝑥(𝑡)

)︁𝐻
(3.23)

𝑉̇1(𝑥, 𝑡) = −
∫︁ 𝑡

𝑡𝑛

⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦𝑇 ⎡⎣𝐸1(𝜂(𝑡𝑛)) *
𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦ 𝑑𝑞 (3.24)

+ (𝑡𝑛+1 − 𝑡)
⎡⎣ 𝑥̇(𝑡)
𝑥(𝑡𝑛)

⎤⎦𝑇 ⎡⎣𝐸1(𝜂(𝑡𝑛)) *
𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦⎡⎣ 𝑥̇(𝑡)
𝑥(𝑡𝑛)

⎤⎦
𝑉̇2(𝑥, 𝑡) = −

⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦𝑇 ⎡⎣ 𝑋1(𝜌) 𝑋
𝑇
2 (𝜌) − 𝑋1(𝜌)

𝑋2(𝜌) − 𝑋1(𝜌) 𝑋1(𝜌) − 𝑋
𝐻

2 (𝜌)

⎤⎦⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦ (3.25)

+ (𝑡𝑛+1 − 𝑡)
⎛⎝⎡⎣𝑥̇(𝑡)

0

⎤⎦𝑇 ⎡⎣ 𝑋1(𝜌) 𝑋
𝑇

2 (𝜌) − 𝑋1(𝜌)
𝑋2(𝜌) − 𝑋1(𝜌) 𝑋1(𝜌) − 𝑋

𝐻

2 (𝜌)

⎤⎦ ⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦⎞⎠𝐻

+ (𝑡𝑛+1 − 𝑡)
⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦𝑇
⎡⎢⎣ 𝑋̇1(𝜌) 𝑋̇

𝑇

2 (𝜌) − 𝑋̇1(𝜌)
𝑋̇2(𝜌) − 𝑋̇1(𝜌) 𝑋̇1(𝜌) − 𝑋̇

𝐻

2 (𝜌)

⎤⎥⎦
⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦
𝑉̇3(𝑥, 𝑡) = −(𝑡 − 𝑡𝑛)𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡) + (𝑡𝑛+1 − 𝑡)𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡) (3.26)

+ (𝑡𝑛+1 − 𝑡)(𝑡 − 𝑡𝑛)
(︁
𝜈̇𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡)

)︁𝐻

Taking into account that

𝜈̇(𝑡) = − 1
𝜏 2(𝑡)

∫︁ 𝑡

𝑡𝑛

𝑥(𝑞)𝑑𝑞 + 1
𝜏(𝑡)

(︃
𝑥(𝑡) − 𝑥(𝑡𝑛)

)︃
= 1

𝜏(𝑡)

(︃
𝑥(𝑡) − 𝑥(𝑡𝑛) − 𝜈(𝑡)

)︃
(3.27)

= 1
𝜏(𝑡)𝑀3𝜉(𝑡),

with
𝑀3 =

[︁
I −I −I

]︁
, 𝜉(𝑡) =

[︁
𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡𝑛) 𝜈𝑇 (𝑡)

]︁𝑇
, (3.28)

then (3.26) can be rewritten as

𝑉̇3(𝑥, 𝑡) = −(𝑡 − 𝑡𝑛)𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡) + (𝑡𝑛+1 − 𝑡)𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡) (3.29)

+ (𝑡𝑛+1 − 𝑡)
(︁
𝜉𝑇 (𝑡)𝑀𝑇

3 𝐹 (𝜂(𝑡𝑛))𝜈(𝑡)
)︁𝐻

.

An upper bound for the integral term in (3.24) can be found by means of

Lemma 2.4, where 𝑅 =
⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸

𝑇
2 (𝜂(𝑡𝑛))

𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦ is held constant between two successive

sampling instants and 𝜔̇(𝑡) =
[︁
𝑥̇𝑇 (𝑡) 𝑥𝑇 (𝑡𝑛)

]︁𝑇
:

−
∫︁ 𝑡

𝑡𝑛

⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦𝑇

𝑅

⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦ 𝑑𝑞 ≤ 𝜉𝑇 (𝑡)
⎧⎨⎩− 1

𝜏(𝑡)(Ω*
1)𝑇 𝑅(Ω*

1) − 3
𝜏(𝑡)(Ω*

2)𝑇 𝑅(Ω*
2)
⎫⎬⎭𝜉(𝑡) (3.30)

in which Ω*
1 = 𝑀1 + 𝜏(𝑡)𝑀𝑡 and Ω*

2 = 𝑀2, with

𝑀1 =
⎡⎣I −I 0
0 0 0

⎤⎦ , 𝑀𝑡 =
⎡⎣0 0 0
0 I 0

⎤⎦ , 𝑀2 =
⎡⎣I I −2I
0 0 0

⎤⎦ . (3.31)



44 Chapter 3. Iterative approach

Matrices 𝑀1, 𝑀𝑡, and 𝑀2 are obtained as follows:

Ω*
1𝜉(𝑡) = 𝜔(𝑡) − 𝜔(𝑡𝑛) =

⎡⎣𝑥(𝑡) − 𝑥(𝑡𝑛)
𝜏(𝑡)𝑥(𝑡𝑛)

⎤⎦−

⎡⎣𝑥(𝑡𝑛) − 𝑥(𝑡𝑛)
𝜏(𝑡𝑛)𝑥(𝑡𝑛)

⎤⎦
=
⎡⎣𝑥(𝑡) − 𝑥(𝑡𝑛)

0

⎤⎦+ 𝜏(𝑡)
⎡⎣ 0
𝑥(𝑡𝑛)

⎤⎦
=
(︁
𝑀1 + 𝜏(𝑡)𝑀𝑡

)︁
𝜉(𝑡)

(3.32)

Ω*
2𝜉(𝑡) = 𝜔(𝑡) + 𝜔(𝑡𝑛) − 2

𝑡 − 𝑡𝑛

∫︁ 𝑡

𝑡𝑛

𝑤(𝑢)𝑑𝑢

=
⎡⎣𝑥(𝑡) − 𝑥(𝑡𝑛)

𝜏(𝑡)𝑥(𝑡𝑛)

⎤⎦+
⎡⎣𝑥(𝑡𝑛) − 𝑥(𝑡𝑛)

𝜏(𝑡𝑛)𝑥(𝑡𝑛)

⎤⎦− 2
𝑡 − 𝑡𝑛

∫︁ 𝑡

𝑡𝑛

⎡⎣𝑥(𝑢) − 𝑥(𝑡𝑛)
𝜏(𝑢)𝑥(𝑡𝑛)

⎤⎦ 𝑑𝑢

=
⎡⎣𝑥(𝑡) − 𝑥(𝑡𝑛)

𝜏(𝑡)𝑥(𝑡𝑛)

⎤⎦− 2
𝑡 − 𝑡𝑛

𝑡 − 𝑡𝑛

2

⎡⎣2𝜈(𝑡) − 2𝑥(𝑡𝑛)
𝜏(𝑡)𝑥(𝑡𝑛)

⎤⎦
=
⎡⎣𝑥(𝑡) − 𝑥(𝑡𝑛)

𝜏(𝑡)𝑥(𝑡𝑛)

⎤⎦−

⎡⎣2𝜈(𝑡) − 2𝑥(𝑡𝑛)
𝜏(𝑡)𝑥(𝑡𝑛)

⎤⎦ =
⎡⎣𝑥(𝑡) + 𝑥(𝑡𝑛) − 2𝜈(𝑡)

0

⎤⎦
= 𝑀2𝜉(𝑡)

(3.33)

An upper bound to the right-hand side of (3.30) can be obtained by using the
quadratic relation

(︂
𝑅Ω*

𝑖 + 𝜏(𝑡)𝑁 𝑖(𝜌)
)︂𝑇

𝑅−1
(︂

𝑅Ω*
𝑖 + 𝜏(𝑡)𝑁 𝑖(𝜌)

)︂
⪰ 0, (3.34)

for 𝑖 = 1, 2, and with

𝑁 𝑖(𝜌) =
⎡⎣𝑁 𝑖1(𝜌) 𝑁 𝑖2(𝜌) 𝑁 𝑖3(𝜌)
𝑁 𝑖4(𝜌) 𝑁 𝑖5(𝜌) 𝑁 𝑖6(𝜌)

⎤⎦ ,

an upper bound for (3.30) is given by

−
∫︁ 𝑡

𝑡𝑛

⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦𝑇

𝑅

⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦ 𝑑𝑞 ≤

𝜉𝑇 (𝑡)
⎧⎨⎩− 1

𝜏(𝑡)(Ω*
1)𝑇 𝑅(Ω*

1) − 3
𝜏(𝑡)(Ω*

2)𝑇 𝑅(Ω*
2)
⎫⎬⎭𝜉(𝑡) ≤

𝜉𝑇 (𝑡)
⎧⎨⎩
[︂
𝑁

𝑇

1 (𝜌)(Ω*
1)
]︂𝐻

+ 𝜏(𝑡)𝑁𝑇

1 (𝜌)𝑅−1𝑁1(𝜌)

+ 3
[︂
𝑁

𝑇
2 (𝜌)(Ω*

2)
]︂𝐻

+ 3𝜏(𝑡)𝑁𝑇
2 (𝜌)𝑅−1𝑁2(𝜌)

⎫⎬⎭𝜉(𝑡) (3.35)
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Replacing (3.29) and (3.35) in (3.22), the resulting terms can be then grouped
based on their dependence on time:

𝑊̇ (𝑥, 𝑡) ≤

⎧⎨⎩𝜋1

⎫⎬⎭+ (𝑡𝑛+1 − 𝑡)
⎧⎨⎩𝜋2

⎫⎬⎭
+ (𝑡 − 𝑡𝑛)

⎧⎨⎩𝜋3 + 𝜉𝑇 (𝑡)𝑁𝑇
1 (𝜌)

⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸
𝑇
2 (𝜂(𝑡𝑛))

𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦−1

𝑁1𝜉(𝑡)+

3𝜉𝑇 (𝑡)𝑁𝑇
2 (𝜌)

⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸
𝑇
2 (𝜂(𝑡𝑛))

𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦−1

𝑁2𝜉(𝑡)
⎫⎬⎭ < 0, (3.36)

with

𝜋1 = 𝑥𝑇 (𝑡)𝑃̇ (𝜌)𝑥(𝑡) +
(︁
𝑥̇𝑇 (𝑡)𝑃 (𝜌)𝑥(𝑡)

)︁𝐻
+ 𝜉𝑇 (𝑡)

[︂
𝑁

𝑇
1 (𝜌)𝑀1

]︂𝐻

𝜉(𝑡)

−

⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦𝑇 ⎡⎣ 𝑋1(𝜌) 𝑋
𝑇
2 (𝜌) − 𝑋1(𝜌)

𝑋2(𝜌) − 𝑋1(𝜌) 𝑋1(𝜌) − 𝑋
𝐻
2 (𝜌)

⎤⎦⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦+ 𝜉𝑇 (𝑡)
[︂
3𝑁

𝑇
2 (𝜌)𝑀2

]︂𝐻

𝜉(𝑡)

(3.37)

𝜋2 =
⎡⎣ 𝑥̇(𝑡)
𝑥(𝑡𝑛)

⎤⎦𝑇 ⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸
𝑇

2 (𝜂(𝑡𝑛))
𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦ ⎡⎣ 𝑥̇(𝑡)
𝑥(𝑡𝑛)

⎤⎦+
(︁
𝜉𝑇 (𝑡)𝑀𝑇

3 𝐹 (𝜂(𝑡𝑛))𝜈(𝑡)
)︁𝐻

+
⎛⎝⎡⎣𝑥̇(𝑡)

0

⎤⎦𝑇 ⎡⎣ 𝑋1(𝜌) 𝑋
𝑇
2 (𝜌) − 𝑋1(𝜌)

𝑋2(𝜌) − 𝑋1(𝜌) 𝑋1(𝜌) − 𝑋
𝐻
2 (𝜌)

⎤⎦⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦⎞⎠𝐻

+
⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦𝑇
⎡⎢⎣ 𝑋̇1(𝜌) 𝑋̇

𝑇

2 (𝜌) − 𝑋̇1(𝜌)
𝑋̇2(𝜌) − 𝑋̇1(𝜌) 𝑋̇1(𝜌) − 𝑋̇

𝐻

2 (𝜌)

⎤⎥⎦
⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦+ 𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡)

(3.38)

𝜋3 = 𝜉𝑇 (𝑡)
[︂
𝑁

𝑇
1 (𝜌)𝑀𝑡

]︂𝐻

𝜉(𝑡) − 𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡)

(3.39)
Remark 3.4. The inequality (3.36) is not itself written in terms of LMI constraints. The
derivation of LMI conditions is further explored in the upcoming sections of this chapter
and also in Chapter 4.

Remark 3.5. The upper bound for (3.22) is affine with respect to 𝑡. Since the Lyapunov
function (3.12) is a looped functional, the feasibility of condition (3.22) can be guaranteed
by evaluating (3.36) at the extreme values of 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1) (Seuret; Gouaisbaut, 2013).

3.3 Controller synthesis
The upcoming Theorem 3.1 provides sufficient conditions for designing sampled-

data gain-scheduling state-feedback controllers with ℒ2-gain guaranteed cost. It is impor-
tant to emphasize that the provided conditions are actually in a bilinear matrix inequality
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(BMI) structure. Therefore, in an attempt to circumvent the optimization problem de-
scribed in terms of BMIs, a two-step iterative procedure is applied. That is why the first
proposed stabilizing methodology is also known as iterative approach. The setup of such
iterative approach for obtaining the desired controllers is discussed after the theorem
development.

Furthermore, in this iterative approach, the gain-scheduling controllers are
synthesized based on the Lyapunov matrix 𝑃 (𝜌), thus one must impose 𝑃 (𝜌) = 𝑃 (𝜂(𝑡𝑛)).
Additionally, for linearization purposes, 𝑋2(𝜌) ≡ 0 and 𝑋1(𝜌) = 𝑋1(𝜂(𝑡𝑛)) are adopted
for the Lyapunov function (3.12).

Theorem 3.1. Given scalars 𝑇𝑚 > 0 and 𝜆, if there exist symmetric positive-definite
matrices 𝑄(𝜌) = 𝑄(𝜂(𝑡𝑛)), Λ2(𝜂(𝑡𝑛)) ∈ R𝑛𝑥×𝑛𝑥, Γ1(𝜂(𝑡𝑛)), Λ1(𝜂(𝑡𝑛)) ∈ R2𝑛𝑥×2𝑛𝑥, matri-
ces 𝑌 (𝜂(𝑡𝑛)) ∈ R𝑛𝑢×𝑛𝑥, 𝑁1(𝜌), 𝑁2(𝜌) ∈ R2𝑛𝑥×3𝑛𝑥+𝑛𝑤 , 𝐿(𝜌), 𝐺(𝜌), ϒ(𝜌) ∈ R2𝑛𝑥×2𝑛𝑥, and a
scalar 𝛾 > 0 such that ⎡⎢⎢⎢⎣

Π1 + 𝑇𝑚Π2 * *
𝑇𝑚𝐿5 −𝑇𝑚Λ1(𝜂(𝑡𝑛)) *

Φ 0 −𝛾I

⎤⎥⎥⎥⎦ ≺ 0 (3.40)

⎡⎢⎢⎢⎢⎢⎢⎣
Π1 + 𝑇𝑚Π3 * * *
𝑇𝑚𝑁1(𝜌) −𝑇𝑚Γ1(𝜂(𝑡𝑛)) * *
3𝑇𝑚𝑁2(𝜌) 0 −3𝑇𝑚Γ1(𝜂(𝑡𝑛)) *

Φ 0 0 −𝛾I

⎤⎥⎥⎥⎥⎥⎥⎦ ≺ 0 (3.41)

⎡⎢⎣Λ1(𝜂(𝑡𝑛)) +
(︂

ϒ𝑇 (𝜌)
(︁
𝑄(𝜌) + 𝐿𝑇 (𝜌)

)︁)︂𝐻

*

−𝐿𝑇 (𝜌) + 𝐺𝑇 (𝜌)ϒ(𝜌) Γ1(𝜂(𝑡𝑛)) − 𝐺𝐻(𝜌)

⎤⎥⎦ ≺ 0 (3.42)

for all 𝜌 ∈ Θ, in which2

Π1 = Π0
1 − 𝛾𝐿𝑇

8 𝐿8, Π0
1 =

(︁
𝐿𝑇

4 𝐿1
)︁𝐻

− 𝜆𝐿𝑇
2 𝑄(𝜌)𝐿0𝐿2 +

(︁
𝑁

𝑇
1 (𝜌)𝑀*

1 + 3𝑁
𝑇
2 (𝜌)𝑀*

2

)︁𝐻

Π2 = 𝜆
(︁
𝐿𝑇

6 𝐿0𝐿2
)︁𝐻

+
(︁
𝐿𝑇

7 Λ2(𝜂(𝑡𝑛))𝐿3)𝐻 + 𝐿𝑇
3 Λ2(𝜂(𝑡𝑛))𝐿3

Π3 =
(︁
𝑁

𝑇
1 (𝜌)𝑀*

𝑡

)︁𝐻
− 𝐿𝑇

3 Λ2(𝜂(𝑡𝑛))𝐿3

𝑀*
1 =

⎡⎣I −I 0 0
0 0 0 0

⎤⎦ , 𝑀*
2 =

⎡⎣I I −2I 0
0 0 0 0

⎤⎦ , 𝑀*
𝑡 =

⎡⎣0 0 0 0
0 I 0 0

⎤⎦ , 𝑆1 =
[︁
I 0

]︁

𝐿0 =
[︁
I −I

]︁𝑇 [︁
I −I

]︁
, 𝐿1 =

[︁
I 0 0 0

]︁
, 𝐿2 =

⎡⎣I 0 0 0
0 I 0 0

⎤⎦ , 𝐿3 =
[︁
0 0 I 0

]︁
𝐿4 =

[︁
A(𝜌)𝑄(𝜌) B2(𝜌)𝑌 (𝜂(𝑡𝑛)) 0 B1(𝜌)

]︁
2 The symbol ⊗ denotes the product of Kronecker.
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𝐿5 =
⎡⎣A(𝜌)𝑄(𝜌) B2(𝜌)𝑌 (𝜂(𝑡𝑛)) 0 B1(𝜌)

0 𝑄(𝜌) 0 0

⎤⎦
𝐿6 =

⎡⎣A(𝜌)𝑄(𝜌) B2(𝜌)𝑌 (𝜂(𝑡𝑛)) 0 B1(𝜌)
0 0 0 0

⎤⎦ , 𝐿7 =
[︁
I −I −I 0

]︁
𝐿8 =

[︁
0 0 0 I

]︁
, 𝑄(𝜌) = I2 ⊗ 𝑄(𝜌), Φ =

[︁
C(𝜌)𝑄(𝜌) D2(𝜌)𝑌 (𝜂(𝑡𝑛)) 0 D1(𝜌)

]︁
then, the origin is an asymptotically stable equilibrium point of system (3.6) with aperiodic
samplings lower than 𝑇𝑚 and with a gain-scheduled sampled-data state-feedback control law
given by 𝐾(𝜂(𝑡𝑛)) = 𝑌 (𝜂(𝑡𝑛))𝑄−1(𝜌). Furthermore, 𝛾 is an upper bound to the ℒ2-gain of
the closed-loop system.

