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Resumo

Vantagem acumulativa é um fenômeno observado em vários sistemas onde há com-
petição por recursos. Por exemplo, duas empresas podem competir por clientes.
Quanto mais clientes uma empresa possui, mais popular ela será, e quanto mais pop-
ular ela for, mais clientes ela atrairá. Este fenômeno, a capacidade que recursos acu-
mulados tem para promover a acumulação de mais recursos, aparece na literatura
sobre vários nomes, tais como vantagem acumulativa [Price, 1976], fixação preferencial
[Barabasi and Albert, 1999], “O rico fica mais rico” [DiPrete and Eirich, 2008], proces-
sos com feedback [Drinea et al., 2002, Oliveira, 2009], entre outros.

O modelo mais antigo com este fenômeno é o processo de urna de Pólya, o qual foi
introduzido por Eggenberger e Pólya [Eggenberger and Pólya, 1923] como um modelo
para doenças contagiosas. Depois disso, o modelo foi largamente estudado e aplicado
[Mahmoud, 2008, Pemantle, 2007].

No modelo de urna de Pólya, nós temos uma urna com bolas coloridas. Então
sorteamos uma bola da urna e a colocamos de volta junto com outra bola da mesma
cor. Note que se tivermos x bolas de uma certa cor, aquela cor será sorteada com
probabilidade proporcional a f(x) = x, onde f é chamada de função de reforço. Em
[Khanin and Khanin, 2001] os autores introduzem não linearidade para o processo,
fazendo f(x) = xα com α > 0. Depois, em [Oliveira, 2008], Oliveira generaliza o
modelo para qualquer função positiva f .

Além da vantagem cumulativa, uma característica observada e reconhecida em
competições é o fitness, que se refere a habilidade intrínsica que um agente possui
para acumular recursos e que não depende da quantidade de recursos já acumulados
[Borgs et al., 2007, Dereich and Ortgiese, 2014].

Processos de urna de Pólya não linear com fitness foi estudado em
[Jiang et al., 2016]. No modelo estudado pelos autores, temos uma urna com duas
cores, 1 e 2. Se a urna contém x bolas da cor i, então sorteamos uma bola daquela cor
com probabilidade proporcional a fi(x) = rix

α, onde r1, r2, α > 0. Note que, ao con-
trário dos casos estudados em [Khanin and Khanin, 2001, Oliveira, 2008], os autores
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em [Jiang et al., 2016] permitem cada cor ter sua própria função de reforço f1, f2. Mas
esta não foi a primeira vez que um modelo com funções de reforço diferentes para cada
agente foi considerada (veja [Collevecchio et al., 2013]). Se r2 > r1 então as bolas da
cor 2 tem uma vantagem (o maior fitness) que não depende da quantidade de bolas já
presentes na urna. Trazendo de volta o exemplo das duas empresas competindo por
clientes, podemos pensar no fitness sendo a qualidade do serviço oferecido pelas duas
empresas. Os autores em [Jiang et al., 2016] provaram que se 0 < α < 1 então o agente
com maior fitness será o vencedor da competição com probabilidade 1, isto é, existe
um tempo aleatório s finito quase certamente tal que, a partir desse tempo, o agente
com maior fitness sempre terá a maior fração de recursos. Dizemos que o ganhador
alcançou liderança final.

No modelo descrito acima, o agente que inicia com o menor fitness não tem
nenhuma chance de ganhar a competição. Mas no mundo real, o agente pode mudar
ao passar do tempo. Ele pode melhorar suas habilidades, aumentando o fitness. Neste
trabalho mostramos que, mesmo iniciando a competição com um fitness menor, se o
agente aumenta o seu fitness suficientemente rápido (mesmo permanecendo menor que
o fitness do outro agente) então a probabilidade de não perder se torna positiva.

Os modelos “Bolas nas caixas” são modelos de urnas onde temos duas ou mais
urnas, o qual a partir daqui chamaremos de caixas, e cada caixa contém bolas. Aqui
a cor não vai ter nenhum papel. Colocamos bolas nas caixas seguindo alguma regra
probabilística. A quantidade de bolas em cada caixa no modelo “bolas nas caixas” se
associa com a quantidade de bolas de cada cor no modelo urna de Pólya. Ao longo
deste trabalho, iremos usar a terminologia do modelo “bolas nas caixas” em vez do
tradicional modelo urna de Pólya.

O processo que vamos estudar inicia com X1(0) = a1 e X2(0) = a2 bolas nas
caixas 1 e 2 respectivamente, onde a1 e a2 são inteiros positivos. A probabilidade de
adicionarmos uma bola na caixa s no tempo t + 1 é proporcional a fs(Xs(t), t), onde
fs é uma função de reforço temporal e Xs(t) é a quantidade de bolas na caixa s no
tempo t. No caso onde as funções de reforço não dependem do tempo, as chamamos
de funções de reforço atemporal.

Como nós vimos, em [Jiang et al., 2016] eles estudaram o processo com as funções
de reforço atemporal

f1(i, t) = r1i
α, f2(i, t) = r2i

α.

Neste trabalho, estamos particularmente interessados nas funções de reforço temporal

f1(i, t) = r1(t)i
α, f2(i, t) = r2(t)i

α
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onde 0 < r1(t) ≤ r2(t) para todo t ≥ 0. Note que podemos definir r(t) = r2(t)/r1(t) e
podemos redefinir f1, f2, para ter um processo com a mesma distribuição do processo
acima, como

f1(i, t) = iα, f2(i, t) = r(t)iα.

De fato, dado que no tempo t a caixa 1 tem x bolas e a caixa 2 tem y bolas, a
probabilidade de adicionar uma bola na caixa 1 no tempo t+ 1 será

r1(t)x
α

r1(t)xα + r2(t)yα
=

r1(t)/r1(t)x
α

r1(t)/r1(t)xα + r2(t)/r1(t)yα
=

xα

xα + r(t)yα
,

e o mesmo se aplica para a probabilidade de adicionar uma bola na caixa 2.
Se r(t) = 1 para todo t ≥ 0, então estamos no caso estudado em

[Khanin and Khanin, 2001] e há uma probabilidade positiva da caixa 1 não perder. Mas
se r(t) = r > 1 para todo t ≥ 0, então estamos no caso estudado em[Jiang et al., 2016],
e a probabilidade da caixa 1 não perder se torna zero. Estamos interessados no caso
onde r(t) > 1 mas r(t)→ 1. No exemplo das duas empresas competindo por clientes,
a empresa 1 inicia com o menor fitness, mas com o passar do tempo, ela melhora seu
fitness se aproximando cada vez mais do fitness da empresa 2. Mostramos que, depen-
dendo do quão rápido r(t) converge para 1, a probabilidade da empresa 1 não perder
pode ser positiva ou zero.

Um caso particular e interessante das funções de reforço temporal f1(i, t) = iα e
f2(i, t) = r(t)iα é o caso onde r(t) = (1+(t+1)−β) com β > 0. Para qualquer 0 < α < 1

fixo, temos uma transição de fase em β, dependendo de α. Para 0 < α < 1/2 temos
que se β < 1/2 então a caixa 2 alcança liderança final com probabilidade 1 e para
β ≥ 1/2 há infinitas mudanças de liderança (há uma sequência de tempos tal que a
caixa 1 terá mais bolas que a caixa 2 e há uma outra sequência de tempos tal que a
caixa 2 terá mais bolas que a caixa 1) com probabilidade 1. Para α = 1/2 temos que se
β ≤ 1/2 então a caixa 2 alcança liderança final com probabilidade 1 e para β > 1/2 há
infinitas mudanças de liderança com probabilidade 1. Finalmente, para 1/2 < α < 1

temos que para β ≤ 1 − α a probabilidade que a caixa 1 alcança liderança final é 0 e
para β > 1 − α esta probabilidade é positiva. Este é o nosso principal resultado e é
provado no Teorema 2.12. Veja Figure 1.1 para um resumo dos resultados enunciados
aqui.

Uma das ferramentas principais utilizadas no estudo deste modelo é o exponential
embedding [Khanin and Khanin, 2001, Jiang et al., 2016, Oliveira, 2008, Davis, 1990],
mas a adição do tempo nas funções de reforço faz com que não seja possível uti-
lizar esta ferramenta. Então, a fim de obter os resultados para as funções de re-
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forço temporais, precisamos primeiro generalizar alguns resultados encontrados em
[Khanin and Khanin, 2001, Jiang et al., 2016] para um conjunto maior de funções de
reforço atemporais. Então, através de um acoplamento, obtemos resultados para as
funções de reforço temporais.

A generalização das funções de reforço atemporais estudadas em
[Jiang et al., 2016] para um conjunto maior de pares (f1, f2), embora seja um
passo intermediário para provar o nosso resultado principal, é interessante por si
só. Devido à técnica de exponential embedding, somos capazes de provar resultados
bem precisos. Por exemplo, um caso interessante neste conjunto maior de funções
de reforço atemporais é f1(i) = iα, f2(i) = rii

α com ri ↘ 1 quando i → +∞. Em
particular, podemos tomar ri = (1 + i−β) com β > 0 (este é o modelo utilizado no
acoplamento para provar nosso resultado principal). O parâmetro β nos diz o quão
rápido ri converge para 1. Tomarmos um β menor significa mais vantagem para a
caixa 2. Para α < 1/2 e β = 1/2, a vantagem da caixa 2 não é o suficiente e a caixa 1
ultrapassa a caixa 2 infinitas vezes. Mas, o que acontece se diminuirmos a velocidade
da convergência, multiplicando uma função h(i) (tal que h(i)→ +∞ mas h(i) = o(iδ)

para todo δ > 0) a i−1/2? Digo, o que acontece se definirmos ri = 1 + h(i)i−1/2? Neste
caso, ri irá para 1 um pouco mais lento mas ainda assim, mais rápido do que 1 + i−β

para qualquer β < 1/2. Definindo

h(i) = C

√
(1− 2α) log log

(
2i1−2α

1− 2α

)
,

para C > 1, é suficiente para fazer a caixa 2 alcançar liderença final com probabilidade
1, mas se tomarmos 0 < C < 1, então, haverá infinitas trocas de liderança. Este é o
resultado do corolário 2.4. A nossa técnica não permite chegar a uma conclusão para
C = 1.

Fazemos o mesmo tipo de pergunta em outros pontos (α, β) onde temos uma
transição de fase. Veja os Corolários 2.6, 2.10 e 2.11.

Quando f1(i) = iα e f2(i) = rii
α com 0 < α ≤ 1/2 e ri ↘ r ≥ 1, somos capazes

de encontrar o comportamento assintótico de X1(t)/X2(t) (veja o Teorema 2.13). Se
ri = 1 + i−β embora X1(t)/X2(t) convirja para 1 q.c. quando t → +∞, temos que
(X2−X1)(t)→ +∞. O Teorema 2.14 nos diz exatamente o quão rápido isto acontece.

Palavras-chave: Bolas em caixas, Modelos de urna de Pólya, ligação preferen-
cial, fitness.

x



Abstract

In this work we study a Pólya urn model with temporal reinforcement functions, i.e.,
the probability of adding a ball of color s at time t+1 will be proportional to a function
of the amount of balls of that color at time t and the time t itself. Specifically, the
probability will be proportional to fs(x, t) where x is the amount of balls of that color
at time t and fs is a positive function associated with the color s.

