UNIVERSIDADE FEDERAL DE MINAS GERAIS Escola de Engenharia Programa de Pós-graduação em Engenharia Elétrica

André Luiz Costa de Carvalho

Análise, caracterização e simulação de sistemas fotovoltaicos fotoajustáveis

Belo Horizonte - MG, Brasil 25 de novembro de 2020 André Luiz Costa de Carvalho

Análise, caracterização e simulação de sistemas fotovoltaicos fotoajustáveis

Tese apresentada ao Programa de Pósgraduação em Engenharia Elétrica da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutor em Engenharia Elétrica.

Universidade Federal de Minas Gerais Departamento de Engenharia Elétrica Programa de Pós-Graduação

Orientador: Davies William de Lima Monteiro

Belo Horizonte - MG, Brasil 25 de novembro de 2020

C331a	Carvalho, André Luiz Costa de. Análise, caracterização e simulação de sistemas fot fotoajustáveis [recurso eletrônico] / André Luiz Costa de 1 recurso online (242 f. : il., color.) : pdf.	ovoltaicos Carvalho 2020.
	Orientador: Davies William de Lima Monteiro.	
	Tese (doutorado) - Universidade Federal de Minas (Escola de Engenharia.	Gerais,
	Apêndices: f. 165-242. Bibliografia: f.157-163.	
	Exigências do sistema: Adobe Acrobat Reader.	
	 Engenharia elétrica - Teses. 2. Semicondutores – Fotocondutividade – Teses. 4. Energia – Fontes alter Monteiro, Davies William de Lima. II. Universidade Fe Gerais. Escola de Engenharia. III. Título. 	Teses. nativas – Teses. deral de Minas
		CDU: 621.3(043)

Ficha catalográfica: Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA Programa de Pós-Graduação em Engenharia Elétrica

ATA DA 345ª DEFESA DE TESE DE DOUTORADO DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

ATA DE DEFESA DE TESE DE DOUTORADO do aluno André Luiz Costa de Carvalho - registro de matrícula de número 2020714935. Às 8:30 horas do dia 25 do mês de novembro de 2020, reuniu-se na Escola de Engenharia da UFMG a Comissão Examinadora da TESE DE DOUTORADO para julgar, em exame final, o trabalho intitulado "Análise, Caracterização e Simulação de Sistemas Fotovoltaicos Fotoajustáveis" da Área de Concentração em Sistemas de Computação e Telecomunicações. O Prof. Davies William de Lima Monteiro, orientador do aluno, abriu a sessão apresentando os membros da Comissão e, dando continuidade aos trabalhos, informou aos presentes que, de acordo com o Regulamento do Programa no seu Art. 8.16, será considerado APROVADO na defesa da Tese de Doutorado o candidato que obtiver a aprovação unânime dos membros da Comissão Examinadora. Em seguida deu início à apresentação do trabalho pelo Candidato. Ao final da apresentação seguiu-se a arguição do candidato pelos examinadores. Logo após o término da arguição a Comissão Examinadora se reuniu, sem a presença do Candidato e do público, e elegeu o Prof. Davies William de Lima Monteiro para presidir a fase de avaliação do trabalho, constituída de deliberação individual de APROVAÇÃO ou de REPROVAÇÃO e expedição do resultado final. As deliberações individuais de cada membro da Comissão Examinadora foram as seguintes:

Membro da Comissão Examinadora	Instituição de Origem	Deliberação	Assinatura
Prof. Dr. Davies William de Lima Monteiro - Orientador	DEE (UFMG)	APROVADO	tuuilligg alliter
Prof. Dr. Henri Boudinov	Departamento de Física - Instituto de Física (UFRGS)	APROVADO	
Prof. Dr. José Alexandre Diniz	Faculdade de Engenharia Elétrica e de Computação (UNICAMP)	APROVADO	
Prof. Dr. Germano Maioli Penello	Instituto de Física (UFRJ)	APROVADO	
Prof. Dr. Victor Flores Mendes	DEE (UFMG)	APROVADO	
Prof. Dr. Jhonattan Cordoba Ramirez	DELT (UFMG)	APROVADO	

Tendo como base as deliberações dos membros da Comissão Examinadora a Tese de Doutorado foi **APROVADA**. O resultado final de **aprovação** foi comunicado publicamente ao Candidato pelo Presidente da Comissão, ressaltando que a obtenção do Grau de Doutor em ENGENHARIA ELÉTRICA fica condicionada à entrega do TEXTO FINAL da Tese de Doutorado.O Candidato terá um prazo máximo de 30 (trinta) dias, a partir desta data, para fazer as CORREÇÕES DE FORMA e entregar o texto final da Tese de Doutorado na secretaria do PPGEE/UFMG. As correções de forma exigidas pelos membros da Comissão Examinadora deverão ser registradas em um exemplar do texto da Tese de Doutorado, cuja verificação ficará sob a responsabilidade do Presidente da Banca Examinadora. Nada mais havendo a tratar o Presidente encerrou a reunião e lavrou a presente ATA, que será assinada pelo Presidente da Comissão Examinadora. Belo Horizonte, 25 de novembro de 2020.

ASSINATURA DO PRESIDENTE DA COMISSÃO EXAMINADORA

LIE 100 C UNIVERSIDADE FEDERAL DE MINAS GERAIS
UI //// U Escola de Engenharia
UNIVERSIONOS FEDERAS DE MINAS GERAS
un un o de la cierce Oliverale e ciertemen
"Análise, Caracterização e Simulação de Sistemas
Fotovoltaicos Fotoajustaveis"
André Luiz Costa de Carvalho
Tese de Doutorado submetida à Banca Examinadora designada
pelo Colegiado do Programa de Pós-Graduação em Engenharia Elétrica
da Escola de Engenharia da Universidade Federal de Minas Gerais, como
requisito para obtenção do grau de Doutor em Engenharia Elétrica.
Aprovada em 25 de novembro de 2020.
Barry March Anna S
Por:
Davies William de Lima Monteiro
DEE (UFMG) - Orientador
Prof. Dr. Henri Boudinov
Departamento de Física - Instituto de Física (UFRGS)
Prof. Dr. José Alexandre Diniz
Froi. Dr. José Alexandre Diniz Faculdade de Engenharia Elétrica e de Computação (Unicamp)
i acaldade de Engermana Electica e de computação (onicamp)
Prof. Dr. Germano Maioli Penello
Instituto de Física (UFRJ)
Prof. Dr. Victor Flores Mendes
DEE (UFMG)
Prof. Dr. Jhonattan Cordoba Ramirez
DELT (UFMG)
Apphal

Dedicatória

"Dedico esse trabalho aos livre-pensadores, que não acreditam que o mundo é um projeto-padrão do senso comum, mas um universo de possibilidades; aos professores, que com a sua dedicação transformam mentes, tornando-as estrelas; aos poetas, que enfrentam moinhos de vento só para sentir o doce gosto do amor; aos sonhadores, que acreditam que tudo é possível e seguem em frente, ao invés de desistir e se adaptar a realidade vigente; aos conhecedores de si-próprios, que sabem do que são feitos e não debandam nas tempestades de areia; a aqueles que acreditam no nosso país, no nosso povo; as crianças, que enxergam as cores de mundo sem nenhum filtro; ao vento, companheiro fiel e grande aconselhador; e aos homens simples, que embora nunca lembrados, são os que nos carregam em seus braços¹."

E complemento:

"Também dedico à dor, à solidão e principalmente, à tristeza - eles nos mostram o que de fato vale à pena - o mundo pode ser líquido atualmente, mas há aqueles que possuem a sólida vontade."

 $^{^{1}}$ $\,$ Texto originalmente escrito na dedicatória da dissertação de mestrado do mesmo aluno

Agradecimentos

Inicialmente agradeço as minhas duas mães, que hoje estão no céu olhando pela gente: Sônia Albano, minha eterna professora, e ideal de superação ao mesmo tempo, e Conceição Poeira (minha vó, minha vó), ser tão puro e bom que vai pro céu de elevador, pra não ter chance de errar o caminho; essas duas estão em um nível que não dá nem pra comentar; portanto, vou só agradecer!!!

Meus irmãos, Ludmila e Dimitry, que sempre me deram força demais (e me encheram muito também), assim como toda a minha família (tirando Carminha, que é muito chata! – mentira!);

Aos meus poucos e preciosos amigos, estrelando Andreza, Diego Obeso e Carlos Funny!! Amigo de verdade é pra poucos!!! Agradeço por me aguentarem nas melhores e piores horas!!!!

Agradeço demais ao professor Davies, que além de ser um super professor, é uma super pessoa, que sempre dá força aos seus alunos nas horas de aperto, seja qual for o motivo; sinto-me honrado em tê-lo como orientador! Quanta paciência comigo, nem sei se mereço!!!

Agradeço a galera do grupo de fotovoltaicos! Valeu demais Alan, Gustavo, Poliana, Bampato, Diogo, Alex! Obrigado Mateus, que ajudou muito na construção do caixote solar e na caracterização dos dispositivos!!! Essa galera vai longe!!!!

Não podemos esquecer a galera do Optma, né!!! Valeu demais pelas tardes animadas, e desculpe por não deixar vocês trabalharem!!!! Espero encontrar todo mundo no Cabral pra gente tomar umas;

Agradeço ao PPGEE, à CAPES e a UFMG pelo suporte institucional, operacional e financeiro; aos professores, do maternal à pós-graduação, que, se deixarmos, nos ajudam a ampliar nossos horizontes, nos fazendo perceber o rico universo em torno do nosso mundo particular, e como somos importantes para ele; além da população desse nosso Brasil, que, embora repleta de atribulações e dificuldades, ainda acredita em ciência, permitindo assim a formação de profissionais de qualidade!! E que esses profissionais saibam de onde essa grande ajuda veio, e que saibam para onde seus esforços devem ser concentrados, pois um país só se desenvolve em conjunto, com cada um apoiando do jeito que pode;

Por último, mas não menos importante, agradeço ao Pai Celestial: graças a tudo que Ele me deu, não é qualquer empurrão que me derruba, não!!!

"Coletar dados é só o primeiro passo em direção à sabedoria; Mas compartilhar dados é o primeiro passo em direção à comunidade." His name is Linux - Linux Foundation/IBM (fragmento)

Resumo

Este trabalho tem como objetivo aprofundar o estudo do conceito de sistemas fotovoltaicos fotoajustáveis (SSC - Smart Solar Clusters), que são baseados no acoplamento entre dispositivos semicondutores fotovoltaicos (células solares e fotodiodos) e fotocondutores especialmente projetados que se traduzem em um sistema físico inerentemente automático e passivo de controle e estabilização do ponto de operação de uma carga quando esse sistema sofre variações na sua iluminação. Esse é um novo conceito de controle da corrente e tensão em uma carga conectada a um sistema fotovoltaico, sendo particularmente útil para microssistemas autônomos e redes de sensores de baixo consumo e possibilidade de montagem de sistemas discretos com componentes comerciais, ou integração em chip juntamente com essas cargas.

A metodologia de trabalho é baseada em três frentes, executadas em paralelo e conectadas entre si, sendo a primeira baseada no desenvolvimento de algoritmos de previsão de comportamento dos dispositivos utilizados no trabalho, que nos permitam verificar a operação desses dispositivos em diversas situações ambientais, além de um específico para o projeto e análise de sistemas fotoajustáveis. A segunda é definida pela caracterização de dispositivos reais, de forma a obtermos parâmetros fundamentais para a execução dos algoritmos desenvolvidos. Para essa etapa, um sistema de iluminação artificial controlável foi desenvolvido, de forma a nos dar flexibilidade nesses ensaios experimentais. Por último, temos o projeto de modelos numéricos de simulação em SPICE baseados nos algoritmos desenvolvidos, para uma maior simplicidade na operação desses modelos através de uma interface gráfica amigável e intuitiva, além da utilização dessas simulações de sistemas fotoajustáveis com cargas mais complexas, como cargas baseadas em dispositivos digitais.

A partir dos elementos desenvolvidos, apresentamos casos de estudo para demonstração do conceito e metodologia de projeto para sistemas fotoajustáveis baseados em dispositivos ordinários encontrados no mercado ou específicos possíveis de serem fabricados.

Ao final do percurso, queremos criar um conjunto de ferramentas que nos permitam projetar um sistema fotovoltaico fotoajustável a partir de características de um dispositivo ou sistema fotovoltaico gerador de energia tradicional e condições específicas de operação.

Palavras-chave: Semicondutores, Fotovoltaicos, Fotocondutores, Óptica, Modelagem, Simulação

Abstract

This work aims to deepen the study of the concept of photo-adjustable photovoltaic systems (SSC - Smart Solar Clusters), which rely on the coupling between photovoltaic semiconductor devices (solar cells and photodiodes) and specially designed photoconductors that translate into an inherently automatic and passive control and stabilization of the operating point of a load when this system undergoes variations in its lighting. This is a new concept of current and voltage control in a load connected to a photovoltaic system, being particularly useful for autonomous microsystems and low consumption sensor networks and the possibility of assembling discrete systems with commercial components, or integration with a chip together with those loads.

The work methodology is based on three fronts, executed in parallel and connected to each other, the first being based on the development of algorithms for predicting the behavior of the devices used at work, which allow us to verify the operation of these devices in various environmental situations, in addition to specific for the design and analysis of photo-adjustable systems. The second is defined by the characterization of real devices, in order to obtain fundamental parameters for the execution of the developed algorithms. For this stage, a controllable artificial lighting system was developed, in order to give us flexibility in these experimental tests. Finally, we have the design of numerical simulation models in SPICE based on the developed algorithms, for greater simplicity in the operation of these models through a friendly and intuitive graphical interface, in addition to the use of these simulations of photo-adjustable systems with more complex loads, such as loads based on digital devices.

Based on the elements developed, we present case studies to demonstrate the concept and design methodology for photo-adjustable systems based on ordinary devices found on the market or specific ones that can be manufactured.

At the end of the path, we want to create a set of tools that allow us to design a photo-adjustable photovoltaic system based on the characteristics of a traditional energy generating device or photovoltaic system and specific operating conditions.

Keywords: Semiconductors, Photovoltaics, Photoconductors, Optics, Modeling, Simulation

Lista de ilustrações

Figura 1 –	Diagrama de um sistema controlador de carga baseado em conversor CC.	2
Figura 2 –	Diagramas de sistemas fotoajustáveis em painel (esquerda) e em chip	
	(direita)	3
Figura 3 –	Níveis de energia de um átomo isolado e bandas de energia de um sólido.	8
Figura 4 –	Bandas de energia em isolantes, semicondutores e condutores	9
Figura 5 –	Exemplo de semicondutor de gap direto (InP, à esquerda) e gap indireto	
	(Si, à direita).	9
Figura 6 –	Variação da banda proibida com a temperatura para o Si e GaAs	10
Figura 7 –	Concentração intrínseca de portadores para o Si e GaAs de acordo com	
	a temperatura.	11
Figura 8 –	Dopagem do silício com impureza aceitadora (Boro) e doadora (Fósforo).	13
Figura 9 –	Regiões do semicondutor.	14
Figura 10 -	- Tipos de cristais existentes	15
Figura 11 -	- Tipos de defeitos em cristais.	16
Figura 12 -	- Mobilidade de elétrons e lacunas no silício de acordo com a dopagem e	
	temperatura.	18
Figura 13 -	- Resistividade do Si para diferentes concentrações de dopantes	19
Figura 14 -	- Geração e probabilidade de coleta na extensão do dispositivo	22
Figura 15 -	- Ilustração do efeito fotovoltaico	23
Figura 16 -	- Coeficiente de absorção e profundidade de penetração por comprimento	
	de onda	24
Figura 17 -	- Junção p-n no equilíbrio	28
Figura 18 -	- Polarizações de uma junção p-n	29
Figura 19 -	- Variação do fator de idealidade com a tensão para junções p-n de Si e	
	GaAs	31
Figura 20 -	- Curva I-V do diodo ideal.	32
Figura 21 -	- Curva $\ln(I)$ por V	34
Figura 22 -	- Curvas de cada diodo traçadas separadamente: Difusão (verde) e recom-	
	binação (azul).	35
Figura 23 -	- Curvas $(\ln(I))$ de cada diodo: Difusão (verde) e recombinação (azul).	35
Figura 24 -	- Diagrama construtivo de um fotocondutor comercial típico	37
Figura 25 -	- Resposta espectral relativa do fotocondutor de CdS e do olho humano.	37
Figura 26 -	- Fotocondutor de CdS comercial típico.	38
Figura 27 -	- Relação entre a resistência e a iluminância Φ (em lux) em negrito (linear)	
	e logarítmico (tracejado).	41
Figura 28 -	- Curvas fotópica e escotópica.	42

Figura 29 –	Exemplo de curva característica de um fotocondutor
Figura 30 –	Células de silício policristalino (esquerda) e monocristalino (direita) 45
Figura 31 –	Diagrama das camadas de uma célula CIGS
Figura 32 –	Diagrama das camadas de uma célula multi-junção
Figura 33 –	Célula solar orgânica flexível e seu diagrama de camadas
Figura 34 –	Comparativo de eficiência de células de acordo com a tecnologia de
	fabricação
Figura 35 –	Diagrama de circuito de um fotodiodo
Figura 36 –	Curvas I-V para diferentes fluxos luminosos e regiões de operação de
	um fotodiodo
Figura 37 –	Dimensões na seção reta de uma célula solar
Figura 38 –	Probabilidade de coleta de uma célula solar fotovoltaica
Figura 39 –	Modelo de célula solar ideal (linhas preenchidas) e não-ideal (linhas
	pontilhadas)
Figura 40 –	Curva I-V
Figura 41 –	Curva P-V
Figura 42 –	Curva I-V para diferentes valores de resistência série 60
Figura 43 –	Curva I-V para diferentes valores de resistência paralela 61
Figura 44 –	Efeitos das resistências parasitas na curva I-V
Figura 45 –	Associação série de células - circuito equivalente (acima) e curva I-V
	(abaixo)
Figura 46 –	Associação paralela de células - circuito equivalente (acima) e curva I-V $$
	(abaixo)
Figura 47 –	Distribuição espectral da radiação solar para diferentes condições at-
	mosféricas
Figura 48 –	Distribuição espectral para AM0, AM1.5G e AM1.5D
Figura 49 –	Air Mass de acordo com o ângulo do feixe luminoso
Figura 50 –	Curvas I-V para diferentes irradiâncias
Figura 51 –	Curvas I-V para diferentes temperaturas
Figura 52 –	Modelo elétrico de um sistema fotoajustável
Figura 53 –	Exemplo de curvas I-V características de uma junção p-n sem (esquerda)
	e com (direita) um fotocondutor, sob três diferentes níveis arbitrários
	de irradiância
Figura 54 –	Irradiância espectral utilizada no exemplo
Figura 55 –	Curvas do coeficiente de absorção (esquerda) e reflexão (direita) 88
Figura 56 –	Curvas de eficiência quântica interna e externa
Figura 57 –	Fluxo de fótons (esquerda) e densidade de corrente fotogerada (direita)
	por comprimento de onda
Figura 58 –	Curva I-V da célula de exemplo

Figura 59 – Geometria de um fotocondutor
Figura 60 – Curvas de resistência dos fotocondutores (R_{FC}) para os casos ideal e real. 97
Figura 61 – Lâmpada mista de 500 W
Figura 62 – Distribuição espectral da lâmpada mista de 500 W 100
Figura 63 – Lâmpada halógena tubular (esquerda) e refletor halógeno (direita) 101
Figura 64 – Simulador luminoso construído
Figura 65 – Fotocondutores escolhidos conectados à matriz de contatos 104
Figura 66 – Curva característica dos fotocondutores do Grupo 1 105
Figura 67 – Médias das curvas características de cada faixa do Grupo 1. \ldots . 106
Figura 68 – Médias das curvas características de cada faixa do Grupo 1. \ldots . 106
Figura 69 – Circuito integrado 805 b (acima) e imagem do substrato ampliada (abaixo). 108
Figura 70 – Diagrama esquemático e pinagem do circuito integrado 805 b 109
Figura 71 – Curva I-V do fotodiodo - polarização direta
Figura 72 – Curva I-V do fotodiodo - polarização reversa
Figura 73 – Curvas I-V do fotodiodo sob diferentes iluminâncias
Figura 74 – Curvas características dos fotocondutores presentes no chip. \ldots . 114
Figura 75 – Curvas de condutância por iluminância dos fotocondutores presentes
no chip. \ldots
Figura 76 – Diagrama esquemático de uma célula solar no SPICE (Orcad® PSPICE
Schematics)
Figura 77 – Diagrama esquemático de I_{ph} (Orcad® PSPICE Schematics) 117
Figura 78 – Subcircuito do SPICE representando um fotocondutor 119
Figura 79 – Estrutura interna do subcircuito
Figura 80 – Exemplo de comparação entre os pontos obtidos na caracterização do
fotocondutor real (círculos azuis), curva ajustada analiticamente (verde)
e curva obtida na simulação SPICE (vermelha).
Figura 81 – Circuito foto ajustável para simulação em SPICE
Figura 82 – Circuito utilizado para exploração do funcionamento do SSC no SPICE. 122
Figura 83 – Curva I-RL de uma célula solar acoplada a um fotocondutor 122
Figura 84 – Curvas I-RL de todos os casos simulados
Figura 85 – Detalhamento de uma região das Curvas I-RL
Figura 86 – Curvas I-V para a faixa de irradiância escolhida
Figura 87 – Curvas I-V e P-V do sistema foto ajustável com fotocondutor ideal. $\ $. 126
Figura 88 – Curva característica do fotocondutor (azul) e potência (laranja) 128
Figura 89 – Ajustes realizados para obtenção dos parâmetros do foto condutor - \hfill
ajuste matemático, sem significado fisico (acima) e ajuste de acordo
com o algoritmo e R_0 fixada (abaixo). $\ldots \ldots \ldots$
Figura 90 – Curvas I-V e P-V do sistema foto ajustável utilizando fotocondutor real. 130
Figura 91 – Curvas I-V obtidas da caracterização do microchip. \ldots

Figura 92 – Curvas I-V do sistema foto ajustável - fotocondutor ideal. \ldots \ldots .	133
Figura 93 – Curva característica do fotocondutor ideal (azul), e potência dissipada	
(laranja).	135
Figura 94 – Curva característica do fotodiodo ideal (azul), Fotocondutor real ajus-	
tado (vermelho), e a diferença entre elas (verde).	136
Figura 95 – Condutâncias ideal e real arbitrariamente escolhida pela irradiância	
normalizada.	138
Figura 96 – Ajustes do fotocondutor real utilizando um ponto fixado $(G_{FC}$ máximo).	.140
Figura 97 – Melhor ajuste do fotocondutor real utilizando um ponto fixado (G_{FC}	
máximo)	141
Figura 98 – Curvas I-V do sistema fotoajustável - fotocondutor real. \ldots	142
Figura 99 – Curvas P-V do sistema fotoajustável - fotocondutor real	143
Figura 100–Curvas I-V do sistema fotoajustável - fotocondutor real. \ldots	144
Figura 101–Curvas I-V do fotodiodo de acordo com a temperatura	145
Figura $102 - Variação$ da curva característica do fotocondutor com a irradiância para	
diversas temperaturas	146
Figura 103–Curvas I-V do sistema foto ajustável de acordo com a temperatura. $\ $.	147
Figura 104–Curvas I-V do sistema fotoajustável de acordo com a temperatura na	
irradiância de 50W/m². \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	148
Figura 105–Fotocondutor da DSD (esquerda) e diagrama construtivo (direita). $\ $.	167
Figura 106–Traçador de curvas Solmetric PVA600	169
Figura 107-Simulador Solar SOLSIM.	170
Figura 108–Medidor de irradiância MES-100 (esquerda) e luxímetro LD-200 (direita).	.170
Figura 109–Source-meter 2612B da Keithley	172
Figura 110–Analisador de parâmetros 1505A da <i>Keysight</i>	173
Figura 111–Curvas características dos fotocondutores do Grupo 2. \ldots	175
Figura 112–Curvas ajustadas dos fotocondutores do Grupo 2	176

Lista de tabelas

Tabela 1 –	Valores tabelados para alguns semicondutores \hdots 10
Tabela 2 –	Iluminância por atividade $\dots \dots \dots$
Tabela 3 –	Valores tabelados para o Si (monocristalino)
Tabela 4 –	Valores tabelados para uma amostra de Si \ldots
Tabela 5 –	Condições ambientais e parâmetros da célula solar de exemplo \ldots 86
Tabela 6 –	Parâmetros obtidos no caso de exemplo
Tabela 7 $-$	Tabela de calibragem do simulador de iluminação 103
Tabela 8 –	Parâmetros obtidos dos fotocondutores comerciais: medição e fabricante 107
Tabela 9 –	Parâmetros do fotodiodo
Tabela 10 –	Corrente fotogerada em cada iluminância
Tabela 11 –	Parâmetros obtidos na caracterização dos foto condutores do chip $\ $. $\ $. 115
Tabela 12 –	Potência gerada por fotodiodos
Tabela 13 –	Parâmetros do arranjo de exemplo
Tabela 14 –	Dados das curvas I-V da célula solar: sistema tradicional e fotoajustável
	ideal
Tabela 15 –	Comparação dos pontos de operação: tradicional e foto ajustável ideal $% \left({\left({n_{1}} \right)} \right)$. 127
Tabela 16 –	Dados das curvas I-V da célula solar: sistema foto ajustável real $\ .\ .\ .\ 130$
Tabela 17 –	Comparação dos pontos de operação: foto ajustável ideal e real $\ .\ .\ .\ .\ 130$
Tabela 18 –	Parâmetros e condições de operação - fotodiodo integrado $\ \ldots \ \ldots \ 131$
Tabela 19 –	Dados das curvas I-V do fotodiodo: sistema tradicional e fotoajustável
	ideal
Tabela 20 –	Comparação dos pontos de operação: tradicional e foto ajustável ideal $% \left(1.010000000000000000000000000000000000$
Tabela 21 –	Dados das curvas I-V: sistema fotoajustável real
Tabela 22 –	Comparação dos pontos de operação: foto ajustável ideal e real $\ .\ .\ .\ .$ 143
Tabela 23 –	Condições de operação do sistema fotoajustável de exemplo submetido
	à variação de temperatura
Tabela 24 –	Células solares adquiridas
Tabela 25 –	Painéis solares adquiridos (Dados dos fornecedores) \ldots \ldots \ldots \ldots 166
Tabela 26 –	Fotocondutores adquiridos
Tabela 27 –	Fotocondutores do Grupo 2
Tabela 28 –	Parâmetros obtidos da medição e do fabricante

Lista de abreviaturas e siglas

- ABNT Associação Brasileira de Normas Técnicas LED Light Emmitting Diode IGBT Insulated Gate Bipolar Transistor CMOS Complementary Metal–Oxide Semiconductor FET Field Effect Transistor MOSFET Metal Oxide Semiconductor Field Effect Transistor SOI Silicon on Insulator STIShallow Trench Isolation DTI Deep Trench Isolation LOCOS Local Oxidation of Silicon LPCVD Low-pressure Chemical Vapor Deposition PECVD Plasma-Enhanced Chemical Vapor Deposition RIE Reactive-Ion Etching CCCorrente Contínua MPPT Maximum Power Point Tracking SSC Smart Solar Clusters IoT Internet of Things SPICE Simulation Program with Integrated Circuit Emphasis AM Amplitude Modulation OFET Organic Field-Effect Transistor OLED Organic Light Emmitting Diode QDIP Quantum Dot Infrared Photodetector
- QWIP Quantum Well Infrared Photodetector

InP	Fosfeto de Índio
Si	Silício
GaAs	Arseneto de Gálio
В	Boro
Р	Fósforo
CdS	Sulfeto de Cádmio
CdSe	Seleneto de Cádmio
PbS	Sulfeto de Chumbo
PbSe	Seleneto de Chumbo
CdTe	Telureto de Cádmio
CIGS	Seleneto de Cobre-Índio-Gálio
ZnO	Óxido de Zinco
Мо	Molibdênio
Ni	Níquel
Al	Alumínio
MgF_2	Fluoreto de Magnésio
InGaP	Fosfeto de Gálio-Índio
InGaAs	Arseneto de Gálio-Índio
Ge	Germânio
TiO_2	Dióxido de Titânio
Al_2O_3	Óxido de Alumínio
Ta_2O_5	Pentóxido de Tântalo
SiO_2	Dióxido de Silício
ZnS	Sulfeto de Zinco
ITO	Óxido de Estanho-Índio
c-Si	Silício cristalino

c-GaAs	Arseneto de Gálio cristalino
PEDOT	poli(3,4-etilenodioxitiofeno)
PSS	Oliânion Poli(estirenosulfonado)
PET	Politereftalato de Etileno
IQE	Internal Quantum Efficiency
EQE	External Quantum Efficiency
SR	Spectral Responsivity
CPV	Concentrated Photovoltaics
A/R	Anti-reflexiva
DSSC	Dye-Sensitized Solar Cell
QDSC	Quantum Dot Solar Cell
\mathbf{FF}	Fill Factor
MPP	Maximum Power Point
W_p	Watt-pico
STC	Standard Test Conditions
AM	Air mass
NOCT	Nominal Operating Cell Temperature
LDR	Light Dependent Resistor
DIMES	Delft Institute for Microelectronics and Sub-micron Technology
PSD	Position-Sensitive Detectors
LiFi	Light Fidelity

Lista de símbolos

k_B	Constante de Boltzmann
q	Carga elétrica elementar
h	Constante de Planck
С	Velocidade da luz no vácuo
Т	Temperatura absoluta em Kelvin
E_g	Energia da banda proibida
E_f	Energia de Fermi
E_{foton}	Energia do Fóton
n_i	Densidade de portadores intrínsecos
n	Densidade de elétrons
p	Densidade de lacunas
n_0	Densidade de elétrons no equilíbrio
p_0	Densidade de lacunas no equilíbrio
Δ_n	Densidade de elétrons injetados/extraídos
Δ_p	Densidade de lacunas injetadas/extraídas
N_A	Concentração de dopantes aceitadores
N_D	Concentração de dopantes doadores
v_{th}	Velocidade térmica
m	Massa do portador de carga
m_n	Massa do elétron
d_c	Livre caminho médio
t_c	Tempo livre médio
ε	Campo elétrico

v_n	Velocidade de deriva dos elétrons
v_p	Velocidade de deriva das lacunas
μ_n	Mobilidade dos elétrons
μ_p	Mobilidade das lacunas
D_n	Difusividade dos elétrons
D_p	Difusividade das lacunas
L_n	Comprimento de difusão dos elétrons
L_p	Comprimento de difusão das lacunas
J_n	Densidade de corrente de elétrons
J_p	Densidade de corrente de lacunas
ρ	Resistividade
σ	Condutividade
R_e	Taxa de recombinação
G_{th}	Taxa de geração térmica
U	Taxa líquida de variação de portadores
$ au_n$	Tempo de vida dos elétrons
$ au_p$	Tempo de vida das lacunas
$ au_0$	Tempo de vida intrínseco
$ au_{eff}$	Tempo de vida efetivo
$ au_b$	Tempo de vida no substrato $(bulk)$
$ au_S$	Tempo de vida na superfície
$ au_r$	Tempo de vida de recombinação
S	Velocidade de recombinação de superfície
S_e	Velocidade de recombinação de superfície do emissor
S_b	Velocidade de recombinação de superfície da base
C_{SRH}	Coeficiente de Shockley-Hall

C_{SAug}	Coeficiente de Auger
γ_{SRH}	Coeficiente de ajuste Shockley-Read-Hall térmico
δ_{Aug}	Coeficiente de ajuste Auger térmico
α	Coeficiente de absorção
λ	Comprimento de onda
f	Frequência
ϕ	Fluxo luminoso
ϕ_0	Fluxo luminoso na superfície
ϕ_{eff}	Fluxo luminoso efetivo
Φ	Iluminância
I_{rr}	Irradiância
I_{λ}	Irradiância espectral
$R(\lambda)$	Reflectância
$n(\lambda)$	Coeficiente de refração real
$N(\lambda)$	Coeficiente de refração complexo
$K(\lambda)$	Coeficiente de extinção
$EQE(\lambda)$	Eficiência quântica externa
$IQE(\lambda)$	Eficiência quântica interna
$SR(\lambda)$	Responsividade espectral
W	Espessura do dispositivo
W_e	Espessura do emissor
W_b	Espessura da base
x_d	Espessura da região de depleção
x_n	Espessura da região de depleção no lado n
x_p	Espessura da região de depleção no lado p

I_0	Corrente de saturação reversa
I_{01}	Corrente de saturação reversa de difusão
I_{02}	Corrente de saturação reversa de recombinação
m	Fator de idealidade
m_1	Fator de idealidade de difusão
m_2	Fator de idealidade de recombinação
R_S	Resistência série
R_P	Resistência paralela
R_L	Resistência de carga
R_{FC}	Resistência do fotocondutor
G_{FC}	Condutância do fotocondutor
R_0	Resistência no escuro
R_V	Resistência variável
G_0	Condutância no escuro
G_V	Condutância variável
C_j	Capacitância de junção
I_{FC}	Corrente do fotocondutor
P_{FC}	Potência do fotocondutor
J_{SC}	Densidade de corrente de curto-circuito
J_{SCE}	Densidade de corrente de curto-circuito no emissor
J_{SCB}	Densidade de corrente de curto-circuito na base
J_{SCD}	Densidade de corrente de curto-circuito na região de depleção
I_{SC}	Corrente de curto-circuito
I_{ph}	Corrente fotogerada
I_{MP}	Corrente de máxima potência
V_{MP}	Tensão de máxima potência

V_{OC}	Tensão de circuito aberto
P_{MAX}	Máxima potência
FF	Fill Factor
η	Eficiência de conversão ou rendimento
T_{Cell}	Temperatura da célula
T_{Air}	Temperatura do ar
$CP(\lambda)$	Probabilidade de coleta
G(x)	Taxa de geração por luz
σ_o	Seção de captura
σ_e	Seção de captura de elétrons
σ_p	Seção de captura de lacunas
N_t	Concentração de centros de recombinação
l	Comprimento do material
w	Largura do material
t	Altura/espessura do material

Sumário

1	INTRODUÇÃO	27
1.1	A energia luminosa e seu uso pelo mundo	1
1.2	Controle de carga	1
1.3	Sistemas fotovoltaicos fotoajustáveis	3
1.4	Objetivo	5
2	REVISÃO TEÓRICA	6
2.1	Materiais semicondutores	7
2.1.1	Teoria de bandas de energia	7
2.1.2	Portadores de carga	11
2.1.3	Dopagem	12
2.1.4	Estrutura cristalográfica e defeitos	15
2.1.5	Mobilidade	17
2.1.6	Resistividade e condutividade	19
2.1.7	Geração e recombinação de portadores de carga	20
2.1.8	Fotogeração	21
2.1.9	Efeito fotovoltaico	22
2.1.10	Coeficiente de absorção	23
2.1.11	Coeficiente de reflexão	25
2.1.12	Eficiência quântica e responsividade	26
2.2	Dispositivos semicondutores	27
2.2.1	Junção p-n	27
2.2.1.1	Polarização da junção p-n	28
2.2.1.2	Parâmetros de uma junção p-n	29
2.2.1.3	Modelo de uma junção p-n ideal	32
2.2.1.4	Modelos não-ideais	33
2.3	Dispositivos semicondutores ópticos	36
2.3.1	Fotocondutores	36
2.3.1.1	Fotocondutor de CdS	37
2.3.1.2	Fotocondutor de Si	38
2.3.1.3	Modelagem analítica de um fotocondutor	40
2.3.2	Células solares fotovoltaicas	44
2.3.2.1	Tipos de célula	44
2.3.3	Fotodiodos	51
2.3.4	Características geométricas de dispositivos fotovoltaicos	53

2.3.5	Modelagem analítica de dispositivos fotovoltaicos	54
2.4	Características dos dispositivos semicondutores ópticos	56
2.4.1	Curva I-V	56
2.4.2	Associação de células	62
2.4.2.1	Associação Série	63
2.4.2.2	Associação paralela	64
2.5	Condições ambientais de operação	65
2.5.1	Distribuição espectral e massa de ar	65
2.5.2	Irradiância	67
2.5.3	Temperatura	69
2.5.4	Condições de teste padrão - STC	70
2.5.5	Temperatura nominal de operação da célula - NOCT	70
2.6	Arranjos fotovoltaicos fotoajustáveis	71
2.6.1	Modelagem analítica	72
3	METODOLOGIA E RESULTADOS	74
3.1	Modelagem teórica	75
3.1.1	Construção de um modelo geral para dispositivos ópticos fotovoltaicos	75
3.1.1.1	Definição das condições de operação, características do material e aspectos	
	geométricos do dispositivo	75
3.1.1.2	Cálculo dos parâmetros físicos	75
3.1.1.3	Cálculo das frequências de interação luz-material	76
3.1.1.4	Definição da dopagem e cálculo das mobilidades	76
3.1.1.5	Cálculo da densidade de portadores intrínsecos e da extensão da região de depleção	77
3.1.1.6	Cálculo do tempo de vida	78
3.1.1.7	Difusividade, comprimento de difusão e velocidade de recombinação de superfície	78
3.1.1.8	Conversão da irradiância para fluxo de fótons	80
3.1.1.9	Cálculo da corrente fotogerada	80
3.1.1.10	Cálculo das correntes de saturação reversa	83
3.1.1.11	Cálculo da resistência série	85
3.1.1.12	Geração da curva I-V	86
3.1.2	Construção de um modelo físico para fotocondutores	92
3.1.3	Construção de modelo de projeto para o sistema fotoajustável	95
3.1.3.1	Obtenção da curva característica do fotocondutor ideal	96
3.1.3.2	Projeto do fotocondutor real	97
3.1.4	Impacto térmico	98
3.2	Atividades experimentais	99
3.2.1	Construção e caracterização do simulador de iluminação	99
3.2.2	Caracterização de fotocondutores comerciais	104
3.2.3	Caracterização do chip	108

3.2.3.1		. 109
3.2.3.2	Caracterização dos fotocondutores	. 113
3.3	Simulação	. 115
3.3.1	Modelo de Simulação para fotovoltaicos	. 116
3.3.2	Modelo de Simulação para fotocondutores	. 118
3.3.3	Modelo de Simulação de sistemas fotoajustáveis	. 121
3.3.4	Exploração em SPICE	. 121
3.4	Casos de exemplo	. 124
3.4.1	Potência gerada por um fotodiodo integrado	. 124
3.4.2	Projeto de Sistema fotoajustável - Caso Célula solar fotovoltaica	. 125
3.4.3	Projeto de Sistema fotoajustável integrado	. 131
3.4.3.1	Considerações adicionais	. 137
3.4.3.2	Estudo do impacto térmico no caso de exemplo	. 144
4	CONCLUSÕES E TRABALHOS FUTUROS	. 149
4.1	Súmula Cronológica do Trabalho	. 150
4.2	Discussão	. 152
4.3	Trabalhos futuros	. 155
4.4	Publicações realizadas	. 156
	REFERÊNCIAS	. 157
	APÊNDICES	164
	APÊNDICES APÊNDICE A – MATERIAL DISPONÍVEL	164 . 165
	APÊNDICES APÊNDICE A – MATERIAL DISPONÍVEL APÊNDICE B – EQUIPAMENTOS DE MEDIÇÃO	164 . 165 . 168
B.1	APÊNDICES APÊNDICE A – MATERIAL DISPONÍVEL APÊNDICE B – EQUIPAMENTOS DE MEDIÇÃO Caracterizador Solar PVA600	164 . 165 . 168 . 169
B.1 B.2	APÊNDICES APÊNDICE A – MATERIAL DISPONÍVEL APÊNDICE B – EQUIPAMENTOS DE MEDIÇÃO Caracterizador Solar PVA600 Simulador Solar SOLSIM	164 . 165 . 168 . 169 . 169
B.1 B.2 B.3	APÊNDICESAPÊNDICE A - MATERIAL DISPONÍVELAPÊNDICE B - EQUIPAMENTOS DE MEDIÇÃOCaracterizador Solar PVA600Simulador Solar SOLSIMMedidor de irradiância MES-100 e Luxímetro LD-200	164 . 165 . 168 . 169 . 169 . 170
B.1 B.2 B.3 B.4	APÊNDICESAPÊNDICE A - MATERIAL DISPONÍVELAPÊNDICE B - EQUIPAMENTOS DE MEDIÇÃOCaracterizador Solar PVA600Simulador Solar SOLSIMMedidor de irradiância MES-100 e Luxímetro LD-200Source-Meter 2612B e Analisador de Parâmetros B1505A	164 . 165 . 168 . 169 . 169 . 170 . 171
B.1 B.2 B.3 B.4	APÊNDICE A – MATERIAL DISPONÍVEL APÊNDICE B – EQUIPAMENTOS DE MEDIÇÃO Caracterizador Solar PVA600 Simulador Solar SOLSIM Medidor de irradiância MES-100 e Luxímetro LD-200 Source-Meter 2612B e Analisador de Parâmetros B1505A APÊNDICE C – CARACTERIZAÇÃO DE FOTOCONDUTORES	164 . 165 . 168 . 169 . 169 . 170 . 171 . 174
B.1 B.2 B.3 B.4	APÊNDICESAPÊNDICE A - MATERIAL DISPONÍVELAPÊNDICE B - EQUIPAMENTOS DE MEDIÇÃOCaracterizador Solar PVA600Simulador Solar SOLSIMMedidor de irradiância MES-100 e Luxímetro LD-200Source-Meter 2612B e Analisador de Parâmetros B1505AAPÊNDICE C - CARACTERIZAÇÃO DE FOTOCONDUTORESCaracterização dos fotocondutores do grupo 2	164 . 165 . 168 . 169 . 169 . 170 . 171 . 174 . 175
B.1 B.2 B.3 B.4 C.1	APÊNDICESAPÊNDICE A - MATERIAL DISPONÍVELAPÊNDICE B - EQUIPAMENTOS DE MEDIÇÃOCaracterizador Solar PVA600Simulador Solar SOLSIMMedidor de irradiância MES-100 e Luxímetro LD-200Source-Meter 2612B e Analisador de Parâmetros B1505AAPÊNDICE C - CARACTERIZAÇÃO DE FOTOCONDUTORESCaracterização dos fotocondutores do grupo 2APÊNDICE D - SOFTWARE DESENVOLVIDO	164 . 165 . 168 . 169 . 169 . 170 . 171 . 174 . 175 . 177
B.1 B.2 B.3 B.4 C.1 D.1	APÊNDICESAPÊNDICE A - MATERIAL DISPONÍVELAPÊNDICE B - EQUIPAMENTOS DE MEDIÇÃOCaracterizador Solar PVA600Simulador Solar SOLSIMMedidor de irradiância MES-100 e Luxímetro LD-200Source-Meter 2612B e Analisador de Parâmetros B1505AAPÊNDICE C - CARACTERIZAÇÃO DE FOTOCONDUTORESCaracterização dos fotocondutores do grupo 2APÊNDICE D - SOFTWARE DESENVOLVIDOModelo geral para fotovoltaicos	164 . 165 . 168 . 169 . 169 . 170 . 171 . 174 . 175 . 177 . 178
B.1 B.2 B.3 B.4 C.1 D.1 D.2	APÊNDICESAPÊNDICE A - MATERIAL DISPONÍVELAPÊNDICE B - EQUIPAMENTOS DE MEDIÇÃOCaracterizador Solar PVA600Simulador Solar SOLSIMMedidor de irradiância MES-100 e Luxímetro LD-200Source-Meter 2612B e Analisador de Parâmetros B1505AAPÊNDICE C - CARACTERIZAÇÃO DE FOTOCONDUTORESCaracterização dos fotocondutores do grupo 2APÊNDICE D - SOFTWARE DESENVOLVIDOModelo geral para fotovoltaicosObtenção do fotocondutor para o sistema fotoajustável - Versão 2	164 . 165 . 168 . 169 . 169 . 170 . 171 . 174 . 175 . 177 . 178 .0193
B.1 B.2 B.3 B.4 C.1 D.1 D.2 D.3	APÊNDICES APÊNDICE A - MATERIAL DISPONÍVEL APÊNDICE B - EQUIPAMENTOS DE MEDIÇÃO Caracterizador Solar PVA600 Simulador Solar SOLSIM Medidor de irradiância MES-100 e Luxímetro LD-200 Source-Meter 2612B e Analisador de Parâmetros B1505A APÊNDICE C - CARACTERIZAÇÃO DE FOTOCONDUTORES Caracterização dos fotocondutores do grupo 2 APÊNDICE D - SOFTWARE DESENVOLVIDO Modelo geral para fotovoltaicos Obtenção do fotocondutor para o sistema fotoajustável - Versão 2	164 . 165 . 168 . 169 . 169 . 170 . 171 . 174 . 175 . 177 . 178 .0193
 B.1 B.2 B.3 B.4 C.1 D.1 D.2 D.3 	APÊNDICES APÊNDICE A - MATERIAL DISPONÍVEL APÊNDICE B - EQUIPAMENTOS DE MEDIÇÃO Caracterizador Solar PVA600 Simulador Solar SOLSIM Medidor de irradiância MES-100 e Luxímetro LD-200 Source-Meter 2612B e Analisador de Parâmetros B1505A APÊNDICE C - CARACTERIZAÇÃO DE FOTOCONDUTORES Caracterização dos fotocondutores do grupo 2 APÊNDICE D - SOFTWARE DESENVOLVIDO Modelo geral para fotovoltaicos Obtenção do fotocondutor para o sistema fotoajustável - Versão 2 Obtenção do fotocondutor para o sistema fotoajustável - caso com	164 . 165 . 168 . 169 . 169 . 170 . 171 . 174 . 175 . 177 . 178 .0 193 . 203

D.5	Obtenção do fotocondutor para o sistema fotoajustável - versão 1.0 224
D.6	Conversão irradiância para iluminância

1 Introdução

"Fui para os bosques viver de livre vontade ...e sugar a essência da vida! Para aniquilar tudo que não era vida E para, quando morrer, não descobrir que não vivi."

Henry David Thoureau - Walden ou a vida nos bosques (fragmento)

1.1 A energia luminosa e seu uso pelo mundo

A demanda energética aumenta consideravelmente com o passar do tempo. Essa conjectura nos obriga a buscar novas formas de obter energia, considerando não só seu preço de produção, mas também seu impacto no meio ambiente. A energia luminosa é, sem dúvida, uma das opções mais práticas e viáveis de geração de eletricidade, em um momento em que a humanidade se confronta com as consequências de um modelo energético insuficiente para conter a demanda futura. Nos últimos anos observamos um crescimento significativo da utilização da energia com base fotovoltaica no mundo, principalmente na Europa. Novas políticas públicas ambientais foram desenvolvidas para impulsionar essa tecnologia.

No Brasil, alguns experimentos com baixa potência de geração já foram realizados. O país, com sua alta insolação anual e suas grandes reservas de quartzo e sílica (que dão origem ao principal insumo necessário para a fabricação de células solares, o silício), desponta como grande promessa dessa área, bastando incentivos para desenvolvimento de tecnologia própria. Contudo, observamos uma tímida exploração desse potencial - destoando do grande desenvolvimento obtido pelos países europeus, com tamanhos geográficos menores e condições solarimétricas menos favoráveis - demonstrando que o Brasil pode sim se inserir nesse mercado de forma competitiva e eficiente, tornando-se uma referência internacional na área.

Em conjunto com esses sistemas de geração, se pesquisam microssistemas alimentados por energia luminosa artificial, como lâmpadas ou LEDs, alimentados por fotodiodos embutidos em circuitos integrados. Devido à sua baixa demanda energética, esses dispositivos podem possuir pequenas dimensões e funcionar no interior de residências, galpões, pontos de ônibus, etc.

Também observamos diversas iniciativas em *Energy Harvesting*, que consiste em alternativas que utilizam fotodiodos integrados como fontes geradoras de energia elétrica para cargas também integradas em chip. Em Park et al. (2018), temos um sistema integrado baseado em pixel ativo CMOS que é capaz de captura de imagens e geração de energia de forma simultânea, tornando-se assim um sistema de imageamento autoalimentado.

1.2 Controle de carga

Em muitos casos, circuitos e dispositivos demandam uma fonte de energia muito bem projetada e estável. No caso de um sistema fotoalimentado, onde a fonte de energia pode ser o sol ou algum tipo de iluminação artificial, flutuações na intensidade de luz podem afetar seu desempenho ou mesmo sua operabilidade e segurança. Para evitar esses problemas, podemos utilizar circuitos eletrônicos baseados em dispositivos de potência, como MOSFETs e IGBTs, ou microcontroladores que controlam os parâmetros da carga. Para baixos valores de potência, soluções mais simples podem ser implementadas, como as baseadas em diodo zener ou dispositivos similares de drenagem de corrente (BOYLESTAD; YAMAMOTO, 2013; SEDRA; SMITH, 2004).

O estado da arte de controle de cargas está focado em sistemas baseados em controladores CC-CC, que convertem a corrente contínua de uma fonte para um outro ponto de operação necessário para o funcionamento apropriado da carga. Sistemas fotovoltaicos podem se utilizar dessas alternativas, inclusive associados um sistema de banco de baterias para controle de falhas e quedas de iluminação. A figura 1 exibe um diagrama esquemático desse tipo de controlador (REIS, 2012; MOHAN; UNDELAND; ROBBINS, 2003).

Figura 1 – Diagrama de um sistema controlador de carga baseado em conversor CC. Fonte: Imagem criada pelo próprio autor

Uma outra forma de controle de ponto de operação muito utilizada em sistemas fotovoltaicos é o MPPT (*Maximum Power Point Tracking*), que consiste em um algoritmo associado a um controlador de carga que, diferente do nosso propósito, que é manter o ponto de operação constante indiferente da iluminação, realiza um rastreamento do ponto de máxima potência, garantindo assim a máxima produção possível de energia mesmo com a variação da iluminação (FARANDA; LEVA, 2008).

Alternativas integradas também trazem sistemas de controle de energia complexos, como o apresentado em Roy et al. (2015): um chip autoalimentado com um sistema fotovoltaico, um sistema de gerenciamento de energia avançado, constituído de um conversor CC-CC e um MPPT, sistema de comunicação via rádio, processador e um conjunto de sensores para aplicações em sistemas biomédicos.

1.3 Sistemas fotovoltaicos fotoajustáveis

Os sistemas fotoajustáveis ou SSC's (*Smart Solar Clusters*) se apresentam como um novo conceito de controle para sistemas geradores fotovoltaicos. Esse arranjo é composto por células, painéis solares ou fotodiodos conectadas à fotocondutores devidamente dimensionados, tornando o conjunto auto-ajustável de acordo com a luz incidente. A maneira como as células e os fotocondutores são interligados permite ao conjunto compensar variações na intensidade de radiação luminosa recebida por esses dispositivos, mantendo seu ponto de operação estabilizado, ou seja, os valores de corrente e tensão fornecidos à carga se mantêm inalterados mesmo com ligeiras variações da irradiância incidente nesses sistemas, não exigindo nenhum componente, dispositivo ou aparelho eletrônico adicional.

Essa abordagem é voltada para aplicações onde o controle das grandezas de operação é mais importante que a quantidade de energia gerada propriamente dita - como exemplo, temos cargas ao ar livre (como bombas d'água, sistemas de iluminação, letreiros eletrônicos, dentre outros) e sistemas miniaturizados, como roteadores de rede autônomos, tecnologia vestível (*wereables*), microsensores e atuadores, microgeradores, dispositivos IoT (*Internet* of Things), etc.

A essa operação em conjunto para a finalidade de controle denominamos fotoajustabilidade. Esse é um conceito geral, sendo indiferente aos tipos de dispositivos fotovoltaicos e materiais utilizados em seu projeto. Na figura 2 podemos observar diagramas representativos do SSC utilizando um painel solar fotovoltaico tradicional, assim como sua utilização em um circuito integrado em chip.

Figura 2 – Diagramas de sistemas fotoajustáveis em painel (esquerda) e em chip (direita). Fonte: Figuras produzidas pelo próprio autor

Embora seja um sistema passivo de controle, ou seja, que não necessita de alimentação externa, ele apresenta algumas desvantagens, como a redução de eficiência de conversão de energia do sistema fotovoltaico devido à parcela de energia dissipada no fotocondutor, custo necessário para a operação de estabilização. Além disso, temos o custo de área em chip para um sistema fotoajustável integrado, que pode ser proibitivo caso o fotocondutor necessite de possuir grandes dimensões. Por isso é interessante o seu desenho como serpentina, para redução da área demandada.

Esse sistema ainda apresenta outras limitações: aplicações que demandam muita potência não são indicados ao seu uso, pois ao serem submetidos à iluminações mais intensas, exigem uma maior capacidade do fotocondutor associado ao sistema - pois como veremos a seguir, o fotocondutor trabalha como absorvedor da potência incidente - e nessa situação, a potência a ser consumida por ele pode ser uma fator limitante no seu projeto. No caso de grandes geradores de energia, como usinas fotovoltaicas, a expectativa está na maximização da energia produzida, e não no controle do seu ponto de operação.

O estudo dos sistemas fotoajustáveis começa em 2005 com uma proposta inicial de conceito, dentro do projeto determinado Clusters Solares Inteligentes, apresentada pelo professor Davies Monteiro e os alunos Thiago Oliveira de Freitas e Luciano Nakamura Alves Silva, resultando em um depósito de patente em 2009 ((MONTEIRO; FREITAS; SILVA, 2009)). Na sequência, a aluna Ágata Miranda de Carvalho, em 2009, realiza um estudo sobre a estimativa do comportamento do SSC ao longo dos anos para a cidade de Belo Horizonte ((CARVALHO; MONTEIRO, 2009)).

Em seguida, houve experimentos sobre assunto, conduzidos pelos alunos Thiago Daniel de Oliveira Moura, Pedro Henrique Miranda e Gustavo Couto Fonseca. Por último, duas monografias do curso de especialização em microeletrônica sobre o SSC foram produzidas pelos autores Tiago de Oliveira Rocha (ROCHA, 2008) e Thiago Barçante Teixeira (TEIXEIRA, 2008).

A partir desses estudos preliminares já se verificava o fenômeno de fotoajustabilidade, faltando portanto o desenvolvimento do conceito embasado em conhecimentos científicos sólidos, e uma metodologia sistemática e balisada por parâmetros reais de materiais e tecnologias de fabricação.

1.4 Objetivo

O objetivo desse trabalho é desenvolver o conceito de sistemas fotovoltaicos fotoajustáveis, através de sua investigação, modelagem, simulação, análise, verificação de sua viabilidade funcional, sua extrapolação de desempenho para diferentes classes de dispositivos (fotodiodos discretos e integrados, células e painéis solares) e condições ambientais diversas, em espaços internos e externos, alimentados por iluminação natural e artificial.

Daqui em diante, o trabalho será dividido em três frentes: atividades teóricas, focadas na construção de novos modelos e metodologias de projeto para o sistema fotoajustável, procedimento experimental, que se foca na caracterização dos sistemas luminosos utilizados e componentes relacionados, e simulação, para a construção de sistemas numéricos computacionais para previsão comportamental dos dispositivos e sistemas sugeridos, baseados na ferramenta de simulação de circuitos SPICE. Esses trabalhos serão executados de forma concorrente, com os resultados de uma etapa alimentando as outras, de modo a se conceber uma prova de conceito teórica, assim como uma plataforma de estudo e projeto de sistemas fotoajustáveis, permitindo sua aplicação em conjunto com diversos sistemas fotovoltaicos existentes, indo desde a microgeração em dispositivos portáteis que utilizam circuitos integrados até sistemas de maior porte alimentados por células e painéis fotovoltaicos.

2 Revisão teórica

A luz na janela

"Nada como ser compreendido Nas nuances, nos mínimos detalhes Seria possível um nível de simplicidade Que nos tornaria transparentes a nós mesmos e aos outros?

> Expressividade prevê conhecimento Autenticidade requer sabedoria O que era azul, se torna amarelo O frio se transforma em calor Como é intrigante a mensagem do sol!

A falta de clareza nos separa O desentendimento traz à tona o pior de nós Provoca medo, insegurança E nos coloca em um mundo de dor

Pare, respire, olhe em volta Absorva o ruído do mundo O ruído, antes ininteligível É na verdade o passe de entrada Do mundo verdadeiro em que vivemos..."

André Luiz Costa de Carvalho - 02/11/2020

2.1 Materiais semicondutores

Os semicondutores constituem uma classe de materiais muito importante para o mundo moderno, sendo uma das matérias-primas fundamentais da tecnologia eletrônica vigente, baseada principalmente em circuitos integrados e que são construídos a partir desses materiais. O semicondutor com maior destaque da atualidade é o silício, que é utilizado na maioria das aplicações.

Outros semicondutores são utilizados para aplicações específicas, como o arseneto de gálio (muito utilizado em fotônica e eletrônica de alta frequência, assim como células fotovoltaicas de alto desempenho), o sulfeto de cádmio (utilizado na fabricação de detectores de luz), sulfeto de chumbo (ou galena, utilizado na fabricação de diodos detectores de sinal de rádio AM), nitreto de gálio (aplicações optoeletrônicas, como lasers, LEDs, etc), telureto de cádmio (fabricação de células solares e chaveamento de fibras ópticas), dentre outros (SZE, 2016).

Além desses materiais já conhecidos, podemos observar novas promessas em pesquisa: semicondutores orgânicos (utilizados na confecção de OFETs - transistores orgânicos de efeito de campo - e OLEDs - LEDs orgânicos, além de células solares), como aromáticos fundidos semicondutores (tetraceno, pentaceno, pireno), oligômeros (polímeros semicondutores) e perovskita, assim como inorgânicos emergentes, como nanotubos de carbono, grafeno, semicondutores ternários e quaternários, etc. Esses novos materiais possuem diversas propriedades interessantes não encontradas nos tradicionais, como maior flexibilidade, maior resistência, facilidade de purificação e deposição, etc (MILES; HYNES; FORBES, 2005; TYAN, 2011; FILHO, 2020; WANG et al., 2018; ZHANG; DONG; HU, 2018; KIM et al., 2020).

2.1.1 Teoria de bandas de energia

Como mostrado na figura 3, um átomo isolado qualquer apresenta níveis de energia discretos, que podem ser ocupados por elétrons. Quando dois ou mais átomos se aproximam e interagem entre si, eles formam ligações, e assim, apresentando novos níveis relativos ao material. Quanto maior for o número de átomos, mais próximos esses níveis ficarão entre si. Se o número de átomos for suficientemente grande, passamos a ter uma banda de energia (considerando a banda como contínua, ou seja, não havendo diferenças significativas entre os níveis - mais precisamente, quando a diferença entre os níveis fica menor que a energia térmica k_BT , onde K é a constante de Boltzmann e T é a temperatura em Kelvin). Essa teoria explica uma característica muito importante dos materiais, que é sua condutividade (SZE, 2016).

