
PARTIAL LEAST SQUARES:

A DEEP SPACE ODYSSEY

ARTUR JORDÃO LIMA CORREIA

PARTIAL LEAST SQUARES:

A DEEP SPACE ODYSSEY

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais - Departa-
mento de Ciência da Computação. como
requisito parcial para a obtenção do grau
de Doutor em Ciência da Computação.

Orientador: William Robson Schwartz

Belo Horizonte

Novembro de 2020

ARTUR JORDÃO LIMA CORREIA

PARTIAL LEAST SQUARES:

A DEEP SPACE ODYSSEY

Thesis presented to the Graduate Program
in Ciência da Computação of the Univer-
sidade Federal de Minas Gerais - Depar-
tamento de Ciência da Computação. in
partial ful�llment of the requirements for
the degree of Doctor in Ciência da Com-
putação.

Advisor: William Robson Schwartz

Belo Horizonte

November 2020

© 2020, Artur Jordão Lima Correia.
 Todos os direitos reservados

 Correia, Artur Jordão Lima.

C824p Partial least squares: [manuscrito] a deep space odyssey /
 Artur Jordão Lima Correia.- 2020.
 xxi, 134 f. il.

 Orientador: William Robson Schwartz.
 Tese (Doutorado) - Universidade Federal de Minas Gerais,
 Instituto de Ciências Exatas, Departamento de Ciência da
 Computação.
 Referências: f.109-125
 .
 1. Computação – Teses. 2. Visão por computador – Teses. 3
. Teoria da estimativa – Teses. 4. . Reconhecimento de
 Padrões. – Teses. I. Schwartz, William Robson. II. Universidade
 Federal de Minas Gerais, Instituto de Ciências Exatas,
 Departamento de Ciência da Computação. III.Título.

CDU 519.6*84(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6ª Região nº 1510

Acknowledgments

I am eternally thankful to my family: Ivanilde, Manuela, Americo, Pedro, José and

Maria Aparecida for all support they gave me, allowing me to focus on research and

studies. I am very grateful to Mirela Pelizaro Valeri and her family for all support they

gave me throughout my research.

I would like to thank deeply professor William Robson Schwartz for the outstand-

ing orientation on my graduate study.

I thank my colleagues in Federal University of Minas Gerais. I am very grateful

for my colleagues Ricardo Barbosa Kloss, Maiko Min Ian Lie, Fernando Akio de Araujo

Yamada and Victor Hugo Cunha de Melo for valuable contributions to this thesis. I

am also very grateful for all members of the Smart Sense Lab.

I would like to thank the Brazilian National Research Council � CNPq (Grants

438629/2018-3, 309953/2019-7 and 140082/2017-4), the Minas Gerais Research Foun-

dation � FAPEMIG (Grants APQ-00567-14 and PPM-00540-17) and the Coordination

for the Improvement of Higher Education Personnel � CAPES (DeepEyes Project).

This study was �nanced in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior � Brasil (CAPES) � Finance Code 001.

ix

Resumo

Modelos modernos de reconhecimento de padrões visuais são predominantemente

baseados em redes convolucionais uma vez que elas têm levado a uma série de avanços

em diferentes tarefas. A razão para estes resultados é o desenvolvimento de arquite-

turas maiores e a combinação de informações de diferentes camadas da arquitetura.

Tais modelos, entretanto, são computacionalmente custosos di�cultando aplicabilidade

em sistemas com recursos limitados. Para lidar com esses problemas, propomos três

estratégias. A primeira remove estruturas (neurônios e camadas) das redes convolu-

cionais, reduzindo seu custo computacional. A segunda insere estruturas para desen-

volver redes automaticamente, permitindo construir arquiteturas de alta performance.

A terceira combina múltiplas camadas das arquiteturas, aprimorando a representação

dos dados com custo adicional irrelevante. Estas estratégias são baseadas no Partial

Least Squares (PLS), uma técnica de redução de dimensionalidade. Mostramos que o

PLS é uma ferramenta e�ciente e e�caz para remover, inserir e combinar estruturas

de redes convolucionais. Apesar dos resultados positivos, o PLS é inviável a grandes

conjuntos de dados como ele requer que todos os dados estejam na memória, o que é

frequentemente impraticável devido a limitações de hardware. Para contornar tal limi-

tação, propomos uma quarta abordagem, um PLS incremental discriminativo e de baixa

complexidade que aprende uma representação compacta dos dados usando uma única

amostra por vez, permitindo aplicabilidade em grandes conjuntos de dados. Avaliamos

a efetividade das abordagens em várias arquiteturas convolucionais e tarefas super-

visionadas de visão computacional, que incluem classi�cação de imagens, veri�cação

de faces e reconhecimento de atividades. Nossas abordagens reduzem a sobrecarga de

recursos computacionais das redes convolucionais e do PLS, promovendo modelos e�-

cientes em termos de energia e hardware para cenários acadêmicos e industriais. Em

comparação com métodos de última geração para o mesmo propósito, obtemos um dos

melhores compromissos entre capacidade preditiva e custo computacional.

Palavras-chave: Computação, visão por computador, teoria da estimativa, reconhe-

cimento de padrões.

xi

Abstract

Modern visual pattern recognition models are predominantly based on convolutional

networks since they have led to a series of breakthroughs in di�erent tasks. The rea-

son for these achievements is the development of larger architectures as well as the

combination of features from multiple layers of the convolutional network. Such mod-

els, however, are computationally expensive, hindering applicability on low-power and

resource-constrained systems. To handle these problems, we propose three strate-

gies. The �rst removes unimportant structures (neurons or layers) of convolutional

networks, reducing their computational cost. The second inserts structures to design

convolutional networks automatically, enabling us to build high-performance architec-

tures. The third combines multiple layers of convolutional networks, enhancing data

representation at negligible additional cost. These strategies are based on Partial Least

Squares (PLS), a discriminative dimensionality reduction technique. We show that PLS

is an e�cient and e�ective tool for removing, inserting, and combining structures of

convolutional networks. Despite the positive results, PLS is infeasible on large datasets

since it requires all the data to be in memory in advance, which is often impractical

due to hardware limitations. To handle this limitation, we propose a fourth approach,

a discriminative and low-complexity incremental PLS that learns a compact represen-

tation of the data using a single sample at a time, thus enabling applicability on large

datasets. We assess the e�ectiveness of our approaches on several convolutional archi-

tectures and supervised computer vision tasks, which include image classi�cation, face

veri�cation and activity recognition. Our approaches reduce the resource overhead of

both convolutional networks and PLS, promoting energy- and hardware-friendly mod-

els for the academy and industry scenarios. Compared to state-of-the-art methods for

the same purpose, we obtain one of the best trade-o�s between predictive ability and

computational cost.

Keywords: Computing, computer vision, estimation theory, pattern recognition.

xiii

List of Figures

1.1 Comparison of convolutional networks . 2

1.2 Left. Comparison of existing pruning methods on CIFAR-10. 4

2.1 Di�erent neural networks architectures. 10

2.2 Decision boundary using di�erent neural network architectures. 12

2.3 Example of a one-channel image as input to di�erent network architectures. 13

2.4 Structure of a standard convolutional network. 14

2.5 Top. Training dynamics of networks . 16

2.6 Activation functions. 17

2.7 Training dynamics of ResNet20 . 17

2.8 Graphical representation of the matrices estimated by PLS 22

3.1 Left. Plain network. 26

3.2 Existing pruning strategies . 28

3.3 Strategies that remove modules (set of layers) from convolutional. 31

3.4 Existing neural architecture search strategies 33

3.5 Overall process to build a HyperNet. 36

3.6 Overview of a multiscale convolutional network. 37

4.1 Pruning approaches considering di�erent structures. 42

4.2 Overview of our strategy for removing �lters 42

4.3 Representation of convolutional �lters as feature vectors. 43

4.4 Representation of the modules (set of layers) as features 45

4.5 Left. Residual modules employed in ResNets 46

4.6 Top. Structure of modern architectures 47

4.7 Projection of two categories onto the two �rst components 50

4.8 Process to build Latent HyperNet. 51

5.1 Process to generate data samples from raw signals. 56

5.2 Face veri�cation pipeline. 57

xv

5.3 Left. Faces from Labeled Faces in the Wild (LFW) 57

5.4 Left. Images from ImageNet. 58

5.5 Accuracy obtained by pruning VGG16 on the CIFAR-10 dataset 62

5.6 Heat map of the relation between the number of �lters. 62

5.7 Left. Single projection scheme. 64

5.8 Comparison of existing pruning methods. 69

5.9 Left. Number of �oat point operations (FLOPs) per layer of the VGG16. . 69

5.10 Average prediction time (lower is better) 71

5.11 Loss Landscape of ResNet56 (left) and its pruned version (right). 72

5.12 Attention maps of the VGG16 network. 73

5.13 Comparison of existing pruning methods. 77

5.14 Left. Average prediction time . 79

5.15 Number of residual modules . 82

5.16 Carbon emission for training architectures. 85

5.17 Latent HyperNet considering a single PLS projection. 92

5.18 Left. Distribution of the softmax layer . 93

5.19 Average prediction time (lower values are better) of the original network . 97

5.20 Projection on the �rst and second components using di�erent. 100

5.21 Average prediction time (in seconds) for estimating the projection matrix. 102

5.22 Comparison of incremental methods on a streaming scenario. 103

B.1 Left. Layers before removing �lters. 129

B.2 Top. Module before removing layers . 130

xvi

List of Tables

5.1 Main features of each dataset. 56

5.2 Standard evaluation protocol and classi�cation metric. 59

5.3 Drop in accuracy when executing our method 63

5.4 Drop in accuracy using di�erent criteria for determining �lter importance. 65

5.5 Comparison of existing pruning methods 67

5.6 Comparison of existing pruning methods 68

5.7 Results when pruning �lters from lightweights architectures 70

5.8 Generalization ability (transfer learning) of pruned models 71

5.9 Drop in accuracy (in percentage points) when executing our method 74

5.10 Drop in accuracy using di�erent criteria for determining layer importance. 75

5.11 Comparison of existing pruning methods 76

5.12 Results when pruning layers from lightweights architectures 78

5.13 Comparison of our strategy for removing multiple structures 79

5.14 In�uence of the initial number of modules 81

5.15 Accuracy on CIFAR-10 (200 epochs) of our method 82

5.16 Comparison with human-designed architectures 83

5.17 Performance of networks built with the proposed method 86

5.18 Comparison with state-of-the-art NAS approaches 87

5.19 Accuracy of networks transferred from a small dataset 88

5.20 Con�gurations of the convolutional architectures. 90

5.21 Accuracy on CIFAR-10 (validation set) . 91

5.22 Improvements in accuracy achieved by the HyperNets 93

5.23 Improvements in accuracy achieved by LHN 94

5.24 Floating point operations (FLOPs) of HyperNets approaches 95

5.25 Accuracy of LHN on CIFAR-10 (test set) 96

5.26 Comparison of existing incremental methods in terms of accuracy. 99

5.27 Comparison of incremental dimensionality reduction methods 101

5.28 Comparison of feature selection methods 104

xvii

A.1 Time for training/�ne-tuning di�erent architectures 127

A.2 Time for training/�ne-tuning di�erent architectures 127

C.1 Performance of our discovered architectures considering residual modules. . 133

C.2 Performance of our discovered architectures considering cell modules. . . . 134

xviii

Contents

Acknowledgments ix

Resumo xi

Abstract xiii

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Motivation . 2

1.2 Hypotheses . 5

1.3 Objectives . 6

1.4 Contributions . 6

1.5 Work Organization . 8

2 Theoretical Concepts 9

2.1 Neural Network . 9

2.1.1 Single-Layer and Multilayer Networks 9

2.1.2 Convolutional Network . 12

2.1.3 Capacity . 18

2.1.4 Transfer Learning and Fine-tuning 18

2.2 Partial Least Squares . 20

2.2.1 Variable Importance in Projection 22

3 Related Work 25

3.1 Convolutional Networks . 25

3.2 Pruning Structures in Convolutional Networks 27

3.2.1 Pruning Neurons . 28

xix

3.2.2 Pruning Layers . 30

3.2.3 Pruning Hybrid Structures . 32

3.3 Neural Architecture Search . 32

3.3.1 Reinforcement Learning . 33

3.3.2 Evolutionary Algorithms . 33

3.3.3 Morphism . 34

3.3.4 Di�erentiable . 35

3.4 Exploring Layers in Convolutional Networks 36

3.5 Incremental Dimensionality Reduction 38

3.6 Feature Selection . 39

4 Proposed Approaches 41

4.1 Pruning Approaches . 41

4.1.1 Pruning Filters . 42

4.1.2 Pruning Layers . 44

4.2 Neural Architecture Search . 46

4.2.1 Stage-wise Architecture Search 46

4.3 HyperNet Approach . 49

4.3.1 Latent HyperNet . 50

4.4 Incremental Partial Least Squares . 52

4.4.1 Covariance-free Partial Least Squares 52

5 Experiments 55

5.1 Applications and Datasets . 55

5.2 Experimental Setup . 58

5.3 Pruning Approaches . 60

5.3.1 Pruning Filters in Convolutional Networks 61

5.3.2 Generalization Ability . 71

5.3.3 Pruning Layers in Convolutional Networks 73

5.4 Neural Architecture Search . 80

5.4.1 In�uence of Initial Depth . 81

5.4.2 Combination with other NAS approaches 85

5.4.3 Comparison with state-of-the-art NAS 86

5.4.4 Learning Architectures on Large Datasets 88

5.4.5 Generalization Ability . 88

5.4.6 Ensemble of Architectures . 89

5.4.7 Final Remarks . 89

xx

5.5 Latent HyperNet . 89

5.5.1 Convolutional Networks . 90

5.5.2 De�ning Layers to be Combined 90

5.5.3 HyperNet Improvements . 92

5.5.4 Computational Cost . 94

5.5.5 Importance of Dimensionality Reduction 95

5.5.6 Latent HyperNet on Lightweight Networks 96

5.5.7 Time Issues . 97

5.5.8 Final Remarks . 97

5.6 Covariance-free Partial Least Squares 98

5.6.1 Comparison with Incremental Methods 98

5.6.2 Comparison with Partial Least Squares 99

5.6.3 Higher-order Components . 99

5.6.4 Time Issues . 101

5.6.5 Incremental Methods on Streaming Scenario 102

5.6.6 Comparison with Feature Selection Methods 103

5.6.7 Final Remarks . 103

6 Conclusions 105

Bibliography 109

Appendix A Time for Training/Fine-tuning 127

Appendix B Pruning Structures 129

C Neural Architecture Search 133

xxi

Chapter 1

Introduction

Pattern recognition plays an important role in cognitive tasks such as natural language

processing and image understanding. Modern pattern recognition methods have led

to a series of breakthroughs, often surpassing human performance [Deng et al., 2009;

Parkhi et al., 2015; Badia et al., 2020]. The reason for these remarkable achievements

is the improvement in data representation (i.e., features), which allows discovering new

abstractions and patterns from data.

In the context of visual pattern recognition, deep convolutional networks have

been the focus of intense research due to their state-of-the-art e�ectiveness in learning

discriminative representations [Krizhevsky et al., 2012]. In particular, most e�orts

have been devoted to the development of architectures for convolutional networks,

since large architectures are a major determinant factor for improving their predictive

ability [He et al., 2016; Zagoruyko and Komodakis, 2016; Huang et al., 2019; Kornblith

et al., 2019; Tan and Le, 2019; Sankararaman et al., 2020; Rosenfeld et al., 2020; Han

et al., 2020], as shown in Figure 1.1. In terms of performance, on the other hand,

excessively large architectures are computationally expensive, hindering applicability

on low-power and resource-constrained devices. Moreover, such architectures are data-

hungry, meaning that large datasets are needed to provide a better generalization

performance [Kolesnikov et al., 2020], hence, the encouragement for large datasets has

been growing [Sun et al., 2017; Kuznetsova et al., 2020].

A parallel line of research to obtain discriminative representations is to discover

low-dimensional features through dimensionality reduction techniques. Such techniques

are capable of yielding discriminative and compact representations from the original

(high-dimensional) data [Li et al., 2019c]. Recent works use dimensionality reduction

collaboratively with convolutional networks, where features from the latter are used to

feed dimensionality reduction techniques [Vareto and Schwartz, 2020; Suau et al., 2020;

1

2 Chapter 1. Introduction

20.5 21 21.5 22 22.5 23 23.5
0.87

0.88

0.89

0.9

0.91

0.92

FLOPs

A
cc

ur
ac

y

Higher Better

Lower BetterComplexity

NASNet

ResNet152

ResNet50

MobileV1

MobileV2

Figure 1.1. Comparison of convolutional networks in terms of predictive ability, compu-
tational cost, and complexity. Predictive ability is measured by accuracy. Computational
cost is measured by Floating Point Operations (FLOPs). Complexity is measured taking into
account the number of neurons (width) and layers (depth), and it is represented by the circle
size (larger means more complex). The arrows indicate which direction (in both x and y
axes) is better. It is evident that there is a strong relationship between predictive ability and
network complexity (circle size), in which more complex networks are more accurate. In turn,
network complexity incurs computational cost.

Diniz and Schwartz, 2020]. While these strategies produce encouraging results because

the network representation might be enhanced, such a combination is unsuitable for

large datasets since traditional dimensionality reduction techniques require all the data

to be in memory in advance, which is often impractical due to hardware limitations.

Regardless of the mechanism employed to recognize or improve pattern recog-

nition, there is a trade-o� between accuracy and complexity, in which more accurate

methods often incur higher complexity and computational cost, as illustrated in Fig-

ure 1.1. Thereby, discovering accurate and e�cient strategies for pattern recognition,

which include enhancing the existing ones, have been the focus of intense research.

1.1 Motivation

Modern visual pattern recognition models are predominantly based on convolutional

networks since they are capable of learning e�ective representations from data [He

et al., 2016; Zagoruyko and Komodakis, 2016]. According to previous works [Tan and

Le, 2019; Sankararaman et al., 2020; Rosenfeld et al., 2020; Han et al., 2020], large

(deeper and wider) convolutional networks lead to better results. Figure 1.1 supports

this claim, where larger networks (large circles) have superior predictive ability. In

1.1. Motivation 3

terms of performance, however, such networks su�er from massive computation and

memory overhead, incurring slow inference and hindering applicability on low-power

and resource-constrained devices. The simplest way to circumvent this dilemma is to

evaluate di�erent trade-o�s between accuracy and network complexity (i.e., number

of neurons and layers), for example, by comparing the performance of ResNet50 (50

layers) with its deeper counterpart ResNet152 (152 layers), see Figure 1.1. This pro-

cess, however, requires signi�cant human engineering due to its trial-and-error essence.

Instead, it is possible to transform or automatically design e�cient convolutional net-

works by employing pruning or neural architecture search (NAS), respectively. The

former removes unimportant (or the least important) structures (neurons or layers)

from the network, reducing its complexity while preserving as much predictive ability

as possible. The latter learns to design accurate and e�cient architectures automati-

cally.

Both strategies, however, are not without their limitations. Existing criteria for

identifying and removing structures from convolutional networks are ine�ective since

the accuracy of the original (unpruned) network is often degraded [He et al., 2020;

Guo et al., 2020a; Chin et al., 2020; Lin et al., 2020], as shown in Figure 1.2 (left).

Besides, many pruning approaches demand a high computational cost, mainly when

applied to very deep networks [Huang et al., 2018; Luo et al., 2019; Luo and Wu, 2020].

Regarding the neural architecture search, current strategies analyze a large set of possi-

ble candidate architectures and, hence, require vast computational resources and take

many days to process even with modern Graphics Processing Units (GPUs) [Baker

et al., 2017; Real et al., 2017; Zoph et al., 2018]. Motivated by these issues, we propose

simple, e�ective, and e�cient mechanisms for eliminating structures of deep networks

as well as discovering high-performance architectures automatically (i.e., without in-

volving human engineering). More precisely, our pruning strategies achieve the best

trade-o�s between accuracy and computational cost compared to state-of-the-art meth-

ods, as illustrated in Figure 1.2 (left). In the context of NAS, our method discovers

competitive and low-cost convolutional networks by exploring one order of magnitude

fewer models compared to other approaches, thus designing architectures in a few hours

on a single GPU, as shown in Figure 1.2 (right).

Besides computational cost concerns, many e�orts have been devoted to improve

data representation of convolutional networks. In this line of research, previous works

have demonstrated encouraging results combining features from di�erent levels (layers)

of the network. Such works have followed either multi-scale or HyperNet strategies.

While the former redesigns network topology to encode features from shallow and deep

layers [Huang et al., 2019; Yang et al., 2020a], the latter preserves network topology,

4 Chapter 1. Introduction

40 45 50 55 60 65 70 75
−1

−0.5

0

0.5

1

1.5

2

2.5

3

FLOP Reduction (%)

D
ro

p
in

 A
cc

ur
ac

y
(p

.p
.) Guo et al. [2020]

Chin et al. [2020]
You et al. [2018]
He et al. [2020]
Lin et al. [2020]
Ours

Higher Better

Lower Better

1 2 3 4 5 6 7 8

0

2

4

6

8

10

12

Number of Models Evaluated (log scale)

N
um

be
r o

f G
PU

 −
 d

ay
s

(lo
g

sc
al

e)

Zoph [2018]
Real [2017]
Brock [2018]
Dong [2019]
Yang [2020]
Ours

Lower Better

Lower Better

Figure 1.2. Left. Comparison of existing pruning methods on CIFAR-10. Compared to
state-of-the-art pruning strategies, our pruning method always provides a better solution (i.e.,
it is a non-dominated solution) considering one of the performance metrics: accuracy drop
(y-axis) or FLOP reduction (x-axis). In this �gure, negative values in the y-axis denote im-
provement regarding the original, unpruned, network. Right. Comparison of existing neural
architecture search (NAS) methods on CIFAR-10. Our NAS method discovers architectures
by exploring one order of magnitude fewer models compared to other approaches. In addition,
our method is the most resource-e�cient as it designs architectures in a few hours on a single
GPU. In both �gures, the arrows indicate which direction is better.

encouraging application on o�-the-shelf networks [Hariharan et al., 2015; Kong et al.,

2016; Sindagi and Patel, 2019; dos Santos and Ponti, 2019]. Despite improving pre-

dictive ability, both multi-scale and HyperNets strategies increase the computational

burden signi�cantly since they insert time-consuming operations at multiple levels of

the network. To address this problem, we propose an e�cient yet accurate approach to

extract di�erent levels of representation across multiple layers of deep networks, thus

enhancing data representation at negligible additional cost.

A parallel line of research to improve data representation is to learn compact,

but discriminative, representations through dimensionality reduction [Li et al., 2019c].

In this context, Partial Least Squares (PLS) has presented remarkable results, mainly

when compared to other methods such as Principal Component Analysis (PCA) and

Linear Discriminant Analysis (LDA) [Schwartz et al., 2009; Sharma and Jacobs, 2011;

Hasegawa and Hotta, 2016; Kloss et al., 2017]. The promising results of PLS are associ-

ated with its characteristics that include being discriminative and robust to sample size

problem (when the number of samples is smaller than the number of features). Another

attractive aspect of PLS is that it can operate as a feature selection method. However,

PLS is unsuitable for large datasets (e.g., ImageNet [Deng et al., 2009]) since all the

data need to be available in advance and this could be impractical due to memory

constraints. This limitation is not particular to PLS, many dimensionality reduction

1.2. Hypotheses 5

methods also su�er from this problem [Weng et al., 2003; Zeng and Li, 2014; Alakkari

and Dingliana, 2019; Xu and Li, 2019].

To handle the aforementioned problem, many works have proposed incremen-

tal versions of traditional dimensionality reduction methods [Arora et al., 2016; Stott

et al., 2017; Weng et al., 2003; Zeng and Li, 2014; Alakkari and Dingliana, 2019], where

the idea is to learn compact representations using a single sample (or a subset) at a

time. Unfortunately, most incremental Partial Least Squares fail to keep all properties

of PLS and present a high time complexity. To preserve the fundamental characteris-

tics of PLS, we propose a discriminative and low-complexity incremental Partial Least

Squares. Among the advantages of this approach are the preservation of discrimina-

tive information, its computational e�ciency, and the ability to operate as a feature

selection technique.

1.2 Hypotheses

This thesis introduces simple, e�cient and e�ective strategies for improving the trade-

o� between accuracy, complexity and computational cost in convolutional networks.

Speci�cally, we propose strategies for (i) removing neurons and layers from convolu-

tional networks to decrease the computational cost; (ii) inserting layers to automatically

design accurate and low-cost architectures and (iii) combining di�erent levels of repre-

sentation distributed across the network to improve data representation. These strate-

gies are based on the importance of structures (neurons or layers) that compose the

convolutional network. We assign the importance of a speci�c structure based on the

relationship of its output (i.e., feature maps) with the class label on a low-dimensional

(compact) space. We �nd this space by maximizing the covariance between the struc-

ture and the class label using Partial Least Squares. Our central hypothesis is that

Partial Least Squares learns the importance inherent to predictive ability of the net-

work. Furthermore, we hypothesize that, by using simple algebraic decomposition, it

is possible to preserve discriminability on higher-order components of the incremental

version of PLS.

6 Chapter 1. Introduction

Thesis Statement. The statement of this research is as follows:

The predictive importance of structures (neurons or layers) composing

a convolutional network can be e�ectively estimated with Partial Least

Squares, which in turn can be computed incrementally without degrading

its discriminative information. With the estimation of this importance, it

is possible to obtain high-performance convolutional networks by removing,

inserting or combining structures.

We demonstrate these claims as well as the e�ectiveness of our approaches on

several convolutional networks and supervised tasks for computer vision. Our results

are on par with the state of the art and, in most cases, they achieve the best trade-o�

between accuracy and computational cost.

1.3 Objectives

From a theoretical perspective, our goal is to demonstrate the potential of Partial Least

Squares as a tool for determining the importance of structures composing a convolu-

tional network. Besides, we intend to show that it is possible to preserve underlying

properties of Partial Least Squares in its incremental version through simple algebraic

decomposition.

From a practical perspective, our goal is to promote mechanisms capable of

providing e�cient convolutional networks. More speci�cally, we pretend to provide

strategies for (i) accelerating o�-the-shelf convolutional networks, (ii) discovering high-

performance convolutional architectures automatically and (iii) e�ciently improving

data representation of convolutional networks. Additionally, we target to provide a

memory-friendly version of Partial Least Squares. The main goal behind these strate-

gies is to facilitate the applicability of both convolutional networks and Partial Least

Squares on low-power and resource-constrained systems.

1.4 Contributions

The contributions of this dissertation are simple, e�ective and e�cient strategies for

improving computational cost and predictive ability of convolutional networks. More

precisely, our main contributions are the following. (i) An e�ective approach to remove

(prune) structures (neurons and layers) from convolutional networks. The proposed

method identi�es potential structures to be removed with minimal or no loss in pre-

diction ability. Compared to existing pruning approaches, our method attains the best

1.4. Contributions 7

trade-o� between accuracy and computational cost. (ii) An e�cient approach to au-

tomatically design high-performance convolutional networks. The proposed method

discovers architectures by considering a small search space. In contrast to previous

neural architecture search approaches, our method evaluates one order of magnitude

fewer models and designs architectures in a few hours on a single GPU. (iii) A low-cost

approach to explore multiple levels of representation from convolutional networks. The

proposed method captures low-level and re�ned information distributed over several

layers of the network, providing strong and complementary clue that improve the data

representation. Di�erent from previous HyperNet strategies, our approach extracts

multiple levels of representation at negligible additional cost. (iv) An incremental Par-

tial Least Squares to learn a discriminative and low-dimensional representation of the

data using a single sample at a time. The proposed method learns such representation

by using a single sample at a time while keeping the properties of traditional Partial

Least Squares. Compared to state-of-the-art incremental Partial Least Squares meth-

ods, our approach achieves superior performance in both accuracy and time complexity.

The results obtained during our research have been published in important con-

ferences and journals on computer vision and pattern recognition:

Journal Papers

1. Jordao, A., Yamada, F., and Schwartz, W. R. Deep Network Compression based

on Partial Least Squares. Neurocomputing, 2020.

2. Jordao, A., Lie, M., and Schwartz, W. R. Discriminative Layer Pruning for Con-

volutional Neural Networks. Journal of Selected Topics in Signal Processing,

2020.

Conference Papers

1. Jordao, A., Kloss, R. B., and Schwartz, W. R. Latent hypernet: Exploring the

layers of Convolutional Neural Networks. International Joint Conference on Neu-

ral Networks, 2018.

2. Jordao, A., Kloss, R., Yamada, F., and Schwartz, W. R. Pruning Deep Neu-

ral Networks using Partial Least Squares. British Machine Vision Conference

Workshops: Embedded AI for Real-Time Machine Vision, 2019.

3. Jordao, A., Yamada, F., Lie, M., and Schwartz, W. R. Stage-Wise Neural Archi-

tecture Search. International Conference on Pattern Recognition, 2020.

8 Chapter 1. Introduction

4. Jordao, A., Lie, M., de Melo, V. H. C., and Schwartz, W. R. Covariance-free

partial least squares: An Incremental Dimensionality Reduction Method. Winter

Conference on Applications of Computer Vision, 2021.

To promote reproducibility, we release the source code at:

https://arturjordao.github.io/PLSDeepSpaceOdyssey/.

1.5 Work Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we de�ne

theoretical concepts of deep learning and Partial Least Squares. In Chapter 3, we re-

view the main works related to the contributions of this dissertation. In Chapter 4, we

introduce our strategies for removing, inserting and combining structures of convolu-

tional networks and our incremental Partial Least Squares as well. In Chapter 5, we

show and discuss the experimental results. In Chapter 6, we present the conclusions

of this research and directions for future work. In Appendices A, B and C, we provide

the computational time of the convolutional architectures considered in our research,

implementation details of our pruning strategies and additional results of our neural

architecture search approach, in this order.

https://arturjordao.github.io/PLSDeepSpaceOdyssey/

Chapter 2

Theoretical Concepts

In this chapter, we introduce the basics of deep learning, which include single and multi-

layer networks and convolutional networks. Then, we de�ne the concepts of capacity

and transfer learning that we use throughout the dissertation. Finally, we describe

Partial Least Squares, a dimensionality reduction method that plays an important role

in the proposed pruning and HyperNet approaches.

Unless stated otherwise, let X ⊂ Rn×m be the matrix of independent variables

denoting n training samples in m-dimensional space. Let Y ⊂ Rn×k be the matrix

of dependent variables representing the class label in a k-dimensional space, where k

denotes the number of categories. Finally, let xn ⊂ R1×m and yn ⊂ R1×k be a single

sample of X and Y , respectively. More concretely, y is a one-hot vector with the kth

entry equal to 1 and the rest 0.

2.1 Neural Network

In this section, we start by describing single and multilayer networks, which provide

useful insights into the properties of deeper and more complex networks. Next, we in-

troduce the convolutional networks, which are designed to recognize patterns in images.

Finally, we de�ne the concepts of transfer learning and �ne-tuning.

2.1.1 Single-Layer and Multilayer Networks

A neural network is a function F parametrized by a set of parameters (weights) θ

randomly initialized. Given an input x, F predicts a value ŷ based on its parameters

θ. Thus, a neural network can be described as F(x, θ) = ŷ. Speci�cally, F consists of

a series of functions fi referred to as layers. Such functions are applied sequentially,

9

10 Chapter 2. Theoretical Concepts

D
at

a
D

im
en

si
on

Output

Input Layer
Hidden

Layer

Input Layer

Hidden
Layer

Output

Figure 2.1. Di�erent neural networks architectures. Left. Single-layer network. Right.