We are particularly interested in the Pólya urn model with two colors, 1 and 2,
and the temporal reinforcement functions f1(x, t) = xα, f2(x, t) = (1 + (t + 1)−β)xα

where 0 < α < 1 and β > 0. We find three regimes depending on (α, β). If 0 < α < 1/2

and 0 < β < 1/2 then the color 2 wins the competition with probability 1, i.e., from a
random time on, we always have more balls of color 2 than of color 1. If 0 < α < 1/2

and β ≥ 1/2 then there will be endless leadership changes. For α = 1/2 we have a
similar result but the regime is split between β ≤ 1/2 and β > 1/2. For 1/2 < α < 1

we have a phase transition on β = 1− α. If β ≤ 1− α then the color 1 will lose with
probability 1, but if β > 1 − α then there is a positive probability of bin 1 win the
competition. To deal with this problem, because of dependence on time, we were not
able to use the exponential embedding, which is a classic tool analysing such models.
To prove the results we needed first to generalize some results present in the literature
and then, to define a coupling with our model.

Keywords: Balls into Bins, Pólya urn models, preferrential attachment, fitness.
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Chapter 1

Introduction

Cumulative advantage is a phenomenon observed in several systems where there is com-
petition for resources. For instance, two companies can compete for customers. The
more customers a company has, the more popular it will be, and the more popular the
company is, the more customers it will atract. This phenomenon, the capacity that ac-
cumulated resources have to promote accumulation of more resources, appears in the lit-
erature under various names such as cumulative advantage [Price, 1976], preferential at-
tachment [Barabasi and Albert, 1999], “the rich get richer” [DiPrete and Eirich, 2008],
processes with feedback [Drinea et al., 2002, Oliveira, 2009], among others.

The oldest model with this phenomenon is the Pólya Urn process, which was
introduced by Eggenberger and Pólya [Eggenberger and Pólya, 1923] as a model for
contagious diseases. Later the model was widely studied and applied [Mahmoud, 2008,
Pemantle, 2007].

In the Pólya urn model, we have an urn with colored balls. Then we draw a ball at
random from the urn and put it back together with another ball of the same color. Note
that if we have x balls of some color, that color is drawn with probability proportional
to f(x) = x, where f is called a reinforcement function. In [Khanin and Khanin, 2001]
the authors introduced nonlinearity to the model, making f(x) = xα with α > 0.
Later, in [Oliveira, 2008], Oliveira generalizes the model for any positive function f .

Beyond cumulative advantage, an observed and recognized characteristics in
competitions is fitness, which refers to the inherent ability of an agent to accumu-
late resources that does not depend on the amount of resources already accumulated
[Borgs et al., 2007, Dereich and Ortgiese, 2014].

Non-linear Pólya urn processes with fitness were analyzed in [Jiang et al., 2016].
In the model studied by the authors, we have an urn with two colors, 1 and 2. If
the urn contains x balls of color i, then we draw a ball of that color with probability
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1. Introduction 2

proportional to fi(x) = rix
α, where r1, r2, α > 0. Note that unlike the cases stud-

ied in [Khanin and Khanin, 2001, Oliveira, 2008], the authors in [Jiang et al., 2016]
allowed each color to have its own reinforcement functions f1, f2, but it was not
the first time a model with different reinforcement functions was considered (see
[Collevecchio et al., 2013]). If r2 > r1 then the balls of color 2 have one advantage
(the greater fitness) that does not depend on the amount of balls of color 2 already
present in the urn. Bringing back the example of the two companies competing for
customers, we can think the fitness being the quality of service offered by the company.
The authors in [Jiang et al., 2016] proved that if 0 < α < 1 then the agent with greater
fitness will win the competition with probability 1, i.e., there exists a finite random
time s such that, from that time, the fittest agent will always have the greater fraction
of resources. We say that the winner reaches eventual leadership.

The model described above says that the agent starting with smaller fitness has
no chance to win the competition. However, in reality, the agent can change over
time. It can improve its abilities, increasing its fitness. In this work we show that
even starting the competition with smaller fitness, if the agent increases its fitness fast
enough (even remaining smaller), the probability of not losing becomes positive.

“Balls into bins” models are urn models where we have two or more urns, which
from here on, we are going to call bins, and each bin contains balls. Here the colors
play no role. We put balls into the bins following some probability rule.

The amount of balls in each bin in the “balls into bins” model associates with the
amount of balls of each color in the Polya urn model. Thoughout this work, we are
going to use the terminology of “ball into bins” model instead the traditional Pólya urn
model.

The proccess we are going to study will start with X1(0) = a1 and X2(0) = a2

balls in the bins 1 and 2 respectively, where a1 and a2 are positive integers. The
probability of adding a ball in bin s at time t+ 1 is proportional to fs(Xs(t), t), where
fs is a temporal reinforcement function and Xs(t) is the amount of balls in bin s at
time t. In the case where the reinforcement functions do not depend on time, we call
them atemporal reinforcement functions.

As we saw, in [Jiang et al., 2016], they studied the process with atemporal rein-
forcement functions

f1(i, t) = r1i
α, f2(i, t) = r2i

α.

In this work, we are particularly interested in the temporal reinforcement functions

f1(i, t) = r1(t)i
α, f2(i, t) = r2(t)i

α



1. Introduction 3

where 0 < r1(t) ≤ r2(t) for all t ≥ 0. Note we can define r(t) = r2(t)/r1(t) and we can
redefine f1, f2, to have a process with same distribution, as

f1(i, t) = iα, f2(i, t) = r(t)iα.

Indeed, given that at time t bin 1 has x balls and bin 2 has y balls, the probability of
adding a ball in bin 1 at time t+ 1 will be

r1(t)x
α

r1(t)xα + r2(t)yα
=

r1(t)/r1(t)x
α

r1(t)/r1(t)xα + r2(t)/r1(t)yα
=

xα

xα + r(t)yα
,

and the same applies for the probability of adding a ball to bin 2.
If r(t) = 1 for all t ≥ 0, then we are in the case studied in

[Khanin and Khanin, 2001] and there is a positive probability of bin 1 not losing. But
if r(t) = r > 1 for all t ≥ 0, then we are in the case studied in [Jiang et al., 2016], and
the probability of bin 1 not losing becomes zero. We are interested in the case where
r(t) > 1 but r(t)→ 1. In the example of two companies competing for customers, the
company 1 start with smaller fitness but along the time it improves its fitness getting
closer and closer from the fitness of company 2. We show that, depending on how fast
r(t) converges to 1, the probability of company 1 not losing can be positive or zero.

This is not the first time the Pólya urn model with the rule changing over time is
studied. In [Athreya, 1969, Pemantle, 1990, Sidorova, 2018b] the authors studied the
linear Pólya urn model where the amount of ball added to the urn at each drawn changes
over time. In [Sidorova, 2018a] Sidorova studied the same model for the reinforcement
function f(x) = xα with α > 1. But in those models, the reinforcement function does
not change over time. To the best of our knowledge, this is the first time the model is
studied with a temporal reinforcement function.

A particular and interesting case of temporal reinforcement functions f1(i, t) = iα

and f2(i, t) = r(t)iα is the case where r(t) = (1 + (t+ 1)−β) with β > 0. For any fixed
0 < α ≤ 1 we have a phase transition on β, depending on α. For 0 < α < 1/2 we
have that if β < 1/2 then bin 2 reaches eventual leadership with probability 1 and for
β ≥ 1/2 there are endless leadership changes (there is a sequence of time such that
bin 1 will have more balls then bin 2 and there is another sequence of time such that
bin 2 will have more balls then bin 1) with probability 1. For α = 1/2 we have that
if β ≤ 1/2 then bin 2 reaches eventual leadership with probability 1 and for β > 1/2

there are endless leadership changes with probability 1. Finally, for 1/2 < α ≤ 1 we
have that for β ≤ 1−α the probability that bin 1 reaches eventual leadership is 0 and
for β > 1 − α that probability is positive. This is our main result and is proved in
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Theorem 2.12. See Figure 1.1 for an overview of the results stated here.
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Figure 1.1. The three phases for α > 0 and β > 0. 1) Endless leadership
changes. 2) Bin 2 reaches eventual leadership with probability 1. 3) Bin 1
reaches eventual leadership with positive probability.

One of the main tools used to study this model is the exponential embedding
[Khanin and Khanin, 2001, Jiang et al., 2016, Oliveira, 2008, Davis, 1990], but the ad-
dition of time in the reinforcement functions makes this tool useless. So, in order to get
results for the temporal reinforcement functions, we need first generalize some results
found in [Khanin and Khanin, 2001, Jiang et al., 2016] to a wider class of atemporal
reinforcement functions. Then, through a coupling, we obtain results for the temporal
reinforcement functions.

The generalization of the atemporal reinforcement functions studied in
[Jiang et al., 2016] to a larger class of pairs (f1, f2), although it is an intermediate
step to prove our main results, is interesting for itself. Due to the exponential embed-
ding, we were able to prove very accurate results. For example, an interesting case for
that wider class of atemporal reinforcement functions is f1(i) = iα, f2(i) = rii

α with
ri ↘ 1 as i → +∞. In particular, we can take ri = (1 + i−β) with β > 0 (this is the
model used in the coupling to prove our main results). The parameter β tells us how
fast ri converges to 1. Smaller β means more advantage for bin 2. For α < 1/2 and
β = 1/2, the advantage for bin 2 is not enough and the bin 1 overtakes bin 2 infinity
often. But, what happens if we slow down the speed of convergence multiplying i−1/2

by a function h(i) (such that h(i) → +∞ and h(i) = o(iδ) for all δ > 0)? More
specifically, what happens if we define ri = 1 + h(i)i−1/2? In this case, ri goes to 1 a
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bit slower but yet faster than 1 + i−β for any β < 1/2. Defining

h(i) = C

√
(1− 2α) log log

(
2i1−2α

1− 2α

)
,

for C > 1, is enough to make bin 2 reaches eventual leadership with probability 1,
but if we take 0 < C < 1, then, there are endless leadership changes. That is what
Corollary 2.4 deals with. What happens if C = 1 is still an open problem.

We also ask the same type of question about other points (α, β) where we have
a phase transition. See Corollaries 2.6, 2.10 and 2.11.

When f1(i) = iα and f2(i) = rii
α with 0 < α ≤ 1/2 and ri ↘ r ≥ 1, we are able

to find the assymptotic behaviour of X1(t)/X2(t) (see Theorem 2.13). If ri = 1 + i−β

although X1(t)/X2(t) converges to 1 a.s. as t → +∞, we have (X2 − X1)(t) → +∞.
Theorem 2.14 gives us the assymptotic behaviour of the difference.

In the next chapter, we give the precise statements of our results and in Chapter 3
we present the tools needed for the proofs. Finally, in Chapter 4 we give all the proofs.



Chapter 2

The model and results

In this chapter we are going to define the model formally and to present our results.
Our process will be (X1(t, f1, f2, a1, a2), X2(t, f1, f2, a1, a2))t≥0, where f1, f2, a1, a2 are
given. Throughout the text, we will omit the arguments f1, f2, a1, a2 when they are
implicit from the context.

Let a1 and a2 be positive integers and f1, f2 : N × N → (0,∞). Let X1(0) = a1

and X2(0) = a2. The model is defined recursively by the following probabilities

P[X1(t+ 1) = x+ 1, X2(t+ 1) = y|X1(t) = x,X2(t) = y] =
f1(x, t)

f1(x, t) + f2(y, t)
, (2.1)

P[X1(t+ 1) = x,X2(t+ 1) = y + 1|X1(t) = x,X2(t) = y] =
f2(y, t)

f1(x, t) + f2(y, t)
. (2.2)

In most cases in this dissertation, the reinforcement functions do not depend on
time, i.e., they are atemporal reinforcement functions. And when this is the case, we
omit their second argument. For instance, the following definition is for such kind of
reinforcement functions.