Figura 3 – Níveis de energia de um átomo isolado e bandas de energia de um sólido. Fonte: (TPUB, 2015)- alterada pelo autor

Das inúmeras bandas de energia possíveis em um sólido, as mais relevantes para dispositivos eletrônicos são a banda de valência e a banda de condução, que são as bandas mais altas desse sólido. O topo da banda de valência é geralmente tomado como o nível de energia de referência. Os elétrons dos níveis de energia mais baixos estão participando de ligações químicas e, portanto, não disponíveis para transitar pelo sólido. Já elétrons presentes na banda de valência (quando está semi-preenchida) ou na banda de condução podem mover-se pelo material sem estar exclusivamente ligados a algum átomo em especial (KITTEL, 2006).

O intervalo de energia entre o fundo da banda de condução e o topo da banda de valência é denominado banda proibida E_g (ou gap), porque nenhum elétron nesse material pode possuir energias desse intervalo. Esse detalhe é fundamental para a determinação da condutividade de um material: se a banda proibida for muito grande, a quantidade de energia necessária para que um elétron da banda de valência alcance a banda de condução é alta e geralmente temos um isolante. Um condutor apresenta bandas de condução e valência sobrepostas, e a banda de condução já se encontra parcialmente preenchida. Um semicondutor tem um gap de energia intermediário, estando assim entre os isolantes e os condutores. A figura 4 nos mostra essa diferença entre os diversos tipos de materiais:

Figura 4 – Bandas de energia em isolantes, semicondutores e condutores. Fonte: (WARWICK, 2010) (adaptada)

Materiais podem ser classificados como de *gap* direto (o topo da banda de valência e o fundo da banda de condução são alinhados) ou indireto (não há o alinhamento). Essa característica impacta principalmente emissores luminosos, como LEDs. A figura 5 nos mostra essa diferença:

Figura 5 – Exemplo de semicondutor de gap direto (InP, à esquerda) e gap indireto (Si, à direita).

Fonte: (NATURE, 2010) (adaptada)

A largura da banda proibida é dependente da temperatura, de acordo com a expressão empírica 2.1:

$$E_g(T) = E_g(0) - \frac{AT^2}{T+B}$$
(2.1)

onde $E_g(0)$ é a espessura da banda proibida no zero absoluto, e A e B são constantes de ajuste, que variam com o material (VARSHNI, 1967). A tabela 1 mostra alguns dados dos semicondutores germânio, silício e arseneto de gálio referentes à sua banda proibida (ZEGHBROECK, 2011).

Tabela 1 – Valores tabelados para alguns semicondutores

	Ge	Si	GaAs
$E_g(0)$ [eV]	1.519	1.166	0.7437
$A (1 \times 10^{-4}) [eV/K]$	5.405	4.73	4.774
B(K)	204	636	235
$E_g(300 \ K) \ [eV]$	0.65	1.12	1.42

Fonte: (NSM, 2001)

A figura 6 exemplifica a variação da banda proibida com a temperatura para os materiais arseneto de gálio e silício.

Figura 6 – Variação da banda proibida com a temperatura para o Si e GaAs. Fonte: Figura produzida pelo autor

2.1.2 Portadores de carga

Devido à extensão reduzida de sua banda proibida, a própria temperatura é capaz de permitir a excitação de elétrons entre as bandas desses materiais, através da energia térmica. Com essa energia, as ligações covalentes entre seus átomos são quebradas, libertando os elétrons que realizavam essas ligações. Daí estes são capazes de vencer a banda proibida, chegando à banda de condução.

Contudo, nesses materiais ocorre um efeito inusitado: ao se excitar um elétron na banda de valência, um espaço vazio aparece em seu lugar. Outro elétron pertencente a outro átomo das proximidades pode ocupar o seu lugar, dando origem a uma movimentação de cargas no material também na banda de valência. Esse espaço vazio é chamado de lacuna (ou buraco), e é modelado como uma partícula portadora de carga, como o elétron, mas com carga positiva (todo esse processo é denominado geração de par elétron-lacuna) (KITTEL, 2006).

Figura 7 – Concentração intrínseca de portadores para o Si e GaAs de acordo com a temperatura.

Fonte: (SZE; NG, 2006) (adaptada)

Os elétrons da banda de condução e as lacunas da banda de valência são denominadas portadores de carga. Quanto maior a temperatura, maior o número de portadores de carga. Os portadores gerados pela energia térmica são chamados portadores intrínsecos (o semicondutor é denominado intrínseco quando ele não está dopado). Em um semicondutor intrínseco, a quantidade de elétrons na banda de condução é sempre igual à quantidade de lacunas na banda de valência. A figura 7 apresenta a concentração de portadores intrínsecos de acordo com a variação de temperatura: o silício apresenta uma maior concentração desses portadores em relação ao arseneto de gálio devido à sua menor banda proibida (KITTEL, 2006).

2.1.3 Dopagem

Podemos controlar a quantidade de portadores de um determinado tipo de portador de carga em um semicondutor utilizando um processo denominado dopagem, que consiste na inserção controlada de uma certa espécie de impureza, que forneça portadores adicionais. Por exemplo, podemos dopar o silício com algum átomo pentavalente (dopante doador, como fósforo, arsênio ou antimônio), de modo a obter elétrons adicionais na banda de condução. Esses átomos tomarão uma atitude substitucional (entrarão nos lugares dos átomos do semicondutor original), completando as quatro ligações comumente realizadas pelos átomos de silício.

O elétron restante ficará ligado fracamente ao seu átomo, bastando uma quantidade muito pequena de energia para quebrá-la, e assim o elétron se apresentará na banda de condução. O efeito da impureza dopante nas bandas de energia é a criação de um nível dentro da banda proibida bem próximo a banda de condução, pois o elétron migrará facilmente para essa banda, e teremos um semicondutor do tipo n (SZE, 2001).

Já a dopagem com um elemento trivalente (dopante aceitador, como boro, gálio ou alumínio) fornecerá lacunas e gerará um nível de energia bem próximo da banda de valência, obtendo um semicondutor do tipo p. Contudo, nem todos os elementos penta ou trivalentes geram níveis suficientemente próximos das bandas de condução e valência: por isso escolhe-se como dopantes os elementos que apresentem essa propriedade. A própria energia térmica proverá a energia para a ionização desses portadores adicionais. Um semicondutor dopado também é denominado extrínseco. A figura 8 esquematiza a dopagem do silício com impurezas aceitadoras (Boro) e doadoras (fósforo):

Figura 8 – Dopagem do silício com impureza aceitadora (Boro) e doadora (Fósforo). Fonte: (ELETRONICAPT, 2016) (adaptada/alterada pelo autor)

Se um semicondutor for dopado com impurezas doadoras e aceitadoras (dopagem por compensação), a maior concentração determina o tipo de semicondutor extrínseco. O semicondutor tipo n tem como portador majoritário, os elétrons (e lacunas como minoritários); já o tipo p, tem lacunas como portadores majoritários e consequentemente, elétrons como minoritários.

A relação entre os portadores em um semicondutor qualquer (seja intrínseco ou extrínseco) em equilíbrio termodinâmico, e sem a influência de fatores externos que não a temperatura, sempre obedece a uma equação, denominada lei da ação das massas:

$$np = n_i^2 \tag{2.2}$$

onde n é a concentração de elétrons na banda de condução, p é a concentração de lacunas na banda de valência e n_i é a concentração de portadores intrínsecos (SZE, 2001).

Em relação à densidade de portadores, um semicondutor opera em três regiões, de acordo com a temperatura que ele está submetido: região de *freeze-out*, região extrínseca e a região intrínseca. Podemos observar essas regiões na figura 9:

Figura 9 – Regiões do semicondutor. Fonte: (SZE, 2016) (adaptada)

Na região de *freeze-out*, a densidade de portadores é baixa, pois não há energia térmica suficiente para ativar os elétrons e lacunas dos dopantes, que continuam ligados aos seus átomos de origem e não vão para as bandas de condução e valência. Na região extrínseca, temos um platô com pouquíssima variação na densidade de portadores, pois ela é dominada pela concentração de portadores oriundos de dopantes. Na região intrínseca, a concentração de portadores termogerados ultrapassa os oriundos de dopantes, passando ela a ditar a concentração total de portadores livres(SZE, 2016).

2.1.4 Estrutura cristalográfica e defeitos

Os portadores de carga, sejam intrínsecos ou inseridos por dopagem, possibilitam o transporte eletrônico pelo material. Todavia, esse transporte não é perfeito: o material pode apresentar defeitos que atrapalham esse processo. Quando um material é formado, seus átomos ocupam posições em sua estrutura. De acordo com a sua organização, esses átomos podem dar origem uma rede periódica regular, com uma geometria definida. O nível de regularidade dessa rede determina o tipo do cristal (material) formado: ele pode ser monocristalino (todo o cristal possui a mesma orientação cristalográfica), policristalino (a estrutura apresenta partes com orientações diferentes, essas chamadas grãos, onde dentro de cada grão, verificamos regularidade) e amorfo (não há orientação cristalográfica definida - os átomos não seguem nenhuma regularidade no crescimento do material) (KITTEL, 2006).

A figura 10 exibe cada uma dessas estruturas:

Figura 10 – Tipos de cristais existentes. Fonte: (SWART, 2008)

Os defeitos do material se apresentam como falhas na estrutura cristalográfica desse material, essas de diversas naturezas. Podem ser defeitos do tipo vacância (ausência de um átomo em um ponto da rede), auto-intersticial (um átomo da própria rede ocupa espaços entre os outros átomos - ocorrência muito comum quando o material é dopado, onde o dopante ocupa o lugar do átomo original da rede, e esse vai para a posição intersticial), impureza substitucional (um átomo diferente ocupando um lugar da rede), impureza intersticial (átomo diferente ocupando interstícios), defeitos de borda (regiões onde as ligações não estão completas, como os limites do material e interseções entre grãos), dentre outros. A figura 11 ilustra os tipos de defeitos:

Figura 11 – Tipos de defeitos em cristais. Fonte: (MINERALOGIA, 2014) - alterada pelo autor

Esses defeitos são indesejáveis, e prejudicam o funcionamento de dispositivos construídos com esse material. Portadores de carga que trafegam nas proximidades desses defeitos sofrem diversos tipos de adversidades, como captura (o portador é aprisionado no defeito, abandonando a condução), liberação (um portador aprisionado anteriormente é libertado aleatoriamente), dentre outros. Defeitos no material diminuem o tempo de vida (tempo que o portador consegue transitar pelo material sem se recombinar, afetando o desempenho do dispositivo (redução da corrente máxima, interferências, etc) (SZE; NG, 2006).

Esses materiais semicondutores são processados para a fabricação de dispositivos semicondutores diversos, de diodos a microprocessadores. As escolhas de materiais e processos impactam diretamente no desempenho desses dispositivos, além de seu custo e eficiência energética.

2.1.5 Mobilidade

Os portadores de carga livres de um semicondutor submetido a uma temperatura absoluta T possuem a energia $3/2k_BT$ (equipartição de energia), onde k_B é a constante de Boltzmann, m é a massa do portador e T é a temperatura em Kelvin (SZE, 2001). Considerando que um portador só possua energia cinética, essa energia confere ao portador uma velocidade térmica v_{th} , que é dada por:

$$v_{th} = \sqrt{\frac{3k_BT}{m}} \tag{2.3}$$

Para um sólido de silício com T = 300K, a velocidade térmica dos elétrons é em torno de 2, 30×10^5 cm/s, e das lacunas, $1,65 \times 10^5$ cm/s. Esses portadores se movimentam pelo material, em todas as direções. Ao colidir com as estruturas desse material, esses portadores são espalhados. A distância média entre essas colisões é chamada de livre caminho médio (d_c) , enquanto que o tempo médio entre colisões é chamado tempo livre médio (τ_c) . Tipicamente, $d_c = 10^{-5}cm$ e $\tau_c = d_c/v_{th} = 10^{-12}s$ (SZE, 2001).

Quando um semicondutor é submetido a um campo elétrico ε , seus portadores de carga livres sofrem uma força devido à presença desse campo, e são acelerados na direção desse campo durante o tempo livre médio. Devido ao campo, aparece um componente adicional de velocidade, determinado velocidade de deriva, v_n para elétrons ou v_p para lacunas. Podemos obter essa velocidade equacionando o momento aplicado a um portador livre durante a sua translação livre de colisões. O momento p aplicado no elétron é dado pela equação 2.4:

$$p = m_n v_n = -q \varepsilon \tau_c \Rightarrow v_n = -\frac{q \tau_c}{m_n} \varepsilon$$
(2.4)

Observamos então que a velocidade de deriva é proporcional ao campo aplicado, O fator de proporcionalidade depende do tempo livre médio e da massa efetiva m_n . Esse fator é chamado de mobilidade μ_n . Portanto, $v_n = -\mu_n \varepsilon$ para elétrons, e $v_p = \mu_p \varepsilon$ para lacunas (SZE, 2001).

A mobilidade é relacionada diretamente ao tempo livre médio entre colisões, e esse fenômeno pode ser determinado por diversos mecanismos de espalhamento. Os dois mais importantes são o espalhamento pela rede e espalhamento por impurezas. O espalhamento pela rede resulta da vibração térmica dos átomos da rede em qualquer temperatura acima do zero absoluto. Essas vibrações perturbam o potencial periódico da rede, permitindo transferências de energia entre os portadores e a rede. Como a vibração da rede aumenta com a temperatura, o espalhamento pela rede se torna dominante em altas temperaturas (SZE, 2001). O espalhamento por impurezas ocorre quando um portador transita próximo a uma impureza dopante ionizada. O caminho do portador será influenciado por interações coulombianas, ou seja, a probabilidade desse espalhamento depende da concentração total das impurezas ionizadas. Em altas temperaturas, esse espalhamento se torna menos significativo, pois os portadores possuem uma alta velocidade, reduzindo o tempo de interação com esses íons (SZE, 2001).

Podemos observar a variação da mobilidade com a temperatura na figura 12.

Figura 12 – Mobilidade de elétrons e lacunas no silício de acordo com a dopagem e temperatura.

Fonte: (SZE; NG, 2006) (adaptada)

Também é possível relacionar a mobilidade com o coeficiente de difusão (grandeza que indica a capacidade de um portador de se difundir pelo material mediante a uma diferença de concentração desse portador através desse material); essa relação é chamada Relação de Einstein e está descrita pela equação 2.5:

$$D_n = \frac{k_B T}{q} \mu_n, \qquad D_p = \frac{k_B T}{q} \mu_p \tag{2.5}$$

Para elétrons e para lacunas, respectivamente, onde $D_{n,p}$ é a difusividade, k_B é a

constante de Boltzmann, T é a temperatura absoluta, q é a carga elementar e $\mu_{n,p}$ é a mobilidade (SZE, 2016).

2.1.6 Resistividade e condutividade

O transporte de portadores de carga sob a influência de um campo elétrico ε aplicado nas extremidades do material produz uma densidade de corrente de deriva (J_n para elétrons, e J_p para lacunas), que é definida pela relação 2.6:

$$J_n = qn\mu_n\varepsilon, \qquad J_p = qp\mu_p\varepsilon \tag{2.6}$$

onde n é a concentração de elétrons e p a concentração de lacunas (SZE, 2001). A densidade de corrente total será a soma das componentes dos elétrons e lacunas, como mostrado na equação 2.7:

$$J = J_n + J_p = q(n\mu_n + p\mu_p)\varepsilon$$
(2.7)

A condutividade é dada por $\sigma = q(n\mu_n + p\mu_p)$, e a resistividade, dada por $\rho = \frac{1}{\sigma}$. A figura 13 nos mostra a variação da resistividade de amostras de silício tipo p e n de acordo com a concentração de dopante (SZE, 2016).

Figura 13 – Resistividade do Si para diferentes concentrações de dopantes. Fonte: (SZE; NG, 2006) (adaptada)

2.1.7 Geração e recombinação de portadores de carga

Quando um semicondutor está em equilíbrio termodinâmico, a taxa de geração térmica de portadores é igual à taxa de recombinação, mantendo a concentração de portadores constante para uma determinada temperatura. Entretanto, alguns processos podem alterar esse equilíbrio, como a polarização, incidência de luz no material, compressão mecânica, dentre outros. O fenômeno de aumentar a concentração de portadores de uma determinada banda de energia com algum processo externo é denominado injeção de portadores, assim como seu processo inverso, denominado extração. Relacionando com a lei da ação das massas, temos as relações do item 2.8:

$$np > n_i^2$$
 (injeção), $np < n_i^2$ (extração) (2.8)

onde n é a concentração de elétrons, p é a concentração de lacunas e n_i é a concentração de portadores intrínsecos (SZE, 2001). Na injeção, podemos escrever a concentração como

$$n = n_0 + \Delta n \qquad p = p_0 + \Delta p \tag{2.9}$$

onde $n_0(p_0)$ é a concentração de portadores no equilíbrio térmico, enquanto $\Delta n(\Delta p)$ é a concentração de portadores injetados (SZE, 2001). Na injeção fraca, somente os portadores minoritários são afetados; na injeção forte, os minoritários e majoritários são incrementados. Na injeção, o sistema assume um novo equilíbrio estacionário (diferente do anterior), pois há um aumento no processo de recombinação para contrabalançar o excesso de portadores gerados:

$$U = R_e - G_{th} \tag{2.10}$$

onde U é a taxa líquida de variação da concentração dos portadores, R_e é a taxa de recombinação, G_{th} é a taxa de geração térmica (SZE, 2001). No equilíbrio térmico, a taxa liquida é nula. Para o caso de injeção fraca, em que os minoritários sejam as lacunas, podemos aproximar a expressão anterior por:

$$U \approx \frac{\Delta p}{\tau_p} \tag{2.11}$$

onde τ_p é o tempo de vida das lacunas na banda de valência, ou seja, o tempo em que o portador permanece na banda sem se recombinar (SZE, 2001). Essa grandeza é determinada pelo tipo de processo predominante de recombinação de cada material, podendo ser banda-banda (recombinação entre elétrons da banda de condução e lacunas da banda de valência), preponderante em materiais com gap direto (como o GaAs) ou via aprisionamento, dominante em semicondutores de gap indireto, como o Si. No primeiro caso, o tempo de vida é inversamente proporcional à concentração do dopante; já no segundo, ele é inversamente proporcional à densidade de centros de geração/recombinação. No silício intrínseco, o tempo de vida é próximo a 10^{-3} s.

Na injeção forte, o tempo de vida passa a ser dependente da concentração de portadores gerados, sendo essas grandezas inversamente proporcionais. Portanto, dispositivos submetidos à polarizações extremas, altas intensidades de luz incidente ou ainda a pressões mecânicas muito intensas ocasionam um tempo de vida dos portadores reduzido (menores que 10^{-9} s no silício).

Nessas condições de injeção forte, esses dispositivos também apresentam um estado de saturação, onde os incrementos de corrente se tornam cada vez menores com o aumento da injeção.

O mesmo ocorre com materiais semicondutores intrínsecos, que somente sofrem injeção forte (as concentrações de elétrons e lacunas são as mesmas). (SZE; NG, 2006; NSM, 2001)

2.1.8 Fotogeração

Um mecanismo que retira o semicondutor de seu equilíbrio termodinâmico é a incidência de luz no material, que ao ocorrer, permite que um elétron pertencente à rede absorva a energia proveniente dos fótons incidentes e alcance a banda de condução, deixando uma lacuna na banda de valência, e aumentando a concentração de portadores nas duas bandas (geração do par elétron-lacuna). Para que isso ocorra, a energia do fóton incidente deve ser maior a energia da banda proibida, para permitir que o elétron alcance a banda de condução. Portanto podemos calcular a energia E_f oton de um fóton utilizando a relação 2.12:

$$E_{foton} > E_q \Rightarrow hf > E_q$$

$$\tag{2.12}$$

Onde h é a constante de Planck, f é a frequência do fóton e E_g é a energia da banda proibida (SZE, 2016).

Para o silício, que tem uma banda proibida igual a 1,12 eV à temperatura ambiente, somente fótons com frequência maior que 2,708 × $10^{14}Hz$ (ou comprimento de onda menor que 1,108 μm , relativo ao infravermelho próximo ou abaixo) são capazes de promover esse elétron à banda de condução.

Na figura 14 podemos observar a geração de portadores por fótons na extensão do dispositivo fotovoltaico (onde temos uma alta geração de portadores na superfície, e seu decaimento em função da profundidade) - fato relacionado com coeficiente de absorção dos fótons, que será discutido na subseção 2.1.10 - e a probabilidade de coleta, que determina a chance de um portador de carga gerado alcançar os terminais externos (ela é maior na região de depleção, devido ao campo elétrico presente nesse local que acelera as cargas fotogeradas para as extremidades, e decai nas extremidades), e é extremamente dependente das características do material empregado e das grandezas geométricas do dispositivo.

Figura 14 – Geração e probabilidade de coleta na extensão do dispositivo. Fonte: (PVEDUCATION, 2014) (adaptada)

O tempo de vida é uma grandeza muito importante pra materiais e dispositivos ópticos, pois determina o tempo que um par elétron-lacuna fotogerado permanece disponível para condução no material antes de se recombinar, afetando sua resistividade. Tipicamente, os semicondutores com *gap* indireto apresentam um tempo de vida mais alto. Um tempo de vida maior garante que o portador fotogerado seja efetivamente detectado por um circuito externo, aumentando sua eficiência quântica (SZE; NG, 2006).

2.1.9 Efeito fotovoltaico

Alguns dispositivos são capazes de gerar energia elétrica via fotogeração, através de um fenômeno denominado efeito fotovoltaico. Ao se incidir radiação luminosa no material, os elétrons na banda de valência absorvem os fótons dessa radiação; caso a energia dos fótons for igual ou maior que a energia da banda proibida (ou *bandgap*), as ligações covalentes serão quebradas e esse elétron será promovido para a banda de condução, e uma lacuna será deixada na banda de valência.

Se os portadores alcançam os contatos externos, é produzida uma corrente elétrica (comumente chamada de corrente fotogerada ou fotocorrente) a partir da radiação luminosa, que pode ser medida, e utilizada para alimentar uma carga conectada nesses contatos. Os elétrons que não alcançam os terminais externos recombinam-se com as lacunas, voltando

para a banda de valência e não contribuindo com a geração de corrente. A figura 15 apresenta esse fenômeno em detalhes. (LUQUE; HEGEDUS, 2003)

Figura 15 – Ilustração do efeito fotovoltaico. Fonte: Figura produzida pelo autor

O efeito fotovoltaico é a base do funcionamento de células e painéis fotovoltaicos, assim como de fotodiodos operando em modo fotovoltaico. Mais detalhes desses dispositivos serão discutidos na seção 2.3.

2.1.10 Coeficiente de absorção

O coeficiente de absorção (α) é uma propriedade do material que indica o quão longe um feixe com fótons de comprimento de onda λ consegue penetrá-lo até ser absorvido. Essa grandeza é dependente do comprimento de onda da luz incidente, ou seja, um material sendo iluminado por uma fonte de luz policromática apresentará um coeficiente de absorção diferente para cada componente dessa fonte de luz. Se esse material apresentar um baixo α , o fóton conseguirá penetrar consideravelmente, podendo até atravessar toda a sua extensão, caso sua espessura seja muito pequena. Em contrapartida, fótons que apresentam um comprimento de onda menor que 400 nm (cor violeta) encontram um elevado α e são absorvidos na superfície. Sua unidade de medida mais utilizada é o cm^{-1} (CASTAÑER; SILVESTRE, 2002). A relação entre o coeficiente de absorção e a profundidade de penetração de acordo com o comprimento de onda para diversos materiais pode ser observada na figura 16. Ela nos dá o entendimento sobre a faixa de comprimentos de onda da luz que um determinado material responde.

A absorção de fótons no material pode ser modelada pela Lei de Lambert-Beer:

$$\phi(x) = \phi(0)e^{-\alpha x} \tag{2.13}$$

onde $\phi(x)$ é o fluxo de fótons na profundidade x, $\phi(0)$ é fluxo de fótons na superfície do material e o $e^{-\alpha x}$ é o fator de absorção (CASTAÑER; SILVESTRE, 2002).

Figura 16 – Coeficiente de absorção e profundidade de penetração por comprimento de onda.

Fonte: (PVEDUCATION, 2014) (adaptada)

No caso do silício, o coeficiente de absorção é praticamente 0 para fótons com $\lambda > 1, 1 \ \mu m$, pois fótons com energia menor que o *bandgap* do silício cristalino (1,12 eV à 300K) não são absorvidos por ele, ou seja, o silício é transparente para esses fótons (MARKVART; CASTAÑER, 2003; TEIXEIRA, 2008).

2.1.11 Coeficiente de reflexão

O coeficiente de reflexão ou reflectância (R) é uma grandeza que indica qual porcentagem da luz incidente é refletida pela superfície do material. Ela depende do índice de refração do material e da rugosidade de sua superfície. Quanto maior o coeficiente de reflexão, menor a eficiência de conversão na geração de energia, pois a maior parte da luz incidente é refletida e não adentra o material.

A reflexão é dada pela expressão 2.14:

$$R(\lambda) = \frac{n(\lambda) + iK(\lambda) - 1}{n(\lambda) + iK(\lambda) + 1}$$
(2.14)

onde $R(\lambda)$ é a reflectância, n é o coeficiente de refração e K é o coeficiente de extinção (KITTEL, 2006).

Essas grandezas são dependentes do comprimento de onda. Esses índices se relacionam com a permissividade elétrica através da relação 2.15:

$$\sqrt{\epsilon} \equiv n(\lambda) + iK(\lambda) = N(\lambda) \tag{2.15}$$

onde ϵ é a permissividade elétrica e $N(\lambda)$ é o índice de refração complexo. Podemos ainda relacionar o coeficiente de extinção K com o coeficiente de absorção α , através da relação 2.16:

$$\alpha = \frac{4\pi K}{\lambda} \tag{2.16}$$

O silício tem uma alta reflexão de superfície de mais de 30%, que impacta significantemente na geração de portadores. Para se minimizar essa condição, pode-se aplicar uma camada anti-reflexiva na superfície do material, como é realizado em equipamentos fotográficos. Elas consistem em uma fina camada de material dielétrico, com uma espessura especialmente escolhida para que os efeitos de interferência no revestimento minimizem a reflexão (PVEDUCATION, 2014).

2.1.12 Eficiência quântica e responsividade

A eficiência quântica (QE) de uma célula solar é definida pela razão entre o número de portadores coletados no circuito externo e os fótons incidentes com um dado comprimento de onda. Essa grandeza pode ser definida de duas formas: como eficiência quântica externa e interna, denotados por $EQE(\lambda)$ e $IQE(\lambda)$ respectivamente. Elas diferem no tratamento dos fótons refletidos pela célula: todos os fótons incidentes na superfície da célula são considerados no valor da EQE, mas somente os fótons não refletidos são considerados no valor da IQE.

Se a eficiência quântica for conhecida, a corrente fotogerada total será dada pela equação 2.17, considerando um material sem defeitos.

$$I_{ph} = qA \int_{(\lambda)} \phi(\lambda) EQE(\lambda) d\lambda = qA \int_{(\lambda)} \phi(\lambda) (1 - R(\lambda)) IQE(\lambda) d\lambda$$
(2.17)

onde I_{ph} é a corrente fotogerada, q é a carga elementar, $\phi(\lambda)$ é o fluxo incidente de fótons de comprimento de onda λ (cuja unidade de medida é fótons/ $cm^2 \mu m \cdot s$), A é a área iluminada da célula, $\mathbf{R}(\lambda)$ é o coeficiente de reflexão na superfície superior, $EQE(\lambda)$ é a eficiência quântica externa e $IQE(\lambda)$ é a eficiência quântica interna (CASTAÑER; SILVESTRE, 2002).

A integral é calculada sob todo o espectro da luz absorvida pela célula solar. O fluxo possui uma conexão com a irradiância espectral (I_{λ}) , sendo dado pela relação 2.18:

$$\phi(\lambda) = \frac{I_{\lambda}\lambda}{hc} \tag{2.18}$$

onde λ é o comprimento de onda, h é a constante de Planck e c é a velocidade da luz no vácuo (CASTAñER; SILVESTRE, 2002). A resposta ou responsividade espectral (denotada por SR(λ), é uma unidade similar de medida, mas com uma unidade diferente (A/W). Ela também é função do comprimento de onda. As duas grandezas estão conectadas pela relação matemática 2.19:

$$SR(\lambda) = \frac{q\lambda}{hc} QE(\lambda)$$
(2.19)

onde QE é a eficiência quântica, podendo ser interna ou externa (CASTAñER; SILVESTRE, 2002).

2.2 Dispositivos semicondutores

Utilizando materiais semicondutores, podemos confeccionar diversos dispositivos, desde fotocondutores a circuitos integrados com bilhões de componentes. Uma estrutura importante que podemos construir é a junção p-n. Ela é a base da muitos dos dispositivos eletrônicos semicondutores existentes na atualidade. Um diodo é o componente mais simples dessa família: ele é uma junção p-n com terminais metálicos. Fotodiodos e células solares também se baseiam nessa estrutura, sendo importante estudá-la adequadamente para posteriormente aprofundarmos no seu comportamento óptico.

2.2.1 Junção p-n

A junção p-n consiste na integração de dois materiais semicondutores dopados, ou regiões de um mesmo material diferentemente dopadas, como é mais comumente visto: um material do tipo p e o outro do tipo n. Ao serem colocados em contato, ocorrerá a migração de portadores de carga de um lado para o outro, via processo de difusão (diferenças de concentração de portadores entre os dois lados); elétrons do lado n vão para o lado p, e lacunas do lado p irão para o lado n.

Contudo, quando portadores de carga alcançam a outra região, eles deixam para trás ions sem compensação de carga (lacunas deixam ions negativos, enquanto que elétrons deixam ions positivos). Esses ions não são móveis, por estarem presos à rede cristalina do material. Com isso, é formado uma região com cargas fixas negativas do lado p, e outra com cargas positivas do lado n. Essa região é chamada de espaço de carga espacial ou região de depleção (região com carência de portadores de carga).

Esse desbalanceamento de cargas gera um campo elétrico, que se opõe ao processo de difusão, ou seja, todo portador que chegar a essa região acaba sendo deslocado no sentido oposto (processo de deriva, ou seja, cargas deslocadas por um campo elétrico). Com o tempo, os processos chegam a um estado de equilíbrio e essa região alcança uma certa espessura, e o fluxo líquido de portadores entre os dois lados se anula (SZE, 2001).

A figura 17 exemplifica o estado da junção p-n quando atinge esse equilíbrio:

Figura 17 – Junção p-n no equilíbrio. Fonte: (WIKIMEDIA, 2013) (adaptada)

Para se manter a neutralidade de cargas, a quantidade de cargas negativas por unidade de área tem que ser igual à sua contraparte positiva. Portanto: $N_A x_p = N_D x_n$, onde N_A é a concentração de impurezas aceitadoras, N_D é a concentração de impurezas doadoras, x_p é a extensão da região de depleção no lado p e x_n é a extensão da região de depleção no lado n. A região de depleção tem tamanho total $x_d = x_n + x_p$. O campo elétrico gerado por essas cargas dá origem a um potencial denominado *built-in* (embutido ou potencial de barreira). Mesmo em equilíbrio, temos uma tensão interna nas extremidades da junção (SZE, 2016).

2.2.1.1 Polarização da junção p-n

A principal característica da junção p-n é a sua propriedade retificadora, ou seja: quando aplicamos uma polarização direta na junção, com um potencial positivo no lado p da junção, a corrente cresce rapidamente. Contudo, se polarizarmos inversamente, idealmente não teremos uma corrente apreciável. Entretanto, se aumentarmos o potencial reverso além de um ponto crítico, a corrente começa a aumentar (ocorre a ruptura da junção). Essa propriedade é muito importante para circuitos conversores de corrente alternada para contínua, além de circuitos de proteção contra aumentos excessivos de tensão e corrente (BOYLESTAD; YAMAMOTO, 2013).

A polarização tem impacto direto no tamanho da região de depleção: se polarizamos a junção diretamente, a região diminui de tamanho, pois a tensão direta aplicada reduz o potencial eletrostático presente na região de depleção, reduzindo assim a corrente de deriva em relação à corrente de difusão. Já na polarização reversa, há um aumento no tamanho da região, pois os portadores majoritários de cada lado da junção são atraídos para a extremidade do material, aumentando a população de cargas não compensadas eletricamente (SZE, 2001).

Figura 18 – Polarizações de uma junção p-n. Fonte: (POWERGURU, 2012) (adaptada)

Na figura 18 podemos observar a polarização direta (esquerda), sem polarização (centro) e reversa (direita) - Círculos P representam os átomos de fósforo, B os átomos de boro, as laranjas os elétrons livres e as cinzas as lacunas livres.

A corrente de difusão de portadores majoritários se torna muito pequena em relação a corrente de deriva de minoritários, sendo essa a corrente que atravessa a junção inversamente - também chamada de corrente de saturação reversa, que é gerada por excitações térmicas. Essa corrente é geralmente indesejável, principalmente na retificação (o caso ideal seria uma corrente nula na polarização reversa).

2.2.1.2 Parâmetros de uma junção p-n

Uma junção p-n, após formada, apresenta diversos parâmetros, que impactam na sua capacidade de condução ou retenção de corrente elétrica:

 Corrente de saturação reversa: É a corrente de fuga que atravessa a junção p-n no sentido inverso à difusão de portadores quando ela está inversamente polarizada, ou a corrente dominante na polarização reversa (até a ruptura da junção). Também é o fator multiplicativo da corrente direta (nessa configuração é denominada corrente de escala); portanto, esse fator impacta na corrente que atravessa o dispositivo em polarização direta.

Em modelos mais sofisticados, como o de duas exponenciais, esse parâmetro aparece mais de uma vez, com cada presença representando um fenômeno diferente. (SZE; NG, 2006; LUQUE; HEGEDUS, 2003).

Fator de idealidade: Esse parâmetro é a medida de qual próximo ao modelo de junção p-n ideal o comportamento dispositivo está - já que o modelo ideal assume certas condições para ser válido - e assume valor igual a 1 quando essa proximidade é confirmada. Em dispositivos reais, o fator de idealidade é função da tensão sobre os terminais da junção p-n, e desvios do valor unitário indicam outros fenômenos impactando em seu valor, como os mecanismos de condução de corrente em um diodo, sendo igual a 1 para dominância da corrente de difusão, e 2 para dominância da corrente de geração-recombinação.

O fator de idealidade também pode ser influenciado por outros fatores, como a resistência série (em tensões ainda mais altas, que provocam correntes mais altas, tornando a queda de tensão na resistência série relevante). No modelo de duas exponenciais, representamos os dois tipos de condução de corrente separadamente - portanto, dois fatores de idealidade ($m_1 e m_2$) são apresentados. A relação do fator de idealidade com a tensão é dependente do material utilizado para a confecção do dispositivo, como podemos observar na figura 19 (SZE; NG, 2006; PVEDUCATION, 2014; BUENO et al., 2016).

Figura 19 – Variação do fator de idealidade com a tensão para junções p-n de Si e GaAs. Fonte: (SZE, 2001) (adaptada)

Resistência série: A resistência série é originada da resistividade do próprio material semicondutor, entre os limites da região de depleção (região neutra), e dos contatos metálicos (junção ôhmica metal-semicondutor entre o material e o terminal externo). É uma grandeza muito importante para células solares e fotodiodos, pois impacta significantemente em seu funcionamento - um dispositivo ideal possui uma resistência série nula - já dispositivos reais apresentam valores para essa grandeza, sendo esta um critério de qualidade desse componente (dispositivos de qualidade maior apresentam uma resistência série menor).

A resistência série impacta no valor de tensão medida nos terminais da junção p-n, pois há uma queda de tensão nessa resistência, até uma condição limite onde a sua curva I-V fica reduzida a uma reta com inclinação $1/R_S$. A magnitude dessa grandeza não é comumente divulgada pelos fabricantes, mas usualmente fica em torno de milésimos a dezenas de Ω (BASHAHU; HABYARIMANA, 1995).

Conhecendo essas grandezas, somos capazes de modelar a junção p-n utilizando equações analíticas, como será apresentado na próxima subseção.

2.2.1.3 Modelo de uma junção p-n ideal

Ao se polarizar uma junção pn com um certo potencial V, uma corrente I passa a atravessar a estrutura. Na polarização direta, a corrente cresce exponencialmente, enquanto que na polarização reversa, a corrente permanece próxima a I_0 . Essa relação pode ser modelada pela Equação de Shockley ou Equação do diodo ideal, apresentada na equação 2.20:

$$I = I_0 (e^{qV/k_B T} - 1) (2.20)$$

onde I é a corrente que atravessa a junção, I_0 é a corrente de saturação reversa, k_BT/q é o potencial térmico (26 mV para a temperatura de 300 K) e V é a tensão de polarização (SZE, 2001).

No modelo da junção p-n ideal, temos algumas considerações, como uma junção abrupta (a variação de cargas fixas na junção metalúrgica é abrupta e as regiões fora da região de depleção são consideradas neutras), operação em injeção fraca e inexistência de geração e recombinação térmica na região de depleção. Nessas condições, o fator de idealidade torna-se igual a 1. A figura 20 apresenta a curva I-V determinada pela equação do diodo ideal (SZE; NG, 2006).

Fonte: (PVEDUCATION, 2014) (adaptada)

A equação do diodo ideal é uma aproximação suficiente para modelar grande parte

dos dispositivos, principalmente aqueles baseados em germânio, material que é modelado perfeitamente pela equação de Shockley quando em baixas densidades de corrente; contudo, outras aproximações podem ser usadas em casos que necessitem de maior precisão na descrição dos efeitos apresentados pelos dispositivos, ou ainda modelos que consideram os componentes parasíticos do dispositivo, como resistências, capacitâncias, etc. Mais detalhes serão apresentados na seção 2.3.5 (SZE; NG, 2006).

2.2.1.4 Modelos não-ideais

O modelo de uma junção p-n ideal pode ser incrementado com a adição do fator de idealidade m, como apresentado na equação 2.21, sendo chamado modelo não-ideal de uma exponencial:

$$I = I_0(e^{qV/mk_BT} - 1) (2.21)$$

onde I é a corrente que atravessa o dispositivo, I_0 é a corrente de saturação reversa, q é a carga elementar, k_B é a constante de Boltzmann e T é a temperatura absoluta (SZE, 2001).

Esse modelo permite um melhor detalhamento do comportamento em relação ao modelo ideal, considerando uma média entre os mecanismos de condução de corrente (ou de recombinação de portadores) que ocorrem no dispositivo. O fator de idealidade varia de acordo com o grau de influência de cada efeito: seu valor fica próximo de 1 quando a difusão domina (quando igual a 1, temos o modelo ideal), e perto de 2 quando a recombinação prepondera. Portanto, o fator de idealidade varia entre esses dois limites. A corrente de saturação reversa também será diferente do que a sua correspondente do modelo ideal, de acordo com o mecanismo que domina a condução(SZE; NG, 2006).

Podemos obter os valores do fator de idealidade e da corrente de saturação reversa de um dispositivo aplicando o logaritmo natural aos dois lados da equação 2.21 (para tensões acima de 100 mV, o termo -1 pode ser ignorado), resultando na equação de reta 2.22.

$$ln(I) = ln(I_0) + qV/mk_BT$$
(2.22)

Plotando o logaritmo natural da corrente pela tensão, a inclinação da reta nos dá q/mk_BT e o intercepto do eixo y nos dá $ln(I_0)$, como apresentado na figura 21 (PVEDU-CATION, 2014).

Fonte: Imagem produzida pelo autor

Podemos também detalhar as contribuições de cada mecanismo de condução, através da utilização do modelo de duas exponenciais, ou dois diodos, apresentado na equação 2.23, que leva em consideração os diferentes efeitos separando cada fator de idealidade e as correntes de saturação reversa de acordo com o seu respectivo fenômeno de condução de corrente, permitindo uma explicação de seu comportamento de forma mais precisa. Esse modelo é interessante na verificação das características de condução do dispositivo em toda a extensão da curva I-V, onde temos diferentes domínios de condução de corrente.

$$I = I_{01}(e^{qV/m_1k_BT} - 1) - I_{02}(e^{qV/m_2k_BT} - 1)$$
(2.23)

onde I é a corrente que atravessa o dispositivo, I_{01} é a corrente de saturação reversa de difusão, I_{02} é a corrente de saturação reversa de recombinação, m_1 é o fator de idealidade de difusão, m_2 é o fator de idealidade de recombinação, q é a carga elementar, k_B é a constante de Boltzmann e T é a temperatura absoluta (CASTAÑER; SILVESTRE, 2002).

Na figura 22, podemos observar as curvas I-V de cada fenômeno de condução traçadas separadamente, em condições de ausência de iluminação. Podemos observar o domínio da corrente de difusão sobre a corrente de recombinação à partir de uma certa tensão (nesse caso, aproximadamente 0,7V). O efeito de recombinação prepondera em baixas tensões de polarização, devido ao maior valor da corrente de saturação reversa, mas possui uma taxa de crescimento menor em relação à difusão.

Figura 22 – Curvas de cada diodo traçadas separadamente: Difusão (verde) e recombinação (azul).

Fonte: (CARVALHO, 2014)

Na figura 23, utilizamos a escala logarítmica da corrente para melhor visualização dos fenômenos. Os pontos de interseção entre as retas e o eixo y indicam as correntes de saturação reversa (SZE, 2016; MARKVART; CASTAñER, 2003).

Figura 23 – Curvas (ln(I)) de cada diodo: Difusão (verde) e recombinação (azul). Fonte: (CARVALHO, 2014)

Outros modelos mais sofisticados podem ser aplicados, como o modelo com resistências parasitas, operação em alta injeção, dentre outros (SZE; NG, 2006; PVEDUCATION, 2014).

2.3 Dispositivos semicondutores ópticos

Os dispositivos semicondutores ópticos são uma classe de dispositivos semicondutores projetados para interagir com a radiação luminosa. Em sua maioria, funcionam como transdutores, podendo converter luz em energia elétrica e vice-versa. São classificados de acordo com sua função como dispositivos: podem ser geradores de energia, detectores ou emissores de luz. Iremos, nessa seção, discutir três desses componentes, que são importantes para o desenvolvimento desse trabalho: os fotocondutores, fotodiodos e as células solares fotovoltaicas (BUBE, 1992).

2.3.1 Fotocondutores

Fotocondutores são dispositivos semicondutores que apresentam uma variação de sua resistência com a variação da incidência de luz, e diferente de células solares e fotodiodos, não são baseados em junções p-n, mas em um semicondutor homogêneo, seja p, n ou comumente intrínseco, cuja resistividade é alterada peça variação de portadores com a incidência de luz. Na ausência de luz, apresentam uma elevada resistência. Com o aumento da iluminação, portadores de carga são gerados, aumentando sua concentração no material, e reduzindo a sua resistividade de forma significativa.

Em geral, os fotocondutores são fabricados com Sulfeto de Cádmio (CdS) e Seleneto de Cádmio (CdSe) para aplicações no espectro visível, e Sulfeto de Chumbo (PbS) e Seleneto de Chumbo (PbSe) para aplicações no infravermelho. Nessa região do espectro em especial encontramos dispositivos baseados em tecnologias mais recentes como fotocondutores baseados em pontos e poços quânticos (QDIPs - *Quantum Dot Infrared Photodetector* e QWIPs - *Quantum Well Infrared Photodetector*) (SZE, 2016; ROGALSKI, 2003).

São muito utilizados como acionadores ópticos devido ao seu baixo custo, sendo encontrados em fotocélulas, medidores de luz, controladores de iluminação, detectores de incêndio, etc. A figura 24 apresenta os elementos de um fotocondutor encontrado no mercado. Na seção 3.1.3 faremos a distinção entre os possíveis tipos de fotocondutores a serem empregados em projetos de sistemas fotovoltaicos fotoajustáveis (EEPOWER, 2015).

Figura 24 – Diagrama construtivo de um fotocondutor comercial típico. Fonte: (DSD, 2006) (adaptada)

2.3.1.1 Fotocondutor de CdS

O sulfeto de cádmio é o principal material utilizado na confecção de fotocondutores, devido ao seu baixo custo de produção e seu bom desempenho eletro-óptico. Esse semicondutor apresenta uma coloração amarela e apresenta uma curva de resposta espectral próxima ao olho humano, de acordo com a curva de sensibilidade apresentada na figura 25, e funciona satisfatoriamente no espectro visível (ALVARENGA, 2006).

Figura 25 – Resposta espectral relativa do fotocondutor de CdS e do olho humano. Fonte: (DSD, 2006) (adaptada)

Na maioria dos casos, o dispositivo consiste na deposição da pasta amorfa do semicondutor sobre uma superfície cerâmica, em sua maioria, por serigrafia. Essa pasta é então sinterizada, ou seja, o material recebe tratamento térmico para modificação da sua estrutura cristalina. O caminho elétrico também é depositado por serigrafia de tinta à base de prata. Essa também determina as dimensões das linhas de CdS expostas no dispositivo, que ficam com uma forma de serpentina. Seus terminais elétricos são conectados ao semicondutor também utilizando a tinta à base de prata, que garante uma baixa resistência de contato. Finalmente, o dispositivo recebe uma camada de verniz para proteção aos efeitos do tempo e está pronto para ser utilizado (ALVARENGA, 2006; CARVALHO, 2011).

Os fotocondutores encontrados no mercado, como o mostrado na figura 26, variam de acordo com a sua potência máxima de operação, seu diâmetro total (são geralmente circulares), sua resistência no escuro e sua faixa de variação de resistência na luz. Esses aspectos estão relacionados com as suas características físicas, como o semicondutor utilizado na fabricação, dopagem, processo de fabricação, material do contato, dentre outras e geométricas, como as dimensões da serpentina semicondutora e espessura da camada de semicondutor (BUBE, 1992).

Figura 26 – Fotocondutor de CdS comercial típico. Fonte: (DSD, 2006)

2.3.1.2 Fotocondutor de Si

Em contrapartida à alternativa discreta, fotocondutores integrados em microchips podem ser fabricados utilizando os processos de fabricação de circuitos microeletrônicos convencionais, como CMOS (do inglês, *Complementary Metal-Oxide-Semiconductor*) e Bipolar, utilizando-se de camadas de polissilício, ser intrínsecos ou extrínsecos, ou em regiões dopadas tipo p ou n no próprio substrato de silício. O acoplamento do fotocondutor e um fotodiodo, ambos integrados em um mesmo chip, pode ser particularmente conveniente para oferecer uma maior estabilidade da fonte de alimentação de sistemas integrados autônomos. Comparado com os métodos utilizados para a fabricação de células solares, processos de fabricação de dispositivos microeletrônicos garantem um valor mais preciso de resistividade devido à qualidade e pureza dos materiais utilizados, além do controle mais acurado de dopagem e definição da geometria. Entretanto, há uma restrição na flexibilidade do tipo de material escolhido, níveis de dopagem ou espessura das camadas, por causa das regras específicas de um determinado processo de fabricação (JAEGER, 2002).

Processos de fabricação de chips microeletrônicos precisam garantir alto desempenho e alta reprodutibilidade de parâmetros de componentes eletrônicos integrados de centenas a bilhões em um chip. Esses processos são conduzidos com base em substratos monocristalinos de silício de altíssima pureza, denominado silício grau eletrônico, e dopados. As etapas de fabricação são realizados em ambiente extremamente puro, como o de uma sala limpa. Além disso, todos os materiais utilizados no processo de criação de filmes dielétricos, condutores e semicondutores acima do substrato são de alta qualidade e pureza. Esses processos têm etapas, materiais, concentrações de impurezas, perfis de dopagem, espessuras de camadas e dimensões mínimas pré-definidos pela fábrica que os executa, logo apresentam limitações para o projeto de possíveis fotocondutores.

Em processos CMOS *bulk*, acima do substrato original é criada uma fina camada de silício monocristalino, denominada epitaxial. Elementos nesta camada podem ser parcialmente isolados lateralmente através de trincheiras rasas ou profundas, STI ou DTI, respectivamente.

Em processos CMOS SOI, uma fina camada de silício monocristalino é separada do substrato original por uma camada de óxido embutida. Elementos na camada superior de Si podem ser completamente isolados entre si através também de trincheiras. Fotocondutores podem ser criados como elementos isolados nessas camadas epitaxiais, cuja concentração de dopantes costuma variar de $10^{15} \ cm^{-3}$ a $10^{19} \ cm^{-3}$ (JAEGER, 2002).

Pode-se também projetar fotocondutores com regiões dopadas que serviriam como dreno/fonte, com concentrações de dopantes de $10^{18} \ cm^{-3}$ a $10^{21} \ cm^{-3}$, inseridos seletivamente por implantação iônica, com alta precisão de perfil de dopagem e profundidade. Considerando uma dada geometria, uma maior resistência de escuro é conseguida com a menor concentração de portadores possível, logo com silício intrínseco, que não é necessário na fabricação de transistores FET, e portanto, não estando disponível diretamente em processos CMOS.

Outra possibilidade é projetar fotocondutores com a camada de silício policristalino (poli-Si) utilizada para a formação de portas de transistores FET. Essa camada, entretanto, é fortemente dopada para garantir o equipotencial das portas e, em processos mais recentes, apresenta uma camada vinculada de policeto (liga de metal refratário com poli-Si), que é opaca. Para o projeto de fotocondutores nessa camada, é necessário garantir que haja disponibilidade de máscara litográfica específica que iniba a formação de policeto (*block*

mask) onde se deseja fabricar o fotocondutor.

Em alguns processos CMOS acessíveis há a disponibilidade de máscara específica para evitar a dopagem do poli-Si de modo que possa ser utilizado como resistor, ou mesmo há uma segunda camada de poli-Si intrínseco para esse fim. A utilização de poli-Si intrínseco seria uma opção conveniente, de modo a garantir, a maior resistência no escuro possível para uma dada geometria.

O padrão geométrico das trilhas do fotocondutor em poli-Si é garantido por fotolitografia e é o material cujas dimensões podem ser as mínimas oferecidas pelo rótulo de uma dada tecnologia CMOS. A camada de poli-Si é comumente depositada por um processo de deposição química por vapor, seja em baixa pressão (LPCVD) ou assistida por plasma (PECVD).

Após determinado o padrão por fotolitografia, o material excedente é removido por corrosão de íons reativos por plasma (RIE), que garante paredes laterais verticais e planas. Apesar de haver processos comerciais hoje cuja menor dimensão fabricável, também chamado de nó tecnológico, pode chegar a 5 nm, os processos mais comumente empregados na fabricação de circuitos integrados mistos, mais apropriados para sensores, atuadores e aplicação com internet das coisas e RF, são aqueles com rótulos entre 65 nme 350 nm(JAEGER, 2002).

Os chips podem variar muito em dimensão, o que depende do tipo e número de elementos que compreende, mas a dimensão lateral máxima não costuma exceder 10 mm, na maioria dos casos. Na seção 3.4.3 será apresentado um caso exemplo considerando parâmetros de um fotocondutor integrado (VEENDRICK, 2017).

2.3.1.3 Modelagem analítica de um fotocondutor

A resistência de um fotocondutor pode ser modelada por seus parâmetros físicos, que dependem do material empregado em sua construção, além das condições ambientais de temperatura e iluminação. O modelo físico é bem complexo, pois ele depende de diversos parâmetros específicos e utiliza modelos sofisticados para o cálculo da corrente fotogerada, eficiência quântica, resistividade, etc. Uma outra abordagem possível é a sua modelagem comportamental, baseada em parâmetros elétricos, representados pelas equações presentes em 2.24:

$$R_{FC}(\Phi) = \frac{1}{G_0 + G_V(\Phi)} = \frac{1}{G_0 + \beta\Phi}$$
(2.24)

onde $R_{FC}(\Phi)$ é a resistência do fotocondutor, Φ é a iluminância em Lux, G_0 é a condutância do fotocondutor no escuro (e $1/G_0$ é a resistência no escuro), G_V é a condutância dependente de luz e β é uma constante de proporcionalidade, medida em S/lux (ASCH, 2010). Outro parâmetro muito utilizado é o γ , que representa o fator de variação da curva de um fotocondutor, e é dado pela relação 2.25:

$$\gamma = \frac{\log(R_A/R_B)}{\log(\Phi_B/\Phi_A)} \tag{2.25}$$

onde R_A é a resistência do fotocondutor no ponto A, R_B é a resistência do fotocondutor no ponto B, Φ_A é a iluminância no ponto A e Φ_B é a iluminância no ponto B (DSD, 2006).

Em geral, nas fichas de dados dos fotocondutores comerciais encontramos $\Phi_A = 10$ lux e $\Phi_B = 100$ lux. Para fotocondutores baseados em CdS, o valor de γ está entre 0,5 e 1. Esses valores dependem do tipo de material utilizado (extremamente relacionado com a dopagem realizada no semicondutor) e do processo de fabricação empregado. Podemos ver a curva que relaciona a resistência do fotocondutor com a iluminância na figura 27.

Figura 27 – Relação entre a resistência e a iluminância Φ (em lux) em negrito (linear) e logarítmico (tracejado).

Fonte: (ROBOTICLAB, 2015) (adaptada)

Frequentemente encontramos os dados dessa classe de dispositivo em termos de iluminância Φ (dada em Lux ou lumens/ m^2). A iluminância é uma unidade fotométrica, ou seja, ela leva em conta o fato que o olho humano é mais sensível a certos comprimentos de onda, considerando então pesos diferentes para cada um deles. Esses pesos são considerados através de uma função Gaussiana denominada função de sensibilidade visual (ou função de luminosidade), que pode ser fotópica (condições de alta luminosidade) e escotópica (baixa luminosidade). O pico da função fotópica acontece em $\lambda = 555 \ nm$ (luz verde o olho humano é mais sensível a esse comprimento de onda). Essas funções podem ser visualizadas na figura 28 (OLIVEIRA, 2006).

Figura 28 – Curvas fotópica e escotópica. Fonte: (TEORIADACOR, 2012)

A iluminância também é utilizada na caracterização da iluminação de ambientes internos e externos e lâmpadas de diversas classes. Sua norma reguladora é a NBR 5413/1992. A tabela 2 nos mostra as iluminâncias indicadas para diversas atividades. São informações interessantes para aplicação de sistemas fotoajustáveis em locais com iluminação artificial.

Iluminância (lux)	Atividade	
20-50	Iluminação de ruas públicas e estacionamentos	
50-100	Garagens, salas de estar e dormitórios	
100-200	Depósitos	
200-500	Cozinhas e auditórios	
500 - 1000	Escritórios e fábricas	
1000-2000	Áreas de trabalho especiais	
2000-5000	Trabalho especializado	
5000-10000	Trabalho que exige muita exatidão	
10000-20000	Trabalho minucioso e centros cirúrgicos	

Tabela 2 – Iluminância por atividade

Fonte: (ABNT, 1992)

Em sistemas fotovoltaicos, a unidade mais utilizada é a irradiância (dada em W/m^2), uma grandeza física, que considera todos os comprimentos de onda indistintamente. Para realizarmos a conversão entre essas unidades de medida, precisamos conhecer a distribuição espectral da luz analisada. Podemos usar a seguinte relação 2.26:

$$\Phi = 683 \int_0^\infty y(\lambda) I_\lambda(\lambda) \,\mathrm{d}\lambda. \tag{2.26}$$

Onde Φ é a iluminância, $y(\lambda)$ é a função de sensibilidade visual (relacionada com a curva fotópica, apresentada na figura 28), $I_{\lambda}(\lambda)$ é a irradiância espectral e λ é o comprimento de onda (WYSZECKI; STILES, 1982).

O fator 683 que multiplica a integral aparece devido à relação entre as unidades: para 555 nm, 1 $W/m^2 = 683 \ lm/m^2$. Com isso, a equação 2.24 se torna a equação 2.27:

$$R_{FC}(\Phi) = \frac{1}{G_0 + G_V(\Phi)} = \frac{1}{G_0 + \beta' Irr}$$
(2.27)

Irré a irradiância em W/m^2 e β' é uma constante de proporcionalidade, escrita em $m^2S/W.$

A figura 29 mostra um exemplo de uma curva característica de um fotocondutor, que indica como sua resistência varia com o nível de irradiância. Ela apresenta sua mais alta resistência quando no escuro, que decresce quando a irradiância aumenta (I_{rr}) , como indicado na equação 2.27.

Figura 29 – Exemplo de curva característica de um fotocondutor. Fonte: Figura produzida pelo autor

A utilização da irradiância como grandeza de medida da iluminação é mais interessante para a utilização em conjunto com fotovoltaicos, mas dificulta a comparação com os dados de fabricantes, que são expressos em iluminância. Conversões são possíveis, mas não tão práticas, pois exigem cálculos adicionais para a conversão do espectro (TEIXEIRA; ROCHA; MONTEIRO, 2008; COELHO, 2013).

2.3.2 Células solares fotovoltaicas

Células fotovoltaicas são uma classe de dispositivos em sua maioria produzidos a partir de materiais semicondutores, que produzem energia a partir da luz solar. Em geral, são dispositivos baseados em junções p-n, mas com alguns detalhes diferenciados de fabricação, além de outras camadas de outros materiais que possuem funções específicas.

2.3.2.1 Tipos de célula

As células fotovoltaicas são classificadas em gerações, de acordo com sua tecnologia de fabricação. Cada conjunto apresenta características distintas. Vamos aos tipos mais importantes:

Células de primeira geração ou cristalinas: São células solares fabricadas a partir de *wafers* de um semicondutor, como o silício (Si) ou arseneto de gálio (GaAs), podendo ser monocristalinos ou policristalinos. As células de silício cristalino são as mais utilizadas e comercializadas, dominando cerca de 95% do mercado (dados de 2020). Seu processo de fabricação já é muito bem conhecido e dominado (já que é o mesmo utilizado na fabricação de dispositivos eletrônicos) (BURGER et al., 2020).

As células monocristalinas de silício (m-Si) alcançam uma eficiência de até 25%, enquanto que as células policristalinas (p-Si) apresentam eficiência em torno de 15% - isso ocorre porque as as células monocristalinas apresentam uma densidade menor de defeitos, exibindo assim uma maior eficiência - contudo, as células policristalinas são mais baratas, por exigir um processo de fabricação menos rigoroso. Já as células monocristalinas baseadas em arseneto de gálio (GaAs) apresentam uma eficiência mais alta, em torno de 30%, mas são extremamente caras, conferindo assim um nicho bem reduzido de utilização, como por exemplo, em satélites artificiais (NREL, 2013).

Observando a figura 30, onde são apresentadas células comerciais de silício cristalino, podemos perceber regiões de tonalidades diferentes na célula policristalina; essas diferenças revelam as regiões com orientações cristalográficas diferentes (CHOWDHURY et al., 2020).