Proof of Theorem 3.1. Consider the Lyapunov function (3.12), with 𝑃 (𝜌) = 𝑃 (𝜂(𝑡𝑛)),
𝑋1(𝜌) = 𝑋1(𝜂(𝑡𝑛)), and 𝑋2(𝜌) ≡ 0. Therefore,

𝐸(𝜂(𝑡𝑛)) =
⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸

𝑇

2 (𝜂(𝑡𝑛))
𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦ , 𝑋(𝜌) =
⎡⎣ 𝑋1(𝜌) −𝑋1(𝜌)
−𝑋1(𝜌) 𝑋1(𝜌)

⎤⎦ . (3.43)

In order to simultaneously ensure closed-loop stability for systems (3.6) and
guaranteed ℒ2-gain cost, conditions presented in Theorem 2.2 must be met. As shown in
Section 3.2.1, the positiveness of the adopted Lyapunov function (3.12) is guaranteed if
and only if the LMI (3.21) holds.

By retaking both (3.36) and the closed-loop systems (3.6), condition (2.18)
can be rewritten as

𝜉
𝑇 (𝑡)

⎧⎨⎩
⎡⎣(︁𝑆𝑇

4 𝑃 (𝜌)𝐿1
)︁𝐻

− 𝐿𝑇
2 𝑋(𝜌)𝐿2 + 1

𝛾
𝜑𝑇 𝜑 − 𝛾𝐿𝑇

8 𝐿8

⎤⎦+
(︁
𝑁𝑇

1 (𝜌)Ω*
1 + 3𝑁𝑇

2 (𝜌)Ω*
2

)︁𝐻

+ (𝑡𝑛+1 − 𝑡)
⎡⎣𝑆𝑇

5 𝐸(𝜂(𝑡𝑛))𝑆5 +
(︁
𝑆𝑇

6 𝑋(𝜌)𝐿2
)︁𝐻

+
(︁
𝐿𝑇

7 𝐹 (𝜂(𝑡𝑛))𝐿3
)︁𝐻

+ 𝐿𝑇
3 𝐹 (𝜂(𝑡𝑛))𝐿3

⎤⎦
+(𝑡−𝑡𝑛)

⎡⎣𝑁𝑇
1 (𝜌)𝐸−1(𝜂(𝑡𝑛))𝑁1(𝜌)+3𝑁𝑇

2 (𝜌)𝐸−1(𝜂(𝑡𝑛))𝑁2(𝜌)−𝐿𝑇
3 𝐹 (𝜂(𝑡𝑛))𝐿3

⎤⎦⎫⎬⎭𝜉(𝑡) < 0,

(3.44)

with 𝜉(𝑡) =
[︁
𝜉𝑇 (𝑡) 𝑤𝑇 (𝑡)

]︁𝑇
and

𝑆4 =
[︁
A(𝜌) B2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 B1(𝜌)

]︁

𝑆5 =
⎡⎣A(𝜌) B2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 B1(𝜌)

0 I 0 0

⎤⎦
𝑆6 =

⎡⎣A(𝜌) B2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 B1(𝜌)
0 0 0 0

⎤⎦
𝜑 =

[︁
C(𝜌) D2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 D1(𝜌)

]︁
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Remark that (3.44) is a particular case of (3.36), when 𝑃̇ (𝜌) = 𝑋̇1(𝜌) = 0. By
choosing

𝑃 (𝜌) = 𝑄−1(𝜌), 𝑋1(𝜌) = 𝜆𝑄−1(𝜌),
𝐸(𝜂(𝑡𝑛)) = Λ−1

1 (𝜂(𝑡𝑛)), 𝐹 (𝜂(𝑡𝑛)) = 𝑄−1(𝜌)Λ2(𝜂(𝑡𝑛))𝑄−1(𝜌),
(3.45)

applying the congruence transformation

Ω̃ = diag
(︁
I3 ⊗ 𝑄(𝜌), I𝑛𝑤

)︁
to both sides of (3.44) yields
⎡⎣(︁𝐿𝑇

4 𝐿1
)︁𝐻

− 𝜆𝐿𝑇
2 𝑄(𝜌)𝐿0𝐿2 +

(︁
𝑁

𝑇

1 (𝜌)𝑀*
1 + 3𝑁

𝑇

2 (𝜌)𝑀*
2

)︁𝐻
+ 1

𝛾
Φ𝑇 Φ − 𝛾𝐿𝑇

8 𝐿8

⎤⎦
+ (𝑡𝑛+1 − 𝑡)

⎡⎣𝐿𝑇
5 Λ−1

1 (𝜂(𝑡𝑛))𝐿5 + 𝜆
(︁
𝐿𝑇

6 𝐿0𝐿2
)︁𝐻

+
(︁
𝐿𝑇

7 Λ2(𝜂(𝑡𝑛))𝐿3
)︁𝐻

+ 𝐿𝑇
3 Λ2(𝜂(𝑡𝑛))𝐿3

⎤⎦
+ (𝑡 − 𝑡𝑛)

⎡⎣(︁𝑁𝑇
1 (𝜌)𝑀*

𝑡

)︁𝐻
− 𝐿𝑇

3 Λ2(𝜌)𝐿3 + 𝑁
𝑇
1 (𝜌)𝑄−1(𝜌)Λ1(𝜂(𝑡𝑛))𝑄−1(𝜌)𝑁1(𝜌)

+ 3𝑁
𝑇
2 (𝜌)𝑄−1(𝜌)Λ1(𝜂(𝑡𝑛))𝑄−1(𝜌)𝑁2(𝜌)

⎤⎦ ≺ 0. (3.46)

In order to obtain (3.46), the equivalence

Ω*
𝑖 Ω̃ ≡ 𝑄(𝜌)Ω*

𝑖 (3.47)

is considered, for 𝑖 = 1, 2, with Ω*
1 = 𝑀*

1 +𝜏(𝑡)𝑀*
𝑡 and Ω*

2 = 𝑀*
2 . Notice that matrices 𝑀1,

𝑀2 and 𝑀𝑡, exploited in (3.32) and in (3.33), are sub-matrices of 𝑀*
1 , 𝑀*

2 and 𝑀*
𝑡 . The *

notation denotes that the expanded vector 𝜉(𝑡) is used instead of 𝜉(𝑡), such that Ω*
1𝜉(𝑡) ≡

Ω1𝜉(𝑡) and Ω*
2𝜉(𝑡) ≡ Ω2𝜉(𝑡).

The equivalence (3.47) is only possible because matrices Ω*
1 and Ω*

2 are com-
posed of constant sub-matrices independent with respect to the disturbances 𝑤(𝑡). Con-
sequently, the changes of variables

𝑁 𝑖(𝜌) = 𝑄(𝜌)𝑁𝑖(𝜌)Ω̃, (3.48)

for 𝑖 = 1, 2, are adopted.
Condition (3.46) presents two strongly nonlinear terms: 𝑄

−1(𝜌)Λ1(𝜂(𝑡𝑛))𝑄−1(𝜌)
and Λ−1

1 (𝜂(𝑡𝑛)). Provided that the two terms rely on the decision matrix Λ1(𝜂(𝑡𝑛)), they
cannot be both linearized at once. In order to overcome such limitation, Hooshmandi et al.
(2018) discuss a two-step iterative procedure, whose computational aspects are available
in Section 3.5. Within the proposed iterative procedure, the following upper-bound

Γ−1
1 (𝜂(𝑡𝑛)) ⪰ 𝑄

−1(𝜌)Λ1(𝜂(𝑡𝑛))𝑄−1(𝜌) (3.49)
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is adopted for the product of variables. Thus, the resulting terms in (3.46) can then be
grouped based on their dependence on time:⎡⎣Π1 + 1

𝛾
Φ𝑇 Φ

⎤⎦+ (𝑡𝑛+1 − 𝑡)
⎡⎣Π2 + 𝐿𝑇

5 Λ−1
1 (𝜂(𝑡𝑛))𝐿5

⎤⎦
+ (𝑡 − 𝑡𝑛)

⎡⎣Π3 + 𝑁
𝑇

1 Γ−1
1 (𝜂(𝑡𝑛))𝑁1 + 3𝑁

𝑇

2 Γ−1
1 (𝜂(𝑡𝑛))𝑁2

⎤⎦ ≺ 0 (3.50)

Since (3.50) is affine with respect to 𝑡 and provided that (3.12) is a looped
functional, it is sufficient to ensure that (3.50) holds for both 𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛+1.
By evaluating (3.50) at the end points of the sampling interval and by applying Schur
complements, conditions (3.40) and (3.41) are achieved.

Inequality (3.49) is still non convex, because of the product of multiple decision
variables. Hooshmandi et al. (2018) introduces a linearization strategy for condition (3.49),
as presented in the following lemma.

Lemma 3.2. (Hooshmandi et al., 2018) Let Γ ∈ R𝑛×𝑛 be a symmetric positive-definite
matrix, Λ ∈ R𝑛×𝑛 be a symmetric matrix, and 𝑄, 𝐿, 𝐺 be R𝑛×𝑛 matrices. If there exists
a matrix ϒ ∈ R𝑛×𝑛, then the following two statements are equivalent:

1. Λ − 𝑄𝑇 Γ−1𝑄 ≺ 0 (3.51)

2.
⎡⎣Λ +

(︁
ϒ𝑇 (𝑄 + 𝐿𝑇 )

)︁𝐻
−𝐿 + ϒ𝑇 𝐺

* Γ − 𝐺𝐻

⎤⎦ ≺ 0 (3.52)

Furthermore, choosing ϒ = −Γ−1𝑄, the two previous statements are identical.

The proof of Lemma 3.2 is given in Appendix A. By applying Lemma 3.2,
the constraint (3.42) ensures that (3.49) holds for all 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1). It is assumed that
matrix ϒ(𝜌) is known when computing the control gain 𝐾(𝜂(𝑡𝑛)).

The proposed changes of variables (3.45) must be accordingly reflected in the
condition ensuring positiviness of the Lyapunov function (3.12). Applying the congruence
transformation 𝑄(𝜌) to both sides of (3.21), 𝑄(𝜌) ≻ 0 is obtained, which is a sufficient
condition to certify that 𝑊 (𝑥, 𝑡) > 0. This completes the proof.

Remark 3.6. As discussed in Section 2.1, it is assumed that any matrix presented in
Theorem 3.1 (and all upcoming results) is polytopic with respect to the scheduling parame-
ters 𝜌(𝑡) (or 𝜂(𝑡𝑛)) and that the scheduling parameters are described by the simplex (3.5).
These assumptions are valid to both system matrices and decision matrices.

Remark 3.7. In Theorem 3.1, the proposed LMI conditions are obtained as the sum
of terms with affine dependence on the expanded vector 𝜌(𝑡), on the sampled-data vec-
tor 𝜂(𝑡𝑛), or on neither scheduling parameters. An homogenization procedure is performed
on the entries of the proposed LMI conditions, such that all matrix polynomials have the
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same degree of dependence on the scheduling parameters. The homogenization procedure
follows the homogeneous polynomially parameter-dependent solutions discussed in Oliveira
and Peres (2007), which is implemented by the MATLAB package ROLMIP (Agulhari et
al., 2019). This package defines a finite set of LMI conditions to be tested, given poly-
nomial structures to the involved problem matrices. Since any polytopic matrix is thus
represented with a homogeneous polynomial function, it is guaranteed that the number of
LMI conditions in Theorem 3.1 are finite.

3.4 Stabilization
The stabilization of closed-loop LPV systems (3.6) is addressed in light of

the discussion held in Section 2.2. In this section, LMI conditions ensuring asymptotic
stability for (3.6) are derived, with gain-scheduling state-feedback controllers (3.2) to be
synthesized.

Theorem 3.2. Given scalars 𝑇𝑚 > 0 and 𝜆, if there exist symmetric positive-definite
matrices 𝑄(𝜌) = 𝑄(𝜂(𝑡𝑛)), Λ2(𝜂(𝑡𝑛)) ∈ R𝑛𝑥×𝑛𝑥, Γ1(𝜂(𝑡𝑛)), Λ1(𝜂(𝑡𝑛)) ∈ R2𝑛𝑥×2𝑛𝑥, and
matrices 𝑌 (𝜂(𝑡𝑛)) ∈ R𝑛𝑢×𝑛𝑥, 𝑁1(𝜌), 𝑁2(𝜌) ∈ R2𝑛𝑥×3𝑛𝑥, 𝐿(𝜌), 𝐺(𝜌), ϒ(𝜌) ∈ R2𝑛𝑥×2𝑛𝑥

satisfying the following conditions:⎡⎣Π0
1 + 𝑇𝑚Π2 *
𝑇𝑚𝐿5 −𝑇𝑚Λ1(𝜂(𝑡𝑛))

⎤⎦ ≺ 0 (3.53)

⎡⎢⎢⎢⎣
Π0

1 + 𝑇𝑚Π3 * *
𝑇𝑚𝑁1(𝜌) −𝑇𝑚Γ1(𝜂(𝑡𝑛)) *
3𝑇𝑚𝑁2(𝜌) 0 −3𝑇𝑚Γ1(𝜂(𝑡𝑛))

⎤⎥⎥⎥⎦ ≺ 0 (3.54)

⎡⎢⎣Λ1(𝜂(𝑡𝑛)) +
(︂

ϒ𝑇 (𝜌)
(︁
𝑄(𝜌) + 𝐿𝑇 (𝜌)

)︁)︂𝐻

*

−𝐿𝑇 (𝜌) + 𝐺𝑇 (𝜌)ϒ(𝜌) Γ1(𝜂(𝑡𝑛)) − 𝐺𝐻(𝜌)

⎤⎥⎦ ≺ 0 (3.55)

for all 𝜌 ∈ Θ, in which

Π0
1 =

(︁
𝐿𝑇

4 𝐿1
)︁𝐻

− 𝜆𝐿𝑇
2 𝑄(𝜌)𝐿0𝐿2 +

(︁
𝑁

𝑇
1 (𝜌)𝑀*

1 + 3𝑁
𝑇
2 (𝜌)𝑀*

2

)︁𝐻

Π2 = 𝜆
(︁
𝐿𝑇

6 𝐿0𝐿2
)︁𝐻

+
(︁
𝐿𝑇

7 Λ2(𝜂(𝑡𝑛))𝐿3)𝐻 + 𝐿𝑇
3 Λ2(𝜂(𝑡𝑛))𝐿3

Π3 =
(︁
𝑁

𝑇
1 (𝜌)𝑀*

𝑡

)︁𝐻
− 𝐿𝑇

3 Λ2(𝜂(𝑡𝑛))𝐿3

𝑀*
1 =

⎡⎣I −I 0
0 0 0

⎤⎦ , 𝑀*
2 =

⎡⎣I I −2I
0 0 0

⎤⎦ , 𝑀*
𝑡 =

⎡⎣0 0 0
0 I 0

⎤⎦ , 𝑆1 =
[︁
I 0

]︁

𝐿0 =
[︁
I −I

]︁𝑇 [︁
I −I

]︁
, 𝐿1 =

[︁
I 0 0

]︁
, 𝐿2 =

⎡⎣I 0 0
0 I 0

⎤⎦ , 𝐿3 =
[︁
0 0 I

]︁
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𝐿4 =
[︁
A(𝜌)𝑄(𝜌) B2(𝜌)𝑌 (𝜂(𝑡𝑛)) 0

]︁
, 𝐿5 =

⎡⎣A(𝜌)𝑄(𝜌) B2(𝜌)𝑌 (𝜂(𝑡𝑛)) 0
0 𝑄(𝜌) 0

⎤⎦
𝐿6 =

⎡⎣A(𝜌)𝑄(𝜌) B2(𝜌)𝑌 (𝜂(𝑡𝑛)) 0
0 0 0

⎤⎦ , 𝐿7 =
[︁
I −I −I

]︁
𝑄(𝜌) = I2 ⊗ 𝑄(𝜌)

then, the origin is an asymptotically stable equilibrium point of system (3.6) with aperiodic
samplings lower than 𝑇𝑚. The synthesized gain-scheduled state-feedback control gain can
be recovered with 𝐾(𝜂(𝑡𝑛)) = 𝑌 (𝜂(𝑡𝑛))𝑄−1(𝜌).

Proof of Theorem 3.2. Taking the Lyapunov function (3.12), the asymptotic stability in
the sense of Lyapunov for the closed-loop LPV systems (3.6), with 𝑤(𝑡) = 0, is ensured if
conditions (2.10) and (2.11) are respected for all 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1).

The steps of the proof follow the exact same lines as the proof of Theorem 3.1.
In fact, by removing the last rows and columns of conditions (3.40) and (3.41), one gets
precisely (3.53) and (3.54), which are sufficient conditions ensuring the feasibility of
⎡⎣Π0

1

⎤⎦+ (𝑡𝑛+1 − 𝑡)
⎡⎣Π2 + 𝐿𝑇

5 Λ−1
1 (𝜂(𝑡𝑛))𝐿5

⎤⎦
+ (𝑡 − 𝑡𝑛)

⎡⎣Π3 + 𝑁
𝑇

1 Γ−1
1 (𝜂(𝑡𝑛))𝑁1 + 3𝑁

𝑇

2 Γ−1
1 (𝜂(𝑡𝑛))𝑁2

⎤⎦ ≺ 0, (3.56)

with Π0
1, Π2, and Π3 as defined in both Theorems 3.1 and 3.2. Any other inequality in

Theorem 3.1 remains unchanged.

3.5 Computational aspects
In this chapter, an iterative approach is introduced for the synthesis of gain-

scheduled control laws for LPV systems (3.6). The attained results in Section 3.3 originally
lead to conditions outside of the framework of LMIs. In fact, the obtained relations are
BMI constraints, provided the product of multiple decision variables, as in (3.46).

Due to the use of the upper-bound (3.49), the posed BMI problem can be solved
as part of an iterative procedure, whose initial feasible solution is ϒ0 = −Γ−1

1 𝑄(𝜌) (Hoosh-
mandi et al., 2018). The value of Γ1 can be obtained from the inequality

Λ1(𝜂(𝑡𝑛)) + 𝜀2Γ1 − 2𝜀𝑄(𝜌) ≺ 0, (3.57)

with 𝜀 some given positive scalar and Γ1 a parameter-independent matrix during initial-
ization only. The constraint (3.57) can replace condition (3.42) in the first iteration of the
iterative procedure, as shown in the proof below.
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Proof. (Hooshmandi et al., 2018) Since by assumption Γ1 is a positive-definite matrix,
the following quadratic relation is true:(︁

𝜀I − Γ−1
1 𝑄(𝜌)

)︁𝑇
Γ1
(︁
𝜀I − Γ−1

1 𝑄(𝜌)
)︁

⪰ 0. (3.58)

Expanding the relation (3.58) and adding Λ1(𝜂(𝑡𝑛)) to both sides of this con-
dition, one has that

Λ1(𝜂(𝑡𝑛)) + 𝜀2Γ1 − 2𝜀𝑄(𝜌) + 𝑄(𝜌)Γ−1
1 𝑄(𝜌) ⪰ Λ1(𝜂(𝑡𝑛)) (3.59)

Λ1(𝜂(𝑡𝑛)) − 𝑄(𝜌)Γ−1
1 𝑄(𝜌) ⪯ Λ1(𝜂(𝑡𝑛)) + 𝜀2Γ1 − 2𝜀𝑄(𝜌) (3.60)

Imposing the right-hand side of (3.60) to be negative definite, the condi-
tion (3.57) is clearly satisfied. Moreover, it is straightforward to verify that (3.57) is an
upper bound to the relation (3.49). For initialization purposes, the LMI constraint (3.57)
can therefore replace the condition (3.42).

The numerical solution for the conditions derived in Theorem 3.1 is achieved
by an iterative procedure, which is developed in Algorithm 3.1. With a few changes,
Algorithm 3.1 can be also applied for computing the solution for the conditions presented
in Theorem 3.2.