Multilayer network.

enabling us to rewrite F(x, θ) = ŷ as fL(f2(...f1(x, θ1), θ2), θL) = ŷ, where L indicates

the number of layers composing F , which in turn de�ne the depth of F . Each layer fi

has its own set of parameters, θi, and consists of a group of neurons, which are small

units that linearly combine an input to generate an output. Intuitively, when L = 1, F
is referred to as a single-layer network. On the other hand, when L > 1, F is referred

to as a multilayer network. Figure 2.1 illustrates single and multilayer networks.

Training Phase. While the number of layers and neurons de�ne the architecture of

F and are manually prede�ned, the parameters θ (θ1, θ2, θL) are randomly initialized.

During the learning phase, these parameters are optimized to minimize a cost func-

tion (a.k.a loss function). For this purpose, the learning (i.e., training) phase requires

the employment of two components: a method for computing multivariable derivatives

(gradient) and an optimizer. The �rst calculates the e�ective network error based on

the expected output (y) and the one predicted (ŷ) by F [Rumelhart et al., 1986]. The

second walks towards the minimum of the cost function with respect to the gradi-

ent [LeCun et al., 1989]. By employing these components, the training stage adjusts θ

such that

θ = arg min
1

n

n∑
i=1

L(xi, θ), (2.1)

where L is a loss function, e.g., mean squared error or categorical cross-entropy. We can

optimize Equation 2.1 iteratively using Stochastic Gradient Descent (SGD) as follows

θt+1 = θt − η
1

n

n∑
i=1

∇L(xi, θt), (2.2)

where θt and θt+1 are the current and the updated parameters, respectively, ∇ is the

gradient of the loss function L and η is the learning rate. The latter indicates the

2.1. Neural Network 11

intensity of the adjustment in θ, determining the speed at which the network walks

towards the minimum of the loss function. A typical procedure is to use di�erent

learning rates according to the training epoch, where η is large at the beginning of

training, and it is gradually decreased at the �nal epochs [Loshchilov and Hutter,

2017; He et al., 2019a; Li et al., 2020a]. These steps are repeated k times (epochs) or

until the network attains a stopping criterion.

Note that Equation 2.2 optimizes θ with respect to all training samples

x1, x2, ...xn. Instead, a common practice in current deep models is to optimize θ by

considering a subset (batch, B) of samples as follows:

θt+1 = θt − η
1

B

B∑
i=1

∇L(xi, θt). (2.3)

The size of the batch a�ects the training dynamic in di�erent ways [Smith et al., 2018;

Wu and He, 2018; Yan et al., 2020; Singh and Shrivastava, 2019]. For example, large

batch sizes require less updates in θ but demand more memory, while small batch sizes

are resource-e�cient but might lead to inaccurate batch statistics.

Loss Landscape. After the training phase, the �nal parameters θt (θ for short) are

used to measure the predictive ability of F . Besides predictive ability, we can use θ to

visualize the loss function curvature (i.e., loss landscape) [Li et al., 2018]. Throughout

this chapter, we use the loss landscape to demonstrate, qualitatively, the dynamics of

θ when di�erent components are used on F . A brief description of this technique is as

follows. De�ne α and β scale factors generated from a normal distribution. The loss

landscape can be visualized by computing the loss for each point of a 3D-grid in terms

of Zi,j = L(θ + i · α + j · β), where Zi,j indicates the loss value to the point i, j of the

grid. In summary, the loss landscape is yielded by perturbing (i · α + j · β) the �nal
parameters (θ) of the network.

According to Li et al. [2018], the sharper the loss landscape the more sensitive

the network is to perturbations in its parameters, hence, it is harder to train and might

exhibit poor generalization.

Deeper and Wider Architectures. According to the universal approximation the-

orem, with enough number of neurons and L > 1, a neural network is able to ap-

proximate any function [Hornik et al., 1989; Cybenko, 1992; Barron, 1993]. It has

been con�rmed that deep (many layers) and wide (many neurons) architectures lead

to better predictive ability [He et al., 2016; Zagoruyko and Komodakis, 2016; Tan and

Le, 2019; Han et al., 2020]. It turns out that larger architectures are able to learn

more discriminative representations, thus improving predictive ability. For instance,

12 Chapter 2. Theoretical Concepts

(a) (b) (c)

Lo
ss

i j
Lo

ss
i j

Lo
ss

i j

(d) (e) (f)

Figure 2.2. Top. Decision boundary of di�erent architectures. (a) Single-layer architecture
with two neurons. (b) Single-layer architecture with eight neurons. (c) Multilayer architecture
with two layers with four neurons in each layer. Bottom. Loss landscape of the architectures
(a), (b) and (c). It is possible to observe that large architectures lead to a softer decision
surface and �atter loss landscape.

Figures 2.2 (a)-(c) illustrate the decision surface yielded by three architectures with

one, two and three layers, respectively. From these �gures, it is possible to observe

that the decision surface becomes softer as we increase the number of layers. This

occurs due to higher discriminability achieved by the deeper networks. Similar trends

also occur on the loss landscape, where large networks (Figures 2.2 (e) and (f)) present

softer landscapes.

2.1.2 Convolutional Network

As we explain in Section 2.1.1, multilayer architectures are able to approximate any

function, thus they could be applied to any task. However, in the context of visual

pattern recognition, they are inadequate since they do not consider the spatial structure

of the image. This is a consequence of its architecture that associates each input data

dimension (in image context one pixel) to one neuron, as shown in Figure 2.3. Such

2.1. Neural Network 13

1

2

1

32

1

31

Figure 2.3. Example of a one-channel image (red cube) as input to di�erent network ar-
chitectures. For simplicity, we remove the bias term. Left. Image used directly as input to
MLP. In this scheme, each pixel is associated with one neuron. Right. Neurons organized as
elements of a 2× 2 convolutional �lter (gray cube). In this modeling, the neurons slide over
the image, following the standard convolution process, and yield the feature map (blue cube).

association hinders multilayer networks incapable of learning local dependencies, i.e.,

patterns in di�erent patches of the image. Another de�ciency in using images directly

as input to multilayer networks is the large number of parameters to be learned. For

example, taking as input an RGB image of 32× 32 pixels and an architecture with one

hidden layer of 100 neurons, we would have 307, 300 (32× 32× 3× 100) parameters to

be estimated.

To handle the problems above, one approach is to compute handcrafted features

from the image (e.g., Histogram of Oriented Gradients [Dalal and Triggs, 2005]) and

use them as input to the network. Thus, the local structures of the image are encoded

in the features. Another strategy is to employ convolutional networks, which interprets

neurons as elements of convolutional �lters. The intuition behind such models is that

since the convolution operation consists of sliding the convolutional �lter over the

image, the neurons that compose it will be able to exploit local structures of the image,

see Figure 2.3 (right). In other words, convolutional networks employ multiple copies

of the same neuron in di�erent places through the convolution operation, thus enabling

it to learn patterns once and use them in multiple locations. In contrast to approaches

based on handcrafted features, which require expert knowledge and expensive human

engineering, convolutional networks learn the best representation for the data and task

at hand.

Convolutional networks consist of stacks of convolutional and downsampling lay-

ers, batch normalization, activation and classi�cation layers, as illustrated in Figure 2.4.

Below, we describe these components.

Convolutional Layers. A convolutional layer is a set of k �lters that receives an

14 Chapter 2. Theoretical Concepts

Convolutional Network

Co
nv

. L
ay

er

Classi�cation Layers
(Fully Connected Layers)

Co
nv

. L
ay

er

Ba
tc

h
N

or
m

.

Ba
tc

h
N

or
m

.

Ac
tiv

at
io

n

Ac
tiv

at
io

n

/2

Figure 2.4. Structure of a standard convolutional network. In practice, convolutional ar-
chitectures consist of stacks of convolutional and downsampling (represented by /2) layers,
batch normalization, activations and classi�cation layers.

input and outputs a k-channel convoluted image (feature maps), which can be used

as input to the successive layers or presented to a classi�er. Due to the nature of the

convolution operation, this layer yields feature maps with spatial dimensions smaller

than the input provided, see Figure 2.3 (right). Formally, the convolution operation

reduces the input in terms of

W − w

sx
+ 1,

H − h

sy
+ 1, (2.4)

where W and H are the spatial dimensions of the input, w and h are the �lter di-

mensions and, sx and sy are the strides applied during the convolution. In practice,

most works employ zero-padding and stride of one, which ensures that the input and

output have the same spatial dimension [He et al., 2016; Zagoruyko and Komodakis,

2016; Huang et al., 2017; Howard et al., 2017; Sandler et al., 2018]. The zero-padding

process consists of adding zero values on the input's edges, which means increasing the

dimensions W and H.

It is worth mentioning that spatial reduction in feature maps plays an important

role in learning new representations [Gre� et al., 2017b], but modern architectures leave

this reduction to downsampling layers only.

Regarding the dimensions of the �lter, most human-designed architectures employ

�lters 3×3 [Simonyan and Zisserman, 2015; He et al., 2016; Zagoruyko and Komodakis,

2016; Huang et al., 2017; Howard et al., 2017; Sandler et al., 2018], as larger �lters incur

a higher computational cost [He et al., 2019a].

Downsampling Layers. According to Gre� et al. [2017a], an important role in learn-

ing new representations is to reduce the spatial dimensions of feature maps. There

exists two distinct way of achieving this reduction: pooling operations and convolu-

tional layers with stride 2×2. The former reduces spatial dimensions by applying math

2.1. Neural Network 15

operations on small regions (i.e., 2 × 2) of the feature maps. Such operations reduce

these regions into a single value. The size of the region is a parameter and typical oper-

ations include the maximum and the average value. Some convolutional architectures

employ a special type of pooling [Howard et al., 2017; Sandler et al., 2018; Zoph et al.,

2018], the global pooling, which reduces the entire feature map into a single value. The

latter reduces spatial dimension by employing a convolutional layer with strides 2× 2.

In contrast to pooling operations, this downsampling strategy has parameters to be

learned and is often adopted in modern convolutional networks.

Batch Normalization Layers. One of the key components to the success of deep net-

works is Batch Normalization [Io�e and Szegedy, 2015]. The widely know motivation

of the Batch Normalization (BN) technique is to normalize the shifts in input distri-

bution caused by updates to the successive layers, a phenomenon refers to as internal

covariance shift. Recently, Santurkar et al. [2018] showed that such a phenomenon

does not exist and the success of BN can be assigned to the fact that it makes the loss

landscape more smooth, which improves and accelerates convergence.

In practice, Batch Normalization is an a�ne transformation that normalizes fea-

ture maps using statistics from a batch of samples. Formally, it works as follows. Let

X ⊂ RB×m be the input of a BN layer, where B denotes the batch of samples in the

m-dimensional space. A BN layer normalizes X in terms of

X̄ =

(
X − µB√
σ2
B + ϵ

)
γ + β, (2.5)

where µB and σB are the mean and variance computed from the batch of samples. The

parameters γ and β are learnable variables and have their initial values set to one and

zero, respectively, by default. These parameters ensure that the non-linearity in X (if

it exists) be preserved after BN normalization [Io�e and Szegedy, 2015].

At the testing stage, to remove the dependency of batch statistics (µB and σB)

and keep the inference deterministic, the mean and variance are replaced by their

exponential moving statistics, which in turn are estimated during the training phase.

Despite its simplicity, Batch Normalization plays a key role in training deep con-

volutional networks. For example, Figure 2.5 (top) shows that networks with BN con-

verge faster and exhibit a �atter loss landscape (bottom). More importantly, as shown

in Figure 2.5 (top), by increasing the network depth from 20 to 56, the employment of

BN is mandatory since without it the training meet collapse.

Activation Layers. A fundamental component of the deep networks is the activation

function. This component, a(.), applies element-wise transformations to a given input

16 Chapter 2. Theoretical Concepts

20 60 100 140 180

0.5

1.5

2.5

ResNet20
ResNet20 No BN
ResNet56
ResNet56 No BN

Epochs

Lo
ss

Lo
ss

i j

Lo
ss

i j

Figure 2.5. Top. Training dynamics of networks with and without Batch Normalization (No
BN). Interestingly, a deep network with BN (ResNet56) converged faster than its shallower
counterpart without BN (ResNet20 No BN). Bottom left. Loss landscape of ResNet20 with
Batch Normalization. Bottom right. Loss landscape of ResNet20 without Batch Normal-
ization. It is possible to observe that the loss landscape of ResNet with batch normalization
is �atter than its No BN version, leading to faster training convergence (as suggested in top).

(often a feature map). Such transformations are targeted to introduce non-linearities

to the input, which plays an important role in training dynamics (i.e., convergence) and

predictive performance [Xu et al., 2015; Eger et al., 2018; Ramachandran et al., 2018].

Figure 2.6 illustrates the non-linearly introduced by di�erent activation functions.

We can group activation function in two categories: saturated and non-saturated.

The former includes activations where the output range lies in a �nite interval, e.g.,

[−1 1] (hyperbolic tangent) or [0 1] (sigmoid). The latter includes activations where

the output range lies in an in�nite interval, e.g., [0 +∞) (ReLU) or (−∞ +∞) (Leaky

2.1. Neural Network 17

 1 + е
 1

-x е + е
 е - еx -x

x -x
x if x ≥ 0
0 if x < 0

x if x ≥ 0
xα if x < 0

Hyperbolic Tangent Sigmoid ReLU Leaky ReLU

Figure 2.6. Activation functions. Degrees of non-linearity (y-axis) when applying di�erent
activation functions on an input (x-axis). Di�erent activation functions introduce di�erent
degrees of non-linearity, which in�uence the convergence rate and predictive performance.

ReLU).

From a theoretical perspective, activation functions are equivalent since they en-

able approximate any function [Hornik, 1991]. In practice, on the other hand, it has

been argued that the recti�ed family of activations (e.g., ReLU and Leaky ReLU) is

more suitable for training deep networks [Glorot et al., 2011; Xu et al., 2015; Ra-

machandran et al., 2018; Eger et al., 2018], leading to better and faster optimization

as illustrated in Figure 2.7.

Classi�cation Layers. The learning phase in convolutional networks consists of up-

dating all the parameters composing the architecture. For this purpose, at the end of

the architecture, an MLP (hereafter referred to as fully connected layers) is introduced

so that we can calculate a loss function and update all the parameters. A well-de�ned

relation between convolutional and fully-connected layers is that the �rst extracts the

features while the second performs the classi�cation [Ke et al., 2017; Caron et al., 2018].

20 60 100 140 180

0.1

0.3

0.5

0.7

0.9

Epoch

Lo
ss

ReLU
Leaky ReLU
Sigmoid
Tanh

Figure 2.7. Training dynamics of ResNet20 using di�erent activation functions.

18 Chapter 2. Theoretical Concepts

2.1.3 Capacity

Prior works have revealed that large (deep and wide) convolutional networks lead

to better predictive performance and generalization [He et al., 2016; Zagoruyko and

Komodakis, 2016; Huang et al., 2017; Zagoruyko and Komodakis, 2016; Tan and Le,

2019; Han et al., 2020]. The reason for these results is that large architectures have a

higher capacity.

The term capacity refers to the ability of the network to learn di�erent data

representations (i.e., its expressive power) and exhibits a strong relationship with net-

work size [Tan and Le, 2019; Han et al., 2020]. The network capacity increases by

adding more �lters (network width) [Zagoruyko and Komodakis, 2016], layers (net-

work depth) [He et al., 2016], or aggregating a set of transformations (cardinality) [Xie

et al., 2017]. For example, in Section 2.1.1 (Figure 2.2), we increase the network ca-

pacity by adding more hidden layers, hence, it provided a better decision boundary

compared to its shallow counterpart.

Although providing better data representation, high-capacity networks introduce

some concerns, e.g., its low computational performance. Additionally, high-capacity

networks are data-hungry, which means that a larger number of training samples are

required to avoid under�tting (i.e., no zero loss in training) and a bad generalization.

For example, on CIFAR-10, the VGG architecture (16 layers deep) attains superior

accuracy than ResNet (56 layers deep) when no data-augmentation is used, as VGG

has less capacity than ResNet. Interestingly, this suggests that there is no relation

between the number of parameters and capacity since VGG has 17× more parameters

than ResNet.

Deep-Double Descent. It is well-known from bias and variance regime that above a

particular complexity (i.e., capacity), models tend to decrease their predictive perfor-

mance [Bishop, 2007]. Recently, Nakkiran et al. [2020] observed that deep models do

not follow this conventional regime. Their work reveals a phenomenon, called deep dou-

ble descent, in which increasing network capacity above a threshold (depth or width),

the network predictive ability �rst decreases (as expected by the bias-variance regime)

and then increases again. Surprisingly, deep double descent is not only restricted to

capacity, but also to the number of training epochs and samples.

2.1.4 Transfer Learning and Fine-tuning

Despite state-of-the-art e�ectiveness in learning discriminative representations, deep

convolutional networks require vast computational resources for training from scratch

(when the parameters are randomly initialized) and take many days to process even

2.1. Neural Network 19

with modern GPUs. For example, on ImageNet, VGG and ResNet take 13 and 20 days,

respectively, to train for 90 epochs. Unfortunately, when applied to other datasets

(domains), the parameters of the network need to be trained again due to unseen

patterns of the new domain. An alternative to training from scratch is to employ a

technique referred to as transfer learning.

Transfer learning consists of adapting a network trained on one domain (source)1

to another one (target) by the means of reconditioning the network parameters using

the target domain, a process named �ne-tuning. By using transfer learning, the training

stage is faster since the network has already learned basic (e.g., edges and texture) and

complex patterns (e.g., parts and shapes of objects) and it only needs to be adjusted to

the target domain. According to previous works [Hendrycks et al., 2019; Shafahi et al.,

2020; Kolesnikov et al., 2020], for some scenarios, transfer learning is able to achieve

better results than training from scratch.

While transfer learning and �ne-tuning play an important role in deep learning,

there exist some scenarios that in�uence the e�ectiveness of these techniques. Based

on previous works [Razavian et al., 2014; Yosinski et al., 2014], we can highlight four

major scenarios:

1. Target domain is small and similar to the source domain. In this case, �ne-tuning

might lead to over�tting or poor generalization because the target domain has few

samples to satisfy the network capacity [Kornblith et al., 2019]. Instead, as both

domains are similar (i.e., some categories are visually akin), it is more adequate

to use feature maps from the network to train a linear classi�er [Razavian et al.,

2014].

2. Target domain is large and similar to the source domain. In this setting, due to

large amount of data in the target domain, �ne-tuning will be robust to over�tting

and provide good generalization. In addition, since the domains are similar, it is

possible to frozen (do not change weights) some early layers since the patterns

learned by them, likely, will be the same [Yosinski et al., 2014].

3. Target domain is small and di�erent from the source domain. In this case, �ne-

tuning might fail because the target domain lies on a low data regime. An

alternative is to learn a classi�er using feature maps from the network, but, since

the domains are di�erent, it is more suitable to use feature maps from early

layers. This is because deep layers contain more dataset-speci�c features, hence,

early layers might work better [Kloss et al., 2018].

1In this dissertation, the term domain indicates a dataset or task.

20 Chapter 2. Theoretical Concepts

4. Target domain is large and di�erent from the source domain. In scenario, because

of the large number of samples in the target domain, �ne-tuning process will work

well. Even though the domains are di�erent, the �ne-tuning can improve the re-

sults [Ke et al., 2017]. However, whether the domains are very di�erent, for

example, the origin domain is image classi�cation and target domain is activity

recognition from wearable sensors data, it is more recommended to learn the net-

work from scratch to avoid divergence problems [Azizpour et al., 2016; Kornblith

et al., 2019].

Based on these cases, it is important to know the characteristics of both source

and target domains before performing transfer learning and �ne-tuning. This way, it

is possible to avoid unexpected results.

2.2 Partial Least Squares

Partial Least Squares (a.k.a Projection on Latent Structures) is a dimensionality re-

duction method that yields a set of discriminative latent variables taking into account

the relationship between independent (X) and dependent (Y) variables [Geladi and

Kowalski, 1986; Abdi, 2010].

The idea behind Partial Least Squares (PLS) is to �nd a projection matrix

W (w1, w2, ..., wc) that projects the high dimensional space onto a low c-dimensional

space (latent space), where c≪ m. In essence, W can be interpreted as a weight ma-

trix that assigns importance for each feature of X. To �ndW , PLS aims at maximizing

the covariance (Cov for short) between the independent and dependent variables. For-

mally, PLS constructs W such that

wi = maximize(Cov(Xw, Y)), s.t∥w∥ = 1, (2.6)

where wi denotes the ith component of the c-dimensional space. The exact solution to

Equation 2.6 is given by

wi =
XTY

∥XTY ∥
, (2.7)

with X and Y normalized (transformed into Z-scores).

From Equation 2.7, it is possible to compute all c components (c is a parame-

ter) using either Nonlinear Iterative Partial Least Squares (NIPALS) [Abdi, 2010] or

Singular Value Decomposition (SVD). Most works employ NIPALS since it is capable

of �nding only the c �rst components, while SVD always �nds all the m components,

2.2. Partial Least Squares 21

Algorithm 1: NIPALS for
binary PLS

1 for i = 1 to c do

2 wi =
XTY

∥XTY ∥

3 ti = Xwi

4 qi =
Y T ti

∥Y T ti∥

5 pi =
XT ti

∥XT ti∥

6 X = X − tip
T
i

7 Y = Y − tiq
T
i

8 end

Algorithm 2: NIPALS for
multi-class PLS

1 for i = 1 to c do
2 randomly initialize u ∈ Rm×1

3 wi =
XTu

∥XTu∥

4 ti = Xwi

5 qi =
Y T ti

∥Y T ti∥

6 u = Y qi

7 Repeat 3− 6 until convergence

8 pi = XT ti

9 X = X − tip
T
i

10 Y = Y − tiq
T
i

11 end

being computationally prohibitive for large datasets [Xu and Li, 2019; Maalouf et al.,

2019].

Algorithms 1 and 2 introduce the steps of NIPALS to binary (when Y is single-

column) and multi-class (when Y is multiple-columns) problems, respectively. In Al-

gorithms 1 and 2, ti denotes the projected samples (a.k.a factor scores) on the current

component wi, pi and qi represent the loadings with respect to X and Y , in this order.

Figure 2.8 gives a graphical representation of the matrices found by PLS (binary) in

one iteration of NIPALS.

It is worth mentioning that the single di�erence from Algorithm 2 to 1 is the

convergence step, which compresses the multiple-columns of Y to a single value. This

convergence step (step 7 in Algorithm 2) is achieved when no changes occur in wi.

In addition, we might de�ne a �nite number of steps as a convergence criterion for

ensuring that the method stops.

In contrast to common dimensionality reduction techniques such as Principal

Components Analysis (PCA) and Linear Discriminant Analysis (LDA), PLS presents

many advantages. For example, compared to PCA, PLS requires substantially fewer

components to achieve its optimal accuracy [Schwartz et al., 2009]. Compared to LDA,

PLS is robust to sample size problem2 since the computation of its components, given

by Equation 2.7, does not involve inversion of matrices. The sample size problem takes

place when the data matrix X consists of more features than samples. Unfortunately,

2Sample size problem, zero determinant and singularity are names for the same problem.

22 Chapter 2. Theoretical Concepts

X

T

t Y

p q

m

n

m

1 1

1

1

nn

1

T

m

1
w

Figure 2.8. Graphical representation of the matrices estimated by PLS in one iteration of
the NIPALS algorithm.

this is a common scenario in approaches associated with deep learning, where the fea-

tures present high dimensionality. In these cases, dimensionality reduction techniques

that involve inversion of matrices, e.g., LDA, are highly limited.

2.2.1 Variable Importance in Projection

Besides being more �exible and, often, attaining superior performance than traditional

dimensionality reduction techniques [Schwartz et al., 2009; Hasegawa and Hotta, 2016;

Kloss et al., 2017], another interesting aspect of PLS is that it can operate as a feature

selection method. For this purpose, after computing the projection matrix W , we need

to employ Variable Importance in Projection (VIP) that estimates the importance of

each feature fj w.r.t its contribution to yield the low dimensional space. According

to Mehmood et al. [2012], VIP is de�ned as

fj =

√√√√m
c∑

i=1

SSi(wij/∥wi∥2)/
c∑

i=1

SSi, (2.8)

where SSi is the sum of squares explained by the ith component, which can be ex-

pressed as q2i t
′
iti (de�ned in Algorithms 1 and 2) [Mehmood et al., 2012]. Importantly,

the feature importance is given by its linear relationship with the class label. In the

context of deep learning, previous works argued that the linear relationship between

deep features and their labels provides surprising results [Donahue et al., 2014; Raza-

vian et al., 2014; Azizpour et al., 2016; Brendel and Bethge, 2019; Kornblith et al.,

2019]. This suggests that linear models (i.e., PLS) are good candidates to be employed

2.2. Partial Least Squares 23

in this context.

While there exist many other techniques for feature selection with PLS such

as genetic algorithm PLS [Hasegawa et al., 1997] and Monte-Carlo based PLS [Cai

et al., 2008], VIP is simpler, require fewer computations and has no parameters to be

set [Mehmood et al., 2012]. Hence, VIP is the most used technique for feature selection

with PLS [Schwartz et al., 2009; dos Santos Junior et al., 2016; Diniz and Schwartz,

2020].

Chapter 3

Related Work

In this chapter, we review the main works related to the contributions of this disserta-

tion. In Section 3.1, we describe the convolutional networks considered throughout our

research. In Section 3.2, we introduce pruning approaches that remove di�erent struc-

tures from convolutional networks. In Section 3.3, we review state-of-the-art neural

architecture search approaches. In Section 3.4, we present representative works that

focus on exploring multiple layers in convolutional networks. Finally, in Sections 3.5

and 3.6, we describe incremental dimensionality reduction methods and modern feature

selection techniques, respectively.

3.1 Convolutional Networks

While there exist many convolutional networks, our review considers the ones that are

often employed in the topics of our work, which include plain, residual and lightweight

networks. It is important to mention that due to implementation details, throughout

our research, we consider only the architectures described in this section.

Plain Networks. The simplest convolutional architecture is the one that connects

a layer i to its subsequent layer i + 1. Due to this structure, these networks are

named plain networks [He et al., 2016]. One of the most popular plain networks is

the Visual Geometry Group (VGG) architecture [Simonyan and Zisserman, 2015]. The

VGG architecture consists of 3 × 3 convolutional layers, where each one is followed

by 2 × 2 max-pooling. An interesting characteristic of VGG is that when the feature

maps of a layer are halved (due to pooling-operations), the number of �lters of the

subsequent layer is doubled.

While VGG-like settings such as 3 × 3 �lters are often adopted in architectures

25

26 Chapter 3. Related Work

for image classi�cation [He et al., 2016; Huang et al., 2017; He et al., 2019a], in the con-

text of activity recognition based on wearable sensors (hereafter referred to as activity

recognition), many other con�gurations have been explored. Di�erent from images, the

input samples in activity recognition are temporal windows generated from raw signals

(a detailed description of this procedure will be given in Section 5.1) and networks such

as VGG are not designed to explore this data structure. Motivated by this, many works

have proposed plain architectures to classify activities from wearable data [Chen and

Xue, 2015; Ha et al., 2015; Rueda et al., 2018; Xu et al., 2018]. For example, Chen and

Xue [2015] proposed an architecture with three convolutional layers, where each layer

is followed by 2 × 1 max-pooling operations. Besides designing architectures, other

works have suggested learning �lters separately for each modality (e.g., accelerometer

and gyroscope) [Ha et al., 2015; Ha and Choi, 2016] as well as improving the input

sample representation before forwarding them to the network [Lu and Tong, 2019].

Residual Networks. It is well-known that deeper networks incur high representation

capacities and, hence, lead to state-of-the-art e�ectiveness in learning discriminative

representations [He et al., 2016; Tan and Le, 2019]. Unfortunately, deep networks are

harder to optimize [Io�e and Szegedy, 2015; He et al., 2016; Ghorbani et al., 2019].

To address this problem, He et al. [2016] proposed to design a residual learning ar-

chitecture, named Residual Network (ResNet). Their residual architecture consists of

connecting a layer i with a subsequent layer i + j, j > 1. This connection (a.k.a

skip-connection) among layers is done by adding (element-wise) their feature maps.

Even though simple, He et al. [2016] demonstrated that these connections enable opti-

ƒ(x)

ƒ(x) + x

x
x

ƒ(x) x

Figure 3.1. Left. Plain network. The output of a layer i is directly connected to its
subsequent layer i+1. Right. Residual network. The output of the layers i and i+ j, j > 1,
are added to compose the �nal output. The symbol⊕ indicates element-wise adding operation.
Formally, given an input x, plain networks output f(x) while their residual counterpart output
f(x) + x.

3.2. Pruning Structures in Convolutional Networks 27

mize ultra-deep networks (e.g., 100 − 1000 layers) and achieve notable improvements

in accuracy. Figure 3.1 (left) illustrates the core idea behind residual architectures.

Due to the success and simplicity of residual networks, most architectures are

predominantly based on residual learning [Zagoruyko and Komodakis, 2016; Xie et al.,

2017; Sandler et al., 2018; Zoph et al., 2018; Tan and Le, 2019; Vahdat et al., 2020].

Lightweight Networks. To reduce the number of parameters and �oating point op-

erations of convolutional networks, Howard et al. [2017] proposed a lightweight version

of convolutional layers. This lightweight version, referred to as depthwise separable

convolutions, replaces a (dense) convolutional operation into two lightweight opera-

tions: depthwise and 1 × 1 convolution. The former applies a �lter for each input

channel separately, which is di�erent from standard convolutions � a �lter slides over

all input channels. The latter combines the output of the �rst operation through 1× 1

convolution.

Modern architectures, including the ones yielded by neural architecture search,

employ depth-wise separable convolutions [Zoph et al., 2018; Sandler et al., 2018;

Howard et al., 2019; Vahdat et al., 2020]. Recent works, however, have argued that

lightweight networks lack e�cient implementation in current deep learning frame-

works [Wang et al., 2018a; Vahdat et al., 2020; Gupta and Tan, 2020]. We believe

this phenomenon is because depth-wise separable convolutions might increase latency,

as a single layer (standard convolution) is replaced into two layers. Thereby, it is

interesting to investigate alternatives to reduce both parameters and �oating-point

operations.

3.2 Pruning Structures in Convolutional Networks

Due to the over-parameterized regime of convolutional networks, many of its structures

(neurons and layers) become redundant or unimportant [Han et al., 2015; Zhang et al.,

2019; Chatterji et al., 2020]. Thus, it is possible to remove such structures with minimal

or no loss in the prediction ability (i.e., accuracy).

Pruning approaches are leveraged by an analogy to human brain plasticity, which

can recover from damages after appropriate treatment. In this sense, the idea behind

pruning is to identify structures of the network that provide the lowest damage (i.e.,

drop in accuracy), thus enabling a simple and e�ective recovery. For this purpose,

existing pruning approaches apply di�erent criteria for determining the importance of

neurons and layers and focus on eliminating speci�c structures. Figure 3.2 summarizes

the main types of existing pruning approaches.