Figura 30 – Células de silício policristalino (esquerda) e monocristalino (direita). Fonte: (SILICONSOLAR, 2012)

Células de segunda geração ou filmes finos: São células fabricadas a partir do crescimento de filmes finos (*thin-films*) de materiais semicondutores. Sua principal vantagem é o seu custo de fabricação, que não depende de técnicas sofisticadas de produção de materiais ultra-puros, além do baixo consumo de material semicondutor, já que em células de primeira geração, 50% de seu custo está no processo de fabricação do *wafer*. Como exemplo, temos as células de silício amorfo (a-Si), telureto de cádmio (CdTe), e selenetos de cobre-índio-gálio (CIGS) (NREL, 2013).

Figura 31 – Diagrama das camadas de uma célula CIGS. Fonte: (OPENSTAX, 1999) (adaptada)

As células de CIGS, como a apresentada na figura 31, podem ser depositadas sobre diversos substratos, como vidro ou polímeros, podendo ser incorporadas em superfícies

das casas, por exemplo. O contato inferior é de molibdênio, que, além de ser bom condutor, tem boa aderência ao substrato. A camada de absorção, constituída do próprio CIGS, tem como função absorver os fótons e gerar os pares elétron-lacuna, que vão para os contatos mais próximos; a grande vantagem desse material é, que quando dopado com uma impureza do tipo p, ele apresenta uma alta capacidade de absorção de fótons, mesmo com uma espessura muito fina - daí a necessidade de apenas uma pequena quantidade de material.

A camada de CdS, também chamada camada neutra, constitui um dos materiais da camada n da célula. Essa camada é responsável por proteger a camada de absorção das reações químicas causadas pela deposição de ZnO, em particular a difusão atômica, contribuindo muito pouco na geração de corrente, embora seu $E_g = 2, 4 \ eV$ esteja na região do visível, pois sua espessura é muito pequena e pouca luz é absorvida nela.

As camadas de ZnO também contribuem como camada n da célula, e ao mesmo tempo serve como condutoras para os elétrons gerados. Além disso, o ZnO possui um $E_g = 3, 3 \ eV$, sendo transparente ao fótons do espectro visível; A camada superior de ZnO é dopada com Al para aumentar sua condutividade. Finalmente temos a camada anti-reflexiva: constituída de MgF_2 , essa camada tem como função diminuir o número de fótons refletidos pela superfície da célula (ERON, 1984).

• Células de terceira geração ou multi-junção: São células solares com múltiplas junções P-N feitas de diferentes materiais semicondutores. Cada junção produzirá uma corrente elétrica em resposta a diferentes comprimentos de onda da luz, aumentando a eficiência de conversão. As camadas semicondutoras são depositadas uma por uma, em uma ordem que maximize a coleta de portadores de acordo com o comprimento de onda, já que fótons com comprimentos de onda diferentes tem capacidades de penetração diferentes; assim, materiais com E_g elevados ficam na parte superior da célula, enquanto os materiais com baixo E_g ficam na porção inferior. Essas células alcançam altas eficiências, que já ultrapassam 45% atualmente.

Essa tecnologia também é empregada na fabricação de células fotovoltaicas para concentração de luz (CPV - *Concentrated Photovoltaics*), onde células multi-junção de filmes finos de pequenas áreas são utilizadas com equipamentos concentradores de luz, como lentes e espelhos, que apresentam um custo menor que a fabricação de células de grandes áreas, e aumentam a irradiância. Essa tecnologia se mostra ideal para construção de módulos solares de alta eficiência e produção de energia, mas seu custo de fabricação a nível comercial ainda é proibitivo (NREL, 2013).

Figura 32 – Diagrama das camadas de uma célula multi-junção. Fonte: (WEISSE, 2010) (adaptada)

A célula apresentada na figura 32 é constituída de três junções - cada uma delas respondendo a comprimentos de onda distintos. A junção superior é formada de InGaP, que possui um E_g entre 1,7 e 1,9 eV (pico na cor azul, ou seja baixos comprimentos de onda). Já a junção central é formada de GaAs, com E_g entre 1,3 e 1,4 eV, com pico no amarelo - faixa central do espectro visível.

Já a camada inferior é formada de Ge, que possui $E_g = 0,64 \ eV$ e apresenta uma maior eficiência para grandes comprimentos de onda, com pico no vermelho. Entre cada uma das junções é colocada uma junção túnel, ou seja, um canal de baixa resistência elétrica para facilitar o transporte de cargas. Os contatos superior é inferior são constituídos tipicamente de Al. Já sua camada anti-reflexiva (A/R) é geralmente constituída de duas camadas de dielétricos empilhadas, como TiO_2/Al_2O_3 , Ta_2O_5/SiO_2 ou ZnS/MgF_2 (GREEN, 2006).

Tecnologias emergentes: Além das tecnologias de fabricação citadas anteriormente, temos ainda diversas técnicas alternativas, onde os cientistas buscam menores custos de produção aliados a maiores eficiências de conversão de energia. Como exemplos temos células orgânicas e poliméricas, células fotoeletroquímicas sensibilizadas por corante (DSSC - *Dye-Sensitized Solar Cell*), células de ponto quântico (QDSC - *Quantum Dot Solar Cell*), dentre outras (SHAHEEN; GINLEY; JABBOUR, 2005).

Figura 33 – Célula solar orgânica flexível e seu diagrama de camadas. Fonte: (EXPOSOLAR, 2010; WIKIMEDIA, 2013)

A célula mostrada na figura 33 é do tipo heterojunção planar, que consiste em um anodo, uma camada transparente, que na maioria dos casos é de óxido de estanho e índio ou ITO, depositada sobre um substrato de vidro ou polímero (geralmente PET); sobre o anodo é depositada uma camada injetora de lacunas de poli(3,4-etilenodioxitiofeno) dopado com poli(4-sulfonato de estireno) ou PEDOT:PSS; em seguida é depositada uma camada ativa, geralmente de fulereno ou algum polímero, e por fim é colocado o catodo, de alumínio.

A eficiência da heterojunção planar é limitada devido ao comprimento de difusão dos portadores de carga fotogerados ser pequeno. Deste modo a espessura da célula deve ser pequena, o que reduz a absorção de luz e diminui sua eficiência (HELGESEN; SØNDERGAARD; KREBS, 2010).

A figura 34 apresenta uma comparação de eficiências de conversão (subseção 2.4.1) em pesquisa, ou seja, os melhores resultados das melhores amostras de cada categoria,

entre as diversas tecnologias de fabricação de células, fabricantes e ano de fabricação. Esses resultados não necessariamente se refletem em produtos comerciais, mas são um indicativo do estado da arte de cada tipo de célula.

Como podemos observar, as células multi-junção dominam a área no quesito eficiência, com as melhores alcançando 47,1% com uso de concentradores, ganhando das melhores tecnologias de fabricação de células de silício cristalino existentes hoje, onde as melhores estão em torno de 26,1%. Entre as células de filmes finos, a que mais se destaca é a CIGS, que alcança 23,4%. Por último, observamos as células de tecnologias emergentes, como a célula de perovskita, que já alcança surpreendentes 25,2%, já ultrapassando células de silício policristalino e alcançando a eficiência das melhores células monocristalinas tradicionais (KIM et al., 2020).

Figura 34 – Comparativo de eficiência de células de acordo com a tecnologia de fabricação.

The chart "Best Research-Cell Efficiencies" is reprinted with permission by the National Renewable Energy Laboratory, <<u>http://www.nrel.gov/ncpv/images/best-research-cell-efficiencies.20200708.jpg</u>>, Accessed August 4, 2020.

2.3.3 Fotodiodos

Um fotodiodo possui a mesma estrutura de uma célula solar, ou seja, é basicamente uma junção p-n com terminais (existem outros tipos de fotodiodo, como o p-i-n, que possui uma região intrínseca entre os materiais semicondutores p e n), mas com dimensões bem mais reduzidas, permitindo assim serem construídos em circuitos integrados. Esses dispositivos são, em sua maioria, utilizados como detectores de luz e imagem, sendo frequentemente encontrados em circuitos de sensores, câmeras fotográficas CMOS e sistemas de comunicação óptica (como fibras ópticas). Geralmente quando utilizado como fotosensor (modo fotocondutivo), o fotodiodo é inserido no circuito de detecção inversamente polarizado (DONATI, 2000).

Entretanto, estamos interessados no uso de fotodiodos integrados em um chip operando em modo fotovoltaico, ou seja, no modo de geração de energia elétrica, onde não há polarização. Embora sejam de dimensões diminutas em relação às células e painéis solares, ainda podem ser utilizados para a alimentação de pequenos circuitos, que não demandam muita potência. Isso é muito interessante para o nicho de circuitos autônomos, onde o fotodiodo é integrado junto ao circuito funcional, permitindo um sistema mais compacto e eficiente. Na figura 35 apresentamos o circuito equivalente do fotodiodo nos modos fotocondutivo e fotovoltaico:

Figura 35 – Diagrama de circuito de um fotodiodo. Fonte: (SZE, 2016) (adaptada)

onde I_{ph} é a corrente fotogerada, D_0 é o diodo ideal, R_j é a resistência da junção, C_j é a capacitância de junção, R_s é a resistência série, R_l é a resistência de carga e a fonte V indica a tensão de polarização.

Na figura 36 observamos as curvas I-V de um fotodiodo para diferentes fluxos

luminosos ($\phi = 0, \phi_1 \in \phi_2$) e suas respectivas fotocorrentes ($0, i_{ph_1} \in i_{ph_2}$), e apresentando as regiões fotocondutiva (terceiro quadrante) e fotovoltaica (quarto quadrante).

Figura 36 – Curvas I-V para diferentes fluxos luminosos e regiões de operação de um fotodiodo.

Fonte: (BUBE, 1992) (adaptada/alterada pelo autor)

A utilização de um processo de fabricação microeletrônico já consolidado nos permite fabricar dispositivos fotovoltaicos de grande qualidade, com menores componentes parasitas e maior eficiência, além de nos permitir a fabricação de micropainéis em chip (através da associação de diversos fotodiodos) para sistemas integrados com maiores demandas energéticas, assim como sistemas de alimentação com controle mais sofisticado, utilizando sistemas lógicos ou microprocessadores.

Junções p-n fabricadas através de um processo microeletrônico, como o CMOS, apresentam melhor qualidade que aquelas fabricadas em linha de produção de células fotovoltaicas. Pelos quesitos apontados na seção 2.3.1.2, essas junções integradas apresentam menores valores de R_s ; maiores valores de R_p ; menores velocidades de recombinação de superfície; e menor corrente de escuro, levando a um fator de preenchimento maior, logo maior rendimento. Além disso, a repetibilidade de valores de parâmetros entre chips e entre lotes de fabricação é maior (JAEGER, 2002).

2.3.4 Características geométricas de dispositivos fotovoltaicos

Como apresentado na seção 2.2.1, células solares fotovoltaicas tradicionais são fundamentalmente junções p-n construídas verticalmente, de forma a ter uma das regiões semicondutoras exposta à luz, onde o semicondutor na parte superior é denominado emissor (também chamada camada janela), e o semicondutor na parte inferior é designado base (ou camada absorvedora). A maioria das células tradicionais existentes no mercado possuem a configuração emissor tipo-n e base tipo-p, já que uma base desse tipo de semicondutor tem como portador minoritário o elétron, que apresenta uma mobilidade maior que a lacuna (MARKVART; CASTAÑER, 2003).

Na figura 37 temos um diagrama dessa configuração:

Figura 37 – Dimensões na seção reta de uma célula solar. Figura produzida pelo autor

onde W_e é a espessura do emissor, W_b é a espessura da base, x_n é a espessura da região de depleção no lado n, x_p é a espessura da região de depleção no lado p e W é a espessura total da célula, dada também por $W_e + W_b$. A região de depleção é denominada x_d , ou ainda dada por $x_n + x_p$.

A base possui uma maior espessura (mais de 90% da extensão total do dispositivo), que garante uma maior robustez mecânica à célula solar. Em contrapartida, o emissor é mais delgado, para permitir que os fótons alcancem a região de depleção e a base, assim como os elétrons gerados alcancem a superfície, e assim o contato externo.

A figura 38 mostra a probabilidade de coleta de portadores, como discutido na seção 2.1.7, em cada região do dispositivo, que é máxima na região de depleção, onde os portadores são acelerados pelo campo elétrico embutido e alcançam os terminais externos mais facilmente. Ao se caminhar em direção às extremidades, a probabilidade cai de forma exponencial, e a taxa de decaimento depende das condições de superfície e do comprimento de difusão. Superfícies passivadas (ligações incompletas são satisfeitas por algum processo) diminuem a velocidade de recombinação de superfície, aumentando a probabilidade de coleta (PVEDUCATION, 2014).

Figura 38 – Probabilidade de coleta de uma célula solar fotovoltaica. Fonte: (PVEDUCATION, 2014)

2.3.5 Modelagem analítica de dispositivos fotovoltaicos

Dispositivos fotovoltaicos podem ser modelados matematicamente como uma junção p-n, com a adição do termo da corrente fotogerada I_{ph} . Na equação 2.28, utilizamos o modelo de um diodo (equação 2.21):

$$I = I_{ph} - I_0(e^{qV/mk_BT} - 1)$$
(2.28)

onde I é a corrente que atravessa o dispositivo, I_0 é a corrente de saturação reversa, q é a carga elementar, m é o fator de idealidade, k_B é a constante de Boltzmann, e T é a temperatura absoluta (CASTAñER; SILVESTRE, 2002).

Para um melhor descrição do seu comportamento, podemos também podemos utilizar o modelo de duas exponenciais com a mesma inclusão da corrente fotogerada I_{ph} , como indicado na equação 2.29:

$$I = I_{ph} - I_{01}(e^{qV/m_1k_BT} - 1) - I_{02}(e^{qV/m_2k_BT} - 1)$$
(2.29)

onde I_{01} é a corrente de saturação reversa de difusão, I_{02} é a corrente de saturação reversa de recombinação, m_1 é o fator de idealidade de difusão e m_2 é o fator de idealidade de recombinação (CASTAÑER; SILVESTRE, 2002).

Modelos de células ainda mais elaborados utilizam o modelo de duas exponenciais em conjunto com as resistências parasitas série e paralela, permitindo uma maior profundidade no estudo de seu funcionamento. Esse modelo pode ser analiticamente representado pela relação 2.30:

$$I = I_{ph} - I_{01}(e^{q(V+IR_S)/m_1k_BT} - 1) - I_{02}(e^{q(V+IR_S)/m_2k_BT} - 1) - \frac{(V+IR_S)}{R_P}$$
(2.30)

onde T é a temperatura, k_B é a constante de Boltzmann, I_{ph} é a corrente fotogerada, I_{01} é a corrente reversa de difusão, I_{02} é a corrente reversa de recombinação, R_S é a resistência-série, R_P é a resistência paralela e m_1 e m_2 os fatores de idealidade ($m_1 = 1$ e $m_2 = 2$) (CASTAÑER; SILVESTRE, 2002).

O modelo elétrico também é semelhante, tendo como diferença a inserção de uma fonte de corrente (que faz o papel de corrente fotogerada). A figura 39 nos mostra o modelo de circuito de um dispositivo fotovoltaico (ideal, não ideal com uma exponencial e não-ideal com duas exponenciais) (MARKVART; CASTAÑER, 2003).

Figura 39 – Modelo de célula solar ideal (linhas preenchidas) e não-ideal (linhas pontilhadas).

Fonte: (MARKVART; CASTAñER, 2003)

2.4 Características dos dispositivos semicondutores ópticos

2.4.1 Curva I-V

Uma curva I-V, ou curva característica de corrente-tensão, é uma representação gráfica da relação entre a tensão aplicada em um dispositivo e a corrente que flui por ele. É um dos métodos mais utilizados para determinação das características elétricas de um dispositivo em um circuito, além de permitir a extração de parâmetros importantes através do formato e detalhes dessa curva.

A curva I-V da figura 40 exibe o comportamento corrente-tensão de uma célula para diversas cargas resistivas de valores variáveis conectadas em seus terminais. Cada uma determina um ponto de operação, que pode ser relacionado com uma tensão e corrente específicas. O produto dessas duas grandezas é a potência que a célula entrega a essa carga.

Figura 40 – Curva I-V.

Figura produzida pelo autor

Também podemos levantar a curva P-V de um dispositivo, que apresenta a relação de potência entregue de acordo com a tensão aplicada, como mostrado na figura 41:

Figura produzida pelo autor

A curva I-V de uma célula solar apresenta-se no quarto quadrante (corrente negativa e tensão positiva - geradora de energia). Para fins de apresentação, essa curva é sempre invertida, considerando-se a corrente como positiva (como observado na figura 40 apresentada anteriormente). Ao se levantar a curva I-V de uma célula ou painel, podemos obter diversas grandezas importantes:

• Corrente de curto-circuito (I_{SC}) : corrente apresentada quando os terminais da célula estiverem fechados (ou seja, uma resistência de carga nula) – é o ponto de interseção entre a curva e o eixo das correntes. Na condição de curto-circuito, a corrente I_{SC} é igual a I_{ph} , permitindo a utilização da equação 2.17 para avaliá-la. Contudo, para comparação entre dispositivos de materiais diferentes, uma outra grandeza é comumente utilizada, a densidade de corrente J_{SC} , que é uma grandeza distribuída e independe dos parâmetros geométricos utilizados no projeto e confecção desses dispositivos (MARKVART; CASTAñER, 2003).

A corrente de curto-circuito se relaciona com densidade de corrente de curto-circuito,

através da área A da junção, como mostrada na equação 2.31:

$$I_{SC} = A \cdot J_{SC} \tag{2.31}$$

Os valores de J_{SC} variam de acordo com o material e tecnologia de fabricação empregada, apresentando os valores típicos para cada material, como apresentado em Green et al. (2020): silício cristalino (c-Si), 42,65 mA/cm^2 ; CdTe, 30,25 mA/cm^2 ; a-Si, 16,36 mA/cm^2 ; c-GaAs, 23,2 mA/cm^2 ; CIGS, 39,58 mA/cm^2 ; DSSC, 22,47 mA/cm^2 ; InGaP/GaAs/InGaAs (multi-junção) 14,27 mA/cm^2 .

• Tensão de circuito aberto (V_{OC}) : tensão apresentada quando os terminais da célula estiverem abertos (pressupondo uma carga resistiva de resistência infinitamente alta conectada em seus terminais) – é o ponto de interseção entre a curva e o eixo das tensões. Podemos calculá-la através da expressão 2.32:

$$V_{OC} = \frac{k_B T}{q} ln \left(1 + \frac{I_{ph}}{I_0} \right)$$
(2.32)

onde q é a carga elementar, I_{ph} é a corrente fotogerada, I_0 é a corrente de saturação reversa (subseção 2.2.1.2), k_B é a constante de Boltzmann e T é a temperatura (Kelvin) (MARKVART; CASTAñER, 2003).

Como no caso da corrente I_{SC} , o valor de V_{OC} também depende do material e da técnica de fabricação utilizada. De acordo com Green et al. (2020), verificamos que no silício cristalino (c-Si), V_{OC} está entre 0, 50 – 0, 74 V. Em células de c-GaAs, 0, 994 V; CdTe, 0, 876 V; a-Si, 0, 896 V; Células de DSSC, 0, 744 V; InGaP/GaAs/InGaAs (multi-junção), 3, 065 V.

• Ponto de máxima potência $(M_{PP} \text{ ou } P_{MAX})$: é o ponto da curva onde o produto entre a tensão e a corrente é máximo, definindo o ponto de operação que exibe o máximo de potência que essa célula pode fornecer; nesse ponto, os valores de tensão e corrente são denominados tensão (V_{MP}) e corrente de máxima potência (I_{MP}) (MARKVART; CASTAÑER, 2003).

Fator de preenchimento (*fill factor* ou FF): é um parâmetro de avaliação de qualidade da célula, que indica a razão entre a potência máxima possível de ser produzida em uma determinada irradiância e a potência máxima teórica (que é inalcançável na prática), como apresentado na relação 2.33 (MARKVART; CASTAÑER, 2003).

$$FF = \frac{P_{MAX}}{V_{OC}I_{SC}} = \frac{V_{MP}I_{MP}}{V_{OC}I_{SC}}$$
(2.33)

Essa grandeza é fortemente impactada pelas resistências parasitas, que reduzem seu valor, e assim a qualidade do dispositivo. Células de alta qualidade possuem um fator

maior que 0,7 (grau A), enquanto que células de segunda linha (grau B) possuem um fator entre 0,4 e 0,7. Também depende do material e da técnica de fabricação, possuindo, como dito por (GREEN et al., 2020), os seguintes valores típicos por material: c-Si, entre 0,80 e 0,85; CdTe, 0,79; a-Si, 0,70, DSSC 0,71; c-GaAs, 0,87; InGaP/GaAs/InGaAs, 0,87.

• Eficiência de conversão ou rendimento: Também podemos calcular o rendimento¹ (η) de uma célula, que é a relação entre a potência que chega à célula (através dos fótons que incidem na superfície da célula) e a potência gerada por ela, como indicado pela equação 2.34 (MARKVART; CASTAÑER, 2003).

$$\eta = \frac{P_{MAX}}{I_{rr} \times A} \tag{2.34}$$

onde I_{rr} é a irradiância, e A é a área de célula (MARKVART; CASTAÑER, 2003). A unidade de potência utilizada em fotovoltaicos é o *Watt-pico* ou W_P , que é associada à condição de teste padrão ou STC (subseção 2.5.4).

Eficiências típicas: c-Si: 20 - 25 %; a-Si: 9, 5 %; GaAs (filme fino): 26, 1 %; c-InP: 22, 1 %; CIGS: 19, 4 %; CdTe: 16, 7 %; InGaP/GaAs/Ge (multi-junção): 32 %; InGaP/GaAs (multi-junção): 30, 3 % (GREEN et al., 2020).

Resistências parasitas série e paralela: São grandezas muito importantes para dispositivos fotovoltaicos, já que impactam significantemente a sua operação. A resistência série de uma célula solar, painel ou fotodiodo é constituída pela resistências das regiões de base e emissor, a resistência de contato entre o terminal externo de metal e o semicondutor e a própria resistência dos contados presentes no topo e no fundo da célula. Quanto maior o seu valor, maior a sua contribuição negativa no funcionamento da célula. A resistência série não afeta a tensão de circuito aberto, mas impacta de forma significativa a região próxima da região do ponto de máxima potência, reduzindo o seu valor, como podemos observar na figura 42 (MARKVART; CASTAÑER, 2003; PVEDUCATION, 2014). Valores muito altos dessa resistência podem reduzir a corrente de curto-circuito.

¹ Note que a eficiência de conversão é diferente da eficiência quântica – enquanto a primeira mostra a relação entre a potência luminosa incidente e a potência elétrica de saída gerada pela célula, a última relaciona o número de elétrons coletados em função do número de fótons incidentes. Quando utilizarmos a expressão eficiência da célula, é a eficiência de conversão que está em questão.

Figura 42 – Curva I-V para diferentes valores de resistência série. Fonte: (KININGER, 2003) (adaptado)

A resistência paralela é causada por correntes de fuga devido a impurezas próximas à junção p-n, além de imperfeições na estrutura, principalmente nas bordas, e problemas de fabricação, que criam um caminho alternativo para a corrente fotogerada. Esse componente é mais significante em dispositivos ópticos, nem sendo considerado na maioria dos modelos para dispositivos semicondutores de potência, como diodos. Idealmente, essa resistência possui valor infinito; entretanto, ao apresentar valores mais baixos, a corrente que passa por essa resistência começa a aumentar significantemente, reduzindo a corrente de saída de forma cada vez mais drástica, até ao ponto da curva I-V se tornar uma reta com inclinação $1/R_P$.

Essa resistência não impacta a corrente de curto-circuito, mas pode reduzir a tensão de circuito aberto quando assume pequenos valores, como mostrado na figura 43. Valores típicos dessa grandeza ficam em torno de dezenas de Ω nas células de menor qualidade e $k\Omega$ nas células de maior qualidade, chegando a $M\Omega$ nas melhores amostras de testes de laboratório e fotodiodos de pequenas dimensões (BOUZIDI; CHEGAAR; BOUHEMADOU, 2007; PVEDUCATION, 2014).

Figura 43 – Curva I-V para diferentes valores de resistência paralela . Fonte: (KININGER, 2003) (adaptado)

As resistências parasitas impactam significativamente em sua performance. Na figura 44, observamos os efeitos das resistências na curva I-V, onde $\Delta I = \frac{(V + IR_S)}{R_P}$ e $\Delta V = IR_S$. Ao compararmos a curva ideal e a curva com resistências parasitas, podemos estimar o valor dessas resistências a partir dessas quedas de tensão e corrente. Outras técnicas para extração dessas grandezas a partir da curva I-V estão presentes em Carvalho (2014).

As resistências parasitas da célula impactam na qualidade da célula e no fator de preenchimento FF, já que causam a redução da potência máxima gerada mas mantém a potência máxima teórica. células de alta qualidade possuem uma baixa resistência série e uma alta resistência paralela.

Figura 44 – Efeitos das resistências parasitas na curva I-V. Fonte: (LUQUE; HEGEDUS, 2003) (adaptada)

As células, como junções p-n, também podem ser polarizadas inversamente, apresentando mais uma região da curva I-V (terceiro quadrante). Embora o comportamento nessa região não influencie no funcionamento nominal da célula, ela é importante na extração dos parâmetros dessa célula. Por isso é interessante também levantar essa região na etapa de obtenção da curva I-V (LUQUE; HEGEDUS, 2003).

2.4.2 Associação de células

Uma célula solar isolada tem capacidades muito limitadas de geração de energia. Uma célula de silício cristalino típica apresenta, em STC (*Standard Test Conditions* ou Condições de teste padrão - será discutido mais detalhadamente na seção 2.5.4), uma tensão de circuito aberto em torno de 0,6 V e a tensão e corrente de máxima potência de, respectivamente, 0,47 V e 1,0 A. Esse valor de tensão é muito baixo para alimentação da maioria das cargas existentes, ou ainda para a carga de um sistema de bancos de baterias, assim como esse valor de corrente pode ser insuficiente para alimentar um conjunto maior de cargas. A solução para esse impasse é utilizarmos a associação de células, através de arranjos série, paralelo ou mistos (KININGER, 2003).

2.4.2.1 Associação Série

Para obtermos tensões de saída mais altas, as células precisam ser associadas em série, sendo a tensão de saída aproximadamente igual à soma das tensões de cada célula. A corrente nesse caso, será determinada pela célula com menor capacidade de geração de corrente do arranjo (daí a necessidade de sempre se usar células similares). A figura 45 demonstra o diagrama esquemático da conexão em série e seu impacto na curva I-V de um sistema fotovoltaico. A associação série tem como desvantagem o aumento da resistência série total.

Figura 45 – Associação série de células - circuito equivalente (acima) e curva I-V (abaixo). Fonte: (KININGER, 2003) (adaptada)

2.4.2.2 Associação paralela

Para maiores demandas de corrente, utilizamos a associação em paralelo. A tensão de saída é pouco alterada, mas a corrente será aproximadamente a somatória das correntes de cada célula do arranjo. O efeito indesejável da associação em paralelo é a redução da resistência paralela, que aumenta as perdas de corrente no dispositivo. A figura 46 mostra o diagrama elétrico da conexão em paralelo e seu impacto na curva I-V de um sistema fotovoltaico.

Figura 46 – Associação paralela de células - circuito equivalente (acima) e curva I-V (abaixo).

Fonte: (KININGER, 2003) (adaptada)

2.5 Condições ambientais de operação

Dispositivos semicondutores podem ter seu desempenho de funcionamento alterado de acordo com as condições climáticas vigentes, impactando na sua capacidade de operação. O funcionamento de dispositivos ópticos, como células solares, fotodiodos e fotocondutores estão diretamente ligadas com a localização geográfica do ambiente de funcionamento, assim como outras características locais como nebulosidade, altitude, etc.

2.5.1 Distribuição espectral e massa de ar

A atmosfera altera a distribuição espectral da luz que a atravessa, atenuando a intensidade dos seus componentes em cada comprimento de onda. O espectro também tem impacto direto sobre a corrente fotogerada, de acordo com a resposta espectral da célula (que depende da resposta do material semicondutor do qual ela é feita). O silício tipicamente tem seu pico de resposta na região do infravermelho próximo (900 nm), alcançando o vermelho (740 nm) na região do visível (embora isso dependa de outros fatores, como tipo de superfície, a profundidade de junção, extensão da região de depleção, etc). A distribuição espectral (ou irradiância espectral) (I_{λ}) exibe a irradiância para cada comprimento de onda de uma determinada fonte luminosa. A figura 47 mostra diversas distribuições espectrais para diferentes condições ambientais, assim como o impacto das moléculas presentes na atmosfera nessas distribuições (MARKVART; CASTAñER, 2003).

Figura 47 – Distribuição espectral da radiação solar para diferentes condições atmosféricas. Fonte: (KININGER, 2003) (adaptada)

O parâmetro AM (massa de ar ou *air mass*) é associado ao ângulo apresentado pelo feixe de luz ao atravessar um plano normal à superfície do planeta Terra, e determina o espectro desse feixe nessa posição atmosférica.

A AMO é a altitude extraterrestre, localizada logo acima da exosfera, no espaço livre, onde as partículas são tão rarefeitas que sua presença não altera a distribuição espectral; na superfície do planeta, ao nível do mar, verificamos medidas de AM maiores que zero, onde considera-se AM1 a medida no Equador, AM1.5 a medida em regiões tropicais, AM2 e AM3 representam regiões de altas latitudes e por último, o AM38, que geralmente representa a massa de ar na direção horizontal, ou seja, nos pólos (KASTEN; YOUNG, 1989).

O AM1.5 apresenta algumas divisões que aparecem principalmente na especificação de simuladores solares: o AM1.5D se baseia na componente direta de iluminação, desconsiderando a componente difusa; já o AM1.5G ou global emula a iluminação AM1.5 padrão, considerando ambas as componentes. A figura 48 mostra essas diferenças:

Figura 48 – Distribuição espectral para AM0, AM1.5G e AM1.5D Fonte: Figura produzida pelo autor; dados obtidos em (PVEDUCATION, 2014)

Podemos definir essa grandeza com a equação 2.35:

$$AM = \frac{L}{L_o} \approx \frac{1}{\cos(z)} \tag{2.35}$$

sendo L o comprimento do caminho através da atmosfera, L_o é o comprimento do caminho no ângulo de zênite (normal a superfície terrestre) e z o ângulo de zênite (em graus) (MEINEL; MEINEL, 1976).

A figura 49 ilustra os valores de *Air Mass* de acordo com a angulação do feixe luminoso em relação ao zênite e a posição de entrada na atmosfera terrestre.

Figura 49 – Air Mass de acordo com o ângulo do feixe luminoso. Fonte: (GREENRHINO, 2013)

2.5.2 Irradiância

É uma unidade de magnitude utilizada para descrever a potência incidente por unidade de área de superfície, sendo a integral da distribuição espectral (em λ). Como referência, temos a constante solar (I_{rr_o}), irradiância medida fora da atmosfera (imaginando uma superfície plana horizontal e perpendicular aos raios solares, orientada para o zênite, a uma distância média Terra-Sol), cujo o valor é igual a 1367 W/m^2 . De acordo com a região do planeta, temos diversos valores de irradiância diferentes, valores mais altos nas regiões equatoriais e mais baixos nos polos (LUQUE; HEGEDUS, 2003).

Portanto, a I_{SC} de uma célula se relaciona com a irradiância (I_{rr}) pela relação aproximada 2.36:

$$I_{SC} = I_{SC}(STC) \cdot \frac{I_{rr}}{I_{rr}(STC)}$$
(2.36)

Onde $I_{SC}(STC)$ é a corrente de curto-circuito e $I_{rr}(STC)$ é a irradiância na condição STC $(I_{rr}(STC) = 1000 \ W/m^2)$ (GALDINO, 2014).

A figura 50 mostra o efeito da variação de irradiância na curva I-V de um sistema fotovoltaico.

Fonte: (KININGER, 2003) (adaptada)

A partir de um certo valor, incrementos de irradiância não promovem o crescimento da corrente fotogerada; esse valor limite é denominado corrente máxima ou corrente de saturação da célula.

Podemos relacionar a massa de ar com a irradiância com a relação aproximada 2.37, baseada nas observações de Laue:

$$I_{rr}(z) = I_{rr_o} \times e^{(-c)(sec(z))^s} = I_{rr_o} \times e^{(-c)(AM)^s}$$
(2.37)

onde I_{rr_o} é a irradiância fora da atmosfera, z é a distância do zênite (ângulo complementar a altura do objeto em relação ao horizonte). As constantes $c \in s$ valem, respectivamente, 0,357 e 0,678 (LAUE, 1970).

2.5.3 Temperatura

A temperatura também é um fator importante no funcionamento de dispositivos ópticos: em fotocondutores, temos variação no valor de sua resistência; no caso de células solares, aumentos dessa grandeza causam incrementos na corrente fotogerada, devido a maior geração de portadores de carga. Entretanto, ocorre o efeito contrário na temsão de saída: ela diminui com a temperatura, causada pelo o aumento dos portadores intrínsecos, que incrementam significantemente o valor de I_0 , reduzindo a tensão de saída, como indicado na relação 2.32 (LUQUE; HEGEDUS, 2003).

A redução de tensão ocasiona uma redução significativa na geração de potência da célula (o efeito na tensão é mais proeminente que na corrente: enquanto uma elevação de temperatura aumenta a corrente na taxa de 0,05 %/°C, o efeito da tensão é de -0,34 %/°C, totalizando uma perda de potência de 0,45 %/°C, considerando uma célula de silício monocristalino) (MARKVART; CASTAÑER, 2003).

O aumento da irradiância incidente na célula provoca um aumento de temperatura, reduzindo assim sua eficiência, além de impactar nos valores das resistências parasitas (subseção 2.2.1.2), de uma forma não-linear. A figura 51 exibe esse impacto na curva I-V de um sistema fotovoltaico.

Figura 51 – Curvas I-V para diferentes temperaturas. Fonte: (KININGER, 2003) (adaptada)

2.5.4 Condições de teste padrão - STC

Para uma análise de funcionamento desses dispositivos, devemos utilizar parâmetros ambientais bem definidos, principalmente na comparação de células e painéis solares. Um dos padrões utilizados em fotovoltaicos é a condição de teste padrão (STC - *Standard Test Conditions*), onde os valores para cada grandeza são: irradiância igual a 1000 W/m^2 (também denominada "um sol", ou sol pleno – SP), AM 1.5 e temperatura de 25 graus celsius (aproximadamente 300 Kelvin) (MARKVART; CASTAñER, 2003).

2.5.5 Temperatura nominal de operação da célula - NOCT

Nas condições padrão de operação (STC), é esperado que a célula ou painel solar esteja submetido a uma irradiância de 1000 W/m^2 , AM1.5 e uma temperatura de 25%°C. Essa condição pode ser possível de ser mantida em testes *flash*, onde o painel é submetido a um teste rápido de iluminação em simulador que dura pouquíssimo tempo (poucos segundos). Contudo, um painel operando ao ar livre, sob essa irradiância, opera em uma temperatura muito mais alta; para corrigir a diferença de temperatura, é definido um parâmetro denominado NOCT (*Nominal Operating Cell Temperature*), parâmetro fornecido pelos fabricantes que representa a temperatura alcançada em células em circuito aberto sob as seguintes condições:

- Irradiância na superfície da célula: 800 W/m^2 ;
- AM 1.5;
- Temperatura do ar: 20 °C e velocidade do vento: 1 m/s.

As equações para radiação solar e a diferença de temperatura entre o módulo e o ambiente mostram que as perdas por condução e convecção são lineares com a insolação incidente para uma dada velocidade do vento, mostrando que a resistência térmica e o coeficiente de transferência de calor não variam significantemente com a temperatura. O valor típico do NOCT é de 48 °C; Contudo, soluções de refrigeração para o painel, como a utilização de substrato aletado em alumínio, reduzem o valor do NOCT (apresentando um valor típico de 33 °C), assim como a utilização de uma camada de isolamento, como *plexiglass*, o aumentam (valor típico de 58 °C). A equação 2.38 apresenta uma relação aproximada para o cálculo da temperatura da célula (PVEDUCATION, 2014; ROSS, 1980; JR.; SMOKLER, 1986).

$$T_{Cell} = T_{Air} + \frac{NOCT - 20}{80} I_{rr}$$
(2.38)

onde T_{Cell} é a temperatura da célula, T_{Air} é a temperatura do ar e I_{rr} é a irradiância em mW/cm^2 (PVEDUCATION, 2014).

2.6 Arranjos fotovoltaicos fotoajustáveis

Um arranjo fotoajustável ou SSC (*Smart Solar Cluster*) é uma solução passiva para o problema da estabilização do ponto de operação da carga, e consiste na combinação de um dispositivo baseado em uma junção p-n, como células solares ou fotodiodos, operando no modo fotovoltaico ou seja, como gerador de energia, e um fotocondutor. Essa solução nos permite manter o ponto de operação de um sistema constante, indiferente das flutuações da intensidade da luz em torno de um valor pré-determinado de irradiâncias (CARVALHO; MONTEIRO, 2009).

Como dito na seção 2.3.1, fotocondutores são dispositivos que variam sua resistência de acordo com a incidência de luz. Quando dispositivos fotovoltaicos e fotocondutores são associados em paralelo, o formato da curva I-V é alterado de acordo com a variação da resistência do fotocondutor com a iluminação.

A figura 52 mostra o diagrama elétrico equivalente de um sistema fotovoltaico fotoajustável, que consiste no circuito apresentado na figura 39 com a inclusão de um fotocondutor acoplado em paralelo, representado por R_{FC} , e com a carga R_L (CARVALHO; MONTEIRO, 2009).

Figura 52 – Modelo elétrico de um sistema fotoajustável. Fonte: (CARVALHO; MONTEIRO, 2009) (adaptado)

Como efeito do autoajuste, o fotocondutor drena parte da corrente que normalmente fluiria pela carga. Uma baixa irradiância leva a uma alta resistência do fotocondutor, e com isso, uma pequena corrente é drenada. Esse efeito modifica a curva I-V do sistema fotovoltaico convencional. A variação da resistência dependerá do material semicondutor utilizado para a fabricação do fotocondutor, assim como sua geometria, temperatura e a faixa de iluminação. Quando projetado apropriadamente, o fotocondutor pode assegurar que um ponto de operação específico seja mantido constante para uma determinada flutuação da irradiância incidente no conjunto. A figura 53 ilustra o comportamento da curva I-V sob variação da irradiância, com e sem um fotocondutor conectado ao sistema fotovoltaico. As linhas coloridas representam três diferentes curvas I-V de uma mesma junção p-n, para três diferentes irradiâncias arbitrárias, onde a curva verde representa um nível menor de irradiância, e a vermelha, o maior. No gráfico da esquerda em especial, os pontos representam o ponto de máxima potência nas curvas I-V para cada irradiância. Para um sistema com o fotocondutor, o ponto de operação escolhido foi o ponto de máxima potência da curva de menor irradiância na faixa (a curva verde). Entretanto, qualquer outro ponto pode ser escolhido, desde que ele esteja contido na curva referente à menor irradiância.

Figura 53 – Exemplo de curvas I-V características de uma junção p-n sem (esquerda) e com (direita) um fotocondutor, sob três diferentes níveis arbitrários de irradiância.

Podemos observar que ao acoplarmos o fotocondutor a uma junção p-n, as curvas I-V são diferentemente deformadas antes do ponto de máxima potência em diferentes níveis de irradiância, convergindo para o ponto de operação previamente escolhido. Esse ponto deve ser determinado de acordo com a carga e aplicação sugerida, observando as capacidades de ajuste do sistema. Portanto, nesse trabalho, iremos examinar como projetar um fotocondutor apropriado para uma dada junção p-n (célula solar ou fotodiodo) para obtermos a convergência desejada.

2.6.1 Modelagem analítica

A modelagem analítica dos SSCs segue a modelagem dos painéis solares, com a inclusão do fotocondutor (representado por R_{FC}) na equação 2.30, resultando na equação 2.39:

$$I = I_{ph} - I_{01}(e^{q(V+IR_S)/m_1k_BT} - 1) - I_{02}(e^{q(V+IR_S)/m_2k_BT} - 1) - \frac{(V+IR_S)}{R_p} - \frac{V}{R_{FC}}$$
(2.39)

onde I é a corrente que atravessa o dispositivo, I_{01} é a corrente de saturação reversa de difusão, I_{02} é a corrente de saturação reversa de recombinação, m_1 é o fator de idealidade de difusão, m_2 é o fator de idealidade de recombinação, q é a carga elementar, k_B é a constante de Boltzmann, T é a temperatura absoluta, R_S é a resistência série e R_p é a resistência paralela (CASTAÑER; SILVESTRE, 2002).

Como discutido anteriormente, a inserção de um fotocondutor em paralelo com o painel causa um efeito de drenagem de corrente: a inserção dessa resistência tem como impacto a redução na corrente da carga. Se esse fotocondutor for precisamente dimensionado, com uma curva característica particular, podemos garantir que a corrente de carga permaneça constante, com o excedente de corrente sendo absorvida pelo fotocondutor. Além disso, a potência dissipada no fotocondutor tem relação direta com essa corrente drenada, ou seja, grandes magnitudes de corrente acarretam a necessidade de dispositivos com maior dissipação de potência, e para o caso de fotocondutores, a necessidade de se utilizar uma área maior do chip na fabricação desse dispositivo.

Também podemos observar uma relação com as resistências parasitas da junção p-n: se essas resistências tiverem valores indesejáveis, portanto, valores baixos de R_p e altos de R_S , a excursão de irradiância de funcionamento do sistema fotoajustável diminui, e com isso, sua faixa de tolerância à variação, já que esse dispositivo apresenta deformações em sua curva I-V, como apresentado na seção 2.4.1 e nas figuras 42 e 43.

Sobre o *fill factor* do sistema fotoajustável, ele é sempre menor que o sistema fotovoltaico tradicional, pois um aumento na irradiância causa um aumento na corrente fotogerada, e com isso, na corrente de curto-circuito; contudo, a potência entregue à carga permanece a mesma, já que o ponto de operação permanece estável, e assim, a razão entre a potência entregue e a a máxima potência teórica ($I_{SC} \times V_{OC}$) diminui com esse aumento.

Além disso, podemos abordar essa questão de uma outra forma: o fotocondutor se comporta como se fosse uma resistência parasita paralela, mas que diminui sua resistência com o aumento da irradiância, e com isso, reduzindo o *fill factor*.

Sistemas fotoajustáveis são bem interessantes para sistemas integrados pois os fotodiodos construídos para alimentação dos circuitos presentes nesse chip foram confeccionados com técnicas de fabricação bem precisas e eficientes, além de possuem pequenas dimensões, e com isso, apresentam resistências parasitas menos impactantes, aumentando o alcance de excursão de funcionamento desse sistema.

3 Metodologia e resultados

"O meu olhar é nítido com o um girassol; Tenho o costume de andar pelas estradas Olhando para a direita e para a esquerda, E de vez e quando olhando para trás... E o que vejo a cada momento É aquilo que nunca antes eu tinha visto, E eu sei dar por isso muito bem... Sei ter o pasmo comigo Que tem uma criança se, ao nascer, Reparasse que nascera deveras... Sinto-me nascido a cada momento Para a eterna novidade do mundo..."

Alberto Caeiro - O guardador de rebanhos (fragmento) - 1914

3.1 Modelagem teórica

3.1.1 Construção de um modelo geral para dispositivos ópticos fotovoltaicos

Esta etapa se baseia na construção de um modelo em Matlab que nos permitirá obter a curva I-V e os parâmetros elétricos das células, painéis solares e fotodiodos de acordo com um espectro de iluminação específica, uma faixa de variação de irradiância e temperatura. De posse desse modelo, ele pode ser portado para outras linguagens de programação ou para o próprio SPICE (na forma de subcircuitos). Esse modelo contém partes analíticas já consolidadas na literatura, aproximações numéricas de funções e dados e equações obtidos empiricamente. O algoritmo está fundamentado em uma sequência de blocos interdependentes, que serão apresentados separadamente nos próximos itens.

3.1.1.1 Definição das condições de operação, características do material e aspectos geométricos do dispositivo

O modelo é inicializado com a definição das condições de operação, através da indicação de temperatura e iluminação. Os dados referentes ao espectro luminoso (AMO, AM1.0, AM1.5G, AM1.5D, lâmpada halógena, led, laser, etc), assim como as características do material do dispositivo em questão, como o coeficiente de absorção, coeficiente de reflexão (material exposto ou com cobertura anti-reflexiva) e a eficiência quântica (interna ou externa) são carregados de bancos de dados obtidos de processos experimentais (caracterizados no trabalho ou apresentados em artigos científicos), gravados e condicionados previamente para o nosso modelo (os dados estão ajustados para uma mesma variação de comprimentos de onda, a cada 0,5 nm, em todas as grandezas). A temperatura de trabalho, em Kelvin, aspecto importante para a análise comportamental, também é escolhida de antemão. Ela define a energia térmica, que será importante no cálculo dos parâmetros dos portadores de carga. Por fim, definimos as características geométricas do nosso dispositivo, como a sua área, e as espessuras das camadas internas (emissor e base).

3.1.1.2 Cálculo dos parâmetros físicos

A partir da temperatura definida, podemos calcular o valor da energia da banda proibida E_g , utilizando a relação empírica apresentada na seção 2.1.1. O cálculo dessa grandeza impacta diretamente na geração de corrente dos nossos dispositivos, pois uma redução desse gap de energia incrementa a corrente fotogerada (pois modifica a energia mínima que um fóton deve possuir para a geração do par elétron-lacuna), além de impactar na densidade de portadores de um material.

3.1.1.3 Cálculo das frequências de interação luz-material

Para a geração de um par elétron-lacuna, um fóton deve possuir uma energia maior que E_g . Assim, precisamos calcular o valor mínimo de frequência capaz de gerar um par elétron-lacuna de acordo com o material escolhido, utilizando a relação 3.1. Também podemos calcular o comprimento de onda equivalente pela equação 3.2:

$$f_{min} = \frac{E_g}{h} \tag{3.1}$$

$$\lambda_{max} = \frac{c}{f_{min}} \tag{3.2}$$

onde f_{min} é a frequência mínima, E_g é a energia da banda proibida, h é a constante de Planck c, λ_{max} é o comprimento de onda máximo e c é a velocidade da luz no vácuo (SZE; NG, 2006).

Também definimos um valor máximo de lambda. A partir desse dado, temos uma frequência mínima (ou comprimento de onda máximo) para a interação luz-material.

3.1.1.4 Definição da dopagem e cálculo das mobilidades

A mobilidade está diretamente relacionada com a temperatura e dopagem, e impacta diretamente na geração de fotocorrente. Para calcular as mobilidades dos elétrons e lacunas, nos apoiamos nas expressões empíricas 3.3 e 3.4:

Nesse item, escolhemos os valores de dopagem N_A e N_D e calculamos as mobilidades com base nas expressões empíricas (válidas para o silício):

$$\mu_n = 88 \times \left(\frac{T}{300}\right)^{0.57} + \frac{7.4 \times 10^8 \times T^{-2.33}}{1 + \frac{N_D}{1.26 \times 10^{17} \times (T/300)^{2.4} \times 0.88 \times (T/300)^{0.146}}}$$
(3.3)

$$\mu_p = 54.3 \times \left(\frac{T}{300}\right)^{0.57} + \frac{1.35 \times 10^8 \times T^{2.33}}{1 + \frac{N_A}{2.35 \times 10^{17} \times (T/300)^{2.4} \times 0.88 \times (T/300)^{0.146}}}$$
(3.4)

onde $\mu_{n,p}$ é a mobilidade e T é a temperatura absoluta (ARORA; HAUSER; ROULSTON, 1982).

Essas são boas aproximações no intervalo de temperatura 250 K<T<500 K.

3.1.1.5 Cálculo da densidade de portadores intrínsecos e da extensão da região de depleção

Continuando no caminho do cálculo da fotocorrente e correntes de saturação reversa, precisamos obter a concentração de portadores intrínsecos n_i , e para isso, utilizamos a expressão empírica 3.5:

$$n_i = CT^{3/2} \times exp(-E_q/2k_BT) \tag{3.5}$$

onde T é a temperatura absoluta, E_g é a energia da banda proibida, k_B é a constante de Boltzmann e C são várias constantes agrupadas, com valor igual a $4.751 \times 10^{15} cm^{-3} K^{-3/2}$ (KANO, 1998).

De posse do valor de n_i , podemos obter a concentração de portadores minoritários em cada região semicondutora no equilíbrio n_{p0} e p_{n0} , utilizando a lei da ação das massas (equação 3.6), resultando nas equações em 3.6:

$$n_{p0} = \frac{n_i^2}{N_A}, \qquad p_{n0} = \frac{n_i^2}{N_D}$$
(3.6)

onde N_A e N_D são, respectivamente, as concentrações de impurezas aceitadoras e doadoras (SZE, 2001).

Em seguida, usamos esses valores para calcularmos a extensão da região de depleção x_d e a tensão embutida V_{bi} , que é o potencial presente na região de depleção que separa o par elétron-lacuna gerados na região de depleção, as impulsionando para as regiões neutras. Esse potencial pode ser descrito pela equação 3.7. Já a espessura da região de depleção pode ser calculada por 3.8:

$$V_{bi} = \frac{k_B T}{q} ln\left(\frac{N_A N_D}{n_i^2}\right) \tag{3.7}$$

$$x_d = \sqrt{\frac{2\epsilon_r \epsilon_0}{q} \frac{N_A + N_D}{N_A N_D} V_{bi}} \tag{3.8}$$

onde ϵ_r é a permissividade elétrica relativa ao material, ϵ_0 é a permissividade elétrica no vácuo e q é a carga elementar (SZE, 2001).

Com x_d obtido, podemos calcular as extensões $x_n \in x_p$, como mostrado nas relações em 3.9:

$$x_n = x_d \frac{N_A}{N_A + N_D} \qquad x_p = x_d \frac{N_D}{N_A + N_D}$$
(3.9)

Um maior tamanho da região de depleção confere uma quantidade maior da cargas sendo impulsionadas para os terminais elétricos presentes nas extremidades do dispositivo, incrementando a eficiência quântica, e por consequência, a corrente fotogerada (SZE, 2016).

3.1.1.6 Cálculo do tempo de vida

Como dito nas subseções 2.1.7 e 2.1.8, o tempo de vida dos portadores minoritários é uma grandeza importantíssima para dispositivos fotovoltaicos, pois impacta diretamente na corrente fotogerada. Podemos estimar cada tempo de vida com as relações 3.10 e 3.11:

$$\tau_n^{-1} = (\tau_{0,n}^{-1} + C_{SRH,n}N_A) * (300/T)^{\gamma_{SRH,n}} + (C_{Aug,n}N_A^2) * (T/300)^{\delta_{Aug,n}}$$
(3.10)

$$\tau_p^{-1} = (\tau_{0,p}^{-1} + C_{SRH,p}N_D) * (300/T)^{\gamma_{SRH,p}} + (C_{Aug,p}N_D^2) * (T/300)^{\delta_{Aug,p}}$$
(3.11)

onde os parâmetros estão apresentados na tabela 3 (KLAASSEN, 1992).

Parâmetro	Elétrons	Lacunas	
$\tau_0 \; [ms]$	2.50	2.50	Tempo de vida intrínseco $(bulk)$
$C_{SRH}(1 \times 10^{-13}) \ [cm^3 s^{-1}]$	3.00	11.76	Coef. de Shockley-Read-Hall
$C_{Aug}(1 \times 10^{-31}) \ [cm^3 s^{-1}]$	1.83	2.78	Coef. de Auger
γ_{SRH}	1.77	0.57	C. aj. Shockley-Read-Hall térmico
δ_{Aug}	1.18	0.72	Coeficiente de Auger térmico

Tabela 3 – Valores tabelados para o Si (monocristalino)

Fonte: (KLAASSEN, 1992)

3.1.1.7 Difusividade, comprimento de difusão e velocidade de recombinação de superfície

A difusividade também é um fator que impacta a fotocorrente, pois se relaciona com o tempo de vida e com o comprimento de difusão. Podemos calculá-la através da mobilidade, utilizando a relação de Einstein (equação 2.5), e com isso, os comprimentos de difusão para cada portador utilizando as relações em 3.12:

$$L_n = \sqrt{D_n \tau_n}, \qquad L_p = \sqrt{D_p \tau_p} \tag{3.12}$$

Para elétrons e lacunas, respectivamente, onde $D_{n,p}$ é a difusividade, $\tau_{n,p}$ é o tempo de vida e $L_{n,p}$ é o comprimento de difusão (SZE, 2001).

A velocidade de recombinação de superfície S associa-se à velocidade em que portadores de carga são perdidos na superfície do material, que é rica em defeitos, pela recombinação. Seu valor pode ser estimado através da relação 3.13:

$$S = \sqrt{D\left(\frac{1}{\tau_{eff}} - \frac{1}{\tau_b}\right)} tan\left(\frac{W}{2}\sqrt{D\left(\frac{1}{\tau_{eff}} - \frac{1}{\tau_b}\right)}\right)$$
(3.13)

Onde D é a difusividade, W é a espessura do material (*wafer*), τ_b é o tempo de vida no subtrato e τ_{eff} é o tempo de vida efetivo (PVEDUCATION, 2014). Esse último leva em consideração o efeito de recombinação de superfície, através da relação:

$$\frac{1}{\tau_{eff}} = \frac{1}{\tau_b} + \frac{1}{\tau_S} \tag{3.14}$$

Onde τ_S é o tempo de vida na superfície (SZE, 2001).

Na maioria dos casos, o tempo de vida da superfície domina, pois ele é muito menor que o tempo de vida no substrato. Para cada condição da superfície, temos aproximações diferentes para τ_S (PVEDUCATION, 2014).

A. As velocidades de recombinação de superfície são idênticas e finitas $(S_1 = S_2)$

$$\tau_S = \frac{W}{2S} + \frac{1}{D} \left(\frac{W}{\pi}\right)^2 \tag{3.15}$$

B. Uma superfície está completamente passivada (a velocidade de recombinação de superfície é nula em uma delas, ou $S_2 = 0$)

$$\tau_S = \frac{W}{S_1} + \frac{4}{D} \left(\frac{W}{\pi}\right)^2 \tag{3.16}$$

C. As duas superfícies estão completamente passivadas (não há recombinação de superfície em ambas, ou $S_1 = S_2 = 0$)

$$\tau_S = \infty \tag{3.17}$$

D. Ambas possuem uma alta velocidade de recombinação de superfície ($S_1 = S_2 \rightarrow \infty$)

$$\tau_S = \frac{1}{D} \left(\frac{W}{\pi}\right)^2 \tag{3.18}$$

E. Uma delas possui uma alta velocidade de recombinação de superfície, e a outra, uma baixa velocidade $(S_1 = 0, S_2 \rightarrow \infty)$

$$\tau_S = \frac{4}{D} \left(\frac{W}{\pi}\right)^2 \tag{3.19}$$

A tabela 4 apresenta alguns parâmetros dos portadores de carga no silício, nas condições $N_A = 10^{15} \ cm^{-3}$; $N_D = 10^{17} \ cm^{-3}$:

=

Parâmotro	Valor	Descrição
1 arametro	Valor	Descrição
$L_n \ [\mu m]$	162	Comprimento de difusão de elétrons
$L_p \ [\mu m]$	0.43	Comprimento de difusão de lacunas
$S_e[cm/s]$	2×10^5	Velocidade de recombinação de superfície do emissor
$S_b \ [cm/s]$	1000	Velocidade de recombinação de superfície da base
$D_n \left[cm^2/s \right]$	36.33	Coeficiente de difusão de elétrons
$D_p \ [cm^2/s]$	3.4	Coeficiente de difusão de lacunas

Tabela 4 – Valores tabelados para uma amostra de Si

Fonte: (CASTAñER; SILVESTRE, 2002)

O tratamento da superfície é determinante para o bom funcionamento de dispositivos ópticos, tanto em modo fotocondutivo quanto em modo fotovoltaico, já que uma superfície muito defeituosa acarreta uma grande perda de portadores de carga, reduzindo significantemente a corrente fotogerada (PVEDUCATION, 2014).

3.1.1.8 Conversão da irradiância para fluxo de fótons

Utilizando o banco de dados da irradiância espectral da fonte de luz escolhida, podemos converter os dados em um tipo mais interessante para o cálculo de geração de corrente: o fluxo ϕ de fótons por comprimento de onda. Para tal, dividimos o valor de potência em cada comprimento de onda pela energia de cada fóton naquele comprimento de onda, obtendo o número de fótons equivalente, como indicado na equação 3.20. Podemos ainda obter o fluxo efetivo, que consiste em aplicar o coeficiente de reflexão, que também é dependente do comprimento de onda, no fluxo de fótons, obtendo o fluxo que realmente penetra no material, apresentado pela equação 3.21:

$$\phi_{\lambda} = \frac{Irr_{\lambda} \times \lambda}{hc},\tag{3.20}$$

$$\phi_{eff,\lambda} = \phi_{\lambda} (1 - \alpha_{\lambda}) \tag{3.21}$$

Onde α é o coeficiente de reflexão, h é a constante de Planck e c é a velocidade da luz no vácuo (KININGER, 2003).

3.1.1.9 Cálculo da corrente fotogerada

De posse de todos os dados obtidos até agora, podemos calcular a corrente fotogerada I_{ph} em um dispositivo fotovoltaico. Contudo, podemos realizar esse cálculo através de diversas abordagens:

A. Utilizando a eficiência quântica
Como dito na subseção 2.1.12, a eficiência quântica indica a relação entre os fótons incidentes no dispositivo de cada comprimento de onda e a quantidade de cargas fotogeradas que de fato alcançam o terminal externo. Daí podemos utilizar dados de amostras caracterizadas em laboratório, guardadas em bancos de dados.

Entretanto, para certas situações, essa grandeza pode ser estimada analiticamente. Por exemplo, em dispositivos que possuem uma região de emissor muito fina, também chamada de junção rasa, ou seja, menor que o comprimento de difusão, podemos aproximar a eficiência quântica espectral interna pela relação 3.22:

$$IQE_{\lambda} = \left(1 - \frac{e^{-\alpha_{\lambda}W_d}}{\alpha_{\lambda}L_d + 1}\right) \tag{3.22}$$

onde IQE_{λ} é a eficiência quântica externa, α_{λ} é o coeficiente de absorção para o comprimento de onda selecionado, W_d é a espessura da região de depleção e L_d é o comprimento de difusão (BUBE, 1992).

De posse do comportamento da eficiência quântica para cada comprimento de onda, podemos calcular a corrente fotogerada através da equação 3.23:

$$I_{ph} = qA \int_{\lambda_{min}}^{\lambda_{max}} \phi_{eff} \tau_r(\lambda) IQE(\lambda) d\lambda$$
(3.23)

onde ϕ_{eff} é o fluxo efetivo de fótons (já descontado da reflexão), τ_r é o tempo de vida de recombinação, q é a carga elementar, A é a área de exposição e IQE é a eficiência quântica interna (CASTAÑER; SILVESTRE, 2002).