Algorithm 3.1 Iterative procedure for synthesizing gain-scheduled ℒ2-gain sampled-data
controllers.
Initialization:
1) Adopt a value for maximum allowable sampling period 𝑇𝑚.
2) Set 𝜀 = 1, 𝜆0 = 1, 𝜆 = 1, 𝛾0 = 10, 𝜖 = 0.01, 𝑘𝑚𝑎𝑥 = 20, and 𝑘 = 1.
3) Given 𝜀 and 𝜆, minimize 𝛾 under conditions (3.40), (3.41) and (3.57) for comput-
ing 𝑄(𝜌) and Γ1.
4) Set 𝑄(𝜌) = I2 ⊗ 𝑄(𝜌), ϒ0 = −Γ−1

1 𝑄(𝜌), and 𝛾1 = 𝛾.
Iterative procedure:
While 𝑘 < 𝑘𝑚𝑎𝑥 or |𝛾𝑘 − 𝛾𝑘−1| > 𝜖 do
5) Given ϒ𝑘−1(𝜌) and 𝜆𝑘−1, minimize 𝛾 under conditions (3.40)–(3.42) for determin-
ing 𝑄(𝜌), Λ1(𝜂(𝑡𝑛)), Λ2(𝜂(𝑡𝑛)), Γ1(𝜂(𝑡𝑛)), 𝐺(𝜌), 𝐿(𝜌), 𝑌 (𝜂(𝑡𝑛)), 𝑁1(𝜌), and 𝑁2(𝜌).
6) Set 𝑄𝑘−1(𝜌) = 𝑄(𝜌), Λ1,𝑘−1(𝜂(𝑡𝑛)) = Λ1(𝜂(𝑡𝑛)), Λ2,𝑘−1(𝜂(𝑡𝑛)) = Λ2(𝜂(𝑡𝑛)),
Γ1,𝑘−1(𝜂(𝑡𝑛)) = Γ1(𝜂(𝑡𝑛)), 𝐺𝑘−1(𝜌) = 𝐺(𝜌), 𝐿𝑘−1(𝜌) = 𝐿(𝜌), 𝑌𝑘−1(𝜂(𝑡𝑛)) = 𝑌 (𝜂(𝑡𝑛)),
𝑁1,𝑘−1(𝜌) = 𝑁1(𝜌), and 𝑁2,𝑘−1(𝜌) = 𝑁2(𝜌).
7) Given 𝑄𝑘−1(𝜌), Λ1,𝑘−1(𝜂(𝑡𝑛)), Λ2,𝑘−1(𝜂(𝑡𝑛)), Γ1,𝑘−1(𝜂(𝑡𝑛)), 𝐺𝑘−1(𝜌), 𝐿𝑘−1(𝜌),
𝑌𝑘−1(𝜂(𝑡𝑛)), 𝑁1,𝑘−1(𝜌), and 𝑁2,𝑘−1(𝜌), minimize 𝛾 under conditions (3.40)–(3.42) to ob-
tain ϒ(𝜌) and 𝜆.
8) Set ϒ𝑘(𝜌) = ϒ(𝜌), 𝛾𝑘 = 𝛾, and 𝜆𝑘 = 𝜆.
9) Set 𝑘 = 𝑘 + 1.
End
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4 Non-iterative approaches

This chapter presents two slack variable-based procedures for the design of
sampled-data state-feedback controllers for LPV systems in continuous time. The same
problem stated and Lyapunov function defined in Chapter 3 are considered, and it is
shown how the attained results can be then extended to quasi-LPV systems. A few com-
putational aspects ensuring the implementation of the slack approaches are presented.
The motivation behind slack techniques is the deliberate attempt to develop less conser-
vative conditions for stabilization and for minimization of the ℒ2-gain cost criterion, by
introducing extra degrees of freedom to the LMI conditions and by decoupling the syn-
thesis of the control gain from the Lyapunov matrix 𝑃 (𝜌). The derivation of more relaxed
conditions exploits Finsler’s lemma, discussed in Section 2.5. Another substantial bene-
fit of the proposed slack approaches is the possibility of synthesizing control laws in the
form (3.2) without using an iterative procedure. The numerical results for the proposed
approaches are presented in Chapter 5.

4.1 Full approach
In this section and in the subsequent Section 4.2, Finsler’s lemma is used to

introduce extra variables to the problem of designing sampled-data gain-scheduled state-
feedback controllers for systems (3.6). Using such variables enables the decoupling of the
Lyapunov matrix 𝑃 (𝜌) from the controller gain (the synthesis is performed in terms of the
slack variables), which allows the adoption of a more general structure to 𝑃 (𝜌). Similar
relaxed structures can be adopted to matrices 𝑋1(𝜌) and 𝑋2(𝜌) in (3.12).

The key point for deriving the proposed conditions is determining an upper-
bound to the term

− 1
𝜏(𝑡)𝜉𝑇 (𝑡)

⎧⎨⎩(Ω*
1)𝑇 𝑅(Ω*

1) + 3(Ω*
2)𝑇 𝑅(Ω*

2)
⎫⎬⎭𝜉(𝑡), (4.1)

which arises from 𝑉̇1(𝑥, 𝑡), as given in (3.30). In this section, the upper bound obtained
through relation (3.34) is employed and, in Section 4.2, an alternative upper bound
for (4.1) is proposed.

4.1.1 Controller synthesis

In Theorem 4.1, a design approach for sampled-data gain-scheduled state-
feedback control laws (3.2) for LPV systems (3.6) with ℒ2-gain performance is proposed.
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Theorem 4.1. The origin is an asymptotically stable equilibrium point of system (3.6)
with aperiodic samplings lower than 𝑇𝑚 if, given a scalar 𝑇𝑚 > 0 and a set of real
scalars 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛿1 > 0, 𝛿2, 𝜁1, 𝜁2, 𝜇1 > 1

2 , 𝜇2 > 1
2 , 𝜑2, 𝜃2, 𝜆2, 𝜔2 > 0, there exist

symmetric positive-definite matrices 𝑃 (𝜌), 𝐸1(𝜂(𝑡𝑛)), 𝐸3(𝜂(𝑡𝑛)), 𝐹 (𝜂(𝑡𝑛)) ∈ R𝑛𝑥×𝑛𝑥, a sym-
metric matrix 𝑋1(𝜌) ∈ R𝑛𝑥×𝑛𝑥, matrices 𝐺(𝜂(𝑡𝑛)), 𝐸2(𝜂(𝑡𝑛)), 𝑋2(𝜌) ∈ R𝑛𝑥×𝑛𝑥, 𝑍(𝜂(𝑡𝑛)) ∈
R𝑛𝑢×𝑛𝑥, 𝑁𝑖𝑗(𝜌) ∈ R𝑛𝑥×𝑛𝑥, for 𝑖 = 1, 2, 𝑗 = 1, . . . , 6, minimizing 𝛾 subject to the following
LMIs: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11 * * * * *
Ψ21 Ψ22 * * * *
Ψ31 Ψ32 Ψ33 * * *
Ψ41 Ψ42 Ψ43 Ψ44 * *
Ψ51 Ψ52 Ψ53 Ψ54 Ψ55 *
Ψ61 Ψ62 Ψ63 Ψ64 Ψ65 Ψ66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0 (4.2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϒ11 * * * * * * * * *
ϒ21 ϒ22 * * * * * * * *
ϒ31 ϒ32 ϒ33 * * * * * * *
ϒ41 ϒ42 ϒ43 ϒ44 * * * * * *
ϒ51 ϒ52 ϒ53 ϒ54 ϒ55 * * * * *
ϒ61 ϒ62 ϒ63 ϒ64 ϒ65 ϒ66 * * * *
ϒ71 ϒ72 ϒ73 ϒ74 ϒ75 ϒ76 ϒ77 * * *
ϒ81 ϒ82 ϒ83 ϒ84 ϒ85 ϒ86 ϒ78 ϒ88 * *
ϒ91 ϒ92 ϒ93 ϒ94 ϒ95 ϒ96 ϒ97 ϒ98 ϒ99 *

ϒ10′1 ϒ10′2 ϒ10′3 ϒ10′4 ϒ10′5 ϒ10′6 ϒ10′7 ϒ10′8 ϒ10′9 ϒ10′10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0 (4.3)

for all 𝜌 ∈ Θ, in which

Ψ11 = 𝑃̇ (𝜌) − 𝑋1(𝜌) + 𝑇𝑚𝑋̇1(𝜌) +
(︁
𝑁11(𝜌) + 3𝑁21(𝜌) + 𝛼1A(𝜌)𝐺(𝜂(𝑡𝑛))

)︁𝐻

Ψ21 = −
(︁
𝑋2(𝜌) − 𝑋1(𝜌)

)︁
+ 𝑇𝑚

(︁
𝑋̇2(𝜌) − 𝑋̇1(𝜌)

)︁
− 𝑁11(𝜌) + 3𝑁21(𝜌) + 𝑁𝑇

12(𝜌)

+3𝑁𝑇
22(𝜌) + 𝜁1A(𝜌)𝐺(𝜂(𝑡𝑛)) + 𝛼1

(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝑇

Ψ22 = −
(︁
𝑋1(𝜌) − 𝑋𝐻

2 (𝜌)
)︁

+ 𝑇𝑚

(︁
𝑋̇1(𝜌) − 𝑋̇𝐻

2 (𝜌)
)︁

+ 𝑇𝑚𝐸3(𝜂(𝑡𝑛))

+
(︁

− 𝑁12(𝜌) + 3𝑁22(𝜌) + 𝜁1B2(𝜌)𝑍(𝜂(𝑡𝑛))
)︁𝐻

Ψ31 = 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 6𝑁21(𝜌) + 𝑁𝑇
13(𝜌) + 3𝑁𝑇

23(𝜌) + 𝛽1A(𝜌)𝐺(𝜂(𝑡𝑛))

Ψ32 = −𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 6𝑁22(𝜌) − 𝑁𝑇
13(𝜌) + 3𝑁𝑇

23(𝜌) + 𝛽1B2(𝜌)𝑍(𝜂(𝑡𝑛))

Ψ33 = −𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 6𝑁𝐻
23(𝜌)

Ψ41 = 𝑃 (𝜌) + 𝑇𝑚𝑋1(𝜌) − 𝛼1𝐺
𝑇 (𝜂(𝑡𝑛)) + 𝛿1A(𝜌)𝐺(𝜂(𝑡𝑛))

Ψ42 = 𝑇𝑚𝐸𝑇
2 (𝜂(𝑡𝑛)) + 𝑇𝑚

(︁
𝑋𝑇

2 (𝜌) − 𝑋1(𝜌)
)︁

− 𝜁1𝐺
𝑇 (𝜂(𝑡𝑛)) + 𝛿1B2(𝜌)𝑍(𝜂(𝑡𝑛))

Ψ43 = −𝛽1𝐺
𝑇 (𝜂(𝑡𝑛))
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Ψ44 = 𝑇𝑚𝐸1(𝜂(𝑡𝑛)) − 𝛿1𝐺
𝐻(𝜂(𝑡𝑛))

Ψ51 = 𝜇1C(𝜌)𝐺(𝜂(𝑡𝑛)), Ψ52 = 𝜇1D2(𝜌)𝑍(𝜂(𝑡𝑛)), Ψ53 = Ψ54 = 0𝑛𝑦×𝑛𝑥

Ψ55 = (1 − 2𝜇1)I𝑛𝑦

Ψ61 = 𝛼1B𝑇
1 (𝜌), Ψ62 = 𝜁1B𝑇

1 (𝜌), Ψ63 = 𝛽1B𝑇
1 (𝜌)

Ψ64 = 𝛿1B𝑇
1 (𝜌), Ψ65 = 𝜇1D𝑇

1 (𝜌), Ψ66 = −𝛾2I𝑛𝑤

ϒ11 = 𝑃̇ (𝜌) − 𝑋1(𝜌) +
(︁
𝑁11(𝜌) + 3𝑁21(𝜌) + 𝛼2A(𝜌)𝐺(𝜂(𝑡𝑛))

)︁𝐻

ϒ21 = −
(︁
𝑋2(𝜌) − 𝑋1(𝜌)

)︁
− 𝑁11(𝜌) + 3𝑁21(𝜌) + 𝑁𝑇

12(𝜌) + 3𝑁𝑇
22(𝜌) + 𝑇𝑚𝑁14(𝜌)

+𝜁2A(𝜌)𝐺(𝜂(𝑡𝑛)) + 𝛼2
(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝑇

ϒ22 = −
(︁
𝑋1(𝜌) − 𝑋𝐻

2 (𝜌)
)︁

+ 𝑇𝑚𝑁𝐻
15(𝜌) +

(︁
− 𝑁12(𝜌) + 3𝑁22(𝜌) + 𝜁2B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝐻

ϒ31 = −6𝑁21(𝜌) + 𝑁𝑇
13(𝜌) + 3𝑁𝑇

23(𝜌) + 𝛽2A(𝜌)𝐺(𝜂(𝑡𝑛))

ϒ32 = −6𝑁22(𝜌) − 𝑁𝑇
13(𝜌) + 3𝑁𝑇

23(𝜌) + 𝑇𝑚𝑁𝑇
16(𝜌) + 𝛽2B2(𝜌)𝑍(𝜂(𝑡𝑛))

ϒ33 = −𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 6𝑁𝐻
23(𝜌)

ϒ41 = 𝑇𝑚𝑁11(𝜌) + 𝛿2A(𝜌)𝐺(𝜂(𝑡𝑛))

ϒ42 = 𝑇𝑚𝑁12(𝜌) + 𝛿2B2(𝜌)𝑍(𝜂(𝑡𝑛))

ϒ43 = 𝑇𝑚𝑁13(𝜌), ϒ44 = −𝑇𝑚𝐸1(𝜂(𝑡𝑛))

ϒ51 = 𝑇𝑚𝑁14(𝜌) + 𝜑2A(𝜌)𝐺(𝜂(𝑡𝑛))

ϒ52 = 𝑇𝑚𝑁15(𝜌) + 𝜑2B2(𝜌)𝑍(𝜂(𝑡𝑛))

ϒ53 = 𝑇𝑚𝑁16(𝜌), ϒ54 = −𝑇𝑚𝐸2(𝜂(𝑡𝑛)), ϒ55 = −𝑇𝑚𝐸3(𝜂(𝑡𝑛))

ϒ61 = 3𝑇𝑚𝑁21(𝜌) + 𝜃2A(𝜌)𝐺(𝜂(𝑡𝑛))

ϒ62 = 3𝑇𝑚𝑁22(𝜌) + 𝜃2B2(𝜌)𝑍(𝜂(𝑡𝑛))

ϒ63 = 3𝑇𝑚𝑁23(𝜌), ϒ64 = ϒ65 = 0𝑛𝑥×𝑛𝑥 , ϒ66 = −3𝑇𝑚𝐸1(𝜂(𝑡𝑛))

ϒ71 = 3𝑇𝑚𝑁24(𝜌) + 𝜆2A(𝜌)𝐺(𝜂(𝑡𝑛))

ϒ72 = 3𝑇𝑚𝑁25(𝜌) + 𝜆2B2(𝜌)𝑍(𝜂(𝑡𝑛))

ϒ73 = 3𝑇𝑚𝑁26(𝜌), ϒ74 = ϒ75 = 0𝑛𝑥×𝑛𝑥 , ϒ76 = −3𝑇𝑚𝐸2(𝜂(𝑡𝑛)), ϒ77 = −3𝑇𝑚𝐸3(𝜂(𝑡𝑛))

ϒ81 = 𝑃 (𝜌) + 𝜔2A(𝜌)𝐺(𝜂(𝑡𝑛)) − 𝛼2𝐺
𝑇 (𝜂(𝑡𝑛))

ϒ82 = 𝜔2B2(𝜌)𝑍(𝜂(𝑡𝑛)) − 𝜁2𝐺
𝑇 (𝜂(𝑡𝑛))

ϒ83 = − 𝛽2𝐺
𝑇 (𝜂(𝑡𝑛)), ϒ84 = −𝛿2𝐺

𝑇 (𝜂(𝑡𝑛)), ϒ85 = −𝜑2𝐺
𝑇 (𝜂(𝑡𝑛))

ϒ86 = −𝜃2𝐺
𝑇 (𝜂(𝑡𝑛)), ϒ87 = −𝜆2𝐺

𝑇 (𝜂(𝑡𝑛)), ϒ88 = −𝜔2𝐺
𝐻(𝜂(𝑡𝑛))

ϒ91 = 𝜇2C(𝜌)𝐺(𝜂(𝑡𝑛)), ϒ92 = 𝜇2D2(𝜌)𝑍(𝜂(𝑡𝑛))

ϒ93 = ϒ94 = ϒ95 = ϒ96 = ϒ97 = ϒ98 = 0𝑛𝑦×𝑛𝑥 , ϒ99 = (1 − 2𝜇2)I𝑛𝑦
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ϒ10′1 = 𝛼2B𝑇
1 (𝜌), ϒ10′2 = 𝜁2B𝑇

1 (𝜌), ϒ10′3 = 𝛽2B𝑇
1 (𝜌), ϒ10′4 = 𝛿2B𝑇

1 (𝜌)

ϒ10′5 = 𝜑2B𝑇
1 (𝜌), ϒ10′6 = 𝜃2B𝑇

1 (𝜌), ϒ10′7 = 𝜆2B𝑇
1 (𝜌), ϒ10′8 = 𝜔2B𝑇

1 (𝜌)

ϒ10′9 = 𝜇2D𝑇
1 (𝜌), ϒ10′10 = −𝛾2I𝑛𝑤

with a gain-scheduled sampled-data control gain given by 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)),
and 𝛾 as an upper bound to the ℒ2-gain of the closed-loop system.

Proof of Theorem 4.1. Consider the time-dependent Lyapunov function (3.12). As shown
in Section 3.2.1, the positiveness of the adopted Lyapunov function (3.12) is guaranteed
if the condition (3.21) holds.

By retaking (3.36), condition (2.18) can be rewritten as

𝑊̇ (𝑥, 𝑡) + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡) ≤

⎧⎨⎩𝜋1 + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡)
⎫⎬⎭

+ (𝑡𝑛+1 − 𝑡)
⎧⎨⎩𝜋2

⎫⎬⎭+ (𝑡 − 𝑡𝑛)
⎧⎨⎩𝜋3 + 𝜉𝑇 (𝑡)𝑁𝑇

1 (𝜌)
⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸

𝑇
2 (𝜂(𝑡𝑛))

𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦−1

𝑁1𝜉(𝑡)+

3𝜉𝑇 (𝑡)𝑁𝑇

2 (𝜌)
⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸

𝑇

2 (𝜂(𝑡𝑛))
𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦−1

𝑁2𝜉(𝑡)
⎫⎬⎭ < 0, (4.4)

where 𝜋1, 𝜋2, and 𝜋3 are defined, respectively, in (3.37), (3.38), and (3.39).

Provided that (4.4) is affine with respect to t, adopting 𝑡 = 𝑡𝑛, with 𝑡𝑛+1 −𝑡𝑛 ≤
𝑇𝑚, the feasibility is guaranteed if

⎧⎨⎩𝜋1 + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡)
⎫⎬⎭+ 𝑇𝑚

⎧⎨⎩𝜋2

⎫⎬⎭ < 0 (4.5)

is satisfied.