28 Chapter 3. Related Work

Pruning Approaches

Neurons (Filters)

Handcrafted Learnable

Layers

Dynamic Static

Hybrid

Figure 3.2. Existing pruning strategies grouped by the type of structure removed: neurons
(�lters), layers or both (hybrid). Strategies that remove neurons are divided according to the
essence of the criteria for assigning neuron importance: learnable or handcrafted. Strategies
that remove layers are divided according to the way of eliminating layers: dynamic or static.

3.2.1 Pruning Neurons

Pruning neurons (�lters) from convolutional networks consist of locating the ones that

could be removed with small or no loss in network accuracy. In particular, pruning

approaches focus on eliminating �lters in convolutional layers since they dominate most

computation [Han et al., 2015; Li et al., 2017]. Towards this end, Han et al. [2015]

proposed a three-step iterative pipeline: locate and remove potential �lters based on

their importance, and adjust the weights of the resulting (pruned) network. Despite

simple, modern pruning approaches employ slight variations of this pipeline, often

modifying only the criteria for assigning �lter importance.

Handcrafted Criteria. Previous works suggested that simple statistics computed on

the �lters such as ℓ1-norm [Li et al., 2017; Liu et al., 2019b; Frankle and Carbin, 2019;

Renda et al., 2020], ℓ2-norm [He et al., 2018a], and geometric mean [He et al., 2019b] are

capable of identifying unimportant �lters. Speci�cally, these statistics are estimated

considering the weights of the �lters, which means that �lters are represented by their

weights. Instead, other works have observed that estimating �lter importance based on

its output (feature maps) is more appropriate since it takes into account the in�uence

of data [Luo et al., 2019; Yu et al., 2018; Lin et al., 2020; Tan and Motani, 2020]. For

example, Lin et al. [2020] and, Tan and Motani [2020] demonstrated that low-rank

and average absolute value of the feature maps, respectively, indicate low-importance

�lters; thus, such �lters can be removed without degrading network accuracy.

Importantly, some strategies operate in a layer-by-layer fashion [Li et al., 2017;

Huang et al., 2018; Luo et al., 2019]. In this scheme, the network is pruned considering

one layer at a time and, after pruning a layer, some epochs of �ne-tuning are performed.

Thereby, the total number of �ne-tuning stages grows linearly to the number of layers.

For example, the approach by Luo et al. [2019] performs 16 stages of �ne-tuning for

3.2. Pruning Structures in Convolutional Networks 29

each layer pruned; therefore, to prune a 56-layer network is necessary (at least1) 56×16
stages of �ne-tuning, which is computationally expensive.

Di�erent from the aforementioned works, Luo and Wu [2020] proposed to esti-

mate �lter importance based on the distribution divergence of the network after its

removal. More concretely, the importance of a �lter is assigned by Kullback-leibler

divergence (KL) [Kullback and Leibler, 1951] between the softmax of the original (un-

pruned) network and the network without this �lter. Despite the positive results, this

approach is computationally expensive since after removing a �lter is necessary to for-

ward samples through the network. In summary, to prune a network of 400 �lters this

approach requires 400 forward predictions.

Compared to existing handcrafted criteria, our criterion (PLS) for assigning �lter

importance is more suitable to indicate unimportant �lters, as it achieves the lowest

drop in accuracy. Compared to the layer-by-layer strategies, we show that our approach

is more e�cient since it achieves superior performance with only 10 (or less) stages of

�ne-tuning.

Learnable Criteria. Instead of designing handcrafted criteria, in this category, �lter

importance is imposed as an optimization criterion [Liu et al., 2017; Huang and Wang,

2018; Li et al., 2019c; Chin et al., 2020; Guo et al., 2020a]. Such approaches typically

associate each �lter with a learnable variable (scale factor), which induce unimportant

�lters to have small scaling factors during the optimization stage (i.e., training phase).

Overall, scaling factors are interpreted as the importance of a �lter. Thus, �lters

associated with small scaling factors are the least important ones and can be removed.

Due to the optimization phase, most works in this category require that the network

be trained from scratch.

Instead of learning scale factors, other works in this category propose to learn

agents. These agents take �lters as input and output binary decisions indicating

whether a �lter will be kept or removed [Huang et al., 2018; He et al., 2018b]. Through

reinforcement learning, these agents are encouraged to remove �lters while satisfying

some policy, e.g., computational-budget (the pruned network has the best accuracy

given an amount of hardware resources) or quality (the pruned network has the small-

est loss in accuracy). In contrast to scaling factors approaches, agent-based strategies

can be applied to o�-the-shelf networks since the agents are not learned jointly with

the network.

Compared to learnable criteria strategies, we show that our pruning method ob-

tains one of the best trade-o�s between accuracy and computational cost. In addition,

1In practice, layer-by-layer approaches perform additional �ne-tuning epochs after pruning all
layers.

30 Chapter 3. Related Work

we remove more �oating point operations than cost-aware approaches [Huang et al.,

2018; He et al., 2018b], even without considering the computational cost in the pruning

process.

3.2.2 Pruning Layers

A recent trend in compression and acceleration of deep networks by pruning is to remove

entire layers instead of small components such as �lters. In this family of pruning, most

strategies are predominantly grounded on the unraveled view of residual networks [Veit

et al., 2016]. The unraveled view states that each stage in the network learns a single

level of representation, and modules (set of layers) within a stage only re�ne represen-

tations on the same level [Gre� et al., 2017b]. This view ensures that the removal of

a single module does not degrade predictive ability. Most importantly, there is only

evidence for unraveled view in residual-based networks � the output of preceding lay-

ers is propagated to successive layers (see Figure 3.1 left) [He et al., 2016]. Thereby,

all strategies focusing on removing layer/modules are limited to residual networks and

their variations.

It is worth mentioning that before the work by Veit et al. [2016], Huang et al.

[2016] had proposed to eliminate entire modules, but, from a regularization perspective

to training very deep networks. Roughly speaking, Huang et al. [2016] removed modules

on the training stage while Veit et al. [2016] removed modules on the testing stage.

Dynamic. The main characteristic shared by this category is that modules are pruned,

on the �y, based on the input presented to the network. For this purpose, previous

works have followed two distinguished directions. The former introduces decision gates

(i.e., a softmax function) for each module composing the network. During inference,

each decision gate decides to execute or skip its respective module [Sha�ee et al.,

2019; Veit and Belongie, 2020]. The latter learns agents that output binary decisions

indicating, at once, the modules to be pruned [Wu et al., 2018; Wang et al., 2018b].

Both decision gate and agent-based approaches obtain di�erent computational

cost since the number of removed modules vary across images, as illustrated in Fig-

ure 3.3 (top and middle).

Compared to these approaches, our method to prune layers obtains competitive

results; however, it achieves such results independently of the input given to the net-

work, which can be particularly attractive in �xed-resources scenarios.

Static. Di�erent from dynamic strategies, in this category, the same modules are

always pruned regardless of the input given to the network, as shown in Figure 3.3

(bottom). Representative works, such as Veit et al. [2016]; Gre� et al. [2017b]; Han et al.

3.2. Pruning Structures in Convolutional Networks 31

Module b1 Module b2 Module b3

Module b1 Module b2 Module b3

Module b1 Module b2 Module b3

Figure 3.3. Strategies that remove modules (set of layers) from convolutional networks. The
red switching indicates that a module was removed. Top and middle: Dynamic strategies,
where modules are pruned according to the input image. For example, given a duck image
(top), the modules b1 and b3 are removed. Given a bear image (middle), on the other hand,
only the module b2 is removed. Bottom: Static strategies, where modules are pruned re-
gardless of the input presented to the network. For example, to all the images of the dataset,
the modules b2 and b3 are always pruned.

[2017], remove module-by-module (i.e., one module at a time) and evaluate network

accuracy. In particular, these works explore pruning from a theoretical perspective, i.e.,

they are not concerned with the computational cost. For example, Han et al. [2017]

observed that increasing network width decreases accuracy loss after removing layers.

More recently, some works proposed to prune layers (in a static way) focusing

on reducing computational demand [Huang and Wang, 2018; Fan et al., 2020]. For

example, Huang and Wang [2018] added scaling factors to residual modules and, after

optimizing them, removed modules associated with near-zero values. Fan et al. [2020]

proposed to employ the stochastic depth regularization [Huang et al., 2016] to train an

ultra-deep network. At the testing phase, their approach removes layers until satisfying

a computational budget. Despite the positive results, such strategies require training

a network from scratch, hindering applicability on o�-the-shelf networks. In contrast,

our approach does not require this training phase. Moreover, compared to Huang

32 Chapter 3. Related Work

and Wang [2018], we provide a pruned network with better computational cost and

accuracy drop.

3.2.3 Pruning Hybrid Structures

Strategies focusing on pruning neurons and �lters are complementary and could bene�t

from each other. To the best of our knowledge, only the work by Cai et al. [2020]

explores such a scenario. In their approach, the authors proposed to train a dense and

computationally expensive network. Then, subnetworks are sampled from the dense

network such that satisfying a given hardware constraint. Even though their approach

achieves promising results, it is computationally prohibited since a large number of

GPUs is required to train the dense network. We show that it is possible to eliminate

both �lters and layers in a two-step way: remove layers �rst and, then, remove �lters.

Unfortunately, due to the architecture employed by Cai et al. [2020], we are not able to

compare our two-step strategy with them. More speci�cally, throughout our evaluation,

we employ traditional and o�-the-shelf networks (i.e., ResNet-based networks), hence,

our results cannot be compared directly with Cai et al. [2020].

We highlight that Huang and Wang [2018] proposed to remove �lters and layers

by using scaling factors (as we explained before). However, their strategy removes

either �lters or layers, but not both. Thus, we do not consider it as a hybrid strategy.

3.3 Neural Architecture Search

Current pattern recognition methods are capable of achieving results better than hu-

mans [Deng et al., 2009; Parkhi et al., 2015; Badia et al., 2020]. Most methods, how-

ever, rely on domain expertise and intense human engineering. Consequently, there

have been substantial e�orts to automate the process of creating, training and deploy-

ing methods, namely Automated Machine Learning (AutoML) [Wistuba et al., 2017;

Elsken et al., 2019; Yang and Shami, 2020]. In the context of AutoML for visual pattern

recognition, many works have proposed Neural Architecture Search (NAS) strategies,

which focus on discovering convolutional architectures automatically.

Given a criterion such as accuracy or �xed resource budget, NAS attempt to

optimize the target criterion by training and evaluating a large set of candidate ar-

chitectures. As a consequence, existing NAS approaches require vast computational

resources, parallel processing infrastructure and take many days to process even with

modern GPUs [Baker et al., 2017; Real et al., 2017; Zoph et al., 2018]. It is important

to mention that, to alleviate this problem, most NAS approaches train the candidate

3.3. Neural Architecture Search 33

Neural Architecture Search

Reinforcement
Learning

Evolutionary
Algorithms Morphism Differentiable

Figure 3.4. Existing neural architecture search strategies grouped by the type of mechanism
employed to create candidate architectures.

architectures for few epochs (i.e., 10-20) [Real et al., 2017; Baker et al., 2017; Zoph

et al., 2018; Li et al., 2020b], which might yield unreliable models during the search

process [Dong and Yang, 2020; Sciuto et al., 2020; Yang et al., 2020b].

In general, NAS approaches employ di�erent strategies such as reinforcement

learning and evolutionary algorithms. Figure 3.4 summarizes the main strategies used

by state-of-the-art NAS approaches.

3.3.1 Reinforcement Learning

To automate the process of creating convolutional networks, a typical technique is to

use reinforcement learning (RL) to generate candidate architectures. Baker et al. [2017]

employed this strategy for selecting types of layers and their parameters (i.e., depth,

receptive �eld, stride). In contrast, Zoph et al. [2018] proposed to learn transferable

architectures by applying the scheme of human-designed convolutional networks, in

which layers share a similar structure. Their method uses a recurrent neural network

to predict a cell, which consists of a set of layers (e.g., convolution, identity, pooling)

and their connections. The �nal architecture is obtained by repeating the best cell

N times, where N is manually prede�ned. The idea of searching cells rather than an

entire architecture is still widely employed by modern NAS approaches [Chen et al.,

2019; Vahdat et al., 2020; Yang et al., 2020b].

Similarly to Zoph et al. [2018], we show that our NAS is capable of building

architectures that generalize well across datasets, such that we can learn a model on

a small dataset and transfer it to large datasets. More importantly, our method is

orthogonal to this approach (hence orthogonal to most NAS) in the sense that we

discover N given a prede�ned cell.

3.3.2 Evolutionary Algorithms

Since using neural networks to learn architectures is time-consuming and requires care-

ful parameter setting [Wu et al., 2018; Dong and Yang, 2019], many works employ

34 Chapter 3. Related Work

evolutionary algorithms to guide the search [Real et al., 2017; Dong and Yang, 2020;

Yang et al., 2020b]. In general, an evolutionary framework builds convolutional net-

works by considering each candidate architecture as an individual of the population

and operations such as inserting or removing layers/connections are considered possible

mutations [Real et al., 2017]. Improving upon this idea, Yang et al. [2020b] proposed

to share parameters between individuals of the population and employ a Pareto-front

sorting strategy for selecting the non-dominated candidates � candidates that are no

worse than any other on a given performance metric. As expected, their approach is

able to discover high-performance architectures in a few hours.

Compared to this family of strategies, our NAS approach is able to design com-

petitive architectures by exploring one order of magnitude fewer individuals. More

speci�cally, our NAS discovers more accurate and e�cient architectures than Real

et al. [2017] while evaluating 10× fewer models. Compared to Yang et al. [2020b], our

method builds more parameter-e�cient architectures with slightly inferior accuracy.

3.3.3 Morphism

Although RL and evolutionary NAS are capable of building accurate models, their

search process is computationally expensive since each candidate architecture needs

to be trained from scratch in most cases. To handle this problem, recent works at-

tempt to transfer the knowledge of previous pre-trained networks to the candidate

architectures [Elsken et al., 2018; Kandasamy et al., 2018; Jin et al., 2019]. To this

end, a popular technique is network morphism, which creates new networks by means

of function-preserving transformations [Chen et al., 2016]. In essence, network mor-

phism allows the original and the modi�ed network to have the same prediction ability.

Elsken et al. [2018] employed network morphism to initialize architectures, aiming at

reducing the cost of training them from scratch. Cai et al. [2018] applied RL to generate

transformations on an initial network, for example, DenseNet [Huang et al., 2017]. As

suggested in their work, using an existing and pre-trained architecture is an e�cient

manner of exploring the search space, being possible to reuse its weights as well as

its successful initial structure. Our method takes advantage of these observations, but

focuses exclusively on depth. Kandasamy et al. [2018] and Jin et al. [2019] employed

Bayesian optimization to guide transformations during the search process. While com-

putationally e�cient, these approaches yield low-accuracy architectures. To achieve

competitive results, many hyper-parameters need to be set manually [Jin et al., 2019],

rendering an unfair comparison with other NAS approaches.

Compared to morphism-based NAS, our method enables reusing weights of pre-

3.3. Neural Architecture Search 35

trained convolutional networks more easily because it does not require a careful selec-

tion of the morphism operations.

3.3.4 Di�erentiable

In this category of NAS, the architecture and its weights are learned jointly during the

gradient descent optimization [Brock et al., 2018; Dong and Yang, 2019; Chen et al.,

2019; Liu et al., 2019a]. For this purpose, di�erentiable NAS approaches convert the

discrete search space into a continuous one such that the elements (i.e., number of

�lters, stride and connections) composing an architecture can be viewed as parameters

to be learned. During the gradient optimization phase (a.k.a search phase), one candi-

date architecture is built at the end of each training epoch; thus, the number of epochs

de�nes the number of candidate architectures. To further improve e�ciency and reduce

memory demand, the candidate architectures are shallow, but, after the search phase,

the �nal architecture has its depth increased to improve representation capacities. In

contrast to this pipeline, Chen et al. [2019] proposed to increase depth during the

search phase. This is achieved by increasing network (candidate architectures) depth

after some search iterations.

In general, compared to other approaches, di�erentiable NAS considerably im-

proves the time required for discovering architectures. Particularly, compared to

reinforcement- and evolutionary-based algorithms, di�erentiable NAS build architec-

tures requiring one order of magnitude fewer GPU-days [Dong and Yang, 2019; Chen

et al., 2019; Vahdat et al., 2020]. On the other hand, these approaches are parameter

sensitive, which means that they need careful tuning of their hyper-parameters [Dong

and Yang, 2019]. Besides, compared to other NAS, the search space needs to be dras-

tically reduced due to memory constraints [Wan et al., 2020].

We show that our NAS leads to competitive architectures without requiring a

careful parameter setting. Speci�cally, we need to set only two parameters, which

exhibit a small in�uence on the accuracy of the candidate architectures. In terms of

computational cost, our NAS is computationally e�cient, as our search space consider

exploring depth only. Concurrently to our work, Chen et al. [2019] also focus on ad-

justing depth, however, they increase the depth uniformly (similar to human-designed

architectures) while we learn a depth for di�erent levels of the network.

36 Chapter 3. Related Work

3.4 Exploring Layers in Convolutional Networks

The idea of incorporating multiple levels of features has received great attention in

computer vision tasks [Hariharan et al., 2015; Kong et al., 2016; Bell et al., 2016;

Huang et al., 2017; Wang et al., 2018a; Sindagi and Patel, 2019; Huang et al., 2019].

Previous works observed that combining features from early and deep layers improves

data representation [Bell et al., 2016; Kong et al., 2016; Zhou et al., 2020]. Such

combination, however, could be non-trivial since features (feature maps) from early

and deep layers present di�erent spatial dimensions and lies on a high dimensional

space.

To address the aforementioned problem, some strategies (referred to as Hyper-

Nets) insert operations after each layer to be combined, as shown in Figure 3.5. For

instance, Bell et al. [2016] employed 1× 1 convolution to normalize feature maps from

previous layers as well as reducing their dimensionality. Instead, Kong et al. [2016]

used max-pooling and deconvolution layers to re-scale all feature maps for the same

spatial resolution. Then, these re-scaled feature maps feed convolutional layers, which

in turn are connected to fully-connected layers. Interestingly, Kong et al. [2016] ob-

served that adjacent layers are correlated and, when combined, do not enhance data

representation. Similarly, Sindagi and Patel [2019] demonstrated that combining layers

Convolutional Network

Classi�er
HyperNet

Concatenation

Figure 3.5. Overall process to build a HyperNet. After setting the layers to be combined
(represented by black boxes), operations such as convolution, pooling or re-scaling are applied
to their outputs yielding a feature map (represented by a cuboid). Then, these feature maps
are concatenated and presented to a classi�er (e.g., a fully connected layer). In this process,
since the original architecture (top) is unchanged the network topology is preserved, thus
enabling applicability on o�-the-shelf-networks.

3.4. Exploring Layers in Convolutional Networks 37

by concatenating their feature maps leads to better results than other operations, e.g.,

addition.

An interesting aspect of the HyperNets above is that they preserve the topology

(see Figure 3.5) of the original network, thus enabling applicability on o�-the-shelf

networks. However, the complexity and computation of the network increase consider-

ably due to the additional operations such as 1×1 convolutions. Additionally, features

from earlier layers are high-dimensional, which further increases the number of �oating-

point operations. Therefore, such strategies might be prohibitive for applications with

limited memory and low computational power. Our HyperNet, on the other hand,

is capable of combining multiple layers at negligible additional cost and handling the

problem of high dimensionality as well.

Instead of exploring multiple layers in o�-the-shelf networks, a parallel line of

research focuses on designing convolutional architectures to encode multiple levels of

features, namely multi-scale networks. A representative approach in this category

is the work by Huang et al. [2017]. In their approach, a convolutional layer takes

as input the feature maps of its preceding layers, as illustrated in Figure 3.6. This

architecture topology increases signi�cantly the computational cost, as a layer operates

on a high-dimensional input. Improving upon this model, similar to HyperNets, Wang

et al. [2018a] proposed to reduce the computational overhead by carefully reducing the

dimensionality of the layers before concatenating them. Surprisingly, their architecture

obtained better performance than lightweight networks such as MobileNet [Howard

et al., 2017].

It is important to mention that due to the design of multi-scale networks it is not

possible to compare them with HyperNets approaches.

Figure 3.6. Overview of a multiscale convolutional network. This architecture encodes
features (indicated by colored arrows) from shallow and deep layers. For this purpose, a layer
i takes as input the feature maps from all preceding layers. For example, the last convolutional
layer (gray box) receives as input its preceding layers (red, blue and black boxes).

38 Chapter 3. Related Work

3.5 Incremental Dimensionality Reduction

Traditional dimensionality reduction methods are unsuitable for large datasets since

all the data need to be available in advance and this could be impractical due to

memory constraints. To handle this problem, many works have proposed incremental

dimensionality reduction methods. These approaches estimate the projection matrix

using a single data sample (or a subset) at a time while keeping some properties of the

traditional dimensionality reduction methods [Weng et al., 2003; Zeng and Li, 2014].

To enable PCA to operate in an incremental scheme, Weng et al. [2003] proposed

to compute the principal components without estimating the covariance matrix, which

is unknown and impossible to be calculated in incremental methods. For this purpose,

their method, named Candid Covariance-free Incremental Principal Component Analy-

sis (CCIPCA), updates the projection matrix for each sample x, replacing the unknown

covariance matrix by the sample covariance matrix (xxT). While CCIPCA provides

a minimum reconstruction error of the data, it might not yield very discriminative

subspaces since label information is ignored (similarly to traditional PCA) [Martínez

and Kak, 2001].

To achieve discriminability, incremental methods based on LDA have been pro-

posed [Hiraoka et al., 2000; Lu et al., 2012]. In particular, this class of methods is

less explored since they present some problems (e.g., the sample size problem), which

makes them infeasible for some tasks. Di�erent from incremental LDA methods, incre-

mental PLS methods are more �exible and present better results [Zeng and Li, 2014].

Motivated by this, Arora et al. [2016] proposed an incremental PLS based on stochastic

optimization (SGDPLS), where the idea is to optimize an objective function using a

single sample at a time. Similarly to Arora et al. [2016], Stott et al. [2017] proposed

applying stochastic gradient maximization on NIPALS, extending it for incremental

processing. Even though they present promising results on synthetic data, their ap-

proach presented convergence problems when evaluated on real-world datasets. Thus,

we consider only the approach by Arora et al. [2016], which was the one that converged

for several of the datasets evaluated and presented better results.

While SGDPLS is e�ective, SGD-based methods applied to dimensionality reduc-

tion are computationally expensive and present convergence problems, as demonstrated

by Weng et al. [2003] and, Zeng and Li [2014]. In addition, this class of approaches

requires careful parameter tuning and their results are often sensitive to the type of

dataset [Weng et al., 2003]. To address convergence problems in SGD-based PLS, Zeng

and Li [2014] proposed to decompose the relationship between independent and depen-

dent matrices (variables) into a sample relationship (i.e., a single sample with its label).

3.6. Feature Selection 39

This process is performed only to compute the �rst component, while the higher-order

components are estimated by projecting the �rst component onto an approximated

covariance matrix using a few PCA components. As we mentioned earlier, since tra-

ditional PCA cannot be employed in incremental methods, Zeng and Li [2014] used

CCIPCA to reconstruct the principal components of the covariance matrix.

In contrast to the aforementioned incremental PLS methods, our incremental PLS

presents superior performance in both accuracy and execution time for estimation of the

projection matrix, which is an important requirement for time-sensitive and resource-

constrained tasks. Compared to the method of Zeng and Li [2014] (called incremental

PLS - IPLS), we show that the proposed method separates the data better since our

higher-order components keep the properties of traditional PLS.

3.6 Feature Selection

Another line of research widely employed to reduce computational cost is feature selec-

tion. Feature selection consists of ranking and selecting a subset of features based on a

speci�c criterion. In order to discover the most relevant features, many techniques have

been proposed such as LASSO regression [de Geer, 2008; Rooyen et al., 2015], mutual

information [Yang and Moody, 1999; Fleuret, 2004] and eigenvector centrality [Ro�o

and Melzi, 2016a,b]. Such techniques exhibit di�erent accuracies and computational

complexity for ranking the features. Among the state-of-the-art feature selection tech-

niques, the strategy by Ro�o et al. [2015, 2017, 2020] is the most successful in terms

of accuracy and e�ciency. Thus, throughout this section, we focus on describing their

feature selection framework.

Ro�o et al. [2015] proposed to interpret feature selection as a graph problem.

In their method, named In�nity Feature Selection (infFS), each feature represents a

node in an undirected fully-connected graph and the paths in this graph represent

the combinations of features. Following this model, the goal is to �nd the best path

taking into account all the possible paths (in this sense, all the subsets of features) on

the graph, by exploring the convergence property of the geometric power series of a

matrix. Improving upon this model, Ro�o et al. [2017] suggested quantizing the raw

features into a small set of tokens before applying the process of Ro�o et al. [2015]. By

using this pre-processing, their method (referred to as In�nity Latent Feature Selection

- ilFS) achieved even better results than infFS. Recently, Ro�o et al. [2020] presented

a more e�cient version of infFS, which considers supervised (infFSS) and unsupervised

(infFSU) scenarios.

40 Chapter 3. Related Work

Although the framework by Ro�o et al. [2015, 2017, 2020] achieved state-of-the-

art results, some works have demonstrated that PLS coupled with Variable Impor-

tance in Projection attains promising results in feature selection [Schwartz et al., 2009;

de Melo et al., 2013; dos Santos Junior et al., 2016; Diniz and Schwartz, 2020]. We

show that the proposed incremental PLS with VIP achieves comparable results when

compared to PLS+VIP as well as with state-of-the-art feature selection techniques.

We highlight that while there exist many other feature selection techniques, the

works by Ro�o et al. [2015, 2017, 2020] outperform (or are in par with) most existing

feature selection techniques. Therefore, we limit our comparison only with these works.

In addition, the complexity of other feature selection techniques grows quickly as the

number of samples increases, thus they are prohibitive for large datasets such as the

ones in computer vision [Krizhevsky et al., 2009; Deng et al., 2009; Huang et al., 2012].

Chapter 4

Proposed Approaches

In this chapter, we introduce the proposed approaches to improve computational cost

and data representation of convolutional networks. We start by describing our pruning

approach that locates potential structures (neurons and layers) to be removed from

convolutional networks. Then, we present our neural architecture search approach

that designs high-performance networks automatically. Afterward, we describe our

HyperNet approach that captures di�erent levels of representation distributed over

early and deep layers of the network. Finally, we introduce our incremental Partial

Least Squares that learns the low-dimensional latent space by using a single sample

at a time. Throughout the chapter, we use the mathematical de�nitions stated in

Chapter 2.

4.1 Pruning Approaches

Problem De�nition. Let F be a convolutional network with L layers, where the

number of neurons in each layer fi ∈ {1, 2, ..., L} is de�ned by |fi|. De�ne F ′ a

network without some structures of F such that |f ′
i |L

′
i=1 ≤ |fi|Li=1 (pruning �lters) or

L′ < L (pruning layers). Thus, F ′ is an e�cient and lower-complexity version of F .
Figure 4.1 illustrates F ′ yielded from the removal of �lters and layers of F .

Our target is to identify and remove structures from F that preserve as much

accuracy as possible, which means yielding F ′ such that its accuracy is close (ideally

superior) to F .

41

42 Chapter 4. Proposed Approaches

(a) (b) (c)

Figure 4.1. Pruning approaches considering di�erent structures: neurons or layers. (a)
Original, unpruned, network. (b) Pruning approach that removes neurons, i.e., |f ′

i |L
′

i=1 ≤
|fi|Li=1. (c) Pruning approach that removes layers, i.e., L′ < L. Because (b) and (c) have
fewer neurons and layers (they are less complex than (a)), such networks are an e�cient
version of (a).

4.1.1 Pruning Filters

This section de�nes the proposed method to eliminate �lters in convolutional networks.

We start by describing the representation of �lters as feature vectors. Then, we intro-

duce how to measure �lter importance. Finally, we describe how to remove �lters with

low importance. Figure 4.2 shows an overview of our strategy for removing �lters.

Filter

Importance - VIP
(Eq. 2.8)

Prune (p%) and
Fine-Tuning

Dimensionality
Reduction - PLS

(Alg. 2)

Filter
Representation

(Fig. 4.3)

Repeat

Figure 4.2. Overview of our strategy for removing �lters from convolutional networks.
First of all, the �lters composing a convolutional network are represented as feature vectors.
Then, we project these feature vectors onto a compact space using PLS. Finally, we assign an
importance score for each feature (�lters) using VIP and remove p% of the �lters based on
this score.

Filter Representation. The �rst step in our pruning �lter method is to represent

�lters that compose the network as feature vectors. For this purpose, we present the

training data to the network and interpret the feature maps of each convolutional �lter

as a feature vector (or a set of features). These feature maps are high dimensional and

might lead to memory constraints. However, it is well-known that pooling operations

can encode the most important information about large feature maps [Hu et al., 2018;

Li et al., 2019b; Veit and Belongie, 2020]. Therefore, we apply a pooling operation

to reduce their dimension. We consider the following pooling operations: global max-

4.1. Pruning Approaches 43

Feature Space
(High Dimensional)

Convolu�onal Network
Layer 1 Layer 2 Layer 3

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Feature Vector

Input Data

Feature Vector

σ σ σ

Figure 4.3. Representation of convolutional �lters as feature vectors. First, we present
samples to the network and extract feature maps from the convolutional layers. Then, we
apply a pooling operation (indicated by σ) on these feature maps and interpret the output of
the pooling as feature vectors. For simplicity, each layer of the network consists of one �lter
only (one dimension of the feature space). Red and blue points denote positive and negative
samples, respectively.

pooling, global average pooling and max-pooling 2 × 2. Afterward, the output of the

pooling operation is interpreted directly as one feature (when using the global pooling

operations) or as a set of features (when using the max-pooling 2×2). Speci�cally, each
�lter is represented by its feature map followed by the pooling operation. Finally, the

�lter representations from di�erent layers are concatenated to compose the �nal feature

vector that represents all �lters of the network. Figure 4.3 illustrates this process.

The intuition for using the feature map as a feature is that we are able to measure

its relationship with the class label on the latent space (PLS criterion). In this way, a

�lter associated with a feature with low relationship might be removed.

Filter Importance. After executing the previous steps, we have created a high di-

mensional feature space, representing all convolutional �lters of the network at once.

Then, we measure the �lter importance score to remove the ones with low importance.

To this end, we project the high dimensional space onto a latent space using PLS and

employ the VIP (Equation 2.8) technique to estimate the contribution of each feature

in generating the latent space. Recall that, following the modeling performed in the

�rst step of our method, each feature corresponds to a �lter. In particular, when using

the max-pooling operation as �lter representation, we have a set of features for each

�lter; therefore, the �nal score to a �lter on this representation is the average of its

44 Chapter 4. Proposed Approaches

Algorithm 3: Pruning Filters from Convolutional Networks

Input : Convolutional Network F
Pooling operation σ
Number of iterations k

Output: Pruned Convolutional Network F ′

1 F ′ ← F
2 for j ← 1 to k do
3 X = {}
4 for fi ∈ F ′ do
5 oi ← feature maps from fi
6 X ← X ∪ {σ(oi)}
7 end
8 Estimate importance score of each feature (�lter) of X using PLS+VIP
9 F ′ ← F ′ \ p% lowest-score �lters

10 Fine-tune F ′

11 end

scores.