Definition 2.1. Let f1, f2 : N→ (0,∞) be such that f1(i) ≤ f2(i) for all i ∈ N. Define

s2n :=
n∑
i=1

(
1

f1(i)2
+

1

f2(i)2

)
and t2n := 2 log2 s

2
n,

where log2 is given by

log2 x :=

1 if x ≥ 0, log x ≤ e

log log x if log x > e.
(2.3)

6
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We say that (f1, f2) is GLIL (Good for Law of Iterated Logarithm) if

1.
+∞∑
n=1

(sntnf1(n))−3 < +∞,

2. lim
n→+∞

sn = +∞ and

3. lim sup
n→+∞

sn+1

sn
< +∞

Also, we say that (f1, f2) is GKTS (Good for Kolmogorov Two Series theorem) if

i.
+∞∑
i=1

1

f2(i)
= +∞ and

ii. lim
n→+∞

sn < +∞.

In the case where f1(i) = f2(i) = iα, if 0 < α ≤ 1/2 then the pair (f1, f2) is GLIL.
If 1/2 < α ≤ 1 then (f1, f2) is GKTS. Theorem 2.2 deal with the set of GLIL pairs and
tell us sufficient conditions for endless leadership changes to happen with probability
1 and sufficient conditions for bin 2 to reach eventual leadership with probability 1.

Theorem 2.2. Let (f1, f2) be GLIL (see Definition 2.1). Define

an =
n∑
i=1

(
1

f1(i)
− 1

f2(i)

)
(2.4)

and
bn = sntn (2.5)

where sn and tn are given by

s2n :=
n∑
i=1

(
1

f1(i)2
+

1

f2(i)2

)
and t2n := 2 log2 s

2
n,

and log2 is defined in (2.3). Also, let I = lim infn→+∞ an/bn and S =

lim supn→+∞ an/bn. Then

1. If 1 < I ≤ S then X2(t)−X1(t)→ +∞ a.s. and therefore bin 2 reaches eventual
leadership with probability 1.

2. If I ≤ S < 1 then lim inft→+∞X2(t) − X1(t) = −∞ and lim supt→+∞X2(t) −
X1(t) = +∞ a.s. and this implies that there are endless leadership changes with
probability 1.
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The theorem above does not consider all cases of GLIL functions. There is the
case where I ≤ 1 ≤ S, and what happens on these cases is still an open problem. Now,
an important corollary of the above theorem.

Corollary 2.3. Let 0 < α ≤ 1/2 and define f1(i) = iα, f2(i) = rii
α, where ri ↘ r ≥ 1.

Then (f1, f2) is GLIL. Let ri = 1 + ci−β with c, β > 0. If β < 1/2 or β = α = 1/2 then
I = S = +∞ and if β > 1/2 or α < 1/2 = β then I = S = 0.

Analyzing I and S in the above corollary when α < 1/2, if β < 1/2 we have
I = S = +∞ and if β ≥ 1/2 then I = S = 0. When we decrease the value of β, we
are decreasing the speed of the convergence ri ↘ 1, hence increasing the advantage of
bin 2. Note that decreasing β from 1/2 to 1/2 − δ is the same as multiply i−1/2 by
h(i) = iδ. But, it does not matter how small δ > 0 is, we always change the regime.
So, what about taking h(i) such that h(i)→ +∞ and h(i) = o(iδ) for all δ > 0?

Corollary 2.4. Let 0 < α < 1/2 and define f1(i) = iα, f2(i) = rii
α where ri =

1 + i−1/2h(i) and

h(i) = C

√
(1− 2α) log2

(
2i1−2α

1− 2α

)
. (2.6)

If C > 1 then bin 2 reaches eventual leadership with probability 1. If 0 < C < 1 then
there are endless leadership changes with probability 1.

Corollary 2.5. Let 0 < α < 1/2, ri ↘ 1 a sequence such that

lim inf
i→+∞

ri − 1

i−1/2
√

(1− 2α) log2

(
2i1−2α

1−2α

) = C1

lim sup
i→+∞

ri − 1

i−1/2
√

(1− 2α) log2

(
2i1−2α

1−2α

) = C2

and define f1(i) = iα and f2(i) = rii
α. If C1 > 1 bin 2 reaches eventually leadership

with probability 1 and if C2 < 1 there are endless leadership changes with probability 1.

In the phase diagram of α and β (see Figure 1.1), the most interesting point is
α = β = 1/2. It is in the boundary of all three regimes and we know it belongs to the
regime where the probability of bin 2 reaches eventual leadership is 1. What happens
if we change the speed of convergence of the fitness multiplying it by a function h(i) or
change how fast the reinforcement functions goes to infinity multiplying

√
i by g(i)?

Let f1(i) =
√
i and f2(i) = (1 + h(i)i−1/2)

√
i. Let’s consider the role of h(i).

As we said before, it is responsible for increasing or decreasing the speed at which ri
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approaches 1. If it decreases the speed, bin 2 will have more advatage, so, since without
h(i) the probability of bin 2 reaches eventual leadership is already 1, then, deacresing
the speed, the probability of bin 2 reaches eventual leadership remains 1. Now, if h(i)

increases the speed, it makes bin 2 to have less advantage. The following corollary tells
us how fast h(i) should go to zero in order to change the regime.

Corollary 2.6. Let f1(i) =
√
i, f2(i) = (1 + h(i)i−1/2)

√
i, where

h(i) = C

√
log2 2 log i

log i
.

If C > 1 then bin 2 reaches eventual leadership with probability 1 and if C < 1 there
are endless leadership changes with probability 1.

The next result deal with the set of GKTS pairs, and tell us necessary and
sufficient condition for bin 1 reaches eventual leadership with positive probability.

Theorem 2.7. Let (f1, f2) be GKTS (see Definition 2.1), A1 be the event {bin 1
reaches eventual leadership} and A2 be the event {bin 2 reaches eventual leadership}.
Then P(A1) + P(A2) = 1. Also P(A1) > 0 if and only if

+∞∑
i=1

(
1

f1(i)
− 1

f2(i)

)
< +∞.

Corollary 2.8. Let 1/2 < α ≤ 1, f1(i) = iα and f2(i) = (1 + ci−β)iα where c, β > 0.
Let A1 and A2 as in Theorem 2.7. Then, P(A1) + P(A2) = 1. Also P(A1) > 0 if and
only if β > 1 − α. In particular, when β = 1 − α the probability of bin 1 reaching
eventual leadership is 0. But if we define f2(i) = (1 + h(i)iα−1)iα where h(i) is such
that

+∞∑
i=1

h(i)

i
< +∞,

then the probability of bin 1 reaching eventual leadership becomes positive.

For example, if we take h(i) = (log i)−2, then the probability of bin 1 reaching
eventual leadership is positive. Now we make a remark about the continuity of P(bin 1
reaches eventual leadership) when β is equal to 1− α. We prove it in Chapter 4 using
Chebyshev’s inequality.

Remark 2.9. Let 1/2 < α ≤ 1, f1(i) = iα and f2(i) = (1 + i−β)iα. Let Pβ be the
probability of the process (X1(t), X2(t)) with β > 0. Let A = {bin 1 reaches eventual
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leadership}. Then
lim

β→1−α
Pβ(A) = 0.

When f1(i) = iα and f2(i) = (1+i−β)iα with β > 1/2, Corollary 2.3 tells us that if
α ≤ 1/2 then there are endless leadership changes with probability 1, but Corollary 2.8
tells us that for α > 1/2 the probability of the occurence of endless leadership changes
becomes 0. The role of α here is the speed at which f1 and f2 goes to infinity. Changing
the power from 1/2 to an α greater and 1/2 is the same as mutiply f1(i) =

√
i and

f2(i) = (1 + i−β)
√
i by g(i) = iα−1/2, and that is enough to change the probability of

happens endless leadership changes from 1 to 0. But what about takeing g(i) such that
g(i) goes to infinity slower than any positive power of i? For example, g(i) = log i?
The answer is in Corollary 2.10 bellow.

Corollary 2.10. Let f1(i) = g(i)
√
i and f2(i) = (1 + i−β)g(i)

√
i with β > 1/2. Then

the probability of endless leadership changes is 1 if

+∞∑
i=1

1

g(i)2i
= +∞

and 0 otherwise.

For instance, if we take g(i) =
√

log i then the probability of endless leadership
changes will be 1, but taking g(i) = log i, this probability will be 0.

Returning to the case where α = β = 1/2, let f1(i) = g(i)i1/2 and f2(i) =

(1 + i−1/2)g(i)i1/2. With β = 1/2, we can change regime both decreasing or increasing
the speed as f1 and f2 goes to infinity. For example, taking g(i) = i−δ or g(i) = iδ with
any δ > 0. But let’s see what happens with some choices of g(i) with g(i) = o(iδ) for
any δ > 0 and g(i) with i−δ = o(g(i)) for any δ > 0.

In the next corollary, we will see that even g(i) = exp(− logδ i) with 0 < δ < 1

is not enough to change from “bin 2 reaches eventual leadership with probability 1”
regime to “endless leadership changes” regime. On the other hand, it is enough to
take g(i) = logδ i with δ > 1 to change from “bin 2 reaches eventual leadership with
probability 1” regime to “bin 1 reaches eventual leadership with positive probability”
regime.

Corollary 2.11. Let f1(i) = g(i)i1/2 and f2(i) = (1 + i−1/2)g(i)i1/2. If g(i) =

exp(− logδ i) with 0 < δ < 1 then bin 2 reaches eventual leadership with probability
1. If g(i) = logδ i with δ > 1 then bin 1 reaches eventual leadership with positive
probability.
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Now, we state our main result about the temporal reinforcement functions.

Theorem 2.12. Let f1(i, t) = iα and f2(i, t) = (1 + (t + 1)−β)iα for 0 < α < 1 and
β > 0. Then we have the following regimes:

1. if 0 < α < 1/2 and β < 1/2, or α = 1/2 and β ≤ 1/2, or 1/2 < α < 1 and
β ≤ 1− α then bin 2 reaches eventual leadership with probability 1.

2. if 0 < α < 1/2 and β ≥ 1/2, or α = 1/2 and β > 1/2 then there are endless
leadership changes with probability 1.

3. If 1/2 < α < 1 and β > 1−α then bin 1 reaches eventual leadership with positive
probability.

Returning to the atemporal reinforcement functions, the next two theorems are
results about the model with f1(i) = iα and f2(i) = rii

α with 0 < α ≤ 1/2 and
ri ↘ r ≥ 1. In [Khanin and Khanin, 2001] they show that for ri ≡ 1, X1(t) and
X2(t) have the same order, i.e X1(t)

X2(t)
→ 1. We are interested in what happens when

ri ↘ r ≥ 1.

Theorem 2.13. Let f1(i) = iα and f2(i) = rii
α for 0 < α ≤ 1/2 and ri ↘ r ≥ 1.

Then X1(t)
X2(t)

→ r−
1

1−α a.s. as t→ +∞.

There is a special case where we can compute the asymptotic behaviour of (X1−
X2)(t) as t→ +∞.

Theorem 2.14. Let f1(i) = iα and f2(i) = (1 + i−β)iα for 0 < α ≤ 1/2 and 0 < β <

1/2. Then

(X2 −X1)(t) ∼
t1−β

21−β(1− α− β)
. (2.7)



Chapter 3

Preliminares

Here, we present some definitions, techniques and basic results that will be useful in
the proofs of our theorems.

3.1 Asymptotics

• Let {an}n≥1 and {bn}n≥1 be sequences of real numbers. As n→ +∞, we say:

an = O(bn), if lim sup
n→+∞

|an/bn| < +∞,

an = o(bn), if lim
n→+∞

an/bn = 0,

an = Ω(bn), if bn = O(an),

an = Θ(bn), if an = O(bn) and bn = O(an).

• The expression “an ∼ bn as n→ +∞" means limn→+∞ an/bn = 1 and “an � bn"
means an = Θ(bn).