B. Utilizando a taxa de geração e a probabilidade de coleta

Também podemos calcular a taxa de portadores gerados por luz usando uma expressão para a taxa de geração $G_{\lambda}(x)$ através da relação 3.24:

$$G_{\lambda}(x) = \alpha_{\lambda}\phi_{\lambda}exp(-\alpha x) \tag{3.24}$$

onde α é o coeficiente de absorção, ϕ_{λ} é o número de fótons que alcança a superfície e x é a distância em relação à superfície. Portanto, a geração é maior na superfície (salvo se considerarmos a recombinação de superfície) e vai caindo na extensão do dispositivo. Podemos calcular a concentração de portadores injetados, usando a expressão 3.25:

$$\Delta_{n,\lambda}(x) = G_{n,\lambda}(x)\tau_n \qquad \Delta_{p,\lambda}(x) = G_{p,\lambda}(x)\tau_p \tag{3.25}$$

onde $\Delta n, p$ é a concentração de portadores fotogerados, $G_{n,p}$ é a taxa de geração e $\tau_{n,p}$ é o tempo de vida (SZE; NG, 2006).

Na injeção por luz, $G_n = G_p$, pois os portadores sempre são gerados aos pares.

Contudo, se a iluminação se der pela frente do dispositivo, ou seja, pelo emissor, serão gerados mais pares próximos dessa face, mas somente os elétrons alcançarão o terminal externo, já que as lacunas se recombinam antes de chegar ao terminal inferior. Portanto, a concentração de elétrons determina a corrente fotogerada. Ao iluminarmos pela base, temos o caso inverso, com a concentração de lacunas dominando a fotogeração. Para um caso hipotético de iluminação simultânea das faces, teríamos idealmente a concentração de elétrons igual a de lacunas, mas em um dispositivo real, teremos uma pequena diferença devido às diferenças de tempo de vida τ . Considerando uma iluminação pela frente e $\tau_n = \tau_p = \tau$, podemos aproximar a concentração de portadores pela concentração de elétrons, nos levando a relação 3.26:

$$I_{ph,\lambda} = qA \int_0^W (\Delta_{n,\lambda}(x)) CP(x) dx = \int_0^W G_{n,\lambda}(x) \tau CP(x) dx$$

$$I_{ph} = qA \int_{\lambda_{min}}^{\lambda_{max}} \int_0^W [\alpha(\lambda)\phi(\lambda)exp(-\alpha(\lambda)x)\tau] CP(x) dx d\lambda$$
(3.26)

Onde q é a carga elementar, G(x) é a taxa de geração, W é a espessura do dispositivo, A é a área de exposição, $\alpha(\lambda)$ é o coeficiente de absorção, ϕ é o fluxo de fótons, τ é o tempo de vida de recombinação e CP(x) é a probabilidade de coleta (PVEDUCATION, 2014).

Caso tenhamos um dispositivo onde as superfícies da célula são distantes dos limites da região de depleção, de modo que os portadores injetados na região quasi-neutra não são impactados pela recombinação e taxa de geração seja constante, podemos usar a aproximação 3.27:

$$I_{ph} = qAG\tau \left(L_n + L_p + x_d\right) \tag{3.27}$$

onde L_n e L_p são, respectivamente, os comprimentos de difusão dos elétrons e lacunas e x_d é a espessura da região de depleção (PVEDUCATION, 2014).

Já um dispositivo com a base estreita (região quasi-neutra é muito pequena, ou seja, menor que o comprimento de difusão), a relação com corrente fotogerada passa a depender das espessuras da base, emissor e região de depleção, e podemos utilizar a aproximação:

$$I_{ph} = qAG\tau \left(\frac{W_e}{2} + \frac{W_b}{2} + (x_n + x_p)\right)$$
(3.28)

onde W_e é a espessura do emissor, W_b é a espessura da base e x_n e x_p são as dimensões da região de depleção no emissor e na base. (PVEDUCATION, 2014)

De modo geral, podemos calcular a densidade de corrente fotogerada em cada região do dispositivo, ou seja, no emissor, na base e na região de depleção. Considerando a base do tipo-p e o emissor tipo-n, com a iluminação incidindo no lado do emissor, podemos utilizar as relações 3.29, 3.30 e 3.31:

$$J_{scE,\lambda} = \frac{q\alpha\phi_{eff}L_p}{(\alpha L_p)^2 - 1} \left[-\alpha L_p e^{-\alpha W_e} - \frac{S_e \frac{L_p}{D_p} + \alpha L_p - e^{-\alpha W_e} \left(S_e \frac{L_p}{D_p} cosh \frac{W_e}{L_p} + sinh \frac{W_e}{L_p}\right)}{cosh \frac{W_e}{L_p} + S_e \frac{L_p}{D_p} sinh \frac{W_e}{L_p}} \right]$$
(3.29)

$$J_{scB,\lambda} = \frac{q\alpha\phi_{eff}e^{-\alpha W_e}L_n}{(\alpha L_n)^2 - 1} \left[-\alpha L_n - \frac{S_b \frac{Ln}{Dn} \left(\cosh\frac{W_b}{L_n} - e^{-\alpha W_b}\right) + \sinh\frac{W_b}{L_n} + \alpha L_n e^{-\alpha W_b}}{\cosh\frac{W_b}{L_n} + S_b \frac{L_n}{D_n} \sinh\frac{W_b}{L_n}} \right]$$
(3.30)

$$J_{scD,\lambda} = q\phi_{eff}e^{-\alpha(W_e - x_n)} \left[1 - e^{-\alpha(x_n + x_p)}\right]$$
(3.31)

Onde α é o coeficiente de absorção, ϕ_{eff} é o fluxo efetivo de fótons na superfície, L_n é o comprimento de difusão dos elétrons na base, L_p é o comprimento de difusão das lacunas no emissor, D_n é a constante de difusão dos elétrons na base, D_p é a constante de difusão das lacunas no emissor, S_e é a velocidade de recombinação de superfície do emissor, S_b é a velocidade de recombinação de superfície da base, W_e é a espessura do emissor, W_b a espessura da base, x_n é a espessura da região de depleção do lado n e x_p é a espessura da região de depleção do lado p (COURA; SALLES; MONTEIRO, 2011; CASTAÑER; SILVESTRE, 2002).

Para o cálculo da corrente fotogerada total, devemos somar as correntes de cada região, integrar para todos os comprimentos de onda e multiplicar pela área do dispositivo, como indicado na equação 3.32:

$$I_{ph} = A \int_{\lambda_{min}}^{\lambda_{max}} (J_{scE,\lambda} + J_{scB,\lambda} + J_{scD,\lambda}) d\lambda$$
(3.32)

3.1.1.10 Cálculo das correntes de saturação reversa

As correntes de saturação reversa podem ser calculadas de diversas formas, dependendo das características geométricas do dispositivo. Vamos a elas:

A. Superfícies distantes da região de depleção $(W_e >> L_p \in W_p >> L_n)$

Nesse caso, o comprimento determinante é o comprimento de difusão, pois qualquer portador que seja gerado a uma distância maior que essa grandeza recombinará antes de chegar a superfície. As correntes de saturação reversa de difusão I_{01} e recombinação I_{02} serão dadas pelas relações 3.33 e 3.34:

$$I_{01} = Aq \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right)$$
(3.33)

$$I_{02} = Aq \frac{(x_n + x_p)n_i}{2\tau_r}$$
(3.34)

onde A é a área de seção de condução de corrente, q é a carga elementar, $D_{n,p}$ são os coeficientes de difusão, $L_{n,p}$ são os comprimentos de difusão, n_{p0} , p_{n0} são as concentrações de minoritários no equilíbrio, n_i é a concentração de portadores intrínsecos, $x_{n,p}$ são as espessuras da região de depleção nos lados n e p e τ_r é o tempo de vida de recombinação (SZE, 2001).

Em uma situação de injeção fraca, o tempo de vida de recombinação é no máximo igual que o tempo de vida do equilíbrio, e os elétrons tem pouca probabilidade de encontrar uma lacuna para se recombinar. Já na injeção forte, o tempo de recombinação cai. Portanto, o tempo de vida de recombinação é dependente da concentração de portadores injetados. O tempo de vida de recombinação pode ser descrito pela equação 3.35:

$$\tau_r = \frac{1}{\sigma_o v_{th} N_t} \tag{3.35}$$

onde σ_o é a seção de captura (σ_n para elétrons, σ_p para lacunas - descreve a efetividade do centro de recombinação na captura do portador), v_{th} é a velocidade térmica e N_t é a concentração dos centros de recombinação (impurezas presentes no material ou defeitos de cargas pontuais que capturam um portador minoritário e o combinam com um portador majoritário capturado subsequentemente) (SZE, 2001). (MISHRA; SINGH, 2007; PVEDUCATION, 2014; SZE; NG, 2006; ZHAO; SCHLESINGER; MILNES, 1987)

B. Emissor e base estreitos

Com regiões estreitas ($W_e \ll L_p \in W_b \ll L_n$), o tamanho da região determina a corrente de saturação reversa, pois praticamente todos os portadores alcançarão a superfície. Desconsiderando a recombinação de superfície, podemos obter a corrente de saturação reversa de difusão utilizando a relação 3.36.

$$I_{01} = Aq \left(\frac{D_p p_{n0}}{W_b} + \frac{D_n n_{p0}}{W_e}\right)$$
(3.36)

onde I_{01} é a corrente de saturação reversa de difusão, A é a área do dispositivo, q é a carga elementar, $D_{n,p}$ são os coeficientes de difusão, $p_{n0,p0}$ são as concentrações de portadores minoritários no equilíbrio, W_e é a espessura do emissor e W_b é a espessura da base (PVEDUCATION, 2014).

C. Caso geral

Nesse item indicamos relações gerais, que dependem da relação entre a geometria das regiões e seus respectivos comprimentos de difusão e a presença de recombinação de superfície. A partir dessas equações, podemos chegar às relações apresentadas nos itens A e B.

C1 - Desconsiderando a recombinação de superfície

$$I_{01} = Aq \left[\left(\frac{D_p p_{n0}}{L_p} \right) coth \left(\frac{W_e}{L_p} \right) + \left(\frac{D_n n_{p0}}{L_n} \right) coth \left(\frac{W_b}{L_n} \right) \right]$$
(3.37)

onde $L_{n,p}$ são os comprimentos de difusão dos elétrons e lacunas (PVEDUCATION, 2014).

C2 - Considerando a recombinação de superfície

$$I_{01} = Aq \left[\left(\frac{D_n n_{p0}}{L_n} \right) \frac{\cosh\left(\frac{W_b}{L_n}\right) + \left(\frac{D_n}{S_n L_n}\right) \sinh\left(\frac{W_b}{L_n}\right)}{\left(\frac{D_n}{S_n L_n}\right) \cosh\left(\frac{W_b}{L_n}\right) + \sinh\left(\frac{W_b}{L_n}\right)} \right]$$

$$+ Aq \left[\left(\frac{D_p p_{n0}}{L_p} \right) \frac{\cosh\left(\frac{W_e}{L_p}\right) + \left(\frac{D_p}{S_p L_p}\right) \sinh\left(\frac{W_e}{L_p}\right)}{\left(\frac{D_p}{S_p L_p}\right) \cosh\left(\frac{W_n}{L_p}\right) + \sinh\left(\frac{W_e}{L_p}\right)} \right]$$

$$(3.38)$$

onde $S_{n,p}$ são as velocidades de recombinação de superfície nos lados n e p (PVE-DUCATION, 2014).

3.1.1.11 Cálculo da resistência série

A resistência série pode ser calculada utilizando as dimensões das regiões de emissor e base, utilizando a equação 2.6 para cada região:

$$R_e \approx (W_e - x_n) / (Aq\mu_n N_D), \qquad R_b \approx (W_b - x_p) / (Aq\mu_p N_A)$$
(3.39)

Onde $R_e \in R_b$ são as resistências do emissor e da base, $W_e \in W_b$ as espessuras do emissor e da base, A a área da célula, $\mu_n \in \mu_p$ as mobilidades dos elétrons e lacunas e N_D e N_A as dopagens do lado n e do lado p (SZE, 2016).

Observe que a resistência da região de depleção foi desprezada - isso acontece pois em qualquer iluminação, a região de depleção sofre injeção forte, pois essa região não tem portadores livres intrínsecos ou por dopagem, somente os fotogerados, que são impulsionados pelo campo elétrico embutido da região, e com isso, a sua resistência diminui consideravelmente, já que a mobilidade da região é praticamente a mesma das regiões neutras e sua dimensão é muito pequena em relação às outras. A resistência dessa região só seria significativa em baixíssimas irradiâncias ou dispositivos com dimensões de suas regiões muito diminutas. Um exemplo desse caso são as células multijunção - por isso é interessante utilizá-las em altas irradiâncias, como sistemas com concentradores (MINTAIROV et al., 2012).

A resistência série total será a soma de $R_e \in R_b$ (além da resistência da região de depleção, não estamos levando em conta as resistências dos contatos metal-semicondutor, nem os caminhos metálicos, e estamos considerando que os terminais da célula estão cada qual em uma superfície).

3.1.1.12 Geração da curva I-V

Com todos os termos calculados, podemos gerar a curva I-V utilizando a equação 2.29, ou algum outro modelo analítico, para analisarmos a operação de um sistema fotovoltaico específico, ou seja, constituído por dispositivos com diferentes características construtivas (materiais diferentes, dopagens diferentes, etc.), geométricas (tamanhos distintos das regiões semicondutoras, profundidade da junção, etc.), submetido à diversas condições diferentes (fontes de luz diferentes, com espectros e irradiâncias diferentes, temperatura distinta, etc.), além de sua possibilidade de utilização como modelo de previsão comportamental.

Como demonstração, realizaremos um caso de exemplo. Para tal, utilizaremos uma célula solar hipotética de silício com os seguintes parâmetros apresentados na tabela 5:

Parâmetro	Valor	Comentários
T[K]	300	Temperatura
$Irr \; [W/m^2]$	1000	Irradiância
Área $[cm^2]$	244	Área de exposição à luz da célula
$W_{cell} \ [cm]$	201×10^{-4}	Espessura total da célula
$W_e [\mathrm{cm}]$	$0,25 \times 10^{-4}$	Espessura do emissor (tipo n)
W_b [cm]	200×10^{-4}	Espessura da base (tipo p)
$N_A \ [cm^{-3}]$	1×10^{14}	Concentração do dopante aceitador
$N_D \ [cm^{-3}]$	1×10^{16}	Concentração do dopante doador

Tabela 5 – Condições ambientais e parâmetros da célula solar de exemplo

Fonte: Definidos pelo autor

A distribuição espectral utilizada foi a AM 1.5 *Global*, como mostrado na figura 54. O comprimento de onda foi limitado a 400-1100 nm, que é a faixa espectral onde o silício responde, já que sua largura da banda proibida de $1, 12 \ eV$ invalida a absorção de fótons de comprimentos de onda maiores, assim como os fótons de comprimentos de

onda menores que $400 \ nm$ são absorvidos no vidro de proteção externo ou na superfície do material, onde temos uma grande densidade de defeitos, e praticamente não colaboram com a geração de portadores.

Figura 54 – Irradiância espectral utilizada no exemplo. Figura produzida pelo autor

Utilizamos o coeficiente de absorção do silício, a eficiência quântica interna e o coeficiente de reflexão encontrados em PVEducation (2014), e mostrados na figura 55. Para o coeficiente de reflexão escolhemos o tipo *bare silicon*, ou seja, o material diretamente exposto, sem tratamento ou camadas adicionais (camada anti-reflexiva, vidro ou texturização). Na figura 55 podemos observar os coeficientes de absorção e reflexão para o silício. Pela curva de absorção verificamos o quão profundo os fótons podem penetrar no material. Os fótons de menor comprimento de onda são absorvidos bem na superfície e os fótons de maior comprimento de onda, preferencialmente da faixa de cor vermelha, podem até chegar a atravessar todo o dispositivo, dependendo da sua espessura. Já a reflexão é bem mais alta para fótons com comprimentos de onda menores, como os da faixa da cor azul, ficando acima de 40%; já nas faixas médias, ela fica entre 30-35%, reduzindo para menos de 32% na faixa do vermelho.

Figura 55 – Curvas do coeficiente de absorção (esquerda) e reflexão (direita). Figura produzida pelo autor

Na figura 56 temos a eficiência quântica interna e externa, essa última já descontada o efeito da reflexão. A queda da eficiência quântica para comprimentos de onda menores deve-se a alta recombinação da superfície frontal, posição do dispositivo onde a maior parte dos fótons dessa faixa são absorvidos. Portanto, sua contribuição para a corrente fotogerada total não é significante. O mesmo ocorre na superfície inferior, que também apresenta uma alta recombinação de superfície; entretanto, ela ocorre com o fótons de maior comprimento de onda que alcançam essa profundidade. Ela também é impactada pelo comprimento de difusão, ou seja, quanto maior o comprimento de difusão nas regiões da base e do emissor, maior a eficiência quântica para os comprimentos de onda que alcançam essas regiões, pois a probabilidade de coleta aumenta.

Figura 56 – Curvas de eficiência quântica interna e externa. Figura produzida pelo autor

A partir da irradiância espectral podemos definir o fluxo de fótons por comprimento de onda que chegam à superfície da célula, assim como obter o fluxo efetivo, que desconsidera os fótons refletidos, como mostrado no item esquerdo da figura A figura 57. Podemos pegar o fluxo de fótons, e utilizando a eficiência quântica, obter a densidade de corrente fotogerada por comprimento de onda, ou densidade de corrente fotogerada espectral, como podemos ver no item direito da figura 57.

Figura 57 – Fluxo de fótons (esquerda) e densidade de corrente fotogerada (direita) por comprimento de onda.

Figura produzida pelo autor

Integrando a densidade de corrente espectral para todos os comprimentos de onda, temos a densidade de corrente fotogerada. Os parâmetros necessários para a obtenção da curva I-V, como as correntes de saturação reversa e as resistências parasitas foram calculados pelo modelo a partir dos dados de entrada, e apresentados na tabela 6.

Parâmetro	Valor	Comentários	
$E_G(T) \ [eV]$	1,1205	Bandgap na temperatura escolhida	
$\mu_n \ [cm^2/s]$	1258	Mobilidade dos elétrons	
$\mu_p \ [cm^2/s]$	276	Mobilidade dos elétrons	
V_{bi} [V]	0,598	Tensão embutida	
$x_d \ [cm]$	$2,822\times10^{-4}$	Tamanho total da região de depleção	
$x_n \ [cm]$	$2,794\times10^{-6}$	Tamanho da região de depleção no lado n	
$x_p \ [cm]$	$2,794\times10^{-4}$	Tamanho da região de depleção no lado p	
$ au_n [s]$	$2,3 \times 10^{-3}$	Tempo de vida dos elétrons na região p	
$\tau_p \ [s]$	$8,2 imes 10^{-5}$	Tempo de vida das lacunas na região n	
$D_n \ [cm^2/s]$	32, 57	Difusividade dos elétrons	
$D_p \left[cm^2/s \right]$	7, 14	Difusividade das lacunas	
$L_n \ [cm]$	0,275	Comprimento de difusão dos elétrons	
$L_p \ [cm]$	0,024	Comprimento de difusão das lacunas	
$ au_r, n \ [s]$	$2,3 imes 10^{-3}$	Tempo de vida de recombinação dos elétrons	
$\tau_r, p \ [s]$	$8,2 imes 10^{-5}$	Tempo de vida de recombinação das lacunas	
$J_{ph} \ [mA/cm^2]$	25,7	Densidade de corrente fotogerada	
I_{ph} [A]	6,275	Corrente fotogerada	
$I_{01} \ [A]$	$3,233\times10^{-9}$	Corrente de saturação reversa de difusão	
$I_{02} [A]$	$8,602 \times 10^{-6}$	Corrente de saturação reversa de recombinação	
V_{OC} [V]	0,55	Tensão de circuito aberto	
I_{SC} [A]	6,275	Corrente de curto-circuito	
V_{MP} [V]	0, 47	Tensão de máxima potência	
I_{MP} [A]	5,916	Corrente de máxima potência	
$P_{MAX} \left[W \right]$	2,781	Potência máxima	
$R_s \ [\Omega]$	0,018	Resistência série (emissor e base)	
FF	0,806	Fill-factor	
η [%]	11, 39	Eficiência de conversão	

Tabela 6 – Parâmetros obtidos no caso de exemplo

Fonte: Dados obtidos pelo autor

Com todos os parâmetros calculados, podemos obter a curva I-V da célula, e visualizá-la na figura 58. Comparando essa célula hipotética com outras células similares existentes no mercado, como as listadas no anexo A, verificamos que a nossa célula possui um desempenho bem pior. A célula comercial mais próxima é a policristalina da DYA, que possui a mesma área, 15, 6 cm X 15, 6 cm, mas uma corrente de curto-circuito de 8, 297 A, 25% maior, assim como a tensão de circuito aberto, 0, 609 V, 10% maior. A eficiência de conversão também é maior, 11,39% contra 16%, uma diferença de quase 30%. Todas as outras células de mesma área possuem parâmetros ainda melhores.

Figura produzida pelo autor

Ao verificar o algoritmo e seus parâmetros para localizar qual seria o motivo da grande diferença, encontrei uma resposta: o silício sem nenhum tratamento de superfície apresenta uma alta reflectância, reduzindo e muito a eficiência quântica para cerca de 60%, ou seja, somente 60% dos fótons estão sendo convertidos em corrente fotogerada.

Ao rodar uma simulação com o coeficiente de reflexão de uma célula de silício com uma peça de vidro a cobrindo, observamos uma grande mudança nos resultados: a eficiência quântica sobe para 80%, a corrente fotogerada para 7,8 A, a tensão de circuito aberto para 0,56 V e a eficiência de conversão para quase 15%, ficando muito próximo das células comerciais.

Uma terceira rodada utilizando os dados de uma célula coberta com vidro e com uma camada anti-reflexiva aumentou ainda mais o desempenho, com a eficiência quântica chegando a 95%, com a corrente fotogerada alcançando 9,35A, a tensão de circuito aberto subindo para 0,56 V e a eficiência de conversão, para quase 18%. De fato, pudemos verificar a importância da reflexão no funcionamento de uma célula solar, e seu impacto nos parâmetros e na sua eficiência.

3.1.2 Construção de um modelo físico para fotocondutores

Para o desenvolvimento de um sistema fotoajustável, é necessário um modelo de projeto do fotocondutor, já que o modelo comportamental apresentado na seção 2.3.1 nos fornece uma curva característica desse componente, mas não condições para fabricá-lo. Portanto, necessitamos de um modelo físico, que, a partir da curva comportamental, nos permita construir um fotocondutor discreto ou integrado, de acordo com características físicas do material e processo empregados. Como dito anteriormente, um fotocondutor tem sua resistividade afetada pela luz incidente. Essa variação é dada pela equação 3.40:

$$\rho = \frac{1}{q(n+\Delta n)\mu_n + q(p+\Delta p)\mu_p} \tag{3.40}$$

onde ρ é a resistividade, q é a carga elementar, μ_n é a mobilidade dos elétrons, μ_p é a mobilidade das lacunas, n é a densidade dos elétrons, p é a densidade das lacunas, Δn e Δp são, respectivamente, a densidade de elétrons e lacunas fotogerados (BUBE, 1992).

O denominador da resistividade pode ser separado em duas partes: uma dependente da luz e a outra, independente, como apresentado na equação 3.41.

$$\rho = \frac{1}{q(n\mu_n + p\mu_p) + q\Delta n(\mu_n + \mu_p)} = \frac{1}{\sigma_0 + \sigma_v}$$
(3.41)

onde ρ é a resistividade, $\Delta n = \Delta p$, σ_0 é a condutividade independente da luz e σ_v é a condutividade que varia com a intensidade luminosa (BUBE, 1992).

Na ausência de luz, temos a resistividade de escuro, que depende das concentrações dos portadores e de suas respectivas mobilidades. Entretanto, se a incidência de luz aumenta, a densidade de portadores fotogerados também aumenta, reduzindo a resistividade do fotocondutor.

A resistência de um fotocondutor depende da resistividade do material e de sua geometria, como mostrado na figura 59, seguido pela relação apresentada na equação 3.42.

$$R_{FC} = \rho \frac{l}{t.w} = \left(\frac{1}{\sigma_0 + \sigma_v}\right) \frac{l}{t.w}$$
$$= \frac{1}{\frac{\sigma_0.t.w}{l} + \frac{\sigma_v.t.w}{l}}$$
(3.42)

Usando a expressão para condutância $G = 1/R = \sigma t w/l$, obtemos a relação 3.43:

$$R_{FC} = \frac{1}{G_0 + G_v} \tag{3.43}$$

Figura 59 – Geometria de um fotocondutor. Figura produzida pelo autor

onde G_0 é a condutância de escuro, com $R_0 = 1/G_0$ sendo a resistência de escuro, e G_v é a condutância variável. Explicitamente escrevendo G_v em termos de sua geometria e parâmetros do material, temos 3.44:

$$G_v = \sigma_v \frac{t.w}{l} = \frac{q\Delta n(\mu_n + \mu_p).t.w}{l}$$
(3.44)

Antes de continuarmos, precisamos relacionar as variáveis ópticas com as elétricas. Portanto, a densidade de portadores fotogerados Δn precisa ser relacionada com a irradiância I_{rr} , in $W.m^{-2}$. O fluxo espectral de fótons $\Phi_{ph,\lambda}$ $(m^{-2}.s^{-1})$, é dado pela irradiância espectral I_{λ} $(W.m^{-2}.nm^{-1})$ dividida pela energia do fóton em um comprimento de onda específico $(E_{ph} = h.c/\lambda)$. A taxa espectral de fótons incidindo em uma área de superfície exposta de um fotocondutor $(A_s = l.w)$ é dada por $\Phi_{ph,\lambda}.A_s$. No dispositivo, o número espectral de elétrons fotogerados é mantido durante um tempo de geração τ_g pode ser obtido como indicado pela equação 3.45.

$$\#electrons_{\lambda} = \Phi_{ph,\lambda}.A_s.\eta_{\lambda}.\tau_g = \frac{I_{\lambda}.A_s.\eta_{\lambda}.\tau_g.\lambda}{hc}$$
(3.45)

onde η_{λ} é a eficiência quântica espectral de um material fotocondutor, h é a constante de Planck, c é a velocidade da luz. Observe que a quantidade espectral de elétrons fotogerados é igual à de lacunas. O número total de elétrons fotogerados para uma específica fonte de luz, com um espectro conhecido, por ser obtido pela equação 3.46.

$$\#electrons = \frac{A_s \cdot \tau_g}{hc} \cdot \int_{\lambda} (\eta_{\lambda} \cdot I_{\lambda} \cdot \lambda) d\lambda$$
(3.46)

A densidade de elétrons fotogerados Δn é igual ao número de elétrons fotogerados dividido pelo volume do fotocondutor $(A_s.t)$, como na equação 3.47.

$$\Delta n = \frac{A_s \cdot \tau_g}{hc.(A_s.t)} \cdot \int_{\lambda} (\eta_{\lambda}.I_{\lambda}.\lambda) d\lambda$$
$$= \frac{\tau_g}{hc} \cdot \int_{\lambda} (\eta_{\lambda}.I_{\lambda}.\lambda) d\lambda$$
(3.47)

Portanto, G_v , substituindo 3.47 na equação 3.44, nos dá a equação 3.48:

$$G_v = \Upsilon . \int_{\lambda} (\eta_{\lambda} . I_{\lambda} . \lambda) d\lambda$$
(3.48)

onde temos 3.49,

$$\Upsilon = \frac{q.\tau_g}{hc.t} (\mu_n + \mu_p)(\frac{w}{l})$$
(3.49)

Observe que a integral $\int_{\lambda} (\eta_{\lambda} I_{\lambda} . \lambda) d\lambda$ pode ser obtido a partir do espectro da fonte de luz e da resposta espectral do material do fotocondutor. O fator Υ , em contrapartida, depende das propriedades do material e do fator de aspecto da área exposta do dispositivo. A resistência do fotocondutor, dada pela relação 3.43, pode ser reescrita como a equação 3.50.

$$R_{FC} = \frac{1}{G_0 + \Upsilon . \int_{\lambda} (\eta_{\lambda} . I_{\lambda} . \lambda) d\lambda}$$
(3.50)

No caso específico de uma fonte luminosa monocromática, como um *laser*, onde cada irradiância espectral consiste em um pulso delgado centrado em um comprimento de onda específico λ_0 , I_{λ} pode ser considerado como uma função Delta de Dirac, onde, aplicando suas propriedades de filtragem, permite que o resultado da integral se torne $\eta I_{rr}.\lambda_0$, onde η é a eficiência quântica total no comprimento do *laser* e I_{rr} é a irradiância do *laser* em $W.m^{-2}$. Portanto, a simplificação $G_v = \Upsilon.(\eta \lambda_0).I_{rr}$, mostrada no modelo comportamental, pode ser aplicada.

Quando uma fonte policromática é utilizada, se o material apresenta uma eficiência quântica espectral (η_{λ}) , que, quando multiplicada pelo comprimento de onda apresenta um valor aproximadamente constante ρ , então $G_v = \Upsilon . \rho . I_{rr} = \Upsilon . (\eta_{\lambda} \lambda) I_{rr}$. Nesse caso, $I_{rr} = \int_{\lambda} I_{\lambda} d\lambda$. Portanto, a resistência do fotocondutor pode ser aproximada pela equação 3.43, como mostrada em 3.51.

$$R_{FC} = \frac{1}{G_0 + \beta I_{rr}} \tag{3.51}$$

onde β é o fator de conversão luz-condutividade, e sua unidade é $m^2/W.\Omega$, sendo igual a $\Upsilon.(\eta.\lambda_0)$ como no caso monocromático, e a $\Upsilon.\rho$ no caso policromático específico descrito acima.

Este é o modelo físico detalhado de um fotocondutor, que pode ser usado para projetá-lo com um comportamento desejado.

3.1.3 Construção de modelo de projeto para o sistema fotoajustável

Como discutido anteriormente na seção 2.6, o sistema fotovoltaico fotoajustável consiste em conectar um fotocondutor específico previamente projetado a um sistema fotovoltaico tradicional, de forma a manter a tensão e a corrente de operação de uma carga estável, mesmo com alguma variação na iluminação desse sistema. Portanto, a fotoajustabilidade desse sistema está fundamentada no projeto desse fotocondutor, ou seja, o desempenho do sistema fotoajustável está ligado ao desempenho do fotocondutor utilizado.

O percurso para o seu projeto consiste inicialmente na obtenção de um fotocondutor denominado ideal: esse fotocondutor sempre garante a estabilidade do sistema fotoajustável na faixa de irradiância definida, com erro nulo; contudo ele não é necessariamente possível de ser produzido por métodos de fabricação convencionais ou limitações dos materiais utilizados em sua confecção.

A partir da obtenção do fotocondutor ideal, podemos definir um fotocondutor que seja possível de ser fabricado, e que tenha uma curva que se aproxime do fotocondutor ideal: esse chamamos fotocondutor real. Esse fotocondutor não mantém o ponto de operação perfeitamente estabilizado em toda a faixa de irradiância, sendo necessário a verificação de sua viabilidade, ou definição de seus limites de operação (que são mais restritos que o fotocondutor ideal).

Muitos materiais e técnicas sofisticadas de fabricação de dispositivos estão disponíveis mas não são atualmente empregados na fabricação de fotocondutores comerciais atualmente no mercado, cujos requisitos de aplicação são mais relaxados, logo tolerando o uso de técnicas de baixo custo e baixa reprodutibilidade de parâmetros de desempenho. Logo, um fotocondutor comercial já disponível, seja discreto ou em associação, terá chances limitadas de apresentar uma curva de resposta à iluminação que se adeque à curva demandada por um dado sistema fotoajustável. Entretanto, à despeito de viabilidade econômica e de escala, se desejado, é real a possibilidade de se empregar um dado material e um processo compatível para a fabricação de um novo elemento que possa melhor atender à curva pretendida.

O fotocondutor real será entendido neste texto como aquele que é passível de fabricação com materiais semicondutores e técnicas de fabricação existentes, à exemplo de

processos utilizados em microeletrônica. As seções seguintes detalham a metodologia de projeto do sistema fotoajustável.

3.1.3.1 Obtenção da curva característica do fotocondutor ideal

Para se obter a curva característica do fotocondutor ideal, ou seja, aquele que nos garante o funcionamento perfeito do sistema fotoajustável, é necessário obter os parâmetros do dispositivo fotovoltaico $(I_{01}, I_{02}, m_1, m_2, R_s \in R_p)$ e as condições de funcionamento: variação da irradiância, temperatura e o ponto de operação desejado (os valores de tensão e corrente indicados pelo ponto de operação escolhido devem ser possíveis de ser obtidos das curvas I-V da faixa de irradiância definida), podendo ser o ponto de máxima potência ou qualquer outro.

Portanto, a equação 2.39 deve ser resolvida para R_{FC} para vários valores de fotocorrente, que são dependentes da irradiância, mantendo a tensão e a corrente fixos no ponto de operação nominal. Isso nos permite descobrir como deve ser a variação de resistência do nosso fotocondutor com a irradiância para esse caso específico. Esse processo pode ser melhor contemplado na sequência abaixo:

Para obtenção do fotocondutor ideal, seguiremos o seguinte procedimento:

- 1. Definição das variáveis de entrada: nesse item, inserimos os parâmetros da célula convencional ou fotodiodo $(I_{01}, I_{02}, m_1, m_2, R_s \in R_p)$ e as características do arranjo desejado (número de células em série o efeito das células em paralelo se dá aumentando o valor de I_{ph}). Também definimos uma variação de irradiância (e com isso, uma variação de correntes fotogeradas) e a temperatura nominal.
- Geração das curvas de referência: são geradas as curvas I-V do arranjo convencional (uma curva para cada irradiância de entrada);
- 3. Definição do ponto de operação do sistema fotoajustável: nesse item, definimos sobre qual ponto o arranjo fotoajustável vai operar, ou seja, um ponto de tensão e corrente. Pode ser qualquer ponto, não necessariamente o de máxima potência de uma das curvas I-V - ele só deve necessariamente pertencer a cada curva - no caso de uma curva I-V qualquer não possuir esse ponto (em geral, para irradiâncias mais baixas), o sistema fotoajustável não funcionará para essa irradiância em questão (sendo esse um critério de limitação inferior das irradiâncias);
- 4. Cálculo do fotocondutor: aqui calculamos o fotocondutor ideal para cada curva I-V e ponto de operação escolhido, através da obtenção do valor de R_{FC} em cada uma delas resolvendo a equação 2.39. O conjunto dos resultados obtidos nos dá a curva característica do fotocondutor ideal para esse sistema específico, dentro do intervalo de irradiância e ponto de operação definidos;

5. Obtenção dos parâmetros do fotocondutor: utilizando a recém-gerada curva característica do fotocondutor, podemos obter o valor do parâmetro β através do ajuste desses pontos à equação 2.24.

3.1.3.2 Projeto do fotocondutor real

Geralmente a curva ideal não está relacionada com um fotocondutor real, que possa ser produzido - portanto, devemos encontrar a curva que melhor se ajusta à solução ideal, e que possa ser fabricada utilizando parâmetros geométricos de projeto, materiais fotocondutivos reais e restrições de fabricação (como as regras de projeto de uma empresa que fabrica circuitos integrados).

Diferente do fotocondutor ideal, um fotocondutor real apresenta uma resistência máxima limitada (ou seja, sua resistência de escuro R_0) devido às propriedades do material empregado na sua fabricação. A figura 60 mostra a resposta de fotocondutores reais, com diferentes resistências de escuro, em comparação com o fotocondutor ideal.

Figura 60 – Curvas de resistência dos fotocondutores (R_{FC}) para os casos ideal e real. Figura produzida pelo autor

É possível observar que quanto menor o valor da resistência de escuro R_0 do fotocondutor real, mais distante a sua curva ficará da curva ideal, especialmente para valores menores de irradiância. Se o desvio máximo tolerado entre a curva real e a ideal for de 1%, o menor valor possível para operar o sistema fotoajustável seria 35 W/m^2 . Esse valor varia com a escolha do ponto de operação na curva I-V do sistema fotovoltaico.

É importante enfatizar que o ponto de operação escolhido deve estar na curva I-V referente ao valor mínimo esperado de irradiância do sistema. Qualquer valor de irradiância menor que esse resulta em curvas I-V que não interceptam o ponto de operação, mesmo em um arranjo tradicional, nem seu equivalente fotoajustável. Nesses casos, o valor de resistência necessitaria possuir um valor infinito, que não é praticável, exceto em um circuito aberto.

Acima de aproximadamente 20 W/m^2 , o comportamento do fotocondutor converge para o apresentado pelo fotocondutor ideal. O limite superior é definido pela máxima irradiância da fonte de luz e pela máxima potência possível de ser dissipada pelo fotocondutor, ou seja, sua máxima capacidade de drenar corrente sem ser danificado. A potência se relaciona com a relação geométrica w/l do dispositivo. Para uma mesma densidade de corrente, um valor maior de w permite um valor maior de corrente fluindo através dele.

3.1.4 Impacto térmico

Como apresentado na subseção 2.5.3, variações de temperatura afetam o funcionamento do sistema fotoajustável, com cada componente do arranjo sendo afetado de uma certa forma. A célula solar/fotodiodo sofre com a queda em seu desempenho na geração de energia, já que um aumento de temperatura reduz a potência gerada, mesmo com um pequeno aumento na corrente fotogerada (devido à redução de E_g , que aumenta a densidade de portadores fotogerados nas bandas de condução e valência), mas com uma significativa redução na tensão de saída (que é diminuída pela redução na mobilidade e no tempo de vida e aumento na concentração de portadores intrínsecos, que consequentemente aumenta as correntes de saturação reversa – quanto menor a razão entre I_{ph} e I_{01}/I_{02} , menor a tensão de saída).

O comportamento do fotocondutor no aumento de temperatura dependerá da dopagem do material utilizado em sua confecção: como discutido nas subseções 2.1.5 e 2.1.6, um fotocondutor baseado em um semicondutor intrínseco, terá sua resistividade diminuída, assim como sua resistência, pois o aumento de temperatura reduzirá levemente a mobilidade mas aumentará significantemente a concentração de portadores intrínsecos, diminuindo assim sua resistividade.

Já o fotocondutor constituído de um semicondutor dopado apresentará um comportamento diferente: um dispositivo semicondutor funcionando na região extrínseca, ao ser submetido a um aumento de temperatura tem sua resistência aumentada, pois há uma queda na mobilidade sem o aumento na concentração dos portadores, que estão fixos de acordo com a densidade de dopante utilizada.

3.2 Atividades experimentais

Para realizarmos ensaios experimentais e caracterizações, precisamos expor nossas células, painéis, fotodiodos e fotocondutores a diferentes condições de iluminação. Para tal, podemos realizar ensaios ao ar livre, submetendo o dispositivo à iluminação natural, ou utilizando simuladores de iluminação. Entretanto, cada tipo de ensaio tem suas próprias limitações, inclusive sobre o dispositivo a ser verificado: um dispositivo pequeno, como um microchip pode não suportar as intensidades luminosas de um ensaio ao ar livre, assim como um simulador pode não permitir o ensaio de um painel convencional, por causa de seu tamanho. Portanto, para cada tipo de ensaio, devemos utilizar um equipamento de exposição e medição que satisfaça essas limitações.

Para ensaios com painéis ao ar livre, utilizamos o traçador de curvas PVA-600, da Solmetric, que está detalhado no Apêndice B, seção B.1; para experimentos com células solares em laboratório, utilizamos o simulador solar SOLSIM, como indicado no Apêndice B, seção B.2. Mas devido às limitações desses equipamentos, projetamos um medidor próprio com características semelhantes ao simulador SOLSIM, mas permitindo um maior controle e flexibilidade dos experimentos, ideal para a caracterização de células solares, fotodiodos discretos e integrados ou fotocondutores em diferentes irradiâncias e espectros luminosos.

3.2.1 Construção e caracterização do simulador de iluminação

O SOLSIM (apresentado em B.2) é um equipamento muito interessante na caracterização de células solares, mas possui algumas limitações: um pequeno espaço físico para caracterização, permitindo somente o ensaio com células de pequenas dimensões; ele também não permite uma grande variação de sua irradiância, pois seu sistema de iluminação é constituído de diversas lâmpadas diferentes controladas por tensão, mas devido à natureza de algumas das lâmpadas utilizadas, tensões de operação fora do nominal acarretam o desligamento de algumas delas, modificando o espectro da luz incidente.

Além disso, para caracterização de fotocondutores comerciais, a fonte luminosa utilizada pelos fabricantes não é a luz solar, mas de uma lâmpada incandescente ou halógena. Devido a esses fatores, construímos um segundo simulador luminoso, montado em uma caixa de madeira de dimensões 60x60x200 cm. Esse simulador foi projetado para ser multi-função, através da utilização de diversas fontes luminosas de forma independente ou conjunta.

Figura 61 – Lâmpada mista de 500 W. Fonte: (CENTERFERTIN, 2016)

O primeiro sistema luminoso recebido por esse simulador foram duas lâmpadas mistas (vapor de mercúrio e incandescente) de 500 W (220V) da empresa Brasfort (padrão E40), como mostrado na figura 61. A temperatura de cor dessas lâmpadas é de 4000 K, e seu fluxo luminoso, 12000 lúmens. O índice de reprodução de cores está na classe C (40-59) (CENTERFERTIN, 2016).

Figura 62 – Distribuição espectral da lâmpada mista de 500 W. Fonte: (OSRAM GMBH, 2013)

Entretanto, essa lâmpada não pode ser dimerizada, impossibilitando a variação de irradiância através da variação de tensão (essa variação pode ser realizada pela variação da distância entre a amostra e a fonte luminosa, mas é uma tarefa que se mostra complicada e imprecisa). O espectro dessa lâmpada pode ser observado na figura 62.

Figura 63 – Lâmpada halógena tubular (esquerda) e refletor halógeno (direita). Fonte: (CENTERFERTIN, 2016)

Em seguida, o sistema recebeu uma atualização através da inserção de duas lâmpadas halógenas de 1000 W cada uma. Uma dessas lâmpadas é tubular (envelope duplo) e montada em soquete, exibindo uma irradiação dispersiva de luz, enquanto que a outra é montada dentro de um refletor de jardim, de modo a focalizar a luz em uma área sob ela. As lâmpadas halógenas do sistema podem ser visualizadas na figura 63.

Um *dimmer* foi instalado para controle da variação da intensidade luminosa dessas lâmpadas, assim como um voltímetro para visualização da sua tensão, permitindo a caracterização de fotocondutores e células. O simulador ainda recebeu um sistema de prateleiras, para uma variação da distância entre a fonte luminosa e o dispositivo medido. Podemos observar o equipamento montado na figura 64.

Figura 64 – Simulador luminoso construído. Fonte: (FACURY, 2017) (adaptada)

Para os ensaios desse trabalho, o simulador foi calibrado utilizando a lâmpada halógena no refletor, utilizando o medidor de irradiância MES-100 e o luxímetro LD-200 (indicados no apêndice B, seção B.3), observando-se a tensão medida no *dimmer* e os valores observados nos medidores. Os dados estão apresentados na tabela 7:

Tensão (V)	Irradiância (W/m^2)	Iluminância (lux)
0	0	0
15,5	4,5	10
15,8	8,5	30
18,0	26,0	50
19,4	32,0	70
21,0	40,0	100
$23,\!5$	50,0	150
25,0	62,0	200
27,0	75,0	250
30,0	95,0	500
35,0	140	730
40,0	180	1.070
45,0	225	1.640
50,0	260	2.250
55,0	325	3.050
60,0	370	4.000
65,0	465	5.050
70,0	510	7.800
80,0	620	10.820
90,0	735	14.930
100,0	860	18.850
110,0	960	21.500
120,0	1.080	25.000
130,0	1.220	29.900
140,0	1.355	35.600
150,0	1.485	41.200
160,0	1.615	46.200
170,0	1.735	51.000
180,0	1.850	55.200
190,0	1.940	59.000
200,0	2.020	62.500
210,0	2.065	65.000

Tabela 7 – Tabela de calibragem do simulador de iluminação

Fonte: Medições realizadas pelo autor em conjunto com (FACURY, 2017)

A incerteza da tensão é \pm 0,1V na escala até 200V e \pm 1V para a escala de 750V; a incerteza da medição da irradiância é \pm 0,1 W/m^2 na escala de 100 W/m^2 , indo para 1 W/m^2 para a escala de 1000 W/m^2 ; e por último, a escala da iluminância é de \pm 3,5% na medição de até 10000 lux e \pm 5,0% nas medições acima de 10000 lux.

Como projeto futuro, queremos evoluir ainda mais esse simulador de iluminação, conferindo a ele um novo gabinete metálico, pois há o risco de incêndio do corpo de madeira quando estiver funcionando em altas intensidades de luz por muito tempo, assim como a montagem de outros tipos de iluminação, como uma matriz de *LED*'s de potência (RGB,

para análise em diferentes cores), um sistema de controle de temperatura, dentre outras.

3.2.2 Caracterização de fotocondutores comerciais

Utilizando-se do simulador de iluminação construído no item 3.2.1, fomos capazes de verificar o comportamento de fotocondutores comerciais para diversas situações de iluminação, e verificar sua viabilidade para a construção de sistemas fotoajustáveis discretos, utilizando células e painéis convencionais em conjunto com esses fotocondutores (CARVALHO, 2015a).

O nosso conjunto de fotocondutores de teste está descrito no anexo A, de onde escolhemos aleatoriamente 8 amostras de cada modelo (cada modelo indica a faixa de variação de resistência de cada componennte em 10 lux, mínimo e máximo). Aqui observamos os modelos e suas respectivas faixas: DSD0204 (2 a 4 $k\Omega$), DSD0407 (4 a 7 $k\Omega$), DSD0712 (7 a 12 $k\Omega$), DSD1220 (12 a 20 $k\Omega$), DSD2040 (20 a 40 $k\Omega$) e DSD4060 (40 a 60 $k\Omega$). A figura 65 mostra as amostras escolhidas montadas em uma matriz de contatos para caracterização posterior.

Figura 65 – Fotocondutores escolhidos conectados à matriz de contatos. Fonte: (FACURY, 2017)

As amostras foram caracterizadas no simulador luminoso, utilizando a lâmpada halógena com refletor, sendo submetidas às iluminâncias 0 (para a obtenção da resistência de escuro, que é obtida cobrindo-se o dispositivo), 10, 50, 100, 200 e 500 lux, e suas respectivas resistências sendo medidas com o *Source-Meter* 2612B (descrito no anexo B, seção B.4).

Uma vez percebido que as resistências dos fotocondutores medidos não se encontravam na faixa nominal (valor de resistência em 10 lux diferente do informado pela embalagem), passamos a agrupá-los de duas maneiras:

O primeiro agrupamento, chamado de Grupo 1, consistiu na determinação de seis faixas arbitrárias de resistências para a iluminância de 10 lux, e a colocação de cada um dos 48 fotocondutores nessas faixas. curvas de mesma cor representam fotocondutores pertencentes a uma mesma faixa. Suas curvas características podem ser visualizadas na figura 66:

Figura 66 – Curva característica dos fotocondutores do Grupo 1. Fonte: (FACURY, 2017)

O segundo agrupamento mantém os fotocondutores nas faixas definidas pelo fabricante, desconsiderando as discrepâncias dos valores medidos. Como não iremos trabalhar com esse agrupamento, seus resultados estarão no anexo C.1.

Voltando ao grupo 1, tomamos a curva média de cada faixa de valores, apresentadas na figura 67.

Figura 67 – Médias das curvas características de cada faixa do Grupo 1. Fonte: Figura produzida pelo autor

Na figura 68 podemos ver as condutâncias para cada faixa.

Figura 68 – Médias das curvas características de cada faixa do Grupo 1. Fonte: Figura produzida pelo autor

De posse dessas curvas médias, podemos obter os parâmetros de cada faixa, assim como o desvio padrão das amostras em cada uma delas, como mostrado na tabela 8:

Número da Faixa	1	2	3	4	5	6
Valor	$0\text{-}2\mathrm{k}\Omega$	$2\text{-}4\mathrm{k}\Omega$	4-10k Ω	10-20k Ω	20-40k Ω	$>40 \mathrm{k}\Omega$
Desvio Padrão (Ω)	202,3	182,7	791,2	1294,2	4130,7	11701,1
R_0 Medido $(M\Omega)$	0,003	0,202	1,048	$1,\!341$	2,560	7,037
R_0 Fabricante $(M\Omega)$	NON	>0,1	>0,5	>3,0	>3,0	>3,0
β Calculado (S/lux)	$2,70.10^{-4}$	$1, 14.10^{-4}$	$2,97.10^{-5}$	$2,91.10^{-5}$	$1,23.10^{-5}$	$5,65.10^{-6}$
γ Calculado	0,370	$0,\!491$	0,529	$0,\!416$	0,468	$0,\!451$
γ Fabricante	NON	$0,\!64$	$0,\!8$	$0,\!83$	0,9	0,96
Diferença γ	NON	$23{,}31\%$	$33,\!88\%$	$49{,}88\%$	$48,\!06\%$	$53,\!06\%$

Tabela 8 – Parâmetros obtidos dos fotocondutores comerciais: medição e fabricante

Fontes: Parâmetros calculados pelo autor; medições em conjunto com (FACURY, 2017); dados do fabricante: (DSD, 2006)

Como podemos observar, a dispersão entre os parâmetros indicados pelo fabricante e os valores medidos indicam uma grande variabilidade entre as amostras utilizadas dentro de cada faixa, mesmo com a reclassificação, como podemos ver pelo desvio padrão de cada uma delas. Como seria esperado, essa dispersão é maior nas faixas mais altas, que englobam maiores valores de resistência, mas os parâmetros obtidos nessas faixas destoaram significantemente aos valores esperados.

O valor de resistência de escuro R_0 segue o que foi dito pelo fabricante nas amostras das faixas 2 e 3, lembrando que as faixas 1 e 6 não são disponibilizadas pelo fabricante, sendo essas fruto da reclassificação, embora a faixa 6 assuma os dados de fabricante das amostras DSD4060. As faixas 4 e 5 apresentam R_0 menor que o indicado pelo fabricante, indicando que há uma dificuldade no controle de fabricação das amostras dessas faixas. Essa grandeza é importante para a fotoajustabilidade, pois valores maiores de R_0 permitem uma maior excursão de irradiâncias para o sistema fotoajustável.

O fator de variação γ para todas as faixas foi bem menor que o esperado, mesmo nas faixas de maior resistência, chegando a mais de 50% menor para a faixa 6, o que indica uma redução significativa na taxa de decaimento da resistência com a iluminação, impactando a operação em iluminações mais altas, que demandam resistências mais baixas do fotocondutor, colocando o ponto de operação em uma tensão e corrente mais altas que o desejado.

Esses resultados demonstram uma maior dificuldade na escolha de fotocondutores comerciais de CdS específicos para sistemas fotoajustáveis, que demandam uma maior precisão de operação.

3.2.3 Caracterização do chip

Para melhor compreensão de sistemas fotoajustáveis em circuitos integrados, caracterizaremos um *microchip* que possui as estruturas que discutimos nesse trabalho. Esse *chip* é definido como 805b, e foi projetado pelo professor Davies William de Lima Monteiro, durante o seu doutorado na Universidade Técnica de Delft nos Países Baixos, em dezembro de 1998.

Esse chip foi desenvolvido utilizando o processo CMOS 1.6 μm (*n-well, single-polySi-layer, double-metal-layer, LOCOS*) do DIMES (*Delft Institute for Microelectronics and Sub-micron Technology*), com diversas estruturas de teste para a realização de estudos em detectores de frente de onda integrados, estruturas essas que medem aberrações em uma frente de onda óptica, utilizando sensores ópticos de posição (PSD - Optical position-sensitive detectors) baseados em quadricélulas (MONTEIRO, 2002; SALLES; OLIVEIRA; MONTEIRO, 2009).

A figura 69 mostra o encapsulamento do chip (imagem superior) e uma imagem do substrato aumentado por microscópio (imagem inferior).

Figura 69 – Circuito integrado 805b (acima) e imagem do substrato ampliada (abaixo). Fonte: (FACURY, 2017)

Como mostrado na figura 70, o chip contém cinco estruturas: três fotocondutores de silício policristalino (estruturas segmentadas no centro do chip, indicados por 1, 2 e 3), um fotodiodo (quadrado à esquerda, indicado por 4) e uma quadricélula (indicado por 5). Nesse trabalho, realizaremos ensaios para caracterização do fotodiodo e dos fotocondutores.

Figura 70 – Diagrama esquemático e pinagem do circuito integrado 805b. Fonte: (FACURY, 2017)

3.2.3.1 Caracterização do fotodiodo

O fotodiodo presente no chip possui $3,0 \times 3,0 \ mm^2$ de área. Para caracterizálo, utilizamos o analisador de parâmetros B1505A (equipamento apresentado no anexo B.4), que possui testes pré-definidos para a obtenção das curvas I-V e parâmetros desses dispositivos. Os ensaios foram executados em laboratório, com condições de iluminação muito bem controladas e com uma temperatura ambiente de 20 °C.

O primeiro teste a ser executado foi a polarização direta (*Bias Forward Diode Test*), onde aplicamos uma tensão contínua no nosso fotodiodo, protegido da luz, que se

comporta como um diodo comum, e medimos a corrente que passa por ele; incrementamos a tensão em cada passo e vamos construindo a sua curva I-V equivalente. Nesse teste em específico, utilizamos uma variação de tensão entre 0 V a 1 V em incrementos de 0,05 V. A resistência dos cabos de conexão também foi medida, obtendo-se 0,28 Ω , valor importante pois tem grande impacto na resistência série, sendo necessário incluí-la no modelo. Para a resistência paralela, consideramos um valor típico para fotodiodos integrados, que fica na faixa de centenas de $k\Omega$ (escolhemos 100 $k\Omega$). A curva I-V obtida pode ser observada na figura 71.

Figura 71 – Curva I-V do fotodiodo - polarização direta. Fonte: (FACURY, 2017)

Em seguida, executamos o teste de polarização reversa (*Bias Backward Diode Test*, também no escuro, onde a variação de tensão ficou entre 0 e -3 V, também com um passo de 0,05 V. Obtivemos o gráfico da figura 72.

Utilizando as curvas obtidas desses dois testes, podemos ajustá-los aos modelos disponíveis (2.3.5), de forma a obter os parâmetros do fotodiodo. A curva de polarização reversa nos dá a corrente de saturação reversa de recombinação, já que nessa condição a corrente total é a soma das correntes de saturação reversa de difusão e recombinação, e já que a corrente de recombinação é significantemente maior, ela domina a corrente reversa total.

Ao ajustar os dados da polarização direta ao modelo de diodo ideal (ou ao modelo de duas exponenciais utilizando o valor obtido para a corrente de saturação reversa de recombinação), considerando assim somente a difusão e desconsiderando o efeito da resistência série, podemos obter o valor da corrente de saturação reversa de difusão, que domina a polarização direta. Os parâmetros obtidos estão apresentados na tabela 9.

Corrente de saturação reversa de difusão	$2,14\pm 0,01\times 10^{-13}\;A$
Corrente de saturação reversa de recombinação	$3,55\pm0,01\times10^{-9}~A$

Fonte: Dados obtidos pelo autor

Por último, utilizamos o simulador solar com lâmpada halógena para levantar as curvas I-V do fotodiodo submetido à diversas iluminâncias, indo de 10 lux a 1000 lux. Com isso, executamos o teste de varredura DC ($DC \ sweep$), onde determinamos uma varredura de -1 a 1 V (com passos de 0,02 V), embora o comportamento em modo fotovoltaico

opere em tensões positivas. O teste força uma tensão nos terminais de saída, e com isso, verificamos a corrente equivalente para cada iluminação (figura 73).

Com esses dados, podemos verificar a corrente fotogerada I_{ph} para cada iluminância, sendo essa a corrente do dispositivo quando a tensão é igual a 0 V. Também podemos obter a máxima potência gerada para cada iluminância a partir dos parâmetros extraídos. A relação desses dados está indicada na tabela 10.

Iluminância (lux)	Corrente fotogerada (A)	Potência Máxima Gerada (W)
10	$3,142 \times 10^{-6}$	$6,713 \times 10^{-7}$
30	$8,422 \times 10^{-6}$	$2,154 \times 10^{-6}$
50	$9,955 \times 10^{-6}$	$2,621 \times 10^{-6}$
100	$2,072 \times 10^{-5}$	6.101×10^{-6}
200	$3,045 \times 10^{-5}$	9.469×10^{-5}
500	$5,518 \times 10^{-5}$	1.855×10^{-5}
1000	$8,518 \times 10^{-5}$	3.017×10^{-5}

Tabela 10 – Corrente fotogerada em cada iluminância

Fonte: Dados obtidos pelo autor

Esses resultados são muito interessantes para aplicações e dispositivos onde os sistemas fotoajustáveis são aplicáveis, pois indicam a magnitude da potência possível de ser extraída de um fotodiodo integrado submetido a uma iluminação de interiores residenciais.

3.2.3.2 Caracterização dos fotocondutores

Os fotocondutores do chip foram manufaturados com silício policristalino, com resistência de folha igual a $25 \pm 6 \ \Omega/\Box$. O primeiro fotocondutor foi construído de forma segmentada, com onze elementos (um elemento com 5 $\mu m \ge 1600 \ \mu m$ e outros dez com 5 $\mu m \ge 100 \ \mu m$) totalizando em 5 μm de largura e 2600 μm de comprimento total (indicado por 1 na figura); o segundo possui sete segmentos (um de 5 $\mu m \ge 900 \ \mu m$ e outros seis de 5 $\mu m \ge 100 \ \mu m$), com 5 μm de largura e 1500 μm de comprimento (indicado por 2); por último, um terceiro fotocondutor com 5 segmentos (um com 5 $\mu m \ge 600 \ \mu m$ e outros quatro com 5 $\mu m \ge 100 \ \mu m$) resultando em 5 μm de largura e 1000 μm de comprimento total (indicado por 2); por último, um terceiro fotocondutor com 5 μm de largura e 1000 μm de comprimento total (indicado por 3 na figura). Os denominaremos por LDR1, LDR2 e LDR3.

Utilizando como referência um processo CMOS AMS de 0,8 μm , que apresenta uma espessura de filme de polissilício comparável ao processo de 1,6 μm utilizado no chip caracterizado, temos uma densidade de corrente por unidade de largura da trilha fotocondutora de 0,5 mA/micron, que multiplicado pela largura do dispositivo, nos dá a corrente máxima suportada pelos fotocondutores do chip, que possuem 5 μm de largura, resultando em uma corrente máxima de 2,5 mA.

A caracterização foi feita no simulador solar, utilizando a lâmpada halógena com as medições sendo feitas pelo *source-meter* 2612B. Para evitar qualquer dano ao chip, a iluminância foi limitada a 500 lux. Infelizmente o fotocondutor LDR1 apresentou problemas na medição e, portanto, ele não será avaliado. As curvas características de cada fotocondutor estão apresentadas na figura 74.