Prune and Fine-tune. Given the importance of all �lters that compose the network,

we can remove p% of the �lters associated with low scores. The removal stage consists

of creating a new network F ′, without the discarded �lters, and transferring the weights

of the kept �lters. In other words, F ′ inherits the weights of the kept structures of F .
Finally, we perform some stages of �ne-tuning in F ′ to compensate for the structures

that have been removed. An alternative to �ne-tuning is training the pruned network

from scratch. The latter, according to recent observations, leads to worse results than

�ne-tuning [Liu et al., 2019b; Evci et al., 2019; Fan et al., 2020]. Our experiments

corroborate this observation, in which training the pruned network from scratch does

not bring notable improvements to our method.

The process above composes one iteration of our method. Such a process can be

repeated until a speci�c number of iterations is reached, where the input network to the

next iteration is the pruned network of the previous iteration. Algorithm 3 summarizes

all the steps of the proposed method to prune �lter.

4.1.2 Pruning Layers

This section de�nes the proposed method to eliminate layers in convolutional networks.

We start by describing the representation of layers as feature vectors. Then, we intro-

duce how to measure layer importance. Finally, we describe how to remove layers with

low importance.

4.1. Pruning Approaches 45

Module 1 Module 2 Module 3

64
 x

 2
56

64
 x

 6
4

25
6

x
64

64
 x

 2
56

64
 x

 6
4

25
6

x
64

64
 x

 2
56

64
 x

 6
4

25
6

x
64

Figure 4.4. Representation of the modules (set of layers) as features. At the end of each
module (the add operation '+') we extract the feature maps and interpret them as feature
vectors.

Layer Representation. Modern convolutional architectures consist of modules �

stack of layers with the same con�guration (i.e., number of �lters and spatial res-

olution). Following these architectures, we are unable to remove single layers within

modules due to implementation details1 (incompatible dimensions). Fortunately, based

on prior works [Veit et al., 2016; Gre� et al., 2017b; Han et al., 2017; Fan et al., 2020],

we can eliminate entire modules without degrading the representation capabilities of

the network.

To eliminate modules from convolutional networks, the �rst step in our approach

is to represent modules as features. Similar to the process for representing �lters as

features, we could interpret the feature maps of the layers composing bi as a set of

features. However, the last layer of a module contains information about the entire

module (i.e., its preceding layers) [Veit et al., 2016; Huang et al., 2017; Gre� et al.,

2017a]. Thereby, to represent each module bi, we can extract feature maps considering

only its last layer, as illustrated in Figure 4.4.

Layer Importance. Given a feature map Xi from a module (its last layer) bi, the

next step in our method is to measure the importance of the features composing Xi.

This way, we are estimating the importance of bi to which we could remove the least

important ones. For this purpose, we project Xi onto a low-dimensional space using

PLS and, then, employ VIP to estimate the contribution of each feature in generating

this space. Such a process will provide a set of importance scores; thus, we average

these values to compose the �nal importance of bi.

Prune and Fine-tune. With the importance of all modules that compose the

1We refer the reader to Appendix B for additional details.

46 Chapter 4. Proposed Approaches

network, we can remove p% of the modules associated with low scores. The removal

stage is similar to the process of removing �lters � we create a new network F ′,

without the discarded modules, and transfer the weights of the kept modules. Finally,

we perform some stages of �ne-tuning in F ′ to compensate for the structures removed.

4.2 Neural Architecture Search

Problem De�nition. Let F be a convolutional network composed of S stages. Each

stage si ∈ S consists of bi modules (set of layers as illustrated in Figure 4.5), which in

turn de�ne the depth of stage si. Following the structure of modern architectures, the

layers within a stage operate on the same input/output resolution (i.e., their feature

maps have the same dimension). In previous works, including NAS, b is the same for

all stages or de�ned empirically. For instance, ResNet39 has six residual blocks in each

of its stages (i.e., bi∈{1,...,S} = 6), as shown in Figure 4.6 (top). Our target is to design

architectures by learning the number of modules bi for each stage si, as illustrated in

Figure 4.6 (bottom).

4.2.1 Stage-wise Architecture Search

This section de�nes the proposed method to automatically design convolutional net-

works. We start by describing the cell modules, which are the components employed

to build our architectures. Then, we introduce how to measure the importance of these

Separ.
conv. Ident. Ident.Avg.

pool

Add

Conc.Add

Conv.

Conv. Separ.
conv.

Separ.
conv.

Separ.
conv.

Separ.
conv.

Add AddAddAdd

Avg.
pool

Avg.
pool

Figure 4.5. Left. Residual modules employed in ResNets [He et al., 2016]. Right. Cell
modules employed in NASNets [Zoph et al., 2018]. Add indicates element-wise addition
operation. Sep. Conv. indicates depthwise separable convolutions. Ident. indicates that the
received input is propagated with no transformation. Avg. pool and Conc. indicate average
pooling and concatenation operation, respectively.

4.2. Neural Architecture Search 47

Stage 1 Stage 2 Stage 3

b1 = 6

/2 /2

/2 /2

Stage 1 Stage 2 Stage 3

b2 = 6 b3 = 6

b1 = 2 b2 = 8 b3 = 4

Figure 4.6. Top. Structure of modern architectures, in which depth (number of modules)
is the same for all stages. Bottom. Structure of our architectures, in which the depth of
each stage is adjusted based on the importance of its features. Following these structures,
the number of modules in each stage de�nes its depth. In this example, the mid-stage of our
architecture is more important as it is deeper, while the early-stage is less important as it is
the shallower.

cell modules. Finally, we describe how to insert cell modules, which means generating

candidate architectures, and how to transfer the knowledge of pre-trained networks to

such architectures, respectively.

Modules. The �rst step in our neural architecture search approach is to de�ne

a module type. We consider two types of modules: residual blocks from ResNet [He

et al., 2016] (Figure 4.5 left) or cells from NASNet [Zoph et al., 2018] (Figure 4.5, right).

We do not explore the combination of both, meaning that the discovered architecture

is either ResNet-based or NASNet-based. We limit our experiments to these two types

of modules due to their relevance in modern architectures and because the combination

of di�erent modules can generate incompatible dimensions in the feature maps, thus

requiring a careful implementation [Wan et al., 2020].

Stage Importance. The next step in our method is to measure the importance score

for each stage si ∈ S. For this purpose, we apply a process similar to Figure 4.3, which

is the following. Given a stage si of a convolutional network, we present the training

samples to the network and extract the feature maps from the last layer of this stage.

As before, the reason for considering the last layer is that it contains information about

previous layers, hence, about the entire stage [Veit et al., 2016; Huang et al., 2017; Gre�

et al., 2017a]. It is important to mention that this claim is valid only when the identity

48 Chapter 4. Proposed Approaches

(i.e., skip-connection layer) is propagated to successive layers [Veit et al., 2016].

Let Xi be the features of si estimated following the procedure above. The next

step is to compute the importance of these features and average their values to compose

the �nal importance score for each stage. Speci�cally, by estimating the importance

of Xi we are estimating the importance of the stage si. Such importance is estimated

by presenting Xi to PLS followed by VIP (similar to the process employed to remove

structures, Section 4.1).

Adjusting Stage Depth. Once we are able to estimate the importance score αi for

each stage si, the next step is to build a candidate architecture by adjusting the depth

of each stage based on its importance. To this end, we �rst create a network F with

S stages (|s| = S), each one containing the same number of modules, for example,

by employing S = 3 and |bi|Si=1 = 6 (i.e., ResNet39 in Figure 4.6, top). Then, we

create a temporary architecture T by increasing the depth of si to bi + δ, where δ is

the growth step, i.e., the number of modules that can be inserted in a stage in a single

iteration. Afterward, we compute the importance scores αF ,i and αT,i, for each stage si

of the initial and temporary architectures, respectively. Finally, we update bi to bi + δ

if αT,i > αF ,i and create a candidate architecture F̂ using the updated bi. It is worth

mentioning that the importance scores are comparable in terms of magnitude. The

idea behind this incremental process is to measure if increasing depth will improve the

representation learned by the candidate architecture.

The process above composes one iteration of our method, where at the end of each

iteration one candidate architecture is discovered. The input for the next iteration is the

candidate architecture designed with the values of bi updated. Algorithm 4 summarizes

all the steps of the proposed method.

In practice, given k iterations, our method creates only 2k+1 architectures, which

is an order of magnitude fewer than state-of-the-art NAS approaches.

Weight Transfer Technique. Similar to previous NAS approaches [Real et al., 2017;

Zoph et al., 2018], the process of creating a model consists of training it from scratch

for some epochs, which can be computationally prohibitive for large datasets such as

ImageNet. However, since our method employs the same structure (i.e., modules)

of existing architectures, we propose to transfer the knowledge (weights) from a pre-

trained network to our candidate architecture. For example, when employing residual

modules, our candidate architecture can use the weights of a pre-trained ResNet. This

way, instead of training from scratch, we only need to adjust the weights by �ne-tuning

for a few epochs to compensate changes in the magnitude of the feature maps [Veit

et al., 2016; Gre� et al., 2017a]. One restriction of this strategy is that the depth of

4.3. HyperNet Approach 49

Algorithm 4: Stage-Wise Neural Architecture Search

Input : Number of iterations k
Number of stages S
Initial number of modules per stage b0
Growth step δ

Output: Set of candidate architectures C

1 Create F with S stages and b0 modules each
2 for j ← 1 to k do
3 Create T with S stages and bi + δ modules each
4 for i← 1 to S do
5 Compute importance scores αF ,i and αT,i

6 if αT,i > αF ,i then
7 bi ← bi + δ
8 end

9 end

10 Create F̂ with S stages and the updated bi
11 F ← F̂
12 C← C ∪ {F̂}
13 end

a stage (number of modules) of the candidate architecture cannot exceed the depth

of the network that is providing the weights. In practice, we show that this does not

occur as our candidate architectures are shallower than existing networks.

In essence, our weight transfer technique is similar to the morphism strategy, how-

ever, this solution is simpler since it does not require careful selection of the morphism

operations [Cai et al., 2018; Jin et al., 2019].

4.3 HyperNet Approach

Problem De�nition. Let Xi be an output (feature map) of a speci�c layer fi ∈
{1, 2..., L} from a convolutional network F of L layers. De�ne O a set of feature maps

Xi such that |O| > 1. We assume that O provides better data representation than

using a single Xi. Figure 4.7 supports this assumption. Our target is to e�ciently and

properly yield O, which means combining multiple Xi in an e�cient yet accurate way.

50 Chapter 4. Proposed Approaches

Figure 4.7. Projection of two categories onto the two �rst components of Partial Least
Squares. Left. Projection using feature maps from the last convolutional layer (i.e., XL).
Right. Projection using feature maps from early and the last layers (i.e., O). The feature
space is better separated when features from early and deep layers are combined. This happens
due to additional clues provided by the low-level information (early layers).

4.3.1 Latent HyperNet

This section de�nes the proposed Latent HyperNet approach to combine low-level and

re�ned information distributed over the layers of convolutional networks. We start by

describing the process for selecting the layers to be combined. Then, we introduce how

to combine these layers e�ciently.

Selecting Layers. The �rst step is our Latent HyperNet (LHN) is to de�ne a set

of layers, l ⊂ L, to be combined. This is a typical step in HyperNet approaches and

it is necessary because some early layers contain simple patterns (i.e., edges), which

do not contribute to the classi�cation but increase computational cost. In addition, as

observed by previous works [Kong et al., 2016; Hariharan et al., 2015], adjacent layers

are strongly correlated and can harm the data representation. Therefore, setting the

layers to be combined is more appropriate than using all of them.

Combining Layers. Once we have set the layers l, we use the feature maps Xi of

each layer fi ∈ l to learn a PLS model. Such feature maps are high dimensional, which

reinforces the employment of PLS as it is proper for these cases.

Following this model, each fi ∈ l will have a PLS model (i.e., a projection)

associated with it, as shown in Figure 4.8. Alternatively, we might concatenate the

feature maps from fi ∈ l and then, learn a single PLS model. However, the memory

consumption would increase signi�cantly since the result of this concatenation is an

even higher-dimensional space, hence, this strategy might be prohibitive for memory-

constrained applications. In addition, we will show that the two strategies for learning

4.3. HyperNet Approach 51

Convolutional Network

Classi�er
Latent HyperNet

(LHN)

Concatenation

X3W3X2W2X1W1

Figure 4.8. Process to build the Latent HyperNet considering a 3-layer convolutional net-
work. After setting the layers to be combined (represented by black boxes), we learn a PLS
projection (Wth) using their feature maps (Xth). Then, we project (XthWth), concatenate and
present the low-dimensional feature maps to a classi�er. In this example, each PLS projects
the high-dimensional feature maps onto two dimensions.

PLS present similar performance.

After executing the above steps, we project the feature maps Xi on its respective

PLS model yielding compact representations of Xi, which in turn are concatenated in

O. In summary, before inserting Xi into O we reduce its dimensionality using PLS.

Algorithm 5 summarizes these steps.

Importantly, our LHN neither modi�es the design nor the learned weights of the

network, as shown in Figure 4.8, enabling it to be easily adaptable to any network.

Additionally, in contrast to HyperNet approach of Kong et al. [2016], our LHN allows

the combination of any layer that composes the network, for example, convolutional

and fully connected layers.

Algorithm 5: Latent HyperNet

Input : Convolutional Network F
Set of layers to be combined l

Output: Latent features O
1 for fi ∈ l do
2 Xi ← feature maps from fi
3 if Training phase then
4 Find PLS projection Wi

5 end
6 O← O ∪ {XiWi}
7 end

52 Chapter 4. Proposed Approaches

4.4 Incremental Partial Least Squares

Problem De�nition. Let W (w1, w2, ..., wc) be a projection matrix that projects

the high dimensional space onto a low c-dimensional space. Considering that W was

obtained by PLS, which means that each component wi maximizes the covariance

between Xwi and Y , where X and Y represent all the data samples and their respective

labels. For the sake of simplicity, we omit the additional steps during the computation

of wi (see Algorithm 1 for more details). Our target is to �nd W using a single

sample x ∈ X, and its respective label y, at a time while maintaining the property of

maximizing the covariance across all c-components.

4.4.1 Covariance-free Partial Least Squares

This section de�nes the proposed method to estimate the projection matrix of PLS

incrementally (i.e., using a single sample at a time). We start by describing how to

decompose the covariance between dependent and independent variables into an in-

cremental regime, thus enabling the estimation of the �rst latent-space component

incrementally. Then, we introduce how to compute higher-order components incre-

mentally.

Covariance Decomposition. To operate in an incremental scheme and preserve the

properties of PLS, our incremental Partial Least Squares approach focuses on ensuring

that, as in traditional PLS, the relationship between independent and dependent vari-

ables (Equation 2.7) be kept on all the components. To achieve this goal, our method

works as follows. First, we center the data to the mean of the training samples X.

However, di�erent from traditional methods, in incremental approaches the mean is

unknown since we cannot assume that all the data are known a priori [Weng et al.,

2003; Zeng and Li, 2014]. To face this problem, we centralize the current data sample

using an approximate centralization process [Weng et al., 2003], which consists of es-

timating an incremental mean using the nth sample. According to Weng et al. [2003],

we can compute the incremental mean µn w.r.t. the nth data sample as

µn =
n− 1

n
µ(n−1) +

1

n
xn. (4.1)

Once we have centralized the sample, the next step in our method is to compute

the component wi following Equation 2.7. As we mentioned, X and its respective

Y are unknown or are not in memory in advance, which prevents us from employing

Equation 2.7 directly. However, as suggested by Zeng and Li [2014], we employ the

4.4. Incremental Partial Least Squares 53

following decomposition:

XTY =
n−1∑
k=1

xT
k yk + xT

nyn. (4.2)

By replacing XTY in Equation 2.7 by Equation 4.2, it is possible to calculate the ith

component of PLS considering a single sample at a time. In other words, Equation 4.2

enables to compute wi incrementally.

Higher-Order Components. To compute the higher-order components (wi, i > 1),

we employ a de�ation process, which consists of subtracting the contribution of the

current component on the sample before estimating the next component [Andrew and

Tan, 1998; Mackey, 2008]. Following the NIPALS algorithm, the de�ation process

works as follows

t = Xwi, (4.3)

p = XT t, q = Y T t, (4.4)

X = X − tpT , Y = Y − tqT , (4.5)

where t denotes the projected samples onto the current component wi, and p and q

represent the scores of this projection. It should be noted that while t works in an

incremental scheme (since we can project one sample at a time), p and q cannot be

computed since X and Y are neither known nor are in memory in advance. However,

in light of Equation 4.2, we can decompose p and q as

p =
n−1∑
k=1

xT
k tk + xT

n tn, q =
n−1∑
k=1

yTk tk + yTn tn. (4.6)

By embedding Equation 4.6 on the de�ation process, we can remove the contribution

of the current component and repeat the process to compute a single component wi

(as we argued before). Observe that Equation 4.5 can be computed sample-by-sample

working, therefore, in an incremental scheme. At this stage, we obtain all the require-

ments to �nd c components incrementally. Since the proposed method does not use

the covariance matrix to estimate higher-order components, as proposed by Zeng and

Li [2014], we refer to it as Covariance-free Incremental Partial Least Squares (CIPLS).

Algorithm 6 summarizes the steps of CIPLS.

According to Algorithm 6, the proposed method maintains the propriety of cap-

turing the relationship betweenX and Y for all the components (step 4 in Algorithm 6).

54 Chapter 4. Proposed Approaches

Algorithm 6: CIPLS Algorithm

Input : nth data sample xn and its label yn
Number of components c
Projection matrix W(n−1) ∈ Rm×c

Loading matrix P(n−1) ∈ Rm×c

Loading matrix Q(n−1) ∈ R1×c

Output: Updated matrices W , P and Q

1 Update µn using Equation 4.1

2 x̄n = xn − µn

3 for i = 1 to c do
4 wi = x̄⊤

n yn + wi(n−1), where wi ∈ W

5 tn = x̄nwi

∥x̄nwi∥

6 pi = x̄⊤
n tn + pi(n−1), where pi ∈ P

7 qi = y⊤n tn + qi(n−1), where qi ∈ Q

8 x̄n = x̄n − tnp
⊤
i

9 yn = yn − tnq
⊤
i

10 end

In addition, since we compute all components at once for each sample, our method has

a time complexity of O(ncm), where n, c and m denote the number of samples, number

of components, and dimensionality of the data, respectively.

Chapter 5

Experiments

In this chapter, we present the experiments to validate our hypotheses and assess the

e�ectiveness of the proposed methods. First, we brie�y explain the applications, and

their respective datasets, used throughout the experiments (Section 5.1). Then, we

present the experimental setup (Section 5.2). Finally, we introduce the experiments of

our strategies for removing (Section 5.3), inserting (Section 5.4) and combining (Sec-

tion 5.5) structures from convolutional networks and the experiments of our incremental

version of PLS (Section 5.6), in this order.

5.1 Applications and Datasets

Throughout the experiments, we consider the following applications: image classi�-

cation, activity recognition and face veri�cation. Since most of the works related to

our research conduct and report their results on the image classi�cation task, we focus

mainly on this application.

For each application, we consider di�erent datasets that vary in sample resolution,

number of samples and classes. Table 5.1 summarizes the main features of each dataset.

Activity Recognition. Human activity recognition based on wearable sensor (ac-

tivity recognition) consists of assigning a category of activity to signals provided by

wearable sensors such as accelerometers, gyroscopes and magnetometers.

The �rst step to perform activity recognition is to generate data samples from raw

signals. For this purpose, we follow a typical process that consists of segmenting the

signals into windows of the same size, as shown in Figure 5.1. In this process, a window

(�xed size) slides over the signal and at each position, the content within of window

becomes itself a data sample. The window size is de�ned in seconds and it determines

55

56 Chapter 5. Experiments

Table 5.1. Main features of each dataset. While samples from face veri�cation and image
classi�cation are three-channels (RGB) matrices, samples from activity recognition are one-
channel matrices.

Application Dataset
Sample Spatial Resolution

(height × width)

Number of

Samples

Number of

Classes

Activity

Recognition

USCHAD 500× 6 9, 824 12

WISDM 100× 3 20, 846 7

UTD-MHAD1 50× 6 3, 771 21

UTD-MHAD2 50× 6 1, 137 5

Face

Veri�cation

LFW 144× 192 6, 000 2

YTF 160× 160 5, 000 2

Image

Classi�cation

CIFAR-10 32× 32 50, 000 10

ImageNet 224× 224 and 32× 32 1, 331, 167 1, 000

the sample height. Following previous works [Song et al., 2017; de Souza et al., 2018],

we use windows of �ve seconds. According to this procedure, the number of sensors

and the size of the window de�ne the width and height of the sample, respectively, as

illustrates Figure 5.1.

To validate our methods on activity recognition, we consider the following

datasets: USCHAD [Zhang and Sawchuk, 2012], WISDM [Lockhart et al., 2011] and

UTD-MHAD1-2 [Chen et al., 2015]. These datasets present a large diversity in the

activities and cover the most performed daily activities, thus enabling us to examine

the e�ectiveness of the methods on data with high variability.

Sample Height

Sa
m

pl
e

W
id

th

Figure 5.1. Process to generate data samples from raw signals. A window of �xed size
(denoted by the dashed box) slides over the signal and, for each slide, the content inside the
window yields a data sample (solid box). In this process, the window size de�nes the sample
height while the number of sensors de�nes the sample width.

5.1. Applications and Datasets 57

Feature Extraction
Face A

L1-distance

Dimensionality
Reduction

and
Classi�cation

Same
Not Same

Face A

Face B

Feature Extraction
Face B

Figure 5.2. Face veri�cation pipeline. First, features from faces A and B are extracted and
presented to a metric distance (pair-wise operation). Then, the distance metric result feeds
a dimensionality reduction method (optional step), which yields a compact representation.
Finally, this representation is presented to a classi�er that determines if it belongs to the
same identity or not.

Face Veri�cation. Given a pair of face images, face veri�cation determines whether

this pair belongs to the same person. For this purpose, we use a three-stage

pipeline [Vareto et al., 2017a; Kloss et al., 2018] as follows. First, they extract fea-

ture vectors of each face using a deep learning model. In this work, we use the feature

maps from the last convolutional layer of the VGG16 model, learned on the VGGFaces

dataset [Parkhi et al., 2015], as feature vector. Then, we compute the distance between

the two feature vectors employing the ℓ1-distance metric. Finally, we present the result

of the distance metric either to a dimensionality reduction method, aiming at yielding

a compact representation, or directly to a classi�er. Figure 5.2 illustrates these steps.

We conduct our evaluation on two face veri�cation datasets, namely, Labeled

Faces in the Wild (LFW) [Huang et al., 2012] and Youtube Faces (YTF) [Wolf et al.,

2011]. These datasets are composed of aligned faces of famous people and present a

high diversity in pose, lighting and facial expression. Figure 5.3 illustrates some faces

Figure 5.3. Left. Faces from Labeled Faces in the Wild (LFW).Right. Faces from Youtube
Faces (YTF).

58 Chapter 5. Experiments

from the LFW and YTF datasets.

Image Classi�cation. This task consists of deciding to which category, given a set of

categories, an image belongs. This is done by extracting features from the image and

feeding these features to a classi�er, which assigns a category to this image.

Following previous works [He et al., 2016; Blalock et al., 2020; Dong and Yang,

2020], we employ two mandatory datasets: CIFAR-10 [Krizhevsky et al., 2009] and

ImageNet [Deng et al., 2009]. In particular, for the ImageNet dataset, we also use

its 32 × 32 version since it has been demonstrated to be more challenging than the

original version (224 × 224) [Loshchilov and Hutter, 2017], therefore, we can evaluate

the methods in a harder scenario. It is worth mentioning that low-resolution datasets

have received great attention in computer vision tasks [Hendrycks and Gimpel, 2017;

Hendrycks et al., 2019; Chun et al., 2019; Dong and Yang, 2020; Wang et al., 2020; Xie

and Yuille, 2020].

Figure 5.4 illustrates images from the CIFAR-10 and ImageNet datasets.

Figure 5.4. Left. Images from ImageNet. Right. Images from CIFAR-10.

5.2 Experimental Setup

Throughout the experiments, we adopt the evaluation protocol and the classi�cation

metric de�ned by each dataset, as shown in Table 5.2. On the datasets where the

evaluation protocol is cross validation, we report the mean classi�cation accuracy.

Parameter Assessment. To calibrate the parameters of the methods (for example,

the number of component c of PLS), we use a validation set with 10% of the training

data. In particular, for our LHN applied to activity recognition, we calibrate the

parameters using the USCHAD dataset [Zhang and Sawchuk, 2012].

Convolutional Networks. For each application we conduct experiments, we use dif-

ferent convolutional networks. On activity recognition, we employ three architectures

5.2. Experimental Setup 59

Table 5.2. Standard evaluation protocol and classi�cation metric employed by each dataset.
Top-5 accuracy indicates the fraction of images for which the correct category is among the
�ve labels considered most probable by the model.

Application Dataset Evaluation Protocol Metric

Activity

Recognition

USCHAD 10-fold cross validation Accuracy

WISDM 10-fold cross validation Accuracy

UTD-MHAD1 10-fold cross validation Accuracy

UTD-MHAD2 10-fold cross validation Accuracy

Face

Veri�cation

LFW 10-fold cross validation Accuracy

YTF 10-fold cross validation Accuracy

Image

Classi�cation

CIFAR-10 Hold-out Accuracy

ImageNet Hold-out Top5-accuracy

proposed by ourselves as well as the architecture by Chen and Xue [2015]. On face

veri�cation, as suggested by Kloss et al. [2018] and Vareto et al. [2017b], we employ

VGG16 learned on the VGGFaces dataset [Parkhi et al., 2015] as features extractor. Fi-

nally, on image classi�cation, we use well-known deep convolutional networks, VGG16,

ResNet and MobileNets (V1 and V2).

We �ne-tune the architectures for 200 and 12 epochs on the CIFAR-10 and Im-

ageNet datasets, respectively, applying horizontal random �ip and random crop data

augmentation. During this process, we employ SGD with a learning rate starting at

0.01 and decrease it by a factor of 10 after reaching 50% and 75% of the total of epochs.

Regarding the regularization schemes, we apply the same con�guration as proposed in

the original architecture.

Computational Cost. To measure the computational cost of our approaches, we

use the number of �oating point operations (FLOPs1) that is a standard metric to

measure the computational cost in convolutional networks [He et al., 2018a, 2019b;

Blalock et al., 2020]. Following previous works [Li et al., 2017; Huang et al., 2017], we

compute FLOPs in terms of

L∑
i=1

(Wi ·Hi · Ci) · (wi · hi ·Ki), (5.1)

where Wi, Hi and Ci denote width, height and the number of channels of the input

provided to layer i, respectively. wi, hi and Ki denote the �lter dimensions (width and

height) and the number of �lters of the layer i, respectively.

1Di�erent from �oat point operations per seconds (a.k.a FLOPs), in this work, the term FLOPs
refers to the number of �oat point operations only.

60 Chapter 5. Experiments

Statistical Tests. To assess the di�erences in e�cacy and e�ciency among the com-

pared methods, throughout the experiments we follow the approach by Jain [1990] and

perform statistical tests based on a paired t-test using 95% con�dence. In particular,

on face veri�cation, we use the 90% con�dence since this task presents a high variance

between the folds of the evaluation protocol [Kloss et al., 2018].

We highlight that the statistical tests were conducted only for activity recogni-

tion and face veri�cation. It turns out that training convolutional networks on image

classi�cation is computationally expensive, due to the great number of samples (see

Table 5.1) and the high computational cost of convolutional networks. For example,

the simplest convolutional network used on activity recognition has 24, 834 parameters

and 815, 616 FLOPs. On the other hand, VGG16 and ResNet20 applied to image clas-

si�cation2 have 15, 001, 418 and 274, 442 parameters and, 313, 463, 808 and 40, 813, 184

FLOPs, respectively. Besides, on image classi�cation, we have more than 200 unique

models, which means that we would need to retrain/�ne-tuning all these models to

conduct statistical tests. Therefore, we restrict the statistical evaluation for activity

recognition and face veri�cation only.

Machine Setup. All experiments were executed on an Intel Xeon silver 4116 CPU

with 200GB RAM and a single NVIDIA GTX 1080.

5.3 Pruning Approaches

In this section, we introduce the proposed strategies for pruning �lters (Section 5.3.1)

and layers (Section 5.3.3) from convolutional networks.

Following the common practice of many works [Li et al., 2017; Huang et al., 2018;

Lin et al., 2020; Tan and Motani, 2020], we examine some aspects and parameters of

our method by considering VGG16 only on CIFAR-10. When considering the ImageNet

dataset, due to memory constraints, we use 10% of training samples to learn PLS.

Throughout this section, we set the pruning rate of 10% in all experiments and

assess the quality of the pruning approaches using two metrics: FLOP reduction and

accuracy drop. The former is the percentage of FLOPs removed regarding the original

(unpruned) network, where the higher the FLOP reduction the better. The latter is

the di�erence between the accuracy of the original and the pruned network, where the

lower the drop in accuracy the better and negative values denote improvement of the

pruned network upon the original network. Importantly, according to Blalock et al.

2Values computed using the CIFAR-10 dataset.

5.3. Pruning Approaches 61

[2020], when the drop in accuracy is within one percentage point, it can be considered

as a negligible loss in accuracy.

5.3.1 Pruning Filters in Convolutional Networks

In this section, we introduce the experiments of the proposed strategy for removing

�lters from convolutional networks. We �rst introduce the experiments regarding the

parameters of our method. Then, we show the behavior of removing �lters iteratively

and the importance of representing all �lters of the network at once. Next, we compare

the proposed criterion for de�ning �lter importance with existing pruning criteria and

state-of-the-art pruning approaches, respectively. Finally, we compare our method with

state-of-the-art pruning approaches, present qualitative results and �nal remarks.

5.3.1.1 In�uence of the Filter Representation

It is well-known that pooling operations can encode the most important information

about large feature maps [Hu et al., 2018; Li et al., 2019b; Veit and Belongie, 2020].

Thus, our �rst experiment evaluates di�erent pooling operations, referred to as �lter

representation, to represent feature maps as features. For this purpose, we execute ten

pruning iterations using di�erent pooling operations. As illustrated in Figure 5.5, accu-

racy decreases slower when global max-pooling is employed. On the contrary, by using

the max-pooling 2 × 2 accuracy drops faster, where at the 10th iteration the method

drops 26 p.p. compared to the unpruned network. In addition, this representation

has the drawback of consuming additional memory compared to the global operations

(global max. and average), which reduce the feature map to one dimension.

Besides playing an important role in the pruning performance, the �lter represen-

tation has an interesting aspect regarding scores assigned by VIP. Note that, to select

a �lter to be removed means that VIP assigned a low score to it, indicating that it is

unimportant to explain the class label. In particular, by modifying the �lter represen-

tation, we drastically alter the selection of �lters to be removed. Figure 5.6 reinforces

this idea, where we show the relation between the pruning iteration and the number

of removed �lters per layer. According to Figure 5.6, the max-pooling representation

eliminates a larger number of �lters from layers 3 to 7, while the global average pool-

ing has a similar distribution of the VIP scores, since it removes �lters from all layers

uniformly (except for layers 3, 10 and 11). On the other hand, the global max-pooling

representation removes a larger number of �lters from layers 3 to 9 and keeps the �lters

from layers 1 and 2. Finally, VIP assigns high scores for the �lters from the layers 10

62 Chapter 5. Experiments

1 2 3 4 5 6 7 8 9 10
Pruning Iteration

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y
Global Max-Pooling
Global Avg. Pooling
Max. Pooling 2x2

Figure 5.5. Accuracy obtained by pruning VGG16 on the CIFAR-10 dataset (validation set)
using di�erent �lter representations.

and 11. Based on the results, we used the global max-pooling as �lter representation

in the remaining experiments.