Defining

𝒬1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑄1
11 * * * * *

𝑄1
21 𝑄1

22 * * * *
𝑄1

31 𝑄1
32 𝑄1

33 * * *
𝑄1

41 𝑄1
42 0 𝑄1

44 * *
0 0 0 0 I𝑛𝑦 *
0 0 0 0 0 −𝛾2I𝑛𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝜉1(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥(𝑡)
𝑥(𝑡𝑛)
𝜈(𝑡)
𝑥̇(𝑡)
𝑦(𝑡)
𝑤(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.6)
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in which

𝑄1
11 = 𝑃̇ (𝜌) − 𝑋1(𝜌) + 𝑇𝑚𝑋̇1(𝜌) +

(︁
𝑁11(𝜌) + 3𝑁21(𝜌)

)︁𝐻

𝑄1
21 = −

(︁
𝑋2(𝜌) − 𝑋1(𝜌)

)︁
+ 𝑇𝑚

(︁
𝑋̇2(𝜌) − 𝑋̇1(𝜌)

)︁
− 𝑁11(𝜌) + 3𝑁21(𝜌) + 𝑁

𝑇
12(𝜌) + 3𝑁

𝑇
22(𝜌)

𝑄1
22 = −

(︁
𝑋1(𝜌) − 𝑋

𝐻

2 (𝜌)
)︁

+ 𝑇𝑚

(︁
𝑋̇1(𝜌) − 𝑋̇

𝐻

2 (𝜌)
)︁

+ 𝑇𝑚𝐸3(𝜂(𝑡𝑛)) +
(︁
3𝑁22(𝜌) − 𝑁12(𝜌)

)︁𝐻

𝑄1
31 = 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 6𝑁21(𝜌) + 𝑁

𝑇

13(𝜌) + 3𝑁
𝑇

23(𝜌)

𝑄1
32 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 6𝑁22(𝜌) − 𝑁

𝑇

13(𝜌) + 3𝑁
𝑇

23(𝜌)

𝑄1
33 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 6𝑁

𝐻

23(𝜌)

𝑄1
41 = 𝑃 (𝜌) + 𝑇𝑚𝑋1(𝜌)

𝑄1
42 = 𝑇𝑚𝐸

𝑇

2 (𝜂(𝑡𝑛)) + 𝑇𝑚

(︁
𝑋

𝑇

2 (𝜌) − 𝑋1(𝜌)
)︁

𝑄1
44 = 𝑇𝑚𝐸1(𝜂(𝑡𝑛))

one can notice that

(4.5) ⇐⇒ 𝜉
𝑇

1 (𝑡)𝒬1𝜉1(𝑡) < 0 ∀ 𝜉1(𝑡) ̸= 0 : ℬ1𝜉1(𝑡) = 0, (4.7)

with

ℬ1 =
⎡⎣A(𝜌) B2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 −I 0 B1(𝜌)

C(𝜌) D2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 0 −I D1(𝜌)

⎤⎦ . (4.8)

By recovering the implications (i) and (iv) of Lemma 2.2, (4.7) implies that
there exists a matrix

𝒳1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐺1
1(𝜌) 𝐽1

1 (𝜌)
𝐺1

2(𝜌) 𝐽1
2 (𝜌)

𝐺1
3(𝜌) 𝐽1

3 (𝜌)
𝐺1

4(𝜌) 𝐽1
4 (𝜌)

𝐺1
5(𝜌) 𝐽1

5 (𝜌)
𝐺1

6(𝜌) 𝐽1
6 (𝜌)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9)

such that
𝒬1 + 𝒳1ℬ1 + ℬ𝑇

1 𝒳 𝑇
1 ≺ 0. (4.10)

On the other hand, adopting 𝑡 = 𝑡𝑛+1 and since 𝑡𝑛+1 −𝑡𝑛 ≤ 𝑇𝑚, if the condition

⎧⎨⎩𝜋1+𝑦𝑇 (𝑡)𝑦(𝑡)−𝛾2𝑤𝑇 (𝑡)𝑤(𝑡)
⎫⎬⎭+𝑇𝑚

⎧⎨⎩𝜋3+𝜉𝑇 (𝑡)𝑁𝑇

1 (𝜌)
⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸

𝑇
2 (𝜂(𝑡𝑛))

𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦−1

𝑁1𝜉(𝑡)

+ 3𝜉𝑇 (𝑡)𝑁𝑇

2 (𝜌)
⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸

𝑇

2 (𝜂(𝑡𝑛))
𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦−1

𝑁2𝜉(𝑡)
⎫⎬⎭ < 0 (4.11)

holds, then the feasibility of (4.4) is ensured.
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Defining

𝒬2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑄2
11 * * * * * * * * *

𝑄2
21 𝑄2

22 * * * * * * * *
𝑄2

31 𝑄2
32 𝑄1

33 * * * * * * *
𝑄2

41 𝑄2
42 𝑄2

43 𝑄1
44 * * * * * *

𝑄2
51 𝑄2

52 𝑄2
53 𝑄2

54 𝑄2
55 * * * * *

𝑄2
61 𝑄2

62 𝑄2
63 0 0 𝑄2

66 * * * *
𝑄2

71 𝑄2
72 𝑄2

73 0 0 𝑄2
76 𝑄2

77 * * *
𝑄2

81 0 0 0 0 0 0 0 * *
0 0 0 0 0 0 0 0 I𝑛𝑦 *
0 0 0 0 0 0 0 0 0 −𝛾2I𝑛𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.12)

in which

𝑄2
11 = 𝑃̇ (𝜌) − 𝑋1(𝜌) +

(︁
𝑁11(𝜌) + 3𝑁21(𝜌)

)︁𝐻

𝑄2
21 = −

(︁
𝑋2(𝜌) − 𝑋1(𝜌)

)︁
+ 𝑇𝑚𝑁14(𝜌) − 𝑁11(𝜌) + 3𝑁21(𝜌) + 𝑁

𝑇
12(𝜌) + 3𝑁

𝑇
22(𝜌)

𝑄2
22 = −

(︁
𝑋1(𝜌) − 𝑋

𝐻

2 (𝜌)
)︁

+ 𝑇𝑚𝑁
𝐻

15(𝜌) +
(︁

− 𝑁12(𝜌) + 3𝑁22(𝜌)
)︁𝐻

𝑄2
31 = − 6𝑁21(𝜌) + 𝑁

𝑇
13(𝜌) + 3𝑁

𝑇
23(𝜌)

𝑄2
32 = 𝑇𝑚𝑁

𝑇

16(𝜌) − 6𝑁22(𝜌) − 𝑁
𝑇

13(𝜌) + 3𝑁
𝑇

23(𝜌)

𝑄2
33 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 6𝑁

𝐻

23(𝜌)

𝑄2
41 = 𝑇𝑚𝑁11(𝜌), 𝑄2

42 = 𝑇𝑚𝑁12(𝜌), 𝑄2
43 = 𝑇𝑚𝑁13(𝜌)

𝑄2
44 = − 𝑇𝑚𝐸1(𝜂(𝑡𝑛))

𝑄2
51 = 𝑇𝑚𝑁14(𝜌), 𝑄2

52 = 𝑇𝑚𝑁15(𝜌), 𝑄2
53 = 𝑇𝑚𝑁16(𝜌)

𝑄2
54 = − 𝑇𝑚𝐸2(𝜂(𝑡𝑛))

𝑄2
55 = − 𝑇𝑚𝐸3(𝜂(𝑡𝑛))

𝑄2
61 = 3𝑇𝑚𝑁21(𝜌), 𝑄2

62 = 3𝑇𝑚𝑁22(𝜌), 𝑄2
63 = 3𝑇𝑚𝑁23(𝜌)

𝑄2
66 = − 3𝑇𝑚𝐸1(𝜂(𝑡𝑛))

𝑄2
71 = 3𝑇𝑚𝑁24(𝜌), 𝑄2

72 = 3𝑇𝑚𝑁25(𝜌), 𝑄2
73 = 3𝑇𝑚𝑁26(𝜌)

𝑄2
76 = − 3𝑇𝑚𝐸2(𝜂(𝑡𝑛))

𝑄2
77 = − 3𝑇𝑚𝐸3(𝜂(𝑡𝑛))

𝑄2
81 = 𝑃 (𝜌)
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and

ℬ⊥
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0

A(𝜌) B2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 0 0 0 0 B1(𝜌)
C(𝜌) D2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 0 0 0 0 D1(𝜌)

0 0 0 0 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.13)

the following relation holds, by applying Schur complements to (4.11):

(4.11) ⇐⇒ ℬ⊥
2

𝑇 𝒬2ℬ⊥
2 ≺ 0. (4.14)

Carrying the equivalence of (ii) and (iv) of Lemma 2.2, (4.14) suggests the
existence of a matrix

𝒳2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐺2
1(𝜌) 𝐽2

1 (𝜌)
𝐺2

2(𝜌) 𝐽2
2 (𝜌)

𝐺2
3(𝜌) 𝐽2

3 (𝜌)
𝐺2

4(𝜌) 𝐽2
4 (𝜌)

𝐺2
5(𝜌) 𝐽2

5 (𝜌)
𝐺2

6(𝜌) 𝐽2
6 (𝜌)

𝐺2
7(𝜌) 𝐽2

7 (𝜌)
𝐺2

8(𝜌) 𝐽2
8 (𝜌)

𝐺2
9(𝜌) 𝐽2

9 (𝜌)
𝐺2

10(𝜌) 𝐽2
10(𝜌)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.15)

such that
𝒬2 + 𝒳2ℬ2 + ℬ𝑇

2 𝒳 𝑇
2 ≺ 0, (4.16)

with

ℬ2 =
⎡⎣A(𝜌) B2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 0 0 0 0 −I 0 B1(𝜌)

C(𝜌) D2(𝜌)𝐾(𝜂(𝑡𝑛)) 0 0 0 0 0 0 −I D1(𝜌)

⎤⎦ . (4.17)

The feasibility of both conditions (4.10) and (4.16) implies that condition (2.18)
holds for all 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1). Nonetheless, one can verify that the expansion of (4.10)
and (4.16) yields the product of multiple decision variables. The resulting problem is
therefore nonconvex.

In order to achieve the linearization of the product of variables in (4.10)
and (4.16), the first step consists of applying congruence transformations Ω̃𝑇

1 and Ω̃1

to the left and to the right of (4.10), and of pre- and post-multiplying (4.16) with Ω̃𝑇
2
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and Ω̃2, respectively, in which

Ω̃1 = diag
(︁
I4 ⊗ 𝐺(𝜂(𝑡𝑛)), I𝑛𝑦 , I𝑛𝑤

)︁
,

Ω̃2 = diag
(︁
I8 ⊗ 𝐺(𝜂(𝑡𝑛)), I𝑛𝑦 , I𝑛𝑤

)︁
.

(4.18)

The sole application of the congruence transformations (4.18) is not enough for linearizing
relations (4.10) and (4.16), since the products of decision variables remain. However, by
properly choosing the slack variables in (4.9) and in (4.15), and by considering some
changes of variables, the linearization process is achieved. Therefore, the second step is
choosing

𝐺𝑖
1(𝜌) = 𝛼𝑖𝐺

−𝑇 (𝜂(𝑡𝑛)), 𝐺𝑖
2(𝜌) = 𝜁𝑖𝐺

−𝑇 (𝜂(𝑡𝑛)), 𝐺𝑖
3(𝜌) = 𝛽𝑖𝐺

−𝑇 (𝜂(𝑡𝑛)),
𝐺𝑖

4(𝜌) = 𝛿𝑖𝐺
−𝑇 (𝜂(𝑡𝑛)), 𝐺2

5(𝜌) = 𝜑2𝐺
−𝑇 (𝜂(𝑡𝑛)),

𝐺2
6(𝜌) = 𝜃2𝐺

−𝑇 (𝜂(𝑡𝑛)), 𝐺2
7(𝜌) = 𝜆2𝐺

−𝑇 (𝜂(𝑡𝑛)), 𝐺2
8(𝜌) = 𝜔2𝐺

−𝑇 (𝜂(𝑡𝑛)),
𝐽1

5 (𝜌) = 𝜇1I𝑛𝑦 , 𝐽2
9 (𝜌) = 𝜇2I𝑛𝑦 ,

(4.19)

for 𝑖 = 1, 2. For linearization purposes, any other block variable in (4.9) and in (4.15) is
chosen to be a null matrix. Furthermore, Ω̃1 and Ω̃2 are chosen to simultaneously depend
on 𝐺(𝜂(𝑡𝑛)) since both matrices multiply to the right the controller gain matrix, 𝐾(𝜂(𝑡𝑛)).

As a third step, adopting the following changes of variables

𝑃 (𝜌) = 𝐺𝑇 (𝜂(𝑡𝑛))𝑃 (𝜌)𝐺(𝜂(𝑡𝑛)), 𝐸1(𝜂(𝑡𝑛)) = 𝐺𝑇 (𝜂(𝑡𝑛))𝐸1(𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)),
𝐸2(𝜂(𝑡𝑛)) = 𝐺𝑇 (𝜂(𝑡𝑛))𝐸2(𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)), 𝐸3(𝜂(𝑡𝑛)) = 𝐺𝑇 (𝜂(𝑡𝑛))𝐸3(𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)),

𝑋1(𝜌) = 𝐺𝑇 (𝜂(𝑡𝑛))𝑋1(𝜌)𝐺(𝜂(𝑡𝑛)), 𝑋2(𝜌) = 𝐺𝑇 (𝜂(𝑡𝑛))𝑋2(𝜌)𝐺(𝜂(𝑡𝑛)),
𝐹 (𝜂(𝑡𝑛)) = 𝐺𝑇 (𝜂(𝑡𝑛))𝐹 (𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)), 𝑁𝑖𝑗(𝜌) = 𝐺𝑇 (𝜂(𝑡𝑛))𝑁 𝑖𝑗(𝜌)𝐺(𝜂(𝑡𝑛)),

𝑍(𝜂(𝑡𝑛)) = 𝐾(𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)),
(4.20)

for 𝑖 = 1, 2, 𝑗 = 1, . . . , 6, one can verify that the resulting relations are linear and that

Ω̃𝑇
1 (4.10)Ω̃1 ⇐⇒ (4.2),

Ω̃𝑇
2 (4.16)Ω̃2 ⇐⇒ (4.3).

(4.21)

Thus, (4.2) and (4.3) provide sufficient conditions for satisfying (2.18), for
all 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1), with a control gain 𝐾(𝜂(𝑡𝑛)) given by

𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)). (4.22)

Considering the changes of variables given in (4.20), the condition (3.21), which
ensures (2.17), must be accordingly adapted. Applying the congruence transformation
matrix

Ω̃3 = 𝐺(𝜂(𝑡𝑛)), (4.23)

in a similar way to what is performed in (4.21), one can show that

Ω̃𝑇
3 (3.21)Ω̃3 ⇐⇒ 𝑃 (𝜌) ≻ 0. (4.24)

Condition (4.24) ensures that (2.17) is satisfied for all 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1), which
completes the proof.
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4.1.2 Stabilization

In the absence of disturbances 𝑤(𝑡), the problem of stabilization of closed-loop
LPV systems (3.6) is addressed similarly to what is performed in Theorem 3.2. In this
section, LMI conditions ensuring asymptotic stability for (3.6) are derived with the aid
of Finsler’s lemma, as presented in the following theorem.

Theorem 4.2. The origin is an asymptotically stable equilibrium point of system (3.6)
with aperiodic samplings lower than 𝑇𝑚 if, given a scalar 𝑇𝑚 > 0 and a set of real
scalars 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛿1 > 0, 𝛿2, 𝜁1, 𝜁2, 𝜑2, 𝜃2, 𝜆2, 𝜔2 > 0, there exist symmetric
positive-definite matrices 𝑃 (𝜌), 𝐸1(𝜂(𝑡𝑛)), 𝐸3(𝜂(𝑡𝑛)), 𝐹 (𝜂(𝑡𝑛)) ∈ R𝑛𝑥×𝑛𝑥, a symmetric ma-
trix 𝑋1(𝜌) ∈ R𝑛𝑥×𝑛𝑥, matrices 𝐺(𝜂(𝑡𝑛)), 𝐸2(𝜂(𝑡𝑛)), 𝑋2(𝜌) ∈ R𝑛𝑥×𝑛𝑥, 𝑍(𝜂(𝑡𝑛)) ∈ R𝑛𝑢×𝑛𝑥,
𝑁𝑖𝑗(𝜌) ∈ R𝑛𝑥×𝑛𝑥, for 𝑖 = 1, 2, 𝑗 = 1, . . . , 6, satisfying the following LMIs:⎡⎢⎢⎢⎢⎢⎢⎣

Ψ11 * * *
Ψ21 Ψ22 * *
Ψ31 Ψ32 Ψ33 *
Ψ41 Ψ42 Ψ43 Ψ44

⎤⎥⎥⎥⎥⎥⎥⎦ ≺ 0 (4.25)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϒ11 * * * * * * *
ϒ21 ϒ22 * * * * * *
ϒ31 ϒ32 ϒ33 * * * * *
ϒ41 ϒ42 ϒ43 ϒ44 * * * *
ϒ51 ϒ52 ϒ53 ϒ54 ϒ55 * * *
ϒ61 ϒ62 ϒ63 ϒ64 ϒ65 ϒ66 * *
ϒ71 ϒ72 ϒ73 ϒ74 ϒ75 ϒ76 ϒ77 *
ϒ81 ϒ82 ϒ83 ϒ84 ϒ85 ϒ86 ϒ78 ϒ88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0 (4.26)

for all 𝜌 ∈ Θ, in which the matrix blocks in (4.25) and in (4.26) are identical to the
matrix blocks defined in (4.2) and in (4.3), with a gain-scheduling sampled-data state-
feedback controller given by 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)).

The proof of Theorem 4.2 follows the same lines as Theorem 4.1 and is omitted.

4.2 Simplified approach
As mentioned in Section 4.1, a different upper bound to (3.30) can be proposed

with the introduction of less matrices. One advantage of such procedure is reducing the
number of scalar variables on the proposed design conditions, when compared to Theo-
rem 4.1. In fact, the denomination simplified method is given due to the reduced number
of decision matrices, with respect to the number of decision matrices available in the full
approach. Such reduction on the number of scalar variables implies that less exhaustive
scalar searches have to be carried out when control gains are being synthesized.
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4.2.1 Controller synthesis

In the following theorem, a simplified approach to the one presented in Theo-
rem 4.1 is proposed.