• Whenever {Xn}n≥1 is a sequence of random variables defined in the same proba-
bility space, we also use the asymptotics notation stated above. Sometimes there
is a little confusion in these cases, because when we deal with random variables,
we have more than one type of convergence (see [Janson, 2011] for a detailed
account of the asymptotic notation in probability).

In this work we always use the almost surely convergence. For instance, whenever
we write Xn = O(an), it should be understood that there exists an event A of
probability 1 such that for each ω ∈ A we have Xn(ω) = O(an).

12
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3.2 Classical results

In this section we present some classical results that will be very useful in our proofs.
First we state Kolmogorov three and two series theorems, whose proofs can be found
in [Durrett, 1996].

Theorem 3.1 (Kolmogorov three series). Let ξ1, ξ2, ... be independent. Let A > 0 and
Yi = ξi1{{|ξi|≤A}}. In order that

∑+∞
n=1 ξn converges a.s., it is necessary and sufficient

that

i)
∑+∞

n=1 P (|ξn| > A) < +∞,

ii)
∑+∞

n=1 EYn converges, and

iii)
∑+∞

n=1Var (Yn) < +∞.

Theorem 3.2 (Kolmogorov two series). Let ξ1, ξ2, ... be independent random variables
with expected values Eξn = µn and variances Var ξn = σ2

n, such that
∑+∞

n=1 µn and∑+∞
n=1 σ

2
n converges. Then

∑+∞
n=1 ξn converges almost surely.

If X is a random variable, we write X d
= exp(λ) to say that X is exponentially

distributed with rate λ, meaning that

P(X > t) = e−λt (t ≥ 0).

This distribution has a density function

f(x) =

λe−λx x ≥ 0

0 x < 0.

It follows that EX = λ−1 and Var X = λ−2. Now we give three results about expo-
nential distribution.

Proposition 3.3. The exponential distribution has memory loss, that is, if η d
= exp(λ)

and t, s ≥ 0, then
P (η > s+ t|η > s) = P (η > t).

Proof. It follows easily by simple computations

P (η > s+ t|η > s) =
P (η > s+ t ∩ η > s)

P (η > s)

=
P (η > s+ t)

P (η > s)
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=
e−λ(s+t)

e−λs

= e−λt = P (η > t).

Proposition 3.4. If U and V are two independent exponential random variables with
parameters u and v respectively, then

P (U < V ) =
u

u+ v
.

Proof. Let f and g be the density functions of U and V . Since U and V are independent,
the density function h of the random vector (U, V ) is given by h(x, y) = f(x)g(y).
Hence

P (U < V ) =

∫ +∞

0

∫ +∞

x

ueuvxve−vydydx

=

∫ +∞

0

ue−uxe−vxdx

=

∫ +∞

0

ue−(u+v)xdx

=

[
− u

u+ v
e−(u+v)x

]+∞
0

=
u

u+ v
.

Proposition 3.5. Let (λi)i≥1 be a sequence of positive real numbers and let (ηi)i≥1 be
a sequence of independent random variables, where for each i, ηi

d
= exp(λi). Then

i) If
∑+∞

i=1 λ
−1
i < +∞, then

∑+∞
i=1 ηi < +∞ a.s..

ii) If
∑+∞

i=1 λ
−1
i = +∞, then

∑+∞
i=1 ηi = +∞ a.s..

Proof. i) The first part follows easily from Theorem 3.2 by noting that Eηi = λ−1i ,
Var ηi = λ−2i and that

∑+∞
i=1 λ

−1
i < +∞ implies

∑+∞
i=1 λ

−2
i < +∞.

To prove ii), we break in two cases. The first one when λi 6→ +∞ and the second
one when λi → +∞. In the first case, there exists M > 0 and a subsequence λij such
that λij < M for all j. Hence

+∞∑
i=1

P (ηi > 1) =
+∞∑
i=1

e−λi ≥
+∞∑
j=1

e−λij >
+∞∑
j=1

e−M = +∞,
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and the divergence we want follows from Theorem 3.1.
For the second case, define Yi = ηi1{|ηi|<1}. Let N ∈ N such that if i ≥ N then

λ−1i < 1/2. So, if i ≥ N

EYi =
1

λi
− e−λi

(
1

λi
+ 1

)
(using ex > 2x) ≥ 1

λi
− 1

2λi

(
1

λi
+ 1

)
=

1

2λi

(
1− 1

λi

)
(using λ−1i < 1/2) >

1

4λi
.

Then
+∞∑
i=1

EYi ≥
+∞∑
i=N

EYi >
1

4

+∞∑
i=N

λ−1i = +∞

by the hypothesis from ii). So, also by Theorem 3.1,
∑+∞

i=1 ηi = +∞ almost surely.

3.3 Exponential embedding

The first technique we present is known as exponential embedding (or Rubin represen-
tation) and it was first introduced by Davis [Davis, 1990]. The exponential embedding
is a countinuous-time process N(t) with state space (N ∪ {+∞})2 and initial state
(a1, a2). To define the process let {η(s)i }i≥1,s=1,2 be independent random variables such
that

η
(s)
i

d
= exp(fs(i)). (3.1)

For s ∈ {1, 2}, define

Ns(t) = sup

{
n ∈ N :

n−1∑
j=as

η
(s)
j ≤ t

}

and let N(t) = (N1(t), N2(t)) for t ≥ 0. Consider the set

T =
2⋃
s=1

∞⋃
n=as

{
n−1∑
j=as

η
(s)
j

}

of arrival times and let {0 = T0, T1, T2, ...} be the increasing ordering of T (up to the
first accumulation point, whenever it exists). The following theorem relates the process
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N(Tn) with the original process (X1(n), X2(n)).

Theorem 3.6 (Rubin). The proccess (N1(Tn), N2(Tn))n∈N has the same distribution
as (X1(n, f1, f2, a1, a2), X2(n, f1, f2, a1, a2))n∈N.

Proof. The proof of this theorem can be found in [Oliveira, 2008] but we reproduce it
here. First note that T1 = min{η(1)a1 , η

(2)
a2 }. If T1 = η

(1)
a1 then the first ball goes to bin 1,

otherwise the first ball goes to bin 2. So

P(N1(T1) = a1 + 1, N2(T1) = a2) = P(η(1)a1
< η(2)a2

) =
f1(a1)

f1(a1) + f2(a2)
(3.2)

where the last equality comes from Proposition 3.4. And for the same reason

P(N1(T1) = a1, N2(T1) = a2 + 1) =
f2(a2)

f1(a1) + f2(a2)
.

More generally, let t ∈ R+ and bs ≥ as for each s ∈ {1, 2}. Conditioning on

∀s ∈ {1, 2}
bs−1∑
j=as

η
(s)
j ≤ t <

bs∑
j=as

η
(s)
j ,

from the memory loss of exponentials (Proposition 3.3), one can deduce that the first
arrival after time t at a given bin s will happen at a exp(f(bs))-distributed time,
independently for different bins. This almost takes us back to the situation of (3.2),
with bs replacing as, and we can similarly deduce that bin s gets the next ball with the
desired probability,

fs(bs)

f1(b1) + f2(b2)
.

Although the exponential embedding looks more artificial and less transparent
than the original process, it is much easier to analyse it mathematically. This simplicity
is due to the independence of random variables {η(s)j }.

3.4 The Law of Iterated Logarithm

Another important tool that we will use is a version of the Law of Iterated Logarithm,
due to Wittmann [Wittmann, 1985]. This theorem is only useful to the GLIL rein-
forcement functions, because we need

∑
i∈N f(i)−2 = +∞ to use it, as we will see in

Lemma 3.8.
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Theorem 3.7 (Law of Iterated Logarithm). Let {ξi}i≥1 be a sequence of independent
random variables with

E(ξi) = 0, Var (ξi) < +∞ (i ≥ 1).

We denote for any n ≥ 1

Sn :=
n∑
i=1

ξi, s2n := Var (Sn), t2n := 2 log2 s
2
n,

where log2 was defined in (2.3). If

(i)
+∞∑
n=1

(sntn)−pE(|ξn|p) < +∞ for some 2 < p ≤ 3,

(ii) lim
n→+∞

sn = +∞ and

(iii) lim sup
n→+∞

sn+1

sn
< +∞,

then
lim sup
n→+∞

Sn
sntn

= 1 a.s.

and
lim inf
n→+∞

Sn
sntn

= −1 a.s.

We use the above theorem to prove some essential lemmas that we state here and
prove at Section 4.5. The first lemma will be used in the proof of Theorem 2.2.

Lemma 3.8. Assume (f1, f2) is GLIL, let η(s)i be as in (3.1), and let

s2n :=
n∑
i=1

(
1

f1(i)2
+

1

f2(i)2

)
and t2n := 2 log2 s

2
n.

Also, define ξi := η
(1)
i − η

(2)
i and

Sn :=
n∑
i=1

ξi. (3.3)

Then
lim sup
n→+∞

Sn − ESn
sntn

= 1 a.s.

and
lim inf
n→+∞

Sn − ESn
sntn

= −1 a.s.
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We now present a lemma required in the proof of Theorem 2.13.

Lemma 3.9. Let f1(i) = iα, f2(i) = rii
α where ri ↘ r ≥ 1. Let s ∈ {1, 2} and

Ss,n =
n∑
i=1

η
(s)
i , s2s,n := Var (Ss,n) , t2s,n := 2 log2 s

2
s,n. (3.4)

Then
lim sup

Ss,n − ESs,n
ss,nts,n

= 1

and
lim inf

Ss,n − ESs,n
ss,nts,n

= −1.

η(1)a1

η
(1)
a1+1

...

η
(1)
n−1

η(2)a2

η
(2)
a2+1

...

η
(2)
n−1

Tn−1

η(1)a1

η
(1)
a1+1

...

η
(1)
n−1

η(2)a2

η
(2)
a2+1

...

η
(2)
n−1−Tn−1

Realization 1 Realization 2

Figure 3.1. Two realization of the Rubin process. In the circle mark • bin 1
get the n-th ball. In the square mark � bin 2 get the n-ball. In realization 1
Tn−1 > 0, wich means bin 2 get the n-th ball before bin 1 get the n-th ball. In
realization 2 Tn−1 < 0, wich means bin 1 get the n-th ball before bin 2 get the
n-th ball.
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From now on, we are going to use Tn and Y to represent

Tn =
n∑

i=X1(0)

η
(1)
i −

n∑
i=X2(0)

η
(2)
i (3.5)

and

Y = Tn −
n∑
i=1

η
(1)
i − η

(2)
i . (3.6)

We can write Y as

Y :=

X2(0)−1∑
i=X1(0)

η
(1)
i +

X1(0)−1∑
i=X2(0)

−η(2)i −
max{X1(0),X2(0)}−1∑

i=1

η
(1)
i − η

(2)
i

to see it is a finite sum of random variables. Also Tn can be written as

Tn := Y +
n∑
i=1

η
(1)
i − η

(2)
i .

See Figure 3.1 to see the meaning of Tn.



Chapter 4

Proofs

Now, it’s time to prove our results. To improve the presentation, we state again each
result before proving it. In the first section we prove the results about the leadership
change for atemporal reinforcement functions, which are Theorems 2.2 and 2.7 and their
corollaries. In Section 4.2 we prove our main result, first proving Lemmas 4.1 and 4.2
and then proving Theorem 2.12. After that, in Section 4.3 we prove Theorem 2.13,
that deals with the order of Xi(t) for a particular case of atemporal reinforcement
functions. In Section 4.4 we prove Theorem 2.14, which is about the order of the
difference (X2 −X1)(t). And finally, in Section 4.5, we prove the Lemmas 3.8 and 3.9,
which are used in some proofs throughout this chapter.