According to Li et al. [2017], �lters from the �rst layer should not be pruned

since their removal degrades network performance signi�cantly. Our method is able to

identify this because either it does not remove or it removes few �lters from this layer,

as shown in Figure 5.6, which indicates the suitability of PLS to identify the relevant

�lters. It is important to mention that in the work by Li et al. [2017], the conclusion

that the �lters from the �rst layer are important was done by a human analyzing the

accuracy drop when removing these �lters. However, this is performed automatically

in our work.

1 13122 3 4 5 6 7 8 9 10 11 1 13122 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 13122 3 4 5 6 7 8 9 10 11

Figure 5.6. Heat map of the relation between the number of �lters removed, by layer, and the
iteration of the proposed method using di�erent �lters representations. Left. Max-pooling
2 × 2. Middle. Global Average pooling. Right. Global Max pooling. Warmer regions
indicate that more �lters were removed. In these �gures, the x-axis represents the VGG index
while the y-axis represents the pruning iteration.

5.3. Pruning Approaches 63

Another interesting aspect concerning VIP distributions is that the linear pro-

jection of PLS explains well the relationship between �lters and the class label. This

is because if there were a strong non-linear relationship, VIP would always assign a

low score to some �lters since they would not be explained by PLS. Thereby, �lters

from speci�c layers would always be removed. As shown in Figure 5.6, however, this

behavior did not occur, since �lters from di�erent layers were removed.

5.3.1.2 Iterative Pruning vs. Single Pruning

In this experiment, we show that it is more appropriate to execute our method it-

eratively, as illustrated in Figure 4.2, with a low pruning ratio (i.e., 10%) instead of

using a single pruning iteration with a high pruning ratio. In other words, if we intend

to remove i.e. 40% of �lters, it is better to execute some iterations of our method

with a low pruning ratio instead of setting a pruning ratio of 40% and execute only a

single iteration. To this end, we �rst execute �ve iterations of the proposed method

with a pruning ratio of 10%. Then, after each iteration, we compute the percentage

of removed �lters, pi. Finally, we use each pi as the pruning ratio to execute a single

iteration of the method.

According to the results shown in Table 5.3, performing our method iteratively

with a low pruning ratio is more e�ective than using it with a large pruning ratio,

which led to a higher drop in accuracy. For instance, by executing �ve iterations of

the method with a pruning ratio of 10%, we are able to remove 40% of �lters while

improving the network accuracy (indicated by negative values in Table 5.3). On the

other hand, by applying a single iteration with a pruning ratio of 40%, the accuracy

decreased 1.76 p.p..

Table 5.3. Drop in accuracy when executing our method with few iterations and a low
pruning ratio (Iterative Pruning), and when executing a single iteration with a high pruning
ratio (Single Pruning). Results on CIFAR-10 (test set). The �rst column is the percentage of
removed �lters in iterations 1, 3, 5, and 10, respectively. The arrows indicate which direction
is better.

Percentage of

Removed Filters (%)

Iterative Pruning

Accuracy Drop↓
Single Pruning

Accuracy Drop↓
10 −0.89 (it=1) −0.89
27 −1.08 (it=3) −0.03
40 −0.69 (it=5) 1.76

65 1.56 (it=10) 20.21

64 Chapter 5. Experiments

Convolutional Network

Feature
Vector

Remove p%

PLS+VIP

Layer 1 Layer 2 Layer 3

Convolutional Network

Layer 1 Layer 2 Layer 3

Feature
Vector

Remove p%

PLS+VIP

Feature
Vector

Remove p%

PLS+VIP

Feature
Vector

Remove p%

PLS+VIP

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Figure 5.7. Left. Single projection scheme. In this strategy, a single PLS model is learned
considering all �lters that compose the network at once. Right. Multiple projections scheme.
In this strategy, one PLS model is learned considering �lters layer-by-layer (i.e., one PLS per
layer).

5.3.1.3 Multiple Projections vs. Single Projection

This experiment shows the performance of our method when using the �lters layer-by-

layer and all �lters at once to learn PLS. While the former has a PLS model associated

with each layer, the latter has only one PLS model, as shows Figure 5.7.

Table 5.4 (last rows) shows the results of our pruning approach when using single

and multiple projections, called PLS(Single)+VIP and PLS(Multi)+VIP, respectively.

On the CIFAR-10 dataset, PLS(Multi)+VIP and PLS(Single)+VIP achieved similar

performance, where PLS(Multi)+VIP obtained a drop in accuracy 0.08 p.p. better than

PLS(Single)+VIP. On both versions of ImageNet, however, PLS(Multi)+VIP attained

a drop in accuracy worst than PLS(Single)+VIP.

The results above indicate that learning PLS projection considering all �lters, at

once, is more suitable for pruning �lters. The reason for these results is that �lters

coming from di�erent layers degrade network performance in di�erent ways [Li et al.,

2017]. Therefore, removing p% of �lters of each layer (as is done in PLS(Multi)+VIP)

is more critical than removing p% of all �lters3. This remark reinforces the usage of

PLS(Single)+VIP. Thus, we use PLS(Single)+VIP (hereafter referred to as PLS+VIP)

in the remaining experiments.

3Remove p% considering all �lters at once is di�erent from removing p% of �lters for each layer.

5.3. Pruning Approaches 65

Table 5.4. Drop in accuracy using di�erent criteria for determining �lter importance.
PLS(Multi)+VIP indicates our method projecting the �lters layer-by-layer. PLS(Single)+VIP
indicates our method projecting all the �lters that compose the network at once. Negative
values denote improvement regarding the original (unpruned) network. The best results are
in bold. The arrows indicate which direction is better.

Filter Importance

Criterion

CIFAR-10

Acc. Drop↓
ImageNet 32× 32

Acc. Drop↓
ImageNet 224× 224

Acc. Drop↓
ℓ1-norm −0.69 6.22 -0.62

infFS [Ro�o et al., 2015] −0.69 6.31 −0.50
ilFS [Ro�o et al., 2017] 0.65 6.04 −0.36

infFSU [Ro�o et al., 2020] 0.48 6.30 −0.33
KL [Luo and Wu, 2020] −0.59 6.37 −0.41
HRank [Lin et al., 2020] −0.84 6.70 −0.47

ABS [Tan and Motani, 2020] −0.62 6.58 −0.42
PLS(Multi)+VIP -0.97 6.42 −0.50
PLS(Single)+VIP −0.89 5.81 −0.58

5.3.1.4 Comparison with other Pruning Criteria

In this experiment, we compare the proposed criterion (PLS+VIP) for assigning �lter

importance with other criteria and state-of-the-art feature selection techniques. To

this end, we use one iteration of pruning and follow the process suggested by Yu et al.

[2018], which consists of setting the same pruning ratio (10%) and modifying only the

criterion for selecting the �lters to be removed.

Table 5.4 shows the results obtained by di�erent pruning criteria on the CIFAR-

10 and ImageNet datasets. Compared to state-of-the-art pruning criteria [Luo and

Wu, 2020; Lin et al., 2020; Tan and Motani, 2020], PLS+VIP obtained the lowest

drop in accuracy. Compared to state-of-the-art feature selection [Ro�o et al., 2015,

2017, 2020], PLS+VIP also achieved superior results. In particular, only the ℓ1-norm

criterion on ImageNet 224× 224 outperformed our criterion. Observe that, even when

considering the multiple projections strategy, PLS(Multi)+VIP, we also outperformed

most criteria. The reason for these results is that PLS preserves �lters with high

relationship with the class label, which are the most important to the classi�cation

ability of the network.

Interestingly, in many settings (criteria × dataset), the drop in accuracy is neg-

ative, which means that the pruned network obtained an improvement in accuracy

compared to the original (unpruned) network. Such results are expected since pruning

has been demonstrated as a powerful tool for regularization, which might obtain su-

perior generalization than over-parameterized networks [Huang et al., 2016; Li et al.,

66 Chapter 5. Experiments

2019a; Fan et al., 2020; Bartoldson et al., 2020].

Finally, it is important to note that, when evaluated on the original (224× 224)

ImageNet dataset, the drop in accuracy of the methods is small. In contrast, on the

32 × 32 version, the drop is notable. This behavior supports the employment of this

version, where we can evaluate the criteria in a more di�cult scenario. We emphasize

that the single di�erence between these versions of ImageNet is the image size.

5.3.1.5 Comparison with Existing Pruning Approaches

This experiment compares the proposed method with state-of-the-art pruning ap-

proaches. For this purpose, we report the results using di�erent pruning iterations.

We highlight that the results of previous methods were taken from their original pa-

pers. Table 5.5 and 5.6 summarize the results.

On the CIFAR-10 dataset, regardless of the architecture, our method obtained

the lowest drop in accuracy. In terms of FLOP reduction, only the recent approach

by Lin et al. [2020] achieved superior results. On the VGG16 architecture, the proposed

approach and the methods by Lin et al. [2020] and, Liu et al. [2017] achieved a FLOP

reduction above 90%. Such achievements, however, are not surprising since previous

works have argued that VGG is a redundant architecture [Luo et al., 2019], mainly

compared to ResNet architectures. Table 5.5 reinforces this remark, where the highest

FLOP reduction in ResNet is around 1.28× less than VGG.

Besides removing more FLOPs, our method is also computationally more e�cient

in terms of the number of �ne-tuning necessary. For instance, the methods by Hu et al.

[2016] and Huang et al. [2018] require 16 stages of �ne-tuning to prune VGG16. On the

other hand, our method achieves competitive results with only around �ve �ne-tuning

stages. Similar to our method, the approaches by Yu et al. [2018] and He et al. [2018b]

demand few �ne-tuning stages, however, we achieve a better trade-o� between FLOP

reduction and accuracy drop, as shown in Table 5.5.

On the ImageNet dataset, by pruning VGG16, with only three iterations of the

proposed method, we were able to achieve 1.75× more FLOPs reduction than most

pruning methods on similar accuracy drop. In particular, only the approach by Luo

et al. [2019] obtained a higher FLOP reduction than our method. On the ResNet50

architecture, our method achieves competitive results. However, compared to the most

recent pruning approaches, we achieved a lower FLOP reduction. It turns out that,

when pruning this architecture, our approach removed few �lters from 3×3 convolutions
layers within the bottleneck building block, which are the ones with the higher number

of FLOPs, thus we achieve lower FLOP reduction.

5.3. Pruning Approaches 67

Table 5.5. Comparison of existing pruning methods. Negative values denote improvement
regarding the original network. The best FLOP reduction and accuracy drop are shown in
bold. The arrows indicate which direction is better.

Method
FLOP

Reduction↑
Accuracy

Drop↓

VGG16 on

CIFAR-10

Hu et al. [2016] 28.29 −0.66
Li et al. [2017] 34.00 −0.10
He et al. [2019b] 35.90 0.34

Guo et al. [2020a] 54.89 −0.57
Huang et al. [2018] 64.70 1.90

Lin et al. [2020] 92.00 2.73

Liu et al. [2017] 95.70 3.35

Ours (it=1) 23.13 -0.89

Ours (it=5) 67.25 −0.63
Ours (it=10) 90.66 1.50

ResNet56 on

CIFAR-10

Yu et al. [2018] 43.61 0.03

He et al. [2018b] 50.00 0.90

He et al. [2019b] 52.60 0.10

He et al. [2018a] 52.60 1.33

He et al. [2020] 52.90 0.25

Chin et al. [2020] 53.00 0.20

Guo et al. [2020a] 54.89 −0.55
Lin et al. [2020] 74.10 2.54

Ours(it=1) 7.09 −0.60
Ours(it=5) 35.23 -0.90

Ours(it=11) 66.54 −0.38

ResNet110 on

CIFAR-10

He et al. [2018a] 40.80 0.30

Yu et al. [2018] 43.78 0.18

He et al. [2019b] 52.30 −0.17
He et al. [2020] 60.30 −0.11
Lin et al. [2020] 68.70 0.85

Ours(it=1) 6.85 −0.59
Ours(it=5) 33.16 -1.51

Ours(it=10) 60.17 −0.93

In summary, our strategy for removing �lters obtained one of the best trade-o�s

between FLOP reduction and accuracy drop. To better visualize such a trade-o�, we

plot the top 5 best pruning methods (according to FLOP reduction) and the proposed

68 Chapter 5. Experiments

Table 5.6. Comparison of existing pruning methods. Negative values denote improvement
regarding the original network. The arrows indicate which direction is better.

Method
FLOP

Reduction↑
Accuracy

Drop↓

VGG16 on

ImageNet(224× 224)

Hu et al. [2016] 19.69 0.84

He et al. [2017] 20.00 1.7

Wang et al. [2018b] 20.00 2.00

He et al. [2018b] 20.00 1.40

Luo et al. [2019] 69.81 1.88

Ours(it=1) 11.02 −0.58
Ours(it=3) 35.73 1.75

Ours(it=5) 58.51 3.69

ResNet50 on

ImageNet(224× 224)

Hu et al. [2016] 19.69 0.84

He et al. [2017] 20.00 1.7

Wang et al. [2018b] 20.00 2.00

He et al. [2018b] 20.00 1.40

Li et al. [2019a] 50.00 0.36

He et al. [2019b] 53.50 0.55

Guo et al. [2020a] 55.71 −0.28
He et al. [2020] 60.80 0.83

Luo and Wu [2020] 72.86 1.41

Lin et al. [2020] 76.03 3.29

Ours(it=1) 6.13 -1.92

Ours(it=5) 27.45 −0.31
Ours(it=10) 44.50 1.01

approach in Figure 5.8. From Figure 5.8 (left), it is possible to note that our method

always provides a better solution (i.e., it is a non-dominated solution) considering

accuracy drop or FLOP reduction. On the other hand, In Figure 5.8 (right), some

strategies outperformed our method in both accuracy drop and FLOP reduction.

Based on the aforementioned discussion, we have shown that the proposed method

achieves a superior reduction in FLOPs. This is an e�ect of the layers where it removes

the �lters. According to Figure 5.9 (left), the layers 2, 4, 6, 7, 9 and 10 of VGG16 have

the higher number of FLOPs. In general, the existing methods fail to eliminate �lters

from these layers. For instance, the methods proposed by Li et al. [2017] and Huang

et al. [2018] remove a large number of �lters from the layers 9 to 13 (Figure 5.9 (right)),

but they remove a small number of �lters from other layers. On the contrary, our

5.3. Pruning Approaches 69

50 55 60 65 70 75
−1

−0.5

0

0.5

1

1.5

2

2.5

3

FLOP Reduction (%)

D
ro

p
in

 A
cc

ur
ac

y
(p

.p
.)

He et al. [2018a]
He et al. [2020]
Chin et al. [2020]
Guo et al. [2020]
Lin et al. [2020]
Ours

Higher Better

Lower Better

40 45 50 55 60 65 70 75 80
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

FLOP Reduction (%)

D
ro

p
in

 A
cc

ur
ac

y
(p

.p
.) He et al. [2019b]

Guo et al. [2020]
 He et al. [2020]
Luo and Wu [2020]
Lin et al. [2020]
Ours

Higher Better

Lower Better

Figure 5.8. Comparison of existing pruning methods. Left. Results on the CIFAR-10
dataset. On this dataset, our method always provides a better solution (i.e., it is a non-
dominated solution) considering one of the performance metrics: accuracy drop (y-axis) or
FLOP reduction (x-axis). Right. Results on the ImageNet (224 × 224) dataset. In both
�gures, negative values in the y-axis denote improvement regarding the original, unpruned,
network. The arrows indicate which direction is better.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5

3

3.5

4

7

Layer index

N
um

be
r o

f F
LO

Ps
 (x

10
)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

Li et al.
Huang et al.
Ours

Pe
rc

en
ta

ge
 o

f R
em

ov
ed

 F
ilt

er
s

Layer index

Figure 5.9. Left. Number of �oat point operations (FLOPs) per layer of the VGG16
network. Right. Percentage of removed �lters in each layer using di�erent pruning methods.
Values computed from the VGG16 network on the CIFAR-10 dataset.

method eliminates a large number of �lters from all layers, as shown in Figure 5.9

(right). In particular, we eliminate more than 50% of �lters from layers 2 to 10, which

are the ones with the large number of FLOPs, and more than 25% from the other layers.

Hence, we are able to achieve a higher FLOPs reduction than existing state-of-the-art

methods, which are biased in eliminating �lters of particular layers.

70 Chapter 5. Experiments

5.3.1.6 Pruning Lightweight Networks

In this experiment, we assess the performance of removing �lters from lightweight

networks. Table 5.7 shows the results when using one, three and �ve iterations of

pruning on MobileNetV1 and MobileNetV2. On the CIFAR-10 dataset, we were able

to remove up to 60% FLOPs with a negligible drop in accuracy, i.e., it is within one

percentage point. To achieve a similar FLOP reduction on ImageNet, the drop in

accuracy was substantially higher. In particular, on this dataset, MobileNetV1 had

a signi�cant drop in accuracy even when considering few (i.e., three) iterations of

pruning, thus, suggesting that it is a bit sensitive to pruning on ImageNet.

Table 5.7. Results when pruning �lters from lightweights architectures. Negative values
denote improvement regarding the original network. The best FLOP reduction and accuracy
drop, for each dataset, are shown in bold. The arrows indicate which direction is better.

Iteration
FLOP

Reduction↑
Accuracy

Drop↓

MobileV1 on

CIFAR-10

1 17.73 −0.22
3 42.89 0.04

5 60.99 0.12

MobileV2 on

CIFAR-10

1 13.24 -0.37

3 24.23 −0.18
5 48.20 −0.07

MobileV1 on

ImageNet (224x224)

1 14.16 0.44

3 37.81 2.67

5 59.71 5.61

MobileV2 on

ImageNet (224x224)

1 15.15 -0.51

3 34.77 0.70

5 50.52 2.61

5.3.1.7 Time Issues

In this experiment, we demonstrate the improvement in prediction time provided by

our strategy for removing �lters. For this purpose, we compare the average prediction

time of the original VGG16 and its prediction time after running one, �ve and ten

iterations of pruning. Figure 5.10 shows the average time considering 30 executions for

predicting a single sample from the CIFAR-10 dataset.

According to Figure 5.10, after one iteration of pruning, the improvement in

prediction time is marginal, but statistically di�erent. On the other hand, with �ve

5.3. Pruning Approaches 71

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

In
fe

re
nc

e
Ti

m
e

(s
ec

on
ds

)

Unpruned Ours (it=1) Ours (it=5) Ours (it=10)

Figure 5.10. Average prediction time (lower is better) of the original network and it after
running one, �ve and ten pruning iterations. Black bars denote the con�dence interval. Values
are computed using VGG16 architecture on CIFAR-10.

and ten iterations of pruning the improvement is visually higher. In particular, on

the paired t-test, all the times were statistically di�erent, indicating that for di�erent

pruning iterations, the improvement in prediction time, de-facto, happens.

5.3.2 Generalization Ability

Our next experiment evaluates the generalization ability of pruned models when trans-

ferred to other datasets. For this purpose, we prune the ResNet56 architecture on

ImageNet 32 × 32 employing di�erent pruning iterations. Then, we �ne-tune (i.e.,

adjust the weights) and evaluate the pruned architectures on the CIFAR-10 dataset.

Table 5.8 summarizes the results.

According to Table 5.8, when applied to transfer learning, the pruned models

obtain similar accuracy to the original model (see the last column in the table). Specif-

ically, the di�erence between the accuracy of the original and the pruned models is less

than one percentage point, which means that it is negligible. In particular, these results

are consistent even when we consider more iterations of pruning [Blalock et al., 2020].

Table 5.8. Generalization ability (transfer learning) of pruned models. The arrows indicate
which direction is better.

Architecture
Accuracy on

Transfer Learning↑
Di�erence to

(unpruned) ResNet56↓
ResNet56 95.44 �

ResNet56 + Pruning (it=1) 95.20 0.23

ResNet56 + Pruning (it=3) 95.12 0.31

ResNet56 + Pruning (it=5) 94.90 0.53

72 Chapter 5. Experiments

Figure 5.11. Loss Landscape of ResNet56 (left) and its pruned version (right). Both models
exhibit similar landscapes, which indicates that they tend to achieve the same generalization
ability.

Additionally, they demonstrate that pruning preserves the generalization power of con-

volutional networks. To reinforce this claim, we plot the loss landscape of ResNet56

and its pruned version in Figure 5.11. According to previous works [Li et al., 2018;

Guo et al., 2020b], the loss landscape is capable of showing the generalization power

of convolutional networks, for which the �atter landscape the better generalization.

Based on this observation, Figure 5.11 reinforces that pruning preserves the general-

ization ability of convolutional networks, as the loss landscape of both ResNet56 and

its pruned version exhibits similar dynamics.

5.3.2.1 Qualitative Results

Our last experiment shows that the regions in the image which are important to predict

the class label are preserved after pruning a network with our method.

Figure 5.12 shows the attention maps of the VGG16 network on images from

the ImageNet dataset. It is possible to note that our method preserves the important

regions (warmer regions), which are the ones where the object is located. In addition,

sometimes, our method locates class-discriminative regions better than the original

network, e.g., Figure 5.12 (a)-(c). This is an e�ect of PLS+VIP, which focuses on

keeping �lters with high relationship with the class label.

5.3. Pruning Approaches 73

(a) (b) (c) (d) (e) (f)

Figure 5.12. Attention maps of the VGG16 network. From top to down. Input images;
Attention maps from the original network; Attention maps from the pruned network.

5.3.2.2 Final Remarks

We demonstrate that is possible to remove unimportant, or least important, �lters

by estimating their importance using PLS. These results con�rm our hypothesis that

the relationship between �lters and the class label on a low-dimensional space (PLS

criterion) can be employed to identify potential �lters to be removed.

Compared to existing criteria for determining �lter importance as well as state-

of-the-art feature selection techniques, PLS achieves the lowest drop in accuracy. Com-

pared to state-of-the-art pruning approaches, our strategy for removing �lters achieves

one of the best trade-o�s between FLOP reduction and accuracy drop. In particular,

on some architectures, we obtain a large FLOP reduction while improving network

accuracy.

Limitations. One concern about the proposed method to remove �lters is the large

memory consumption when applied to large datasets. This limitation takes place be-

cause we generate a matrix describing the �lter (features) representation for each sam-

ple of the dataset, and this matrix needs to be in memory in advance. Speci�cally,

the dimensions of this matrix are #features (�lters) × # samples. Intuitively, on large

datasets, its second dimension becomes large, thus requiring more memory consump-

tion.

5.3.3 Pruning Layers in Convolutional Networks

In this section, we introduce the experiments of the proposed strategy for removing

layers from convolutional networks. We �rst introduce two ways of removing layers:

74 Chapter 5. Experiments

iterative or single pruning. Then, we compare the proposed criterion for de�ning layer

importance with existing pruning criteria and state-of-the-art pruning approaches, re-

spectively. Next, we assess the e�ectiveness of removing layers from lightweights archi-

tectures. Afterward, we present results when layers and �lters are removed from the

network. Finally, we demonstrate improvements in inference time and �nal remarks.

Throughout this section, the terms layers and modules are used interchangeably.

5.3.3.1 Iterative Pruning vs. Single Pruning

Similar to remove �lters, when removing layers, we can consider two strategies. (i)

Iterative pruning: remove a low percentage of layers iteratively. (ii) Single pruning:

remove a high percentage of layers at once.

In this experiment, we demonstrate the behavior of pruning on these two strate-

gies. For this purpose, as in Section 5.3.1.2, we perform some iterations of the iterative

pruning, where for each iteration we remove 10% of the modules, and measure the per-

centage of structures (modules) removed per iteration. Then, we use these percentages

to set a single iteration of pruning. Table 5.9 shows the results. According to this ta-

ble, iterative pruning provided better results than single pruning, as it removed a large

percentage of modules with the lowest drop in accuracy. Speci�cally, iterative pruning

was able to remove up to 55% of the modules with improvement in accuracy (−0.65
p.p.) while single pruning decreased accuracy by 0.71 p.p.. Such results are expected

since iterative pruning performs more �ne-tuning stages. For example, to prune 55%

of the modules, iterative pruning requires ten stages of �ne-tuning while single pruning

requires only one iteration of �ne-tuning. In particular, single pruning always requires

only one stage of �ne-tuning regardless of the percentage of modules removed. Inter-

estingly, the drop in accuracy of the single pruning strategy is less than one percentage

point. Thereby, single pruning can be more appropriate to large datasets and deeper

Table 5.9. Drop in accuracy (in percentage points) when executing our method with few
iterations and a low pruning ratio (Iterative Pruning), and when executing a single iteration
with a high pruning ratio (Single Pruning). Results on CIFAR-10 (test set). The arrows
indicate which direction is better.

Percentage of

Removed Modules (%)

Iterative Pruning

Accuracy Drop↓
Single Pruning

Accuracy Drop↓
10 −0.84 (it=1) −0.84
22 −0.93 (it=3) −0.34
37 −0.76 (it=5) 0.03

55 −0.65 (it=10) 0.71

5.3. Pruning Approaches 75

networks, where �ne-tuning is time-consuming. We refer the reader to Appendix A for

details of the time for �ne-tuning.

5.3.3.2 Comparison with other Pruning Criteria

In this experiment, we compare our criterion (PLS+VIP) for assigning layer importance

with other criteria and state-of-the-art feature selection techniques, which can be em-

ployed to de�ne layer importance as well. To this end, we follow the same process when

comparing PLS+VIP with other criteria for pruning �lters, which consists of using a

single pruning iteration and modifying only the criterion for assigning importance.

Table 5.10 shows the results obtained by di�erent pruning criteria on the CIFAR-

10 and ImageNet datasets. According to the results, on CIFAR-10, our criterion for

determining layer importance achieved the best drop in accuracy. On the low-resolution

version of ImageNet, our criterion outperformed only the criterion by Lin et al. [2020].

On the 224 × 224 version of ImageNet, all criteria had similar performance with im-

provement in accuracy, but our criterion obtained the lowest increase in accuracy. In

general, the criterion by Luo and Wu [2020] achieved one of the best drops in accuracy

across the datasets.

Even though our criterion underperforms some criteria, it is important to em-

phasize that PLS+VIP is computationally more attractive. For example, the feature

selection techniques (infFS, ilFS, infsFSU) require an adjacency matrix representing all

pairs of features, consuming substantial computational resources. The rank approach

by Lin et al. [2020] (HRank) is time-consuming since the feature map rank is estimated

using the SVD technique. Finally, KL-divergence (KL) is one of the most computa-

Table 5.10. Drop in accuracy using di�erent criteria for determining layer importance.
Negative values denote improvement regarding the original (unpruned) network. The best
results are in bold. The arrows indicate which direction is better.

Layer Importance

Criterion

CIFAR-10

Acc. Drop↓
ImageNet 32× 32

Acc. Drop↓
ImageNet224× 224

Acc. Drop↓
infFS [Ro�o et al., 2015] −0.68 1.50 −2.03
ilFS [Ro�o et al., 2017] −0.46 1.12 −2.11

infFSU [Ro�o et al., 2020] −0.50 2.03 −2.03
KL [Luo and Wu, 2020] −0.32 1.00 −2.06
HRank [Lin et al., 2020] −0.73 2.35 −2.03

ABS [Tan and Motani, 2020] −0.54 0.96 −2.11
PLS+VIP −0.84 2.25 −1.92

76 Chapter 5. Experiments

tionally expensive criteria since it requires a forward prediction for each structure of

the network.

5.3.3.3 Comparison with Existing Pruning Approaches

In this experiment, we compare the proposed strategy for pruning layers with state-

of-the-art pruning approaches that focus on removing the same structure, Table 5.11.

We discuss the results employing the single prune iteration since it is more suitable for

deeper networks and large datasets, as we discussed before. In addition, we restrict our

discussion to ResNet110 on CIFAR-10 and ResNet50 on ImageNet (224 × 224) since

these settings are the most reported in the context of pruning layers.

According to Table 5.11, on both datasets, our method is the one with the best

trade-o� between drop in accuracy and FLOP reduction. On CIFAR-10, our method

achieved a surprisingly 74.75 FLOP reduction with an accuracy drop within one per-

centage point. On ImageNet, we achieve around 3× more FLOP reduction compared

to Veit and Belongie [2020] and, Huang and Wang [2018]. It is worth mentioning that

the approaches by Veit and Belongie [2020] and, Wu et al. [2018] are dynamics strate-

gies, which means that the FLOP reduction is conditioned to the input presented to

the network; thereby, they can be prohibitive to �xed-resources environments. For

example, consider a scenario where it is possible to execute only 35% of the FLOPs of

a network, which means that we need to reduce 65% of the FLOPs to run it on such

a scenario. To the images where the pruned network surpasses this value, the system

can present fails as well as compromising other components. On the other hand, our

Table 5.11. Comparison of existing pruning methods that focus on removing layers. Negative
values denote improvement regarding the original network. The symbol ⋆ indicates mean
FLOP reduction. The best FLOP reduction and accuracy drop are shown in bold. The
arrows indicate which direction is better.

Method
FLOP

Reduction↑
Accuracy

Drop↓

ResNet110 on

CIFAR-10

Veit and Belongie [2020] 18.00⋆ 0.62

Huang and Wang [2018] 50.47 0.26

Wu et al. [2018] 65.00⋆ -0.39

Ours 74.75 0.82

ResNet50 on

ImageNet(224× 224)

Wang et al. [2018b] 12.00⋆ 0.00

Veit and Belongie [2020] 15.00⋆ -0.20

Huang and Wang [2018] 31.00 0.95

Ours 45.28 0.67

5.3. Pruning Approaches 77

0 10 20 30 40 50 60 70 80
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FLOP Reduction (%)

D
ro

p
in

 A
cc

ur
ac

y
(p

.p
.)

Veit et al. [2020]
Wu et al. [2018]
Huang et al. [2018]
Ours

Higher Better

Lower Better

10 15 20 25 30 35 40 45 50

−0.2

0

0.2

0.4

0.6

0.8

1

FLOP Reduction (%)

D
ro

p
in

 A
cc

ur
ac

y
(p

.p
.)

Wang et al. [2018a]
Huang et al. [2018]
Veit et al.[2020]
Ours

Higher Better

Lower Better

Figure 5.13. Comparison of existing pruning methods. Left. Results on the CIFAR-10
dataset. Right. Results on the ImageNet (224×224) dataset. On both datasets, our method
always provides a better solution (i.e., it is a non-dominated solution) considering one of the
performance metrics: accuracy drop (y-axis) or FLOP reduction (x-axis). Negative values
in the y-axis denote improvement regarding the original, unpruned, network. The arrows
indicate which direction is better.

strategy does not su�er from this problem since the FLOP reduction is the same for

all images.

To better visualize the trade-o�s between accuracy and FLOP reduction, we plot

the results of Table 5.11 in Figure 5.13. From this �gure, it is possible to note that

our method always provides a better solution (i.e., it is a non-dominated solution)

considering accuracy drop or FLOP reduction.

5.3.3.4 Pruning Lightweight Networks

In this experiment, we assess the performance of removing modules from lightweight

networks, Table 5.12. Di�erent from previous experiments on lightweight architectures,

here, we consider only MobileNetV2. It turns out that MobileNetV1 is a plain network

and to prune layers the architecture needs to be residual, as we explain in Section 3.2.2.