Figura 74 – Curvas características dos fotocondutores presentes no chip. Fonte: Figura produzida pelo autor

Na figura 75 podemos observar a condutância dos fotocondutores do chip. Observe que as curvas não são retas, indicadas pelas extensões tracejadas, como esperado pelo nosso modelo; isso acontece devido à saturação da mobilidade dos portadores, que ocorre quando os fotocondutores do chip são submetidos à irradiâncias mais altas, e que impacta na condutividade, que não é mais constante. Esse fenômeno não é previsto pelo nosso modelo (SZE, 2001).

Figura 75 – Curvas de condutância por iluminância dos fotocondutores presentes no chip. Fonte: Figura produzida pelo autor

De posse desses dados, podemos ajustar as curvas no modelo de fotocondutor e obter os parâmetros de cada fotocondutor, como apresentado na tabela 11:

/m 1 1 1 · 1 ·	1 T		1 . • 1		· · ~	1	c			1	1	•
		Jaramotrog	obtidog	no	onrootorizooo(og t	otoond	11torog	do	0	αn
			ODUIDOS	na	Varacustizavav) (1)	יו פע	OBOUTIN		uo	- U.I	
												r

	LDR2	LDR3
$R_0 \ (k\Omega)$	$124,60 \pm 0,01$	$91,74\pm0,01$
$\beta \ (S/lux)$	$7,258 \pm 0,003 \times 10^{-08}$	$1,333 \pm 0,001 \times 10^{-07}$
γ	$0,301\pm0,001$	$0,467\pm0,001$

Fonte: Dados obtidos pelo autor

Os valores obtidos estão em conformidade com o caso de exemplo a ser apresentado na seção 3.4.3, que estuda o caso de sistema fotoajustável integrado, explicitando assim que o processo utilizado nesse circuito integrado poderia ser empregado na fabricação desses sistemas.

3.3 Simulação

Além do nosso algoritmo criado em Matlab, podemos criar um modelo numérico de previsão e análise utilizando o SPICE ("Simulation Program with Integrated Circuit Emphasis"), uma ferramenta de simulação de circuitos analógicos de uso geral, que através da instanciação de elementos de circuito básicos e suas conexões, podemos reproduzir o comportamento de um dispositivo a nível elétrico.

O SPICE, em seu estado natural, constitui-se de uma linguagem de descrição de circuitos de código aberto que se baseia no princípio de análise nodal, e de acordo com a configuração do circuito, ele resolve as equações diferenciais referentes a cada um dos nós e ramos, obtendo assim os valores de tensão e corrente em todo o circuito. Ele nos permite executar diversos tipos de simulação, como a análise AC, DC, transiente, curva de transferência DC, análise de Fourier (análise em frequência), análise paramétrica, análise de ruído, dentre outros.

A linguagem por si só já é bem poderosa, mas podemos encontrar diversas suítes de aplicativos que são baseados em SPICE, mas que também trazem interfaces gráficas para facilitar a implementação dos circuitos ou ainda bibliotecas de diversos dispositivos comerciais para uma maior fidelidade na simulação. Como exemplo desses programas temos o Cadence PSPICE, Analog Devices LTSpice, Synopsys HSPICE, Freescale Mica, Texas Instruments Tina-TI, gEDA, ngSpice, etc (RABAEY, 2012).

3.3.1 Modelo de Simulação para fotovoltaicos

Utilizando a metodologia apresentada em Carvalho (2014), podemos empregar o SPICE na simulação de sistemas fotovoltaicos, sejam eles baseados em fotodiodos, células ou painéis fotovoltaicos - partir da caracterização elétrica dos dispositivos reais (subseção 2.2.1.2), e a aplicação desses dados obtidos nos modelos de circuito – e com isso, a obtenção da curva I-V característica desse sistema em particular.

O modelo de simulação mais simples de sistema fotovoltaico é o apresentado na figura 76, podendo abordar o modelo de um ou dois diodos (apresentados na subseção 2.3.5). Ele determina um sistema estático pré-determinado que somente leva em consideração as grandezas elétricas. A corrente fotogerada desse sistema está representada na fonte de corrente contínua do circuito. Executando uma simulação paramétrica (na forma de uma carga resistiva variável conectada nos terminais do sistema fotovoltaico), teremos como resultado a curva I-V referente a esse caso específico.

Figura 76 – Diagrama esquemático de uma célula solar no SPICE (Orcad® PSPICE Schematics).

Também é possível a construção de modelos de sistemas fotovoltaicos mais complexos, que permitem um maior detalhamento nas características físicas dos dispositivos do sistema, assim como as condições ambientais nas quais o sistema está inserido, fornecendo assim uma maior flexibilidade no espaço de operação desse sistema.

Na figura 77, observamos um modelo de sistema que leva em consideração a modelagem um pouco mais detalhada da fonte de corrente fotogerada I_{ph} , baseado em um modelo SPICE apresentado em Castañer e Silvestre (2002).

Figura 77 – Diagrama esquemático de I_{ph} (Orcad® PSPICE Schematics).

Ela implementa na forma de circuito elétrico uma combinação das equações 2.17 e 2.18 (subseção 2.1.12), mas considerando um valor médio para a eficiência quântica interna, definida pela equação 3.52:

$$I_{ph} = \frac{qA(1-R)IQE}{hc} \int_{\lambda} I_{\lambda}\lambda d\lambda$$
(3.52)

As variáveis que impactam na corrente fotogerada são representadas como fontes de tensão no circuito: a transmitância (ou 1 - R, R sendo igual a Reflectância média, indicada pela a fonte V2), a eficiência quântica interna (IQE, a fonte V3) e a área da célula (fonte V1). As grandezas de valor constante são representadas por fontes de tensão DC; a irradiância espectral e o comprimento de onda são inseridos como fonte de tensão PWL-File (indicado na figura 77 como as fontes V12 e V13), cuja forma de onda pode ser definida por um conjunto de pontos (inseridos através de um arquivo). Contudo, o SPICE não suporta a unidade da distribuição espectral ($[W/m^2 \cdot \mu m]$). Portanto, essa grandeza apresentará um gráfico equivalente de Tensão versus Tempo.

As etapas de multiplicação são efetuadas pelo dispositivo EMULT (dispositivo cuja saída é o produto de suas entradas). A integral foi calculada utilizando o item EVALUE (dispositivo que implementa uma equação de acordo com sua entrada, sendo sua entrada e saída na forma de tensão). A função utilizada para integração é a sdt(). Ao integrarmos o espectro utilizado, a irradiância resultará em 962, 5 e não 1000 W/m^2 como esperado para uma condição STC. Para contornar essa diferença, utilizamos uma etapa de normalização no dispositivo (apresentado na equação como uma constante multiplicativa). Para o cálculo final da corrente I_{ph} , utilizamos o dispositivo GVALUE, que como o EVALUE, implementa uma equação, mas sua saída se dá na forma de corrente. A constante multiplicativa que aparece na equação do dispositivo E3 são as constantes físicas que aparecem na equação 3.52 (q/hc). Variando essas grandezas, conseguimos um modelo mais rico de previsão, pois podemos simular condições adversas como sombreamento (redução na intensidade luminosa), variação da fonte luminosa (do sol para uma lâmpada, por exemplo), dentre outras.

O modelo pode ser ainda mais detalhado, através da implementação do modelo geral de fotodiodo/célula (seção 3.1.1) em um modelo de circuito, permitindo inserir informações do material utilizado, informações do processo de fabricação, aspectos geométricos mais detalhados, impacto térmico, parâmetros de dispositivos parasitas mais precisos, etc.

3.3.2 Modelo de Simulação para fotocondutores

Como o SPICE não provê modelos de fotocondutores, fotorresistências ou fotocélulas para simulação, é necessário o desenvolvimento de um modelo próprio. Para tal, utilizaremos um elemento muito interessante do simulador: o subcircuito, que é um elemento que encapsula diversos outros, apresentando somente os pinos de entrada e saída. Dentro desse componente é possível implementar circuitos complexos, com diversos outros dispositivos.

Figura 78 – Subcircuito do SPICE representando um fotocondutor.

O modelo de simulação mais simples para um fotocondutor é o modelo de duas resistências em paralelo: uma resistência de escuro, ou seja, o valor da resistência do fotocondutor na ausência de luz, e uma resistência variável, que possui um valor que tende ao infinito para um ambiente sem iluminação, mas que decai com o aumento dessa, passando a dominar passando a dominar a resistência equivalente para altos valores de irradiância I_{rr} (ou iluminância Φ).

Essa é uma abordagem puramente comportamental, somente representada por grandezas elétricas, e pode ser descrita pela relação 3.53, derivada da equação 2.24:

$$R_{FC}(\Phi) = \frac{1}{G_0 + G_V} \approx \frac{R_0 R_V}{R_0 + R_V} \approx \frac{R_0 (\beta \Phi)^{-1}}{R_0 + (\beta \Phi)^{-1}}$$
(3.53)

onde $R_0 = 1/G_0$ e $R_V = 1/G_V$, e os parâmetros R_0 e β obtidos de parâmetros extraídos da caracterização do fotocondutor real. Essa relação é uma aproximação pois as condutâncias de escuro e variável não podem ser separadas.

Observando a figura 78, temos três componentes: as fontes de tensão Vcontrol e Vsource e o elemento U1, que é o próprio fotocondutor, A fonte Vsource, conectada nos pinos 1 e 2 do subcircuito, tem como função polarizar o componente (podendo ser substituída por qualquer circuito externo polarizador), e a fonte Vcontrol, conectada no pino 3, faz o papel de irradiância (sendo sua equivalência $1V = 1W/m^2$). Executando uma simulação paramétrica, onde variamos a fonte Vcontrol, obtemos a curva característica do fotocondutor.

O nosso subcircuito no SPICE apresentado na figura 79 será constituído internamente de um resistor comum, que será a resistência de escuro, conectado em paralelo a uma fonte de corrente controlada por tensão, denominada G-Device no ambiente SPICE. Além de ser uma fonte de corrente controlada, ela também nos permite a implementação de equações matemáticas, que tem como variáveis os pinos de entrada e saída. Portanto utilizamos esse componente para implementarmos a resistência variável.

Figura 79 – Estrutura interna do subcircuito.

A figura 80 mostra um exemplo de comparação entre alguns pontos obtidos de um fotocondutor discreto, sua extrapolação em uma curva analítica e a curva obtida na simulação em SPICE. Podemos observar pelo gráfico que a aproximação utilizada no modelo SPICE é muito boa para os extremos, ou seja, para baixas e altas irradiâncias nessas regiões, há dominância de alguma das duas resistências - regiões onde a separação das condutâncias não afeta significantemente a resistência do fotocondutor. Já a região média apresenta uma incerteza maior devido à incerteza da aproximação escolhida.

Figura 80 – Exemplo de comparação entre os pontos obtidos na caracterização do fotocondutor real (círculos azuis), curva ajustada analiticamente (verde) e curva obtida na simulação SPICE (vermelha).

Fonte: (CARVALHO, 2015b)

Como discutido na simulação de fotovoltaicos, modelos mais detalhados também são possíveis de ser usados, a partir da implementação de um modelo equivalente ao modelo físico de um fotocondutor (apresentado na subseção 3.1.2), que pode variar com um conjunto extenso de parâmetros geométricos, características do material empregado em sua confecção, condições ambientais de operação e até regras de projeto de um processo de fabricação (para fotocondutores microfabricados) (CARVALHO, 2015b).

3.3.3 Modelo de Simulação de sistemas fotoajustáveis

Após o projeto do fotocondutor, podemos simulá-lo no SPICE utilizando uma simulação paramétrica tridimensional, onde variamos a resistência de carga para obtermos a curva I-V, a corrente fotogerada para simular a variação de irradiância e o valor do fotocondutor (essa variação é totalmente dependente da variação da irradiância, assim como a corrente). O circuito a ser utilizado é o mesmo para células e painéis tradicionais, com a adição do fotocondutor, como mostrado na figura 81.

Figura 81 – Circuito fotoajustável para simulação em SPICE. Fonte: (CARVALHO; MONTEIRO, 2009)

3.3.4 Exploração em SPICE

Podemos utilizar a simulação paramétrica do SPICE como método exploratório para verificar a faixa de funcionamento de um sistema fotoajustável particular, sendo muito interessante para verificações preliminares. Para tal, podemos utilizar o circuito da figura 82.

Figura 82 – Circuito utilizado para exploração do funcionamento do SSC no SPICE. Figura produzida pelo autor

Nessa simulação, variamos os valores da corrente I_{ph} , da resistência de carga R_L e do fotocondutor R_{FC} , dentro de limites pré-estabelecidos, sem se importar com valores exatos. Para esse caso específico, variamos a corrente fotogerada entre 3 e 4 A, variando a cada 0,2 A (simulando a variação de irradiância, que impacta nessa corrente), a resistência do fotocondutor entre 1 e 10 Ω (simulando a sua variação com a variação da irradiância) e variamos a resistência de carga entre 10 p Ω e 1 k Ω , variando de forma logarítmica.

Figura 83 – Curva I-RL de uma célula solar acoplada a um fotocondutor. Figura produzida pelo autor

A figura 83 exibe uma curva I-RL de uma célula solar, e as modificações que ela sofre ao conectarmos um fotocondutor em suas extremidades. Dependendo do valor da resistência R_{FC} do fotocondutor, essa curva sofre uma deformação diferente. Quanto menor o valor do fotocondutor, maior a deformação; já quando aumentamos R_{FC} , ele se aproxima da curva I-RL original sem fotocondutor, ou seja, um valor muito alto de R_{FC} não provoca modificações na curva.

A figura 84 mostra um gráfico de um conjunto de curvas I-RL geradas na simulação do circuito apresentado. Por limitações do traçador de gráficos do PSPICE, não foi possível gerar a curva I-V diretamente, mas a curva I-RL satisfaz nosso propósito, exemplificando a combinação de todas as simulações de exploração realizadas, mediante as variações sugeridas.

A figura 85 mostra um detalhamento de um setor do gráfico anterior, para melhor visualização: cada cor representa uma corrente fotogerada específica e cada derivação de mesma cor representa uma curva diferente, que depende do valor da resistência do fotocondutor acoplado, pois a curva é modificada (indicado pelos decaimentos de corrente diferentes em uma mesma cor).

Figura 84 – Curvas I-RL de todos os casos simulados. Figura produzida pelo autor

Podemos utilizar a grade da figura para setorizar diferentes regiões de operação, delimitados por valores de corrente e a resistência de carga (poderia ser tensão, bastando executar uma transformação e remapeamento). Portanto, cada ponto dentro dessas grades representa um ponto de operação. A interseção entre as curvas de cores diferentes em um ponto exibe um ponto possível de operação do sistema fotoajustável; analisando as curvas que se interceptam, verificamos os valores dos fotocondutores associados a elas, de acordo com os valores estipulados na variação do fotocondutor. Com isso, podemos esboçar a faixa de valor necessária de um fotocondutor para que as curvas se interceptem em um ponto determinado.

Figura 85 – Detalhamento de uma região das Curvas I-RL.

3.4 Casos de exemplo

3.4.1 Potência gerada por um fotodiodo integrado

O algoritmo apresentado na seção 3.1.1 nos permite analisar um dispositivo fotovoltaico de acordo com suas características físicas geométricas, condições ambientais, de processo de fabricação, etc. Como exemplificação, a partir dos dados obtidos da caracterização do fotodiodo integrado (3.2.3.1), e também suas características construtivas (presentes em Monteiro (2002)) podemos verificar seu funcionamento para diversas condições. A partir da extrapolação da sua geometria e diferentes condições de iluminação, podemos observar qual é a provável potência que um fotodiodo com essas características é capaz de gerar. A tabela 12 mostra alguns resultados obtidos:

Área do	Luz natural	Halógena	Fluorescente	LED Branca
fotodiodo	(1 sol - AM1.5)	(100W)	(30 W)	Quente (20 W)
$100 \times 100 \ \mu m^2$	1147	10 mW	16 mW	21 mW
$100 \times 100 \ \mu m$	$1 \mu v v$	40 <i>INV</i>	$10 \ mvv$	$\Delta 1 \ \pi VV$
$400 \times 400 \ \mu m^2$	$17 \ \mu W$	$760 \ nW$	$260 \ nW$	$337 \ nW$
$5000 \times 5000 \ \mu m^2$	3 mW	119 μW	$41 \ \mu W$	$53 \ \mu W$

Tabela 12 – Potência gerada por fotodiodos

Fonte: Dados obtidos pelo autor

Esses dados são interessantes para o desenvolvimento de aplicações, sejam sistemas fotovoltaicos tradicionais ou fotoajustáveis, de forma a conectar sistemas consumidores e sistemas de iluminação compatíveis com a energia demandada por esses dispositivos.

3.4.2 Projeto de Sistema fotoajustável - Caso Célula solar fotovoltaica

Para verificação da funcionalidade do algoritmo, executaremos um caso de exemplo. Para tal, utilizaremos uma célula solar fotovoltaica com os seguintes parâmetros e condições ambientais apresentados na tabela 13.

Parâmetro	Valor	Descrição
I_{01}	$10^{-9} A$	Corrente de saturação reversa de difusão
I_{02}	$10^{-6} A$	Corrente de saturação reversa de recombinação
m_1	1	Fator de idealidade de difusão
m_2	2	Fator de idealidade de recombinação
R_s	$1 \ m\Omega$	Resistência série
R_p	$100k\Omega$	Resistência paralela
N	1	Número de células em série
T	300 K	Temperatura
Irr	$1000 - 1100 \ W/m^2$	Faixa de irradiância
I_{ph}	4, 0 - 4, 4 A	Faixa da corrente fotogerada

Tabela 13 – Parâmetros do arranjo de exemplo

Fonte: Parâmetros definidos pelo autor

Figura 86 – Curvas I-V para a faixa de irradiância escolhida.

Figura produzida pelo autor

Inicialmente geramos as curva I-V para a faixa de irradiância definida, como apresentado na figura 86. A curva azul é a que representa o menor valor de irradiância ou corrente fotogerada possível que ainda permita que o sistema fotoajustável funcione adequadamente. Como ponto de operação do sistema fotoajustável, escolhemos $V_{op} = 0, 5 V$ e $I_{op} = 3, 6 A$.

Em seguida, resolvemos a equação 2.39 para o ponto escolhido, de forma a obter qual devem ser os exatos valores de R_{FC} para uma absoluta manutenção do ponto de operação determinado. Observe que o valor de R_{FC} na irradiância de referência tende ao infinito, pois é equivalente à situação sem o fotocondutor conectado.

Ao se acoplar o fotocondutor ideal projetado com as curvas I-V da célula obtemos o sistema fotoajustável, como podemos observar pela convergência das curvas I-V na figura 87 sobre o ponto escolhido anteriormente. Já a curva laranja é a curva P-V desse sistema, que no ponto de operação escolhido, entrega 1, 8 W.

Figura 87 – Curvas I-V e P-V do sistema fotoajustável com fotocondutor ideal. Figura produzida pelo autor

Comparando as curvas I-V obtidas, obtivemos a tabela 19.

Sistema fotovoltaico tradicional						
$Irr [W/m^2]$	$I_{SC} \left[A \right]$	$V_{OC} [V]$	$P_{MAX} [W]$	FF	V_{OP} $[V]$	$I_{OP}\left[A\right]$
1000	4,00	0,571	1,856	0,813	0,505	3,630
1020	4,08	0,571	1,895	0,813	0,508	3,665
1040	4, 16	0,572	1,934	0,813	0,512	3,677
1060	4,24	0,572	1,973	0,814	0,515	3,698
1080	4, 32	0,573	2,012	0,813	0,517	3,734
1100	4,40	0,574	2,051	0,814	0,520	3,743
		Sistema fo	toajustável i	deal		
$Irr [W/m^2]$	$I_{SC} \left[A \right]$	$V_{OC} [V]$	$P_{MAX} [W]$	FF	V_{OP} $[V]$	$I_{OP}\left[A\right]$
1000	4,00	0,570	1,811	0,794	0,5	3, 6
1020	4,08	0,570	1,812	0,779	0,5	3, 6
1040	4, 16	0,569	1,813	0,766	0,5	3, 6
1060	4,24	0,569	1,813	0,751	0,5	3, 6
1080	4, 32	0,569	1,814	0,738	0,5	3, 6
1100	4,40	0,569	1,815	0,724	0,5	3, 6

Tabela 14 – Dados das curvas I-V da célula solar: sistema tradicional e fotoajustável ideal

Fonte: Parâmetros definidos pelo autor

Podemos observar que os valores de V_{OC} são praticamente os mesmos no sistema fotoajustável. Como a corrente de saída está praticamente constante, e I_0 não varia, a tensão de circuito aberto permanece a mesma. A potência máxima também varia pouco, já que as curvas também tendem a convergir, aproximando seus pontos de máxima potência. Já o *fill factor* cai conforme previmos, já que a resistência do fotocondutor funciona como a resistência parasita paralela, e seu valor de resistência reduz com o aumento da irradiância.

Também podemos comparar os pontos de operação definidos por uma carga de 140m Ω , que é a carga específica para o ponto de operação escolhido, para o sistema tradicional e fotoajustável, como mostrado na tabela 15. Um sistema tradicional operando com essa carga apresenta um desvio na corrente de 1,60% e tensão de 1,81% na variação de 1000 para 1020 W/m^2 , chegando a 4,0% nas duas grandezas para 1100 W/m^2 , totalizando um desvio na potência de operação de 16% nessa irradiância.

m 1 1	1 1	α	~	1		1	~	1. 1.	1	c	1		1 .	1 1
Tabola	15 -	Liom	naracao	dog	nontog	d D	onoracao	tradicio	กจเ เ	a ta	toa:	1191910	1 1	COD
rancia	TO	COIL	paracao	uos	pontos	uc	operação.	uadicio	narv	. 10	uoa	usuave	/L L	uca
			1 S		1		د <u>۱</u>				•			

$Irr [W/m^2]$	ΔV_{OP} [%]	ΔI_{OP} [%]
1000	0	0,833
1020	1,60	1,81
1040	2,40	2,14
1060	3,00	2,72
1080	3,40	3,72
1100	4,00	3,9

Fonte: Parâmetros definidos pelo autor

Esse conjunto de valores de resistência do fotocondutor obtidos formam a curva característica do fotocondutor ideal, como mostrado em azul na figura 88, onde R_{FC} está entre 4,405 Ω e 1,019 Ω na irradiância variando entre 1000 W/m^2 e 1100 W/m^2 . A reta laranja nos mostra o consumo do fotocondutor para cada irradiância, onde vemos um máximo de 0,25 W para a irradiância máxima da faixa. Nessa posição, o fotocondutor está drenando uma corrente de 500 mA, aproximadamente 14% da corrente da carga.

Figura 88 – Curva característica do fotocondutor (azul) e potência (laranja). Figura produzida pelo autor

Por último, podemos obter os parâmetros do fotocondutor a partir da curva característica levantada anteriormente, ajustando o modelo analítico do fotocondutor (subseção 2.3.1.3) aos dados obtidos. Nesse exemplo, efetuamos dois ajustes, utilizando a notação de condutância $G_{FC} = 1/R_{FC}$ (obtida a partir da equação 2.24 - manobra matemática realizada para facilitar o trabalho do computador).

A figura 89 nos apresenta ajustes feitos pelo algoritmo do Matlab (função *fit*), onde a curva de cima demostra um ajuste perfeito, porém inviável na prática, pois apresenta um G_0 negativo (que não tem sentido físico). A curva inferior apresenta o melhor ajuste efetuado considerando G_0 fixado em $1 \times 10^6 \Omega$, com o fotocondutor variando sua resistência entre 1,794 e 1,6307 Ω na faixa de irradiância de análise. As curvas se interceptam na irradiância de 1050 W/m^2 , e nas proximidades dessa região a fotoajustabilidade opera bem; entretanto, ao seguirmos para as extremidades, o erro começa a aumentar, e o sistema perde confiabilidade. Um valor maior de R_0 poderia melhorar o ajuste, mas ao pensarmos em um sistema fabricável na prática, um fotocondutor com uma resistência de escuro muito alta pode ser impraticável.

Figura 89 – Ajustes realizados para obtenção dos parâmetros do fotocondutor - ajuste matemático, sem significado físico (acima) e ajuste de acordo com o algoritmo e R_0 fixada (abaixo).

Figura produzida pelo autor

A figura 90 nos mostra as curvas I-V e P-V de um sistema fotoajustável utilizando o fotocondutor real. A convergência das curvas I-V se torna menos precisa, mas ainda próximo do desejado.

Figura 90 – Curvas I-V e P-V do sistema fotoajustável utilizando fotocondutor real. Figura produzida pelo autor

Na tabela 16, podemos observar os dados extraídos das curvas I-V do sistema fotoajustável com o fotocondutor real.

	Sistema fotoajustável real							
Ī	$Irr [W/m^2]$	$I_{SC} [A]$	$V_{OC} [V]$	$P_{MAX} [W]$	FF	V_{OP} $[V]$	$I_{OP}[A]$	
ĺ	1000	4,00	0,569	1,723	0,757	0,489	3,521	
ĺ	1020	4,02	0,569	1,759	0,757	0,494	3,557	
	1040	4, 16	0,570	1,795	0,757	0,498	3,586	
	1060	4,24	0,570	1,831	0,757	0,502	3,614	
	1080	4, 32	0,571	1,867	0,757	0,505	3,636	
ĺ	1100	4,40	0,571	1,903	0,757	0,508	3,658	

Tabela 16 – Dados das curvas I-V da célula solar: sistema fotoajustável real

Fonte: Parâmetros definidos pelo autor

Tabela 17 – Comparação dos pontos de operação: fotoajustável ideal e real

$Irr [W/m^2]$	ΔV_{OP} [%]	ΔI_{OP} [%]
1000	2, 2	2, 19
1020	1, 2	1, 12
1040	0, 4	0, 39
1060	0, 4	0, 39
1080	0,01	0,01
1100	1,60	1,61

Fonte: Parâmetros definidos pelo autor

A tabela 17 exibe a comparação dos pontos de operação do fotocondutor ideal e real. A curva que apresenta o maior desvio é a de 1000 W/m^2 , 2,2% na tensão e 2,19 % na corrente. As outras curvas apresentam desvios menores que 3% do desejado, mostrando que essa abordagem de fotocondutor privilegia as maiores irradiâncias, mas nesse caso, o fotocondutor real está mais próximo do ideal em um ponto intermediário entre as irradiâncias, daí o desvio ser maior nas extremidades. Na irradiância mais alta, o fotocondutor drena uma corrente de 0, 685 A, 19% da corrente da carga, e dissipa 0, 153 Wde potência.

3.4.3 Projeto de Sistema fotoajustável integrado

Aqui apresentamos um caso de estudo para o projeto de um sistema fotovoltaico fotoajustável utilizando um fotodiodo integrado em *microchip* de silício monocristalino CMOS de 14 mm^2 de área. Seus parâmetros relevantes para o projeto, assim como o ponto de operação escolhido estão apresentados na tabela 18.

Parâmetro	Valor	Descrição
<i>I</i> ₀₁	$10^{-12} A$	Corrente de saturação reversa de difusão
I_{02}	$10^{-9} A$	Corrente de saturação reversa de deriva
m_1	1	Fator de idealidade de difusão
m_2	2	Fator de idealidade de deriva
R_s	$0.28 \ \Omega$	Resistência série
R_p	$1M\Omega$	Resistência paralela
N	1	Número de fotodiodos em série
T	300 K	Temperatura
Irr	$0 - 50 W/m^2$	Variação da irradiância
I_{ph}	$0-83 \ \mu A$	Variação da corrente fotogerada
V_{OP}	0.4 V	Tensão de operação
I_{OP}	$20 \ \mu A$	Corrente de operação

Tabela 18 – Parâmetros e condições de operação - fotodiodo integrado

Fonte: Dados definidos pelo autor

Esse chip foi caracterizado para obtenção dos parâmetros elétricos sob condições de escuridão e iluminação de uma lâmpada halógena com intensidade de iluminação variável, como apresentado na seção 3.2.3, que nos permitirá obter as curvas I-V para cada irradiância, como mostrado na figura 91.

Figura 91 – Curvas I-V obtidas da caracterização do microchip. Figura produzida pelo autor

Para iniciarmos o projeto do sistema fotoajustável, o ponto de referência desejado deve ser definido, e sua verificação se ele está presente na curva I-V relativa à menor irradiância esperada para operação. Nesse exemplo, o menor valor de irradiância foi definido como 10 W/m^2 . A escolha do ponto de operação determina o quão longe o alcance das possíveis irradiâncias pode ser estendido e ainda garantindo a convergência das curvas I-V correspondentes para esse ponto. A equação 2.30 é resolvida para diferentes fotocorrentes, cada uma relacionada a diferentes irradiâncias, e se a presença do ponto de operação está presente nessa determinada curva. Com isso, a equação 2.39 deve ser resolvida para R_{FC} usando o ponto de operação definido e as diversas correntes fotogeradas para toda a extensão de irradiâncias.

A figura 92 apresenta as curvas I-V para um sistema fotoajustável na escala de irradiâncias definida, e indica o que ponto de convergência para todas essas curvas I-V é o ponto de operação definido.

Figura 92 – Curvas I-V do sistema fotoajustável - fotocondutor ideal. Figura produzida pelo autor

Comparando as curvas I-V obtidas, obtivemos a tabela 19.

Sistema fotovoltaico Tradicional							
$Irr [W/m^2]$	$I_{SC} [A]$	V_{OC} $[V]$	$P_{MAX} [W]$	FF	V_{OP} $[V]$	$I_{OP} \left[A \right]$	
10	$2,632\times10^{-5}$	0,436	$8,696\times10^{-6}$	0,758	0,396	$1,980\times10^{-5}$	
20	$4,960 \times 10^{-5}$	0,454	$1,734 \times 10^{-5}$	0,770	0,438	$2,190\times10^{-5}$	
30	$6,658\times10^{-5}$	0,462	$2,385 \times 10^{-5}$	0,775	0,451	$2,255\times10^{-5}$	
40	$7,728 \times 10^{-5}$	0,466	$2,801 \times 10^{-5}$	0,778	0,457	$2,285 \times 10^{-5}$	
50	$8,168 \times 10^{-5}$	0,468	$2,974 \times 10^{-5}$	0,778	0,459	$2,295\times10^{-5}$	
Sistema fotoajustável ideal							
		Sistema f	otoajustável id	leal			
$\boxed{Irr \ [W/m^2]}$	$I_{SC} \left[A \right]$	Sistema f V_{OC} [V]	$Otoajustável id P_{MAX} [W]$	$\begin{array}{c} \text{eal} \\ FF \end{array}$	V_{OP} $[V]$	$I_{OP}\left[A\right]$	
$ Irr [W/m^2] 10 $	$\frac{I_{SC} [A]}{2,632 \times 10^{-5}}$	Sistema f V_{OC} [V] 0,437	totoajustável id $\frac{P_{MAX} [W]}{9,052 \times 10^{-6}}$	eal FF 0,787	$\frac{V_{OP} \left[V\right]}{0, 4}$	$\frac{I_{OP} \ [A]}{2,0 \times 10^{-5}}$	
$ \boxed{ Irr \left[W/m^2 \right] } 10 20 $	$\begin{split} & I_{SC} \; [A] \\ & 2,632 \times 10^{-5} \\ & 4,960 \times 10^{-5} \end{split}$	Sistema f V_{OC} [V] 0,437 0,435	$ \begin{array}{c} \mbox{cotoajustável id} \\ \hline P_{MAX} \ [W] \\ \mbox{9,052} \times 10^{-6} \\ \mbox{1,061} \times 10^{-5} \end{array} $	$ \begin{array}{c} \text{eal} \\ FF \\ 0,787 \\ 0,492 \end{array} $	$ \begin{array}{c} V_{OP} \ [V] \\ 0,4 \\ 0,4 \end{array} $	$\frac{I_{OP} [A]}{2,0 \times 10^{-5}}$ 2,0 × 10^{-5}	
$ \begin{bmatrix} Irr \ [W/m^2] \\ 10 \\ 20 \\ 30 \end{bmatrix} $	$\begin{array}{c} I_{SC} \ [A] \\ \hline 2,632 \times 10^{-5} \\ 4,960 \times 10^{-5} \\ \hline 6,658 \times 10^{-5} \end{array}$	$\begin{array}{c} \text{Sistema f} \\ \hline V_{OC} \ [V] \\ 0,437 \\ 0,435 \\ 0,433 \end{array}$	$ \begin{array}{c} & \text{fotoajustável id} \\ \hline P_{MAX} \ [W] \\ 9,052 \times 10^{-6} \\ \hline 1,061 \times 10^{-5} \\ \hline 1,108 \times 10^{-5} \end{array} $	$ \begin{array}{c} \text{eal} \\ FF \\ 0,787 \\ 0,492 \\ 0,384 \end{array} $	$\begin{array}{c} V_{OP} \ [V] \\ 0,4 \\ 0,4 \\ 0,4 \end{array}$	$ \begin{array}{c} I_{OP} \ [A] \\ \hline 2,0 \times 10^{-5} \\ \hline 2,0 \times 10^{-5} \\ \hline 2,0 \times 10^{-5} \end{array} $	
$ \begin{bmatrix} Irr \ [W/m^2] \\ 10 \\ 20 \\ 30 \\ 40 \end{bmatrix} $	$\begin{split} & I_{SC} \; [A] \\ & 2,632 \times 10^{-5} \\ & 4,960 \times 10^{-5} \\ & 6,658 \times 10^{-5} \\ & 7,728 \times 10^{-5} \end{split}$	$\begin{array}{c} \text{Sistema f} \\ \hline V_{OC} \ [V] \\ 0,437 \\ 0,435 \\ 0,433 \\ 0,432 \end{array}$	$\begin{array}{l} \hline \text{cotoajustável id} \\ \hline P_{MAX} \ [W] \\ 9,052 \times 10^{-6} \\ 1,061 \times 10^{-5} \\ 1,108 \times 10^{-5} \\ 1,183 \times 10^{-5} \end{array}$	$eal \\ FF \\ 0,787 \\ 0,492 \\ 0,384 \\ 0,354 \\ eal \\ 0,354 \\ eal \\ 0,100$	$\begin{array}{c} V_{OP} \ [V] \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,4 \end{array}$	$ \frac{I_{OP} [A]}{2,0 \times 10^{-5}} \\ 2,0 \times 10^{-5} \\ 2,0 \times 10^{-5} \\ 2,0 \times 10^{-5} \\ 2,0 \times 10^{-5} $	

Tabela 19 – Dados das curvas I-V do fotodiodo: sistema tradicional e fotoajustável ideal

Fonte: Parâmetros definidos pelo autor

Podemos observar que os valores de V_{OC} convergem no sistema fotoajustável. Isso se

dá pela corrente de saída, que está praticamente constante; portanto, como I_0 não varia, a tensão de circuito aberto permanece a mesma. A potência máxima também varia pouco, já que as curvas também tendem a convergir, aproximando seus pontos de máxima potência. Já o *fill factor* cai conforme esperado, já que a resistência do fotocondutor funciona como a resistência parasita paralela, e seu valor de resistência reduz com o aumento da irradiância.

Também podemos comparar os pontos de operação definidos por uma carga de $20k\Omega$, que é a carga específica para o ponto de operação escolhido, para o sistema tradicional e fotoajustável, como mostrado na tabela 20. Um sistema tradicional operando com essa carga apresenta um desvio na corrente e tensão de 9,5 % na variação de 10 para 20 W/m^2 , chegando a quase 15% para 50 W/m^2 .

$Irr [W/m^2]$	ΔV_{OP} [%]	ΔI_{OP} [%]
10	0	0
20	9,5	9,5
30	12,75	12,75
40	14, 25	14, 25
50	14,75	14,75

Tabela 20 – Comparação dos pontos de operação: tradicional e fotoajustável ideal

Fonte: Parâmetros definidos pelo autor

Cada solução está relacionada com um valor de resistência do fotocondutor. O conjunto de todos os resultados nos dá a curva característica do fotocondutor ideal para esse caso em especial. Para se alcançar essa convergência, a curva característica do fotocondutor deve variar como apresentado na figura 93, onde R_{FC} está entre 222 $k\Omega$ e 7,32 $k\Omega$ na irradiância variando entre 10 W/m^2 e 50 W/m^2 . Como apresentado na mesma figura, a corrente drenada pelo fotocondutor aumenta com o incremento da irradiância, levando a uma alta dissipação de potência no fotocondutor, e a maior demanda de área no chip para a confecção de um dispositivo grande o suficiente para suportar essa potência.

Figura 93 – Curva característica do fotocondutor ideal (azul), e potência dissipada (la-ranja).

Figura produzida pelo autor

A melhor curva alcançável para um fotocondutor fabricável pode ser obtida através de um ajuste do modelo do fotocondutor apresentado na equação 3.51 na curva ideal. Para isso, uma resistência de escuro $R_0 = 1/G_0$ deve ser selecionada. Nesse caso, escolhemos 1 $M\Omega$. Como o caso ideal sempre apresenta uma curva de resistência que cresce assintoticamente ao infinito ao aproximarmos da resistência de escuro, o ajuste deve respeitar o conjunto de irradiâncias onde a curva ideal não varia significantemente.

Nesse caso, foi considerado uma série onde a maior resistência é três vezes a resistência de maior irradiância, ou seja, 21,96 $k\Omega$. Realizando o ajuste, o parâmetro β pode ser obtido, sendo 3.08 x 10⁻⁶ $m^2/W.\Omega$. O parâmetro β se relaciona diretamente com as propriedades do material e dimensões do dispositivo através das equações 3.49 e 3.50 ou ainda 3.51, dependendo da natureza do espectro da fonte luminosa.

A figura 94 mostra uma comparação entre a curva do fotocondutor ideal (azul), a de um possível fotocondutor real (vermelha) e a diferença entre as duas curvas (verde). Como podemos observar, temos um bom ajuste para as irradiâncias acima de $20W/m^2$, significando que o nosso fotocondutor real funcionará perfeitamente nessa faixa. Já para irradiâncias abaixo de $20W/m^2$, o valor do fotocondutor ideal é menor que o esperado, indicando que uma maior corrente passará pelo fotocondutor, e a corrente da carga será menor que a desejada.

Figura 94 – Curva característica do fotodiodo ideal (azul), Fotocondutor real ajustado (vermelho), e a diferença entre elas (verde).

Figura produzida pelo autor

Também é necessário estabelecer um critério para estimar o valor máximo de irradiância esperada para operação do sistema fotoajustável. Como exemplo, poderíamos utilizar a corrente máxima permitida a fluir pelo fotocondutor, ou a máxima potência dissipada por ele.

Para esse caso de estudo, podemos utilizar o pior caso de dissipação de potência seguindo a métrica que a máxima corrente permitida pelo fotocondutor seja igual a três vezes a corrente da carga conectada ao sistema fotoajustável na irradiância máxima, que nesse caso é 50 W/m^2 . Essa condição corresponde a uma corrente fotogerada de 83 μA , extraída da corrente de curto-circuito da curva I-V apresentada na figura 91. Na irradiância de 50 W/m^2 o valor de R_{FC} é 6.45 $k\Omega$, como calculado na equação 2.39, e mostrado na figura 93. Usando esse valor, a corrente que flui pelo fotocondutor e sua dissipação de potência pode ser calculadas pelas equações da Lei de Ohm 3.54 e 3.55, respectivamente.

$$I_{FC} = \frac{V_{OP}}{R_{FC}} \tag{3.54}$$

$$P_{FC} = \frac{V_{OP}^2}{R_{FC}} \tag{3.55}$$

onde V_{OP} é a tensão de operação, a mesma para a carga e para o fotocondutor. A corrente do fotocondutor é igual a 62 μA , que é aproximadamente 75% da corrente fotogerada e praticamente três vezes a corrente da carga, que seria 60 μA . A potência dissipada no fotocondutor é de 24.8 μW .

3.4.3.1 Considerações adicionais

Observando o caso do sistema fotoajustável integrado, podemos associar algumas informações adicionais relacionadas a um processo de fabricação, que possui regras restritas para certos parâmetros e propriedades, como dimensões mínimas para largura e espessura das camadas e dispositivos, parâmetros físicos definidos pelo material utilizado, concentração das impurezas empregadas na dopagem, detre outras.

Para simplificar os cálculos, podemos usar o menor valor possível de irradiância como referência, a fim de normalizar o eixo x, como mostrado na equação 3.56:

$$I_{rr_{ref}} = \int_{\lambda} I_{\lambda_{ref}} d\lambda \Rightarrow I_{rr_i} = \int_{\lambda} I_{\lambda_i} d\lambda = \int_{\lambda} X_i I_{\lambda_{ref}} d\lambda = X_i \int_{\lambda} I_{\lambda_{ref}} d\lambda = X_i I_{rr_{ref}}$$
(3.56)

Para $X_i = 1$, estamos na irradiância de referência. Valores menores que 1 representam irradiâncias que não permitem o funcionamento o sistema fotoajustável. A condutância G_V , como descrita na equação 3.44, pode ser simplificada utilizando essaa normalização, como apresentado em 3.57:

$$G_V = \Upsilon X_i \int_{\lambda} \eta I_{\lambda_{ref}} \lambda d\lambda = \Upsilon \xi X_i \tag{3.57}$$

onde ξ é constante e X_i varia de 0 a $I_{rr_{max}}/I_{rr_{ref}}$. Com isso, podemos escrever a resistência do fotocondutor em função de X_i , como mostrado em 3.58:

$$R_{FC} = \frac{1}{G_0 + G_V} = \frac{1}{G_0 + \Upsilon\xi X_i} = \frac{1}{G_{FC}}$$
(3.58)

 G_0 é a condutância no escuro, Υ é relacionada com parâmetros do material (equação 3.49) e ξ é relacionada com a resposta espectral do material e irradiância para a curva de referência da fonte de iluminação.

Para se encontrar o melhor G_{FC} real, deve-se encontrar a reta que melhor se ajusta a curva de $G_{FC_{ideal}}$ para uma determinada região de irradiância; para isso, podemos utilizar uma aproximação de reta por um ponto, sendo esse pertencente à faixa de funcionamento desejada.

A figura 95 apresenta uma escolha de fotocondutor real no intervalo de $X_i = 1$ até $I_{rr_{max}}/I_{rr_{ref}}$, onde a curva ciano representa uma opção viável de reta aproximada, entre os patamares G_{FC} máximo, determinado pela curva ideal ou algum critério de limitação, e o G_{FC} mínimo, determinado pela curva real, e dependente do processo de fabricação.

A melhor reta encontrada será da forma $G_{FC_{real-otimo}} = a + b * X_i$, onde G_0 ótimo será igual a a, e $(\Upsilon \times \xi)$ ótimo será igual a b. Quantos aos limites de G_0 , podemos afirmar:

- O próprio $G_{0_{MAX}}$ nunca deverá ser o valor encontrado, pois uma reta partindo de $G_{0_{MAX}}$ poderá ter:
 - derivada > 0, b > 0: Não garante o melhor ajuste, pois a reta da condutância é sempre crescente, ultrapassando $G_{0_{MAX}}$;

- derivada = 0, b = 0: Fisicamente inviável, pois Υ carrega as características do material e ξ da iluminação, portando não permitindo um valor nulo;
- derivada < 0, b < 0: Fisicamente inviável, pois Υ e ξ são sempre positivos.
- $G_{0_{MIN}}$ corresponde ao mínimo valor possível de ser fabricado em um dado processo, já que $G_0 = \frac{\sigma_0 t w}{l} = q(n\mu_n + p\mu_p) \frac{t w}{l}$; Portanto:
 - Considerando o silício intrínseco, $q(n\mu_n + p\mu_p) = qn_i(\mu_n + \mu_p);$
 - Considerando a temperatura ambiente e valores nominais para as mobilidades;
 - Considerando o nó tecnológico arbitrário de exemplo que permita dimensões de fabricação para $w = 1 \ \mu m$, t = 0,5 μm e l = 10 mm;

Observamos que para essas condições, $G_{0_{MIN}} = 1,5 \times 10^{-14} S$ (mínima condutância possível de ser fabricado com essas restrições), ou ainda, $R_{0_{MAX}} = 6,67 \times 10^{13} \Omega$.

Devemos observar que as variáveis de processo e projeto estão fisicamente atreladas, pois, uma vez encontrado o valor da constante a, tem-se o valor de G_0 . Contudo, para um dado processo ou material, as grandezas n, p, μ_n , μ_p e t estão fixas, portanto, somente a relação w/l pode ser alterada. Encontrando-se b, tem-se o valor de ($\Upsilon \xi$) desejado, mas ξ está fixado pela fonte de luz, resposta do material e irradiância de referência, e Υ também estará fixado, pois as grandezas que o definem também estão definidas. Mais uma vez, somente w/l é variável.

Se escrevermos as relações:

$$a = G_0 = \left[q(n\mu_n + p\mu_p)t\right]\left(\frac{w}{l}\right) = A\left(\frac{w}{l}\right)$$
$$b = \Upsilon\xi = \left[\frac{q\tau_g}{hc}\xi(\mu_n + \mu_p)\right]\left(\frac{w}{l}\right) = B\left(\frac{w}{l}\right)$$

onde q é a carga elementar, n é a concentração de elétrons, p é a concentração de lacunas, $\mu_{n,p}$ são as mobilidades dos elétrons e lacunas, h é a constante de Planck, τ_g é o tempo de vida de geração e c é a velocidade da luz no vácuo.

Como w/l tem que ser igual nas duas equações (pois trata-se do mesmo dispositivo), a única solução possível ocorrerá quando a/A = b/B, onde $a \in b$ vem do ajuste da reta e A e B são fixos para um dado processo, material e fonte. Então temos 3.59:

$$\frac{a}{b} = \frac{A}{B} = \frac{\left[q(n\mu_n + p\mu_p)t\right]}{\left[\frac{q\tau_g}{hc}\xi(\mu_n + \mu_p)\right]} = \zeta$$
(3.59)

Para um material intrínseco, ζ pode ser reduzido para 3.60:

$$\zeta_i = \frac{hc.t.n_i}{\tau_g \xi} \tag{3.60}$$

A equação do fotocondutor real pode ser reescrita para 3.61:

$$G_{FC_{real}} = a + \frac{a}{\zeta_i} X_i = a \left(1 + \frac{1}{\zeta_i}\right) X_i = \left[qn_i(\mu_n + \mu_p)t\right] \left[1 + \frac{\tau_g \xi}{hc.t.n_i}\right] \left(\frac{w}{l}\right) X_i \qquad (3.61)$$

Deve-se encontrar o valor de w/l que leve ao melhor ajuste ao fotocondutor ideal, observando, entretanto, as restrições de processo, material e iluminação. Podemos utilizar diversos critérios de ajuste para a curva real, utilizando retas tangentes, ou fixando pontos notáveis do fotocondutor ideal. Essas escolhas estão relacionadas com as restrições de funcionamento do sistema fotoajustável, ou seja, quais serão os limites da irradiância em sua operação.

Figura 96 – Ajustes do fotocondutor real utilizando um ponto fixado (G_{FC} máximo). Figura produzida pelo autor

Na figura 96, apresentamos várias retas para vários w/l, ajustados utilizando um ponto fixado, nesse caso sendo o valor da curva ideal na máxima irradiância. Cada ajuste privilegia um setor da curva, de acordo com a variação de G_0 . Valores maiores desse parâmetro garantem uma menor variação na região próxima a irradiância máxima. O melhor ajuste (com menor erro quadrático em toda extensão) pode ser visto na figura 97. Esse ajuste nos dá os parâmetros $a = 2,408 \times 10^{-5}$ e $G_0 = 9,343 \times 10^{-6}S$. Com isso, encontramos $w/l = 2,595 \times 10^5$.

Figura 97 – Melhor ajuste do fotocondutor real utilizando um ponto fixado (G_{FC} máximo). Figura produzida pelo autor

Ao se utilizar o fotocondutor real no sistema fotoajustável proposto, temos as seguintes curvas I-V apresentadas na figura 98. Nela podemos observar duas curvas que convergem para o ponto nominal (as curvas verde e vermelha), enquanto que as outras passam próximas do ponto, mas não o interceptam, indicando um pequeno erro. A reta de carga traçada demonstra a curva característica da carga para o ponto operacional escolhido - onde essa curva intercepta as curvas I-V seria o ponto de operação deslocado após a inserção do fotocondutor real.

Figura 98 – Curvas I-V do sistema fotoajustável - fotocondutor real. Figura produzida pelo autor

Na tabela 21, podemos observar os dados extraídos das curvas I-V do sistema fotoajustável com o fotocondutor real.

Sistema fotoajustável real							
$Irr [W/m^2]$	$I_{SC} [A]$	$V_{OC} [V]$	$P_{MAX} [W]$	FF	V_{OP} $[V]$	$I_{OP} \left[A \right]$	
10	$2,632 \times 10^{-5}$	0,419	$5,568 \times 10^{-6}$	0,505	0,333	$1,665 \times 10^{-5}$	
20	$4,960 \times 10^{-5}$	0,436	$1,027 \times 10^{-5}$	0,502	0,401	$2,005 \times 10^{-5}$	
30	$6,658 \times 10^{-5}$	0,440	$1,289 \times 10^{-5}$	0,440	0,414	$2,070 \times 10^{-5}$	
40	$7,728\times10^{-5}$	0,439	$1,345\times10^{-5}$	0,197	0,413	$2,065\times10^{-5}$	
50	$8,168 \times 10^{-5}$	0,432	$1,221 \times 10^{-5}$	0,346	0, 4	$2,0 \times 10^{-5}$	

Tabela 21 – Dados das curvas I-V: sistema fotoajustável real

Fonte: Parâmetros definidos pelo autor

Como podemos observar, as curvas de 20 e $50W/m^2$ operam no ponto de operação escolhido, mas as outras curvas mostram um desvio significante desse valor. A tabela 22 mostra as diferenças dos pontos de operação entre o sistema fotoajustável com fotocondutor ideal e o sistema com fotocondutor real projetado:

$Irr [W/m^2]$	ΔV_{OP} [%]	ΔI_{OP} [%]
10	16,75	16,75
20	0, 25	0, 25
30	3, 5	4, 5
40	3,25	3,25
50	0	0

Tabela 22 – Comparação dos pontos de operação: fotoajustável ideal e real

Fonte: Parâmetros definidos pelo autor

A curva que apresenta o maior desvio é a de $10W/m^2$, chegando a quase 17%. As outras curvas apresentam desvios menores que 5% do desejado, mostrando que essa abordagem de fotocondutor previlegia as maiores irradiâncias. Na figura 99 podemos ver o efeito do fotocondutor real na potência entregue para a carga. Como na figura anterior, observamos o deslocamento do ponto de carga.

Figura 99 – Curvas P-V do sistema fotoajustável - fotocondutor real. Figura produzida pelo autor

Observando a figura 100, observamos dois segmentos: o primeiro, que vai da Irradiância relativa igual a 1 até aproximadamente 2, apresenta um erro bem grande, chegando a 60%, o que inviabiliza a operação nessa região. Contudo, para irradiâncias normalizadas maiores que 2, a região apresenta um erro relativo menor, que chega ao máximo de 30%, que indica uma viabilidade de operação muito maior.

Figura 100 – Curvas I-V do sistema fotoajustável - fotocondutor real. Figura produzida pelo autor

3.4.3.2 Estudo do impacto térmico no caso de exemplo

Como discutido na seção 3.1.4, a variação de temperatura impacta na operação do sistema fotoajustável, modificando suas curvas I-V. Utilizando o fotocondutor de exemplo obtido na seção 3.4.3.1, podemos verificar os efeitos térmicos para uma determinada irradiância, utilizando os modelos de célula/fotodiodo e fotocondutor apresentados na seção 3.1.

Para esse estudo, escolhemos a irradiância de $10 W/m^2$ como referência, lembrando que esse valor está próximo do limite de funcionamento do sistema fotoajustável de exemplo. Essa irradiância nos dá uma corrente fotogerada de 2,894 × 10⁻⁵ A (em 300 K). Considerando uma faixa de variação térmica entre 290 K e 310 K, podemos observar na figura 101 a nova configuração das curvas I-V. A curva de 300 K não passou exatamente sobre o ponto de operação definido, pois usamos métodos mais complexos para recalcular as curvas I-V com dependência de temperatura. O desvio é bem pequeno, de 1,25% na tensão e 0,25% na corrente, e não atrapalhará nossa análise térmica.

Figura 101 – Curvas I-V do fotodiodo de acordo com a temperatura. Figura produzida pelo autor

A variação na corrente fotogerada é muito pequena, mas o impacto na tensão de saída é mais significativa: cerca de 0,015 V a cada 5 graus. O impacto da temperatura no fotocondutor também é considerável - como nesse exemplo consideramos um fotocondutor baseado em silício intrínseco, observamos uma queda no valor de sua resistência com o aumento da temperatura, como apresentado na figura 102. Um aumento de 5 graus deixa o valor de resistência do fotocondutor aproximadamente 2,2 vezes menor,

Figura 102 – Variação da curva característica do fotocondutor com a irradiância para diversas temperaturas

Figura produzida pelo autor

Unindo os componentes no nosso sistema fotoajustável, podemos verificar sua operação sob a variação de temperatura, indicado na figura 103. Observando as curvas, podemos verificar uma maior proximidade entre as curvas de temperatura maior que 300 K; isso se deve à escolha de um fotocondutor feito de material intrínseco, que tem sua resistência diminuída com o aumento da temperatura. Um fotocondutor de semicondutor extrínseco apresentaria um comportamento inverso.

Figura 103 – Curvas I-V do sistema fotoajustável de acordo com a temperatura. Figura produzida pelo autor

Podemos observar que os efeitos de temperatura impactam significantemente no funcionamento do sistema fotoajustável, principalmente no seu aumento: uma variação de 10 graus apresenta uma redução de mais de 10% nos valores de corrente e tensão, assim como um desvio de quase 22% na potência entregue à carga, como apresentado na tabela 23.

T [K]	V_{OP} $[V]$	$I_{OP}\left[A\right]$	$P_{OP} \left[W \right]$	ΔV_{OP}	ΔP_{OP}
290	0,426	$2,13\times10^{-5}$	$9,074 \times 10^{-5}$	6,5%	$13,\!425\%$
295	0,414	$2,07 imes 10^{-5}$	$8,569 \times 10^{-5}$	$3{,}5\%$	$7,\!112\%$
300	$0,\!400$	$2,00 \times 10^{-5}$	$8,0 imes 10^{-5}$	-	-
305	$0,\!381$	$1,91 \times 10^{-5}$	$7,277 \times 10^{-5}$	4,75%	$9{,}038\%$
310	$0,\!354$	$1,77 \times 10^{-5}$	$6,266 \times 10^{-5}$	$11,\!5\%$	$21,\!675\%$

Tabela 23 – Condições de operação do sistema foto
ajustável de exemplo submetido à variação de temperatura

Fonte: Dados obtidos pelo autor

Se observarmos as curvas das irradiâncias mais altas, verificaremos um aumento do desvio cada vez maior. A figura 104 apresenta as curvas I-V do sistema fotoajustável para

a irradiância de 50 W/m^2 .

Figura 104 – Curvas I-V do sistema foto
ajustável de acordo com a temperatura na irradiância de 50
W/m².

O sistema operando em irradiâncias mais altas fica muito mais suscetível a grandes alterações térmicas; operando a uma temperatura 10 graus mais alta, temos um desvio de 66% na tensão e na corrente de operação, inviabilizando o uso da fotoajustabilidade nessas condições. Já a redução de temperatura não apresenta um impacto tão significativo, com um desvio de 20%. Portanto, podemos concluir que a temperatura também é um fator limitante do sistema fotoajustável, diminuindo a sua extensão em irradiância.

Esses resultados indicam que as condições de temperatura devem ser consideradas no projeto do sistema fotoajustável, principalmente em locais sem estabilidade térmica ou ainda, em casos extremos, levar em consideração a adoção de um sistema de dissipação térmica.

4 Conclusões e trabalhos futuros

Ilimite-se

"Você já tentou tornar uma música parte de você? Transformar os sons em palavras, e dessas, obter sentimento?

Você já tentou ouvir as cores, como se fosse sons da natureza? Bagunçando os sentidos, ampliando os horizontes?

> Você já sentiu o doce cheiro da luz? O gosto forte da energia do sol?

Você já tentou ler pensamentos e já quis que alguém conhecesse os seus? Você já pensou na magnitude disso? Compartilhar a sua mente?

> Você já tentou enxergar o amor? Não como coisa vermelha Mas como algo incompreensível Mas no fundo você entende?

Realmente você já tentou ser muito mais que realmente é? Ultrapassar os sentidos e viver eternamente?

Agradeça aos seus átomos por serem sempre companheiros E te conhecerem em um nível que mais ninguém ousa tentar."

André L. C. Carvalho (2013)

Este trabalho apresenta uma metodologia para projeto, construção e análise de arranjos fotovoltaicos fotoajustáveis, começando com a sua conceitualização, levantamento dos seus aspectos funcionais e provimento de ferramentas para seu projeto, análise e simulação. Ele apresenta o estudo de como um fotocondutor minuciosamente projetado pode modificar o comportamento das curvas I-V características de um sistema fotovoltaico tradicional de forma a manter o sistema funcionando em torno de um ponto de operação definido. A foto-ajustabilidade pode ser muito interessante quando uma célula solar ou fotodiodo é utilizada como captadora de energia, e o ponto de operação de uma determinada carga precisa ser mantida estável, mesmo com flutuações na irradiância esperada.

Esse capítulo se divide em súmula cronológica do trabalho, que apresenta o percurso do trabalho, discussões dos resultados, trabalhos futuros e publicações realizadas.

4.1 Súmula Cronológica do Trabalho

As etapas de execução começam na definição do problema e seu entendimento, e possíveis passos para a sua resolução. Essa etapa exigiu um grande esforço de revisão teórica, pois ao se tratar de um novo conceito a ser definido, foi necessário um considerável nível de detalhamento. No ponto de vista de projeto de sistemas, que exigia uma abordagem mais pragmática, tivemos uma facilitação pela uso da ferramenta PSPICE, que através de um modelo de exploração genérico, nos permitiu visualizar o problema do ponto de vista da aplicação.

Em seguida, passamos a estudar o sistema fotovoltaico em seus constituintes: daí começa o estudo das características físicas de dispositivos fotovoltaicos e seu comportamento em diferentes situações. Os modelos desses dispositivos que encontramos eram pouco flexíveis, principalmente quando em situações diferentes do padrão STC; portanto, decidimos desenvolver o nosso próprio modelo, que se baseia nas definições físicas e geométricas dos dispositivos, também levando em consideração as variáveis ambientais, como temperatura, espectro da luz incidente, etc. Nesse esforço nasce o algoritmo para o modelo geral de células solares.