4.1 The leadership change

Theorem 2.2. Let (f1, f2) be GLIL (see Definition 2.1). Define

an =
n∑
i=1

(
1

f1(i)
− 1

f2(i)

)
(2.4)

and
bn = sntn (2.5)

where sn and tn are given by

s2n :=
n∑
i=1

(
1

f1(i)2
+

1

f2(i)2

)
and t2n := 2 log2 s

2
n,

and log2 is defined in (2.3). Also, let I = lim infn→+∞ an/bn and S =

lim supn→+∞ an/bn. Then

20
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1. If 1 < I ≤ S then X2(t)−X1(t)→ +∞ a.s. and therefore bin 2 reaches eventual
leadership with probability 1.

2. If I ≤ S < 1 then lim inft→+∞X2(t) − X1(t) = −∞ and lim supt→+∞X2(t) −
X1(t) = +∞ a.s. and this implies that there are endless leadership changes with
probability 1.

Proof. First, define
w(ε)±
n = an − (1± ε)bn.

Note that 1 < I if and only if there exists ε > 0 such that for large enough n we have

(1 + 2ε) <
an
bn

=⇒ εbn < an − (1 + ε) bn = w(ε)+
n

and since bn → +∞ as n → +∞, it follows that 1 < I implies w(ε)+
n → +∞ for some

ε > 0. A similar argument allows us to conclude that S < 1 implies w(ε)−
n → −∞ as

n → +∞ for some 0 < ε < 1. So, for the first part of the theorem, we will use in the
proof that w(ε)+

n → +∞ for some ε > 0 and for the second part of the theorem we will
use w(ε)−

n → −∞ for some 0 < ε < 1.
Let Tn as in (3.5) and note that Tn−1 > 0 means that when the second bin got

the n-th ball, the first bin had less than n balls (see Figure 3.1). On the other side,
Tn−1 < 0 means that when the first bin got the n-th ball, the second bin had less than
n balls. We will show that when w(ε)+

n → +∞ for some ε > 0 then Tn → +∞ a.s. and
if w(ε)−

n → −∞ for some 0 < ε < 1, then lim infn→+∞ Tn = −∞ and lim supn→+∞ Tn =

+∞ a.s..
Let Sn, sn and tn as in Lemma 3.8. It follows from that lemma

lim sup
n→+∞

Sn − ESn
sntn

= 1 (4.1)

and
lim inf
n→+∞

Sn − ESn
sntn

= −1 (4.2)

almost surely.
For the first part of the theorem, let ε > 0 such that limn→+∞w

(ε)+
n = +∞. It

follows from (4.2) that there exists a random variable n0 ∈ N such that with probability
1, if n > n0 then

−(1 + ε)sntn + ESn ≤ Sn.
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η(1)a1

η
(1)
a1+1

...

η
(1)
n−1

η(2)a2

η
(2)
a2+1

...

η
(2)
n+k−1

R
(2)
n,k

Figure 4.1. The circle mark • is where bin 1 get the n-th ball. The square
mark � is where bin 2 get the (n+ k)-th ball.

But the left side of inequality above is exactly w(ε)+
n , and since limn→+∞w

(ε)+
n = +∞,

it follows that Sn → +∞ a.s.. Since Tn = Sn + Y (see (3.6)) and Y is finite almost
surely, it follows that Tn → +∞ a.s..

Observe that Tn → +∞ implies not only that X2(t) ≥ X1(t) for large enough t,
but also that X2(t) − X1(t) → +∞. Indeed, let {η(s)i }i≥1,s=1,2 as in (3.1) and, given
k ∈ N, define B(s)

n,k =
∑n+k

j=n+1 η
(s)
j and R

(2)
n,k = Tn−1 − B

(2)
n−1,k (see Figure 4.1). Note

that R(2)
n,k > 0 implies that the second bin got the (n + k)-th ball before the first

bin has gotten the n-th ball. If R(2)
n,k → +∞ then for large enough t we will have

X2(t)−X1(t) ≥ k and since k is arbitrary, it follows that X2(t)−X1(t) → +∞. But
indeed R(2)

n,k → +∞ because limn→+∞ Tn = +∞ and B(s)
n,k → 0 (since it is a finite sum

of random variables that converge to zero almost surely).
For the second part of the theorem, let 0 < ε < 1 such that limn→+∞w

(ε)−
n = −∞.

It follows from (4.2) that there exists a random sequence n1, n2, ... such that almost
surely nk → +∞ as k → +∞ and

Snk ≤ −(1− ε)snktnk + ESnk (for all k ∈ N) (4.3)
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η(1)a1

η
(1)
a1+1

...
η
(1)
n+k−1

η(2)a2

η
(2)
a2+1

...

η
(2)
n−1

−R(1)
n,k

Figure 4.2. The square mark � is where bin 1 get the (n+k)-th ball. The circle
mark • is where bin 2 get the n-th ball.

and it follows from (4.1) that there exists another random sequence m1,m2, ... such
that almost surely mk → +∞ as k → +∞ and

Smk ≥ (1− ε)smktmk + ESmk (for all k ∈ N). (4.4)

The right hand side of (4.3) is exactly w(ε)−
nk , and since w(ε)−

nk → −∞, it follows that
lim infn→+∞ Sn = −∞ a.s.. The right hand side of (4.4) clearly goes to infinity, since
sn → +∞ (see Item 2 of Definition 2.1) and ESn ≥ 0 for all n ≥ 1. This implies that
lim supn→+∞ Sn = +∞. The same is true for Tn since Tn = Sn + Y . Defining R(1)

n,k =

Tn−1 + B
(1)
n−1,k it follows easily that lim infn→+∞R

(1)
n,k = −∞ and lim supn→+∞R

(2)
n,k =

+∞ a.s. (same argument used to prove that R(2)
n,k → +∞ a.s.), where B(1)

n−1,k and R(2)
n,k

were defined in the first part of the proof. Hence, for any k ∈ N, with probability
one, there exists infinity many times t such that X1(t)−X2(t) ≥ k and infinity many
times t such that X2(t) −X1(t) ≥ k. Since k is arbitrary, we have that almost surely
lim inft→+∞X2(t) − X1(t) = −∞ and lim supt→+∞X2(t) − X1(t) = +∞. And that
implies endless leadership changes.

Corollary 2.3. Let 0 < α ≤ 1/2 and define f1(i) = iα, f2(i) = rii
α, where ri ↘ r ≥ 1.



4. Proofs 24

Then (f1, f2) is GLIL. Let ri = 1 + ci−β with c, β > 0. If β < 1/2 or β = α = 1/2 then
I = S = +∞ and if β > 1/2 or α < 1/2 = β then I = S = 0.

Proof. Given 0 < α ≤ 1/2, f1(i) = iα and f2(i) = rii
α where ri ↘ r ≥ 1, we need to

check if (f1, f2) is GLIL. First note that f1(i) ≤ f2(i) for all i ∈ N, since ri ≥ 1. Now
we note that

s2n =
n∑
i=1

1 + r2i
r2i i

2α
∼

2n1−2α

1−2α if α < 1/2

2 log n if α = 1/2.

and for both α < 1/2 and α = 1/2 it follows that lim
n→+∞

sn = +∞ and lim
n→+∞

sn+1

sn
=

1 < +∞. For the condition (1) of the Definition 2.1

(sntnf1(n))−3 =
1

s3n
√

(2 log2 s
2
n)3

1

n3α
.

Now, we separate in two cases. If α = 1/2 then

1

s3n
√

(2 log2 s
2
n)3

1

n3α
� 1

(log n)3
√

(2 log2 s
2
n)3

1

n3/2
,

which is summable. Now, if α < 1/2 then

1

s3n
√

(2 log2 s
2
n)3

1

n3α
� 1

n3/2−3α
√

(2 log2 s
2
n)3

1

n3α

=
1√

(2 log2 s
2
n)3

1

n3/2
,

which is also summable. Hence the pair (f1, f2) is GLIL. Now, if ri = 1+ci−β for β > 0

then

an =
n∑
i=1

1

(1 + ci−β)iα+β

∼


n1−α−β

1−α−β if 1− α− β > 0

log n if 1− α− β = 0

constant if 1− α− β < 0

and

bn =

√√√√ n∑
i=1

1 + r2i
r2i i

2α

√
2 log2 s

2
n
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∼


2n1/2−α
√
1−2α

√
log2

2n1−2α

1−2α if α < 1/2

2
√

log(n) log2 2 log n if α = 1/2.

If (α < 1/2 and β ≥ 1/2) or (α = 1/2 and (β > 1/2) then I = S = 0, otherwise,
I = S = +∞.

Corollary 2.4. Let 0 < α < 1/2 and define f1(i) = iα, f2(i) = rii
α where ri =

1 + i−1/2h(i) and

h(i) = C

√
(1− 2α) log2

(
2i1−2α

1− 2α

)
. (2.6)

If C > 1 then bin 2 reaches eventual leadership with probability 1. If 0 < C < 1 then
there are endless leadership changes with probability 1.

Proof. As in the proof of Corollary 2.3, we have

bn ∼
2n1/2−α
√

1− 2α

√
log2

(
2n1−2α

1− 2α

)
.

If x = C
√

1− 2α, y = 2/(1− 2α) and z = 1− 2α, then

an =
n∑
i=1

1

iα
− 1

(1 + i−1/2x
√

log2 yi
z)iα

=
n∑
i=1

i−1/2x
√

log2 yi
z

(1 + i−1/2x
√

log2 yi
z)iα

=
n∑
i=1

x
√

log2 yi
z

(1 + i−1/2x
√

log2 yi
z)iα+1/2

∼ x

n∑
i=1

√
log2 yi

z

iα+1/2

∼ x

∫ n

k

√
log2 yi

z

iα+1/2
di

= x

[√
log2 yi

zi1/2−α

1/2− α

]n
k

−
∫ n

k

di

(1− 2α)y2i1/2+α log(yiz)
√

log2 yi
z

= x

[√
log2 yi

zi1/2−α

1/2− α

]n
k

−O
(∫ n

k

di

i1/2+α

)

= x

[√
log2 yi

zi1/2−α

1/2− α

]n
k

−O
([

i1/2−α

1/2− α

]n
k

)
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∼ x
2n1/2−α

√
log2 yn

z

1− 2α

= C
2n1/2−α
√

1− 2α

√
log2

(
2n1−2α

1− 2α

)
.

Hence,
I = S = lim

n→+∞

an
bn

= C

and the result follows from Theorem 2.2.

Corollary 2.5. Let 0 < α < 1/2, ri ↘ 1 a sequence such that

lim inf
i→+∞

ri − 1

i−1/2
√

(1− 2α) log2

(
2i1−2α

1−2α

) = C1

lim sup
i→+∞

ri − 1

i−1/2
√

(1− 2α) log2

(
2i1−2α

1−2α

) = C2

and define f1(i) = iα and f2(i) = rii
α. If C1 > 1 bin 2 reaches eventually leadership

with probability 1 and if C2 < 1 there are endless leadership changes with probability 1.

Proof. We prove the result when C1 > 1. For C2 < 1 the proof is almost the same.
The hypothesis implies that if C = (C1 + 1)/2 then there exists i0 ∈ N such that for
i ≥ i0 we have

ri > 1 + Ci−1/2

√
(1− 2α) log2

(
2i1−2α

1− 2α

)
:=r′i.

First note that for both f1(i) = iα, f2(i) = rii
α and f1(i) = iα, f2(i) = r′ii

α we have

bn ∼
2n1/2−α
√

1− 2α

√
log2

(
2n1−2α

1− 2α

)
.