To reduce the computational cost, we discuss the results considering only the sin-

gle pruning strategy with di�erent pruning ratio. Speci�cally, due to implementation

details, MobileNetV2 has only �ve possible modules to be removed. Thus, we set the

prune ratio such that it removes 1, 2, 3, and 4 modules. It is worth mentioning that

MobileNetV2 on ImageNet has two downsampling layers at the beginning of architec-

ture, implying in di�erent FLOP reduction when compared to architecture applied to

CIFAR-10.

According to Table 5.12, on both datasets, the proposed approach is able to

remove more than 26% of the modules with a negligible drop in accuracy. More im-

78 Chapter 5. Experiments

Table 5.12. Results when pruning layers from lightweights architectures. Negative values
denote improvement regarding the original network. The best FLOP reduction and accuracy
drop are shown in bold. The arrows indicate which direction is better.

Pruning

Ratio

FLOP

Reduction↑
Accuracy

Drop↓

MobileV2 on

CIFAR-10

0.06 4.60 −0.14
0.13 9.20 0.16

0.19 16.31 -0.30

0.26 26.60 0.04

MobileV2 on

ImageNet (224× 224)

0.06 6.84 -0.83

0.13 16.74 −0.21
0.19 21.16 −0.08
0.26 25.66 0.31

portantly, these results suggest that lightweight networks are not sensitive to layer

removal, thus enabling further improve their performance in terms of latency.

It is important to mention that when pruning �lters from MobileNetV2, the

FLOP reduction is higher (up to 48.20%, see Table 5.7). It turns out that we can

remove, at most, �ve modules from MobileNetV2 while pruning �lters can eliminate

�lters from all modules, thus obtaining a higher FLOP reduction. Despite this, we

shall see that pruned networks obtained from the removal of layers attain considerably

better prediction time than those from the removal of �lters.

5.3.3.5 Pruning Multiple Structures

Pruning �lters and layers are orthogonal strategies and, therefore, they could bene�t

each other. In this experiment, we assess the e�ectiveness of removing both structures.

For this purpose, we follow a two-step mechanism: we �rst remove layers and, then,

we remove �lters. In practice, we use ResNet56 with 55% of its modules removed

(the network of Table 5.9, last row) as input to our pruning �lter method introduced

in Section 4.1.1. It is worth mentioning we could remove �lters �rst, however, the

removal of layers provides a network with lower computational cost and latency, which

reduces memory requirements and speeds-up the �ne-tuning stage. Additionally, our

assessment is restricted to ResNet110 on the CIFAR-10 dataset, as it is the most

reported setting for both layer and �lter pruning.

Table 5.13 summarizes the results. Compared to the top-performance strategies

that remove either �lters or layers, our strategy for pruning both structures attains

signi�cantly higher FLOP reduction with negligible loss in accuracy.

5.3. Pruning Approaches 79

Table 5.13. Comparison of our strategy for removing multiple structures with methods
that remove �lters or layers, but not both. The best FLOP reduction and accuracy drop
are shown in bold. Negative values denote improvement regarding the original network. The
arrows indicate which direction is better.

Method
FLOP

Reduction↑
Accuracy

Drop↓

ResNet110 on

CIFAR-10

Wu et al. [2018] 65.00 −0.39
Lin et al. [2020] 68.70 0.85

Ours (Filters only) 60.17 -0.93

Ours (Layers only) 74.75 0.82

Ours (Filters + Layers) 76.37 0.98

5.3.3.6 Time Issues

Our last experiment shows the improvement in prediction time by pruning layers. To

this end, we compare the average prediction time of original, unpruned, ResNet50 with

its pruned version considering di�erent pruning ratio. Figure 5.14 (left) shows the

prediction time average time considering 30 executions for predicting a single sample

from the ImageNet dataset.

In practice, remove layers provides pruned networks with better prediction time

than removing �lters, even taking into account the same FLOP reduction. To demon-

strate that, in Figure 5.14 (right), we plot the prediction time resulting from the removal

of �lters and layers on the same FLOP reduction. It is possible to observe that remov-

Unpruned Ours (p=0.1)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

re
nc

e
Ti

m
e

(s
ec

on
ds

)

Ours (p=0.6) Ours (p=0.9)
0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

Pruning Layers
Pruning Filters

Lower Better

Higher Better

FLOP Reduction

In
fe

re
nc

e
Ti

m
e

(s
ec

on
ds

)

Figure 5.14. Left. Average prediction time (lower is better) of the original (unpruned)
network and it after removing layers using di�erent pruning ratio (p). Black bars denote the
con�dence interval. Right. Prediction time of pruned networks where layers or �lters, but not
both, are removed. On the same FLOP reduction, by removing layers provides substantially
better prediction time.

80 Chapter 5. Experiments

ing layers provides better inference time than removing �lters, even when the latter

obtains more FLOP reduction. It turns out that removing layers reduces prediction

latency � to compute convolutions in one layer, the model must wait for the output of

all previous layers. In other words, less sequential processing improves parallelization,

leading to faster prediction time. Therefore, by removing layers we achieve substan-

tially better predictive time than removing �lters, as shown in Figure 5.14 (right).

5.3.3.7 Final Remarks

We demonstrate that is possible to remove unimportant layers by estimating their im-

portance using PLS. These results con�rm our hypothesis that the relationship between

layers and the class label on a low-dimensional space (PLS criterion) can be employed

to identify unimportant layers to be removed. Compared to other criteria for assigning

layer importance, PLS achieves competitive results while being more e�cient.

In this category of pruning, most approaches are dynamic strategies, where the

computational cost is conditioned to input presented to the network. Such strategies

can be prohibitive to environments with a �xed computational budget. On the other

hand, we show that it is possible to obtain pruned networks to which the computational

cost is not conditioned to the input.

Finally, we show that strategies that remove layers and �lters could bene�t from

each other, leaning to substantial improvements in computational performance.

Limitations. Despite the remarkable results in compressing networks, it is not possible

to remove all layers composing a network. This problem takes place due to inconsis-

tent dimensions between consecutive layers, i.e., the output of a layer is incompatible

with successive layers. For example, we can remove only 33% of the modules of Mo-

bileNetV2. We believe that more sophisticated networks such as the ones generated

by neural architecture search can be even more prohibitive, thus preventing us from

improving their e�ciency by pruning layers.

5.4 Neural Architecture Search

In this section, we introduce the experiments of the proposed strategy for designing

convolutional architectures automatically. We �rst introduce the in�uence of the initial

architecture (speci�cally its depth) on our search space, compare the proposed criterion

for de�ning stage importance with state-of-the-art feature selection techniques, and as-

sess the e�ectiveness of the proposed weight transfer mechanism, respectively. Then, we

compare the built convolutional networks with human-design and NAS architectures.

5.4. Neural Architecture Search 81

Next, we compare the proposed NAS method with state-of-the-art NAS approaches

and demonstrate how to build architectures on large datasets, respectively. Finally, we

show the generalization ability of our discovered architectures, their performance when

combined to compose an ensemble and �nal remarks, in this order.

Throughout this section, training from scratch refers to train the architectures

with random initialization for 200 epochs. Additionally, when using the proposed

weight transfer technique, the architectures are �ne-tuned for 50 epochs. For fairness

with previous works, which adjust their �nal architecture using additional epochs [Dong

and Yang, 2019; Brock et al., 2018; Elsken et al., 2018], at the end of each iteration

of Algorithm 4 the candidate architecture is further trained for 100 epochs. Finally,

unless stated otherwise, we are considering our NAS approach with residual modules.

5.4.1 In�uence of Initial Depth

Our �rst experiment evaluates the in�uence of the depth b0 of the initial architecture

(F in step 1 of Algorithm 4). To this end, we vary b0 from 2 to 10 in steps of 2 and

measure the performance of the resulting architecture after running one iteration of

our method.

According to Table 5.14, we observe that large values of b0 lead to accurate

architectures, but the computational cost increases substantially as well. For example,

for b0 = 10 the candidate architecture after one iteration of Algorithm 4 achieves an

accuracy of 92.12 with 1.10 million parameters and 149 million FLOPs. With b0 = 6,

on the other hand, the �rst candidate architecture obtains an accuracy of 92.03 leading

to signi�cantly fewer parameters and FLOPs. Note that this behavior also occurs in

residual networks. For example, ResNet56 (b = 9) is only 0.2 percentage points (p.p)

more accurate than ResNet44 (b = 7), see Table 5.16 (�rst and fourth rows).

Based on Table 5.14, the initial model using b=6 achieves a good compromise

Table 5.14. In�uence of the initial number of modules b0 on the �rst candidate architecture.
The arrows indicate which direction is better.

b0 Depth
Parameters↓
(Million)

FLOPs↓
(Million)

Memory↓
(MB)

Accuracy ↑
(200 epochs)

2 23 0.36 45 3.81 91.23

4 31 0.40 64 5.31 91.57

6 43 0.60 92 7.58 92.03

8 63 0.95 139 11.56 91.98

10 67 1.10 149 12.34 92.12

82 Chapter 5. Experiments

Table 5.15. Accuracy on CIFAR-10 (200 epochs) of our method using di�erent criteria for
determining stage importance. The best accuracy for each iteration is shown in bold.

Iteration

Criterion 1 2 3 4 5

infFS [Ro�o et al., 2015] 91.59 92.09 92.02 92.36 92.45

ilFS [Ro�o et al., 2017] 91.94 92.06 92.10 92.08 92.52

infFSU [Ro�o et al., 2020] 90.42 92.26 91.95 92.41 92.64

PLS+VIP 92.03 92.38 92.62 92.53 92.58

between accuracy and computational cost. Speci�cally, this model was the one that

obtained an accuracy above 92% with the lowest computational cost; thus, we employ

it as the initial model in the remaining experiments.

5.4.1.1 Importance Criteria

This experiment assesses the quality of the candidate architectures discovered applying

PLS and the infFS framework to measure the importance of the stages.

According to Table 5.15, the proposed method using PLS designs more accurate

candidate architectures. While the superiority of PLS could be attributed at �rst to the

fact that it is supervised, in contrast to infFS and infFSU, we also assessed a supervised

variant of infFS, ilFS, and observed the same trend (Table 5.15). This suggests that

PLS is more suitable for measuring the importance of the stages.

Figure 5.15 shows the distribution of modules resulting from di�erent criteria for

measuring the importance of architecture stages. The results show that the approach

used to measure importance has signi�cant impact on the �nal architecture. In addi-

tion, our method applying PLS, ilFS and InfFSU inserted more modules on the middle

Stage 1 Stage 2 Stage 3
0

2

4

6

8

10

12

14

16

18 infFS
ilFS
infFSU
PLS+VIP

N
um

be
r o

f R
es

id
ua

l M
od

ul
es

Figure 5.15. Number of residual modules, per stage (i.e. bi), after �ve iterations of the
proposed method using di�erent criteria for determining stage importance.

5.4. Neural Architecture Search 83

Table 5.16. Comparison with human-designed architectures. Our architectures achieve
superior accuracy and are more e�cient. W. transfer indicates our weight transfer technique.
The best values are shown in bold. The arrows indicate which direction is better.

Architecture Depth
Param.↓
(Million)

FLOPs↓
(Million)

Memory↓
(MB)

Accuracy↑
(300 epochs)

ResNet44 44 0.66 97 8.14 92.83

Ours (it=1), scratch 43 0.60 92 7.41 93.38

Ours (it=1), W. transfer 39 0.56 83 7.00 93.32

ResNet56 56 0.86 125 10.42 93.03

Ours (it=3), scratch 59 0.69 130 10.32 93.36

Ours (it=3), W. transfer 51 0.90 111 9.16 93.61

ResNet110 110 1.7 253 20.67 93.57

Ours (it=5), scratch 67 0.88 149 11.65 94.27

Ours (it=5), W. transfer 59 1.23 139 11.31 93.51

stage, which means increasing its depth brings improvements to the architecture. Im-

portantly, this behavior is consistent with the work by Wang et al. [2018b], where they

demonstrate that removing layers from the middle stage degrades accuracy more than

other stages. This supports the fact that our approach is capable of identifying stages

that need become deeper (most important) and the ones that could be kept shallow

(least important).

Based on these results, in the next experiments, we report results considering

one, three and �ve iterations and 300 epochs of training. We observe that increasing

the number of iterations above �ve does not improve accuracy substantially enough

to justify the increase in computational cost. In particular, to the criteria infFSU

and PLS+VIP, the candidate architectures discovered using more than �ve iterations

obtained accuracy inferior to architectures in Table 5.15. We refer the reader to Ap-

pendix C (Tables C.1 and C.2) for the results of other iterations.

5.4.1.2 Weight Transfer

Our next experiment evaluates the behavior of the proposed NAS method when trans-

ferring knowledge (weights) from existing networks to our candidate architectures. For

this purpose, we �rst de�ne an existing (pre-trained) network to provide the weights

for the modules of the candidate architectures. In this work, we employ ResNet110 due

to its high accuracy. We highlight that since our candidate architectures are very shal-

low, we could employ shallower ResNets (e.g., ResNet56) and still avoid the restriction

that the depth of the candidate architecture cannot exceed the depth of the network

84 Chapter 5. Experiments

providing the weights (see Section 4.2).

Table 5.16 summarizes the results. Compared to training from scratch, our

method with the weight transfer technique yields higher performance architectures

in terms of depth, memory usage, number of FLOPs and parameters. The reason for

di�erent architectures when using training from scratch and the weight transfer tech-

nique (�ne-tuning) is that the weights of the networks are di�erent and in�uence the

importance score directly. This leads to the insertion of modules on di�erent stages

throughout iterations.

Besides designing higher-performance architectures, an advantage of weight trans-

fer is that it reduces the computational burden of training the architectures from

scratch. Speci�cally, this strategy reduces the average time for each iteration from

17 to 3 hours. We emphasize that the time for generating our architectures is faster

than previous works, which require many days on several GPUs even when training

for a few epochs (i.e., 20) [Zoph et al., 2018; Baker et al., 2017; Real et al., 2017]. For

example, the approaches by Baker et al. [2017] and, Real et al. [2017] require 10 days

to discover competitive architectures. It is worth mentioning that our method could be

made even faster by training/�ne-tuning architectures for only a few epochs, as sug-

gested by previous works. On the other hand, this strategy can yield poor architectures,

harming the search process [Dong and Yang, 2020; Sciuto et al., 2020].

In summary, the proposed weight transfer technique speeds-up our NAS approach

considerably, which enables searching architectures directly on large datasets. However,

when using this technique the candidate architectures can take advantage of well-

trained networks. Therefore, to make a fairer comparison with other NAS, unless

stated otherwise, we are considering our method with training from scratch.

5.4.1.3 Comparison with human-designed architectures

As we mentioned previously, human-designed architectures are generally composed of

stages with uniform depth. Our method, on the other hand, designs architectures by

adjusting the depth for each stage based on its importance. To demonstrate that this

process leads to more e�cient and accurate networks, in this experiment, we compare

our discovered architectures to their human-designed counterpart.

Table 5.16 compares our architectures with residual modules to existing residual

networks [He et al., 2016]. Compared to these networks, our architectures achieve

superior performance in terms of the number of parameters, FLOPs, memory usage

and accuracy. In particular, with one iteration our discovered architecture achieves

comparable accuracy to ResNet110, having less than half of its computational cost.

5.4. Neural Architecture Search 85

1 3 5
Iteration

0

0.5

1

1.5

2

2.5

Ca
rb

on
 E

m
is

si
on

 (k
gC

O
2e

q)

ResNets
Ours (scratch)
Ours (transfer)

ResNet110

ResNet56

ResNet44

Figure 5.16. Carbon emission for training architectures (the lower the better). From itera-
tion one to �ve, our architectures have their carbon emission increased slightly whereas from
ResNet44 to ResNet110 the increase is notably higher. CO2eq indicates the global warming
potential of various greenhouse gases as a single number.

More importantly, these results show that adjusting depth on a stage-by-stage basis

enables increasing capacity (re�ected by accuracy) of networks without compromising

their e�ciency.

Following a recent trend [Lacoste et al., 2019; Schwartz et al., 2020; Strubell et al.,

2019], we also measure the carbon emission for training architectures. For this purpose,

we use the Machine Learning Emissions Calculator4 and report the CO2-equivalents

(CO2eq), which indicates the global-warming potential of various greenhouse gases as a

single number. According to Figure 5.16, our candidate architectures emit notably less

carbon, even taking into account shallow versions of ResNet. Compared to ResNet110,

our �nal architecture trained from scratch emits 41% less CO2. Observe that, from

iteration one to �ve, our architectures have their carbon emission increased slightly

whereas from ResNet44 to ResNet110 the increase is notably higher. This occurs be-

cause our architectures are computationally more e�cient, leading to a considerably

faster training stage. Moreover, ResNets (as well as most human-designed architec-

tures) have the same depth for all stages. Our architectures, on the other hand, had

the depth of stages adjusted according to its importance, avoiding unnecessary growth

in computational cost.

5.4.2 Combination with other NAS approaches

As we mentioned earlier, our method can employ modules discovered by other NAS

approaches. We highlight that the NAS approaches that focus on discovering cells

de�ne the depth of stages uniformly (similar to human-designed architectures). In this

4https://mlco2.github.io/impact/

86 Chapter 5. Experiments

Table 5.17. Performance of networks built with the proposed method and cell modules
discovered by NAS. The best values are shown in bold. The arrows indicate which direction
is better.

Architecture Depth
Param.↓
(Million)

FLOPs↓
(Billion)

Memory↓
(MB)

Accuracy↑
CIFAR-10

NASNet169 169 2.3 2.7 71.26 94.34

Ours (it=1) 109 1.3 1.8 45.20 94.55

NASNet205 205 2.8 3.2 86.37 94.37

Ours (it=3) 133 1.5 2.2 56.96 94.63

NASNet241 241 3.3 3.8 101.47 94.51

Ours (it=5) 181 2.3 2.9 78.87 94.74

experiment, we show that using these modules coupled with our strategy provides even

better architectures.

Table 5.17 shows the results of our method applying the cells by Zoph et al. [2018]

as modules. Similar to residual modules, our architectures based on cells outperform

those based on stages with uniform depth. Compared to the original NASNet (b = 6 for

all stages � 241 layers deep) by Zoph et al. [2018], with one iteration, our discovered

architecture achieves superior accuracy having 60%, 52% and 55% fewer parameters,

FLOPs and memory usage.

5.4.3 Comparison with state-of-the-art NAS

This experiment compares our method with state-of-the-art NAS approaches.

According to Table 5.18, our method is the more cost-e�ective NAS approach in

terms of the number of evaluated models and amount of GPUs required. Compared

to Baker et al. [2017] and, Real et al. [2017], our method designs competitive archi-

tectures by evaluating a signi�cantly smaller number of models, enabling the proposed

method to run in a few hours on a single GPU. Speci�cally, our method evaluates one

order of magnitude fewer models. This is because instead of analyzing a large pool

of architectures like most approaches, we increment previous architectures iteratively

while taking into account the importance of the components to be inserted. This advan-

tage enables our method to scale to large datasets, while most NAS approaches might

be prohibitive even when employing morphism and other optimization techniques [Ha

et al., 2017; Dong and Yang, 2020]. Compared to approaches that also evaluate a small

number of models [Elsken et al., 2018; Kandasamy et al., 2018; Jin et al., 2019], our

method achieves the best tradeo� between accuracy and number of GPUs required.

5.4. Neural Architecture Search 87

Table 5.18. Comparison with state-of-the-art NAS approaches. Results taken from previous
works. The best values are shown in bold. '�' indicates the metric is not reported by the
original paper. The arrows indicate which direction is better.

Model
Evaluated↓
Models

GPUs↓
Param.↓
(Million)

Accuracy↑
CIFAR-10

Zoph et al. [2018] 20,000 800 2.5 94.51

Baker et al. [2017] 1,500 10 11.1 93.08

Real et al. [2017] 1,000 250 5.4 94.60

Brock et al. [2018] 300 1 4.6 94.47

Dong and Yang [2019] 240 1 2.5 96.25

Yang et al. [2020b] 128 1 3.6 97.38

Jin et al. [2019] ≈60 1 � 88.56

Elsken et al. [2018] 40 5 19.7 94.80

Kandasamy et al. [2018] 10 4 � 91.31

Chen et al. [2019] � 1 10.5 97.75

Li et al. [2020b] � 1 3.90 96.21

Ours (Res. modules) 11 1 1.7 94.27

Ours (Cell modules) 11 1 2.3 94.74

Ours (Ensemble) � � 7.27 95.68

In summary, our method achieves competitive results using both residual and cell

modules. When considering our best setting (cell modules with �ve iterations, see Ta-

ble 5.17), only the most recent approaches [Elsken et al., 2018; Dong and Yang, 2019;

Chen et al., 2019; Yang et al., 2020b; Li et al., 2020b] obtain superior accuracy. We

emphasize that our training process employs a simple SGD optimizer with standard

data augmentation, while other NAS approaches employ sophisticated optimizers and

regularization techniques (e.g., SGDR [Loshchilov and Hutter, 2017] and Scheduled-

DropPath [Zoph et al., 2018]). Although we could use these setups, they render it

more di�cult to identify which aspects actually lead to the improvement in NAS, as

argued by Dong and Yang [2020]. Thus, we prefer to maintain the training as simple

as possible.

Finally, our method built more parameter-e�cient architectures even without

considering the computational cost in the searching process. This occurs since most

NAS approaches focus on discovering components of the architecture while keeping a

uniform distribution of depth of the stages. Instead, our method adjusts this depth

based on its importance leading to shallower, and hence more e�cient, architectures.

88 Chapter 5. Experiments

Table 5.19. Accuracy of networks transferred from a small dataset (i.e., CIFAR-10) to large
datasets. The higher the accuracy the higher the generalization ability. The best accuracy is
shown in bold.

Architecture TinyImageNet ImageNet 32× 32

ResNet110 69.94 68.89

Ours (Res. modules) 72.34 70.09

NASNet241 79.20 80.67

Ours (Cell modules) 79.23 79.39

5.4.4 Learning Architectures on Large Datasets

Since our approach explores few candidate architectures, it is scalable to large datasets.

To reinforce this, we apply the proposed method to discover architectures on the large

ImageNet (224 × 224) dataset. We use bottleneck residual blocks [He et al., 2016] as

modules and the weight transfer technique. Due to limitations for training NAS-based

architectures, we do not consider cell modules.

Our �nal architecture obtained a top-5 accuracy of 90.23, which is less than one

percentage point inferior to the architecture by Dong and Yang [2019]. Although it

achieved a lower accuracy, an advantage of our method is that it can be applied on

large datasets without requiring careful parameter setting since we are using the same

parameters found on CIFAR-10. This advantage is desirable when no resources are

available for tuning such parameters. We highlight that the approach by Dong and

Yang [2019] fails to design networks directly on ImageNet, as it needs careful tuning

and di�erent hyper-parameters.

5.4.5 Generalization Ability

An alternative to learning architectures on large datasets is to design them on small

datasets and then transfer them to large datasets. The accuracy of the resulting archi-

tecture (trained from scratch) can be used to estimate its generalization ability (i.e.,

transferability), which is a desirable property in NAS [Zoph et al., 2018]. In this exper-

iment, we assess this generalization ability of our architectures. For this purpose, we

follow the same process by Zoph et al. [2018], which consists of taking an architecture

found for CIFAR-10 and training it from scratch on other datasets.

Table 5.19 shows the top-5 accuracy obtained on the Tiny ImageNet and Im-

ageNet 32 × 32 datasets. For both datasets, when using residual modules, our ar-

chitectures outperformed those based on stages with uniform depth. Speci�cally, our

architecture obtained an accuracy up to 2.4 p.p superior to ResNet110. With cell

5.5. Latent HyperNet 89

modules, our architecture and NASNet241 achieved similar results. In summary, these

results show that our architectures present high generalization ability.

5.4.6 Ensemble of Architectures

Motivated by the fact that an ensemble of candidate architectures can obtain better

accuracy than the �nal architecture alone [Elsken et al., 2018], our last experiment

shows the performance of our method employing this strategy.

Our ensemble is composed of the candidate architectures presented in Tables 5.16

and 5.17, achieving an accuracy of 95.68 with 7.27 million parameters. Compared to

the ensemble of Elsken et al. [2018], which obtains an accuracy of 95.60 with 88 million

parameters, our ensemble is marginally more accurate having 12× fewer parameters.

In particular, our ensemble is more parameter-e�cient even when compared to a single

architecture of Elsken et al. [2018] (see Table 5.18).

5.4.7 Final Remarks

We demonstrate that it is possible to design high-performance convolutional architec-

tures by inserting layers (i.e., adjusting the depth) based on their importance. This

importance is assigned by PLS and con�rms our hypothesis that the relationship be-

tween layers and the class label on a low-dimensional space (PLS criterion) can be

employed to de�ne layer importance. Compared to previous NAS approaches, our

method is signi�cantly more e�cient since it evaluates one order of magnitude fewer

models. Our discovered architectures are on par with the state of the art and present

high generalization ability, as they can be learned on a small dataset and successfully

transferred to large datasets.

Limitations. Since our NAS relies on prede�ned modules, we are not able to discover

all components of the architecture (e.g., number of �lters and connections) from scratch.

Additionally, due to the incremental essence of our NAS (an architecture i must wait

for the architecture i − 1), we cannot parallelize the search. Thus, even when more

resources (i.e., GPU) are available for parallel processing, our method is not able to

take advantage of such resources.

5.5 Latent HyperNet

In this section, we introduce the experiments of our strategy for combining multiple

layers from convolutional networks. We �rst describe the convolutional networks used

90 Chapter 5. Experiments

to assess the quality of the proposed method and how to de�ne what layers to combine,

respectively. Next, we present the improvements achieved by combining multiple layers

and the computational cost of this process. Afterward, we show the importance of

project the multiple features onto a compact space and demonstrate the performance

of our method on lightweight architectures, in this order. Finally, we discuss time issues

and �nal remarks.

5.5.1 Convolutional Networks

To demonstrate that our LHN is e�ective across di�erent architectures, throughout

the experiments, we employ it on di�erent convolutional networks such as VGG [Si-

monyan and Zisserman, 2015], ResNet [He et al., 2016] and MobileNet [Sandler et al.,

2018]. Unfortunately, these architectures are unsuitable for activity recognition based

on wearable sensor data due to the structure of the data. Therefore, to this task,

we propose three di�erent architectures (Arch1, Arch2 and Arch3), which vary in the

number of �lters and layers, and �lter dimensions, as shown in Table 5.20. Following

the work by Chen and Xue [2015], after each convolutional layer, we apply a 2 × 1

max-pooling operation.

We highlight that the proposed convolutional architectures are only used on the

activity recognition task, where there are no well-de�ned architectures.

Table 5.20. Con�gurations of the convolutional architectures apply to activity recognition.
After each convolutional layer, a 2× 1 max-pooling operation is employed.

Number of

Layers

Number of

Filters per Layer

Filter Dimensions per Layer

(height × width)

Arch1 2 24, 32 12× 2, 12× 2

Arch2 3 24, 32, 40 6× 1, 8× 1, 10× 1

Arch3 4 24, 32, 40, 48 12× 1, 12× 1, 6× 1, 2× 1

5.5.2 De�ning Layers to be Combined

Because modern architectures are very deep (dozens or even hundreds of layers), a

typical step in HyperNet approaches is to select only a subset of the layers to be

combined. Besides reducing computational cost, this step might provide better results

since adjacent layers are correlated [Kong et al., 2016].

To determine what layers to combine, we employ the same procedure as suggested

by Kong et al. [2016], which consists of generating a small set of possible combinations

5.5. Latent HyperNet 91

Table 5.21. Accuracy on CIFAR-10 (validation set) using di�erent combinations of layers.
FC denotes the employment of the �rst fully connected layer of the VGG16 architecture.
The better accuracy is shown in bold. The symbol '�' denotes that it was not possible to
execute the method in the respective setting due to incompatible dimensions between 2D
(layers 41, 45, 49) and 1D (FC layer) features maps.

(a) VGG16 layers.

Layers HyperNet LHN

41 + 45 87.02 87.00

41 + 49 87.46 87.06

45 + 49 87.64 87.90

41 + 45 + 49 87.44 86.94

41 + 45+FC � 86.70

41 + 49+FC � 88.12

45 + 49+FC � 87.40

41 + 45 + 49+FC � 86.78

(b) ResNet20 layers.

Layers HyperNet LHN

53 + 60 86.08 79.04

53 + 67 86.48 85.88

60 + 67 87.10 86.10

53 + 60 + 67 86.36 86.68

and evaluating the accuracy of the HyperNet for each combination. To further reduce

the number of combinations, we examine only intermediary and deep layers. Table 5.21

(a) and (b) show the accuracy of the HyperNets when combining di�erent layers of

VGG16 and ResNet20, respectively.

According to Table 5.21 (a), on the VGG16 network, the HyperNet by Kong et al.

[2016] attained the best results combining the layers 45 and 49. Our method, on the

other hand, obtained the best results combining the layers 41, 49 and the �rst fully

connected layer (FC). On the ResNet20 network, Table 5.21 (b), the HyperNet by Kong

et al. [2016] achieved the best results combining the layers 60 and 67. Similarly, our

LHN obtained the best accuracy combining the layers 60, 67 and 53. Note that, while

our method enables combining any layer that composes the network, the approach

of Kong et al. [2016] is limited to combine convolutional layers only.

The results above consider one PLS model per layer (as explained in Section 4.3).

An alternative to this modeling is to concatenate all the feature maps provided by all

the layers (the ones to be combined) and then, learn a single PLS model, as illustrated

in Figure 5.17. However, the memory consumption increases signi�cantly since the

result of this concatenation is a high dimensional space and could unfeasible the em-

ployment of LHN on resources-constrained applications. For example, on VGG16, the

concatenation of the layers 41, 49 and FC yields a feature space with around 3× more

dimensions when compared to the scheme layer-by-layer. We observe that the accuracy

of both strategies is similar; therefore, it is more e�cient to learn PLS layer-by-layer.

92 Chapter 5. Experiments

Convolutional Network

Classi�er
Latent HyperNet

(LHN)

Concatenation

XW

Figure 5.17. Latent HyperNet considering a single PLS projection. After setting the layers
to be combined (represented by black boxes), we concatenate their features maps yielding a
data matrix X. Then, we learn a single PLS projection (matrix W) using X. Finally, we
project (XW) and present the low-dimensional feature maps to a classi�er. In this example,
PLS projects the high-dimensional feature maps onto two dimensions.

Once found the best combinations of layers on CIFAR-10, we apply them in the

remaining experiments, including experiments on the ImageNet dataset.

Di�erent from convolutional networks designed to image applications, in activity

recognition, the convolutional networks are very shallow. For example, the deepest

architectures do not exceed 3-4 layers [Chen and Xue, 2015; Ha et al., 2015; Ha and

Choi, 2016; Xu et al., 2018]. Therefore, on activity recognition, we combine all the

layers composing the convolutional network.

5.5.3 HyperNet Improvements

In this experiment, we evaluate the improvements achieved by the HyperNets ap-

proaches. To make a fair comparison and show the improvement obtained by the

exploration of di�erent layers only, we use the same classi�er employed by the original

convolutional network, an MLP classi�er (fully-connected layers with softmax activa-

tion). In this way, the improvements are not biased by the classi�er.

Image Classi�cation. Table 5.22 shows the improvements in accuracy achieved by

the HyperNets approaches using multiple layers from VGG16 and ResNet20. According

to this table, on CIFAR-10, the approach by Kong et al. [2016] was not able to improve

the accuracy compared to the original network. In contrast, our LHN obtained a

marginal improvement.