Theorem 4.3. The origin is an asymptotically stable equilibrium point of system (3.6)
with aperiodic samplings lower than 𝑇𝑚 if, given a scalar 𝑇𝑚 > 0 and a set of real
scalars 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛿1 > 0, 𝛿2 > 0, 𝜁1, 𝜁2, 𝜇1 > 1

2 , 𝜇2 > 1
2 , there exist symmetric

positive-definite matrices 𝑃 (𝜌), 𝐸1(𝜂(𝑡𝑛)), 𝐸3(𝜂(𝑡𝑛)), 𝐹 (𝜂(𝑡𝑛)) ∈ R𝑛𝑥×𝑛𝑥, a symmetric ma-
trix 𝑋1(𝜌) ∈ R𝑛𝑥×𝑛𝑥, matrices 𝐺(𝜂(𝑡𝑛)), 𝐸2(𝜂(𝑡𝑛)), 𝑋2(𝜌) ∈ R𝑛𝑥×𝑛𝑥, 𝑍(𝜂(𝑡𝑛)) ∈ R𝑛𝑢×𝑛𝑥,
minimizing 𝛾 subject to the following LMIs:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴11 * * * * *
𝐴21 𝐴22 * * * *
𝐴31 𝐴32 𝐴33 * * *
𝐴41 𝐴42 𝐴43 𝐴44 * *
𝐴51 𝐴52 𝐴53 𝐴54 𝐴55 *
𝐴61 𝐴62 𝐴63 𝐴64 𝐴65 𝐴66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0 (4.27)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵11 * * * * *
𝐵21 𝐵22 * * * *
𝐵31 𝐵32 𝐵33 * * *
𝐵41 𝐵42 𝐵43 𝐵44 * *
𝐵51 𝐵52 𝐵53 𝐵54 𝐵55 *
𝐵61 𝐵62 𝐵63 𝐵64 𝐵65 𝐵66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0 (4.28)

for all 𝜌 ∈ Θ, in which

𝐴11 =𝑃̇ (𝜌) − 𝑋1(𝜌) + 𝑇𝑚𝑋̇1(𝜌) − 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛼1
(︁
A(𝜌)𝐺(𝜂(𝑡𝑛))

)︁𝐻

𝐴21 = −
(︁
𝑋2(𝜌) − 𝑋1(𝜌)

)︁
+ 𝑇𝑚

(︁
𝑋̇2(𝜌) − 𝑋̇1(𝜌)

)︁
− 2

𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) − 𝐸2(𝜂(𝑡𝑛))

+𝜁1A(𝜌)𝐺(𝜂(𝑡𝑛)) + 𝛼1
(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝑇

𝐴22 = −
(︁
𝑋1(𝜌) − 𝑋𝐻

2 (𝜌)
)︁

+ 𝑇𝑚

(︁
𝑋̇1(𝜌) − 𝑋̇𝐻

2 (𝜌)
)︁

+ 𝑇𝑚𝐸3(𝜂(𝑡𝑛)) − 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛))

+𝐸𝐻
2 (𝜂(𝑡𝑛)) + 𝜁1

(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝐻

𝐴31 =𝑇𝑚𝐹 (𝜂(𝑡𝑛)) + 6
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛽1A(𝜌)𝐺(𝜂(𝑡𝑛))

𝐴32 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) + 6
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛽1B2(𝜌)𝑍(𝜂(𝑡𝑛))

𝐴33 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 12
𝑇𝑚

𝐸1(𝜂(𝑡𝑛))

𝐴41 =𝑃 (𝜌) + 𝑇𝑚𝑋1(𝜌) − 𝛼1𝐺
𝑇 (𝜂(𝑡𝑛)) + 𝛿1A(𝜌)𝐺(𝜂(𝑡𝑛))
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𝐴42 =𝑇𝑚𝐸𝑇
2 (𝜂(𝑡𝑛)) + 𝑇𝑚

(︁
𝑋𝑇

2 (𝜌) − 𝑋1(𝜌)
)︁

− 𝜁1𝐺
𝑇 (𝜂(𝑡𝑛)) + 𝛿1B2(𝜌)𝑍(𝜂(𝑡𝑛))

𝐴43 = − 𝛽1𝐺
𝑇 (𝜂(𝑡𝑛)), 𝐴44 = 𝑇𝑚𝐸1(𝜂(𝑡𝑛)) − 𝛿1𝐺

𝐻(𝜂(𝑡𝑛))

𝐴51 =𝜇1C(𝜌)𝐺(𝜂(𝑡𝑛)), 𝐴52 = 𝜇1D2(𝜌)𝑍(𝜂(𝑡𝑛)), 𝐴53 = 𝐴54 = 0𝑛𝑦×𝑛𝑥

𝐴55 =(1 − 2𝜇1)I𝑛𝑦

𝐴61 =𝛼1B𝑇
1 (𝜌), 𝐴62 = B𝑇

1 (𝜌), 𝐴63 = 𝛽1B𝑇
1 (𝜌), 𝐴64 = 𝛿1B𝑇

1 (𝜌)

𝐴65 =𝜇1D𝑇
1 (𝜌), 𝐴66 = −𝛾2I𝑛𝑤

𝐵11 =𝑃̇ (𝜌) − 𝑋1(𝜌) − 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛼2
(︁
A(𝜌)𝐺(𝜂(𝑡𝑛))

)︁𝐻

𝐵21 = −
(︁
𝑋2(𝜌) − 𝑋1(𝜌)

)︁
− 2

𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) − 𝐸2(𝜂(𝑡𝑛)) + 𝜁2A(𝜌)𝐺(𝜂(𝑡𝑛))

+𝛼2
(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝑇

𝐵22 = −
(︁
𝑋1(𝜌) − 𝑋𝐻

2 (𝜌)
)︁

− 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝐸𝐻
2 (𝜂(𝑡𝑛)) − 𝑇𝑚𝐸3(𝜂(𝑡𝑛))

+𝜁2
(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝐻

𝐵31 = 6
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛽2A(𝜌)𝐺(𝜂(𝑡𝑛))

𝐵32 = 6
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛽2B2(𝜌)𝑍(𝜂(𝑡𝑛))

𝐵33 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 12
𝑇𝑚

𝐸1(𝜂(𝑡𝑛))

𝐵41 =𝑃 (𝜌) + 𝛿2A(𝜌)𝐺(𝜂(𝑡𝑛)) − 𝛼2𝐺
𝑇 (𝜂(𝑡𝑛))

𝐵42 =𝛿2B2(𝜌)𝑍(𝜂(𝑡𝑛)) − 𝐺𝑇 (𝜂(𝑡𝑛)), 𝐵43 = −𝛽2𝐺
𝑇 (𝜂(𝑡𝑛)), 𝐵44 = −𝛿2𝐺

𝐻(𝜂(𝑡𝑛))

𝐵51 =𝜇2C(𝜌)𝐺(𝜂(𝑡𝑛)), 𝐵52 = 𝜇2D2(𝜌)𝑍(𝜂(𝑡𝑛)), 𝐵53 = 𝐵54 = 0𝑛𝑦×𝑛𝑥

𝐵55 =(1 − 2𝜇2)I𝑛𝑦

𝐵61 =𝛼2B𝑇
1 (𝜌), 𝐵62 = B𝑇

1 (𝜌), 𝐵63 = 𝛽2B𝑇
1 (𝜌)

𝐵64 =𝛿2B𝑇
1 (𝜌), 𝐵65 = 𝜇2D𝑇

1 (𝜌), 𝐵66 = −𝛾2I𝑛𝑤

with a gain-scheduled sampled-data control gain given by 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)),
and with 𝛾 as an upper bound to the ℒ2-gain of the closed-loop system.

Proof of Theorem 4.3. Retake the time-dependent Lyapunov function (3.12). The posi-
tiveness of the adopted Lyapunov function (3.12) is guaranteed if the condition (3.21)
holds. This is the same condition used in the full approach before adopting any change of
variables, available in Theorem 4.1.

An alternative upper bound for (4.1) can be computed as follows. Firstly,
(4.1) is expanded, taking into account matrices Ω*

1 and Ω*
2, which are given in (3.31),

and 𝑅 =
⎡⎣𝐸1(𝜂(𝑡𝑛)) 𝐸

𝑇
2 (𝜂(𝑡𝑛))

𝐸2(𝜂(𝑡𝑛)) 𝐸3(𝜂(𝑡𝑛))

⎤⎦:
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− 1
𝜏(𝑡)𝜉𝑇 (𝑡)

{︃
(Ω*

1)𝑇 𝑅(Ω*
1) + 3(Ω*

2)𝑇 𝑅(Ω*
2)
}︃

𝜉(𝑡) =

− 1
𝜏(𝑡)𝜉𝑇 (𝑡)

⎡⎢⎢⎣
4𝐸1(𝜂(𝑡𝑛)) 2𝐸1(𝜂(𝑡𝑛)) + 𝜏(𝑡)𝐸𝑇

2 (𝜂(𝑡𝑛)) −6𝐸1(𝜂(𝑡𝑛))
* 4𝐸1(𝜂(𝑡𝑛)) − 𝜏(𝑡)𝐸𝐻

2 (𝜂(𝑡𝑛)) + 𝜏2(𝑡)𝐸3(𝜂(𝑡𝑛)) −6𝐸1(𝜂(𝑡𝑛))
* * 12𝐸1(𝜂(𝑡𝑛))

⎤⎥⎥⎦ 𝜉(𝑡) =

− 𝜉𝑇 (𝑡)

⎡⎢⎢⎢⎣
4

𝜏(𝑡)𝐸1(𝜂(𝑡𝑛)) 2
𝜏(𝑡)𝐸1(𝜂(𝑡𝑛)) + 𝐸

𝑇
2 (𝜂(𝑡𝑛)) − 6

𝜏(𝑡)𝐸1(𝜂(𝑡𝑛))
* 4

𝜏(𝑡)𝐸1(𝜂(𝑡𝑛)) − 𝐸
𝐻
2 (𝜂(𝑡𝑛)) + 𝜏(𝑡)𝐸3(𝜂(𝑡𝑛)) − 6

𝜏(𝑡)𝐸1(𝜂(𝑡𝑛))
* * 12

𝜏(𝑡)𝐸1(𝜂(𝑡𝑛))

⎤⎥⎥⎥⎦ 𝜉(𝑡)

(4.29)

Secondly, using the relation 𝜏(𝑡) = 𝑡 − 𝑡𝑛 ≤ 𝑇𝑚 on the terms of (4.29) which are
function of 1

𝜏(𝑡) , (4.29) can be rewritten as

− 1
𝜏(𝑡)𝜉𝑇 (𝑡)

{︃
(Ω*

1)𝑇 𝑅(Ω*
1) + 3(Ω*

2)𝑇 𝑅(Ω*
2)
}︃

𝜉(𝑡) ≤ 𝜉𝑇 (𝑡)
(︀
𝑀𝑁

1 + 𝜏(𝑡)𝑀𝑁
𝑡

)︀
𝜉(𝑡), (4.30)

with

𝑀𝑁
1 =

⎡⎢⎢⎣
− 4

𝑇𝑚
𝐸1(𝜂(𝑡𝑛)) − 2

𝑇𝑚
𝐸1(𝜂(𝑡𝑛)) − 𝐸

𝑇
2 (𝜂(𝑡𝑛)) 6

𝑇𝑚
𝐸1(𝜂(𝑡𝑛))

* − 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝐸
𝐻
2 (𝜂(𝑡𝑛)) 6

𝑇𝑚
𝐸1(𝜂(𝑡𝑛))

* * − 12
𝑇𝑚

𝐸1(𝜂(𝑡𝑛))

⎤⎥⎥⎦

𝑀𝑁
𝑡 =

⎡⎢⎢⎣
0 0 0
* −𝐸3(𝜂(𝑡𝑛)) 0
* * 0

⎤⎥⎥⎦
(4.31)

Therefore, a possible upper bound for (3.30) can be given by

−
∫︁ 𝑡

𝑡𝑛

⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦𝑇

𝑅

⎡⎣ 𝑥̇(𝑞)
𝑥(𝑡𝑛)

⎤⎦ 𝑑𝑞 ≤ 𝜉𝑇 (𝑡)
(︀
𝑀𝑁

1 + 𝜏(𝑡)𝑀𝑁
𝑡

)︀
𝜉(𝑡) (4.32)

Replacing (3.29), (4.32), and (3.22) in (2.18), the resulting terms can be then grouped
based on their dependence on time:

𝑊̇ (𝑥, 𝑡) + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡) ≤
{︃

𝜋𝑆
1 + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡)

}︃

+ (𝑡𝑛+1 − 𝑡)
{︃

𝜋𝑆
2

}︃
+ (𝑡 − 𝑡𝑛)

{︃
𝜋𝑆

3

}︃
< 0, (4.33)

with

𝜋𝑆
1 = 𝑥𝑇 (𝑡)𝑃̇ (𝜌)𝑥(𝑡) +

(︀
𝑥̇𝑇 (𝑡)𝑃 (𝜌)𝑥(𝑡)

)︀𝐻
−

⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦𝑇 ⎡⎣ 𝑋1(𝜌) 𝑋
𝑇
2 (𝜌) − 𝑋1(𝜌)

𝑋2(𝜌) − 𝑋1(𝜌) 𝑋1(𝜌) − 𝑋
𝐻
2 (𝜌)

⎤⎦⎡⎣ 𝑥(𝑡)
𝑥(𝑡𝑛)

⎤⎦+ 𝜉𝑇 (𝑡)𝑀𝑁
1 𝜉(𝑡),

𝜋𝑆
2 = 𝜋2,

𝜋𝑆
3 = −𝜈𝑇 (𝑡)𝐹 (𝜂(𝑡𝑛))𝜈(𝑡) + 𝜉𝑇 (𝑡)𝑀𝑁

𝑡 𝜉(𝑡),
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and 𝜋2 as defined in (3.38). As previously performed, (4.33) is affine with respect to t, hence
it is sufficient to ensure that (2.18) holds for both 𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛+1. Adopting 𝑡 = 𝑡𝑛 and
since 𝑡𝑛+1 − 𝑡𝑛 ≤ 𝑇𝑚, the feasibility of (4.33) is guaranteed if{︃

𝜋𝑆
1 + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡)

}︃
+ 𝑇𝑚

{︃
𝜋𝑆

2

}︃
< 0 (4.34)

is satisfied.
Defining

𝒬𝑆
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑄1
11 * * * * *

𝑄1
21 𝑄1

22 * * * *
𝑄1

31 𝑄1
32 𝑄1

33 * * *
𝑄1

41 𝑄1
42 0 𝑄1

44 * *
0 0 0 0 I𝑛𝑦 *
0 0 0 0 0 −𝛾2I𝑛𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.35)

in which

𝑄1
11 = 𝑃̇ (𝜌) − 𝑋1(𝜌) + 𝑇𝑚𝑋̇1(𝜌) − 4

𝑇𝑚
𝐸1(𝜂(𝑡𝑛))

𝑄1
21 = −

(︀
𝑋2(𝜌) − 𝑋1(𝜌)

)︀
+ 𝑇𝑚

(︀
𝑋̇2(𝜌) − 𝑋̇1(𝜌)

)︀
− 2

𝑇𝑚
𝐸1(𝜂(𝑡𝑛)) − 𝐸2(𝜂(𝑡𝑛))

𝑄1
22 = −

(︀
𝑋1(𝜌) − 𝑋

𝐻
2 (𝜌)

)︀
+ 𝑇𝑚

(︀
𝑋̇1(𝜌) − 𝑋̇

𝐻

2 (𝜌)
)︀

+ 𝑇𝑚𝐸3(𝜂(𝑡𝑛)) − 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝐸
𝐻
2 (𝜂(𝑡𝑛))

𝑄1
31 = 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) + 6

𝑇𝑚
𝐸1(𝜂(𝑡𝑛))

𝑄1
32 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) + 6

𝑇𝑚
𝐸1(𝜂(𝑡𝑛))

𝑄1
33 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 12

𝑇𝑚
𝐸1(𝜂(𝑡𝑛))

𝑄1
41 = 𝑃 (𝜌) + 𝑇𝑚𝑋1(𝜌)

𝑄1
42 = 𝑇𝑚𝐸

𝑇
2 (𝜂(𝑡𝑛)) + 𝑇𝑚

(︀
𝑋

𝑇
2 (𝜌) − 𝑋1(𝜌)

)︀
𝑄1

44 = 𝑇𝑚𝐸1(𝜂(𝑡𝑛))

one can notice that

(4.34) ⇐⇒ 𝜉
𝑇
1 (𝑡)𝒬𝑆

1 𝜉1(𝑡) < 0 ∀ 𝜉1(𝑡) ̸= 0 : ℬ1𝜉1(𝑡) = 0, (4.36)

with ℬ1 and 𝜉1(𝑡) as defined in (4.8) and (4.6), respectively.
By recovering the implications (i) and (iv) of Lemma 2.2, (4.36) implies that there

exists a matrix

𝒳1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐺1
1(𝜌) 𝐽1

1 (𝜌)
𝐺1

2(𝜌) 𝐽1
2 (𝜌)

𝐺1
3(𝜌) 𝐽1

3 (𝜌)
𝐺1

4(𝜌) 𝐽1
4 (𝜌)

𝐺1
5(𝜌) 𝐽1

5 (𝜌)
𝐺1

6(𝜌) 𝐽1
6 (𝜌)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.37)
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such that
𝒬𝑆

1 + 𝒳1ℬ1 + ℬ𝑇
1 𝒳 𝑇

1 ≺ 0. (4.38)

Adopting 𝑡 = 𝑡𝑛+1 and since 𝑡𝑛+1 − 𝑡𝑛 ≤ 𝑇𝑚, if{︃
𝜋𝑆

1 + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛾2𝑤𝑇 (𝑡)𝑤(𝑡)
}︃

+ 𝑇𝑚

{︃
𝜋𝑆

3

}︃
< 0 (4.39)

holds, then the feasibility of (3.36) is ensured.
Defining

𝒬𝑆
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑄2
11 * * * * *

𝑄2
21 𝑄2

22 * * * *
𝑄2

31 𝑄2
32 𝑄1

33 * * *
𝑄2

41 0 0 0 * *
0 0 0 0 I𝑛𝑦 *
0 0 0 0 0 −𝛾2I𝑛𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.40)

in which

𝑄2
11 = 𝑃̇ (𝜌) − 𝑋1(𝜌) − 4

𝑇𝑚
𝐸1(𝜂(𝑡𝑛))

𝑄2
21 = −

(︀
𝑋2(𝜌) − 𝑋1(𝜌)

)︀
− 2

𝑇𝑚
𝐸1(𝜂(𝑡𝑛)) − 𝐸2(𝜂(𝑡𝑛))

𝑄2
22 = −

(︀
𝑋1(𝜌) − 𝑋

𝐻
2 (𝜌)

)︀
− 4

𝑇𝑚
𝐸1(𝜂(𝑡𝑛)) + 𝐸

𝐻
2 (𝜂(𝑡𝑛)) − 𝑇𝑚𝐸3(𝜂(𝑡𝑛))

𝑄2
31 = 𝑄2

32 = 6
𝑇𝑚

𝐸1(𝜂(𝑡𝑛))

𝑄2
33 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 12

𝑇𝑚
𝐸1(𝜂(𝑡𝑛))

𝑄2
41 = 𝑃 (𝜌)

one can notice that

(4.39) ⇐⇒ 𝜉
𝑇
1 (𝑡)𝒬𝑆

2 𝜉1(𝑡) < 0 ∀ 𝜉1(𝑡) ̸= 0 : ℬ2𝜉1(𝑡) = 0, (4.41)

with ℬ2 = ℬ1. Carrying the equivalence of (i) and (iv) of Lemma 2.2, (4.41) suggests the existence
of a matrix

𝒳2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐺2
1(𝜌) 𝐽2

1 (𝜌)
𝐺2

2(𝜌) 𝐽2
2 (𝜌)

𝐺2
3(𝜌) 𝐽2

3 (𝜌)
𝐺2

4(𝜌) 𝐽2
4 (𝜌)

𝐺2
5(𝜌) 𝐽2

5 (𝜌)
𝐺2

6(𝜌) 𝐽2
6 (𝜌)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.42)

such that
𝒬𝑆

2 + 𝒳2ℬ2 + ℬ𝑇
2 𝒳 𝑇

2 ≺ 0. (4.43)

The feasibility of both conditions (4.38) and (4.43) implies that condition (2.18)
holds for all 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1). Nonetheless, the expansion of (4.38) and (4.43) yields the product of
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multiple decision variables. The resulting problem is therefore nonconvex. A similar linearization
procedure to the one presented in the proof of Theorem 4.1 is adopted.