O próximo passo baseou-se na ideia do projeto de sistema fotoajustável: a partir de um conjunto de restrições ambientais e de funcionamento, um sistema fotovoltaico tradicional poderia ser convertido em um sistema fotoajustável. Portanto, nos focamos em obter um modelo que, a partir de um ponto de operação particular, pudesse ser aplicado a esse sistema tradicional funcionando em uma condição definida, resultando no projeto de fotocondutor necessário para a conversão. Dessa discussão, projetamos a primeira versão do modelo de obtenção de fotocondutores (RFC 1.0), apresentado em D.5.

No início do trabalho, o foco estava voltado para sistemas fotovoltaicos de maior porte, como células e painéis comerciais, que operam em potências mais altas. Daí começamos a executar os ensaios de caracterização de células, painéis e fotocondutores comerciais, de modo a obter um protótipo funcional. Construímos também um novo simulador de iluminação, para explorarmos o funcionamento desses dispositivos em condições diversas de iluminação. Essa etapa foi muito importante para a validação dos modelos produzidos, e também na verificação da viabilidade do conceito de sistema fotoajustável. Contudo, verificamos que essa viabilidade seria muito maior em sistemas compactos, de baixo consumo de energia, alimentados por fotodiodos ou pequenos arranjos deles, e passamos a nos focar nesses tipos de dispositivos.

Devido à essa nova necessidade, passamos a caracterizar o chip 805b, que possuía fotodiodos e fotocondutores integrados, de forma a utilizá-lo como prova de conceito. Adaptamos nossos modelos para embarcar esse tipo de dispositivo, mas acabamos com um novo desafio: precisaríamos de um modelo físico para os fotocondutores.

O desenvolvimento do modelo físico nos trouxe para um escopo ainda maior: a condição de projetar um sistema fotovoltaico totalmente integrado, já convertido em fotoajustável, de acordo com as regras de projeto de uma fábrica específica. Infelizmente, essa etapa ficou no escopo teórico, pois não foi possível a fabricação de um chip com essas características.

Concorrentemente com as etapas de formulação de modelos e ensaios, nos dedicamos a criar um modelo de simulação em SPICE para sistemas fotoajustáveis, que nos permitiria a verificação do funcionamento de um projeto desses sistemas de forma bem amigável e detalhada.

Por último, passamos a analisar o comportamento de um sistema fotoajustável quando submetido à variações de temperatura, para verificarmos a sua tolerância a esse tipo de impacto. Essa etapa também ficou no aspecto teórico, devido à dificuldade de se construir um simulador adequado para controle térmico.

Resultados alcançados:

- Proposta e estruturação do conceito de sistema fotovoltaico fotoajustável;
- Estruturação de um algoritmo de previsão de comportamento para fotodiodos e células/painéis solares em diversas condições ambientais;
- Análise e desenvolvimento de metodologia e algoritmo para projeto de sistemas fotovoltaicos fotoajustáveis;
- Desenvolvimento de um arranjo experimental para caracterização de dispositivos ópticos com diversas opções de fontes de iluminação (simulador de iluminação);

- Caracterização de células e painéis solares, dos quais os parâmetros podem ser utilizados nos algoritmos de previsão e projeto de sistemas fotovoltaicos tradicionais e fotoajustáveis;
- Caracterização de um fotodiodo e fotocondutores presentes em um microchip, para verificação do conceito em sistemas integrados, assim como obtenção de seus parâmetros para projeto de sistemas fotoajustáveis integrados em chip;
- Análise e desenvolvimento de metodologia e algoritmo para previsão do impacto térmico em um sistema fotoajustável;

4.2 Discussão

Aqui se analisou os resultados obtidos e verificou-se a viabilidade do sistema fotovoltaico ajustável e sua possibilidade de uso em sistemas já existentes, através dos estudos de caso genéricos apresentados.

Inicialmente, foi realizada a análise e caracterização de fotocondutores discretos, e de um chip, que também possui fotocondutores integrados e um fotodiodo, utilizando-se de um simulador luminoso projetado e construído para esse fim. Os ensaios foram realizados em fotocondutores comerciais de CdS de um dado fabricante. Eles apresentaram variações bastante significativas em seus parâmetros. As medições das resistências na iluminância de 10 lux apresentaram um desvio padrão entre 6% e 29%, demonstrando que são que são muito variáveis, possuem baixa reprodutibilidade e pouco confiáveis para o seu uso no sistema proposto.

Os valores do fator de variação da curva de um fotocondutor γ também apresentaram grandes desvios, chegando a 53%, o que indica uma dificuldade no controle de fabricação de fotocondutores de resistência mais alta, já que as curvas características referentes a essas faixas não sofrem o decaimento esperado com o aumento da iluminância.

Em seguida, foram caracterizados fotocondutores integrados em chip fabricado com um processo CMOS de 1,6 μm , que apresentaram resistências na faixa de dezenas a centenas de $k\Omega$, na faixa de iluminância entre 10 e 100 lux, γ entre 0,3 e 0,5, e resistências de escuro de centenas de $k\Omega$, ocupando respectivamente uma área próxima de 1,0 mm^2 do chip.

Fotocondutores com resultados similares aos calculados seriam interessantes para utilização em um sistema fotoajustável que, operando na faixa entre 10 e 100 lux, e com ponto de operação de 0, 5 V e 2, 0×10^{-5} A, drenariam correntes na faixa de unidades a dezenas de μA . Para esse processo de fabricação, seria possível uma corrente máxima de cerca 2, 5 mA para fotocondutores com 5 μm de largura, garantindo a possibilidade de sua utilização para a fabricação do sistema fotoajustável integrado proposto.
O chip utilizado na caracterização também possuía um fotodiodo, que também foi caracterizado para extração de parâmetros, e alimentação dos nossos algoritmos. Na faixa definida, de 10 a 1000 lux, foram obtidas correntes fotogeradas entre 3 e 85 μA , assim como potências máximas variando de 67 e 300 μW , potência capaz de alimentar pequenas cargas, como sensores.

Em seguida, utilizando o modelo geral para dispositivos fotovoltaicos e os dados obtidos da caracterização do chip, foram obtidas as curvas I-V do dispositivo para determinadas condições de iluminação. O tipo de iluminação incidente é importante para a geração de energia de um fotodiodo, assim como seu tamanho: fotodiodos com 100 μm de tamanho lateral produziriam cerca de 1 μW sob luz solar (AM 1.5), ao passo que apenas 16 nW sob a iluminação de uma lâmpada fluorescente típica de 30 W a uma distância de 1 m. Quadriplicando-se a área do chip, passamos a ter uma geração de 17 μW sob luz solar (AM 1.5), 17 vezes maior, e 260 nW sob a iluminação de uma lâmpada fluorescente de 30 W, aproximadamente 16 vezes maior. Esses são dados muito interessantes para a análise de viabilidade energética, dimensionamento e utilização de um sistema fotoalimentado por luz artificial baseado em fotodiodos ou células solares que opera no interior de um galpão, por exemplo.

Seguindo com os casos de exemplo, foi observado que o fotocondutor ideal obtido no estudo de caso do sistema fotoajustável com uma célula solar apresentou uma variação de 5 a 1 Ω na faixa de 1000 a 1100 W/m^2 de irradiância, dissipando uma potência de 5 a 250 mW, na mesma faixa dos valores de potência máxima dissipada de fotocondutores comerciais, que variam entre 125 mW a 1 W. O fotocondutor real obtido possui resistência de escuro de 1 $M\Omega$, e apresentou uma variação mais suave na faixa de irradiância definida, entre 1,794 e 1,631 Ω , dissipando uma potência de 139 a 153 mW, também na faixa de fotocondutores comerciais, permitindo empregar no projeto fotoajustável sugerido a utilização desses fotocondutores, mesmo sem a precisão desejada, mas trazendo uma complicação para um fotocondutor depositado, que exigiria uma grande área para a obtenção de valores de resistência tão reduzidos.

Já no caso do sistema fotoajustável integrado, o fotocondutor ideal obtido apresentou uma variação de 222 a 7,32 $k\Omega$ na faixa de 10 a 50 W/m^2 de irradiância, dissipando uma potência de 139 nW a 22 μW . O fotocondutor real obtido possui resistência de escuro de 1 $M\Omega$, apresenta uma variação mais suave na faixa de irradiância definida, entre 1,794 e 1,631 Ω , dissipando uma potência de 139 a 22 μW . Essas faixas de valores de resistência são compatíveis com as encontradas com o chip caracterizado, sugerindo que o processo de fabricação utilizado no chip poderia ser empregado na confecção desse fotocondutor projetado, utilizando as mesmas métricas de projeto, a mesma demanda de área, e ainda permitindo sua integração diretamente com a carga a ser alimentada e controlada.

Como desdobramento do caso do sistema integrado, foi analisado o mesmo caso com

as restrições de projeto de um processo microeletrônico hipotético, e foi obtida a conclusão que, para esse caso específico, o fotocondutor real projetado é somente dependente da relação w/l de projeto. Ao se analisar um caso em que um ponto para análise foi fixado (que no caso apresentado foi o ponto da curva do fotocondutor ideal para uma irradiância igual a 50 W/m^2), foi observado que a melhor relação se dá quando $w/l = 2,595 \times 10^5$. Também foi verificado as diferenças entre o fotocondutor real projetado e o fotocondutor ideal, onde o desvio da tensão e corrente de operação chegou a quase 17% na tensão e corrente nas irradiâncias mais baixas, mas ficando abaixo de 5% nas outras faixas, o que nos diz que esse sistema fotoajustável funcionaria em uma faixa menor de irradiâncias, de 20 a 50 W/m^2 .

Por último, foi analisado um caso onde temos variação térmica, tanto positiva quanto negativa, e seu impacto no sistema fotovoltaico fotoajustável. O desvio no valor do ponto de operação entre o funcionamento para uma irradiância de 10 W/m^2 em 300Ke 310K chegou a 11,5%, que confere um desvio de quase 22% na potência, e demonstra o efeito da temperatura nesse sistema, que dependendo do caso, pode necessitar de uma alternativa passiva de dissipação de calor, caso a variação seja muito grande. Para o caso de um irradiância de 50 W/m^2 , o impacto é ainda maior.

Concluindo, foi observado que o sistema fotovoltaico fotoajustável é interessante principalmente para aplicações integradas de baixo consumo, que demandem estabilidade em seu ponto de operação. Ele foi particularmente satisfatório em seus resultados para o caso de exemplo de sistema integrado sugerido no trabalho. Já para aplicações com células e painéis solares, nossos resultados demonstram que o impacto desse sistema é mínimo, ao menos nas condições que executamos no nosso caso de exemplo.

Sistemas fotovoltaicos fotoajustáveis apresentam como vantagem um sistema de controle passivo do ponto de operação de uma carga, simples e de baixo custo, podendo ser integrado junto com o circuito da aplicação, utilizando dispositivos discretos interconectados, conectando células e fotocondutores comerciais de prateleira, depositando o fotocondutor na área inativa de um painel, etc. Como desvantagem, se tem as limitações do fotocondutor, tanto na sua fabricação, que deve ser capaz de reproduzir a curva projetada, assim como na área demandada no caso de uma solução integrada, onde o tamanho do dispositivo deve ser equivalente à potência dissipada por ele, ou mesmo a de dissipação de potência em dispositivos discretos, que também possuem limites de operação. Essas desvantagens podem desde limitar a faixa de irradiância possível de ser operada até a total inviabilização do sistema para uma determinada aplicação ou condição ambiental.

4.3 Trabalhos futuros

Para o futuro, podemos definir alguns desdobramentos:

- Construção de novo protótipo funcional em chip, a partir da metodologia aqui desenvolvida, como prova de conceito;
- Aprimoramento do simulador de iluminação construído, para maiores opções de iluminação (LEDs, lâmpadas fluorescentes, etc), e maior flexibilidade de caracterização em diversas condições;
- Construção de um modelo de simulação comportamental em SPICE para sistemas fotovoltaicos (tradicionais e fotoajustáveis), que permita a variação de qualquer parâmetro envolvido no funcionamento, ou seja, a incorporação dos modelos detalhados construídos em um modelo do simulador;
- Obtenção de um modelo de previsão de funcionamento dos sistemas fotovoltaicos fotoajustáveis em função do tempo e região geográfica, utilizando-se de dados climatológicos estatísticos (interessante para o projeto de sistemas ao ar livre).

Os arranjos fotoajustáveis aparecem como uma alternativa simples para o controle de operação de vários sistemas fotovoltaicos, discretos ou integrados, independente de dispositivos eletrônicos na sua concepção, e de baixo custo de implementação, sendo uma alternativa atraente para sistemas autônomos, especialmente aqueles que operam em ambientes onde a fonte luminosa não é estável. Suas aplicações poderiam alcançar desde sistemas geradores de energia discretos em maior escala, como módulos fotovoltaicos conectados a cargas estáticas, a micro-captadores de energia que alimentam microchips, sensores e atuadores, como os utilizados em IoT (*Internet of Things*, ou internet das coisas) and LiFi (*Light Fidelity* ou sistemas de comunicação por luz), dispositivos portáteis ou vestíveis.

4.4 Publicações realizadas

- Publicação do trabalho em congresso internacional: Bueno, Poliana H.; Costa, Diogo F.; Eick, Alexander; Carvalho, André; Monteiro, Davies W. L. The behavior of series resistance of a p-n junction: the diode and the solar cell cases SPIE OPTO, 2016, San Francisco, v. 9743. p. 97431F;
- Trabalho completo publicado em congresso: Carvalho, André Luiz Costa, Monteiro, Davies William de Lima - Metodologia para análise, caracterização e simulação de células fotovoltaicas, IV Congresso Brasileiro de Energia Solar, 2016, v. 2526, p. 1-7;
- Artigo publicado em periódico: Carvalho, André Luiz Costa, Monteiro, Davies William de Lima - Study of the photo-adjustability of pn-junctions in photovoltaic mode coupled to photoconductors - JICS Journal of Integrated Circuits and Systems, v. 14, 1-7, 2019;

Referências

ABNT, A. B. de N. T. *NBR 5413: Iluminância de Interiores.* Rio de Janeiro, 1992. 13 p. Citado na página 42.

AGILENT. Agilent Technologies: Bem-vindo à agilent. a empresa número 1 de medição do mundo. 2014. http://www.home.agilent.com/en/pd-1480796-pn-B1505A/. [Online; acessado em 06-Janeiro-2021]. Citado na página 173.

ALVARENGA, D. R. Semicondutores cerâmicos: um estudo estrutural de Filmes Espessos de CdS. Tese (Dissertação de Mestrado) — UFMG, 2006. Citado 2 vezes nas páginas 37 e 38.

ARORA, N. D.; HAUSER, J. R.; ROULSTON, D. J. Electron and hole mobilities in silicon as a function of concentration and temperature. *IEEE Transactions on electron devices*, IEEE, v. 29, n. 2, p. 292–295, 1982. Citado na página 76.

ASCH, G. Les capteurs en instrumentation industrielle. 7e édition. ed. Paris: Dunod L'Usine nouvelle, 2010. (Technique et ingénierie Série EEA). ISBN 978-2-10-054995-5. Citado na página 40.

BASHAHU, M.; HABYARIMANA, A. Review and test of methods for determination of the solar cell series resistance. *Renewable energy*, Elsevier, v. 6, n. 2, p. 129–138, 1995. Citado na página 31.

BOUZIDI, K.; CHEGAAR, M.; BOUHEMADOU, A. Solar cells parameters evaluation considering the series and shunt resistance. *Solar Energy Materials and Solar Cells*, v. 91, n. 18, p. 1647 – 1651, 2007. ISSN 0927-0248. Disponível em: <<u>http://www.sciencedirect.com/science/article/pii/S0927024807002048></u>. Citado na página 60.

BOYLESTAD, R. L.; YAMAMOTO, S. M. *Dispositivos eletrônicos e teoria de circuitos*. 11. ed., ed. São Paulo: Pearson Education do Brasil, 2013. Tradução de: Eletronic devices and circuit theory. Citado 2 vezes nas páginas 2 e 28.

BUBE, R. *Photoelectronic Properties of Semiconductors*. Cambridge University Press, 1992. ISBN 9780521406819. Disponível em: ">https://books.google.com.br/books?id=lFGjQgAACAAJ>. Citado 5 vezes nas páginas 36, 38, 52, 81 e 92.

BUENO, P. H. et al. The behavior of series resistance of a pn junction: the diode and the solar cell cases. In: INTERNATIONAL SOCIETY FOR OPTICS AND PHOTONICS. *SPIE OPTO*. [S.1.], 2016. p. 97431F–97431F. Citado na página 30.

BURGER, B. et al. Photovoltaics Report. 2020. Citado na página 44.

CARVALHO, A. L. C. de. Desenvolvimento de sensor para imageamento de raios-x e eletrônica para tratamento da imagem. Tese (Trabalho de Conclusão de Curso) — UFMG, 2011. Citado na página 38.

CARVALHO, A. L. C. de. *Metodologia para análise, caracterização e simulação de células fotovoltaicas.* Tese (Dissertação de Mestrado) — Escola de Engenharia, Universidade Federal de Minas Gerais, 2014. Citado 3 vezes nas páginas 35, 61 e 116.

CARVALHO, A. L. C. de. Caracterização de fotocondutores para utilização em ssc's. *Disciplina: Fundamentos e Aplicações de Sistemas Ópticos*, PPGEE - Pós-graduação em Engenharia Elétrica/UFMG, 2015. Citado na página 104.

CARVALHO, A. L. C. de. Simulação de fotocondutores em ambiente spice. *Disciplina: Fundamentos e Aplicações de Sistemas Ópticos*, 2015. Citado 2 vezes nas páginas 120 e 121.

CARVALHO Ágata Miranda de; MONTEIRO, D. W. de L. Smart solar cluster a self-reconfigurable photovoltaic approach. *The Electrochemical Society Transactions*, v. 23, n. 01, p. 527–535, 2009. Citado 3 vezes nas páginas 4, 71 e 121.

CASTAÑER, L.; SILVESTRE, S. Modelling Photovoltaic Systems Using PSpice. [S.l.]: Wiley, 2002. Citado 11 vezes nas páginas 23, 24, 26, 34, 54, 55, 73, 80, 81, 83 e 117.

CENTERFERTIN. Center Fertin. 2016. <http://www.centerfertin.com.br/ lampada-mista-e-40-500w-220vl>. [Online; acessado em 03-fevereiro-2020]. Citado 2 vezes nas páginas 100 e 101.

CHOWDHURY, M. S. et al. An overview of solar photovoltaic panels' end-of-life material recycling. *Energy Strategy Reviews*, v. 27, p. 100431, 2020. ISSN 2211-467X. Disponível em: http://www.sciencedirect.com/science/article/pii/S2211467X19301245. Citado na página 44.

COELHO, J. P. Sensores e Actuadores. Bragança, Portugal, 2013. Citado na página 43.

COURA, T.; SALLES, L. P.; MONTEIRO, D. W. de L. Quantum-efficiency enhancement of {CMOS} photodiodes by deliberate violation of design rules. *Sensors and Actuators A: Physical*, v. 171, n. 2, p. 109 – 117, 2011. ISSN 0924-4247. Disponível em: <<u>http://www.sciencedirect.com/science/article/pii/S0924424711004626></u>. Citado na página 83.

DONATI, S. *Photodetectors - devices, circuits and applications, 1st edition.* [S.l.]: Prentice Hall PTR, 2000. Citado na página 51.

DSD. *DSD*: Dispositivos semicondutores discretos. 2006. <<u>http://www.dsd.com.br/></u>. [Online; acessado em 10-dezembro-2015]. Citado 7 vezes nas páginas 37, 38, 41, 107, 166, 167 e 176.

EEPOWER. *Resistor Guide*: Your guide to the world of resistors. 2015. <http://www.resistorguide.com/photoresistor/>. [Online; acessado em 06-janeiro-2021]. Citado na página 36.

ELETRONICAPT. *Semicondutores*: Base de dados de conselhos de reparação de eletrônicos. 2016. <<u>http://www.electronica-pt.com/semicondutores</u>>. [Online; acessado em 17-novembro-2016]. Citado na página 13.

ERON, M. E. Thin film CuInSe2/Cd(Zn)S Heterojunction Solar Cell: Characterization and Modeling. Tese (PhD) — Drexel University, Philadelphia, 1984. Citado na página 46.

EXPOSOLAR. *Expo Solar*: International solar energy expo & conference. 2010. <<u>http://www.exposolar.org/2010/eng/center/></u>. [Online; acessado em 06-maio-2014]. Citado na página 48.

FACURY, M. P. Caracterização de fotorresistores para sistemas fotoajustáveis. Tese (Trabalho de Conclusão de Curso) — UFMG, 2017. Citado 11 vezes nas páginas 102, 103, 104, 105, 107, 108, 109, 110, 111, 175 e 176.

FARANDA, R.; LEVA, S. Energy comparison of mppt techniques for pv systems. WSAS Transactions on Power Systems, 2008. Citado na página 2.

FILHO, J. F. *Polímeros Semicondutores* - *Uma breve introdução ao assunto*. Tese (Trabalho de Conclusão de Curso) — UFSCAR, 2020. Citado na página 7.

GALDINO, J. T. P. e M. A. *Manual de Engenharia para Sistemas Fotovoltaicos.* 2. ed. Rio de Janeiro, Brasil, 2014. Citado na página 68.

GREEN, M. A. *Third generation photovoltaics: advanced solar energy conversion*. [S.I.]: Springer, 2006. v. 12. Citado na página 47.

GREEN, M. A. et al. Solar cell efficiency tables (version 56). *Progress in Photovoltaics: Research and Applications*, Wiley Online Library, v. 28, n. 7, p. 629–638, 2020. Citado 2 vezes nas páginas 58 e 59.

GREENRHINO. *Green Rhino Energy*: Leading clean energy innovation. 2013. <<u>http://www.greenrhinoenergy.com/solar/radiation/spectra.php</u>>. [Online; acessado em 03-junho-2014]. Citado na página 67.

HELGESEN, M.; SØNDERGAARD, R.; KREBS, F. C. Advanced materials and processes for polymer solar cell devices. *Journal of Materials Chemistry*, Royal Society of Chemistry, v. 20, n. 1, p. 36–60, 2010. Citado na página 48.

INSTRUTHERM. Instrutherm Instrumentos de Medição Ltda. 2016. <http: //www.instrutherm.com.br>. [Online; acessado em 06-Janeiro-2021]. Citado na página 170.

JAEGER, R. C. Introduction to microelectronic fabrication. [S.l.]: Prentice Hall Upper Saddle River, NJ, 2002. v. 2. Citado 3 vezes nas páginas 39, 40 e 52.

JR., R. R.; SMOKLER, M. Flat-plate solar array project final report. Jet Propulsion Laboratory, p. 86–31, 1986. Citado na página 70.

KANO, K. *Semiconductor Devices*. Prentice Hall, 1998. ISBN 9780023619380. Disponível em: https://books.google.com.br/books?id=ASeaQgAACAAJ. Citado na página 77.

KASTEN, F.; YOUNG, A. T. Revised optical air mass tables and approximation formula. *Applied optics*, Optical Society of America, v. 28, n. 22, p. 4735–4738, 1989. Citado na página 66.

KEITHLEY. *Keithley Instruments*: A tektronix company. 2017. <<u>http://www.tek.com/</u> keithley>. [Online; acessado em 06-Janeiro-2021]. Citado na página 172.

KIM, J. Y. et al. High-efficiency perovskite solar cells. *Chemical Reviews*, ACS Publications, v. 120, n. 15, p. 7867–7918, 2020. Citado 2 vezes nas páginas 7 e 49.

KININGER, F. Photovoltaic Systems Technology. 2003. Citado 9 vezes nas páginas 60, 61, 62, 63, 64, 65, 68, 69 e 80.

KITTEL, C. Introdução à Física do Estado Sólido, 8^a edição. [S.l.]: LTC, 2006. Citado 5 vezes nas páginas 8, 11, 12, 15 e 25.

KLAASSEN, D. B. M. A unified mobility model for device simulation-II. Temperature dependence of carrier mobility and lifetime. *Solid-State Electronics*, v. 35, n. 7, p. 961–967, jul. 1992. ISSN 0038-1101. Disponível em: http://www.sciencedirect.com/science/article/pii/0038110192903268>. Citado na página 78.

LAUE, E. The measurement of solar spectral irradiance at different terrestrial elevations. *Solar Energy*, v. 13, n. 1, p. 43 – 57, 1970. ISSN 0038-092X. Disponível em: <<u>http://www.sciencedirect.com/science/article/pii/0038092X7090006X</u>>. Citado na página 68.

LUQUE, A.; HEGEDUS, S. Handbook of Photovoltaic Science and Engineering. [S.l.]: Wiley, 2003. Citado 5 vezes nas páginas 23, 30, 62, 67 e 69.

MARKVART, T.; CASTAñER, L. *Practical Handbook of Photovoltaics: Fundamentals and Applications.* [S.l.]: Elsevier, 2003. Citado 10 vezes nas páginas 24, 35, 53, 55, 57, 58, 59, 65, 69 e 70.

MEINEL, A. B.; MEINEL, M. P. Applied solar energy: an introduction, 4th edition. [S.I.]: Addison-Wesley, 1976. Citado na página 67.

MILES, R.; HYNES, K.; FORBES, I. Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. *Progress in crystal growth and characterization of materials*, Elsevier, v. 51, n. 1-3, p. 1–42, 2005. Citado na página 7.

MINERALOGIA. Eixos cristalográficos, parâmetros e constantes cristalográficas: Mineralogia e química do solo. 2014. http://mineralogiaequimicadosolo.blogspot.com.br/2014_05_01_archive.html. [Online; acessado em 06-janeiro-2021]. Citado na página 16.

MINTAIROV, M. et al. Photoelectric determination of the series resistance of multijunction solar cells. *Semiconductors*, v. 46, 08 2012. Citado na página 86.

MISHRA, U.; SINGH, J. Semiconductor Device Physics and Design. Springer Netherlands, 2007. (Series on Integrated Circuits and Systems). ISBN 9781402064807. Disponível em: https://books.google.com.br/books?id=6NAtk7zr3n4C. Citado na página 84.

MOHAN, N.; UNDELAND, T. M.; ROBBINS, W. P. *Power Electronics. Converters, Applications and Design.* third. [S.l.]: John Wiley and Sons, Inc, 2003. Citado na página 2.

MONTEIRO, D. W. de L. *CMOS-based integrated wavefront sensor*. Tese (Tese de doutorado) — TU Delft, 2002. Citado 2 vezes nas páginas 108 e 124.

MONTEIRO, D. W. de L.; FREITAS, T. O. de; SILVA, L. N. A. Patente, Sistema Auto-reconfigurável de Células Solares Fotovoltaicas e Demais Fotodetectores. 2009. Depósito: 30/01/2009; Concessão: 23/11/2010. Citado na página 4.

NATURE. *Nature photonics*: Recent progress in lasers on silicon. 2010. <http://www.nature.com/nphoton/journal/v4/n8/fig_tab/nphoton.2010.167_F1.html>. [Online; acessado em 03-dezembro-2019]. Citado na página 9.

NREL. National Renewable Energy Laboratory: National renewable energy laboratory. 2013. http://www.nrel.gov/ncpv/images/. [Online; acessado em 03-junho-2014]. Citado 3 vezes nas páginas 44, 45 e 46.

NSM. *Ioffe Institute - New Semiconductor Materials, Characteristics and Properties*: Ioffe physico-technical institute. 2001. ">http://www.ioffe.ru/SVA/NSM/>. [Online; acessado em 06-Janeiro-2021]. Citado 2 vezes nas páginas 10 e 21.

OLIVEIRA, D. F. Confiabilidade Metrológica e Validação de Procedimentos Espectroradiométricos para Medição de Fontes Luminosas. Tese (Dissertação de Mestrado) — PUC-Rio, 2006. Citado na página 41.

OPENSTAX. *OpenStax*: Sharing knowledge and building communities. 1999. http://cnx.org/content/m41217/latest/. [Online; acessado em 06-maio-2014]. Citado na página 45.

OSRAM GMBH. Catálogo de lâmpadas Osram. [S.l.], 2013. Citado na página 100.

Park, S. et al. Simultaneous imaging and energy harvesting in cmos image sensor pixels. *IEEE Electron Device Letters*, v. 39, n. 4, p. 532–535, 2018. Citado na página 1.

POWERGURU. *Power Guru*: Power on your net. 2012. http://www.powerguru.org/ p-n-junction/>. [Online; acessado em 06-Janeiro-2021]. Citado na página 29.

PVEDUCATION. *PV Education.org*: A collection of resources for the photovoltaic educator. 2014. <<u>http://www.pveducation.org</u>>. [Online; acessado em 06-Janeiro-2021]. Citado 18 vezes nas páginas 22, 24, 25, 30, 32, 33, 36, 54, 59, 60, 66, 70, 79, 80, 82, 84, 85 e 87.

RABAEY, J. M. *The Spice Page*. 2012. <http://bwrcs.eecs.berkeley.edu/Classes/IcBook/ SPICE/>. [Online; acessado em 06-Janeiro-2021]. Citado na página 116.

REIS, F. E. U. Conversor CC/CC com dois estágios para aplicação em sistemas fotovoltaicos autônomos de energia. Tese (Dissertação de Mestrado) — Centro de Tecnologia, Universidade Federal do Ceará, 2012. Citado na página 2.

ROBOTICLAB. Robotic & Mechatronic HomeLab Kit Community: Homelab community. 2015. http://home.roboticlab.eu/en/examples/sensor/photoresistor. [Online; acessado em 06-janeiro-2021]. Citado na página 41.

ROCHA, T. de O. *Efeito das Resistências Internas na Resposta de Aglomerados Auto-Reconfiguráveis de Células Solares Fotovoltaicas*. Minas Gerais, 2008. Citado na página 4.

ROGALSKI, A. Quantum well photoconductors in infrared detector technology. *Journal of Applied Physics*, American Institute of Physics, v. 93, n. 8, p. 4355–4391, 2003. Citado na página 36.

ROSS, R. Flat-plate photovoltaic array design optimization. San Diego, CA, p. 1126–1132, 1980. Citado na página 70.

ROY, A. et al. A 6.45 μw self-powered soc with integrated energy-harvesting power management and ulp asymmetric radios for portable biomedical systems. *IEEE transactions on biomedical circuits and systems*, IEEE, v. 9, n. 6, p. 862–874, 2015. Citado na página 2.

SALLES, L. P.; OLIVEIRA, O. G. D.; MONTEIRO, D. W. D. L. Wavefront sensor using double-efficiency quad-cells for the measurement of high-order ocular aberrations. *ECS Transactions*, IOP Publishing, v. 23, n. 1, p. 479, 2009. Citado na página 108.

SEDRA, A. S.; SMITH, K. C. *Microelectronic Circuits*. fifth. [S.l.]: Oxford University Press, 2004. Citado na página 2.

SHAHEEN, S. E.; GINLEY, D. S.; JABBOUR, G. E. Organic-based photovoltaics: Toward low-cost power generation. *MRS bulletin*, Cambridge Univ Press, v. 30, n. 01, p. 10–19, 2005. Citado na página 47.

SILICONSOLAR. *Silicon Solar*: Inovative solar solutions. 2012. <<u>http://www.siliconsolar.com/commercial-solar-cells.html</u>>. [Online; acessado em 06-maio-2014]. Citado na página 45.

SOLMETRIC. *Solmetric*: Expert tools. better solar. 2015. http://www.solmetric.com/ pva-wireless-sensor-kit.html>. [Online; acessado em 10-dezembro-2015]. Citado na página 169.

SWART, J. W. Semicondutores - Fundamentos, Técnicas e Aplicações. Editora Unicamp, 2008. ISBN 8526808184. Disponível em: ">https://books.google.com.br/books?id=hdvYA9KsI2YC>. Citado na página 15.

SZE, S.; NG, K. *Physics of Semiconductor Devices, 3rd edition*. Wiley, 2006. ISBN 9780470068304. Disponível em: <<u>https://books.google.com.br/books?id=</u> o4unkmHBHb8C>. Citado 13 vezes nas páginas 11, 16, 18, 19, 21, 22, 30, 32, 33, 36, 76, 81 e 84.

SZE, S. M. Semiconductor Devices: Physics and Technology, 3rd edition. [S.l.]: Wiley, 2016. ISBN 978-0470537947. Citado 10 vezes nas páginas 7, 14, 19, 21, 28, 35, 36, 51, 77 e 85.

TEIXEIRA, T. B. Influência da temperatura em aglomerados auto-reconfiguráveis de células solares fotovoltaicas. Minas Gerais, 2008. 72 p. Citado 2 vezes nas páginas 4 e 24.

TEIXEIRA, T. B.; ROCHA, T. de O.; MONTEIRO, D. W. de L. Numerical environment for photoconductor modeling. *SFORUM - Chip in the Pampas*, 2008. Citado na página 43.

TEORIADACOR. 2012. <http://teoriadacorpedrocorreia.blogspot.com.br/>. [Online; acessado em 06-Janeiro-2021]. Citado na página 42.

TPUB. *Energy Band*: Integrated publishing. 2015. <<u>http://www.tpub.com/neets/book7/</u>24c.htm>. [Online; acessado em 06-janeiro-2021]. Citado na página 8.

TYAN, Y.-S. Organic light-emitting-diode lighting overview. *Journal of Photonics for Energy*, International Society for Optics and Photonics, v. 1, n. 1, p. 011009, 2011. Citado na página 7.

VARSHNI, Y. Temperature dependence of the energy gap in semiconductors. *Physica*, v. 34, n. 1, p. 149 – 154, 1967. ISSN 0031-8914. Disponível em: <<u>http://www.sciencedirect.com/science/article/pii/0031891467900626></u>. Citado na página 10.

VEENDRICK, H. Nanometer CMOS ICs: From Basics to ASICs. Springer International Publishing, 2017. ISBN 9783319475967. Disponível em: https://books.google.de/books?id=3Gb0vgEACAAJ>. Citado na página 40.

VEISSID, N.; VAZ, C. C. Simulador solar de baixo custo (solsim): Simulação da corrente fotogerada em diferentes células solares. *Revista Brasileira de Energia Solar*, II, p. 71–77, 2011. Citado na página 169.

WANG, C. et al. Organic semiconductor crystals. *Chemical Society Reviews*, Royal Society of Chemistry, v. 47, n. 2, p. 422–500, 2018. Citado na página 7.

WARWICK. *Warwick*: Department of physics. 2010. <<u>https://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/bandstructure/></u>. [Online; acessado em 17-novembro-2016]. Citado na página 9.

WEISSE, J. Concentrated Solar Photovoltaics: Submitted as coursework for physics 240, stanford university, fall 2010. 2010. http://large.stanford.edu/courses/2010/ph240/weisse2/>. [Online; acessado em 14-junho-2014]. Citado na página 47.

WIKIMEDIA. *Wikimedia Commons*: Células poliméricas. 2013. <<u>http://pt.wikipedia.org/wiki/Célula_solar_polimérica></u>. [Online; acessado em 14-junho-2014]. Citado 2 vezes nas páginas 28 e 48.

WYSZECKI, G.; STILES, W. S. *Color science*. [S.l.]: Wiley New York, 1982. v. 8. Citado na página 43.

ZEGHBROECK, B. V. *Principles of Semiconductor Devies*. University of Colorado -Webbook, 2011. Disponível em: <<u>https://ecce.colorado.edu/~bart/book/></u>. Citado na página 10.

ZHANG, X.; DONG, H.; HU, W. Organic semiconductor single crystals for electronics and photonics. *Advanced Materials*, Wiley Online Library, v. 30, n. 44, p. 1801048, 2018. Citado na página 7.

ZHAO, J. H.; SCHLESINGER, T. E.; MILNES, A. G. Determination of carrier capture cross sections of traps by deep level transient spectroscopy of semiconductors. *Journal of applied physics*, AIP, v. 62, n. 7, p. 2865–2870, 1987. Citado na página 84.

Apêndices

APÊNDICE A – Material disponível

"Não sou nada. Nunca serei nada. Não posso querer ser nada. À parte isso, tenho em mim todos os sonhos do mundo."

Álvaro de Campos - Tabacaria (fragmento) - 1928

Através de pesquisas, obtivemos informações sobre diversos tipos de células, painéis fotovoltaicos e fotocondutores necessários para o nosso estudo. No caso das células solares, é de interesse do trabalho uma maior diversidade de resultados; portanto, optamos por procurar células de diferentes materiais, fabricantes, tamanhos e tecnologias. Há uma grande dificuldade em se obter células avulsas no mercado, principalmente células baseadas em tecnologias recentes, como células multijunção e orgânicas. Conseguimos obter algumas unidades de células de silício monocristalino e policristalino de fabricação chinesa (sem nome de fabricante aparente), além de algumas células cedidas pela DYA Solar. Essas células serão utilizadas na confecção de arranjos tradicionais e fotoajustáveis. A relação de células solares está descrita na tabela 24.

Tabela 24 – Células solares adquiridas

Célula	Tam. (mm)	Ef. (%)	P(W)	Voc (V)	Isc (A)	Vmp (V)	Imp (A)
Poli. Grau A	156×156	17, 6	4,28	0,63	8,51	0, 52	8,22
Mono. 1	156×156	19	4,40	0,626	8,47	0,524	8,395
Mono. 2	126×126	17, 8	2,78	0, 6	5,52	0,501	5,22
Mono. DYA	156×156	18, 43	4,44	0,631	8,970	0,529	8,408
Poli. DYA	156×156	16, 0	3,89	0,609	8,297	0,505	7,712

Fonte: Dados dos fornecedores

Alguns painéis também serão utilizados para testes de conceito de arranjos autoreconfiguráveis. Para tal, utilizaremos um painel de baixa potência de 10W, dois painéis Kyocera de 140W e duas células de filmes finos (silício amorfo) de dimensões diferentes. A tabela 25 os apresenta.

Painel	Área	P(W)	Voc(V)	$\operatorname{Isc}(A)$	$\operatorname{Vmp}(V)$	Imp(A)
Painel 10W	$0,1 \ m^2$	10	22	0,7	20	0, 5
Kyocera KD140SX	$1 m^{2}$	140	22, 1	8,68	17,7	7,91
Filme Fino 1	$0,084 \ m^2$	7, 5	2, 4	3, 5	2, 2	3, 2
Filme Fino Uni-Solar	$0.56 \ m^2$	31	10, 5	5, 1	7, 5	4, 1

Tabela 25 – Painéis solares adquiridos (Dados dos fornecedores)

Fonte: Dados dos fornecedores

Foram escolhidos 6 modelos de fotocondutores da DSD Semicondutores, todos baseados em CdS, com contatos de prata, 26 mm de diâmetro e 750 mW de potência máxima. Foram adquiridas 50 unidades de cada modelo. (DSD, 2006)

Figura 105 – Fotocondutor da DSD (esquerda) e diagrama construtivo (direita). Fonte: (DSD, 2006)

Tabela 26 – Fotocondutores adquiridos

Modelo	R_{FC} (10 lux)	R_{FC} (0 lux)	γ
DSD0204	$2-4 \ k\Omega$	$> 0, 1 \ M\Omega$	0,64
DSD0407	$4-7 \ k\Omega$	$> 0,5~M\Omega$	0, 80
DSD0712	$7-12 \ k\Omega$	$> 2,0~M\Omega$	0, 81
DSD1220	$12-20 \ k\Omega$	$> 3,0~M\Omega$	0,83
DSD2040	$20-40 \ k\Omega$	$> 3,0~M\Omega$	0,90
DSD4060	$40-60 \ k\Omega$	$> 3,0~M\Omega$	0,96

Fonte: (DSD, 2006)

APÊNDICE B – Equipamentos de medição

"Num bosque amarelo dois caminhos se separavam, E lamentando não poder seguir os dois E sendo apenas um viajante, fiquei muito tempo parado E olhei pra um deles tão distante quanto pude Até que se perdia na mata;

> Então segui o outro, como sendo mais merecedor. E vendo talvez melhor direito. Porque coberto de mato e querendo uso Embora os que passaram por lá Os tenham percorrido de igual forma, E ambos ficaram essa manhã Com folhas que passo nenhum pisou.

Oh, guardei o primeiro para outro dia! Embora sabendo como um caminho leva pra longe, Duvidasse que algum dia voltasse novamente.

Direi isso suspirando Em algum lugar, daqui a muito e muito tempo: Dois caminhos se separaram em um bosque e eu...

> Eu escolhi o menos percorrido E isso fez toda a diferença."

> > Robert Frost (1916)

B.1 Caracterizador Solar PVA600

A caracterização sob sol natural é realizada utilizando o equipamento PVA600 da Solmetric. Ele é um traçador de curvas, ou seja, ele faz o papel de carga variável para levantarmos a curva I-V de uma célula ou painel. Esse equipamento permite a obtenção de até 100 pontos por teste, além de contar com sensores de temperatura e irradiância. Contudo, ele é um equipamento voltado para a medição de painéis de potências mais altas, não sendo indicado para painéis e células de baixa potência (devido ao seu grande ruído de medição em baixas correntes). Os dados são obtidos através do programa *Solmetric PV Analyzer*®, que nos permite inserir modelos personalizados de painéis fotovoltaicos (além dos que já vem pré-configurados) e construir históricos de medição para cada um deles. Ele ainda permite uma comunicação à distância entre o computador e o equipamento de medição, via comunicação sem fio (*wireless*). A figura 106 apresenta o equipamento. (SOLMETRIC, 2015)

Figura 106 – Traçador de curvas Solmetric PVA600. Fonte: (SOLMETRIC, 2015)

B.2 Simulador Solar SOLSIM

Para a realização da caracterização de nossas células solares e fotocondutores em ambiente de laboratório, contamos com um simulador solar SOLSIM da Orbital Engenharia. Ele opera sob uma irradiância de 1000 W/m^2 , no espectro padrão AM1.5G, sob as normas ABNT NBR 11879 e ASTM E 927-85, e sendo considerado como um simulador solar de Classe A em termos de descasamento de espectro (é considerado Classe A um simulador que tenha descasamento menor que 25%). Também garante uma variação de uniformidade menor que 10% para uma área de exposição circular de 20 cm de diâmetro e menor que 5% para um diâmetro de 5 cm (indica como sendo de Classe B para o diâmetro de 10cm e Classe C para o diâmetro de 20 cm). A figura 107 apresenta o equipamento. (VEISSID; VAZ, 2011)

Figura 107 – Simulador Solar SOLSIM.

B.3 Medidor de irradiância MES-100 e Luxímetro LD-200

Para verificação da luminosidade nos dois simuladores e calibração das medições, utilizamos o medidor de irradiância MES-100, da Instrutherm, que permite medições de irradiâncias de até 2000 W/m^2 , com uma resolução de 1 W/m^2 . Como complemento, utilizamos o luxímetro LD-200, também da Instrutherm, que permite medições de 0,01 a 200000 lux (3 e 1/2 dígitos). Esse equipamento é muito importante na caracterização dos fotocondutores, para verificação de conformidade com os dados do fabricante. A figura 108 apresenta os aparelhos. (INSTRUTHERM, 2016)

Figura 108 – Medidor de irradiância MES-100 (esquerda) e luxímetro LD-200 (direita). Fonte: (INSTRUTHERM, 2016)

Especificações do Medidor de irradiância MES-100

- Display de cristal liquido (LCD) de 4 dígitos
- Escala de medição: 2000 W/m^2 , 634 $Btu/(ft^2xh)$
- Resolução: 0.1W/m^2 ; $0.1 \text{ Btu/(ft}^2 \text{xh})$
- Resposta espectral: 400 a 1000nm
- Precisão: tipicamente $\pm 10 \text{ W/m}^2 [\pm 3Btu/(ft^2xh)]$ ou 5%, o que for maior.
- Taxa de amostragem: 4 vezes por segundo
- Detector: célula fotovoltaica de silício

Especificações do Luxímetro LD-200

- Display de cristal líquido (LCD) de 3 1/2 dígitos
- Escala: 0,01 a 200.000 lux em 4 faixas
- Precisão:

 $\pm 3 \% \pm 0.5$ E.C. (<10.000 lux)

 $\pm 4 \% \pm 10\%$ dígitos (>10.000 lux)

(OBS.: Exatidão com referência a lâmpada padrão incandescente com temperatura de cor de 2856K)

- Precisão espectral: Curva Vl função f 1 £ 6% Resposta cossenoidal: f 1 £ 6%
- Fotocélula separada do aparelho construída em foto diodo de silício e filtro de correção de cor
- Correção para eficiência luminosa
- Tempo de amostragem: Aprox. 2 vezes por segundo

B.4 Source-Meter 2612B e Analisador de Parâmetros B1505A

Para a caracterização elétrica dos componentes, utilizamos o Source-Meter 2612B da Keithley, apresentado na figura 109, e o analisador de parâmetros B1505A da Agilent/Keysight. O Source-Meter é um equipamento que nos permite obter curvas I-V de diversos dispositivos. Esse modelo em específico possui dois canais SMU (source-meter unit) independentes com quatro canais cada, que nos permitem aplicar e medir tensões e correntes de forma simultânea (quatro quadrantes), além de permitir a medida de quatro pontas (também conhecida como medida Kelvin). Sua tensão máxima é de ± 200 VDC e sua corrente máxima, ± 1 ADC (modo contínuo) e ± 10 ADC (modo pulsado), permitindo uma combinação de até 30 W. (KEITHLEY, 2017)

Figura 109 – Source-meter 2612B da Keithley. Fonte: (KEITHLEY, 2017)

O analisador de parâmetros B1505A da *Agilent/Keysight*, mostrado na figura 110, engloba as funções do *source-meter*, mas utilizando um paradigma diferente. Seus módulos são específicos para cada faixa de atuação, como o HCSMU (High-current SMU), o HVSMU (High-Voltage SMU), MFCMU (Multi Frequency Capacitance MU), dentre outros, o que permite que o equipamento seja usado para caracterização de diversos dispositivos. Além disso, é possível visualizar os resultados no próprio equipamento (o equipamento em si é um PC integrado ao sistema de medição, incluindo um monitor integrado e softwares dedicados à tarefa). Além do levantamento da curva I-V, ele permite análises temporais, em frequência, extração de parâmetros, além de possuir um osciloscópio integrado. A suíte responsável pelo sistema de medição é o *Keysight EasyExpert*®, programa muito flexível e de fácil operação, permitindo que o usuário construa suas próprias rotinas de teste utilizando a sua linguagem de programação gráfica.

Figura 110 – Analisador de parâmetros 1505 A da
 Keysight. Fonte: (AGILENT, 2014)

APÊNDICE C – Caracterização de fotocondutores

Aos Virgens, para aproveitarem o Tempo

"Colham botões de rosas enquanto podem, o velho Tempo continua voando: E essa mesma flor que hoje lhes sorri, Amanhã estará expirando.

> O glorioso sol, lume do céu, Quanto mais alto eleva-se a brilhar, Mais cedo encerrará sua jornada, E mais perto estará de se apagar.

Melhor idade não há que a primeira, Quando a juventude e o sangue pulsam quentes; Mas quando passa, piores são os tempos Que se sucedem e se arrastam inclementes.

Por isso, sem recato, usem o tempo, E enquanto podem, vivam a festejar, Pois depois de haver perdido os áureos anos, Terão o tempo inteiro para repousar."

Robert Herrick (1648)

C.1 Caracterização dos fotocondutores do grupo 2

Dados obtidos com o Grupo 2 de fotocondutores comerciais (tabela 27):

Faixa	Resistência $(k\Omega)$	$\rm N^o$ de amostras
1	2 a 4	8
2	4 a 7	8
3	7 a 12	8
4	12 a 20	8
5	20 a 40	8
6	40 a 60	8

Tabela 27 – Fotocondutores do Grupo 2

Fonte: Seleção feita pelo autor

Considerando as médias das amostras de cada faixa, temos as curvas da figura 111:

Figura 111 – Curvas características dos fotocondutores do Grupo 2. Fonte: (FACURY, 2017)

Utilizando a ferramenta *Curve Fitting* do MATLAB, fomos capazes de extrair os parâmetros das curvas características dos fotocondutores, e gerar novas curvas a partir desses parâmetros (apresentado na figura 112:

Figura 112 – Curvas ajustadas dos fotocondutores do Grupo 2. Fonte: (FACURY, 2017)

Dados do grupo 2 para comparação (tabela 28):

m 1 1 00			1 . • 1	1	1. ~	1	C .	•••	
Tabela 28	-P	'arametros	obtidos	da.	medicao	e do	ta.	bricant	e
100010 20	· 1	arannoutos	0001000	aa	mourquo	0 uo	TO	DITOUTIC	0

Número da Faixa	1	2	3	4	5	6
Valor	$2\text{-}4\mathrm{k}\Omega$	$4\text{-}7\mathrm{k}\Omega$	7-12k Ω	$12\text{-}20\mathrm{k}\Omega$	20-40k Ω	$40\text{-}60\mathrm{k}\Omega$
R_0 Medido $(M\Omega)$	0,007	0,210	1,282	1,209	3,533	7,401
R_0 Fabricante $(M\Omega)$	>0,1	>0,5	>0,2	>3,0	>3,0	>3,0
β Calculado (S/lux)	$7,25.10^{-5}$	$2,62.10^{-5}$	$9,62.10^{-6}$	$5, 15.10^{-5}$	$1, 10.10^{-5}$	$7,04.10^{-6}$
γ Calculado	0,240	0,402	0,403	$0,\!295$	0,522	$0,\!455$
γ Fabricante	0,64	$0,\!80$	$0,\!81$	$0,\!83$	$0,\!90$	0,96
Diferença Gama	$62{,}48\%$	$49{,}78\%$	$50,\!26\%$	$64{,}46\%$	$41{,}97\%$	$52,\!63\%$

Fontes: Parâmetros calculados pelo autor; medições em conjunto com (FACURY, 2017); dados do fabricante: (DSD, 2006)

APÊNDICE D – Software desenvolvido

"Hoc factum est verbum Quia de vita est speciosa Et in singulis quae incidere Eorum gaudia scilicet et dolores.

Memento mori."

André L. C. Carvalho

Tradução:

"Escrevo essas palavras Para dizer como a vida é maravilhosa Singular em cada acontecimento Com as suas alegrias e tristezas.

Lembre-se que você é mortal."

Nesse anexo se encontram os códigos-fonte em linguagem Matlab/Octave dos algoritmos e aplicativos utilizados no desenvolvimento do trabalho.

D.1 Modelo geral para fotovoltaicos

Aqui apresentamos o código-fonte do algoritmo utilizado para obtenção da curva I-V de dispositivos fotovoltaicos. Esse código ainda está em desenvolvimento, mas já é funcional para diversos casos de estudo.