5.5. Latent HyperNet 93

Table 5.22. Improvements in accuracy achieved by the HyperNets. Negative values denote
a decrease in accuracy regarding the original network. The better method is shown in bold.
The arrows indicate which direction is better.

CIFAR-10↑ ImageNet (32× 32)↑

VGG16
HyperNet [Kong et al., 2016] −0.22 0.01

LHN (Ours) 0.05 0.66

ResNet20
HyperNet [Kong et al., 2016] -0.02 3.60

LHN (Ours) −0.13 2.65

On the ImageNet dataset, the approach by Kong et al. [2016] improved the ac-

curacy of VGG16 and ResNet20 in 0.01 p.p. and 3.60 p.p., respectively. On the other

hand, LHN improved the accuracy of VGG16 and ResNet20 in 0.66 p.p. and 2.65 p.p..

We emphasize that the layers combined in ImageNet are the ones selected on CIFAR-10

(see Table 5.21).

In summary, HN and LHN attained similar results, which reinforces the ability of

PLS to model multiple levels of features when compared to time-consuming operations,

such as the ones used in HyperNets (e.g., convolutions). To reinforce this claim, we

show the behavior of the softmax distribution (output of the softmax layer) when both

strategies assign a sample to its correct and incorrect label. Figure 5.18 shows these

distributions. From these �gures, it is evident that both strategies obtain similar soft-

max distributions. Even though the behavior in Figure 5.18 has been observed across

di�erent samples, we measure the divergence between the distributions considering all

samples of CIFAR-10. For this purpose, similar to Luo and Wu [2020], we compute

1 2 3 4 5 6 7 8 9 10
Category Index

lo
g(

so
ft

m
ax

)

HyperNet

LHN (Ours)

1 2 3 4 5 6 7 8 9 10
Category Index

lo
g(

so
ft

m
ax

)

HyperNet

LHN (Ours)

Figure 5.18. Left. Distribution of the softmax layer when a sample is assigned to its correct
category. Right. Distribution of the softmax layer when a sample is assigned to an incorrect
category. Dashed line indicates the expected (corrected) label. We omitted the y-axis values
due to di�erent scales.

94 Chapter 5. Experiments

the KL-divergence between the softmax of HN and LHN for each sample and average

its values. This value was signi�cantly small, 0.0001, con�rming that the distributions

are very similar.

Activity Recognition. On the activity recognition task, it was not possible to com-

pare our method with the approach by Kong et al. [2016] due to the design of the convo-

lutional networks. For example, convolutional networks applied to activity recognition

often employ large �lters [Chen and Xue, 2015; Ha et al., 2015; Xu et al., 2018], yield-

ing feature maps much smaller in subsequent layers and prohibiting the combination

among layers. On the contrary, LHN enables us to employ layers that provide feature

maps of di�erent sizes, as we show by combining convolutional and fully connected

layers (see Table 5.21 last rows).

Table 5.23 shows the improvements achieved by LHN on di�erent architectures.

In this table, the ith LHN represents LHN using the proposed ith architecture (de�ned

in Table 5.20). As shown in Table 5.23, the proposed method was able to enhance

all networks, except Arch2 on USCHAD. On the paired t-test, LHN obtained an ac-

curacy statistically superior to the original network except on the USCHAD dataset.

In particular, LHN was able to improve up to 9.57 p.p. the accuracy. Considering all

datasets in Table 5.23, LHN was able to improve the architectures 1 and 3, on average,

4.30 p.p. and 1.17 p.p., respectively. Moreover, on the architecture by Chen and Xue

[2015] (LHNC), the use of LHN improved the accuracy, on average, in 1.01 p.p..

5.5.4 Computational Cost

Even though improving accuracy, HyperNet approaches incur a high computational

cost. In this experiment, we compare the computational cost, measured by FLOPs, of

Table 5.23. Improvements in accuracy achieved by LHN on di�erent architectures. The
ith LHN represents LHN using the proposed ith architecture (de�ned in Table 5.20). LHNC
indicates LHN using the architecture by Chen and Xue [2015]. The numbers enclosed in
square brackets denote con�dence interval (95% con�dence). The symbol '�' denotes that it
was not possible to evaluate the architecture on the respective dataset due to its design �
the feature map achieves zero size in deep layers. The better accuracy improvement is shown
in bold.

USCHAD WISDM UTD-MHAD1 UTD-MHAD2

LHN1 2.96 [1.7, 4.1] 0.22 [−0.5, 0.9] 9.57 [7.1, 12.0] 4.45 [1.3, 7.5]

LHN2 −1.04 [−6.8, 4.7] 0.13 [−0.7, 0.9] � �

LHN3 0.80 [−2.1, 3.7] 1.55 [0.9, 2.1] � �

LHNC 1.55 [−1.7, 4.8] 0.45 [−0.1, 1.0] � �

5.5. Latent HyperNet 95

the HyperNets approaches.

According to Table 5.24, considering all settings (architectures × datasets), our

LHN requires fewer FLOPs than Kong et al. [2016]. Speci�cally, our method has, on

average, 1, 690, 368 fewer FLOPs than Kong et al. [2016]. It turns out that we use simple

projections to combine layers while Kong et al. [2016] apply convolution operations,

which increases the number of FLOPs substantially. We empathize that, compared

to Kong et al. [2016], our method always uses one additional layer (see Table 5.21 -

bold values), which reinforces its e�ciency in combining layers.

Table 5.24. Floating point operations (FLOPs) of HyperNets approaches. Values are in
million. The lowest FLOPs is shown in bold. The arrows indicate which direction is better.

Method CIFAR-10↓ ImageNet (32× 32)↓

VGG16
HyperNet [Kong et al., 2016] 313.54 314.05

LHN (Ours) 313.22 313.72

ResNet20
HyperNet [Kong et al., 2016] 43.91 44.42

LHN (Ours) 40.85 41.36

5.5.5 Importance of Dimensionality Reduction

The core of our LHN is the dimensionality reduction step, which projects high-

dimensional feature maps onto a compact space. In this experiment, we show the

importance of this step. To this end, we measure the results of LHN without the di-

mensionality reduction step on the CIFAR-10 and USCHAD datasets. More concretely,

we present the feature maps from layers directly to the classi�er rather than projecting

them using PLS.

By removing the dimensionality reduction, the accuracy decreased 30 and 0.09

p.p., on average, on the activity recognition and image classi�cation tasks, respectively.

This behavior takes place because of the high dimensionality generated from the con-

catenation of the feature maps, rendering the learning stage more complex since the

network needs to learn a larger number of parameters. For example, employing the

VGG16 architecture on LHN without dimensionality reduction, the number of param-

eters increased from 15 million to 17 million. In contrast, by using the dimensionality

reduction technique, we generate a low-dimensional feature space, which aids the learn-

ing phase and reduces the computational cost as well.

96 Chapter 5. Experiments

Table 5.25. Accuracy of LHN on CIFAR-10 (test set) using di�erent combinations of layers
from lightweight networks. The combinations of layers that achieved improvement regarding
the original network are shown in bold.

(a) MobileNetV1 layers.

Layers LHN

67 + 70 87.46

67 + 73 87.59

67 + 76 87.73

70 + 73 87.52

70 + 76 87.71

73 + 76 87.62

67 + 70 + 73 87.48

67 + 70 + 76 87.75

67 + 73 + 76 87.72

70 + 73 + 76 87.62

67 + 70 + 73 + 76 87.58

(b) MobileNetV2 layers.

Layers LHN

131 + 137 89.48

131 + 143 89.43

131 + 148 89.37

137 + 143 89.65

137 + 148 89.43

143 + 148 89.51

131 + 137 + 143 89.48

131 + 137 + 148 89.39

131 + 143 + 148 89.46

137 + 143 + 148 89.55

131 + 137 + 143 + 148 89.48

5.5.6 Latent HyperNet on Lightweight Networks

Our next experiment evaluates the performance of LHN on lightweight networks.

To this end, we employed the popular MobileNetV1 [Howard et al., 2017] and Mo-

bileNetV2 [Sandler et al., 2018] architectures. As before, we examine the accuracy of

LHN when considering di�erent combinations of layers, as shown in Table 5.25. In this

table, bold values indicate the combinations where LHN achieved better accuracy than

the original network.

On the MobileNetV1 architecture, LHN was able to improve accuracy in 54%

combinations. However, on MobileNetV2, LHN did not obtain any improvement con-

sidering all combinations. It worth noting that MobileNetV1 is a plain network while

MobileNetV2 is a residual-based architecture. Thereby, these results are similar to the

ones found in CIFAR-10 (see Table 5.22), where LHN improved accuracy over VGG16

(plain network) but underperformed accuracy over ResNet20 (residual network).

Besides MobileNets, we also assess LHN on a pruned network, which in turn has

become a lightweight (e�cient) architecture. We consider the pruned network in which

we remove layers and �lters of its architecture (speci�cally, the network of Table 5.13

last row). On di�erent combinations of layers, LHN was not able to improve accuracy.

According to previous results, these results are not surprising since LHN on residual

architectures (ResNet and MobileNetV2) presented poor results. However, we observe

that the pruned architecture was more sensitive to the combination of layers, as it

5.5. Latent HyperNet 97

obtained substantial inferior accuracy.

5.5.7 Time Issues

Since LHN performs a projection (dimensionality reduction) after each layer, it intro-

duces an extra cost at the prediction stage. In this experiment, we show that this cost is

negligible, rendering LHN computationally e�cient compared to the traditional convo-

lutional network. To demonstrate that, we perform the paired t-test on the prediction

time considering 30 executions.

Figure 5.19 shows the average prediction time and the con�dence interval of

the original convolutional network and the ones using LHN. On the paired t-test,

the prediction times of the original network and LHN were statistically equivalent,

indicating that the employment of LHN does not compromise the prediction time.

0.01

0.015

0.02

0.025

0.03
Original Network
LHN

Arch1 Arch2 Arch3 Chen & Xue VGG ResNet

Pr
ed

ic
tio

n
Ti

m
e

(in
 s

ec
on

ds
)

Figure 5.19. Average prediction time (lower values are better) of the original network (red
bars) and LHN (gray bars). The proposed LHN does not compromise the prediction time
since its time is statistically equivalent to the original convolutional network time. Black bars
denote the con�dence interval.

5.5.8 Final Remarks

We demonstrate that an e�cient yet e�ective way of combining multiple levels of fea-

tures is to project them on the latent space of PLS. Compared to time-consuming op-

erations, we demonstrate that PLS projection enhances data representation (re�ected

by accuracy) at negligible additional cost. More importantly, these results con�rm our

hypothesis that the relationship between network structure and the class label on a

low-dimensional space (PLS criterion) can be employed to combine multiple levels of

representation distributed across the network.

98 Chapter 5. Experiments

Limitations. Despite promising results, our strategy for exploring multiple layers

exhibits some limitations. For example, to employ a network with LHN to other

datasets (or tasks), we need to retrain the PLS from scratch since the number of

categories and the average of data (Z-score) are di�erent, which might lead to notable

divergence in the latent space. In other words, the PLS model learned on one dataset

does not ensure the maximum covariance between data and labels in another dataset,

thus the latent data might not be discriminative. Other HyperNets, however, can only

recondition the weights of the operations (i.e., convolutions) applied to multiple layers.

Furthermore, our LHN also does not allow that the weights of the network and the

projection matrix be trained jointly. Thus, it is suitable for applications where the

network can be used simply as a feature extractor.

5.6 Covariance-free Partial Least Squares

In this section, we compare the proposed incremental Partial Least Squares, named

Covariance-free Incremental Partial Least Squares (CIPLS), with other methods as

well as with the traditional PLS. Afterward, we present the in�uence of higher-order

components on the classi�cation performance. Finally, we discuss the time complexity

of the methods, their performance on a streaming scenario and compare our method

on the feature selection context.

5.6.1 Comparison with Incremental Methods

This experiment compares the proposed CIPLS with other incremental dimensionality

reduction methods. Table 5.26 summarizes the results.

Table 5.26 shows that, on the LFW dataset, CIPLS outperformed SGDPLS and

IPLS in 1.18 and 1.48 p.p., respectively. Similarly, on the YTF dataset, CIPLS outper-

formed SGDPLS and IPLS in 0.88 and 1.88 p.p., in this order. In particular, on these

datasets, the results of CIPLS were statistically superior to IPLS and SGDPLS. As

we argued before, to perform the paired t-test on face veri�cation, we use 90% con�-

dence. However, by using 95% con�dence, our CIPLS still presented results statistically

superior.

On the ImageNet dataset, the di�erence in accuracy compared to IPLS was of

0.07 and 1.35 p.p., for the 32× and 224 × 224 versions, respectively. It is important

to mention that we do not consider SGDPLS on these datasets due to convergence

problems and the high computational cost. Also, due to memory constraints, it was

not possible to run the traditional PLS on the ImageNet datasets.

5.6. Covariance-free Partial Least Squares 99

Table 5.26. Comparison of existing incremental methods in terms of accuracy. The symbol
'�' denotes that it was not possible to execute the method on the respective dataset due
to memory constraints or convergence problems (see the text). PLS denotes the use of the
traditional PLS. The closer to the accuracy of the baseline (PLS), the better. The numbers
enclosed in square brackets denote con�dence interval (95% con�dence).

LFW YTF
ImageNet

32× 32

ImageNet

224× 224

CCIPCA 89.87 [89.17, 90.55] 81.48 [80.07, 82.88] 40.30 52.58

SGDPLS 90.60 [89.95, 91.24] 83.22 [82.07, 84.36] � �

IPLS 90.30 [89.60, 90.99] 82.22 [80.96, 83.47] 43.24 65.74

CIPLS (Ours) 91.78 [91.08, 92.47] 84.10 [82.82, 85.37] 43.31 67.09

PLS 92.47 [91.87, 93.05] 85.96 [84.47, 87.44] � �

5.6.2 Comparison with Partial Least Squares

As suggested by Weng et al. [2003], we compare the incremental methods with the

traditional approach as baseline (in our case, traditional PLS). According to Table 5.26,

besides providing better results than IPLS and SGDPLS, CIPLS achieved the closest

results to traditional PLS. For instance, on LFW, the di�erence in accuracy between

PLS and CIPLS was 0.69 p.p. while on YTF it was 1.86 p.p.. In contrast, the di�erence

in accuracy between PLS and SGDPLS is higher � 1.87 p.p. on LFW and 2.74 p.p.

on YTF. In addition, the di�erence in accuracy between PLS and IPLS is among the

highest, 2.17 and 3.74 p.p. for the LFW and YTF datasets, respectively. In particular,

the results for PLS and CIPLS are statistically equivalent, while IPLS and SGDPLS

present results statistically inferior compared to PLS.

It should be noted that the results of IPLS are closer to CCIPCA than PLS since

only the �rst component of IPLS maintains the relationship between independent and

dependent variables. On the other hand, the proposed method preserves this relation

along higher-order components, which provides better discriminability, as seen in our

results.

5.6.3 Higher-order Components

In this experiment, we assess the discriminability of the higher-order components of

CIPLS compared to each of the other incremental methods. For this purpose, we follow

a process suggested by Martínez and Kak [2001], which consists of removing the �rst

component of the latent space before presenting the projected data to the classi�er.

This evaluates the performance of the remaining components, not only the �rst one

100 Chapter 5. Experiments

which tends to be better. By performing this process, our method outperformed IPLS

on average5 in 32.48 p.p.. Observe that when all the components are used, CIPLS

outperformed IPLS in 1.77 p.p.. This larger di�erence when removing the �rst compo-

nent is an e�ect of the better discriminability achieved by the components extracted

by CIPLS. As we have argued, CIPLS preserves the relationship between dependent

and independent variables across higher-order components, yielding more accurate re-

sults. Compared to SGDPLS, CIPLS outperforms it in 24.83 p.p. when using only the

higher-order components.

Figure 5.20 reinforces the above discussion, where it is possible to note that

CIPLS yields more discriminative components when compared to other incremental

Partial Least Squares methods.

5Value computed considering the accuracy of all the datasets.

Figure 5.20. Projection on the �rst (x-axis) and second (y-axis) components using dif-
ferent dimensionality reduction techniques. Top-left. PLS projection. Top-right. IPLS
projection. Bottom-left. SGDPLS projection. Bottom-right. CIPLS projection. Our
CIPLS separates the feature space better than IPLS and SGDPLS, which are state-of-the-art
incremental PLS-based methods. Blue and red points denote positive and negative samples,
respectively.

5.6. Covariance-free Partial Least Squares 101

5.6.4 Time Issues

To demonstrate the e�ciency of CIPLS, in this experiment, we compare its time com-

plexity to compute the projection matrix with the incremental methods evaluated.

Following Weng et al. [2003] and, Zeng and Li [2014], we report this complexity w.r.t.

dimensionality of the original data (m), number of samples (n), number of compo-

nents (c) and number of PCA components (L - required only by IPLS and CCIPCA).

Table 5.27 shows the time complexity of the methods.

According to Table 5.27, our method presents a low time complexity for estimat-

ing the projection matrix. The complexity of CIPLS is not only on the same class as

CCIPCA, which is the fastest among the compared methods, but it also has a very

small constant factor. This constant factor is the number of components, c for CIPLS

and L for CCIPCA. In our experiments, we found that the optimal constant factor for

the former is negligible (i.e., c = 2). In other words, c < L on practical applications

and this is a known advantage of PLS, where it has been shown to require substantially

less components to achieve its optimal accuracy than PCA [Schwartz et al., 2009].

To show the e�ciency (on practical terms) of our CIPLS, we report the average

computation time (considering 30 executions) of the methods for estimating the projec-

tion matrix to one new sample. To make a fair comparison, we set c = 2 for all methods

and for the other parameters we use the values where the methods achieved the best

results in validation. As shown in Figure 5.21, SGDPLS is the slowest incremental PLS

method, which is a consequence of its strategy for estimating the projection matrix,

where for each sample the convergence step is run T times. Our experiments showed

that T ≥ 100 is required for good results.

By performing the paired t-test, the time for estimating the projection matrix of

our method was equivalent to CCIPCA, which is the fastest incremental dimensionality

reduction. Also, our method statistically faster than IPLS and SGDPLS. Therefore,

Table 5.27. Comparison of incremental dimensionality reduction methods in terms of time
complexity for estimating the projection matrix. m, n denote dimensionality of the original
data and number of samples, while c, L and T denote number of PLS components, number
of PCA components and convergence steps, respectively.

Time Complexity

CCIPCA [Weng et al., 2003] O(nLm)

SGDPLS [Arora et al., 2016] O(Tcm)

IPLS [Zeng and Li, 2014] O(nLm+ c2m)

CIPLS (Ours) O(ncm)

102 Chapter 5. Experiments

SGDPLS IPLS CCIPCA CIPLS (Ours)
0

0.005

0.01

0.015

Method

Ti
m

e
(in

 s
ec

on
ds

) f
or

 E
st

im
at

in
g

Pr
oj

ec
tio

n
M

at
rix

Figure 5.21. Average prediction time (in seconds) for estimating the projection matrix,
lower values are better. Black bars denote the con�dence interval.

CIPLS is the fastest among the compared incremental PLS methods.

5.6.5 Incremental Methods on Streaming Scenario

As we argued before, incremental methods can be employed on streaming applications,

where the training data are continuously generated. To demonstrate the robustness

of our method on these scenarios, we evaluate the methods on a synthetic streaming

context, as proposed by Zeng and Li [2014]. The procedure works as follows. First, the

training data are divided into k blocks, where k = 20. The idea behind this process

is to interpret each block as a new instance of arriving data. Then, we create a new

training set and insert each kth block at a time. Each time we insert a new block, we

learn the projection method and evaluate its accuracy on the testing set. For instance,

when adding the tenth block, all the 1, 2, ...10 blocks are being used as training. It is

important to mention that a block contains more than one sample, however, this does

not modify the strategy of the incremental methods, which is to estimate the projection

matrix by using a single sample at a time.

Figure 5.22 (left) and (right) show the results on LFW and YTF, respectively. On

the LFW dataset, until the �fth block, it is not possible to determine the best method

since the accuracy presents high variance, however, from the sixth block onwards, our

method outperformed all other methods. On the YTF dataset, our method achieved

the highest accuracy for all blocks. These results show that the proposed method is

more adequate for streaming applications than existing incremental PLS methods.

5.6. Covariance-free Partial Least Squares 103

0 2 4 6 8 10 12 14 16 18 20
ith Blocks of Samples

0.87

0.88

0.89

0.9

0.91

0.92

0.93
A

cc
ur

ac
y

CCIPCA
SGDPLS
IPLS
CIPLS

0 2 4 6 8 10 12 14 16 18 20
ith Blocks of Samples

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

A
cc

ur
ac

y

CCIPCA
SGDPLS
IPLS
CIPLS

Figure 5.22. Comparison of incremental methods on a streaming scenario. Left. Results
on Labeled Faces in the Wild (LFW). Right. Results on Youtube Faces (YTF). The x-axis
denotes the data arriving sequentially (see the text).

5.6.6 Comparison with Feature Selection Methods

Our last experiment evaluates the performance of CIPLS as a feature selection method.

Table 5.28 shows the results for di�erent percentages of kept features on LFW and YTF.

According to Table 5.28, CIPLS is on par with the state-of-the-art feature selec-

tion techniques. For example, on LFW the di�erence in accuracy, on average, from

CIPLS to infFS and ilFS is of 0.15 and 0.25 p.p., respectively. Compared to infFSS

and infFSU, this di�erence is 0.05 and 0.26 p.p., in this order. Interestingly, on YTF

for some percentages of kept features (e.g., 15% and 50%), CIPLS outperforms ilFS,

infFSS and infFSU. We highlight that these methods were designed speci�cally for

feature selection.

Finally, the di�erence, on average, between CIPLS and PLS is of 0.26 and 0.14

p.p. on the LFW and YTF datasets, respectively. Moreover, the largest accuracy

di�erence between PLS and CIPLS is only 0.4 p.p., on LFW with 15% of features

kept. This result reinforces that the proposed decompositions to extend the NIPALS

and enable the employment of VIP are a good approximation of the original method.

Based on the results shown, it is possible to conclude that, besides dimensionality

reduction, our CIPLS achieves state-of-the-art results in the context of feature selection.

5.6.7 Final Remarks

We demonstrate that is possible to extend the PLS algorithm for incremental opera-

tion and enable computation of the projection matrix using one sample at a time while

104 Chapter 5. Experiments

Table 5.28. Comparison of feature selection methods using di�erent percentages of kept
features. The better method is shown in bold.

LFW YTF

Percentage of Kept Features Percentage of Kept Features

15 20 50 15 20 50

infFS [Ro�o et al., 2015] 91.58 92.03 92.23 86.68 87.14 87.30

ilFS [Ro�o et al., 2017] 91.67 92.25 92.23 86.94 86.84 87.54

infFSU [Ro�o et al., 2020] 91.70 92.30 92.15 86.60 87.14 87.16

infFSS [Ro�o et al., 2020] 91.62 91.62 92.33 86.50 86.80 87.22

PLS+VIP 91.67 92.13 92.38 86.82 87.18 87.68

CIPLS (Ours)+VIP 91.55 91.80 92.18 86.92 87.02 87.40

still presenting the main property of traditional PLS, namely preserving the relation

between dependent and independent variables. These results con�rm our hypothesis

that using simple algebraic decomposition it is possible to preserve the properties of

traditional PLS in its incremental version. Compared to existing incremental partial

least squares methods, CIPLS achieves superior performance besides being computa-

tionally e�cient. In the context of feature selection, the proposed method is able to

achieve comparable results to the state of the art.

Limitations. The major limitation of CIPLS is the numerical instability when em-

ploying many components. It turns out that during the algebraic decomposition (Equa-

tion 4.2) of the �rst components the numbers become extremely small leading to un-

stable computation that is propagated and accumulated to higher-order components.

We observe these issues mainly when using features from deep networks, which often

present high numerical precision (32 bit �oating point representation). Moreover, we

note that IPLS exhibited even worse numerical instability. Such issues are not re-

stricted to CIPLS, other incremental methods also su�er from this problem [Maalouf

et al., 2019; Madras et al., 2020]. In particular, even convolutional networks can present

numerical instability when using large learning rates [He et al., 2019a].

Chapter 6

Conclusions

Modern convolutional networks are computationally expensive, hindering applicability

on resource-constrained environments. Motivated by this, in this thesis, we proposed

strategies for reducing the computational cost of convolutional architectures by remov-

ing, inserting and combining their structures. Throughout our work, we showed that

Partial Least Squares is a powerful tool for measuring the importance of the struc-

tures of convolutional networks. With the estimation of this importance, we were

able to identify and remove unimportant structures composing the convolutional net-

works. We showed that the relationship between a speci�c structure and its class label

on a low-dimensional space (PLS criterion) can be employed to determine potential

structures to be removed. Besides, by using this importance, we were able to insert

structures to design high-performance convolutional networks. We demonstrated that

it is possible to discover e�cient architectures by inserting layers in the stages of an

architecture based on their importance. In this context, we showed that estimating

such importance using the PLS criterion is an e�ective way of determining how deep

an architecture should be. Finally, with the importance estimated by PLS, we were

capable of combining multiple levels of representation distributed across the network

to improve data representation. We showed that an e�ective way of projecting multiple

levels of features is to project them on a compact space provided by PLS.

The results achieved by the proposed strategies con�rm our central hypothesis

that the relationship between structures (speci�cally their outputs) and the class label,

on a low-dimensional space (PLS criterion), can be e�ectively employed to estimate

the importance of the structures composing a convolutional network. From a practi-

cal perspective, the proposed strategies promote e�cient convolutional networks to a

broad range of supervised computer vision tasks. In addition, they can be employed

according to di�erent hardware budgets. For example, our strategies for removing

105

106 Chapter 6. Conclusions

layers, designing architectures automatically and combining multiple layers are more

proper to memory-constraint scenarios and large datasets, as they are more e�cient to

estimate the importance of the structures composing a convolutional network. When

more resources (i.e., memory and time for �ne-tuning) are available, our strategy for

removing neurons is a clear alternative to obtain high-performance architectures since

it signi�cantly reduces the computational cost with a negligible drop in predictive abil-

ity. In particular, for some datasets, this approach reduces the computational cost

while improving the predictive ability.

Despite promising results, our strategies are not without their limitations. Our

method to remove neurons demands large memory consumption when applied to large

datasets. This is because it generates a representation describing the neurons for each

sample of a dataset, which becomes computationally expensive in terms of memory

when a large number of samples is available. Our method to eliminate layers prohibits

us to consider removing all layers from a convolutional network. This limitation takes

place due to incompatible dimensions between the remaining layers. Our method to

discover architectures does not take advantage of parallel processing. It turns out that

due to its incremental essence, we cannot parallelize the neural architecture search even

when more hardware resources (i.e., GPUs) are available. Our method to combine mul-

tiple layers is not suitable for transfer learning tasks, which means the LHN learned

on a dataset (i.e., task) is not applicable to another dataset. The reason for this limi-

tation is that the number of categories and the average of data can be di�erent, which

might lead to notable divergence in the latent space. Regardless of these drawbacks,

our strategies promote e�cient convolutional networks, facilitating the applicability of

such models on resource-constrained scenarios.

Besides the drawbacks and limitations above, one major concern about our strate-

gies is that PLS is infeasible on large datasets since it requires all the data to be in

memory in advance, which is often impractical due to hardware limitations. To handle

this, we proposed an incremental Partial Least Squares that learns a compact rep-

resentation of the data using a single sample at a time. The results achieved by this

strategy con�rm our hypothesis that using simple algebraic decomposition it is possible

to preserve the properties of traditional PLS in its incremental version, thus enabling

applicability on large datasets while maintaining discriminability.

It is worth mentioning that, due to the nature of Partial Least Squares, all strate-

gies developed in this thesis is limited to supervised tasks.

Throughout our research, we assessed the e�ectiveness of our approaches on sev-

eral convolutional architectures and supervised tasks for computer vision. Our re-

sults are on par with the state of the art and, in most cases, they have the best

107

trade-o� between accuracy and computational cost. More speci�cally, our pruning ap-

proaches achieved a high computational cost reduction with negligible accuracy loss.

Our approach to automatically design convolutional networks built high-performance

architectures requiring considerably fewer computational resources than existing neu-

ral architecture search approaches. Our strategy for combining layers of convolutional

networks attained the best trade-o� between accuracy and computational cost. Our

incremental Partial Least Squares achieved the best performance in both accuracy and

complexity compared to other incremental versions of Partial Least Squares.

Future Work

The current research presented encouraging results, but many promising problems

remain open to be addressed. Here, we discuss some possible future directions for each

strategy of this research.

Pruning Convolutional Networks. During our investigation into removing struc-

tures of convolutional networks, we considered architectures such as plain and residual

networks. Recent works have proposed more sophisticated and e�cient networks, for

example, the ones provided by neural architecture search [Howard et al., 2019; Dong

and Yang, 2020]. It is unknown if such architectures are more sensitive to pruning or

if they present a high redundancy in their structures. Thereby, we believe that remov-

ing structures from architectures designed automatically is an interesting direction for

future work. In this context, similar to Cai et al. [2020], another branch for research is

to combine neural architecture search and pruning, where instead of evaluating a large

set of candidate architectures, we could create a dense architecture (e.g., taking into

account all possible connections between layers) and, then, remove their structures.

Neural Architecture Search. To limit the search space, our neural architecture

search explores only depth. However, we believe that other components, such as the

number of �lters and sample resolution, could also be learned stage-by-stage. Through-

out our experiments, we consider two types of modules to compose the stages of the

candidate architectures: residuals and cells discovered by Zoph et al. [2018]. We be-

lieve that exploring other types of modules, as well as their combinations, is another

potential area for investigation.

HyperNet. While our HyperNet aims at improving data representation, we believe

that multiple levels of information can aid to identify easy and hard samples. This

is motivated by previous observations that several classi�ers, when placed on di�erent

levels of the network, can discover hard and easy samples [Dhurandhar et al., 2020].

108 Chapter 6. Conclusions

Once discovered hard and easy samples, it is possible to adjust the training budget

based on this characteristic of the samples. For example, we can dedicate less training

resources (i.e., epochs) to easy samples and make the opposite to hard samples. In this

context, we believe that the proposed Latent HyperNet can be an e�cient and e�ective

way of identifying these samples.

Incremental Partial Least Squares. Our incremental Partial Least Squares

(named Covariance-free Incremental Partial Least Squares � CIPLS) is restricted to

binary problems. To operate on multi-class problems, it is necessary to learn one

CIPLS model for each class following a one-versus-rest scheme. Therefore, we believe

that extending CIPLS to multiclass problems is a promising line of research. Finally,

despite the positive results of linear models, we believe that investigating the behavior

of nonlinear (i.e., its kernel version) incremental Partial Least Squares is an interesting

direction for future research.

Bibliography

Abdi, H. (2010). Partial least squares regression and projection on latent structure re-

gression (pls regression). Wiley Interdisciplinary Reviews: Computational Statistics,

2(1):97--106.

Alakkari, S. and Dingliana, J. (2019). An acceleration scheme for mini-batch, streaming

PCA. In British Machine Vision Conference (BMVC).

Andrew, A. L. and Tan, R. C. E. (1998). Computation of derivatives of repeated

eigenvalues and the corresponding eigenvectors of symmetric matrix pencils. SIAM

Journal on Matrix Analysis and Applications, 20(1):78--100.