The linearization of the product of variables in (4.38) and (4.43) is a three-step
process. The first step consists of applying congruence transformations Ω̃𝑇

1 and Ω̃1 to the left
and to the right of (4.38), and of pre- and post-multiplying (4.43) with Ω̃𝑇

2 and Ω̃2, respectively,
in which

Ω̃1 = Ω̃2 = diag
(︀
I4 ⊗ 𝐺(𝜂(𝑡𝑛)), I𝑛𝑦 , I𝑛𝑤

)︀
. (4.44)

The second step is to choose

𝐺𝑖
1(𝜌) = 𝛼𝑖𝐺

−𝑇 (𝜂(𝑡𝑛)), 𝐺𝑖
2(𝜌) = 𝜁𝑖𝐺

−𝑇 (𝜂(𝑡𝑛)),
𝐺𝑖

3(𝜌) = 𝛽𝑖𝐺
−𝑇 (𝜂(𝑡𝑛)), 𝐺𝑖

4(𝜌) = 𝛿𝑖𝐺
−𝑇 (𝜂(𝑡𝑛)),

𝐽 𝑖
5(𝜌) = 𝜇𝑖I𝑛𝑦 ,

(4.45)

for 𝑖 = 1, 2. For linearization purposes, Ω̃1 is chosen to be equal to Ω̃2, and any other block
variable in (4.37) and in (4.42) is chosen to be a null matrix. As a third step, adopting the
following changes of variables

𝑃 (𝜌) = 𝐺𝑇 (𝜂(𝑡𝑛))𝑃 (𝜌)𝐺(𝜂(𝑡𝑛)), 𝐸1(𝜂(𝑡𝑛)) = 𝐺𝑇 (𝜂(𝑡𝑛))𝐸1(𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)),
𝐸2(𝜂(𝑡𝑛)) = 𝐺𝑇 (𝜂(𝑡𝑛))𝐸2(𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)), 𝐸3(𝜂(𝑡𝑛)) = 𝐺𝑇 (𝜂(𝑡𝑛))𝐸3(𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)),

𝑋1(𝜌) = 𝐺𝑇 (𝜂(𝑡𝑛))𝑋1(𝜌)𝐺(𝜂(𝑡𝑛)), 𝑋2(𝜌) = 𝐺𝑇 (𝜂(𝑡𝑛))𝑋2(𝜌)𝐺(𝜂(𝑡𝑛)),
𝐹 (𝜂(𝑡𝑛)) = 𝐺𝑇 (𝜂(𝑡𝑛))𝐹 (𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)),

𝑍(𝜂(𝑡𝑛)) = 𝐾(𝜂(𝑡𝑛))𝐺(𝜂(𝑡𝑛)),

(4.46)

one can verify that the resulting relations are linear and that

Ω̃𝑇
1 (4.38)Ω̃1 ⇐⇒ (4.27),

Ω̃𝑇
2 (4.43)Ω̃2 ⇐⇒ (4.28).

(4.47)

Thus, (4.27) and (4.28) provide sufficient conditions for satisfying (2.18), for all 𝑡 ∈
[𝑡𝑛, 𝑡𝑛+1), with a control gain 𝐾(𝜂(𝑡𝑛)) as in (4.22).

With the changes of variables performed in (4.46), the condition (3.21), which en-
sures (2.17), must be accordingly adapted. The application of the congruence transformation
matrix

Ω̃3 = 𝐺(𝜂(𝑡𝑛)), (4.48)

in an equivalent way to what is made in (4.47), yields

Ω̃𝑇
3 (3.21)Ω̃3 ⇐⇒ 𝑃 (𝜌) ≻ 0. (4.49)

Condition (4.49) ensures that (2.17) is satisfied for all 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1), which completes
the proof.

4.2.2 Stabilization

Similar to the stabilization approach proposed in Theorem 4.2, in this section
stabilization conditions based on the procedure reported in Theorem 4.3 are developed.
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Theorem 4.4. Given a scalar 𝑇𝑚 > 0 and a set of real scalars 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛿1 > 0,
𝛿2 > 0, 𝜁1, 𝜁2, if there exist symmetric positive-definite matrices 𝑃 (𝜌), 𝐸1(𝜂(𝑡𝑛)), 𝐸3(𝜂(𝑡𝑛)),
𝐹 (𝜂(𝑡𝑛)) ∈ R𝑛𝑥×𝑛𝑥, a symmetric matrix 𝑋1(𝜌) ∈ R𝑛𝑥×𝑛𝑥, matrices 𝐺(𝜂(𝑡𝑛)), 𝐸2(𝜂(𝑡𝑛)),
𝑋2(𝜌) ∈ R𝑛𝑥×𝑛𝑥, 𝑍(𝜂(𝑡𝑛)) ∈ R𝑛𝑢×𝑛𝑥, satisfying the following LMIs:⎡⎢⎢⎢⎢⎢⎢⎣

𝐴11 * * *
𝐴21 𝐴22 * *
𝐴31 𝐴32 𝐴33 *
𝐴41 𝐴42 𝐴43 𝐴44

⎤⎥⎥⎥⎥⎥⎥⎦ ≺ 0 (4.50)

⎡⎢⎢⎢⎢⎢⎢⎣
𝐵11 * * *
𝐵21 𝐵22 * *
𝐵31 𝐵32 𝐵33 *
𝐵41 𝐵42 𝐵43 𝐵44

⎤⎥⎥⎥⎥⎥⎥⎦ ≺ 0 (4.51)

for all 𝜌 ∈ Θ, in which

𝐴11 =𝑃̇ (𝜌) − 𝑋1(𝜌) + 𝑇𝑚𝑋̇1(𝜌) − 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛼1
(︁
A(𝜌)𝐺(𝜂(𝑡𝑛))

)︁𝐻

𝐴21 = −
(︁
𝑋2(𝜌) − 𝑋1(𝜌)

)︁
+ 𝑇𝑚

(︁
𝑋̇2(𝜌) − 𝑋̇1(𝜌)

)︁
− 2

𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) − 𝐸2(𝜂(𝑡𝑛))

+𝜁1A(𝜌)𝐺(𝜂(𝑡𝑛)) + 𝛼1
(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝑇

𝐴22 = −
(︁
𝑋1(𝜌) − 𝑋𝐻

2 (𝜌)
)︁

+ 𝑇𝑚

(︁
𝑋̇1(𝜌) − 𝑋̇𝐻

2 (𝜌)
)︁

+ 𝑇𝑚𝐸3(𝜂(𝑡𝑛)) − 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛))

+𝐸𝐻
2 (𝜂(𝑡𝑛)) + 𝜁1

(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝐻

𝐴31 =𝑇𝑚𝐹 (𝜂(𝑡𝑛)) + 6
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛽1A(𝜌)𝐺(𝜂(𝑡𝑛))

𝐴32 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) + 6
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛽1B2(𝜌)𝑍(𝜂(𝑡𝑛))

𝐴33 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 12
𝑇𝑚

𝐸1(𝜂(𝑡𝑛))

𝐴41 =𝑃 (𝜌) + 𝑇𝑚𝑋1(𝜌) − 𝛼1𝐺
𝑇 (𝜂(𝑡𝑛)) + 𝛿1A(𝜌)𝐺(𝜂(𝑡𝑛))

𝐴42 =𝑇𝑚𝐸𝑇
2 (𝜂(𝑡𝑛)) + 𝑇𝑚

(︁
𝑋𝑇

2 (𝜌) − 𝑋1(𝜌)
)︁

− 𝜁1𝐺
𝑇 (𝜂(𝑡𝑛)) + 𝛿1B2(𝜌)𝑍(𝜂(𝑡𝑛))

𝐴43 = − 𝛽1𝐺
𝑇 (𝜂(𝑡𝑛)), 𝐴44 = 𝑇𝑚𝐸1(𝜂(𝑡𝑛)) − 𝛿1𝐺

𝐻(𝜂(𝑡𝑛))

𝐵11 =𝑃̇ (𝜌) − 𝑋1(𝜌) − 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛼2
(︁
A(𝜌)𝐺(𝜂(𝑡𝑛))

)︁𝐻

𝐵21 = −
(︁
𝑋2(𝜌) − 𝑋1(𝜌)

)︁
− 2

𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) − 𝐸2(𝜂(𝑡𝑛)) + 𝜁2A(𝜌)𝐺(𝜂(𝑡𝑛))

+𝛼2
(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝑇

𝐵22 = −
(︁
𝑋1(𝜌) − 𝑋𝐻

2 (𝜌)
)︁

− 4
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝐸𝐻
2 (𝜂(𝑡𝑛)) − 𝑇𝑚𝐸3(𝜂(𝑡𝑛))

+𝜁2
(︁
B2(𝜌)𝑍(𝜂(𝑡𝑛))

)︁𝐻)︁𝐻
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𝐵31 = 6
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛽2A(𝜌)𝐺(𝜂(𝑡𝑛))

𝐵32 = 6
𝑇𝑚

𝐸1(𝜂(𝑡𝑛)) + 𝛽2B2(𝜌)𝑍(𝜂(𝑡𝑛))

𝐵33 = − 𝑇𝑚𝐹 (𝜂(𝑡𝑛)) − 12
𝑇𝑚

𝐸1(𝜂(𝑡𝑛))

𝐵41 =𝑃 (𝜌) + 𝛿2A(𝜌)𝐺(𝜂(𝑡𝑛)) − 𝛼2𝐺
𝑇 (𝜂(𝑡𝑛))

𝐵42 =𝛿2B2(𝜌)𝑍(𝜂(𝑡𝑛)) − 𝐺𝑇 (𝜂(𝑡𝑛))

𝐵43 = − 𝛽2𝐺
𝑇 (𝜂(𝑡𝑛)), 𝐵44 = −𝛿2𝐺

𝐻(𝜂(𝑡𝑛))

then the origin is an asymptotically stable equilibrium point of system (3.6) with aperi-
odic samplings lower than 𝑇𝑚, provided a gain-scheduling sampled-data controller given
by 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)).

The proof of Theorem 4.4 comes straight from the LMI conditions derived
in Theorem 4.3. If the two last rows and columns from (4.27) and (4.28) are removed,
the ℒ2-gain cost is disregarded and conditions (4.50) and (4.51) arise.

4.3 Extension to quasi-LPV systems

During the development of stabilizing LMI conditions for LPV systems (3.6),
terms with dependence on 𝜌̇(𝑡) are derived (see (3.23) and (3.25)). If the decision matri-
ces 𝑃 (𝜌), 𝑋1(𝜌) or 𝑋2(𝜌) are functions only of the sampled-data component 𝜂(𝑡𝑛) of the
expanded parameter vector 𝜌(𝑡), the conditions of Theorems 4.1–4.4 can then be applied
for synthesizing gain-scheduling state-feedback controllers for quasi-LPV systems as well.

On the contrary, if matrices 𝑃 (𝜌), 𝑋1(𝜌) or 𝑋2(𝜌) depend also on the continuous-
time component 𝛿(𝑡) of 𝜌(𝑡), additional restrictions should be imposed for quasi-LPV
systems (3.6). As discussed in the work of Palmeira et al. (2021), the purposes of these
additional conditions are to ensure that the system trajectories 𝑥(𝑡) remain inside a spec-
ified domain 𝒟 ⊆ R𝑛𝑥 , for given initial conditions 𝑥0 = 𝑥(0) also inside the domain, and
to ensure that the bounds of the time-derivative of the scheduling parameters 𝜂(𝑡), which
become dependent of endogenous signals (system’s states, for instance), are respected. By
enclosing the variation of the states 𝑥(𝑡), the time-derivative of the scheduling parame-
ters 𝜂(𝑡) can be bounded.

In light of the input-to-state and input-to-output stability theories (Khalil,
2002), the theoretic bounds of 𝜂̇(𝑡) can be satisfied if some conditions are met, namely:

• System trajectories 𝑥(𝑡) remain inside a domain 𝒟, for any given initial condi-
tions 𝑥0 ∈ 𝒟,
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• The domain 𝒟 can be estimated by means of a domain of attraction Ω𝑐

(︁
𝑊 (𝑥, 𝑡), 𝑐

)︁
=

{𝑥(𝑡) ∈ 𝒟 | 𝑊 (𝑥, 𝑡) < 𝑐}, inside of which all the trajectories initiating at any 𝑥0 ∈ 𝒟
approach the origin as 𝑡 → ∞ (El Ghaoui; Scorletti, 1996).

• The intrinsic relation

𝜂̇𝑖(𝑡) = 𝑑

𝑑𝑡
𝜂𝑖(𝑡) = 𝜕𝜂𝑖(𝑡)

𝜕𝑥(𝑡)
𝑑

𝑑𝑡
𝑥(𝑡) = 𝜕𝜂𝑖(𝑡)

𝜕𝑥(𝑡) 𝑥̇(𝑡), (4.52)

for 𝑖 = 1, . . . , 𝑁 , is considered to bind the scheduling parameters 𝜂(𝑡) to the system
dynamics 𝑥̇(𝑡).

• As discussed by Palmeira et al. (2021), the Lyapunov function 𝑊 (𝑥, 𝑡) (see (3.12))
should be such that 𝑉0(𝑥, 𝑡) is positive definite in the intersample 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1).

Extending the conditions proposed in Theorems 4.1–4.4 is beyond the scope of
this dissertation. Nonetheless, the discussion above points to suggestions of future works
to be developed in the area.

4.4 Computational aspects
Two slack variable-based approaches are developed, in Sections 4.1 and 4.2,

for the design of gain-scheduling controllers for (quasi-)LPV systems (3.6). The proposed
theorems are composed of LMI-based conditions, under the assumption that some scalar
parameters are given.

The choice of proper scalars is a demanding assignment, provided the high
number of slack variables suggested in Theorems 4.1–4.4. In an attempt to reduce the
search space for the scalars, the first choice for such parameters is made in agreement
with the values displayed in Table 1. Unless otherwise stated, the values given in Table 1
for the slack variables are also considered in numerical simulations.

Table 1 – First-choice values for the scalar parameters in Theorems 4.1–4.4.

Method Scalar parameters

Theorem 4.1 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 𝛿2 = 𝜑2 = 𝜃2 = 𝜆2 = 0
𝛿1 = 𝜁1 = 𝜁2 = 𝜇1 = 𝜇2 = 𝜔2 = 1

Theorem 4.2 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 𝛿2 = 𝜑2 = 𝜃2 = 𝜆2 = 0
𝛿1 = 𝜁1 = 𝜁2 = 𝜔2 = 1

Theorem 4.3 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 0
𝛿1 = 𝛿2 = 𝜁1 = 𝜁2 = 𝜇1 = 𝜇2 = 1

Theorem 4.4 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 0
𝛿1 = 𝛿2 = 𝜁1 = 𝜁2 = 1
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5 Numerical simulations

In order to demonstrate the effectiveness of the gain-scheduled control strate-
gies developed in this dissertation, some numerical examples, borrowed from the recent
literature, are presented.

The numerical solution of the proposed optimization problems, addressed in
terms of LMIs, considers the usage of SDP. The computational packages SeDuMi (Sturm,
1999) and Mosek (MOSEK ApS, 2015), for solving convex optimization problems, and
YALMIP (Lofberg, 2004) and ROLMIP (Agulhari et al., 2019), for describing the LMI
conditions, were exploited. All programming was performed in Matlab.

The calculation of matrices 𝑃̇ (𝜌), 𝑋̇1(𝜌), and 𝑋̇2(𝜌) was required for the LMIs
derived in Theorems 4.1–4.4. The ROLMIP package is used for computing the referred
matrices, by providing the variation rate bounds of the expanded parameter vector 𝜌(𝑡).

It is assumed that the states 𝑥(𝑡) are either measured or estimated at least at
each sampling instant 𝑡𝑛. Due to the availability of 𝑥(𝑡𝑛), the sampled-data scheduling
parameters 𝜂(𝑡𝑛) can be computed, allowing the determination of the control law (3.2).

Furthermore, the next sampling instants 𝑡𝑛+1 are arbitrarily chosen from the
range 𝑡𝑛 < 𝑡𝑛+1 < 𝑡𝑛 + 𝑇𝑚, in which 𝑇𝑚 is the maximum allowable sampling period.

For comparison purposes, other techniques from the literature were also im-
plemented under the same framework. As discussed in Appendix B, these techniques can
be recast in the structure of the iterative approach (see Chapter 3) or of the full approach
(see Chapter 4). Hence, the approaches proposed in this dissertation can be no more
conservative than the ones available in the literature.

5.1 Example 1 – LPV system
Consider the LPV system proposed in Gomes da Silva Jr et al. (2018), which

is composed of

A(𝜂) =
⎡⎣ 0 1
0.1 0.4 + 0.6𝜂(𝑡)

⎤⎦ , B1(𝜂) =
⎡⎣0.1
0.1

⎤⎦ , B2(𝜂) =
⎡⎣0
1

⎤⎦
C(𝜂) =

⎡⎣1 0
0 0

⎤⎦ , D1(𝜂) =
⎡⎣0
0

⎤⎦ , D2(𝜂) =
⎡⎣0
1

⎤⎦ .

(5.1)

The scheduling parameter 𝜂(𝑡) is such that

𝜂(𝑡) = sin(𝜚𝑡), |𝜂(𝑡)| ≤ 1, |𝜂̇(𝑡)| ≤ 𝜚, (5.2)

with 𝜚 a given bound for the variation rate of 𝜂(𝑡).
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Gain-scheduling sampled-data controllers for the LPV system (5.1) are syn-
thesized, adopting the procedures discussed in Sections 3.5 and 4.4.

In order to assess the key role of the bound 𝜚 for the variation rate of 𝜂(𝑡), the
stabilization issue of the LPV system (5.1) is addressed first. As summarized in Table 2,
the stabilizing LMI conditions developed in this dissertation achieved larger maximum
bounds on the aperiodic sampling periods of system (5.1), if compared to the methodology
devised in Hooshmandi et al. (2018). With reference to Gomes da Silva Jr et al. (2018)1,
the simplified approach was not able to provide larger admissible MASPs 𝑇𝑚. Among
the proposed stabilizing approaches, the largest maximum admissible sampling period 𝑇𝑚

was attained with the full approach, whereas the smallest MASP was obtained from the
application of the simplified approach. Moreover, it is shown that the larger the bound 𝜚,
the smaller the maximum aperiodic sampling time 𝑇𝑚.

Table 2 also presents an analysis of algorithmic complexity for the computa-
tional problems formulated in Theorems 3.2, 4.2, and 4.4. The proposed analysis considers
the number of LMI lines to be solved as part of an optimization problem, alongside the
number of involved decision variables. For the sake of comparison, the analysis of com-
plexity is extended to the stabilization problems described by Hooshmandi et al. (2018)
and adapted from Gomes da Silva Jr et al. (2018). Due to the addition of a new term in
the Lyapunov function (3.12) and to the application of Wirtinger’s inequality in (3.24),
the complexity of the proposed conditions is higher than the complexity of the compared
methods.

Table 2 – Maximum bound on the aperiodic sampling period of system (5.1) for differ-
ent variation rates |𝜂̇(𝑡)|, number of LMI lines (NoL), and number of decision
variables (NoV).

Bounds on |𝜂̇(𝑡)| 0.2 0.6 1 NoL NoV
Hooshmandi et al. (2018)[Th. 4.2] 0.806 0.795 0.781 172–176 242–65

Gomes da Silva Jr et al. (2018) 1.362 1.173 0.851 344 96
Theorem 3.2 1.675 1.213 0.908 196–216 376–65
Theorem 4.2 1.775 1.600 1.200 584 270
Theorem 4.4 0.900 0.852 0.790 392 72

The effectiveness of the ℒ2-gain controller synthesis techniques implemented in
this dissertation is evaluated with respect to two scenarios. In the first scenario, an upper
bound to the ℒ2-gain cost is given, on the purpose of enlarging the maximum allowable
sampling periods 𝑇𝑚. Secondly, provided a maximum allowable sampling period 𝑇𝑚, the
interest lies in obtaining improved (smaller) upper bounds to the ℒ2-gain. The design
of sampled-data gain-scheduling control laws by means of the solution of optimization
problems, discussed in Sections 3.5 and 4.4, can be exploited in both scenarios.
1 The LMI conditions reported in Gomes da Silva Jr et al. (2018) were adapted to cope with the problem

of stabilization.
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First, let the ℒ2-gain be bounded by 𝛾 = 15. Since (5.1) is an LPV system,
the LMI conditions derived in Theorems 3.1, 4.1 and 4.3 apply without loss of generality
to the synthesis of gain-scheduled controllers, and can be compared with other results
available in the control literature. The attained MASPs are compiled in Table 3. The
proposed methodologies, apart from Theorem 4.3, obtained larger maximum aperiodic
sampling periods for system (5.1), if compared to the framework implemented in Gomes
da Silva Jr et al. (2018). Since the proposed conditions in Theorems 3.1 and 4.1 contain the
conditions reported in Gomes da Silva Jr et al. (2018), they cannot be more conservative
and, therefore, one should expect such outcome. Furthermore, the largest MASP was
attained with the application of the non-iterative full approach, presented in Theorem 4.1.