- 1 %Modelo geral para celulas fotovoltaicas modelo_geral_celula.m
- 2 %Desenvolvido por: Andre Luiz Costa de Carvalho/Optma UFMG -Iniciado em janeiro/2015; ainda em desenvolvimento
- 3 %Descricao: A partir da entrada de dados fisicos e geometricos de um projeto de celula/painel/fotodiodo (ou dados de um dispositivo real), podemos calcular a sua corrente fotogerada , sua curva I-V e seus parametros para uma determinada condicao ambiental. Esse algoritmo tem como caracteristica ser o mais detalhado possivel na execucao de sua funcao.

```
4
5 clear all;
```

```
6 close all;
```

- 7 clc;
- 8
- 9

```
10 %Constantes
```

```
11 A = 244; %Area da celula [cm^2]
```

- 12 We = 0.25e-4;%[cm] Espessura do emissor Geralmente, menor que 1 um (exemplo do livro do Sze $\rightarrow 0.25um$). Nao pode ser fina demais, para evitar a difusao dos contatos de metal para dentro do semicondutor.
- 13 Wb = 200e-4; %[cm] Espessura da base praticamente, a espessura da celula.
- 14 W_cell = Wb+We; %[cm] Espessura da celula solar/fotodiodo Geralmente, o tamanho otimo de uma celula e de 100 um; contudo, celulas entre 200 e 500 um sao fabricadas, para uma maior robustez.
- 15 q = 1.6e 19; %Carga elementar [C]
- 16 q_ev = 1; %Carga elementar normalizada
- 17 k = 1.381e-23; %Constante de Boltzmann [cm².kg/s².K]
- 18 k_ev = 8.617e-5; %Constante de Boltzmann[eV/K]

```
h ev = 4.136e - 15; %Constante de Planck [eV.s]
19
  h = 6.626e - 30; %Constante de Planck [cm2.kg/s]
20
  c = 3e10; %Velocidade da luz no vacuo [cm/s]
21
  e0 = 8.854e - 14; %Permissividade eletrostatica no vacuo [F/cm]
22
  er = 11.9; %Permissividade relativa do silicio []
23
  m0 = 9.109e - 31; %Massa de repouso do eletron [kg]
24
25
  %Dados calculados e banco de dados
26
27
  %Irr_lambda
28
29
 %Irr_lambda = csvread ('AM15_direct_ASTMG173-03_adjusted.csv
30
     ',1,0); %AM1.5 Direct (ASTM G173-03 Reference Spectra Derived
      from SMARTS v. 2.9.2) [W/(m^2*nm) - wavelength in nm]
31 Irr_lambda = csvread ('AM15_global_ASTMG173-03_adjusted.csv',1,0)
     ; %AM1.5 Direct (ASTM G173-03 Reference Spectra Derived from
     SMARTS v. 2.9.2) [W/(m^2*nm) - wavelength in nm]
32 %Irr_lambda = csvread('AM15_extraterrestrial_ASTMG173-03)
     _adjusted.csv',1,0); %AM1.5 Direct (ASTM G173-03 Reference
     Spectra Derived from SMARTS v. 2.9.2) [W/(m<sup>2</sup>*nm) -
     wavelength in nm]
33
 %Irr_lambda = csvread ('AM0_standard_ASTME-490_adjusted.csv',1,0)
34
     ; %AM0 Direct (ASTM E-490 Reference Spectra Derived from
     SMARTS v. 2.9.2) [W/(m^2*nm) - wavelength in nm]
35 %Irr_lambda = csvread ('AM0_short_ASTME-490_adjusted.csv',1,0);%
     AM0_standard centrado nos comprimentos de onda 280 a 4000 nm
     [W/(m^2*m) - wavelength in m]
36
37 %Irr_lambda = csvread ('halogen_lamp_Newport6315_1000W_adjusted.
     csv',1,0); %Lampada halogena NEWPORT modelo 6315 - 1000W [W/(
     m^2*m) - wavelength in nm]
38
  %Irr lambda = csvread('fluorescent lamp 500lux adjusted.csv
39
     (1, 0); %Lampada fluorescente 500 Lux (10 W) [W/(m<sup>2</sup>*nm) -
     wavelength in nm]
40
41 %Irr_lambda = csvread ('led_lamp_9W_warm_adjusted.csv',1,0); %
```

```
Lampada LED Branca Quente (5 \text{ W}) [W/(m^2*m) - wavelength in
```

```
nm]
42
  factor = 1; %Fator de amplificacao/atenuacao de cada fonte de
43
     luz []
  Irr_lambda = [Irr_lambda(:,1) factor*Irr_lambda(:,2)]; % Ajuste
44
     de potencia na Irradiancia espectral [W/(m^2*nm)]
45
46
  figure (1)
47
  plot(Irr_lambda(:,1), Irr_lambda(:,2));
48
  xlabel('Comprimento de onda (nm)'); ylabel('Irradiancia espectral
49
       (W/m2.nm)');
  axis([400 \ 1100 \ 0 \ (1.1) * max(Irr_lambda(:,2))]);
50
51
  Irr = trapz(Irr_lambda(:,1), Irr_lambda(:,2)) %Irradiance [W/m<sup>2</sup>]
52
53
  %Coeficiente de absorcao
54
55
  absortion\_coefficient = csvread()
56
     Silicon absortion coefficient adjusted.csv',1,0); %
     PVEducation [cm^{-1}]
  figure (2)
57
  semilogy(absortion_coefficient(:,1), absortion_coefficient(:,2));
58
  xlabel ('Comprimento de onda (nm)'); ylabel ('Coeficiente de
59
     absorcao (cm^{-1});
  axis ([400 1100 3.5 1e5]);
60
61
  %Coeficiente de reflexao
62
63
64 %Silicio
65 % reflection coefficient = csvread ('
      Silicon_reflection_coefficient_adjusted.csv',1,0); %
     PVEducation []
66 % reflection coefficient = csvread ('
     Silicon_reflection_coefficient_glass_adjusted.csv',1,0); %
     PVEducation
67 reflection_coefficient = csvread('
      Silicon\_reflection\_coefficient\_antireflection\_coat\_adjusted\,.
     csv',1,0); %PVEducation
```

```
68
   figure (3)
69
   plot(reflection_coefficient(:,1), reflection_coefficient(:,2));
70
   xlabel('Comprimento de onda (nm)'); ylabel('Coeficiente de
71
      reflexao');
72 \%axis ([400 1100 0.3 0.5]);
73
74
  %Eficiencia quantica
75
   %eqe = csvread('Silicon_EQE_adjusted.csv',1,0); %PVEducation [%]
76
   iqe = csvread('Silicon_IQE_adjusted.csv',1,0); \%PVEducation[\%]
77
   eqe(:,1) = iqe(1:1840,1);
78
   eqe(:,2) = (1 - reflection\_coefficient(61:1900,2)) . * iqe(1:1840,2);
79
80
81
   figure (4)
82
   plot (eqe(:,1), eqe(:,2), iqe(:,1), iqe(:,2)); xlabel ('Comprimento de
83
       onda (nm)');
   ylabel('Eficiencia quantica');legend('Externa', 'Interna')
84
   axis([400 1100 0.0 100]);
85
86
   %
87
   %Grandezas Termicas
88
89
   T = 298; %Temperatura em Kelvin [K]
90
   Vt = k*T/q; %Potencial termico [V]
91
92
   %
93
   %Grandezas Fisicas
94
95
96
   % Valores tabelados a 300K (exceto Eg(0) que e a 0K)
97
98
99
100 %
                              GaAs
                                         Si
                                                   Ge
  %
101
102 \% Eg(0) [eV]
                             1.519
                                        1.166
                                                  0.7437
103 % alfa (x10^-4)
                             5.405
                                        4.73
                                                  4.774
104 % Beta
                              204
                                        636
                                                   235
```

105	$\% \mathrm{Eg}$		1.12	1.42	
106	%				
107	% tau [ms]	~1e−5	2.5	1.0	
108	% Dn [cm ² /s]	200	36	100	
109	$\% \text{Dp} [\text{cm}^2/\text{s}]$	10	12	50	
110	% mun [cm2/V.s]	8500	1500	3900	
111	% mup [cm2/V.s]	400	450	1900	
112	%				
113	$\%~E_breakdown~[V/cm]$	4e5	3e5	1e5	
114	$\% $ Vth_n [cm/s]	4.4e7	2.3e7	3.1e7	
115	$\% \text{ Vth_p } [\text{cm/s}]$	1.8e7	1.65e7	1.9e7	
116	%				
117	%Relative Effective M	lass – De	nsity of S	States	
118	%E.M. electrons [kg]	0.067	1.08	0.55	
119	%E.M. holes [kg]	0.450	0.811	0.37	
120					
121	%Relative Effective M	lass – Co	nductivity		
122	%E.M. electrons [kg]	0.067	0.26	0.12	
123	%E.M. holes [kg]	0.340	0.386	0.21	
124	%				
125	%vth =				
126					
127	$vth_n_calc = sqrt(k*T)$	$^{\prime}/(m0*0.26)$	5)); %Velo	ocidade te	rmica dos
	eletrons [cm/s]				
128	$vth_p_calc = sqrt(k*T)$	/(m0*0.38)	(86)); % Vel	locidade t	ermica dos
	buracos [cm/s]				
129					
130	$vth_n = 2.3 e7;$				
131	$vth_p = 1.65 e7;$				
132					
133	%Fontes: Principles o	of Semicor	nductor D	evices — E	Bart Van
	Zeghbroeck				
134	% "Semiconduct	ors on NS	M" (Webs	ite)	
135	% "Semiconduct	ors Devid	ces", Simo	on Sze	
136					
137	Eg0 = 1.166;%Gap de e	nergia en	T = 0K [eV]	
138					
139	alfa = $4.73 \mathrm{e} - 4; \% [\mathrm{eV}/$	K]			
140	beta = 636; $\%[K]$				

```
141 Eg = Eg0-((alfa*T^2)/(T+beta)); %Expressao empirica, onde alfa e
        beta sao fatores de ajuste [eV]
142
   freq_min = Eg/h_ev; \%[Hz] Frequencia minima capaz de gerar um
143
       par eletron-buraco
  lambda_max_calc = round(1e7*(c/freq_min)); \%[nm] Comprimento de
144
        onda maximo capaz de gerar um par eletron-buraco
145
   lambda min = 400; %[nm] Comprimento de onda minimo que atravessa
146
        a superficie do semicondutor. No caso do Si, 400 nm.
   lambda_max = 1100; %[nm]
147
148
   %Dopagem
149
150
151 NA = 1E14; %Tradicionalmente, essa e a dopagem da base.
       portadores/m<sup>3</sup>]
152 \text{ ND} = 1 \text{E16}; %Tradicionalmente, essa e a dopagem do emissor.
       portadores/m<sup>3</sup>]
153
   %Mobilidade
154
155
156 mu_n = 88*(T/300)^{(-0.57)}+((7.4 \times 10^{-2.33}))/(1+(NA/(1.26 \times 17^{+1})))
       (300)^{(2.4)}) * (0.88*(T/300)^{(-0.146)}))%Arora model:
       Aproximacao valida para 250 \text{K} < \text{T} < 500 \text{K} [\text{eV}/(\text{s.cm}^2)]
157 mu_p = 54.3 * (T/300) (-0.57) + ((1.36 \text{ E8} * T^{-}(-2.33))) / (1 + (ND/(2.35 \text{ E17})))
       *(T/300)^{(2.4)}) *(0.88*(T/300)^{(-0.146)}))%Arora model:
       Aproximacao valida para 250 \text{K} < \text{T} < 500 \text{K} [\text{eV}/(\text{s.cm}^2)]
158
   \%T = [250:1:500];
159
160
   % for N = logspace (10, 20, 10)
161
162
163 %
         NA = N;
         ND = N;
164 %
165 %
         figure (20)
         mu_n = 88.*(T./300).(-0.57)+((7.4E8.*T.(-2.33))./(1+(NA)))
166 %
       (1.26 E17.*(T./300).(2.4))).*(0.88.*(T./300).(-0.146))))\%
       Arora model: Aproximacao valida para 250K<T<500K [eV/(s.cm<sup>2</sup>)
```

```
167 %
         plot(T,mu n);
168 %
         hold on
169 %
         figure (21)
        mu_p = 54.3 * (T./300) \cdot (-0.57) + ((1.36 E8 \cdot T. (-2.33)) \cdot / (1 + (ND))
170 %
       (2.35 E17.*(T./300).(2.4))).*(0.88.*(T./300).(-0.146))))\%
      Arora model: Aproximacao valida para 250K<T<500K [eV/(s.cm<sup>2</sup>)
171 %
         plot(T,mu_p);
172 %
         hold on
173 %end
174
175 % figure (20)
176 % legend ('NA = 1e10', 'NA = 1e11', 'NA = 1e12', 'NA = 1e13', 'NA = 1
      e14', 'NA = 1e15', 'NA = 1e16', 'NA = 1e17', 'NA = 1e18', 'NA = 1
      e19', 'NA = 1e20');
177 % figure (21)
178 % legend ( 'ND = 1e10', 'ND = 1e11', 'ND = 1e12', 'ND = 1e13', 'ND = 1
      e14', 'ND = 1e15', 'ND = 1e16', 'ND = 1e17', 'ND = 1e18', 'ND = 1
      e19', 'ND = 1e20');
179
180 % Fontes: Electron and Hole Mobilities in Silicon as a Function
      of Concentration and Temperature - Narain D. Arora, Jonh R.
      Hauser and David J. Roulston
181
182 %Concentracao de portadores
183 K = 4.751e15; %Constantes agrupadas (independentes da
      temperatura) - Valido para Si
  ni = K*T^{(3/2)}*exp(-Eg/(2*k_ev*T)) %Concentracao de portadores
184
      intrinsecos – Fonte: Semiconductor Devices – Kanon Kano [
      portadores/m<sup>3</sup>]
185 %ni = 5.29 e^{19} (T/300)^{2.54} e^{(-6726/T)} %Forma alternativa -
      Fonte: PVEducation
186
   pn0 = ni^2/ND; \%[portadores/m^3]
187
   np0 = ni^2/NA; \%[portadores/m^3]
188
189
190 %Regiao de deplecao
  Vbi = Vt * log (NA * ND/ni^2)\% Tensao embutida [V]
191
```

```
192 Wd = \operatorname{sqrt}((2 * \operatorname{er} * e0/q) * ((NA+ND)/(NA*ND)) * (Vbi)) %Tamanho da
       regiao de deplecao em cm [cm]
   xn = Wd*(NA/(NA+ND)); \%[cm]
193
   xp = Wd*(ND/(NA+ND)); \%[cm]
194
195
   %Tempo de vida dos portadores minoritarios
196
197
  %Parametros para Si
198
199
200 % Parametro
                                    Eletrons
                                                  Buracos
201 % tau0
                                                                %Tempo de
             [ms]
                                      2.50
                                                    2.50
       vida intrinseco (bulk)
202 % Csrh [10^-13.cm^3.s^-1]
                                      3.00
                                                   11.76
                                                                %
       Coeficiente de Shockley-Read-Hall
203 % Csaug [10^{-31.cm^{3.s^{-1}}}]
                                      1.83
                                                    2.78
                                                                %
       Coeficiente de Auger
                                                                %
204 % gamma
                                      1.77
                                                    0.57
       Coeficiente de ajuste Shocley-Read-Hall para temperatura
205 % delta
                                      1.18
                                                    0.72
                                                                %
       Coeficiente de ajuste Auger para temperatura
206 % Nt
                                      ND
                                                    NA
                                                                %
       Concentracao total de impurezas
207
  %Fontes: "A UNIFIED MOBILITY MODEL FOR DEVICE SIMULATION—II.
208
      TEMPERATURE DEPENDENCE OF CARRIER MOBILITY AND LIFETIME", D.
      B. M. KLAASSEN
209 %
              "HANDBOOK SERIES ON SEMICONDUCTOR PARAMETERS: IN 2
      VOLUMES",
210
   tau0_n = 2.5 e - 3; \% [s]
211
   tau0 p = 2.5e-3; %[s]
212
213
   Csrh n = 3e - 13; \% [cm^3.s^-1]
214
   Csrh p = 11.76e - 13; \% [cm^3.s^{-1}]
215
216
   Caug_n = 1.83 e - 31; \% [cm^3.s^{-1}]
217
   Caug p = 2.78 e - 31; \% [cm^3.s^{-1}]
218
219
220 gamma_n = 1.77; \%[]
```

```
221 gamma_p = 0.57; \%
222
   delta_n = 1.18; \%[]
223
   delta_p = 0.72; \%[]
224
225
   tau_n = 1/(((tau0_n)^{-1}+Csrh_n*NA)*(300/T)^{gamma_n}+(Caug_n*NA^2)
226
      *(T/300)^delta_n) %[s]
   tau_p = 1/(((tau_p)^{-1}+Csrh_p*ND)*(300/T)^{gamma_p}+(Caug_p*ND^{2})
227
      *(T/300)^delta p) %[s]
228
   %Difusividade e comprimento de difusao
229
230
231 Dn = Vt*mu_n %Difusividade de eletrons na regiao p, calculado
      por relacao de Einstein [cm<sup>2</sup>/s]
232 Dp = Vt*mu p \%Difusividade de buracos na regiao n, calculado por
       relacao de Einstein [cm^2/s]
233 Ln = sqrt (Dn*tau_n) %Comprimento de difusao de eletrons na
      regiao p [cm]
234 Lp = sqrt (Dp*tau_p) %Comprimento de difusao de buracos na regiao
       n [cm]
235
  %Exemplo de valores - Livro do Castaner (Modelling photovoltaic
236
      systems with SPICE)
237
238 % Parametro
                                Valor
239 % Ln [um]
                                162
                                            %Comprimento de difusao de
       eletrons
240 % Lp [um]
                                            %Comprimento de difusao de
                                0.43
       buracos
241 % Se [\mathrm{cm/s}]
                               2e5
                                            %Velocidade de
      recombinacao de superficie do emissor
242 \% Sb [cm/s]
                                1e3
                                            %Velocidade de
      recombinacao de superficie da base
                                            %Coeficiente de difusao de
243 % Dn [cm^2/s]
                                36.33
       eletrons
244 % Dp [cm^2/s]
                                           %Coeficiente de difusao de
                               12
      buracos
245
246 %Recombinacao de superficie — impacta no tempo de vida
```

```
247
   Se = 2e5; %Velocidade de recombinação de superficie do emissor [
248
      cm/s]
   Sb = 1e3; %Velocidade de recombinação de superficie da base [cm/
249
      \mathbf{s}
250
   %
251
   %Grandezas Opticas
252
253
254
   %Fluxo de fotons por comprimento de onda [num. fotons/m2.s]
255
   fluxo\_lambda = [Irr\_lambda(:,1) \ 1e-10*(Irr\_lambda(:,2)).*
256
      Irr_lambda(:,1))/(h*c); % Conversao da Irr_lambda (
      Irradiancia espectral) para fluxo espectral de fotons (
      superficie) [num fotons/m<sup>2</sup>.s]
257
   aux1 = find (reflection_coefficient (:,1)=lambda_min);
258
   aux2 = find (reflection_coefficient (:,1)=lambda_max);
259
260
   aux5 = find(fluxo lambda(:,1)) = lambda min);
261
   aux6 = find(fluxo_lambda(:,1)=lambda_max);
262
263
   fluxo_efetivo_lambda = [reflection_coefficient(aux1:aux2,1)(1-
264
      reflection_coefficient(aux1:aux2,2)).*fluxo_lambda(aux5:aux6
      (2); %[num fotons/m<sup>2</sup>.s]
265
   aux3 = find (absortion_coefficient (:,1)=lambda_min);
266
   aux4 = find (absortion_coefficient (:,1)=lambda_max);
267
268
   fluxo_efetivo_lambda_base = [fluxo_efetivo_lambda(:,1)
269
      fluxo_efetivo_lambda(:,2).*exp(-absortion_coefficient(aux3:
      aux4,2)*We)]; %Fluxo efetivo que chega na base [num fotons/m
      ^2.s]
270
   figure (5)
271
   plot (fluxo_lambda (find (fluxo_lambda (:, 1)=lambda_min): find (
272
      fluxo_lambda(:,1)=lambda_max),1),fluxo_lambda(find(
      fluxo_lambda(:,1)=lambda_min): find(fluxo_lambda(:,1)=
      lambda_max), 2));
```

```
273 hold on
   plot (fluxo_efetivo_lambda (find (fluxo_efetivo_lambda (:,1)==
274
      lambda_min): find (fluxo_efetivo_lambda (:,1)=lambda_max),1),
      fluxo_efetivo_lambda(find(fluxo_efetivo_lambda(:,1)==
      lambda_min): find (fluxo_efetivo_lambda (:,1)=lambda_max),2));
275 %, fluxo_efetivo_lambda_base(find(fluxo_efetivo_lambda_base(:,1)
      ==lambda_min): find (fluxo_efetivo_lambda_base (:,1)==lambda_max
      ),1),fluxo_efetivo_lambda_base(find(fluxo_efetivo_lambda_base))
      (:,1) = lambda min): find (fluxo efetivo lambda base (:,1) =
      lambda_max), 2)));
276 xlabel('Comprimento de onda (nm)'); ylabel('Fluxo de fotons ((
      fotons/m<sup>2</sup>.s.nm)'); legend('Fluxo', 'Fluxo Efetivo (
      considerando reflexao)', 'Fluxo efetivo que alcanca a base');
   hold off
277
   %Taxa de Geracao
278
279
280
   aux7 = find (Irr_lambda(:, 1)=lambda_min);
281
   aux8 = find(Irr_lambda(:, 1) = lambda_max);
282
283
   %Gn = absortion_coefficient(aux3:aux4,2)*q.*Irr_lambda(aux7:aux8
284
      ,2)./(h*Irr_lambda(aux7:aux8,1)/c) %[portadores/(cm^3.s)]
  %Gp = absortion_coefficient(aux3:aux4,2)*q.*Irr_lambda(aux7:aux8
285
      ,2)./(h*Irr_lambda(aux7:aux8,1)/c) %[portadores/(cm^3.s)]
  \%deltaN = tau_n*Gn
286
_{287} %deltaP = tau p*Gp
  sigma_n = 1e - 16; \% [cm^2]
288
   sigma_p = 1e-18; %Secao de captura - Fonte: Determination of
289
      carrier capture cross sections of traps by deep level
      transient spectroscopy of semiconductors %[cm<sup>2</sup>]
  Tr_n = 1/(vth_n*sigma_n*NA); %Tempo de vida de recombinação dos
290
      eletrons [s]
  Tr_p = 1/(vth_p*sigma_p*ND); %Tempo de vida de recombinação dos
291
      buracos [s]
  %
292
  %Grandezas Eletricas
293
294
  %Corrente Fotogerada Iph
295
296
```
```
%Modo 1 - Utilizando eficiencia quantica
297
298
   aux5 = find(iqe(:,1) = lambda_min);
299
   aux6 = find(iqe(:, 1) = lambda_max);
300
301
   eqe\_avg = mean(eqe(aux5:aux6,2)); \%[\%]
302
   iqe_avg = mean(iqe(aux5:aux6,2)); \%[\%]
303
304
   Jph_lambda = [fluxo_efetivo_lambda(:,1) q*fluxo_efetivo_lambda
305
       (:,2).*(iqe(aux5:aux6,2)*1000./100)]; %[A/(cm^2.nm)]
306
   figure (6)
307
   plot (Jph_lambda (:,1), Jph_lambda (:,2)); xlabel ('Comprimento de
308
      onda (nm)'); ylabel('Densidade de corrente espectral (A/(cm<sup>2</sup>).
      nm) ');
309
   Jph = trapz(Jph_lambda(:,1), Jph_lambda(:,2)) %[A/cm^2]
310
   Iph = A*Jph
311
312
   %Modo 2 - Utilizando a taxa de geracao e probabilidade de coleta
313
314
   %Caso 1: Caso Geral
315
316
  %G_lambda = absortion_coefficient.*fluxo_efetivo.*exp(-
317
      absortion_coefficient.*x);
_{318} %Iph =
319
   %Caso 2 – Base estreita e taxa de geracao media
320
321
   %Iph = A*q*G.*(We/2+Wb/2+Wd);
322
323
   %Modo 3 - Calculando o vetor densidade de corrente espectral
324
325
  %jsce_lambda = ((q.*absortion_coefficient(aux3:aux4,2).*
326
      fluxo_efetivo_lambda(:,2)*Lp)./((absortion_coefficient(aux3:
      aux4, 2 *Lp).<sup>2</sup>-1).*(-absortion_coefficient(aux3:aux4, 2).*Lp
      .* \exp(-absortion\_coefficient(aux3:aux4,2).*We) + ((Se.*Lp/Dp)+
      absortion\_coefficient(aux3:aux4,2).*Lp-exp(-
      absortion_coefficient (aux3:aux4,2).*We) * ((Se*Lp/Dp)*cosh (We/
```

```
Lp)+sinh (We/Lp)))/(cosh (We/Lp)+(Se*Lp/Dp)*sinh (We/Lp)))
327 %jscb_lambda = ((q.*absortion_coefficient(aux3:aux4,2).*
      fluxo_efetivo_lambda_base(:,2)*Lp)./((absortion_coefficient(
      aux3:aux4,2)*Ln^2-1).*(-absortion_coefficient(aux3:aux4,2))
      .*Ln.*exp(-absortion_coefficient(aux3:aux4,2).*Wb)+((Sb.*Ln/
      Dn)+absortion_coefficient(:,2).*Ln-exp(-absortion_coefficient
      (:,2).*Wb).*((Sb*Ln/Dn).*cosh(Wb/Ln)+sinh(Wb/Ln)))./(cosh(We/
      Ln)+(Sb*Ln/Dn).*sinh(Wb/Ln)))
328 % jscd lambda = q.* fluxo efetivo lambda (:, 2).* exp(-
      absortion_coefficient(aux3:aux4,2)*(We-xn))*(1-exp(-
      fluxo_efetivo_lambda(:,2)*(xn+xp)));
   %jsc_lambda = jsce_lambda + jscb_lambda+jscd_lambda;
329
  %Isc = A*trapz(jsc_lambda(:,1),jsc_lambda(:,2));
330
331
  %Correntes de saturação reversa
332
333
  % Caso 1: Base Larga – Distancia da superficie distante (
334
      W emmiter>>Ln)
335 \ \% U = delta_p/tau_p;
   I01 = A*q*((Dp*pn0/Lp)+(Dn*np0/Ln))%Corrente de saturação
336
      reversa de difusao
   IO2 = A*q*Wd*ni/(Tr_n+Tr_p) %Corrente de saturação reversa de
337
      recombinacao
338
  %Caso 2: Base Estreita – Distancia da superficie infinita
339
340 \% U = 0;
  \%I01 = A*q*((Dp*pn0/(Wb*Lp))+(Dn*np0/(We*Ln)))%Corrente de
341
      saturacao reversa de difusao
342 \%IO2 = q*Wd*ni/(2*Tr); %Corrente de saturação reversa de
      recombinacao
343
344 %Caso 3: Caso geral – Distancia da superficie infinita
345 \ \% I01 = A*q*((Dp*pn0/Lp)*(coth(Wp/Ln))+(Dn*np0/Ln)*(coth(Wn/Lp)))
      %Corrente de saturacao reversa de difusao
346 \%I02 = q*W*ni/(2*Tr); %Corrente de saturação reversa de
      recombinacao
347
348 % Caso 4: Caso geral – Distancia da superficie finita (
      Recombinacao de
```

```
349 % superficie e finita)
350 \%I01 = A*q*((Dp*pn0/Lp)*((cosh(Wp/Ln)+(Dn/(Sn*Ln))*sinh(Wp/Ln)))
      /((Dn/(Sn*Ln))*cosh(Wp/Ln)+sinh(Wp/Ln))+(Dn*np0/Ln)*((cosh(Wn)))
      /Lp)+(Dp/(Sp*Lp))*sinh(Wn/Lp)))/((Dp/(Sp*Lp))*cosh(Wn/Lp)+
      sinh(Wn/Lp)))%Corrente de saturação reversa de difusão
351 \%I02 = q*W*ni/(2*Tr); \%Corrente de saturação reversa de
      recombinacao
352
   %
353
   %Calculo da resistencia serie parasita
354
355
   R_{emissor} = We/(A*q*mu_n*ND);
356
   R_base = Wb/(A*q*mu_p*NA);
357
   Rs = R\_emissor + R\_base;
358
359
   %Resistencia paralela parasita
360
361
   Rsh = 1e - 3;
362
363
   %Calculo da corrente de saida
364
   Voc = Vt * (log((Iph/(I01))+1))
365
  n1 = 1;
366
  n2 = 2;
367
_{368} V = [];
   I = [];
369
   I_ideal_vetor = [];
370
   V_ideal_vetor = [];
371
372
   for N=0:1000
373
374
        V temp = N/1000;
375
        I_ideal = Iph - I01 * (exp((q*(V_temp))/(n1*k*T)) - 1) - I02*(
376
           \exp((q*(V_temp))/(n2*k*T)) - 1);
        I\_temp = Iph - I01*(exp((q*(V\_temp+Rs.*I\_ideal)))/(n1*k*T))
377
           -1) - I02 * (exp((q*(V_temp+Rs.*I_ideal))/(n2*k*T))-1);
378
        if I_temp>0
379
            V = [V; V_{temp}];
380
            I = [I; I\_temp];
381
```

```
else
382
383
        end
384
385
             if I_ideal>0
386
            V_ideal_vetor = [V_ideal_vetor;V_temp];
387
            I_ideal_vetor = [I_ideal_vetor; I_ideal];
388
        else
389
            break;
390
391
        end
392
   end
393
   P_ideal = V_ideal_vetor.*I_ideal_vetor;
394
   P_{max_ideal} = max(P_ideal);
395
   ff ideal = max(P ideal)/(Voc*Iph)
396
   eta = max(P_ideal)/(A*Irr*1e-4)
397
398
   figure(10)
399
   plot(V_ideal_vetor(I_ideal_vetor>0),I_ideal_vetor(I_ideal_vetor
400
       >0), 'red '); xlabel('Tensao (V)'); ylabel('Corrente (A)'); title(
       'Curva I-V');
401
   hold on
402
403
404
   plot (Voc, 0, 'mo');
405
   plot (0, Iph, 'ko');
406
   P_{max_index} = find(P_{ideal}));
407
   Vmp = V_ideal_vetor(P_max_index);
408
   Imp = I\_ideal\_vetor(P\_max\_index);
409
410
   plot(V_ideal_vetor(P_max_index), I_ideal_vetor(P_max_index), 'bo')
411
       ;
412
   str_ideal_Voc = ['Voc =', num2str(Voc), 'V'];
413
   str_ideal_Iph = ['Iph =', num2str(Iph), 'A'];
414
   str_ideal_Pmax = ['Vmp = ', num2str(Vmp), 'V, ', 'Imp = ', num2str(
415
      \operatorname{Imp}), 'A'];
416
```

```
legend('Curva I-V', str_ideal_Voc, str_ideal_Iph, str_ideal_Pmax);
417
418
  %text(0.1,4,str_ideal_Voc);
419
   %text(0.1,3.5,str_ideal_Iph);
420
   %text(0.1,3,str_ideal_Pmax);
421
422
423
424
   %
425
426
   %Calculo dos parametros do fotocondutor
427
428
  \%G0 =
429
  \%alpha_cte = q/(h*1e-4*c) %[]
430
  \%alpha _light_avg = alpha_cte*(eqe_avg/100*1e-7*(lambda_max-
431
      lambda_min) *Tr_n) * (mu_n+mu_p)
  \%alpha_light = 1e-7*alpha_cte*Tr_n*(mu_n+mu_p)*eqe(aux5:aux6,2)
432
      .* eqe (aux5: aux6, 1);
433 %alpha_light = alpha_cte*Tr_n*(mu_n+mu_p)*trapz(eqe(aux5:aux6,1)
      ). * eqe(aux5:aux6,2)/100)
434
  %
435
```

D.2 Obtenção do fotocondutor para o sistema fotoajustável - Versão 2.0

Nessa seção apresentamos o código-fonte do algoritmo utilizado para o cálculo do fotocondutor personalizado para o sistema fotoajustável proposto. Essa segunda versão utiliza um método mais direto e flexível que a versão 1.0, calculando um fotoresistor ideal de acordo com as especificações de operação do sistema fotoajustável, e em seguida, tenta ajustar uma curva do modelo de fotocondutor real. Ele ainda apresenta uma seção herdada da versão 1.0 para análise de impacto no funcionamento do sistema fotoajustável de acordo com flutuações de irradiância e variações do próprio fotocondutor (essa seção foi desenvolvida para a análise da variação de fotocondutores comerciais).

- 1 %Calculo do RFC Versao 2.0 calculo_rfc2.m
- 2 %Desenvolvido por: Andre Luiz Costa de Carvalho Setembro/2017
- 3 %Descricao: A partir de dados de uma celula/painel/fotodiodo e de características particulares de operação, podemos calcular

```
um fotocondutor apropriado para o funcionamento do sistema
      fotoajustavel
4
  clear all;
5
  close all;
6
7 \text{ clc};
8
  %Constantes
9
10
  q = 1; %Carga elementar [e] \rightarrow 1.6e-19 C
11
  k = 8.617e-5; %Constante de Boltzmann [eV/K]
12
  %____
13
14
  %variaveis gerais - dados da celula/painel e temperatura
15
16
17 N = 1;%input('Numero de celulas em serie: '); %Numero de celulas
      em serie
18 T = 300;
  I01 = 1e - 12;
19
  I02 = 1e - 9;
20
n1 = N * 1;
22 n^2 = N * 2;
23 Rs = N * 0.28;
Rsh = 1e6;
  %_____
25
26
27 %Variacao da irradiancia
  delta = 1;
28
  Irr = [0:delta:50];
29
 p1 = -3.145e - 8;
30
31 p2 = 3.208 e - 6;
  p3 = 0;
32
  Iph = p1*Irr.^{2} + p2*Irr + p3;
33
  %
34
35
  %Geracao das curvas I-V obtidas
36
37
  figure(1);
38
39 V = [0:0.001:0.5];
```

```
40
  for N=2:(size(Iph'))
41
42
       43
          q.*(V))/(n2*k*T))-1);
       plot (V(I_ref>0), I_ref(I_ref>0), 'LineWidth', 2); set (gca, '
44
          fontsize', 12, 'linewidth', 1.5);
       axis([0 \ 0.5 \ 0 \ 0.9e-4])
45
       hold on
46
  end
47
  axis([0 \ 0.5 \ 0 \ 0.9e-4]);
48
  legend ('10 W/m2', '20 W/m2', '30 W/m2', '40 W/m2', '50 W/m2');
49
  title('I-V Curves'); xlabel('Voltage (V)'); ylabel('Current (A)');
50
  hold off
51
  %
52
53
  %Definir ponto de operacao
54
55
 V_{op} = 0.4;
56
  I op = 2e - 5;
57
58
59
 %figure(1);%Plot da curva de referencia - caso ideal
60
 %plot (V(I_ideal>0), I_ideal(I_ideal>0), 'red'); xlabel ('Tensao (V)
61
      '); ylabel('Corrente (A)'); title('Curva I-V de referencia');
     axis ([0 \ n1*0.7 \ 0 \ IPH\_MAX]);
62 % hold on;
63 %plot(Vp_ideal, Ip_ideal, 'ro');
 %
64
65
  %Calculo do fotocondutor
66
67
  %dI = (IPH_MAX-IPH_MIN)/20 %Passo de variação da corrente
68
     fotogerada
 %dI = 0.1; %Passo de variação da corrente fotogerada \rightarrow trocado
69
     por tol
70
71 %Inicializar vetores
72 IPH_list = [];
```

```
Irr_list = [];
73
  RFC\_ideal = [];
74
75 RFC = [];
  V = [0:0.001:0.5];
76
   for N=1:size(Iph')
77
78
        I_calc = Iph(N) - I01 * (exp((q*(V_op)))/(n1*k*T)) - 1) - I02*(
79
           \exp((q*(V_op))/(n2*k*T))-1);
        if(I calc >= I op)
80
             IPH\_list = [IPH\_list; Iph(N)];
81
             Irr\_list = [Irr\_list; Irr(N)];
82
        end
83
   end
84
85
   for N=1: size (IPH list)
86
87
   %Resolver a equacao para RFC_ideal e RFC
88
89
   \%IPH temp = IPH MAX-N*dI;
90
   \text{%IPH} temp = IPH REF+IPH REF*(N)*Tol/20;
91
   %Irr_temp = Irr_REF+Irr_REF*(N)*Tol/20; %Considerando a relacao
92
       entre Iph e Irr linear \rightarrow Iph = a*Irr
  \%IPH list = [IPH list; IPH temp];
93
   %Irr_list = [Irr_list; Irr_temp];
94
95
   %Ideal
96
97
   RFC\_ideal\_temp = (V\_op)/(IPH\_list(N)-I\_op-(I01*(exp(q*(V\_op)/(n1
98
       (x + x + T) - 1) - (I02 (exp(q + (V_op) / (n2 + k + T)) - 1)));
   RFC_ideal = [RFC_ideal; RFC_ideal_temp];
99
100
   I_ideal = IPH_i(N) - I01 * (exp((q*(V))/(n1*k*T)) - 1) - I02 * (exp((q*(V))/(n1*k*T))) - 1)
101
       ((q*(V))/(n2*k*T)) - 1) - V/RFC_ideal_temp;
   P ideal = V.*I ideal;
102
   RL_vetor = V./I_ideal; %Tirando a trancendentalidade da equacao
103
       atraves da amarracao das variaveis I e V pela carga RL
104
105 % figure (3);
```

```
106 %[hAx, hLine1, hLine2] = plotyy(V(I_ideal>0), I_ideal(I_ideal>0),V(
      P_ideal > 0, P_ideal(P_ideal > 0);
107 %axis xy;
108 %xlabel('Tensao (V)');
109 \%ylabel(hAx(1), 'Corrente (A)');
110 \%ylabel(hAx(2), 'Potencia (W)');
111 % title ('Curva I-V - SSC ideal');
112 %hold on;
113
114 %Real
115 RFC_real_temp = (V_op)/(IPH_list(N)-I_op-(I01*(exp(q*(V_op))/(n1*
      (k*T))-1))-(I02*(exp(q*(V_op)/(n2*k*T))-1)-(V_op+I_op*Rs)/Rsh)
      );
116 RFC = [RFC; RFC\_real\_temp];
117 I_real = IPH_list(N) - I01*(exp((q*V.*(1+Rs./RL_vetor)))/(n1*k*T))
      (-1) - I02 * (exp((q*V.*(1+Rs./RL_vetor)))/(n2*k*T)) - 1) - (V.*(1+
      Rs./RL_vetor)/Rsh) - V.*(1+Rs./RL_vetor)/RFC_ideal_temp;
118 P_real = V.*I_real;
  figure(3);
119
   if (mod(N-1,10/delta) == 0)
120
        plot (V(I_real> 0), I_real(I_real> 0), 'LineWidth', 2); set (gca, '
121
           fontsize',12,'linewidth',1.5);
122 end
123 \%[hBx, hLine1, hLine2] = plotyy (V(I_real>0), I_real(I_real>0), V(
      P_{real}>0, P_{real}(P_{real}>0);
124 %axis xy;
125 %xlabel('Tensao (V)'); ylabel(hBx(1), 'Corrente (A)');
126 \%ylabel(hBx(2), 'Potencia (W)');
127 % title ('Curva I-V - SSC real');
   hold on;
128
129
   end
130
131
  figure (3)
132
   hold on;
133
   h1 = plot(V_op, I_op, 'ro', 'LineWidth', 2); set(gca, 'fontsize', 12, '
134
      linewidth ',1.5);
   str_ideal = ['Operation Point -> ', num2str(V_op), 'V, ', num2str(
135
      I_{op}, 'A'];
```

```
legend(h1,str_ideal);
136
   title('I-V Curve with SSC'); xlabel('Voltage (V)'); ylabel('
137
      Current (A)');
138
   %IPH_list
139
140 %Irr list
141
142 % figure (4);
143 \%h1 = plot(Vp_ideal, Ip_ideal, 'ro');
144 %axis auto;
145 \%str_ideal = ['MPP \rightarrow ', num2str(Vp_ideal), 'V, ', num2str(
      Ip_ideal), 'A, ', num2str(Pmax_ideal), 'W'];
146 \%legend(h1,str_ideal);
147 %hold off;
148 %break
149 % figure (3);
150 \ \%h1 = plot(Vp_real, Ip_real, 'ro');
151 %axis auto;
152 \ \% str\_real = [\ MPP \rightarrow \ , num2str(Vp\_real), \ V, \ , num2str(Ip\_real))
      , A, ', num2str(Pmax_real), W'];
153 %legend(h1,str_real);
154 %hold off;
155
  %R_ideal=Vp_ideal/Ip_ideal %Carga equivalente ao ponto (Caso
156
      ideal)
157 %R_real=Vp_real/Ip_real %Carga equivalente ao ponto (Caso real)
158
159 %IPH_list;
160 % Irr_list;
161
162 RFC; %Plot do grafico do fotocondutor (caso ideal)
163 \[\%P\_RFC = (V\_op^2)./RFC\_ideal;\]
164 % figure (5);
165 %[hAx, hLine1, hLine2] = plotyy (IPH_list (RFC_ideal>0), RFC(
      RFC_{ideal>0}, IPH_{list}(P_{RFC>0}), P_{RFC}(P_{RFC>0}); xlabel('
      Corrente (I)'; ylabel(hAx(1), 'Resistencia (Ohms)'); ylabel(hAx
      (2), 'Potencia (W)'); title ('Curva caracteristica do
      fotocondutor - SSC real');
```

```
167 RFC; %Plot do grafico do fotocondutor (caso real)
  P_RFC = (V_op^2)./RFC;
168
  figure(6);
169
   [hAx, hLine1, hLine2] = plotyy(Irr_list(RFC>0),RFC(RFC>0),Irr_list
170
      (P_RFC>0), P_RFC(P_RFC>0)); xlabel('Irradiance (W/m2)'); ylabel(
      hAx(1), 'Resistance (Ohms)'); ylabel(hAx(2), 'Photoconductor
      Power (W)'); title('Photoconductor Ideal Curve', 'fontsize', 14)
      ; set (hAx(1), 'LineWidth', 2, 'fontsize', 12); set (hAx(2), '
      LineWidth', 2, 'fontsize', 12); set (hLine1, 'LineWidth', 2); set (
      hLine2, 'LineWidth', 2);
171 %
172
173 %Variacao de do valor do fotocondutor para apreciacao da
      variacao das curvas IV (calculado sobre o MPP)
174
   %Var_RFC = 0.05;
175
176
  %Variacao na REF
177
178
  \%figure(7);
179
   %RFC_var = RFC(find(min(IPH_list)));
180
   \%I list var1 = [];
181
182
  %for N=0:20
183
       %RFC_temp = RFC_var+RFC_var*(N-10)*Var_RFC/10;
184
       %I\_real = IPH\_REF - I01*(exp((q*V.*(1+Rs./RL\_vetor)))/(n1*k*T)
185
          () -1) - I02 * (exp((q*V.*(1+Rs./RL_vetor))/(n2*k*T)) -1) -V
          .*(1+Rs./RL_vetor)/Rsh - V.*(1+Rs./RL_vetor)/RFC_temp;
       %P_real = V.*I_real;
186
       %[hBx, hLine1, hLine2] = plotyy(V(I_real>0), I_real(I_real>0),V
187
           (P_real>0), P_real(P_real>0)); xlabel('Tensao (V)'); ylabel(
          hBx(1), 'Corrente (A) '); ylabel(hBx(2), 'Potencia (W) ');
           title ('Curva I-V com a variação de RFC - REF');%axis ([0
          n1 * 0.7 \ 0 \ ceil(max(P))]);
       %hold on;
188
       %I_list_var1 = [I_list_var1; I_real(find(P_real=max(P_real))
189
          )];
190 %end
191
```

```
192 %Variacao II = (max(I list var1)-min(I list var1)); %Amplituda
      maxima de variacao do MPP
193 %Variacao_I1_porcento = (max(I_list_var1)-min(I_list_var1))*100/
      max(I_list_var1); %Amplituda maxima de variacao do MPP - em
      porcentagem
194
   %hold off;
195
196
  %Variacao na Irradiancia Maxima
197
198
   %figure(8);
199
   %RFC_temp = RFC(find(max(IPH_list)));
200
   \%I_list_var2 = [];
201
202
   %for N=0:20
203
       %RFC_temp = RFC_var+RFC_var*(N-10)*Var_RFC/10;
204
       \%I real = IPH MAX - I01*(exp((q*V.*(1+Rs./RL vetor)))/(n1*k*T)
205
          ))-1) - I02*(\exp((q*V.*(1+Rs./RL_vetor))/(n2*k*T))-1) -V
          .*(1+Rs./RL_vetor)/Rsh - V.*(1+Rs./RL_vetor)/RFC_temp;
       %P real = V.*I real;
206
       %[hBx, hLine1, hLine2] = plotyy (V(I_real>0), I_real(I_real>0), V
207
          (P real>0), P real(P real>0)); xlabel('Tensao (V)'); ylabel(
          hBx(1), 'Corrente (A) '); ylabel(hBx(2), 'Potencia (W) ');
          title ('Curva I-V com a variação de RFC - Irr. Maxima');%
          axis([0 \ n1*0.7 \ 0 \ ceil(max(P))]);
       %hold on;
208
       %I_list_var2 = [I_list_var2; I_real(find(P_real=max(P_real))
209
          )];
210 %end
211 %hold off;
212 %Variacao_I2 = (\max(I_list_var2) - \min(I_list_var2)); %Amplituda
      maxima de variacao do MPP
213 %Variacao_I2_porcento = (max(I_list_var2)-min(I_list_var2))*100/
      max(I list var2) %Amplituda maxima de variação do MPP - em
      porcentagem
214 %
215
216 % Calculo dos parametros do RFC
217
```

```
n = 20; %Eficiencia luminosa - depende da iluminacao utilizada
218
219
   %Tabela por tipo de iluminacao
220
221
222 %Lampada
                                                  n
223 %Incandescente
                                                   15
224 %Halogena
                                                   20
225 %Fluorescente
                                                   60
226 %LED
                                                  60
227 %Haleto metalico
                                                   87
228 %Vapor de sodio de alta pressao
                                                   117
  %Vapor de sodio de baixa pressao
                                                   150
229
  %Valor de mercurio
                                                   50
230
231
   %Conversao irradiancia -> luminancia
232
   %Ev(lux) = Irr(W/m^2)*n
233
234
   RFC_{param} = RFC(\min(find(RFC>0)):end);
235
   Irr_param = Irr_list(min(find(RFC>0)):end);
236
237
   figure (9)
238
   plot (Irr_param, RFC_param, 'LineWidth', 2); set (gca, 'fontsize', 12, '
239
      linewidth ',1.5);
240
  \%XI = [round(min(Irr_param)):0.5:round(max(Irr_param))]; %
241
      Interpolacao da irradiancia
  %YI = interp1(Irr_param, RFC_param, XI);
242
243
244 % figure (9)
  %plot(XI,YI)
245
246
247 \%lux_param = Irr_param.*n;
  \%lux 10 = find (XII == 10)
248
  \%lux 100 = find (XII == 100)
249
250
   %gamma_lux = (log10(YI(lux_10))/YI(lux_100))/(log10(XI(lux_100)))
251
      /XI(lux_{10}))
252
253 % figure (10)
```

```
254 %plot (Irr_param, RFC_param, 'ro', XI, YI)
255 % [F0, G] = fit (Irr_param, (RFC_param), 'power1')
R0 = 1e6;
  G0 = 1/R0;
257
   outliers = excludedata(Irr_param, RFC_param, 'Range', [min(
258
      RFC_{param} (min(RFC_{param}) *3)])
   f0 = fitoptions(['1/(',(num2str(G0)),'+a*x)'],'lower',[0],'upper
259
       ',[inf], 'Exclude', outliers);
   [F0, H0] = fit (Irr_param, RFC_param, ['1/(', (num2str(G0)), '+a*x)')
260
      ], f0);
261 \% [F0, G0] = fit (Irr_param, RFC_param, '(1/(1e-6 + b*x))')
262 \%[F0, G] = fit (Irr_param, (RFC_param), '1/(a+b*x)')
263 \%[F0, G] = fit (Irr_param, (RFC_param), '(a*c)/(a+c*x^b)', '
      StartPoint', [100, 1, 10000])
   figure (9);
264
  plot (Irr_param, RFC_param, 'blue', 'LineWidth', 2); axis ([0 max(
265
      Irr_param) 0 (\max(RFC_param)*R0/(\max(RFC_param+R0)))]; set (
      gca, 'fontsize', 12, 'linewidth', 1.5);
  hold on
266
267 b = coeff values (F0);
   curve_fit = 1./(G0+b.*Irr_param);
268
   plot (Irr, 1./(G0+b.*Irr), 'red', 'LineWidth', 2); set (gca, 'fontsize'
269
       ,12, 'linewidth',1.5);
   residue = abs(RFC_param-curve_fit);
270
   plot (Irr_param, residue, 'green', 'LineWidth', 2); set (gca, 'fontsize'
271
       ,12, 'linewidth',1.5);
  legend('Ideal Curve', 'Real Fit Curve', 'Difference');
272
   xlabel('Irradiance (W/m2)'); ylabel('Photoconductor Resistance (
273
      ohms)'); title(' Photoconductor Characteristic Curve');
274
   txt1 = ['G0 = ', num2str(G0)];
275
   txt2 = ['beta =', num2str(b,3)];
276
   txt = [{txt1}, {txt2}];
277
   text(5, 0.7*((max(RFC_param)*R0/(max(RFC_param+R0)))), txt);
278
279
   Irr_param(min(find((residue./curve_fit)<0.15))) %Retorna o menor
280
        valor de irradiancia a ser operado
281
282 hold off;
```

D.3 Obtenção do fotocondutor para o sistema fotoajustável - caso com restrições nos parâmetros de fabricação

Esse código-fonte traz uma variação do algoritmo RFC 2.0. Essa nova versão calcula o fotocondutor real levando em consideração as restrições de fabricação de um processo de microeletrônica, onde não temos muita liberdade na fabricação do dispositivo.

```
1 % Calculo de obtencao de melhor ajuste para RFC - rfc_davies.m
```

- 2 %Desenvolvido por: Andre Luiz Costa de Carvalho (badaia@ufmg.br) e Davies William de Lima Monteiro (davies@ufmg.br) em outubro/2018
- 3 %Descricao: A partir dos dados de funcionamento do sistema fotooajustavel e de parametros de um processo de fabricacao, calculamos um fotocondutor real apropriado de acordo com as restricoes de projeto.

```
4
  clear all;
5
  close all;
6
  clc;
7
8
  set (0, 'DefaultLegendAutoUpdate', 'off')
9
10
  %Constantes
11
12
  q_ev = 1; %Carga elementar [e] \rightarrow 1.6e-19 C
13
  q = 1.6e - 19; %Carga elementar [C]
14
  k_{ev} = 8.617 e - 5; %Constante de Boltzmann [eV/K]
15
  k = 1.381e - 19; %Constante de Boltzmann [cm<sup>2</sup>.kg/s<sup>2</sup>.K]
16
17 h = 6.626e - 30; %Constante de Planck [cm<sup>2</sup>.kg/s]
  h_{ev} = 4.136e - 15; %Constante de Planck [eV.s]
18
  c = 3e10; %Velocidade da luz [cm/s]
19
```

```
%
20
  %Dados calculados e banco de dados
21
22
  %Irr_lambda
23
24
 %Irr_lambda = csvread ('AM15_direct_ASTMG173-03_adjusted.csv
25
      ',1,0); %AM1.5 Direct (ASTM G173-03 Reference Spectra Derived
      from SMARTS v. 2.9.2) [W/(m^2*nm) - wavelength in nm]
26 %Irr lambda = csvread('AM15 global ASTMG173-03 adjusted.csv
     ',1,0); %AM1.5 Direct (ASTM G173-03 Reference Spectra Derived
      from SMARTS v. 2.9.2) [W/(m^2*nm) - wavelength in nm]
27 %Irr_lambda = csvread('AM15_extraterrestrial_ASTMG173-03
     _adjusted.csv',1,0); %AM1.5 Direct (ASTM G173-03 Reference
     Spectra Derived from SMARTS v. 2.9.2) [W/(m<sup>2</sup>*nm) -
     wavelength in nm]
28 %Irr_lambda = csvread ('AM0_standard_ASTME-490_adjusted.csv',1,0)
     ; %AM0 Direct (ASTM E-490 Reference Spectra Derived from
     SMARTS v. 2.9.2) [W/(m^2*nm) - wavelength in nm]
29 % Irr_lambda = csvread ('AM0_short_ASTME-490_adjusted.csv', 1, 0); %
     AMO standard centrado nos comprimentos de onda 280 a 4000 nm
     [W/(m^2*nm) - wavelength in nm]
30 Irr_lambda = csvread ('halogen_lamp_Newport6315_1000W_adjusted.
     (sv', 1, 0); %Lampada halogena NEWPORT modelo 6315 - 1000W [W/(
     m^2*m) - wavelength in nm]
31 %Irr_lambda = csvread('fluorescent_lamp_500lux_adjusted.csv
     (1,0); %Lampada fluorescente 500 Lux (10 W) [W/(m<sup>2</sup>*nm) -
     wavelength in nm]
32 %Irr_lambda = csvread('led_lamp_9W_warm_adjusted.csv',1,0); %
     Lampada LED Branca Quente (5 W) [W/(m<sup>2</sup>*nm) - wavelength in
     nm
33
34 % Ajustar o fator a uma irradiancia max especifica
  Irr_nominal = trapz(Irr_lambda(:,1), Irr_lambda(:,2)); \%
35
     Irradiance [W/m<sup>2</sup>]
 Irr_max_desired = 50;
36
  factor = Irr_max_desired/Irr_nominal;
37
38 % factor = 0.25; % Ajuste manual Fator de amplificacao/atenuacao
     de cada fonte de luz []
```

```
Irr_lambda = [Irr_lambda(:,1) factor*Irr_lambda(:,2)]; % Ajuste
39
      de potencia na Irradiancia espectral [W/(m^2*nm)]
   Irr = trapz(Irr_lambda(:,1), Irr_lambda(:,2)) %Irradiance [W/m<sup>2</sup>]
40
41
  %Calculo luminancia
42
  photopic = \exp(-(Irr\_lambda(:,1)-555).^2/(2*(100)^2));
43
  I_lux = 683 * trapz (Irr_lambda(:,1), Irr_lambda(:,2). * photopic)
44
   figure (1)
45
  plot(Irr_lambda(:,1),Irr_lambda(:,2));xlabel('Wavelength (nm)');
46
      ylabel('Spectral Irradiance (W/m2.nm)');
   axis ([400 1200 0 (1.1) *max(Irr_lambda(:,2))]);
47
  hold on;
48
   \operatorname{str} = [\operatorname{'Irr} = \operatorname{',num2str}(\operatorname{Irr}), \operatorname{'W/m^2'}];
49
  \dim = [.15 .5 .3 .3];
50
   annotation('textbox',dim,'String',str,'FitBoxToText','on');
51
52
  %Eficiencia quantica
53
  eqe = csvread('Silicon_EQE_adjusted.csv',1,0); \%PVEducation[\%]
54
  iqe = csvread('Silicon_IQE_adjusted.csv',1,0); \%PVEducation[\%]
55
  figure (2)
56
  plot(eqe(:,1),eqe(:,2),iqe(:,1),iqe(:,2)); xlabel('Wavelength (nm
57
      )'); ylabel('Quantum Efficiency'); legend('External', 'Internal'
      )
  %
58
59
  %variaveis gerais - dados da celula/painel e temperatura
60
61
  N = 1;%input('Numero de celulas em serie: '); %Numero de celulas
62
       em serie
63 T = 300;
  I01 = 1e - 12;
64
  I02 = 1e - 9;
65
66 n1= N*1;
67 n2 = N *2;
  Rs = N * 0.28;
68
  Rsh = 1e6;
69
  %
70
71
72 %Variaveis do material
```

```
tao_g = 2.5e-6; %Tempo de geracao [s]
73
  u_n = 1450; %Mobilidade dos eletrons [cm2/V.s]
74
  u_p = 450; %MObilidade dos protons [cm2/V.s]
75
   ni = 1e10; %Densidade de portadores intrinsecos [cm-3]
76
   n = 1e10; %Densidade de eletrons [cm-3]
77
   p = ni^2/n; %Densidade de lacunas [cm-3]
78
   %----
79
80
  %Variacao da irradiancia
81
  delta = 1;
82
s_3 \ Irr_var = [0:delta:50];
84 p1 = -3.145e - 8;
85 p2 = 3.208 e - 6;
86 \% p3 = 0;
  Iph = p1*Irr_var.^2 + p2*Irr_var; %Expressao empirica que
87
      relaciona Iph e Irr
   %
88
89
  %Grafico das curvas I-V geradas
90
91
   figure(3);
92
   V = [0:0.001:0.5];
93
94
   for N=2:(size(Iph'))
95
96
        I_ref = Iph(N) - I01 * (exp((q_ev.*(V)))/(n1*k_ev*T)) - 1) - I02
97
           *(\exp((q_ev.*(V))/(n2*k_ev*T))-1);
        plot (V(I_ref>0), I_ref(I_ref>0));
98
        axis([0 \ 0.5 \ 0 \ 0.9e-4])
99
        hold on
100
   end
101
   axis([0 \ 0.5 \ 0 \ 0.9e-4]);
102
   %legend('10 W/m2','20 W/m2','30 W/m2','40 W/m2','50 W/m2');
103
   title('I-V Curves'); xlabel('Voltage (V)'); ylabel('Current (A)');
104
   hold off
105
   %
106
107
   %Definir ponto de operacao
108
109
```

```
110 V_op = 0.4;
111 I_op = 2e-5;
112 %
113
114 %Curva de referencia - Menor curva I-V tradicional que contenha
      o ponto
  %Vop/Iop
115
116
   Iph_ref = I_op + I01 * (exp((q_ev * (V_op))/(n1 * k_ev * T)) - 1) + I02 * (
117
      \exp\left(\left(q_{v}(V_{o})\right)/(n2*k_{v}T)\right)-1\right) %+ Rs*I_op/Rsh
118
   Irr_ref = (-p2 + sqrt(p2^2 - 4*p1*(-Iph_ref)))/(2*p1)
119
   %
120
121
122 % Irradiancia maxima
123 Irr_max = max(Irr_var)
  Iph_max = max(Iph)
124
   ‰
125
126
   %Geracao do vetor Xi
127
128
   aux\_ref = max(find(Irr\_var < Irr\_ref)+1);
129
   Irr_aux = Irr_var(aux_ref:end);
130
  Iph_aux = Iph(aux_ref:end);
131
   Xi = Irr_aux./Irr_ref;
132
   %
133
134
   %Calculo de RFC ideal
135
136
137 %dI = (IPH_MAX-IPH_MIN)/20 %Passo de variação da corrente
       fotogerada
138 %dI = 0.1; %Passo de variacao da corrente fotogerada -> trocado
       por tol
139
140 %Inicializar vetores
141 IPH_list = [];
142 Irr_list = [];
143 RFC_ideal = [];
144 RFC = [];
```

```
145 V = [0:0.001:0.5];
   for N=1: size (Iph_aux')
146
147
        I_calc = Iph_aux(N) - I01*(exp((q_ev*(V_op)))/(n1*k_ev*T))-1)
148
            - I02 * (exp((q_ev*(V_op))/(n2*k_ev*T)) - 1);
        if(I calc >= I op)
149
            IPH\_list = [IPH\_list; Iph\_aux(N)];
150
            Irr\_list = [Irr\_list; Irr\_aux(N)];
151
        end
152
   end
153
154
   for N=1: size (IPH list)
155
156
       %Resolver a equacao para RFC_ideal e RFC
157
158
       \text{MPH\_temp} = \text{IPH\_MAX-N*dI};
159
       \%IPH temp = IPH REF+IPH REF*(N)*Tol/20;
160
       %Irr_temp = Irr_REF+Irr_REF*(N)*Tol/20; %Considerando a
161
           relacao entre Iph e Irr linear -> Iph = a*Irr
       %IPH list = [IPH list; IPH temp];
162
       %Irr_list = [Irr_list; Irr_temp];
163
164
       %RFC Ideal - Celula ideal (sem resistencias parasitas)
165
166
        RFC\_ideal\_temp = (V\_op) / (IPH\_list(N)-I\_op-(I01*(exp(q\_ev*(
167
           V_{op} /(n1*k_ev*T))-1))-(I02*(exp(q_ev*(V_op)/(n2*k_ev*T)))
           -1)));
        RFC_ideal = [RFC_ideal; RFC_ideal_temp];
168
169
170
        I\_ideal = IPH\_list(N) - I01*(exp((q_ev*(V))/(n1*k_ev*T))-1)
171
           - I02*(exp((q_ev*(V))/(n2*k_ev*T))-1) - V/RFC_ideal_temp;
        P ideal = V.*I ideal;
172
        RL vetor = V./I ideal; %Tirando a trancendentalidade da
173
           equacao atraves da amarracao das variaveis I e V pela
           carga RL
174
       %figure(3);
175
```

```
%[hAx, hLine1, hLine2] = plotyy(V(I_ideal>0), I_ideal(I_ideal
176
           >0),V(P_ideal>0),P_ideal(P_ideal>0));
        %axis xy;
177
        %xlabel('Tensao (V)');
178
        %ylabel(hAx(1), 'Corrente (A)');
179
        %ylabel(hAx(2), 'Potencia (W)');
180
        \%title ('Curva I-V - SSC ideal');
181
        %hold on;
182
183
        %RFC Ideal - Celula real (com resistencias parasitas)
184
        RFC real temp = (V \text{ op}) / (IPH \text{ list}(N) - I \text{ op} - (I01 * (exp(q ev*(
185
           V_{op}/(n1*k_{ev}*T)) - 1) - (I02*(exp(q_{ev}*(V_{op})/(n2*k_{ev}*T))))
           -1)-(V_op+I_op*Rs)/Rsh));
        RFC = [RFC; RFC\_real\_temp];
186
        GFC = 1./RFC;
187
        I\_real = IPH\_list(N) - I01*(exp((q\_ev*V.*(1+Rs./RL\_vetor)))/(
188
           n1*k_ev*T))-1) - I02*(exp((q_ev*V.*(1+Rs./RL_vetor)))/(n2*)
           k_ev*T))-1) -(V.*(1+Rs./RL_vetor)/Rsh) - V.*(1+Rs./
           RL_vetor)/RFC_ideal_temp;
        P real = V.*I real;
189
        figure (4);
190
        if (mod(N-1,10/delta) == 0)
191
             plot(V(I real > 0), I real(I real > 0));
192
        end
193
        %[hBx, hLine1, hLine2] = plotyy (V(I_real>0), I_real(I_real>0), V
194
           (P_real>0), P_real(P_real>0));
        %axis xy;
195
        %xlabel('Tensao (V)'); ylabel(hBx(1), 'Corrente (A)');
196
        %ylabel(hBx(2), 'Potencia (W)');
197
        \%title('Curva I-V - SSC real');
198
        hold on;
199
   end
200
201
   figure (4)
202
   hold on;
203
   h1 = plot(V_op, I_op, 'ro');
204
   str_ideal = ['Operation Point -> ', num2str(V_op), 'V, ', num2str(
205
      I_op), ' A'];
  legend(h1,str_ideal);
206
```

```
title ('I-V Curve with SSC'); xlabel ('Voltage (V)'); ylabel ('
207
      Current (A)');
208
209 %IPH_list
210 %Irr_list
211
212 % figure (4);
213 \ \%h1 = plot(Vp_ideal, Ip_ideal, 'ro');
214 %axis auto;
215 \%str_ideal = ['MPP \rightarrow ', num2str(Vp_ideal), 'V, ', num2str(
      Ip_ideal), 'A, ', num2str(Pmax_ideal), 'W'];
216 \ \% legend(h1, str_ideal);
217 %hold off;
218 %break
219 % figure (3);
220 \ \%h1 = plot(Vp_real, Ip_real, 'ro');
221 %axis auto;
222 \%str_real = ['MPP -> ', num2str(Vp_real), 'V, ', num2str(Ip_real))
      , 'A, ', num2str(Pmax_real), 'W'];
223 %legend(h1, str_real);
224 %hold off;
225 %R_ideal=Vp_ideal/Ip_ideal %Carga equivalente ao ponto (Caso
      ideal)
226 %R_real=Vp_real/Ip_real %Carga equivalente ao ponto (Caso real)
227 %IPH list;
228 %Irr list;
229 %RFC; %Plot do grafico do fotocondutor (caso ideal)
230 \%P_RFC = (V_op^2)./RFC_ideal;
231 % figure (5);
232 %[hAx, hLine1, hLine2] = plotyy (IPH_list (RFC_ideal>0), RFC(
      RFC_ideal > 0, IPH_list(P_RFC > 0), P_RFC(P_RFC > 0); xlabel('
      Corrente (I)'; ylabel(hAx(1), 'Resistencia (Ohms)'); ylabel(hAx
      (2), 'Potencia (W)'); title ('Curva caracteristica do
      fotocondutor - SSC real');
233
234 RFC; %Plot do grafico do fotocondutor (caso ideal - celula real)
235 P_RFC = (V_op^2)./RFC;
```

```
236 figure (5);
```

```
[hAx, hLine1, hLine2] = plotyy(Irr_list(RFC>0),RFC(RFC>0),Irr_list
237
      (P_RFC>0), P_RFC(P_RFC>0)); xlabel('Irradiance (W/m2)'); ylabel(
      hAx(1), 'Resistance (Ohms)'); ylabel(hAx(2), 'Photoconductor
      Power (W) '); title ('Photoconductor Ideal Curve');
   temp = ones(42);
238
   temp2 = GFC(end) * temp(:, 1);
239
  G_{real}_{teste} = 0.75e - 4 + 9.5e - 6.*Xi;
240
  G_{real\_teste\_min} = 0.75 e - 4;
241
242 GFC; %Plot do grafico do fotocondutor (caso ideal - celula real)
  figure(6);
243
244 h2 = plot (Xi, GFC, 'g', Xi, G_real_teste, 'c', [0 Xi], temp2, 'r-', [0
      Xi], G_real_teste_min*temp(:,1), 'b-', temp, [0; GFC], 'm-');
      xlabel('Normalized Irradiance (Irr_i/Iref)'); ylabel('
      Conductance (S)'; title('Photoconductor Curves'); axis([0
      (1.1) * (\max(Xi)) 0 (1.1) * (\max(GFC))]);
245 hold on;
h3 = plot(Xi(end), GFC(end), 'ro');
  h4 = plot(0, G_real_teste_min, 'bo');
247
  \max_{GFC} = ['GFC Max'];
248
   min GFC = ['GFC Min'];
249
   str_ideal = ['MAX GFC = ', num2str(GFC(end))];
250
   str_real = ['Min GFC = ', num2str(G_real_teste_min)];
251
252
   legend([h2(1) h2(2) h3 h4], 'GFC Ideal', 'GFC Real', str_ideal,
253
      str_real);
  %
254
255
  %Calculo do fotocondutor real
256
257
   %Grandezas Geometricas
258
  wl min = 1e - 4; \%
259
  wl_proposed = 1;
260
   wl max = 1 e 4; %
261
   t = 0.5e-4; %Espessura - relativo ao processo [cm]
262
263
  %calculo de Ksi
264
265
266 lambda_min = 400; \%[nm] Comprimento de onda minimo que atravessa
       a superficie do semicondutor. No caso do Si, 400 nm.
```

```
lambda max = 1100; %[nm]
267
268
   aux1 = find (Irr_lambda(:, 1)=lambda_min);
269
   aux2 = find(Irr_lambda(:, 1) = lambda_max);
270
   aux3 = find(iqe(:,1) = lambda_min);
271
   aux4 = find(iqe(:,1)) = lambda max);
272
273
   %Eficiencia quantica media
274
   eqe avg = mean(eqe(aux3:aux4,2)); \%[\%]
275
   iqe_avg = mean(iqe(aux3:aux4,2)); \%[\%]
276
277
   ksi = trapz((eqe(aux3:aux4,1)),(eqe(aux3:aux4,2)/100).*eqe(aux3:
278
      aux4,1).*Irr_lambda(aux1:aux2,2))
   ksi_medio = eqe_avg/100*((lambda_min+lambda_max)/2)*
279
      Irr max desired %Medida de ksi para valores medios – para
      comparacao da aproximacao
280
   %Calculo do gamma (Razao entre G0 e alpha*Ksi)
281
   \% gamma = (h*c*t*(n*u_n+p*u_p)) / ((tao_g*ksi)*(u_n+u_p))
282
283
   %Condutancia quadrada
284
   G_square = q*(n*u_n+p*u_p)*t %Condutancia quadrada [S/square]
285
   R square = 1/G square %Resistencia quadrada [Ohm/square]
286
   %
287
288
   %Metrica dos extremos
289
   %Calculo de alpha
290
291
   G0\_min = q*(n*u\_n+p*u\_p)*t*(wl\_min)
292
   G0\_proposed = q*(n*u\_n+p*u\_p)*t*(wl\_proposed)
293
   G0_max = q * (n * u_n + p * u_p) * t * (wl_max)
294
   R0_{min} = 1/G0_{max}
295
   R0_{proposed} = 1/G0_{proposed}
296
   R0 max = 1/G0 min
297
   a_{\min} = G0_{\min};
298
   a_proposed = G0_proposed;
299
   a max = G0 max;
300
   alpha_min = ((q * tao_g) / (h * c)) * (u_n+u_p) * (wl_min)
301
   alpha_proposed = ((q * tao_g) / (h * c)) * (u_n+u_p) * (wl_proposed)
302
```

```
alpha_max = ((q * tao_g) / (h * c)) * (u_n+u_p) * (wl_max)
303
   b_{\min} = alpha_{\min} * ksi;
304
   b_proposed = alpha_proposed * ksi;
305
306 \text{ b}_{\max} = \text{alpha}_{\max} * \text{ksi};
   gamma = (h*c*t*(n*u_n+p*u_p)) / (tao_g*ksi*(u_n+u_p))
307
  Xi_2 = [1:0.001:max(Xi)];
308
   GFC\_real\_min = G0\_min + b\_min.*Xi\_2;
309
   GFC_real_proposed = G0_proposed + b_proposed.*Xi_2;
310
   GFC real max = G0 max + b max.*Xi 2;
311
   figure(7);
312
   semilogy (Xi, GFC); ylabel ('Conductance (S)'); title ('Photoconductor
313
        Ideal Curve');
314 hold on;
   semilogy(Xi_2,GFC_real_min);xlabel('Normalized Irradiance (Irr_i
315
       /Iref)'); ylabel('Conductance (S)'); title('Photoconductor
       Ideal Curve');
  hold on;
316
   semilogy(Xi_2,GFC_real_proposed);
317
   semilogy(Xi_2,GFC_real_max);legend('Gideal', 'Gmin', 'Gproposed', '
318
      Gmax'):
319 %
320
   %Metrica da derivada
321
322
   \operatorname{err} = [];
323
324
   for n=1: size(Xi')-1
325
        dy = diff(GFC) . / diff(Xi');
326
        Y=n; % point number 220
327
        tang = (Xi - Xi(Y)) \cdot dy(Y) + GFC(Y);
328
329
        err = [err immse(GFC, tang')]; %Erro medio quadratico entre a
330
             curva e sua reta tangente
331
        hold off
332
   end
333
334
   figure (8)
335
```

```
plot(Xi(1:(end-1)),err);xlabel('Normalized Irradiance (Irr_i/
336
       Iref)'); ylabel('Mean-Squared Error'); title('Mean-Squared
       Error');
   figure (9)
337
   plot(Xi,GFC); xlabel('Normalized Irradiance (Irr_i/Iref)'); ylabel
338
       ('Conductance (S)'); title('Photoconductor Ideal Curve - with
       tangent lines '); axis ([0 (1.1) * (max(Xi)) 0 (1.1) * (max(GFC))]);
339
   choose = 5; % Escolher o metodo de ajuste
340
341
   switch choose
342
343
        %Ajuste alinhado com segundo ponto
344
345
   case -1 %Nenhuma aproximacao - mostre somente curva do
346
       fotocondutor ideal
347
        case 0 %Todos os casos
348
        for n=1:size(Xi')-1
349
            Y=n; % point number 220
350
             tang = (Xi - Xi(Y)) \cdot dy(Y) + GFC(Y);
351
             figure (9)
352
             hold on
353
             plot(Xi, tang);
354
             scatter(Xi(Y),GFC(Y));
355
             hold off
356
        end
357
358
        %Ajuste alinhado com o segundo ponto
359
        case 1
360
        Y=2;
361
        tang = (Xi - Xi(Y)) \cdot dy(Y) + GFC(Y);
362
        G0 = (Xi(1)-Xi(Y)) \cdot * dy(Y) + GFC(Y)
363
        wl = G0/(q*(n*u_n+p*u_p)*t)
364
        b = dy(Y)
365
        diferenca = (abs (GFC-tang')) / mean (GFC) ) * 100;
366
        figure (9)
367
        hold on
368
```