Also, using an for f1(i) = iα, f2(i) = rii
α and a′n for f1(i) = iα, f2(i) = r′ii

α we note

a′n =
n∑
i=1

1

iα
− 1(

1 + Ci−1/2
√

(1− 2α) log2

(
2i1−2α

1−2α

))
iα

< C̃ +
n∑
i=1

1

iα
− 1

riiα
= C̃ + an
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where C̃ is a positive constant. Then

lim inf
n→+∞

an
bn

> lim inf
n→+∞

a′n − C̃
bn

= C > 1,

where the equality above comes from Corollary 2.4 proof. Now, it follows from Theo-
rem 2.2 the desired result.

Corollary 2.6. Let f1(i) =
√
i, f2(i) = (1 + h(i)i−1/2)

√
i, where

h(i) = C

√
log2 2 log i

log i
.

If C > 1 then bin 2 reaches eventual leadership with probability 1 and if C < 1 there
are endless leadership changes with probability 1.

Proof. As we saw in the proof of Corollary 2.3, in this case

bn ∼ 2
√

log(n) log2 2 log n.

Defining
g(x) = 2

√
log(x) log2 2 log x,

we have

g′(x) =
1√

log(x) log2 2 log x

(
1

x
log2 2 log x+ log x

1

log(2 log x) log(x)x

)
=

1

x

1√
log(x) log2 2 log x

(
log2 2 log x+

1

log(2 log x)

)
.

Now, note that

an =
n∑
i=1

1√
i
− 1

(1 + h(i)i−1/2)
√
i

=
n∑
i=1

h(i)

i

∼ C

∫ n

k

1

i

√
log2 2 log i

log i
di

= C

∫ n

k

1

i

log2 2 log i√
log(i) log2 2 log i

di

∼ C

∫ n

k

g′(i)di
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∼ Cg(n) ∼ Cbn.

Hence, it follows that
I = S = lim

an
bn

= C

and the result follows from Theorem 2.2.

Theorem 2.7. Let (f1, f2) be GKTS (see Definition 2.1), A1 be the event {bin 1
reaches eventual leadership} and A2 be the event {bin 2 reaches eventual leadership}.
Then P(A1) + P(A2) = 1. Also P(A1) > 0 if and only if

+∞∑
i=1

(
1

f1(i)
− 1

f2(i)

)
< +∞.

Proof. Let η(s)i be as in (3.1), define ξi := η
(1)
i − η

(2)
i and let

Sn :=
n∑
i=1

ξi. (4.5)

Note that

ESn =
n∑
i=1

(
1

f1(i)
− 1

f2(i)

)
and (Var Sn)2 = s2n =

n∑
i=1

(
1

f1(i)2
+

1

f2(i)2

)
.

Since (f1, f2) is GKTS,

lim
n→+∞

Var Sn = lim
n→+∞

sn < +∞.

It follows from Kolmogorov’s two-series theorem that Sn−ESn converges almost surely
as n→ +∞. Let S = limn→+∞ Sn − ESn.

If ESn → +∞ then Sn → +∞, since S is finite with probability 1. Hence,
Tn = Sn + Y → +∞. As we conclude in the proof of Theorem 2.2, Tn → +∞ implies
that X2(t)−X1(t)→ +∞ as t→ +∞. Since this happens with probability 1, it follows
that P(A2) = 1 and P(A1) = 0.

Now, if limn→+∞ ESn < +∞, then limn→+∞ Sn = S + limn→+∞ ESn, which is
a finite random variable. Hence, T = limn→+∞ Tn is a finite random variable with
probability 1, since Tn = Sn+Y . The same argument we used to prove that Tn → +∞
implies (X2−X1)(t)→ +∞ works for proving that T > 0 implies (X2−X1)(t)→ +∞
and T < 0 implies (X1 −X2)(t)→ +∞.

Note that if ξ1 and ξ2 are two independent random variable and for all a < b we



4. Proofs 29

have P(ξ1 ∈ (a, b)) > 0, then for all a < b we have P(ξ1 + ξ2 ∈ (a, b)) > 0. Also, if
P(ξ1 = a) = 0 for all a ∈ R then P(ξ1 + ξ2 = a) = 0 for all a ∈ R.

Let n > max{a1, a2}. Since T = (T −(η
(1)
n −η(2)n ))+(η

(1)
n −η(2)n ), (T −(η

(1)
n −η(2)n ))

and (η
(1)
n − η(2)n ) are independent and (η

(1)
n − η(2)n ) is such that P(η

(1)
n − η(2)n ∈ (a, b)) > 0

for all a < b and P(η
(1)
n − η(2)n = a) > 0 for all a ∈ R, it follows that P(T < 0) > 0 and

P(T = 0) = 0. Hence, P(A1) + P(A2) = 1 and P(A1) > 0.

Corollary 2.8. Let 1/2 < α ≤ 1, f1(i) = iα and f2(i) = (1 + ci−β)iα where c, β > 0.
Let A1 and A2 as in Theorem 2.7. Then, P(A1) + P(A2) = 1. Also P(A1) > 0 if and
only if β > 1 − α. In particular, when β = 1 − α the probability of bin 1 reaching
eventual leadership is 0. But if we define f2(i) = (1 + h(i)iα−1)iα where h(i) is such
that

+∞∑
i=1

h(i)

i
< +∞,

then the probability of bin 1 reaching eventual leadership becomes positive.

Proof. First note that (f1, f2) is GKTS. Indeed we have

+∞∑
i=1

1

f2(i)
=

+∞∑
i=1

1

(1 + ci−β)iα
>

+∞∑
i=1

1

(1 + c)iα
= +∞

and

( lim
n→+∞

sn)2 =
+∞∑
i=1

1 + (1 + ci−β)2

(1 + ci−β)2i2α
<

+∞∑
i=1

2

i2α
< +∞

since 2α > 1. Now observe that

+∞∑
i=1

1

(1 + c)iα+β
<

+∞∑
i=1

(
1

f1(i)
− 1

f2(i)

)
=

+∞∑
i=1

1

(1 + ci−β)iα+β
<

+∞∑
i=1

1

iα+β

and the first and last series are convergent if and only if β > 1− α. The result follows
now from Theorem 2.7.

Remark 2.9. Let 1/2 < α ≤ 1, f1(i) = iα and f2(i) = (1 + i−β)iα. Let Pβ be the
probability of the process (X1(t), X2(t)) with β > 0. Let A = {bin 1 reaches eventual
leadership}. Then

lim
β→1−α

Pβ(A) = 0.

Proof. When β → (1−α)−, the result is trivial, because β ≤ 1−α implies Pβ(A) = 0.
Now, if β > 1−α, we saw in the proof of Theorem 2.7 that Tn → T where T is a finite
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random variable. Also we noted that A = {T < 0}. Then

Pβ(A) = Pβ(T < 0)

= Pβ(T − ET < −ET ).

Note that, making a = max{a1, a2},

ET =
+∞∑
i=a

1

(1 + i−β)iα+β
+

a−1∑
i=a1

1

(1 + i−β)iα
−

a−1∑
i=a2

1

iα

→ +∞ as β → (1− α)+.

Hence, we can assume ET > 0. Retuning to Pβ(A), we have

Pβ(A) = Pβ(T < 0)

= Pβ(T − ET < −ET )

≤ Pβ(|T − ET | > ET )

≤ Var T
(ET )2

.

We already saw that ET → +∞ as β → (1 − α)+ and if Var T is bounded as β →
(1− α)+ then

Var T
(ET )2

→ 0 as β → (1− α)+.

Indeed

Var T =
+∞∑
i=a1

1

(1 + i−β)2i2α
+

+∞∑
i=a2

1

i2α

→
+∞∑
i=a1

1

(1 + i1−α)2i2α
+

+∞∑
i=a2

1

i2α
as β → (1− α)+

< +∞.

Corollary 2.10. Let f1(i) = g(i)
√
i and f2(i) = (1 + i−β)g(i)

√
i with β > 1/2. Then

the probability of endless leadership changes is 1 if

+∞∑
i=1

1

g(i)2i
= +∞
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and 0 otherwise.

Proof. If we name ri = 1 + i−β then

s2n =
n∑
i=1

1 + r2i
r2i h(i)2i

,

and limn→+∞ sn < +∞ if and only if

+∞∑
i=1

1

h(i)2i
< +∞.

When the series is divergent, (f1, f2) is GLIL and we can use Theorem 2.2. In this case
we have

an =
n∑
i=1

1

rih(i)i1/2+β

and

bn =

√√√√ n∑
i=1

(
1 + r2i
r2i h(i)2i

)
2 log2

n∑
i=1

1 + r2i
r2i h(i)2i

.

Since β > 1/2 we have an converges and bn → +∞. Then

I = S = lim
n→+∞

an
bn

= 0.

Theorem 2.2 give us that the probability of happens endless leadership changes is 1.
Now, when

+∞∑
i=1

1

h(i)2i
< +∞,

(f1, f2) is GKTS and

+∞∑
i=1

1

f1(i)
− 1

f2(i)
=

+∞∑
i=1

1

rih(i)i1/2+β
< +∞.

It allows us to use Theorem 2.7 to conclude not only the probability of happens endless
leadership changes is 0 but also that the probability of bin 1 reaches eventual leadership
is positive, which was the expected behavior.

Corollary 2.11. Let f1(i) = g(i)i1/2 and f2(i) = (1 + i−1/2)g(i)i1/2. If g(i) =

exp(− logδ i) with 0 < δ < 1 then bin 2 reaches eventual leadership with probability
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1. If g(i) = logδ i with δ > 1 then bin 1 reaches eventual leadership with positive
probability.

Proof. Let 0 < δ < 1, g(i) = exp(− logδ i), ri = 1 + i−1/2, f1(i) = g(i)i1/2 and
f2(i) = rig(i)i1/2. One can prove that (f1, f2) is GLIL. Let’s compute lim an/bn in
order to use Theorem 2.2.

an =
n∑
i=1

1

rig(i)i

∼
n∑
i=1

1

rig(i)i

∼
n∑
i=1

exp(logδ i)

i

∼
∫ n

k

exp(logδ x)

x
dx

∼ 1

δ
exp(logδ n) log1−δ n.

Also

bn =

√√√√ n∑
i=1

1 + r2i
r2i g(i)2i

√√√√2 log2

(
n∑
i=1

1 + r2i
r2i g(i)2i

)

∼ 2

√√√√ n∑
i=1

exp(2 logδ i)

i

√√√√log2

(
n∑
i=1

exp(2 logδ i)

i

)
.

But, note that

n∑
i=1

exp(2 logδ i)

i
∼
∫ n

k

exp(2 logδ x)

x
dx

∼ 1

2δ
exp(2 logδ x) log1−δ x.

So

bn ∼ 2

√√√√ n∑
i=1

exp(2 logδ i)

i

√√√√log2

(
n∑
i=1

exp(2 logδ i)

i

)

∼ 2

√
1

2δ
exp(2 logδ n) log1−δ n

√
log2

(
1

2δ
exp(2 logδ n) log1−δ n

)
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∼ exp(logδ n)

√
2

δ

√
log1−δ n

√
log logδ n.

Hence

an
bn
∼

1
δ

exp(logδ n) log1−δ n

exp(logδ n)
√

2
δ

√
log1−δ n

√
log logδ n

=
1√
2δ

√
log1−δ n√
log logδ n

→ +∞ as n→ +∞.

By Theorem 2.2, it follows that bin 2 reaches eventual leadership with probability 1.
Now, let δ > 1, g(i) = logδ i, ri = 1 + i−1/2, f1(i) = g(i)i1/2 and f2(i) = rig(i)i1/2.

In this case, (f1, f2) is GKTS. In order to use Theorem 2.7, let’s compute an.

an =
n∑
i=1

1

rig(i)i

≤
n∑
i=1

1

logδ i
.