Table 3 – Maximum aperiodic sampling periods for system (5.1) with 𝛾 = 15 and |𝜂̇(𝑡)| ≤
0.2.

Gomes da Silva Jr et al. (2018)[Th. 1] 1.349
Theorem 3.1 1.659
Theorem 4.1 1.772
Theorem 4.3 0.873

On the other hand, given a maximum allowable sampling period 𝑇𝑚 = 1.772 s,
and scalar parameters 𝛼1 = 0.3, 𝛼2 = 0, 𝛽1 = 200, 𝛿1 = 600, 𝛿2 = 1.3, 𝜔2 = 0.8, the upper
bound for the ℒ2-gain of system (5.1) is computed as 𝛾 = 1.6816 in the framework of
Theorem 4.1, and the designed control gain is 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)), where

𝑍(𝜂(𝑡𝑛)) = −
[︁
35.3522 30.6238

]︁
+
[︁
−13.3177 0.4113

]︁
𝜂(𝑡𝑛)

𝐺(𝜂(𝑡𝑛)) =
⎡⎣190.6147 −13.7213

10.5027 38.4071

⎤⎦+
⎡⎣26.8895 1.0793

5.6136 −7.9877

⎤⎦ 𝜂(𝑡𝑛)
(5.3)

The LPV system (5.1) is simulated with the control law (5.3), given a zero
initial condition, a disturbance input 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 = 1.772 s. Figures 1
and 2 outline, respectively, the outputs 𝑦(𝑡) response, and the control signal 𝑢(𝑡). The
sampling periods are shown in Figure 3, where each stem indicates when the sampling
occurred and its amplitude represents the time elapsed from the last sampling. The figures
portray the stability of system (5.1) in closed-loop with the control law (5.3), even in the
presence of external disturbances 𝑤(𝑡). The induced ℒ2-gain norm for the closed-loop
system is 𝛾⋆ = 0.4362, which is below the reported upper bound 𝛾 = 1.6816.

In the second scenario, the maximum allowable sampling period is chosen
as 𝑇𝑚 = 1.349 s. Table 4 summarizes the results attained from the optimization problems
subject to LMI constraints derived in Theorems 3.1, 4.1 and 4.3. Improved upper bounds
for the ℒ2-gain of system (5.1) were obtained with the full and the iterative approaches.
Notice that the controllers synthesized with the simplified approach did not manage to
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Figure 1 – Outputs response for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 = 1.772 s for
system (5.1).
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Figure 2 – Control signal for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 = 1.772 s for sys-
tem (5.1).
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Figure 3 – Aperiodic sampling time with MASP 𝑇𝑚 = 1.772 s for system (5.1).

stabilize the closed-loop system with 𝑇𝑚 = 1.349 s. According to Table 3, the MASP
ensuring closed-loop stability with the simplified approach is 𝑇𝑚 = 0.873 s.

Table 4 – Upper bounds for the ℒ2-gain of system (5.1) for 𝑇𝑚 = 1.349 s and |𝜂̇(𝑡)| ≤ 0.2.

Gomes da Silva Jr et al. (2018)[Th. 1] 6.3007
Theorem 3.1 1.2000
Theorem 4.1 0.4660
Theorem 4.3 Infeasible

In order to compare the performance of the proposed approaches with other
works from the literature, a time-domain simulation of the closed-loop system (5.1) is
performed, with an initial condition 𝑥(0) = 0, a disturbance input 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡)
and 𝑇𝑚 = 1.349 s. The following control laws are applied: for Gomes da Silva Jr et al.
(2018)[Th. 1], with 𝜖 = 0.3, the control law 𝐾(𝜂(𝑡𝑛)) is

𝐾(𝜂(𝑡𝑛)) = −
[︁
0.1508 0.7422

]︁
+
[︁
0.0033 −0.5522

]︁
𝜂(𝑡𝑛). (5.4)

In the framework of Theorem 3.1, the designed control gain is 𝐾(𝜂(𝑡𝑛)) =
𝑌 (𝜂(𝑡𝑛))𝑄−1(𝜂(𝑡𝑛)), with

𝑌 (𝜂(𝑡𝑛)) = −
[︁
0.4468 0.1418

]︁
+
[︁
0.1566 −0.0598

]︁
𝜂(𝑡𝑛)

𝑄(𝜂(𝑡𝑛)) =
⎡⎣ 3.0658 −0.2907
−0.2907 0.2329

⎤⎦+
⎡⎣−0.2768 0.0369

0.0369 −0.0228

⎤⎦ 𝜂(𝑡𝑛),
(5.5)
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Figure 4 – Comparison of the outputs response for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 =
1.349 s for system (5.1).

whereas, for Theorem 4.1, given 𝛼1 = 𝛼2 = 0.5 and 𝛿1 = 2.5, the designed control gain
is 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)), in which

𝑍(𝜂(𝑡𝑛)) = −
[︁
0.5970 0.4254

]︁
−
[︁
0.3043 0.0228

]︁
𝜂(𝑡𝑛)

𝐺(𝜂(𝑡𝑛)) =
⎡⎣1.7912 −0.2028
0.2285 0.5549

⎤⎦+
⎡⎣0.1427 −0.0122
0.1145 −0.1437

⎤⎦ 𝜂(𝑡𝑛)
(5.6)

Figures 4 and 5 show a comparison of the outputs 𝑦(𝑡) response and of the
control signal 𝑢(𝑡), respectively. The aperiodic sampling instants are depicted in Figure 6.
The figures illustrate the closed-loop stability of system (5.1), given gain-scheduling con-
trollers synthesized with the approaches proposed in this dissertation, despite the existing
disturbance signals. The induced ℒ2-gain norms for the closed-loop system are 𝛾* = 0.1432
(Theorem 3.1), 𝛾* = 0.1567 (Theorem 4.1), and 𝛾* = 0.3378 (Gomes da Silva Jr et al.,
2018), which are below the respective upper bounds reported in Table 4.
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Figure 5 – Comparison of the control signal for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 =
1.349 s for system (5.1).
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Figure 6 – Aperiodic sampling time with MASP 𝑇𝑚 = 1.349 s for system (5.1).
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5.2 Example 2 – Inverted pendulum on a cart
As discussed in Section 4.3, the conditions proposed in Theorems 4.1–4.4 can

be applied to design gain-scheduled controllers for quasi-LPV systems if matrices 𝑃 (𝜌),
𝑋1(𝜌), and 𝑋2(𝜌) are made independent of the continuous-time parameter 𝛿(𝑡) in the
parameter vector 𝜌(𝑡). In this regard, this example and the following one explore how the
proposed design conditions can be employed in the framework of quasi-LPV systems.

Consider the following quasi-LPV model of an inverted pendulum on a cart,
borrowed from Hooshmandi et al. (2018):

A(𝜂) =
⎡⎣ 0 1
12.63 − 4.66𝜂(𝑡) 0

⎤⎦ , B1(𝜂) =
⎡⎣0
1

⎤⎦ , B2(𝜂) =
⎡⎣ 0
−0.077 − 0.098𝜂(𝑡)

⎤⎦
C(𝜂) =

[︁
1 0

]︁
, D1(𝜂) = 0, D2(𝜂) = 0.006 + 0.002𝜂(𝑡)

(5.7)

where 𝑥1(𝑡) ∈ [−𝜋/3, 𝜋/3] is the angle of the pendulum with respect to the vertical axis,
𝑥2(𝑡) is the angular velocity of the pendulum, and

𝜂(𝑡) =
(︃

1 − 1
1 + exp(−7[𝑥1(𝑡) − 𝜋/4])

)︃
×
(︃

1
1 + exp(−7[𝑥1(𝑡) + 𝜋/4])

)︃
, 0 ≤ 𝜂(𝑡) ≤ 1.

(5.8)
The theoretic bounds of 𝜂̇(𝑡) are such that |𝜂̇(𝑡)| ≤ 𝜚, with 𝜚 a given scalar.
Gain-scheduled control laws are designed for system (5.7) with the applica-

tion of the ℒ2-gain control theorems formulated in this dissertation. The achieved con-
trollers performances are contrasted with the ones obtained from the framework developed
in Hooshmandi et al. (2018).

Tables 5 and 6 present the computed upper bounds to the ℒ2-gain of closed-
loop system (5.7) for different maximum allowable sampling periods 𝑇𝑚 and for different
theoretic bounds 𝜚 for |𝜂̇(𝑡)|, respectively. Decision matrices of the optimization problems
to be solved are assumed to depend only on the sampled-data component 𝜂(𝑡𝑛) of the
parameter vector 𝜌(𝑡).

For a given MASP 𝑇𝑚, the attained results show improved performance for any
of the proposed approaches, if compared to the methodology implemented in Hooshmandi
et al. (2018). Among the control strategies developed in this dissertation, the smaller
upper bounds to the ℒ2-gain were obtained with the full approach. Furthermore, the full
approach was also able to enlarge the maximum allowable sampling period to values up
to 𝑇𝑚 = 0.45 s, which is three times the MASP obtained in Hooshmandi et al. (2018).
Notice that the reported upper bounds to the ℒ2-gain remained steady as the theoretic
bounds of |𝜂̇(𝑡)| increased. In this scenario, provided that the considered decision matrices
do not depend on the continuous-time component of 𝜂(𝑡), no major variation to the upper
bounds of the ℒ2-gain was expected.

The inverted pendulum system (5.7) is simulated, provided zero initial condi-
tions, a disturbance input 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡), 𝑇𝑚 = 0.15 s and |𝜂̇(𝑡)| ≤ 0.1. The following
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Table 5 – Upper bounds for the ℒ2-gain of system (5.7) for several MASPs 𝑇𝑚 and |𝜂̇(𝑡)| ≤
0.1. Decision matrices of Lyapunov function (3.12) depend only on 𝜂(𝑡𝑛).

𝑇𝑚 (s) Hooshmandi et al. (2018)[Th. 4.2] Th. 3.1 Th. 4.1 Th. 4.3
0.01 0.159 0.052 0.049 0.108
0.05 0.161 0.072 0.083 0.112
0.10 0.166 0.098 0.097 0.121
0.15 0.433 0.108 0.106 0.195
0.20 Infeasible 0.585 0.123 0.382
0.25 Infeasible Infeasible 0.143 1.102
0.30 Infeasible Infeasible 0.227 Infeasible
0.35 Infeasible Infeasible 0.313 Infeasible
0.40 Infeasible Infeasible 0.373 Infeasible
0.45 Infeasible Infeasible 0.760 Infeasible

Table 6 – Upper bounds for the ℒ2-gain of system (5.7) for different variation rates |𝜂̇(𝑡)|
and 𝑇𝑚 = 0.10 s. Decision matrices of Lyapunov function (3.12) depend only
on 𝜂(𝑡𝑛).

Bounds on |𝜂̇(𝑡)| 0.3 0.5 0.8
Hooshmandi et al. (2018)[Th. 4.2] 0.171 0.177 0.193

Theorem 3.1 0.100 0.101 0.104
Theorem 4.1 0.098 0.100 0.103
Theorem 4.3 0.124 0.127 0.132

control laws were designed: for Hooshmandi et al. (2018)[Th. 4.2], the control law 𝐾(𝜂(𝑡𝑛))
is

𝐾(𝜂(𝑡𝑛)) =
[︁
480.16 120.88

]︁
−
[︁
260.27 70.27

]︁
𝜂(𝑡𝑛). (5.9)

In the framework of Theorem 3.1, the obtained control gain is 𝐾(𝜂(𝑡𝑛)) =
𝑌 (𝜂(𝑡𝑛))𝑄−1(𝜂(𝑡𝑛)), with

𝑌 (𝜂(𝑡𝑛)) =
[︁
4.9383 563.1864

]︁
−
[︁
2.8813 129.2475

]︁
𝜂(𝑡𝑛)

𝑄(𝜂(𝑡𝑛)) =
⎡⎣ 0.3921 −1.6866
−1.6866 13.9880

⎤⎦+
⎡⎣ 0.3501 −0.8526
−0.8526 7.7447

⎤⎦ 𝜂(𝑡𝑛),
(5.10)

whereas, for Theorem 4.1, given 𝛼1 = 6.9, 𝛼2 = 5.5, 𝛿1 = 0.54, and 𝛿2 = 0.5, the designed
control gain is 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)), in which

𝑍(𝜂(𝑡𝑛)) =
[︁
−8.1340 5.2187

]︁
+
[︁
0.7161 −2.4828

]︁
𝜂(𝑡𝑛)

𝐺(𝜂(𝑡𝑛)) =
⎡⎣ 0.0764 −0.1377
−0.1389 2.6067

⎤⎦+
⎡⎣ 0.0049 −0.0199
−0.0599 0.6082

⎤⎦ 𝜂(𝑡𝑛).
(5.11)

As for Theorem 4.3, given 𝛼1 = 𝛼2 = −0.5, 𝛿1 = 𝛿2 = 0.2625, the synthesized
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Figure 7 – Comparison of the outputs response for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 =
0.15 s for system (5.7).

control gain is 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)), with

𝑍(𝜂(𝑡𝑛)) =
[︁
29.9469 −32.1000

]︁
+
[︁
−17.5699 52.5012

]︁
𝜂(𝑡𝑛)

𝐺(𝜂(𝑡𝑛)) =
⎡⎣ 0.2737 −0.9873
−0.6560 3.2504

⎤⎦+
⎡⎣0.0719 −0.0797
0.0694 0.4713

⎤⎦ 𝜂(𝑡𝑛).
(5.12)

Figures 7 and 8 depict the output 𝑦(𝑡) response and the control signal 𝑢(𝑡),
respectively. The aperiodic sampling instants are presented in Figure 9. It is shown that the
closed-loop system (5.7) is stable with the synthesized gain-scheduling controllers, even
with the presence of a perturbation signal 𝑤(𝑡). Moreover, the induced ℒ2-gain norms
for the closed-loop system are 𝛾* = 0.0948 (Theorem 3.1), 𝛾* = 0.1402 (Theorem 4.1),
𝛾* = 0.1002 (Theorem 4.3), and 𝛾* = 0.1103 (Hooshmandi et al., 2018), which are below
the respective upper bounds reported in Table 5.

5.3 Example 3 – Chaotic Lorenz attractor
The following system describes a quasi-LPV model of the Lorenz system with

an input term:

𝑥̇1(𝑡) = −𝑎𝑥1(𝑡) + 𝑎𝑥2(𝑡) + 𝑢(𝑡)
𝑥̇2(𝑡) = 𝑐𝑥1(𝑡) − 𝑥2(𝑡) − 𝜂(𝑡)𝑑𝑥3(𝑡) + 𝑤(𝑡)
𝑥̇3(𝑡) = 𝜂(𝑡)𝑑𝑥2(𝑡) − 𝑏𝑥3(𝑡)
𝑦1(𝑡) = 𝑥1(𝑡), 𝑦2(𝑡) = 𝑥2(𝑡), 𝑦3(𝑡) = 𝑥3(𝑡),

(5.13)
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Figure 8 – Comparison of the control signal for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 =
0.15 s for system (5.7).
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Figure 9 – Aperiodic sampling time with MASP 𝑇𝑚 = 0.15 s for system (5.7).
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where
𝜂(𝑡) = 𝑥1(𝑡)

𝑑
, 𝜂(𝑡) ∈ [−1, 1] (5.14)

is the scheduling parameter, with |𝑥1(𝑡)| ≤ 𝑑. The time derivative of the scheduling
parameter 𝜂(𝑡) is theoretically bounded by |𝜂̇(𝑡)| ≤ 𝑒, with 𝑒 a given positive value.

With the purpose of assessing the ℒ2-gain cost performance for system (5.13),
output 𝑦(𝑡) and disturbance 𝑤(𝑡) vectors are added to the Lorenz equations originally
presented in Wu et al. (2014). Adopting 𝑥(𝑡) = 𝑦(𝑡) =

[︁
𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡)

]︁𝑇
, the quasi-

LPV system corresponding to the Lorenz equations (5.13) can be described by

𝑥̇(𝑡) =
(︁
A0 + A1𝜂(𝑡)

)︁
𝑥(𝑡) + B1𝑤(𝑡) + B2𝑢(𝑡)

𝑦(𝑡) = C𝑥(𝑡),
(5.15)

with

A0 =

⎡⎢⎢⎢⎣
−𝑎 𝑎 0
𝑐 −1 0
0 0 −𝑏

⎤⎥⎥⎥⎦ , A1 =

⎡⎢⎢⎢⎣
0 0 0
0 0 −𝑑

0 𝑑 0

⎤⎥⎥⎥⎦ , B1 =

⎡⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎦ , C = I3 (5.16)

The values chosen for the scalar parameters in the chaotic Lorenz system (5.13)
are 𝑎 = 10, 𝑏 = 8

3 , and 𝑐 = 28 (Wu et al., 2014). It is assumed that the state 𝑥1(𝑡) varies in
the range |𝑥1(𝑡)| ≤ 𝑑 = 25. The theoretic upper bound of |𝜂̇(𝑡)| is arbitrarily set as 𝑒 = 1.2.

Following the procedures discussed in Sections 3.5 and 4.4, gain-scheduling
sampled-data controllers for the Lorenz attractor (5.13) are designed. The obtained results
are compared with the methodology developed in Gomes da Silva Jr et al. (2018), with
respect to the same scenarios considered in Section 5.1.

In the first scenario, for a fixed upper bound to the ℒ2-gain set to 𝛾 = 15, the
maximum allowable sampling period 𝑇𝑚 is estimated. The approach of Gomes da Silva Jr
et al. (2018) can be directly compared with the ℒ2-gain control theorems presented in this
dissertation, if the decision matrices of the optimization problem are assumed to depend
only on the sampled-data component 𝜂(𝑡𝑛) of the parameter vector 𝜌(𝑡). The attained
MASPs are presented in Table 7. Similarly to the results presented in Section 5.1, the
full and the iterative approaches led into MASPs of system (5.13) larger than the one
obtained with the framework implemented in Gomes da Silva Jr et al. (2018).

Table 7 – Maximum aperiodic sampling periods of system (5.13) for 𝛾 = 15. Decision
matrices of Lyapunov function (3.12) depend only on 𝜂(𝑡𝑛).

Gomes da Silva Jr et al. (2018)[Th. 1] 0.042
Theorem 3.1 0.051
Theorem 4.1 0.070
Theorem 4.3 0.039
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Considering the maximum allowable sampling period 𝑇𝑚 = 0.070 s, and given
scalar parameters 𝛼1 = 𝛼2 = 5, 𝛽1 = 160.5, 𝛿1 = 2.5, the upper bound for the ℒ2-gain of
system (5.13) is computed as 𝛾 = 0.7593, and the synthesized control gain is 𝐾(𝜂(𝑡𝑛)) =
𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)), where

𝑍(𝜂(𝑡𝑛)) = −
[︁
3.1120 12.4397 0

]︁
−
[︁
0 0 6.3001

]︁
𝜂(𝑡𝑛)

𝐺(𝜂(𝑡𝑛)) =

⎡⎢⎢⎢⎣
0.5645 −0.1847 0

−0.4849 1.5882 0
0 0 1.1951

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0 0 0.5765
0 0 −0.0766

−0.0073 0.0829 0

⎤⎥⎥⎥⎦ 𝜂(𝑡𝑛)
(5.17)

The Lorenz attractor system (5.15) is simulated with the control gain (5.17),
provided zero initial conditions, a disturbance input 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 = 0.070 s.