369	[ax, hline1, hline2] = plotyy(Xi, tang, Xi, diferenca); ylabel(ax)
	(2), 'Error (%)');
370	%set(ax(2),'LineWidth',2);
371	$\operatorname{set}(\operatorname{ax}(2), \operatorname{'ycolor'}, \operatorname{'black'});$
372	%set(ax(2), 'YTick', [0:100:800])
373	$\operatorname{set}(\operatorname{hline2}, \operatorname{'LineWidth'}, 0.1);$
374	<pre>set(hline2, 'Color', 'black');</pre>
375	scatter(Xi(Y),GFC(Y));
376	str = ['G0 = ', num2str(G0), 'S'];
377	dim = $[.15 .5 .3 .3];$
378	annotation('textbox',dim,'String',str,'FitBoxToText','on');
379	hold off
380	
381	hold off
382	
383	%Ajuste alinhado com ponto central
384	
385	case 2
386	[X Y] = size(Xi);
387	Y = (round(Y/2));
388	tang = (Xi - Xi(Y)) . * dy(Y) + GFC(Y);
389	G0 = (Xi(1)-Xi(Y)) . * dy(Y) + GFC(Y)
390	$wl = G0/(q*(n*u_n+p*u_p)*t)$
391	b = dy(Y)
392	diferenca = $(abs(GFC-tang')./mean(GFC))*100;$
393	figure (9)
394	hold on
395	[ax, hline1, hline2] = plotyy(Xi, tang, Xi, diferenca); ylabel(ax
	(2), 'Error (%)');
396	%set(ax(2),'LineWidth',2);
397	set(ax(2), 'ycolor', 'black');
398	%set (ax(2), 'YTick', [0:100:800])
399	$\operatorname{set}(\operatorname{hline2},\operatorname{'LineWidth'},0.1);$
400	<pre>set(hline2, 'Color', 'black');</pre>
401	scatter(Xi(Y),GFC(Y));
402	str = ['G0 = ', num2str(G0), 'S'];
403	dim = $[.15 .5 .3 .3];$
404	annotation('textbox',dim, 'String',str, 'FitBoxToText', 'on');

406	
407	%Ajuste alinhado com penultimo ponto
408	
409	case 3
410	[X Y] = size(Xi);
411	Y = Y - 1;
412	$\tan g = (Xi - Xi(Y)) * dy(Y) + GFC(Y);$
413	G0 = (Xi(1)-Xi(Y))*dy(Y)+GFC(Y)
414	$wl = G0/(q*(n*u_n+p*u_p)*t)$
415	b = dy(Y)
416	diferenca = $(abs(GFC-tang')./mean(GFC))*100;$
417	figure (9)
418	hold on
419	[ax, hline1, hline2] = plotyy(Xi, tang, Xi, diferenca); ylabel(ax
	(2), 'Error (%)');
420	%set (ax(2), 'LineWidth', 2);
421	$\operatorname{set}\left(\operatorname{ax}\left(2 ight),\operatorname{'ycolor'},\operatorname{'black'} ight);$
422	%set(ax(2), 'YTick', [0:100:800])
423	$\operatorname{set}(\operatorname{hline2}, \operatorname{'LineWidth'}, 0.1);$
424	<pre>set(hline2, 'Color', 'black');</pre>
425	scatter(Xi(Y),GFC(Y));
426	str = ['G0 = ', num2str(G0), 'S'];
427	dim = $[.15 .5 .3 .3];$
428	annotation('textbox',dim, 'String',str, 'FitBoxToText', 'on');
429	hold off
430	
431	%Ajuste com menor erro medio quadratico
432	
433	case 4
434	[Value Position] = min(err);
435	Y=Position;
436	$\tan g = (Xi - Xi(Y)) * dy(Y) + GFC(Y);$
437	G0 = (Xi(1)-Xi(Y)) * dy(Y) + GFC(Y)
438	$wl = G0/(q*(n*u_n+p*u_p)*t)$
439	b = dy(Y)
440	diferenca = $(abs(GFC-tang')./mean(GFC))*100;$
441	figure (9)
442	hold on

443	[ax, hline1, hline2] = plotyy(Xi, tang, Xi, diferenca); ylabel(ax
	(2), 'Error (%)');
444	%set(ax(2),'LineWidth',2);
445	$\operatorname{set}\left(\operatorname{ax}\left(2 ight),\operatorname{'ycolor'},\operatorname{'black'} ight);$
446	%set (ax(2), 'YTick', [0:100:800])
447	$\operatorname{set}(\operatorname{hline2}, \operatorname{'LineWidth'}, 0.1);$
448	<pre>set(hline2, 'Color', 'black');</pre>
449	scatter(Xi(Y),GFC(Y));
450	str = ['G0 = ', num2str(G0), 'S'];
451	dim = $[.15 .5 .3 .3];$
452	annotation('textbox',dim, 'String',str, 'FitBoxToText', 'on');
453	hold off
454	
455	%Ajuste por ponto fixado
456	
457	case 5
458	[X Y] = size(Xi);
459	$\operatorname{err} = [];$
460	$GFC_max = GFC(Y);$
461	$G0_{fixo} = [];$
462	<pre>for contador = 1:1:9</pre>
463	$a = (0.1 * contador) * GFC_max / Xi(Y);$
464	$GFC_{fixo} = a \cdot * (Xi - Xi(Y)) + GFC_{max};$
465	$G0_{fixo} = GFC_{max-a*Xi}(Y)$
466	err = [err immse(GFC,GFC_fixo')]
467	
468	figure (9)
469	hold on
470	<pre>plot(Xi,GFC_fixo);ylabel('Conductance (S)');title('</pre>
	Photoconductor Ideal Curve - fixed point'); axis([0
	$(1.1) * (\max(Xi)) 0 (1.1) * (\max(GFC))]);$
471	hold off
472	end
473	[Value Position] = $\min(\operatorname{err})$;
474	figure (10)
475	<pre>plot(Xi,GFC);xlabel('Normalized Irradiance (Irr_i/Iref)');</pre>
	ylabel('Conductance (S)'); title('Photoconductor Ideal
	Curve - fixed point'); $axis([0 (1.1)*(max(Xi)) 0 (1.1)*(max(Xi))))$
	max(GFC))]);

```
hold on
476
        \%a = (0.1 * \text{contador}) * \text{GFC}_{\max} / \text{Xi}(Y);
477
        a = 2.408 e - 5;
478
        GFC_{fixo} = a \cdot * (Xi - Xi(Y)) + GFC_{max};
479
        G0_{fixo} = GFC_{max-a*Xi}(Y);
480
        wl_fixo = G0_fixo/(q*t*(n*u_n+p*u_p));
481
482
        \operatorname{str} = ['G0 = ', \operatorname{num2str}(G0_{fixo}), 'S'];
483
        dim = [.15 .5 .3 .3];
484
        annotation ('textbox', dim, 'String', str, 'FitBoxToText', 'on');
485
486
        hold on
487
        plot(Xi,GFC_fixo);
488
        hold on
489
        plot(Xi, abs(GFC-GFC_fixo'));
490
        legend('Ideal', 'Real', 'Ideal-Real');
491
        hold off
492
        figure (11)
493
        plot(err);
494
   end
495
   %
496
497
   I\_real\_calc = [];
498
   RL_op = V_op/I_op
499
500
    for N=1:size(Iph_aux')
501
502
        M_aux = Iph_aux(N) - I01*(exp((q_ev*(V_op)))/(n1*k_ev*T))-1)
503
             - I02*(exp((q_ev*(V_op)))/(n2*k_ev*T))-1) - V_op*(
            GFC fixo(N));
        I_aux = Iph_aux(N) - I01*(exp((q_ev*V_op.*(1+Rs./RL_op)))/(n1)
504
            *k_{ev*T}) -1) - I02 * (exp((q_{ev*V_op}.*(1+Rs./RL_op)))/(n2*)
            k_ev*T))-1) -(V_op.*(1+Rs./RL_op)/Rsh) - V_op.*(1+Rs./
            RL op) * GFC fixo(N)
        I\_real\_calc = [I\_real\_calc; I\_aux];
505
   end
506
507
  V = [0:0.001:0.5];
508
   V_{fix} = V_{op*ones}(41, 1);
509
```

```
510 I_temp_calc = Iph_ref - I01 * (exp((q_ev*V.*(1+Rs./RL_op)))/(n1*)
      k_ev*T))-1) - I02*(exp((q_ev*V.*(1+Rs./RL_op))/(n2*k_ev*T)))
      -1) -(V.*(1+Rs./RL_op)/Rsh);
   figure (11)
511
  plot (V_op, I_op, 'o');
512
  hold on
513
   plot (V_fix, I_real_calc, '---');
514
   plot (V, I_temp_calc);
515
   axis([0 \ 0.45 \ 0 \ 3e-5]);
516
   title('I-V Curve with SSC'); xlabel('Voltage (V)'); ylabel('
517
      Current (A)');
   legend ('Ponto nominal', 'Espaco de variação da corrente de carga'
518
       , 'Curva sem SSC (referencia)');
519
   I_fix = I_op * ones (41, 1);
520
   figure (12)
521
   [hAx, hLine1, hLine2] = plotyy(Xi, I_real_calc, Xi, abs(100*(
522
      I_real_calc-I_op)/I_op))
   hold on
523
   plot (Xi, I fix, 'g-')
524
   legend ('Load current (real)', 'Operation Current', 'Relative Error
525
       ');
        xlabel('Normalized Irradiance (Irr i/Iref)');
526
        ylabel(hAx(1), 'Load Current (A)');
527
        ylabel(hAx(2), 'Relative Error (\%)');
528
        title ('Load Current - Real SSC');
529
        set (hAx(2), 'YTick', [0:10:100])
530
   axis([1 5.5 0.9*min(I_real_calc) 1.1*max(I_real_calc)]);
531
532
   I\_real = [];
533
   P real = [];
534
   for N=1: size (Iph_aux')
535
536
        I real = Iph aux(N) - I01*(exp((q ev*V.*(1+Rs./RL vetor)))/(
537
           n1*k_ev*T))-1) - I02*(exp((q_ev*V.*(1+Rs./RL_vetor)))/(n2*)
           k_ev*T))-1) -(V.*(1+Rs./RL_vetor)/Rsh) - V.*(1+Rs./
           RL\_vetor) * GFC_fixo(N);
        P_real = I_real.*V;
538
        figure(13);
539
```

540	hold on
541	if $(mod(N-1,10/delta) == 0)$ %Reduzir curvas no grafico
542	$plot(V(I_real > 0), I_real(I_real > 0));$
543	end
544	figure(14)
545	if(mod(N-1,10/delta)==0) %Reduzir curvas no grafico
546	$plot(V(P_real > 0), P_real(P_real > 0));$
547	end
548	%[hBx, hLine1, hLine2] = plotyy(V(I_real>0), I_real(I_real>0), V (P_real>0), P_real(P_real>0));
549	%axis xy;
550	%xlabel('Tensao (V)'); ylabel(hBx(1), 'Corrente (A)');
551	%ylabel(hBx(2), 'Potencia (W)');
552	%title('Curva I-V - SSC real');
553	hold on;
554	
555	end
556	
557	figure (13)
558	hold on;
559	angular = I_op/V_op;
560	curva_carga = angular.*V;
561	plot (V, curva_carga, 'black');
562	$h1 = plot(V_op, I_op, 'ro');$
563	$str_1deal = [OP: ', num2str(V_op), 'V, ', num2str(I_op), 'A'];$
564	<pre>legend('10 W/m2', '20 W/m2', '30 W/m2', '40 W/m2', '50 W/m2', 'Load Curve', str_ideal);</pre>
565	title('I-V Curve with SSC - Real Photoconductor'); xlabel('
	Voltage (V)'); ylabel('Current (A)');
566	figure (14)
567	hold on;
568	angular = I_op;
569	curva_carga = angular.*V;
570	<pre>plot(V, curva_carga, 'black ');</pre>
571	$h1 = plot(V_op, V_op*I_op, 'ro');$
572	<pre>str_ideal = ['OP: ', num2str(V_op), ' V, ', num2str(V_op*I_op), ' W'];</pre>
573	legend('10 W/m2','20 W/m2','30 W/m2','40 W/m2','50 W/m2','Load
	Curve', str_ideal);

574 title('P-V Curve with SSC - Real Photoconductor');xlabel('
Voltage (V)');ylabel('Power (W)');

575 %-

D.4 Impacto térmico no funcionamento do sistema fotoajustável

Nessa seção incluímos o algoritmo de análise do impacto térmico no funcionamento do sistema fotoajustável. Ele se utiliza de algum algoritmo de obtenção do fotocondutor, e a partir do sistema gerado, calcula o impacto de acordo com uma tolerância de variação térmica especificada.

```
1 %Impacto termico — thermal_impact.m
```

```
_2%
Desenvolvido por Andre Luiz Costa de Carvalho — <br/>outubro/2018
```

```
3 %Descricao: A partir de um sistema fotoajustado gerado
anteriormente, podemos verificar o impacto da variacao
termica em seu funcionamento.
```

```
4
  rfc_davies %Chama alguma das funcoes de geracao do RFC
5
  %
6
7
 %variaveis gerais - dados da celula/painel e temperatura
8
9 %Variacao da Temperatura e grandezas que dependem dela
  delta_T = 5;
10
  T ref = 300;
11
  T = [290:delta_T:310]
12
  Vt = k.*T/q; %Potencial termico [V]
13
14
  %Eg
15
16
  Eg0 = 1.166;%Gap de energia em T = 0K [eV]
17
18
  alfa = 4.73 e - 4; \% [eV/K]
19
  beta = 636; \%[K]
20
  Eg = Eg0 - ((alfa * (T.^2))./(T+beta)) % Expressao empirica, onde
21
      alfa e beta sao fatores de ajuste [eV]
  Eg\_ref = Eg0 - ((alfa * (T\_ref.^2))./(T\_ref+beta))
22
23
  N = 1;%input('Numero de celulas em serie: '); %Numero de celulas
24
      em serie
 n1 = N * 1;
25
```

```
n2 = N * 2;
26
27
28 %Concentracao de portadores
29 K = 4.751e15; %Constantes agrupadas (independentes da
     temperatura) - Valido para Si
30 ni_T = K.*T.(3/2).*exp(-Eg./(2.*k_ev.*T)) %Concentracao de
      portadores intrinsecos -Fonte: Semiconductor Devices - Kanon
      Kano [portadores/m<sup>3</sup>]
  ni\_ref = K.*T\_ref.^{(3/2)}.*exp(-Eg\_ref./(2.*k\_ev.*T\_ref))
31
32 %Dn = Vt*mu_n %Difusividade de eletrons na regiao p, calculado
     por relacao de Einstein [cm<sup>2</sup>/s]
33 %Dp = Vt*mu_p %Difusividade de lacunas na regiao n, calculado
     por relacao de Einstein [cm<sup>2</sup>/s]
34 %Ln = sqrt(Dn*tau_n) %Comprimento de difusao de eletrons na
     regiao p [cm]
35 %Lp = sqrt (Dp*tau_p) %Comprimento de difusao de lacunas na
     regiao n [cm]
36
  I01\_ref = 1e-12;
37
  I02 ref = 1e - 9;
38
39
  I01_T_multi = I01_ref/(ni_ref^2*T_ref(-1/2));
40
  I02_T_multi = I02_ref/ni_ref;
41
42
  I01_T = I01_T_multi.*ni_T.^2./sqrt(T)%Corrente de saturação
43
     reversa de difusao
  I02_T = I02_T_multi.*ni_T %Corrente de saturação reversa de
44
     recombinacao
45
  Rs = N * 0.28;
46
  Rsh = 1e6;
47
  %
48
49
 %Curva de referencia - Menor curva I-V tradicional que contenha
50
     o ponto
51 %Vop/Iop
52
53 %Iph_nominal = p1*Irr.^2 + p2*Irr; %Expressao empirica que
     relaciona Iph e Irr
```

```
54 auxT = find (IPH_list>Iph_ref)
  \%Iph_variacao = 0.1;
55
  Iph_T = IPH_{list}(auxT(1)) * (1+(T-300) * (0.05/100))
56
  %
57
58
  %Grafico das curvas I-V variando com a temperatura
59
60
  figure(15);
61
  V = [0:0.001:0.5];
62
63
   for N=1:(size(T'))
64
65
       I_ref = Iph_T(N) - I01_T(N) * (exp((q_ev.*(V)))./(n1*k_ev.*T(N)))
66
          () -1) - I02_T(N) * (exp((q_ev.*(V))/(n2*k_ev*T(N))) -1);
       plot (V(I_ref>0), I_ref(I_ref>0));
67
       axis([0 \ 0.5 \ 0 \ 0.9e-4])
68
       hold on
69
  end
70
  axis ([0 0.5 0 1.4*Iph_ref]);
71
  legend('290K','295K','300K','305K','310K');
72
   title('I-V Curves'); xlabel('Voltage (V)'); ylabel('Current (A)');
73
  hold on
74
75
  plot (V_op, I_op, 'o')
76
  hold off
77
  %
78
79
   figure(16);
80
81
  RFC T multi = RFC(auxT(1)) * ni<sup>2</sup>*T ref<sup>(-3/2)</sup>;
82
  RFC_T = RFC_T_multi./(T.^{(-3/2)}.*ni_T.^2);
83
84
   plot(T,RFC_T);
85
   title('RFC vs Temperature'); xlabel('Temperature (K)'); ylabel('
86
     RFC Resistance (Ohm) ');
87
  %Grafico SSC com variacao de temperatura
88
89
  figure (17);
90
```

```
91
   V = [0:0.001:0.5];
92
93
   for N=1:(size(T'))
94
95
        I_ref = Iph_T(N) - I01_T(N) * (exp((q_ev.*(V)))./(n1*k_ev.*T(N)))
96
           () -1) - I02_T(N) * (exp((q_ev.*(V))/(n2*k_ev*T(N))) -1) - V
           ./RFC T(N);
        plot (V(I_ref>0), I_ref(I_ref>0));
97
        axis([0 \ 0.5 \ 0 \ 0.9e-4])
98
        hold on
99
   end
100
   axis([0 0.5 0 1.5*Iph_ref]);
101
102
   title('I-V Curves with SSC'); xlabel('Voltage (V)'); ylabel('
103
      Current (A)');
   hold on
104
   angular = I_op/V_op;
105
   curva\_carga = angular.*V;
106
   plot (V, curva carga, 'black');
107
   plot (V_op, I_op, 'o')
108
   legend('290K', '295K', '300K', '305K', '310K', 'Load Curve');
109
   hold off
110
  %
111
```

D.5 Obtenção do fotocondutor para o sistema fotoajustável - versão 1.0

Aqui apresentamos o algoritmo original para obtenção do fotocondutor específico de um sistema fotoajustável. Esse algoritmo foi o início de todo o trabalho, pois nos ajudou a desenvolver uma melhor abordagem do problema, na época ainda focado em dispositivos discretos (células e painéis de potência mais alta, assim como fotocondutores comerciais de CdS). Ele nasce da análise do modelo de exploração do SPICE, que se baseia nas curvas que se encontram em um espaço de curvas I-V.

Seu funcionamento consiste inicialmente na definição de uma tolerância na variação da irradiância, e a partir daí, geramos curvas I-V ideais e reais (os reais levam em conta as resistência parasitas) de referência para o sistema fotovoltaico estudado; daí determinamos o ponto de operação desejado e calculamos o fotocondutor ideal necessário para cada caso
(fotovoltaico ideal e real). Por último, ajustamos a curva do modelo comportamental do fotocondutor para obtermos um fotocondutor real. Ele também traz uma seção para a análise de impacto no funcionamento do sistema quando há variação de irradiância e no valor de resistência do próprio fotocondutor.

```
1 %Calculo RFC versao 1.0 - calculo rfc.m
2 %Desenvolvido por: Andre Luiz Costa de Carvalho - Dezembro/2016
3 % Descricao: A partir dos dados de um gerador fotovoltaico,
      podemos projetar um sistema fotoajustavel utilizando esse
      algoritmo, que calcula o fotocondutor ideal para tal.
4
  clear all;
\mathbf{5}
  close all;
6
  clc;
7
8
9
  %Constantes
10
11
  q = 1; %Carga elementar [e] \rightarrow 1.6e-19 C
12
  k = 8.617 e-5; %Constante de Boltzmann [eV/K]
13
14
15
16
  %variaveis gerais – dados da celula/painel e temperatura
17
18
  N = 1;%input('Numero de celulas em serie: '); %Numero de celulas
19
      em serie
  T = 300;
20
  I01 = 1e - 9;
21
  I02 = 1e - 6;
22
n1 = N * 1;
n2 = N * 2;
  Rs = N * 0.001;
25
  Rsh = 100 e3;
26
27
  %
28
29
  %Escolha da tolerancia do SSC
30
31
  Tol = 0.1;%input('Tolerancia de variação de corrente (em decimal
32
```

```
): '); %Tolerancia de corrente assumida
33
  IPH_REF = 4.0;%input('Corrente fotogerada no REF: ');;
34
  %IPH_MIN = IPH_REF-IPH_REF*Tol %Menor valor de IPH assumido
35
  IPH_MAX = IPH_REF+IPH_REF*Tol %Maior valor de IPH assumido
36
37
  Irr_REF = 1000;
38
  Irr_MAX = Irr_REF + Irr_REF * Tol;
39
  Irr = [1000:10:1100];
40
  Iph = [4:0.04:4.4];
41
42
  %
43
  %definir ponto de operacao
44
45
  Vop = 0.5;
46
  Iop = 3.6;
47
  Pop = Vop * Iop;
48
49
50
  %
51
52
  %Geracao das curvas I-V obtidas
53
54
   figure(1);
55
  V = [0:0.001:0.6];
56
57
   for N=1:(size(Iph'))
58
59
       I_ideal = Iph(N) - I01 * (exp((q.*(V))/(n1*k*T)) - 1) - I02 * (exp(q.*(V))/(n1*k*T)) - 1)
60
           ((q.*(V))/(n2*k*T))-1);
       I\_real = Iph(N) - I01*(exp((q.*(V+Rs*I\_ideal)))/(n1*k*T))-1)
61
          - I02*(\exp((q.*(V+Rs*I_ideal)))/(n2*k*T))-1) - (V+Rs*I_ideal))
           I_ideal)/Rsh;
62
       if (mod(N-1,2)) == 0
63
                 plot (V(I_real>0), I_real(I_real>0), 'LineWidth', 2); set
64
                    (gca, 'fontsize', 12, 'linewidth', 1.5);
            axis([0 \ 0.7 \ 0 \ 4.5])
65
            hold on
66
```

```
end
67
   end
68
  \%axis ([0 0.5 0 0.9e-4]);
69
   legend ( '1000 W/m2', '1020 W/m2', '1040 W/m2', '1060 W/m2', '1080 W/
70
      m2', '1100 W/m2');
   title('Curvas I-V');xlabel('Tensao (V)');ylabel('Corrente (A)');
71
   hold off
72
73
   %
74
75
   %Geracao da curva I-V de referencia - modelo de celula ideal
76
77
  %Voc1 = (n1 * k * T/q) * (log((IPH_REF/I01)+1))
78
   \text{\%Voc2} = (n2 * k * T/q) * (\log ((IPH_REF/I02) + 1))
79
80
   %Voc = (Voc1+Voc2)/2
81
82
  \% = [];
83
  \%I_ideal = [];
84
85
  %for N=0:1000
86
87
         V temp = N*Voc/1000;
  %
88
  %
         I_temp = IPH_REF - I01 * (exp((q*(V_temp)))/(n1*k*T)) - I02
89
       *(\exp((q*(V_temp)))/(n2*k*T))-1);
90
91 %
         if I_temp>0
92 %
        V = [V; V_{temp}];
93 %
        I\_ideal = [I\_ideal; I\_temp];
94 %
         else
  %
              break;
95
96 %
         end
97 %end
  \%P ideal = V.*I ideal;
98
  %V_{size} = size(V);
99
100
101
102
103 %Definir ponto de operação (menor irradiancia — a corrente
```

```
equivalente e definida na variavel IPH)
104
  %Pmax_ideal = max(P_ideal);
105
106 % MPP_ideal = find (P_ideal = max(P_ideal));
  %Vp\_ideal = V(MPP\_ideal);
107
  \%Ip ideal = I ideal(MPP ideal);
108
109
110 %figure(1);%Plot da curva de referencia - caso ideal
111 %plot (V(I ideal>0), I ideal (I ideal>0), 'red'); xlabel ('Tensao (V)
       '); ylabel('Corrente (A)'); title('Curva I-V de referencia');
      axis ([0 \ n1*0.7 \ 0 \ IPH_MAX]);
112 %hold on;
113 %plot(Vp_ideal, Ip_ideal, 'ro');
114
115
116 %
117
  %Geracao da curva I-V de referencia — modelo de celula nao-
118
      ideal
119
120 %RL_vetor = V./I_ideal; %Tirando a trancendentalidade da equacao
        atraves da amarracao das variaveis I e V pela carga RL
121
122 \%I_real = IPH_REF - (I01*(exp((q*V.*(1+Rs./RL_vetor)))/(n1*k*T)))
      (102 * (\exp((q*V.*(1+Rs./RL_vetor)))/(n2*k*T))) - 1)) - (V)
      .*(1 + \text{Rs.} / \text{RL}_\text{vetor}) / \text{Rsh});
123 \%P_real = V.*I_real;
124
  %Definir ponto de operacao (menor irradiancia - a corrente
125
      equivalente e definida na variavel IPH)
126
127 % Pmax_real = max(P_real);
  MPP_real = find(P_real = max(P_real));
128
129 % Vp real = V(MPP real);
  \%Ip_real = I_real(MPP_real);
130
  %RFC_min_ideal = Vp_ideal/(0.01*Ip_ideal);
131
  %RFC_min_real = Vp_real/(0.01*Ip_real);
132
133
134 % figure (1); % Plot da curva de referencia – modelo de celula nao-
```

```
ideal
135 %hold on;
136 %plot (V(I_real>0), I_real (I_real>0), 'blue'); xlabel ('Tensao (V)');
      ylabel ('Corrente (A)'); title ('Curva I-V de referencia'); axis
      ([0 \ n1*0.7 \ 0 \ IPH_MAX]);
137 %plot(Vp_real, Ip_real, 'bo');
138 %plot(V,(I_ideal-I_real), 'green')
139 %legend ('Ideal', 'Mpp Ideal', 'Real', 'Mpp Real', 'Residuo');
140 % legend ('Curva I-V', 'Mpp')
141 %hold off;
142
143 %
144
  %Calculo do fotocondutor ideal
145
146
147 %dI = (IPH_MAX-IPH_MIN)/20 %Passo de variação da corrente
      fotogerada
148 %dI = 0.1; %Passo de variacao da corrente fotogerada -> trocado
      por tol
149
150 %Inicializar vetores
  IPH_{list} = [];
151
  Irr list = [];
152
153 RFC_ideal = [];
154 RFC = [];
155
   for N=1:20
156
157
   %Resolver a equacao para RFC_ideal e RFC
158
159
   \%IPH temp = IPH MAX-N*dI;
160
   IPH\_temp = IPH\_REF+IPH\_REF*(N)*Tol/20;
161
   Irr\_temp = Irr\_REF+Irr\_REF*(N)*Tol/20; %Considerando a relacao
162
      entre Iph e Irr linear \rightarrow Iph = a*Irr
   IPH\_list = [IPH\_list; IPH\_temp];
163
   Irr\_list = [Irr\_list; Irr\_temp];
164
165
  %Modelo de celula Ideal
166
167
```

```
168 % RFC ideal temp = (Vp ideal)/(IPH temp-Ip ideal-(I01*(exp(q*(
                Vp_ideal / (n1*k*T) - 1) - (I02*(exp(q*(Vp_ideal) / (n2*k*T)) - 1)))
       %RFC_ideal = [RFC_ideal; RFC_ideal_temp];
169
170
171
172 %I_ideal = IPH_temp - I01 * (\exp((q*(V))/(n1*k*T)) - 1) - I02*(\exp(((q*(V))/(n1*k*T))) - 1))
                q*(V))/(n2*k*T))-1) - V/RFC_ideal_temp;
173 % P ideal = V.*I ideal;
174
175 % figure (2);
176 %[hAx, hLine1, hLine2] = plotyy(V(I_ideal>0), I_ideal(I_ideal>0),V(
                P_ideal > 0, P_ideal(P_ideal > 0);
177 %axis xy;
178 %xlabel('Tensao (V)');
179 \%ylabel(hAx(1), 'Corrente (A)');
180 %ylabel(hAx(2), 'Potencia (W)');
181 % title ('Curva I-V - SSC ideal');
182 %hold on;
183
184
           I_ideal = IPH_temp - I01 * (exp((q.*(V))/(n1*k*T)) - 1) - I02 * (exp(q.*(V))/(n1*k*T)) - 1)
185
                    ((q.*(V))/(n2*k*T))-1);
           I\_real = IPH\_temp - I01*(exp((q.*(V+Rs*I\_ideal))/(n1*k*T))-1)
186
                  - I02 * (exp((q.*(V+Rs*I_ideal))/(n2*k*T)) - 1) - (V+Rs*I_ideal))
                   /Rsh;
187
           RL\_vetor = V. / I\_real;
188
189
190
        %Modelo de celula nao-ideal
191
       RFC_ideal\_temp = (Vop+Rs*Iop)/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I01*(exp(q*(Vop+Rs*Iop))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-Iop-(I))/(IPH\_temp-
192
                Iop)/(n1*k*T))-1))-(I02*(exp(q*(Vop+Rs*Iop)/(n2*k*T))-1)-(Vop))
                + Iop * Rs) / Rsh));
193 RFC_ideal = [RFC_ideal; RFC_ideal_temp];
194 I\_ssc\_ideal = IPH\_temp - I01*(exp((q*V.*(1+Rs./RL\_vetor)))/(n1*k*)
                T))-1) - I02*(exp((q*V.*(1+Rs./RL_vetor))/(n2*k*T))-1) -(V
                .*(1+Rs./RL_vetor)/Rsh) - V.*(1+Rs./RL_vetor)/RFC_ideal_temp;
195 P\_ssc\_ideal = V.*I\_ssc\_ideal;
```

```
Pmax\_ssc\_ideal = max(P\_ssc\_ideal);
196
   figure(3);
197
     if (mod(N-1,4)) == 0
198
         [hBx, hLine1, hLine2] = plotyy (V(I_ssc_ideal>0), I_ssc_ideal(
199
            I_ssc_ideal>0), V(P_ssc_ideal>0), P_ssc_ideal(P_ssc_ideal
            >0));
    end
200
   axis xy;
201
   xlabel('Tensao (V)'); ylabel(hBx(1), 'Corrente (A)');
202
   ylabel(hBx(2), 'Potencia (W)');
203
   yticks ([0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5]);
204
   yticks (hBx(2), [0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0]);
205
   set(hBx(1), 'ycolor', 'blue');
206
   set(hBx(2), 'ycolor', 'red');
207
   title ('Curva I-V do SSC - Fotocondutor ideal');
208
   hold on;
209
210
211
212 end
   figure (3)
213
h1 = plot(Vop, Iop, 'ro');
   str_real = ['Vop ', num2str(Vop), 'V, ', 'Iop ', num2str(Iop), 'A,
215
       ', 'Pop ', num2str(Pop), 'W'];
   legend(h1,str_real);
216
217
218
   IPH_list
219
   Irr_list
220
221
222
223 %RFC ideal
224 % figure (2);
225 \ \%h1 = plot(Vop, Iop, 'ro');
226 %axis auto;
227 \ \% str\_ideal = ['MPP \rightarrow ', num2str(Vop), 'V, ', num2str(Iop), 'A, ',
      num2str(Pmax_ideal), 'W'];
228 % legend (h1, str ideal);
229 %hold off;
230 %break
```

```
231 % figure (3);
232 \ \%h1 = plot(Vp_real, Ip_real, 'ro');
233 %axis auto;
234 \ \%str\_real = [\ MPP \rightarrow \ , num2str(Vp\_real), \ V, \ , num2str(Ip\_real))
      , A, ', num2str(Pmax_real), W'];
235 %legend(h1,str_real);
236 %hold off;
237
238
   %R_ideal=Vp_ideal/Ip_ideal %Carga equivalente ao ponto (Caso
239
      ideal)
  %R_real=Vp_real/Ip_real %Carga equivalente ao ponto (Caso real)
240
241
  IPH_list;
242
   Irr list;
243
244
  RFC_ideal %Plot do grafico do fotocondutor ideal
245
   GFC_ideal = 1./RFC_ideal;
246
247 P_RFC_ideal = (Vop^2) . / RFC_ideal;
   figure (5);
248
   [hAx, hLine1, hLine2] = plotyy(Irr_list(RFC_ideal>0), RFC_ideal(
249
      RFC_ideal>0), Irr_list (P_RFC_ideal>0), P_RFC_ideal (P_RFC_ideal
      >0));
   xlabel('Irradiancia (W/m2)'); ylabel(hAx(1), 'Resistencia (ohms)')
250
      ; ylabel(hAx(2), 'Potencia (W)'); title('Curva caracteristica do
       fotocondutor ideal');
251
252
  %RFC %Plot do grafico do fotocondutor (caso real)
253
  \%GFC = 1./RFC;
254
255 % P RFC = (Vop^2)./RFC;
256 % figure (6);
257 \ \%[hAx, hLine1, hLine2] = plotyy (IPH_list (RFC>0), RFC(RFC>0),
      IPH list (RFC>0), P RFC(RFC>0);
258 %xlabel('Corrente (I)'); ylabel(hAx(1), 'Resistencia (ohms)');
      ylabel(hAx(2), 'Potencia (W)'); title('Curva caracteristica do
      fotocondutor ideal');
259
```

260 %

```
261 %Variacao de do valor do fotocondutor para apreciacao da
      variacao das curvas IV (calculado sobre o MPP)
262
   %Var_RFC = 0.05;
263
264
   %Variacao na REF
265
266
  %figure(7);
267
  %RFC_var = RFC(find(min(IPH_list)));
268
   %I\_list\_var1 = [];
269
270
  %for N=0:20
271
272
  %RFC_temp = RFC_var+RFC_var*(N-10)*Var_RFC/10;
273
274 % I real = IPH REF - I01 * (exp((q*V.*(1+Rs./RL vetor))/(n1*k*T)))
      -1) - I02*(exp((q*V.*(1+Rs./RL_vetor))/(n2*k*T))-1) -V.*(1+Rs)
      ./RL_vetor)/Rsh - V.*(1+Rs./RL_vetor)/RFC_temp;
275 \%P_real = V.*I_real;
276 \%[hBx, hLine1, hLine2] = plotyy(V(I_real>0), I_real(I_real>0), V(
      P real>0), P real(P real>0)); xlabel('Tensao (V)'); ylabel(hBx
      (1), 'Corrente (A) '); ylabel(hBx(2), 'Potencia (W) '); title('
      Curva I-V com a variação de RFC - REF');\%axis ([0 n1*0.7 0
      \operatorname{ceil}(\max(P))]);
277 %hold on;
  \%I_list_var1 = [I_list_var1; I_real(find(P_real=max(P_real)))];
278
279
  %end
280
281
  %Variacao_I1 = (max(I_list_var1)-min(I_list_var1)); %Amplituda
282
      maxima de variacao do MPP
283 %Variacao_I1_porcento = (max(I_list_var1)-min(I_list_var1))*100/
      max(I_list_var1); %Amplituda maxima de variacao do MPP - em
      porcentagem
284
285
   %hold off;
286
287
   %Variacao na Irradiancia Maxima
288
289
```

```
290 % figure (8);
  \%RFC_temp = RFC(find(max(IPH_list)));
291
  \%I_list_var2 = [];
292
293
  %for N=0:20
294
295
  %RFC_temp = RFC_var+RFC_var*(N-10)*Var_RFC/10;
296
  \%I_real = IPH_MAX - I01 * (exp((q*V.*(1+Rs./RL_vetor))/(n1*k*T))
297
      -1) - I02*(exp((q*V.*(1+Rs./RL vetor))/(n2*k*T))-1) -V.*(1+Rs)
      ./RL_vetor)/Rsh - V.*(1+Rs./RL_vetor)/RFC_temp;
298 % P real = V. * I real;
299 \%[hBx, hLine1, hLine2] = plotyy(V(I real>0), I real(I real>0), V(
      P_real>0), P_real(P_real>0)); xlabel('Tensao (V)'); ylabel(hBx
      (1), 'Corrente (A) '); ylabel(hBx(2), 'Potencia (W) '); title('
      Curva I-V com a variação de RFC - Irr. Maxima');% axis([0 n1
      *0.7 \ 0 \ ceil(max(P))]);
300 % hold on;
  %I\_list\_var2 = [I\_list\_var2; I\_real(find(P\_real=max(P\_real)))];
301
302
303 %end
304 %hold off;
305 %Variacao_I2 = (max(I_list_var2)-min(I_list_var2)); %Amplituda
      maxima de variacao do MPP
306 %Variacao_I2_porcento = (max(I_list_var2)-min(I_list_var2))*100/
      max(I_list_var2) %Amplituda maxima de variacao do MPP - em
      porcentagem
307
   %
308
309
  %Calculo dos parametros do RFC
310
311
   %n = 20; %Eficiencia luminosa - depende da iluminacao utilizada
312
313
  %Tabela por tipo de iluminacao
314
315
316 %Lampada
                                                 n
317 %Incandescente
                                                 15
318 %Halogena
                                                 20
319 %Fluorescente
                                                 60
```

```
320 %LED
                                                  60
321 %Haleto metalico
                                                  87
322 %Vapor de sodio de alta pressao
                                                  117
323 %Vapor de sodio de baixa pressao
                                                  150
324 %Valor de mercurio
                                                  50
325
  %Conversao irradiancia -> luminancia
326
  \%Ev(lux) = Irr(W/m^2)*n
327
328
   %Fonte: https://www.rapidtables.com/calc/light/watt-to-lux-
329
      calculator.html
330
   %RFC_param = [RFC];
331
  %Irr_param = [Irr_list];
332
333
334
   %XI = [round(min(Irr_param)):0.5:round(max(Irr_param))]; %
335
      Interpolacao da irradiancia
  %YI = interp1 (Irr_param, RFC_param, XI);
336
337
  %figure(9)
338
  %plot(XI,YI)
339
340
  \%lux_param = Irr_param.*n;
341
   \%lux_10 = find (XII == 10)
342
  \%lux 100 = find (XII == 100)
343
344
  \%gamma_lux = (\log 10 (YI(lux_10))/YI(lux_100))/(\log 10 (XI(lux_100)))
345
      /XI(lux_{10}))
346
347 % figure (10)
348 %plot(Irr_param, RFC_param, 'ro', XI, YI)
349 \%[F0, G] = fit (Irr_param, (RFC_param), 'power1')
350 \ \% [F0, G0] = fit (Irr_param(13:end), RFC_param(13:end), '(1/R0 + x)
      (1)/a)^{-1'};
351 \%[F0, G] = fit (Irr_param, (RFC_param), '1/(a+b*x)')
352 \%[F0, G] = fit (Irr_param, (RFC_param), '(a*c)/(a+c*x^b)', '
      StartPoint', [100, 1, 10000])
353 % figure (11);
```

```
354 %plot(F0,Irr_param,RFC_param); axis([0 Irr_MAX 0 max(RFC_param)])
355
  \%[F0, G] = fit (XI', YI', '(1/1000000 + x^(b)/a)^-1', [1e5])
356
  \%[F1, G1] = fit (XI, YI, '(1/R0 + x^(1)/a)^{-1});
357
  \%f2 = fit(XI', YI', '(a*c)/(a+c*x^b)', 'StartPoint', [100, 1,
358
      10000])
359 % figure (12);
  %plot(F1,XI,YI); axis([0 Irr MAX 0 max(RFC param)]);
360
361
   %
362
363
  %Calculo dos parametros do RFC
364
365
   n = 20; %Eficiencia luminosa - depende da iluminacao utilizada
366
367
   %Tabela por tipo de iluminacao
368
369
370 %Lampada
                                                  n
371 %Incandescente
                                                  15
372 %Halogena
                                                  20
373 %Fluorescente
                                                  60
374 %LED
                                                  60
375 %Haleto metalico
                                                  87
376 %Vapor de sodio de alta pressao
                                                  117
377 %Vapor de sodio de baixa pressao
                                                  150
  %Valor de mercurio
                                                  50
378
379
  %Conversao irradiancia -> luminancia
380
   %Ev(lux) = Irr(W/m^2)*n
381
382
   RFC_{param} = RFC_{ideal}(\min(find(RFC_{ideal}>0)):end);
383
   GFC_param = 1./RFC_param;
384
   Irr_param = Irr_list (min(find(RFC_ideal>0)):end);
385
386
   figure (9)
387
   plot (Irr_param, RFC_param, 'LineWidth', 2); set (gca, 'fontsize', 12, '
388
      linewidth ',1.5);
389
```

```
390 %XI = [round(min(Irr_param)):0.5:round(max(Irr_param))]; \%
      Interpolacao da irradiancia
  %YI = interp1 (Irr_param, RFC_param, XI);
391
392
  %figure(9)
393
  %plot(XI,YI)
394
395
   \%lux_param = Irr_param.*n;
396
   \%lux 10 = find (XII == 10)
397
   \%lux 100 = find (XII == 100)
398
399
   %gamma_lux = (log10(YI(lux_10))/YI(lux_100))/(log10(XI(lux_100)))
400
      /XI(lux_{10}))
401
  %figure(10)
402
403 %plot (Irr_param, RFC_param, 'ro', XI, YI)
404 \%[F0, G] = fit (Irr_param, (RFC_param), 'power1')
  R0 = 1e6;
405
   G0 = 1/R0;
406
407
   outliers = excludedata (Irr_param, RFC_param, 'Range', [min(
408
      RFC_param) (min(RFC_param) *3)])
   f0 = fitoptions(['1/(b+a*x)'], 'lower', [-inf], 'upper', [inf], '
409
      Exclude', outliers, 'Normalize', 'off');
   [F0, H0] = fit (Irr_param, RFC_param, ['1/(b+a*x)'], f0)
410
411 % [F0, G0] = fit (Irr_param, RFC_param, (1/(1e-6 + b*x))))
412 \%[F0, G] = fit (Irr_param, (RFC_param), '1/(a+b*x)')
413 \%[F0, G] = fit (Irr_param, (RFC_param), '(a*c)/(a+c*x^b)', '
      StartPoint', [100, 1, 10000])
   figure (9);
414
   plot (Irr_param, RFC_param, 'blue', 'LineWidth', 2); axis ([0 max(
415
      Irr_param) 0 (\max(RFC_param)*R0/(\max(RFC_param+R0)))]); set (
      gca, 'fontsize', 12, 'linewidth', 1.5); axis([1000 1100 0 25]);
416 hold on
417 b = F0.b;
   a = F0.a;
418
   curve_fit = 1./(b+a.*Irr_param);
419
   plot (Irr, 1./(b+a.*Irr), 'red', 'LineWidth', 2); set (gca, 'fontsize'
420
       ,12, 'linewidth',1.5);
```

```
residue = abs(RFC_param-curve_fit);
421
   plot (Irr_param, residue, 'green', 'LineWidth', 2); set (gca, 'fontsize'
422
       ,12, 'linewidth',1.5);
   axis([1000 1100 0 5]);
423
   legend('Curva ideal', 'Curva real ajustada', 'Diferenca');
424
   xlabel('Irradiancia (W/m2)'); ylabel('Resistencia do fotocondutor
425
        (ohms)'); title ('Curva caracteristica do fotocondutor');
426
   txt1 = ['G0 = ', num2str(b,3)];
427
   txt2 = ['beta =', num2str(a,3)];
428
   txt = [{txt1}, {txt2}];
429
   \%text (5,0.7*((max(RFC_param)*R0/(max(RFC_param+R0)))),txt);
430
   text(1060, 3, txt);
431
432
   Irr_param(min(find((residue./curve_fit)<0.15))) %Retorna o menor
433
        valor de irradiancia a ser operado
434
   hold off;
435
   \%[F0, G] = fit (XI', YI', '(1/1000000 + x^(b)/a)^-1', [1e5])
436
   \%[F1, G1] = fit (XI, YI, '(1/R0 + x^(1)/a)^-1');
437
   \%f2 = fit(XI', YI', '(a*c)/(a+c*x^b)', 'StartPoint', [100, 1],
438
      10000])
  %figure(12);
439
  %plot(F1,XI,YI); axis([0 Irr_MAX 0 max(RFC_param)]);
440
441
   %
442
   %Alternative
443
444
   figure(10)
445
   plot (Irr_param, RFC_param, 'LineWidth', 2); set (gca, 'fontsize', 12, '
446
      linewidth ',1.5);
447
   \%XI = [round(min(Irr_param)):0.5:round(max(Irr_param))]; \%
448
      Interpolacao da irradiancia
   %YI = interp1 (Irr_param, RFC_param, XI);
449
450
451 % figure (9)
  %plot(XI,YI)
452
453
```

```
454 \%lux_param = Irr_param.*n;
   \%lux_10 = find (XII == 10)
455
   \%lux_100 = find (XII == 100)
456
457
   %gamma_lux = (log10(YI(lux_10))/YI(lux_100))/(log10(XI(lux_100)))
458
      /XI(lux 10))
459
  %figure(10)
460
  %plot(Irr param, RFC param, 'ro', XI, YI)
461
  %[F0, G] = fit (Irr_param, (RFC_param), 'power1')
462
  R0 = 1e6;
463
   G0 = 1/R0;
464
465
   outliers = excludedata (Irr_param, RFC_param, 'Range', [min(
466
      RFC_{param} (min(RFC_{param}) *3)])
   f0 = fitoptions(['1/(',(num2str(G0)),'+a*x)'],'lower',[0],'upper)
467
       ',[inf], 'Exclude', outliers);
   [F0, H0] = fit (Irr_param, RFC_param, ['1/(', (num2str(G0)), '+a*x)')
468
      ], f0);
  \%[F0, G0] = fit (Irr param, RFC param, '(1/(1e-6 + b*x))')
469
470 \%[F0, G] = fit (Irr_param, (RFC_param), '1/(a+b*x)')
  \%[F0, G] = fit (Irr_param, (RFC_param), '(a*c)/(a+c*x^b)', '
471
      StartPoint', [100, 1, 10000])
  figure(10);
472
   plot (Irr_param, RFC_param, 'blue', 'LineWidth', 2); axis ([0 max(
473
      Irr_param) 0 (max(RFC_param)*R0/(max(RFC_param+R0)))]); set (
      gca, 'fontsize', 12, 'linewidth', 1.5); axis ([1000 1100 0 25]);
  hold on
474
  b = coeffvalues(F0);
475
   curve_fit = 1./(G0+b.*Irr_param);
476
   plot (Irr, 1./(G0+b.*Irr), 'red', 'LineWidth', 2); set (gca, 'fontsize'
477
       ,12, 'linewidth',1.5);
   residue = abs(RFC_param-curve_fit);
478
   plot (Irr_param, residue, 'green', 'LineWidth', 2); set (gca, 'fontsize'
479
       ,12, 'linewidth',1.5);
   axis([1000 \ 1100 \ 0 \ 5]);
480
  legend ('Curva ideal', 'Curva real ajustada', 'Diferenca');
481
   xlabel('Irradiancia (W/m2)'); ylabel('Resistencia do fotocondutor
482
        (ohms)'); title ('Curva caracteristica do fotocondutor');
```

```
483
   txt1 = ['G0 = ', num2str(G0)];
484
   txt2 = ['beta =', num2str(a,3)];
485
   txt = [{txt1}, {txt2}];
486
   \%text (5,0.7*((max(RFC_param)*R0/(max(RFC_param+R0)))),txt);
487
   text(1060, 3, txt);
488
489
490
   Irr param(min(find((residue./curve fit)<0.15))) %Retorna o menor
491
        valor de irradiancia a ser operado
492
   hold off;
493
  \%[F0, G] = fit (XI', YI', '(1/1000000 + x^(b)/a)^-1', [1e5])
494
  %[F1, G1] = fit(XI, YI, '(1/R0 + x^{(1)}/a)^{-1});
495
   \%f2 = fit(XI', YI', '(a*c)/(a+c*x^b)', 'StartPoint', [100, 1,
496
      10000])
   %figure(12);
497
   %plot(F1,XI,YI); axis([0 Irr_MAX 0 max(RFC_param)]);
498
499
500
501
502
503
504 %
```

D.6 Conversão irradiância para iluminância

Aqui apresentamos o código-fonte do algoritmo para conversão da irradiância (grandeza física, medida em W/m^2) em iluminância (grandeza fotópica, medida em lux). Futuramente, ele também trará a conversão reversa.

```
1 %Conversao irradiancia/iluminancia - irr_lux_conversion.m
```

```
2 % Desenvolvido por: Andre Luiz Costa de Carvalho - Dezembro/2016
```

```
3 %Descircao: Algoritmo pra conversao de valores de irradiancia
para iluiminancia
```

```
4
5 close all
6 clear all
7 clc
8
```

```
9 %Irr lambda
10
11 %Irr_lambda = csvread('AM15_direct_ASTMG173-03_adjusted.csv
     ',1,0); %AM1.5 Direct (ASTM G173-03 Reference Spectra Derived
      from SMARTS v. 2.9.2) [W/(m^2*nm) - wavelength in nm]
12 %Irr_lambda = csvread('AM15_global_ASTMG173-03_adjusted.csv
      ',1,0); %AM1.5 Direct (ASTM G173-03 Reference Spectra Derived
      from SMARTS v. 2.9.2) [W/(m^2*nm) - wavelength in nm]
13 %Irr lambda = csvread ('AM15 extraterrestrial ASTMG173-03
     _adjusted.csv',1,0); %AM1.5 Direct (ASTM G173-03 Reference
     Spectra Derived from SMARTS v. 2.9.2) [W/(m<sup>2</sup>*nm) -
     wavelength in nm]
14
<sup>15</sup> %Irr_lambda = csvread ('AM0_standard_ASTME-490_adjusted.csv',1,0)
     : %AM0 Direct (ASTM E-490 Reference Spectra Derived from
     SMARTS v. 2.9.2) [W/(m^2*nm) - wavelength in nm]
16 %Irr_lambda = csvread ('AM0_short_ASTME-490_adjusted.csv',1,0);%
     AM0_standard centrado nos comprimentos de onda 280 a 4000 nm
     [W/(m^2*nm) - wavelength in nm]
17
18 Irr_lambda = csvread ('halogen_lamp_Newport6315_1000W_adjusted.
     (sv', 1, 0); %Lampada halogena NEWPORT modelo 6315 - 1000W [W/(
     m^2 * nm) - wavelength in nm]
19
 %Irr_lambda = csvread('fluorescent_lamp_500lux_adjusted.csv
20
     (1, 0); %Lampada fluorescente 500 Lux (10 \text{ W}) [W/(m<sup>2</sup>*nm) -
     wavelength in nm]
21
 %Irr_lambda = csvread('led_lamp_9W_warm_adjusted.csv',1,0); %
22
     Lampada LED Branca Quente (5 W) [W/(m<sup>2</sup>*nm) - wavelength in
     nm]
23
24
 %Ajustar o fator a uma irradiancia max específica
25
  Irr_nominal = trapz(Irr_lambda(:,1), Irr_lambda(:,2)) %Irradiance
26
       [W/m^2]
  Irr_nominal_si = trapz(Irr_lambda(244:1644,1),Irr_lambda
27
     (244:1644,2)) %Irradiance [W/m<sup>2</sup>]
_{28} Irr_max_desired = 50;
```

```
factor = Irr_max_desired/Irr_nominal_si
29
30
 %factor = 0.25; %Ajuste manual Fator de amplificacao/atenuacao
31
     de cada fonte de luz []
  Irr_lambda_si = [Irr_lambda(244:1644,1)] factor.*Irr_lambda
32
     (244:1644,2)]; % Ajuste de potencia na Irradiancia espectral
      [W/(m^2*nm)]
33
  Irr = trapz(Irr_lambda_si(:,1), Irr_lambda_si(:,2)) %Irradiance [
34
     W/m^2
35
  figure (1)
36
  plot (Irr_lambda_si(:,1), Irr_lambda_si(:,2));
37
38
  %Calculo luminancia
39
  photopic = \exp(-(Irr\_lambda\_si(:,1)-555).^2/(2*(35)^2));
40
  figure (2)
41
  plot (Irr_lambda_si(:,1), photopic);
42
43
  I lux = trapz (Irr lambda si(:,1), Irr lambda si(:,2). * photopic
44
     *683)
  figure (3)
45
  plot (Irr_lambda_si(:,1), Irr_lambda_si(:,2).*photopic.*683);
46
47
  figure (4)
48
  plot (Irr_lambda_si(:,1), (Irr_lambda_si(:,2).*photopic*683)./(
49
     Irr\_lambda\_si(:,2));
50
  razao = I_lux/Irr
51
  media = mean((Irr_lambda_si(:,2).*photopic.*683)./(Irr_lambda_si
52
      (:,2))
53 %
```