Since δ > 1, it follows that limn→+∞ an < +∞. So, by Theorem 2.7, bin 1 reaches
eventual leaderhsip with positive probability.

4.2 Main result

Now, we are going to prove our main result about temporal reinforcement functions.
First we need two lemmas.

Lemma 4.1. Let (f1, f2) and (f̃1, f̃2) be two pairs of reinforcement functions and
(X1, X2) and (X̃1, X̃2) be the processes associated with the pairs (f1, f2) and (f̃1, f̃2)

respectivelly, with initial conditions (a1, a2). For each t ≥ 0, let Bt ⊂ N× N. If

f2(y, t)

f1(x, t) + f2(y, t)
≤ f̃2(y, t)

f̃1(x, t) + f̃2(y, t)
(4.6)

for all t ≥ 0 and (x, y) ∈ Bt, then there exists a coupling between the processes such
that, in this coupling, on the event ∩t≥0{(X1(t), X2(t)) ∈ Bt}, X2(t) ≤ X̃2(t) for all
t ≥ 0.

Proof. First, we are going to build the coupling. For that, let {Ui,j}i∈N,j∈N be indepen-
dent random variables uniformly distributed on [0, 1]. The process can be seen as a
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a1 + 1 a1 + 2 a1 + 3 a1 + 4 a1 + 5

a2 + 1

a2 + 2

a2 + 3

a2 + 4

a2 + 5

(a1, a2)

Figure 4.3. Realization of {Ui,j}i∈N,j∈N. The arrows are based on f̃1(i, t) =
f̃2(i, t) = iα and the rule described in (4.7).

random walk on Z2 (see Figure 4.3), where we start on (a1, a2) and we move either up
or to the right accordingly to {Ui,j}i∈N,j∈N. Assuming X1(t) = x and X2(t) = y, if

Ux,y >
f2(y, t)

f1(x, t) + f2(y, t)
(4.7)

then X1(t + 1) = x + 1 and X2(t + 1) = y, otherwise X2(t + 1) = y + 1 and
X1(t + 1) = x. We do the same with (X̃1, X̃2). Now, we assume we are in the
event ∩t≥0{(X1(t), X2(t)) ∈ Bt} and we use induction to prove that X2(t) ≤ X̃2(t) for
all t ≥ 0. For t = 0, it is obvious, since X2(0) = X̃2(0) = a2. Let t ≥ 0 and assume
X2(t) ≤ X̃2(t). If X2(t) < X̃2(t) then it follows that X2(t + 1) ≤ X̃2(t + 1) because
only 1 ball is added each time. Now, if X2(t) = X̃2(t), note that X1(t) = X̃1(t) since
X1(t) + X2(t) = X̃1(t) + X̃2(t) (the intitial condition is the same for both processes).
Let x := X1(t) and y := X2(t). Since we are in the event {(X1(t), X2(t)) ∈ Bt},

f2(y, t)

f1(x, t) + f2(y, t)
≤ f̃2(y, t)

f̃1(x, t) + f̃2(y, t)
.
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If
Ux,y ≤

f2(y, t)

f1(x, t) + f2(x, t)

then X2(t+ 1) = X̃2(t+ 1) = y + 1. If

f2(y, t)

f1(x, t) + f2(x, t)
< Ux,y ≤

f̃2(y, t)

f̃1(x, t) + f̃2(x, t)

then X2(t+ 1) = y and X̃2(t+ 1) = y + 1. Finally, if

f̃2(y, t)

f̃1(x, t) + f̃2(x, t)
< Ux,y

then X2(t+ 1) = X̃2(t+ 1) = y. In all three cases, we have X2(t+ 1) ≤ X̃2(t+ 1). We
can see the coupling in Figure 4.4.

a1 + 1 a1 + 2 a1 + 3 a1 + 4 a1 + 5

a2 + 1

a2 + 2

a2 + 3

a2 + 4

a2 + 5

(a1, a2)

Figure 4.4. Realization of {Ui,j}i∈N,j∈N. The blue arrows are based on (f̃1, f̃2)
and the red arrows are based on (f1, f2).
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Lemma 4.2. Let (r(t))t≥0 be a sequence such that r(t) ≥ 1 for all t ≥ 0, let f1(i, t) = iα,
f2(i, t) = r(t)iα where 0 < α < 1 and let a1, a2 be positive integers. Then, there exists a
finite random variable s such that, almost surely, for all t ≥ s, X2(t, f1, f2, a1, a2) ≥ t/3.

Proof. This follows from a coupling with the model f̃1(i, t) = f̃2(i, t) = iα. Observe
that

f̃2(y, t)

f̃1(x, t) + f̃2(y, t)
=

yα

xα + yα
≤ r(t)yα

xα + r(t)yα
=

f2(y, t)

f1(x, t) + f2(y, t)
(4.8)

for any x, y ≥ 1, t ≥ 0. Then, it follows from Lemma 4.1 that X̃2(t) ≤ X2(t) for all
t ≥ 0.

Since X̃2(t) ∼ t/2 (see [Khanin and Khanin, 2001], Proposition 3), it follows that
there exists a finite random time s such that

X2(t) ≥ t/3 for all t ≥ s. (4.9)

Theorem 2.12. Let f1(i, t) = iα and f2(i, t) = (1 + (t + 1)−β)iα for 0 < α < 1 and
β > 0. Then we have the following regimes:

1. if 0 < α < 1/2 and β < 1/2, or α = 1/2 and β ≤ 1/2, or 1/2 < α < 1 and
β ≤ 1− α then bin 2 reaches eventual leadership with probability 1.

2. if 0 < α < 1/2 and β ≥ 1/2, or α = 1/2 and β > 1/2 then there are endless
leadership changes with probability 1.

3. If 1/2 < α < 1 and β > 1−α then bin 1 reaches eventual leadership with positive
probability.

Proof. 1. To prove the first part of the theorem, let As be the event {X2(t) ≥
t/3; ∀ t ≥ s}. Since (1 + (t+ 1)−β) ≥ 1 for all t ≥ 0, it follows from Lemma 4.2
that

P

(⋃
s≥1

As

)
= 1.

So, we only need to prove the result for the events {As}s≥1.

Let α, β be such that 0 < α < 1/2 and β < 1/2 or α = 1/2 and β ≤ 1/2 or 1/2 <

α < 1 and β < 1 − α and let f1(i, t) = iα and f2(i, t) = (1 + (t + 1)−β)iα. Also,
let s ≥ 1 and define w = max{6, s+1}, f̃1(i, t) = iα and f̃2(i, t) = (1+(wi)−β)iα.
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If t ≤ s then wy ≥ w ≥ s+ 1 ≥ t+ 1 for all y ≥ 1. If t > s and y ≥ t/3,

wy ≥ w
t

3
≥ 2t ≥ t+ 1.

In both cases wy ≥ t+ 1. This implies

f2(y, t)

f1(x, t) + f2(y, t)
=

(1 + (t+ 1)−β)yα

xα + (1 + (t+ 1)−β)yα

≥ (1 + (wy)−β)yα

xα + (1 + (wy)−β)yα
=

f̃2(y, t)

f̃1(x, t) + f̃2(y, t)
.

For all (x, y) ∈ Bt where Bt := N×N if t ≤ s and Bt := {(x, y) ∈ N×N : y ≥ t/3}
for t > s. So, it follows from Lemma 4.1 that X2(t) ≥ X̃2(t) for all t ≥ 0 in the
event ∩t≥0{(X1(t), X2(t)) ∈ Bt}, but note that As = ∩t≥0{(X1(t), X2(t)) ∈ Bt}.
By Corollaries 2.3 and 2.8 X̃2(t) − X̃1(t) → +∞. Since X1(t) ≤ X̃1(t) and
X2(t) ≥ X̃2(t) it follows that X2(t) −X1(t) → +∞ almost surely. It means bin
2 reaches eventual leadership with probability 1.

2. For the second part of the theorem, we define a coupling with two models,
f̃1(i, t) = f̃2(i, t) = iα and f̂1(i, t) = iα, f̂2(i, t) = (1 + (ci)−β)iα, where c = 1/a2.
Let (X1, X2) be the process associated with (f1, f2), (X̃1, X̃2) the process asso-
ciated with (f̃1, f̃2) and (X̂1, X̂2) the process associated with (f̂1, f̂2). We prove,
using Lemma 4.1, that (in a coupling) X̃2(t) ≤ X2(t) ≤ X̂2(t) for all t ≥ 0. We
know from [Khanin and Khanin, 2001] that there are endless leadership changes
for (X̃1, X̃2) and we know from Corollary 2.3 that also we have endless leadership
changes for (X̂1, X̂2).

Let (tk)k≥1 be the sequence of times such that X̃2(tk) ≥ X̃1(tk). Since X1(t) +

X2(t) = X̃1(t) + X̃2(t) for all t ≥ 0, we have X2(tk) ≥ X̃2(tk) ≥ X̃2(tk) ≥ X1(tk).
Also, let (tn)n≥1 be the sequence of times such that X̂2(tn) ≤ X̂1(tn). Then
X2(tn) ≤ X̂2(tn) ≤ X̂1(tn) ≤ X1(tn), because we also have X1(t) + X2(t) =

X̂1(t) + X̂2(t) for all t ≥ 0. Hence, we have endless leadership changes for
(X1, X2) too.

To prove that X̃2(t) ≤ X2(t) ≤ X̂2(t), note that

yα

xα + yα
≤ (1 + (t+ 1)−β)yα

xα + (1 + (t+ 1)−β)yα
≤ (1 + (cy)−β)yα

xα + (1 + (cy)−β)yα

for all t ≥ 0 and x, y ≥ 1. The remaining follows from Lemma 4.1.
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3. For the third and last part of the theorem, we do a coupling with the model
f̂1(i, t) = iα, f̂2(i, t) = (1 + (ci)−β)iα with c = 1/a2. As we saw in the second
part of the proof, if (X1, X2) is the process associated with (f1, f2) and (X̂1, X̂2)

is the process associated with (f̂1, f̂2), then X2(t) ≤ X̂2(t) for all t ≥ 0 (through
coupling). Hence X1(t) ≥ X̂1(t) for all t ≥ 0. Since, in the process (X̂1, X̂2),
there is a positive probability of bin 1 reaches eventual leadership, we have in
that event, for large enough t, X1(t) ≥ X̂1(t) ≥ X̂2(t) ≥ X2(t), then the event
“bin 1 reaches eventual leadership in the process (X1, X2)” contains the event “bin
1 reaches eventual leadership in the process (X̂1, X̂2)”. Hence, its probability is
also positive.

4.3 The order of Xi(t)

Theorem 2.13. Let f1(i) = iα and f2(i) = rii
α for 0 < α ≤ 1/2 and ri ↘ r ≥ 1.

Then X1(t)
X2(t)

→ r−
1

1−α a.s. as t→ +∞.

Proof. Fix ε > 0 and 0 < δ < r−
1

1−α . Let S1,n, s1,n and t1,n as in Lemma 3.9. By
Lemma 3.9, for large enough n

S1,nδ ≤ (1 + ε)s1,nδt1,nδ + ES1,nδ

and
S1,n ≥ −(1 + ε)s1,nt1,n + ES1,n.

Thus

S1,n − S1,nδ ≥
n∑

i=nδ

1

iα
− (1 + ε)(s1,nt1,n + s1,nδt1,nδ)

∼ 1− δ1−α

1− α
n1−α. (4.10)

Let Sn, sn and tn as in Lemma 3.8. By Lemma 3.8 for large enough n

Sn ≤ (1 + ε)sntn + ESn.

Since Y = Tn − Sn then for large enough n

Tn = Sn + Y ≤ (1 + ε)sntn + ESn + Y.
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Note that δ < r−
1

1−α implies r−1
r
< 1− δ1−α. So, let n0 be such that

Cn0
:= sup

i>n0

ri − 1

ri
< 1− δ1−α.