Figures 10, 11 and 12 illustrate the outputs 𝑦(𝑡) response, the control signal 𝑢(𝑡)
and the aperiodic sampling instants, respectively. The figures certify that the closed-
loop system remains stable, despite the effect of a disturbance signal. Notice that the
considered MASP 𝑇𝑚 = 0.070 s is 116% larger than the MASP obtained in Wu et al.
(2014), computed as 𝑇𝑚 = 0.0347 s. Moreover, it is worth stating the induced ℒ2-gain
norm for the closed-loop system is 𝛾* = 0.4938, which is below the attained upper bound
of 𝛾 = 0.7593.

In the second scenario, given a maximum allowable sampling period 𝑇𝑚 =
0.0347 s, the upper bounds to the ℒ2-gain are assessed. Table 8 presents the obtained re-
sults when 𝜂(𝑡𝑛)-dependent decision matrices are considered in the optimization problem.
With the application of the approaches developed in this dissertation, improved ℒ2-gain
performance was obtained, regarding other works available in the control literature.

Table 8 – Upper bounds for the ℒ2-gain of system (5.13) for 𝑇𝑚 = 0.0347 s. Decision
matrices of Lyapunov function (3.12) depend only on 𝜂(𝑡𝑛).

Gomes da Silva Jr et al. (2018)[Th. 1] 0.344
Theorem 3.1 0.111
Theorem 4.1 0.096
Theorem 4.3 0.198

Choosing an initial condition 𝑥(0) = 0, a disturbance input 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡)
and 𝑇𝑚 = 0.0347 s, the quasi-LPV representation (5.15) of the Lorenz attractor is sim-
ulated with the control law obtained from the second scenario, considering decision ma-
trices relying on the sampled-data parameter 𝜂(𝑡𝑛). The following control laws were syn-
thesized: for Gomes da Silva Jr et al. (2018)[Th. 1], given 𝜖 = 39.4, the control gain
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Figure 10 – Outputs response for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 = 0.070 s for
system (5.13).

is 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)), with

𝑍(𝜂(𝑡𝑛)) = −
[︁
14.7734 3.6928 0

]︁
+
[︁
0 0 13.8718

]︁
𝜂(𝑡𝑛)

𝐺(𝜂(𝑡𝑛)) =

⎡⎢⎢⎢⎣
0.8310 −0.6374 0

−0.3988 1.0633 0
0 0 1.1406

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0 0 0.1164
0 0 −0.0299

−0.0081 0.0102 0

⎤⎥⎥⎥⎦ 𝜂(𝑡𝑛).
(5.18)

In the framework of Theorem 3.1, the designed control law is 𝐾(𝜂(𝑡𝑛)) =
𝑌 (𝜂(𝑡𝑛))𝑄−1(𝜂(𝑡𝑛)), in which

𝑌 (𝜂(𝑡𝑛)) = −
[︁
14.4457 18.1911 0

]︁
+
[︁
0 0 20.8076

]︁
𝜂(𝑡𝑛)

𝑄(𝜂(𝑡𝑛)) =

⎡⎢⎢⎢⎣
0.8446 −0.5240 0

−0.5240 1.3438 0
0 0 1.2072

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0 0 0.1672
0 0 −0.0811

0.1672 −0.0811 0

⎤⎥⎥⎥⎦ 𝜂(𝑡𝑛).
(5.19)

For Theorem 4.1, given 𝛼1 = 𝛼2 = 0.3, 𝛽1 = 300, 𝛿1 = 2.5, the obtained control
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Figure 11 – Control signal for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 = 0.070 s for sys-
tem (5.13).
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Figure 12 – Aperiodic sampling time with MASP 𝑇𝑚 = 0.070 s for system (5.13).
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gain is 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)), with

𝑍(𝜂(𝑡𝑛)) = −
[︁
10.4937 23.0132 0

]︁
+
[︁
0 0 −4.3544

]︁
𝜂(𝑡𝑛)

𝐺(𝜂(𝑡𝑛)) =

⎡⎢⎢⎢⎣
0.8580 −0.3810 0

−0.4329 1.3940 0
0 0 1.0087

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0 0 0.1887
0 0 0.0459

−0.0144 0.0430 0

⎤⎥⎥⎥⎦ 𝜂(𝑡𝑛).
(5.20)

As for Theorem 4.3, given 𝛼1 = 𝛼2 = 25, 𝛽1 = 120.5, and 𝛿1 = 4.5, the designed
control gain is 𝐾(𝜂(𝑡𝑛)) = 𝑍(𝜂(𝑡𝑛))𝐺−1(𝜂(𝑡𝑛)), with

𝑍(𝜂(𝑡𝑛)) = −
[︁
27.2052 60.6153 −0.0515

]︁
+
[︁
0.0344 −0.0459 37.0535

]︁
𝜂(𝑡𝑛)

𝐺(𝜂(𝑡𝑛)) =

⎡⎢⎢⎢⎣
4.2609 −2.5420 −0.0018

−6.0265 10.8976 0.0018
−0.0009 0.0006 7.0869

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0 −0.0001 3.4729
0 0.0011 −2.1871

−0.0387 0.0837 −0.0005

⎤⎥⎥⎥⎦ 𝜂(𝑡𝑛).

(5.21)

Figures 13 and 14 depict the outputs 𝑦(𝑡) response and the control signal 𝑢(𝑡),
respectively. The aperiodic sampling instants are outlined in Figure 15. The figures demon-
strate that the sampled-data controllers designed with the proposed approaches led the
closed-loop system (5.13) to stability even in the presence of external disturbances. The in-
duced ℒ2-gain norms for the closed-loop system are 𝛾* = 0.087 (Theorem 3.1), 𝛾* = 0.089
(Theorem 4.1), 𝛾* = 0.193 (Theorem 4.3), and 𝛾* = 0.112 (Gomes da Silva Jr et al.,
2018), which are below the respective upper bounds reported in Table 8.
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Figure 13 – Comparison of the outputs response for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡)
and 𝑇𝑚 = 0.0347 s for system (5.13): Theorem 3.1 in blue solid line, Theo-
rem 4.1 in green dashed line, Theorem 4.3 in red dot-dashed line, and Gomes
da Silva Jr et al. (2018)[Th. 1] in cyan dashed line.
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Figure 14 – Comparison of the control signal for 𝑥(0) = 0, 𝑤(𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) and 𝑇𝑚 =
0.0347 s for system (5.13).
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Figure 15 – Aperiodic sampling time with MASP 𝑇𝑚 = 0.0347 s for system (5.13).
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6 Conclusion

In this dissertation, sufficient LMI conditions were proposed to stabilization
and ℒ2-gain performance of sampled-data nonlinear systems, represented in terms of
LPV systems. The provided conditions guarantee asymptotic stability and ℒ2-gain cost
in closed-loop systems, with gain-scheduled state-feedback controllers to be synthesized.

The process of obtaining LMI constraints consisted in applying the Lyapunov
theory after a suitable Lyapunov function is defined. As a first contribution of this dis-
sertation, the use of Wirtinger’s inequality and the inclusion of an additional term to the
Lyapunov function aided in reducing the conservativeness of the attained LMI conditions.
On the purpose of enlarging the aperiodic sampling time 𝑇𝑚 and of minimizing the ℒ2-
gain performance in closed-loop, three different approaches were presented and validated
through numerical examples.

The iterative method stood for a stabilizing technique based on a two-step
procedure, which originally imposed BMI conditions. Despite the need for following an
iterative and time-consuming procedure, the implementation of this approach provided
larger MASPs 𝑇𝑚 and improved the ℒ2-gain performance, if compared to some results
existing in the literature.

In attempt to circumvent iterative procedures, the full approach was developed.
It relies on slack variables introduced with the usage of Finsler’s lemma. The establishment
of the full approach is the second contribution made in this dissertation. Among the
methodologies presented in this text, the full method led to the obtention of the largest
aperiodic sampling times 𝑇𝑚 and smallest ℒ2-gain costs in all examples. A drawback of
this method is the proper choice of several scalar parameters, which must be given prior
to the execution of the optimization problem.

Moreover, another non-iterative approach was presented: the simplified one.
It also employs Finsler’s lemma, bringing slack variables to the optimization problem
created. Not only setting the scalar variables is required, but also the simplified approach
did not reveal itself suitable for stabilizing sampled-data nonlinear systems. The achieved
results were less satisfactory than the ones obtained with the iterative approach.

As a final contribution of this dissertation, it is shown that the iterative and
full approaches provided less conservative results with respect to similar works available
in the control literature (for instance, Gomes da Silva Jr et al. (2018) and Hooshmandi et
al. (2018)). It was possible because the Lyapunov function considered in this dissertation
contains the Lyapunov function adopted therein, and because more powerful tools were
exploited, such as Wirtinger’s inequality. Additionally, it was shown that both method-
ologies, (Gomes da Silva Jr et al., 2018) and (Hooshmandi et al., 2018), are particular
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cases of the proposed approaches.

6.1 Future works

The contributions made in this dissertation to the stabilization and ℒ2-gain
performance of sampled-data nonlinear systems can be improved in at least six directions.
As outlined in Chapter 1, there has been a growing interest in networked control. On the
one hand, the approaches developed in this work are suitable for sampled-data nonlinear
systems, and thus the proposed methodologies can be applied to real-world networked
systems. On the other hand, a scheduling policy to access the network has yet to be
formulated, in an approach known as co-design.

In Chapter 5, it is assumed that the next sampling periods 𝑡𝑛+1 are randomly
chosen from the range 𝑡𝑛 < 𝑡𝑛+1 < 𝑡𝑛 + 𝑇𝑚. Other techniques could be employed as
well for determining the next sampling periods 𝑡𝑛+1. For example, Wang and Lemmon
(2010) consider an event-triggering data transmission strategy in which states updates
are broadcast only when needed. The determination of when such updates should happen
requires the definition of an appropriate criterion.

The numerical simulations in Chapter 5 showed the potential of the full ap-
proach for stabilizing LPV systems in closed-loop. However, the application of this method
requires several scalar parameters to be given. Since a proper choice of these parameters
is a demanding task, a couple of structural simplifications (such as imposing 𝛼1 ≡ 𝛼2)
and the development of computational tools, able to narrow the search of these scalars,
can be considered.

As discussed in Chapter 4, another possible research direction is extending the
proposed design conditions to cope with quasi-LPV systems, without imposing conserva-
tive choices for the decision matrices 𝑃 (𝜌), 𝑋1(𝜌) or 𝑋2(𝜌).

In the framework of time-delay systems, the dynamics of sampled-data nonlin-
ear systems should be changed to cope with the inherent dependence on delayed signals.
For instance, a time-delayed LPV model (3.1) can be written as

𝑥̇(𝑡) =A(𝜂(𝑡))𝑥(𝑡) + A𝑆(𝜂(𝑡))𝑥(𝑡𝑛) + B1(𝜂(𝑡))𝑤(𝑡) + B2(𝜂(𝑡))𝑢(𝑡)
𝑦(𝑡) =C(𝜂(𝑡))𝑥(𝑡) + D1(𝜂(𝑡))𝑤(𝑡) + D2(𝜂(𝑡))𝑢(𝑡)

(6.1)

where A𝑆(𝜂(𝑡)), with compatible dimensions, is a component binding the dynamics of 𝑥(𝑡)
to a delayed version of 𝑥(𝑡). Even though the inclusion of A𝑆(𝜂(𝑡)) in the derived LMIs is
straightforward, determining A𝑆(𝜂(𝑡)) is not trivial when sampled-data nonlinear systems
are recast as LPV models with the sector nonlinearity method.

Furthermore, as proposed in Seuret and Gouaisbaut (2013), more relaxed con-
ditions can be obtained if null terms are included in the LMI derivation process.
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6.2 Related publication
The publication related to the contributions of this dissertation is listed below:

• Oliveira, V.; Frezzatto, L. Gain-scheduled control of nonlinear sampled-data sys-
tems: A Wirtinger-based approach. Proceedings of the XXIII Brazilian Conference
on Automation, v. 2, n. 1, November 2020.
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APPENDIX A – Proof of Lemma 3.2

Necessity: applying a Schur complement (see Section 2.4) to (3.51) provides

Ξ =
⎡⎣Λ 𝑄𝑇

𝑄 Γ

⎤⎦ . (A.1)

Pre- and post-multiplying (A.1) respectively with Ω𝑇 and Ω, where Ω =[︁
I𝑛 ϒ𝑇

]︁𝑇
, one has that

Ω𝑇 ΞΩ = Λ +
(︁
𝑄𝑇 ϒ

)︁𝐻
+ ϒ𝑇 Γϒ (A.2)

Ω𝑇 ΞΩ =
(︁
Λ − 𝑄𝑇 Γ−1𝑄

)︁
+
(︁
𝑄 + Γϒ

)︁𝑇
Γ−1

(︁
𝑄 + Γϒ

)︁
(A.3)

From (3.51), it is assumed that Λ − 𝑄𝑇 Γ−1𝑄 ≺ 0. The negativeness of (A.3) is
ensured if, for instance, ϒ is chosen as ϒ = −Γ−1𝑄. In other words, it means that there
exists ϒ such that

Ω𝑇 ΞΩ ≺ 0. (A.4)

If the null terms

ϒ𝑇 𝐿𝑇 − ϒ𝑇 𝐿𝑇 + 𝐿ϒ − 𝐿ϒ + ϒ𝑇 𝐺ϒ − ϒ𝑇 𝐺ϒ + ϒ𝑇 𝐺ϒ − ϒ𝑇 𝐺ϒ = 0. (A.5)

are added to (A.4), the obtained terms can be grouped as follows:

I𝑛

(︁
Λ + ϒ𝑇 𝑄 + 𝑄𝑇 ϒ + ϒ𝑇 𝐿𝑇 + 𝐿ϒ

)︁
I𝑛 + I𝑛

(︁
− 𝐿 + ϒ𝑇 𝐺

)︁
ϒ

+ ϒ𝑇
(︁

− 𝐿𝑇 + 𝐺𝑇 ϒ
)︁
I𝑛 + ϒ𝑇

(︁
Γ − 𝐺 − 𝐺𝑇

)︁
ϒ ≺ 0 (A.6)

I𝑛

(︂
Λ +

(︁
ϒ𝑇 (𝑄 + 𝐿𝑇 )

)︁𝐻
)︂

I𝑛 + I𝑛

(︁
− 𝐿 + ϒ𝑇 𝐺

)︁
ϒ

+ ϒ𝑇
(︁

− 𝐿𝑇 + 𝐺𝑇 ϒ
)︁
I𝑛 + ϒ𝑇

(︁
Γ − 𝐺𝐻

)︁
ϒ ≺ 0 (A.7)

Ω𝑇

⎡⎣Λ +
(︁
ϒ𝑇 (𝑄 + 𝐿𝑇 )

)︁𝐻
−𝐿 + ϒ𝑇 𝐺

* Γ − 𝐺𝐻

⎤⎦Ω ≺ 0 (A.8)

From (A.8), it is possible to verify that (3.51) implies (3.52).
Sufficiency: applying the transformation matrices Ω𝑇 =

[︁
I𝑛 ϒ𝑇

]︁
and Ω re-

spectively to the left and to the right of (3.52) and rearranging the obtained terms, one
gets (︁

Λ − 𝑄𝑇 Γ−1𝑄
)︁

+
(︁
𝑄 + Γϒ

)︁𝑇
Γ−1

(︁
𝑄 + Γϒ

)︁
≺ 0 (A.9)
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(︁
Λ − 𝑄𝑇 Γ−1𝑄

)︁
≺ −

(︁
𝑄 + Γϒ

)︁𝑇
Γ−1

(︁
𝑄 + Γϒ

)︁
(A.10)

Provided that Γ is a positive-definite matrix, the left-hand side of (A.10) is
negative definite for all ϒ. Notice that, if ϒ = −Γ−1𝑄, the relation Λ − 𝑄𝑇 Γ−1𝑄 ≺ 0
remains true and the equivalency between (A.4) and (A.10) becomes clear. This concludes
the proof.
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APPENDIX B – Recovery of theoretical
results from control literature with the

iterative and full approaches

B.1 Theorem 3.1 contains Hooshmandi et al. (2018)[Th. 4.2]
Since Theorem 3.1 extends the main results attained in Hooshmandi et al.

(2018), recovering the LMI conditions presented in Hooshmandi et al. (2018)[Th. 4.2]
requires the execution of a few steps:

• Disposal of the term 𝑉3(𝑥, 𝑡) from the definition of the Lyapunov function (3.12).
Hence, the obtained Lyapunov function is not a function of 𝜈(𝑡).

• Application of Jensen’s inequality (see Section 2.6) instead of Wirtinger’s inequality
(see Section 2.7) in the LMI derivation procedure.

• Removal of any row and column corresponding to 𝜈(𝑡) or containing 𝑁2(𝜌) from the
derived LMIs. Notice that the terms associated with 𝑁2(𝜌) are subproducts of the
application of Wirtinger’s inequality.

B.2 Theorem 4.1 contains Hooshmandi et al. (2018)[Th. 4.2]
Theorem 4.1 is a non-iterative adaptation of Theorem 3.1. In order for the

LMI constraints proposed in Hooshmandi et al. (2018)[Th. 4.2] to be retrieved having
Theorem 4.1 as a starting point, the same steps presented in Section B.1 apply. However,
since Theorem 4.1 is itself a non-iterative approach, other changes must be introduced:

• The decision variables from the Lyapunov function (3.12) are defined such that

𝑃̇ (𝜌) = 0, 𝑋1(𝜌) = 𝜆𝑃 (𝜌), 𝑋̇1(𝜌) = 0, 𝑋2(𝜌) = 0, 𝑋̇2(𝜌) = 0, (B.1)

where 𝜆 is a scalar to be determined as part of the iterative procedure discussed
in Hooshmandi et al. (2018).

• The scalar parameters in (4.19) are chosen to be null, apart from

𝛼1 = 𝛼2 = 𝜇1 = 𝜇2 = 1. (B.2)

• The rows and columns corresponding to 𝑥̇(𝑡) are eliminated.
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approaches

• By performing the relaxation (3.49), the derived conditions are actually BMIs. As
a result, the iterative procedure discussed in Section 3.5 must be adopted.

B.3 Theorem 4.1 contains Gomes da Silva Jr et al. (2018)[Th. 1]
In order to retrieve the sufficient LMI conditions presented in Gomes da Silva

Jr et al. (2018)[Th. 1], the following choices must take place:

• The component 𝑉3(𝑥, 𝑡) should be dropped from the definition of the considered
Lyapunov function in this dissertation. Thus, the obtained Lyapunov function does
not depend on 𝜈(𝑡).

• The decision variables from the Lyapunov function (3.12) are set as

𝑋1(𝜌) = 𝐹 (𝜌), 𝑋̇1(𝜌) = 𝐹̇ (𝜌), 𝑋2(𝜌) = 𝐺(𝜌), 𝑋̇2(𝜌) = 𝐺̇(𝜌),
𝐸1(𝜌) = 𝑅(𝜌), 𝐸2(𝜌) = 0, 𝐸3(𝜌) = 𝑋(𝜌), 𝐹 (𝜌) = 0.

(B.3)

• The decision variables introduced in Theorem 4.1 are chosen as

𝑁1(𝜌) = 𝑄(𝜌), 𝑁2(𝜌) = 0, 𝐺(𝜌) = 𝑌 (𝜌). (B.4)

• Any scalar parameters in (4.19) are set to zero, except

𝛼1 = 𝛼2 = 𝜖, 𝛿1 = 𝜔2 = 𝜇1 = 𝜇2 = 1, (B.5)

where 𝜖 is a given positive scalar, as discussed in Gomes da Silva Jr et al. (2018).

• The rows and columns corresponding to 𝜈(𝑡) or containing 𝑁2(𝜌) are removed from
the LMI conditions of Theorem 4.1.
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