Thus

Tn ≤ ESn + (1 + ε)sntn + Y

=
n∑
i=1

ri − 1

riiα
+ (1 + ε)sntn + Y

=

n0∑
i=1

ri − 1

riiα
+

n∑
i=n0+1

ri − 1

riiα
+ (1 + ε)sntn + Y (4.11)

≤
n0∑
i=1

ri − 1

riiα
+ Cn0

n∑
i=n0+1

1

iα
+ (1 + ε)sntn + Y∼ Cn0

n1−α

1−α if Cn0 > 0

= o
(
n1−α

1−α

)
if Cn0 = 0

Note that since Cn0 < 1− δ1−α, it follows from (4.10) and (4.11) that for large enough
n

Tn < S1,n − S1,nδ.

This means that for large enough n, when the bin 2 get the (n+ 1)-th ball, the bin 1
has at least nδ + 1 balls (see Figure 4.5) and then, for large enough t

X1(t)

X2(t)
≥ X2(t)δ

X2(t)
= δ.

Since δ < r−
1

1−α is arbritary, we have

lim inf
t→+∞

X1(t)

X2(t)
≥ r−

1
1−α . (4.12)

To prove that lim supt→+∞
X1(t)
X2(t)

≤ r−
1

1−α , we need to split in two cases. First assume

r > 1 and let r−
1

1−α < δ < 1 and λ = δ−1. Note that λ > 1. Let S2,n, s2,n and
t2,n as in Lemma 3.9. We can conclude that S2,n obey the Law of Iterated Logarithm
(Lemma 3.9) and then, for large enough n

S2,nλ ≤ ES2,nλ + (1 + ε)s2,nλt2,nλ
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η(1)a1

...
η
(1)
nδ

...

η(1)n

η(2)a2

η
(2)
a2+1

...

η(2)n

Tn

S1,n − S1,nδ

Figure 4.5. The triangle mark N is where bin 1 get the (nδ + 1)-th ball. The
circle mark • is where bin 1 get the (n+1)-th ball. The square mark � is where
bin 2 get the (n+ 1)-th ball.

and
S2,n ≥ ES2,n − (1 + ε)s2,nλt2,nλ.

Then

S2,nλ − S2,n ≤
nλ∑
i=n

1

riiα
+ (1 + ε)(s2,nt2,n + s2,nλt2,nλ)

≤ 1

r

nλ∑
i=n

1

iα
+ (1 + ε)(s2,nt2,n + s2,nλt2,nλ) (4.13)

∼ λ1−α − 1

r

n1−α

1− α
.

Also, for large enough n

Tn ≥ ESn − (1 + ε)sntn + Y

=
n∑
i=1

ri − 1

riiα
− (1 + ε)sntn + Y
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≥ r − 1

r

n∑
i=1

1

iα
− (1 + ε)sntn + Y (4.14)

∼ r − 1

r

n1−α

1− α
.

Since δ > r−
1

1−α implies λ1−α < r, it follows from (4.13) and (4.14) that for large
enough n

S2,nλ − S2,n < Tn

and this implies that for large enough n, when the bin 1 get the n-th ball, the bin 2
has at least nλ balls and then, for large enough t,

X1(t)

X2(t)
≤ X1(t)

λX1(t)
= λ−1 = δ.

And since r−
1

1−α < δ < 1 is arbritrary, we have

lim sup
t→+∞

X1(t)

X2(t)
≤ r−

1
1−α . (4.15)

Combining (4.12) with (4.15) we conclude

lim
t→+∞

X1(t)

X2(t)
= r−

1
1−α .

Now, assume r = 1. Let r0 = supi≥1 ri, δ < 1 and ε > 0, then, for large enough n,

S2,nδ ≤ ES2,nδ + (1 + ε)s2,nδt2,nδ

and
S2,n ≥ ES2,n − (1 + ε)s2,nt2,n.

So,

S2,n − S2,nδ ≥
n∑

i=nδ

1

riiα
− (1 + ε)(s2,nt2,n + s2,nδt2,nδ)

≥ 1

r0

n∑
i=nδ

1

iα
− (1 + ε)(s2,nt2,n + s2,nδt2,nδ) (4.16)

∼ 1− δ1−α

r0

n1−α

1− α
.
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Also, for large enough n we have

−Tn ≤ −ESn + (1 + ε)sntn − Y

≤ (1 + ε)sntn − Y. (4.17)

Since (1 + ε)sntn − Y = o(n1−α), follows from (4.16) and (4.17) that for large enough
n we have

−Tn < S2,n − S2,nδ

and this implies that for large enough n, when the bin 1 get the n-th ball, the bin 2
has at least nδ balls and then, for large enough t

X1(t)

X2(t)
≤ X1(t)

X1(t)δ
= δ−1.

And since δ < 1 is arbritrary, we have

lim sup
t→+∞

X1(t)

X2(t)
≤ 1. (4.18)

Combining (4.12) (with r = 1) with (4.18) we conclude

lim
t→+∞

X1(t)

X2(t)
= 1.

4.4 The order of (X2 −X1)(t)

Theorem 2.14. Let f1(i) = iα and f2(i) = (1 + i−β)iα for 0 < α ≤ 1/2 and 0 < β <

1/2. Then

(X2 −X1)(t) ∼
t1−β

21−β(1− α− β)
. (2.7)

Proof. Let Tn as in (3.5). Using Lemma 3.8, we can see that

Tn =
n1−α−β

1− α− β
+ o

(
n1/2−α+ε) ,

for any ε > 0. Also, defining S1,n and S2,n as in Lemma 3.9, using that lemma we
conclude

S1,n =
n1−α

1− α
+ o

(
n1/2−α+ε)
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and
S2,n =

n1−α

1− α
+ o

(
n1/2−α+ε) .

for any ε > 0. Note that Tn = S1,n − S2,n + Y , where Y was defined at (3.6). Since
Tn → +∞ as n → +∞, we have that S1,n will be greater than S2,n for large n. Let
jn = max{i ∈ N : S2,n+i < S1,n} . Clearly

|S1,n − S2,n+jn| ≤ |S2,n+jn+1 − S2,n+jn| = η
(2)
n+jn+1 → 0

as n→ +∞, so

S2,n+jn − S2,n = S1,n + (S2,n+jn − S1,n)− S2,n

= S1,n + o(1)− S2,n =
n1−α−β

1− α− β
+ o

(
n1/2−α+ε) .

Also
S2,n+jn − S2,n =

(n+ jn)1−α

1− α
− n1−α

1− α
+ o

(
n1/2−α+ε) .

Observe that jn is the amount of balls bin 2 has more than bin 1 when bin 1 get the
n-th ball, that is, jn ∼ (X2 −X1)(2n + jn). We can find the asymptotic behaviour of
jn solving the equation

(n+ jn)1−α − n1−α

1− α
=

n1−α−β

1− α− β
+ o

(
n1/2−α+ε) .

Note that

(n+ jn)1−α − n1−α

1− α
=

1

1− α
n1−α

((
1 +

jn
n

)1−α

− 1

)
=

1

1− α
n1−α(1− α)

jn
n

(1 + o(1))

=
jn
nα

(1 + o(1))

=
n1−α−β

1− α− β
+ o

(
n1/2−α+ε) .

Taking ε < 1/2− β we conclude

jn ∼
n1−β

1− α− β
.
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That implies

(X2 −X1)(2n+ jn) ∼ n1−β

1− α− β
.

Finally, for n ∈ N, let t ∈ N such that

2n+ jn ≤ t ≤ 2(n+ 1) + jn+1. (4.19)

Note that n ≤ X1(t) ≤ n+ 1 and n+ jn ≤ X2(t) ≤ n+ 1 + jn+1. Then

jn − 1 ≤ (X2 −X1)(t) ≤ 1 + jn+1.

Dividing the inequality above by at := t1−β/(1− α− β)

jn − 1

an

an
at
≤ (X2 −X1)(t)

at
≤ 1 + jn+1

an

an
at
. (4.20)

Also, raising the terms of inequalities (4.19) to 1− β and dividing by n1−β we get

(2n+ jn)1−β

n1−β ≤ t1−β

n1−β ≤
(2(n+ 1) + jn+1)

1−β

n1−β . (4.21)

Making n → +∞ in inequalities (4.21) we conclude at/an = t1−β/n1−β → 21−β. This
together inequalities (4.20) implies

(X2 −X1)(t)

t1−β
→ 1

21−β(1− α− β)

as t→ +∞.

4.5 The proof of lemmas 3.8 and 3.9

Finally, in this section we prove the two essential lemmas that come from the Law of
Iterated Logarithm. The first one was used in the proof of Theorem 2.2.

Lemma 3.8. Assume (f1, f2) is GLIL, let η(s)i be as in (3.1), and let

s2n :=
n∑
i=1

(
1

f1(i)2
+

1

f2(i)2

)
and t2n := 2 log2 s

2
n.
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Also, define ξi := η
(1)
i − η

(2)
i and

Sn :=
n∑
i=1

ξi. (3.3)

Then
lim sup
n→+∞

Sn − ESn
sntn

= 1 a.s.

and
lim inf
n→+∞

Sn − ESn
sntn

= −1 a.s.

Proof. We only need to check if (Zi)i≥1 given by Zi = Xi − EXi satisfies the three
conditions of Theorem 3.7. The conditions (ii) and (iii) follow from Items 2 and 3 of
Definition 2.1 (GLIL definition).

For (i) we observe that using Minkowski inequality

E(|Zn|3)
1
3 =

∥∥∥∥η(1)n − η(2)n −
1

f1(n)
+

1

f2(n)

∥∥∥∥
3

≤ ‖η(1)n ‖3 + ‖η(2)n ‖3 +
1

f1(n)
+

1

f2(n)

=
3
√

3!

f1(n)
+

3
√

3!

f2(n)
+

1

f1(n)
+

1

f2(n)

≤ 2( 3
√

3! + 1)

f1(n)
.

Hence

(sntn)−3E(|Zn|3) ≤ 8(
3
√

3! + 1)3(sntnf1(n))−3.

Since the right side of the above inequality is sumable (by Item 1 of Definition 2.1), it
follows that (i) holds. So, by Theorem 3.7 we conclude the desired result.

The second one was used in the proof of Theorem 2.7.

Lemma 3.9. Let f1(i) = iα, f2(i) = rii
α where ri ↘ r ≥ 1. Let s ∈ {1, 2} and

Ss,n =
n∑
i=1

η
(s)
i , s2s,n := Var (Ss,n) , t2s,n := 2 log2 s

2
s,n. (3.4)

Then
lim sup

Ss,n − ESs,n
ss,nts,n

= 1
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and
lim inf

Ss,n − ESs,n
ss,nts,n

= −1.

Proof. We will prove for s = 1. For s = 2 the proof is similar. We will use the
Theorem 3.7 on ξi = η

(1)
i − 1

iα
. Conditions (ii) and (iii) are easily verifiable. For

condition (i), observe that

E
∣∣∣∣η(1)i −

1

iα

∣∣∣∣3 = iα
∫ +∞

0

∣∣∣∣x− 1

iα

∣∣∣∣3 e−iαxdx
=

2(6− e)
ei3α

.

Then if α < 1/2

(s1,nt1,n)−3E(|ξn|3) �
1

n3/2−3αt31,n

1

n3α

=
1

t31,n

1

n3/2
,

which is sumable. If α = 1/2 then

(s1,nt1,n)−3E(|S2,n|3) �
1

t31,n log n

1

n3α

=
1

t31,n log n

1

n3/2
,

which is also sumable. Then, by Theorem 3.7, we have de desired result.
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