Arora, R., Mianjy, P., and Marinov, T. V. (2016). Stochastic optimization for multiview

representation learning using partial least squares. In International Conference on

International Conference on Machine Learning (ICML).

Azizpour, H., Razavian, A. S., Sullivan, J., Maki, A., and Carlsson, S. (2016). Factors of

transferability for a generic convnet representation. Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 38(9):1790--1802.

Badia, A. P., Guoand, B. P. S. K. P. S. A. V. Z., and Blundell, C. (2020). Agent57:

Outperforming the atari human benchmark. In International Conference on Inter-

national Conference on Machine Learning (ICML).

Baker, B., Gupta, O., Naik, N., and Raskar, R. (2017). Designing neural network

architectures using reinforcement learning. In International Conference on Learning

Representations (ICLR).

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal

function. Transactions on Information Theory, 39(3):930--945.

Bartoldson, B., Morcos, A. S., Barbu, A., and Erlebacher, G. (2020). The

generalization-stability tradeo� in neural network pruning. In Neural Information

Processing Systems (NeurIPS).

109

110 Bibliography

Bell, S., Zitnick, C. L., Bala, K., and Girshick, R. B. (2016). Inside-outside net:

Detecting objects in context with skip pooling and recurrent neural networks. In

Computer Vision and Pattern Recognition (CVPR).

Bishop, C. M. (2007). Pattern recognition and machine learning. Springer.

Blalock, D. W., Ortiz, J. J. G., Frankle, J., and Guttag, J. V. (2020). What is the

state of neural network pruning? In Conference on Machine Learning and Systems

(MLSys).

Brendel, W. and Bethge, M. (2019). Approximating cnns with bag-of-local-features

models works surprisingly well on imagenet. In International Conference on Learning

Representations (ICLR).

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. (2018). SMASH: one-shot model

architecture search through hypernetworks. In International Conference for Learning

Representations(ICLR).

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. (2018). E�cient architecture

search by network transformation. In Conference on Arti�cial Intelligence (AAAI).

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. (2020). Once-for-all: Train one

network and specialize it for e�cient deployment. In International Conference on

Learning Representations (ICLR).

Cai, W., Li, Y., and Shao, X. (2008). A variable selection method based on unin-

formative variable elimination for multivariate calibration of near-infrared spectra.

Chemometrics and Intelligent Laboratory Systems, 90(2):188�194.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. (2018). Deep clustering for un-

supervised learning of visual features. In European Conference on Computer Vision

(ECCV).

Chatterji, N. S., Neyshabur, B., and Sedghi, H. (2020). The intriguing role of module

criticality in the generalization of deep networks. In International Conference on

Learning Representations (ICLR).

Chen, C., Jafari, R., and Kehtarnavaz, N. (2015). UTD-MHAD: A multimodal dataset

for human action recognition utilizing a depth camera and a wearable inertial sensor.

In International Conference on Image Processing (ICIP).

Bibliography 111

Chen, T., Goodfellow, I. J., and Shlens, J. (2016). Net2net: Accelerating learning

via knowledge transfer. In International Conference on Learning Representations

(ICLR).

Chen, X., Xie, L., Wu, J., and Tian, Q. (2019). Progressive di�erentiable architecture

search: Bridging the depth gap between search and evaluation. In International

Conference on Computer Vision (ICCV).

Chen, Y. and Xue, Y. (2015). A Deep Learning Approach to Human Activity Recogni-

tion Based on Single Accelerometer. In International Conference on Systems, Man,

and Cybernetics.

Chin, T., Ding, R., Zhang, C., and Marculescu, D. (2020). Towards e�cient model

compression via learned global ranking. In Conference on Computer Vision and

Pattern Recognition (CVPR).

Chun, S., Oh, S. J., Yun, S., Han, D., Choe, J., and Yoo, Y. (2019). An empirical

evaluation on robustness and uncertainty of regularization methods. In International

Conference on International Conference on Machine Learning (ICML).

Cybenko, G. (1992). Approximation by superpositions of a sigmoidal function. Math-

ematics ofCon- trol, Signals and Systems, 5(4):455.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.

In Computer Vision and Pattern Recognition (CVPR).

de Geer, S. A. V. (2008). High-dimensional generalized linear models and the lasso.

The Annals of Statistics, 36(2):614--645.

de Melo, V. H. C., Leao, S., Campos, M., Menotti, D., and Schwartz, W. R. (2013).

Fast pedestrian detection based on a partial least squares cascade. In International

Conference on Image Processing (ICIP).

de Souza, J. S., Santos, J. B., and Schwartz, W. R. (2018). Multiscale DCNN ensemble

applied to human activity recognition based on wearable sensors. In European Signal

Processing Conference (EUSIPCO).

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A

Large-Scale Hierarchical Image Database. In Computer Vision and Pattern Recog-

nition (CVPR).

112 Bibliography

Dhurandhar, A., Shanmugam, K., and Luss, R. (2020). Enhancing simple models

by exploiting what they already know. In International Conference on Machine

Learning (ICML).

Diniz, M. A. and Schwartz, W. R. (2020). Face attributes as cues for deep face recog-

nition understanding. In International Conference on Automatic Face and Gesture

Recognition(FG).

Donahue, J., Jia, Y., Vinyals, O., Ho�man, J., Zhang, N., Tzeng, E., and Darrell, T.

(2014). Decaf: A deep convolutional activation feature for generic visual recognition.

In International Conference on Machine Learning (ICML).

Dong, X. and Yang, Y. (2019). Searching for a robust neural architecture in four GPU

hours. In Conference on Computer Vision and Pattern Recognition (CVPR).

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible

neural architecture search. In International Conference on Learning Representations

(ICLR).

dos Santos, F. P. and Ponti, M. A. (2019). Alignment of local and global features from

multiple layers of convolutional neural network for image classi�cation. In Conference

on Graphics, Patterns and Images (SIBGRAPI).

dos Santos Junior, C. E., Kijak, E., Gravier, G., and Schwartz, W. R. (2016). Partial

least squares for face hashing. Neurocomputing, 213:34--47.

Eger, S., Youssef, P., and Gurevych, I. (2018). Is it time to swish? comparing deep

learning activation functions across NLP tasks. In Conference on Empirical Methods

in Natural Language Processing (EMNLP).

Elsken, T., Metzen, J. H., and Hutter, F. (2018). Simple and e�cient architecture

search for convolutional neural networks. In International Conference on Learning

Representations (ICLR).

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey.

Journal of Machine Learning Research, 20:55:1--55:21.

Evci, U., Pedregosa, F., Gomez, A. N., and Elsen, E. (2019). The di�culty of training

sparse neural networks. In International Conference on International Conference on

Machine Learning (ICML).

Bibliography 113

Fan, A., Grave, E., and Joulin, A. (2020). Reducing transformer depth on demand

with structured dropout. In International Conference on Learning Representations

(ICLR).

Fleuret, F. (2004). Fast binary feature selection with conditional mutual information.

Journal of Machine Learning Research.

Frankle, J. and Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse,

trainable neural networks. In International Conference on Learning Representations

(ICLR).

Geladi, P. and Kowalski, B. (1986). Partial least-squares regression: a tutorial. Ana-

lytica Chimica Acta, 185:1�17.

Ghorbani, B., Xiao, Y., and Krishnan, S. (2019). The e�ect of network depth on the

optimization landscape. In International Conference on International Conference on

Machine Learning (ICML).

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse recti�er neural networks.

In International Conference on Arti�cial Intelligence and Statistics (AISTATS).

Gre�, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., and Schmidhuber, J.

(2017a). Lstm: A search space odyssey. Transactions on Neural Networks and

Learning Systems, 28(10):2222--2232.

Gre�, K., Srivastava, R. K., and Schmidhuber, J. (2017b). Highway and residual

networks learn unrolled iterative estimation. In International Conference on Learning

Representations (ICLR).

Guo, J., Ouyang, W., and Xu, D. (2020a). Multi-dimensional pruning: A uni�ed

framework for model compression. In Conference on Computer Vision and Pattern

Recognition (CVPR).

Guo, S., Alvarez, J. M., and Salzmann, M. (2020b). Expandnets: Linear over-

parameterization to train compact convolutional networks. In Neural Information

Processing Systems (NeurIPS).

Gupta, S. and Tan, M. (2020). E�cientNet-EdgeTPU: Creating Accelerator-Optimized

Neural Networks with AutoML. Accessed: 2020-07-09.

Ha, D., Dai, A. M., and Le, Q. V. (2017). Hypernetworks. In International Conference

on Learning Representations (ICLR).

114 Bibliography

Ha, S. and Choi, S. (2016). Convolutional neural networks for human activity recog-

nition using multiple accelerometer and gyroscope sensors. In International Joint

Conference on Neural Networks (IJCNN).

Ha, S., Yun, J., and Choi, S. (2015). Multi-modal convolutional neural networks for

activity recognition. In International Conference on Systems, Man, and Cybernetics.

Han, D., Kim, J., and Kim, J. (2017). Deep pyramidal residual networks. In Conference

on Computer Vision and Pattern Recognition (CVPR).

Han, K., Wang, Y., Zhang, Q., Zhang, W., XU, C., and Zhang, T. (2020). Model rubiks

cube: Twisting resolution, depth and width for tinynets. In Neural Information

Processing Systems (NeurIPS).

Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). Learning both weights and

connections for e�cient neural networks. In Neural Information Processing Systems

(NIPS).

Hariharan, B., Arbeláez, P. A., Girshick, R. B., and Malik, J. (2015). Hypercolumns

for object segmentation and �ne-grained localization. In Conference on Computer

Vision and Pattern Recognition (CVPR).

Hasegawa, K., Miyashita, Y., and Funatsu, K. (1997). GA strategy for variable selection

in QSAR studies: Ga-based PLS analysis of calcium channel antagonists. Journal

of Chemical Information and Computer Sciences, 37(2):306--310.

Hasegawa, R. and Hotta, K. (2016). Plsnet: A simple network using partial least

squares regression for image classi�cation. In International Conference on Pattern

Recognition (ICPR).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Computer Vision and Pattern Recognition (CVPR).

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., and Li, M. (2019a). Bag of tricks for

image classi�cation with convolutional neural networks. In Conference on Computer

Vision and Pattern Recognition (CVPR).

He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., and Yang, Y. (2020). Learning �lter

pruning criteria for deep convolutional neural networks acceleration. In Conference

on Computer Vision and Pattern Recognition (CVPR).

Bibliography 115

He, Y., Kang, G., Dong, X., Fu, Y., and Yang, Y. (2018a). Soft �lter pruning for

accelerating deep convolutional neural networks. In International Joint Conference

on Arti�cial Intelligence (IJCAI).

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S. (2018b). Amc: Automl for

model compression and acceleration on mobile devices. In European Conference on

Computer Vision (ECCV).

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. (2019b). Filter pruning via geomet-

ric median for deep convolutional neural networks acceleration. In Conference on

Computer Vision and Pattern Recognition (CVPR).

He, Y., Zhang, X., and Sun, J. (2017). Channel pruning for accelerating very deep

neural networks. In International Conference on Computer Vision (ICCV).

Hendrycks, D. and Gimpel, K. (2017). Early methods for detecting adversarial images.

In International Conference on Learning Representations (ICLR).

Hendrycks, D., Lee, K., and Mazeika, M. (2019). Using pre-training can improve

model robustness and uncertainty. In International Conference on Machine Learning

(ICML).

Hiraoka, K., Yoshizawa, S., Hidai, K., Hamahira, M., Mizoguchi, H., and Mishima, T.

(2000). Convergence analysis of online linear discriminant analysis. In International

Joint Conference on Neural Network (IJCNN).

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.

Neural Networks, 4(2):251--257.

Hornik, K., Stinchcombe, M. B., and White, H. (1989). Multilayer feedforward net-

works are universal approximators. Neural Networks, 2(5):359--366.

Howard, A., Pang, R., Adam, H., Le, Q. V., Sandler, M., Chen, B., Wang, W., Chen,

L., Tan, M., Chu, G., Vasudevan, V., and Zhu, Y. (2019). Searching for mobilenetv3.

In International Conference on Computer Vision (ICCV).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-

dreetto, M., and Adam, H. (2017). Mobilenets: E�cient convolutional neural net-

works for mobile vision applications. In arXiv.

Hu, H., Peng, R., Tai, Y., and Tang, C. (2016). Network trimming: A data-driven

neuron pruning approach towards e�cient deep architectures. In arXiv.

116 Bibliography

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Conference

on Computer Vision and Pattern Recognition (CVPR).

Huang, G., Liu, Z., Pleiss, G., Van Der Maaten, L., and Weinberger, K. (2019). Con-

volutional networks with dense connectivity. Transactions on Pattern Analysis and

Machine Intelligence (PAMI).

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). Densely

connected convolutional networks. In Conference on Computer Vision and Pattern

Recognition (CVPR).

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K. Q. (2016). Deep networks

with stochastic depth. In European Conference on Computer Vision (ECCV).

Huang, G. B., Mattar, M. A., Lee, H., and Learned-Miller, E. G. (2012). Learning to

align from scratch. In Neural Information Processing Systems (NIPS).

Huang, Q., Zhou, S. K., You, S., and Neumann, U. (2018). Learning to prune �lters in

convolutional neural networks. In Winter Conference on Applications of Computer

Vision (WACV).

Huang, Z. and Wang, N. (2018). Data-driven sparse structure selection for deep neural

networks. In European Conference on Computer Vision (ECCV).

Io�e, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on Machine

Learning (ICML).

Jain, R. (1990). The art of computer systems performance analysis: techniques for

experimental design, measurement, simulation, and modeling. Wiley professional

computing. John Wiley & Sons.

Jin, H., Song, Q., and Hu, X. (2019). Auto-keras: An e�cient neural architecture

search system. In International Conference on Knowledge Discovery & Data Mining

(SIGKDD).

Kandasamy, K., Neiswanger, W., Schneider, J., Póczos, B., and Xing, E. P. (2018).

Neural architecture search with bayesian optimisation and optimal transport. In

Neural Information Processing Systems (NeurIPS).

Ke, Q., Bennamoun, M., An, S., Sohel, F. A., and Boussaïd, F. (2017). A new repre-

sentation of skeleton sequences for 3d action recognition. In Conference on Computer

Vision and Pattern Recognition (CVPR).

Bibliography 117

Kloss, R. B., Jordão, A., and Schwartz, W. R. (2017). Boosted projection: An en-

semble of transformation models. In Iberoamerican Congress on Pattern Recognition

(CIARP).

Kloss, R. B., Jordao, A., and Schwartz, W. R. (2018). Face veri�cation strategies for

employing deep models. In International Conference on Automatic Face & Gesture

Recognition (FG).

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., and Houlsby,

N. (2020). Big transfer (bit): General visual representation learning. In European

Conference on Computer Vision (ECCV).

Kong, T., Yao, A., Chen, Y., and Sun, F. (2016). Hypernet: Towards accurate region

proposal generation and joint object detection. In Computer Vision and Pattern

Recognition (CVPR).

Kornblith, S., Shlens, J., and Le, Q. V. (2019). Do better imagenet models transfer

better? In Conference on Computer Vision and Pattern Recognition (CVPR).

Krizhevsky, A., Nair, V., and Hinton, G. (2009). Cifar-10 (canadian institute for

advanced research).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classi�cation with

deep convolutional neural networks. In Neural Information Processing Systems

(NIPS).

Kullback, S. and Leibler, R. A. (1951). On information and su�ciency. Annals of

Mathematical Statistics, 22(1):79�86.

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J. R. R., Krasin, I., Pont-Tuset, J.,

Kamali, S., Popov, S., Malloci, M., Duerig, T., and Ferrari, V. (2020). The open

images dataset V4: uni�ed image classi�cation, object detection, and visual rela-

tionship detection at scale. International Journal of Computer Vision (to appear).

Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T. (2019). Quantifying the carbon

emissions of machine learning. In Neural Information Processing Systems (NeurIPS).

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,

W. E., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code

recognition. Neural Computation, 1:541--551.

118 Bibliography

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2017). Pruning �lters for

e�cient convnets. International Conference for Learning Representations(ICLR).

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss

landscape of neural nets. In Neural Information Processing Systems (NeurIPS).

Li, J., Qi, Q., Wang, J., Ge, C., Li, Y., Yue, Z., and Sun, H. (2019a). OICSR: out-in-

channel sparsity regularization for compact deep neural networks. In Conference on

Computer Vision and Pattern Recognition (CVPR).

Li, M., Yumer, E., and Ramanan, D. (2020a). Budgeted training: Rethinking deep

neural network training under resource constraints. In International Conference on

Learning Representations (ICLR).

Li, X., Wang, W., Hu, X., and Yang, J. (2019b). Selective kernel networks. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

Li, Y., Yang, M., and Zhang, Z. (2019c). A survey of multi-view representation learning.

Transactions on Knowledge and Data Engineering, 31(10):1863--1883.

Li, Z., Xi, T., Deng, J., Zhang, G., Wen, S., and He, R. (2020b). GP-NAS: gaussian

process based neural architecture search. In Conference on Computer Vision and

Pattern Recognition (CVPR).

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., and Shao, L. (2020). Hrank:

Filter pruning using high-rank feature map. In Conference on Computer Vision and

Pattern Recognition (CVPR).

Liu, H., Simonyan, K., and Yang, Y. (2019a). DARTS: di�erentiable architecture

search. In International Conference on Learning Representations (ICLR).

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017). Learning e�cient

convolutional networks through network slimming. In International Conference on

Computer Vision (ICCV).

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2019b). Rethinking the value of

network pruning. In International Conference on Learning Representations (ICLR).

Lockhart, J. W., Weiss, G. M., Xue, J. C., Gallagher, S. T., Grosner, A. B., and

Pulickal, T. T. (2011). Design considerations for the wisdm smart phone-based

sensor mining architecture. In International Workshop on Knowledge Discovery from

Sensor Data.

Bibliography 119

Loshchilov, I. and Hutter, F. (2017). SGDR: stochastic gradient descent with warm

restarts. In International Conference on Learning Representations (ICLR).

Lu, G., Zou, J., and Wang, Y. (2012). Incremental learning of complete linear discrim-

inant analysis for face recognition. Knowledge-Based Systems, 31:19--27.

Lu, J. and Tong, K. (2019). Robust single accelerometer-based activity recognition

using modi�ed recurrence plot. IEEE Sensors Journal, 19(15):6317�6324.

Luo, J., Zhang, H., Zhou, H., Xie, C., Wu, J., and Lin, W. (2019). Thinet: Prun-

ing CNN �lters for a thinner net. Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 41(10):2525--2538.

Luo, J.-H. and Wu, J. (2020). Neural network pruning with residual-connections and

limited-data. In Conference on Computer Vision and Pattern Recognition (CVPR).

Maalouf, A., Jubran, I., and Feldman, D. (2019). Fast and accurate least-mean-squares

solvers. In Neural Information Processing Systems (NeurIPS).

Mackey, L. W. (2008). De�ation methods for sparse PCA. In Koller, D., Schuurmans,

D., Bengio, Y., and Bottou, L., editors, Neural Information Processing Systems

(NIPS).

Madras, D., Atwood, J., and D'Amour, A. (2020). Detecting extrapolation with local

ensembles. In International Conference on Learning Representations (ICLR).

Martínez, A. M. and Kak, A. C. (2001). PCA versus LDA. Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 23(2):228--233.

Mehmood, T., Liland, K. H., Snipen, L., and Saebo, S. (2012). A review of variable

selection methods in partial least squares regression. Chemometrics and Intelligent

Laboratory Systems.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2020).

Deep double descent: Where bigger models and more data hurt. In International

Conference on Learning Representations (ICLR).

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. In British

Machine Vision Conference (BMVC).

Ramachandran, P., Zoph, B., and Le, Q. V. (2018). Searching for activation functions.

In International Conference on Learning Representations (ICLR).

120 Bibliography

Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). CNN features

o�-the-shelf: An astounding baseline for recognition. In Conference on Computer

Vision and Pattern Recognition Workshops (CVPR).

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and

Kurakin, A. (2017). Large-scale evolution of image classi�ers. In International

Conference on International Conference on Machine Learning (ICML).

Renda, A., Frankle, J., and Carbin, M. (2020). Comparing rewinding and �ne-tuning

in neural network pruning. In International Conference on Learning Representations

(ICLR).

Ro�o, G. and Melzi, S. (2016a). Online feature selection for visual tracking. In Wil-

son, R. C., Hancock, E. R., and Smith, W. A. P., editors, British Machine Vision

Conference (BMVC).

Ro�o, G. and Melzi, S. (2016b). Ranking to learn: Feature ranking and selection via

eigenvector centrality. In Appice, A., Ceci, M., Loglisci, C., Masciari, E., and Ras,

Z. W., editors, New Frontiers in Mining Complex Patterns (NFMCP).

Ro�o, G., Melzi, S., Castellani, U., and Vinciarelli, A. (2017). In�nite latent feature

selection: A probabilistic latent graph-based ranking approach. In International

Conference on Computer Vision (ICCV).

Ro�o, G., Melzi, S., Castellani, U., Vinciarelli, A., and Cristani, M. (2020). In�nite

feature selection: a graph-based feature �ltering approach. Transactions on Pattern

Analysis and Machine Intelligence (PAMI).

Ro�o, G., Melzi, S., and Cristani, M. (2015). In�nite feature selection. In International

Conference on Computer Vision (ICCV).

Rooyen, B. V., Menon, A. K., and Williamson, R. C. (2015). Learning with symmetric

label noise: The importance of being unhinged. In Neural Information Processing

Systems (NIPS).

Rosenfeld, J. S., Rosenfeld, A., Belinkov, Y., and Shavit, N. (2020). A constructive

prediction of the generalization error across scales. In International Conference on

Learning Representations (ICLR).

Rueda, F. M., Grzeszick, R., Fink, G. A., Feldhorst, S., and ten Hompel, M. (2018).

Convolutional neural networks for human activity recognition using body-worn sen-

sors. Informatics.

Bibliography 121

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations

by back-propagating errors. Nature, 323:696�699.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. (2018). Mo-

bilenetv2: Inverted residuals and linear bottlenecks. In Computer Vision and Pattern

Recognition (CVPR).

Sankararaman, K. A., De, S., Xu, Z., Huang, W. R., and Goldstein, T. (2020). The

impact of neural network overparameterization on gradient confusion and stochas-

tic gradient descent. In International Conference on International Conference on

Machine Learning (ICML).

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). How does batch normal-

ization help optimization? In Neural Information Processing Systems (NeurIPS).

Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. (2020). Green AI. Communi-

cations of the ACM, 63(12):54--63.

Schwartz, W. R., Kembhavi, A., Harwood, D., and Davis, L. S. (2009). Human detec-

tion using partial least squares analysis. In International Conference on Computer

Vision (ICCV).

Sciuto, C., Yu, K., Jaggi, M., Musat, C., and Salzmann, M. (2020). Evaluating the

search phase of neural architecture search. In International Conference on Learning

Representations (ICLR).

Shafahi, A., Saadatpanah, P., Zhu, C., Ghiasi, A., Studer, C., Jacobs, D. W., and Gold-

stein, T. (2020). Adversarially robust transfer learning. In International Conference

on Learning Representations (ICLR).

Sha�ee, M. S., Sha�ee, M. J., and Wong, A. (2019). Dynamic representations toward

e�cient inference on deep neural networks by decision gates. In Conference on

Computer Vision and Pattern Recognition Workshops(CVPR).

Sharma, A. and Jacobs, D. W. (2011). Bypassing synthesis: PLS for face recognition

with pose, low-resolution and sketch. In Conference on Computer Vision and Pattern

Recognition (CVPR).

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-

scale image recognition. In International Conference on Learning Representations

(ICLR).

122 Bibliography

Sindagi, V. and Patel, V. M. (2019). Multi-level bottom-top and top-bottom feature

fusion for crowd counting. In International Conference on Computer Vision (ICCV).

Singh, S. and Shrivastava, A. (2019). Evalnorm: Estimating batch normalization statis-

tics for evaluation. In International Conference on Computer Vision (ICCV).

Smith, S. L., Kindermans, P., Ying, C., and Le, Q. V. (2018). Don't decay the learning

rate, increase the batch size. In International Conference on Learning Representa-

tions (ICLR).

Song, H., Thiagarajan, J. J., Sattigeri, P., Ramamurthy, K. N., and Spanias, A. (2017).

A deep learning approach to multiple kernel fusion. In International Conference on

Acoustics, Speech, and Signal Processing (ICASSP).

Stott, A. E., Kanna, S., Mandic, D. P., and Pike, W. T. (2017). An online NIPALS

algorithm for partial least squares. In International Conference on Acoustics, Speech,

and Signal Processing (ICASSP).

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy considera-

tions for deep learning in NLP. In Conference of the Association for Computational

Linguistics (ACL).

Suau, X., Zappella, L., and Apostolo�, N. (2020). Filter distillation for network com-

pression. In Winter Conference on Applications of Computer Vision (WACV).

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting unreasonable

e�ectiveness of data in deep learning era. In International Conference on Computer

Vision (ICCV).

Tan, C. M. J. and Motani, M. (2020). Dropnet: Reducing neural network complexity

via iterative pruning. In International Conference on International Conference on

Machine Learning (ICML).

Tan, M. and Le, Q. V. (2019). E�cientnet: Rethinking model scaling for convolutional

neural networks. In International Conference on Machine Learning (ICML).

Vahdat, A., Mallya, A., Liu, M., and Kautz, J. (2020). UNAS: di�erentiable architec-

ture search meets reinforcement learning. In Conference on Computer Vision and

Pattern Recognition (CVPR).

Vareto, R., Silva, S., Costa, F., and Schwartz, W. R. (2017a). Towards open-set face

recognition using hashing functions. In International Joint Conference on Biometrics

(IJCB).

Bibliography 123

Vareto, R. H. and Schwartz, W. R. (2020). Unconstrained face identi�cation using

ensembles trained on clustered data. In International Joint Conference on Biometrics

(IJCB).

Vareto, R. H., Silva, S. S. D., de Oliveira Costa, F., and Schwartz, W. R. (2017b). Face

veri�cation based on relational disparity features and partial least squares models.

In Conference on Graphics, Patterns and Images, (SIBGRAPI).

Veit, A. and Belongie, S. J. (2020). Convolutional networks with adaptive inference

graphs. International Journal of Computer Vision (IJCV), 128(3):730--741.

Veit, A., Wilber, M. J., and Belongie, S. J. (2016). Residual networks behave like

ensembles of relatively shallow networks. In Neural Information Processing Systems

(NIPS).

Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T.,

Chen, K., Vajda, P., and Gonzalez, J. E. (2020). Fbnetv2: Di�erentiable neural

architecture search for spatial and channel dimensions. In Conference on Computer

Vision and Pattern Recognition (CVPR).

Wang, C., Zhang, G., and Grosse, R. B. (2020). Picking winning tickets before training

by preserving gradient �ow. In International Conference on Learning Representations

(ICLR).

Wang, R. J., Li, X., and Ling, C. X. (2018a). Pelee: A real-time object detection

system on mobile devices. In Neural Information Processing Systems (NeurIPS).

Wang, X., Yu, F., Dou, Z., Darrell, T., and Gonzalez, J. E. (2018b). Skipnet: Learning

dynamic routing in convolutional networks. In European Conference on Computer

Vision (ECCV).

Weng, J., Zhang, Y., and Hwang, W. (2003). Candid covariance-free incremental princi-

pal component analysis. Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 25(8):1034--1040.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2017). Automatic frankensteining:

Creating complex ensembles autonomously. In Chawla, N. V. and Wang, W., editors,

International Conference on Data Mining (ICDM).

Wolf, L., Hassner, T., and Maoz, I. (2011). Face recognition in unconstrained videos

with matched background similarity. In Computer Vision and Pattern Recognition

(CVPR).

124 Bibliography

Wu, Y. and He, K. (2018). Group normalization. In European Conference on Computer

Vision (ECCV).

Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L. S., Grauman, K., and Feris,

R. S. (2018). Blockdrop: Dynamic inference paths in residual networks. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

Xie, C. and Yuille, A. L. (2020). Intriguing properties of adversarial training at scale.

In International Conference on Learning Representations (ICLR).

Xie, S., Girshick, R. B., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual

transformations for deep neural networks. In Computer Vision and Pattern Recog-

nition (CVPR).

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation of recti�ed

activations in convolutional network. In arXiv.

Xu, W., Pang, Y., Yang, Y., and Liu, Y. (2018). Human activity recognition based on

convolutional neural network. In International Conference on Pattern Recognition

(ICPR).

Xu, Z. and Li, P. (2019). Towards practical alternating least-squares for CCA. In

Neural Information Processing Systems (NeurIPS).

Yan, J., Wan, R., Zhang, X., Zhang, W., Wei, Y., and Sun, J. (2020). Towards stabiliz-

ing batch statistics in backward propagation of batch normalization. In International

Conference on Learning Representations (ICLR).

Yang, H. H. and Moody, J. E. (1999). Data visualization and feature selection: New

algorithms for nongaussian data. In Solla, S. A., Leen, T. K., and Müller, K., editors,

Neural Information Processing Systems (NIPS).

Yang, L., Han, Y., Chen, X., Song, S., Dai, J., and Huang, G. (2020a). Resolution

adaptive networks for e�cient inference. In Conference on Computer Vision and

Pattern Recognition (CVPR).

Yang, L. and Shami, A. (2020). On hyperparameter optimization of machine learning

algorithms: Theory and practice. Neurocomputing, 415:295--316.

Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., and Xu, C. (2020b).

CARS: continuous evolution for e�cient neural architecture search. In Conference

on Computer Vision and Pattern Recognition (CVPR).

Bibliography 125

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features

in deep neural networks? In Neural Information Processing Systems (NIPS).

Yu, R., Li, A., Chen, C., Lai, J., Morariu, V. I., Han, X., Gao, M., Lin, C., and Davis,

L. S. (2018). NISP: pruning networks using neuron importance score propagation.

In Conference on Computer Vision and Pattern Recognition (CVPR).

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In British Machine

Vision Conference (BMVC).

Zeng, X. and Li, G. (2014). Incremental partial least squares analysis of big streaming

data. Pattern Recognition, 47:3726--3735.

Zhang, C., Bengio, S., and Singer, Y. (2019). Are all layers created equal? In Interna-

tional Conference on International Conference on Machine Learning (ICML).

Zhang, M. and Sawchuk, A. A. (2012). Usc-had: A daily activity dataset for ubiqui-

tous activity recognition using wearable sensors. In ACM Conference on Ubiquitous

Computing.

Zhou, W., Xu, C., Ge, T., McAuley, J. J., Xu, K., and Wei, F. (2020). BERT loses

patience: Fast and robust inference with early exit. In Neural Information Processing

Systems (NeurIPS).

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable

architectures for scalable image recognition. In Conference on Computer Vision and

Pattern Recognition (CVPR).

Appendix A

Time for Training/Fine-tuning

Table A.1 and A.2 show the time (in hours) for training/�ne-tuning the architectures

employed in our research. For the ImageNet dataset, Table A.1, this time was computed

with the data stored in a Solid State Drive (SSD). For the CIFAR-10 dataset, Table A.2,

this time was computed with all the data in memory.

Table A.1. Time for training/�ne-tuning di�erent architectures on ImageNet 224× 224.

Architecture
Time (hours) for

Fine-Tuning (1 epoch)

VGG16 3.63

MobileNetV1 3.67

MobileNetV2 4.52

ResNet50 5.34

Table A.2. Time for training/�ne-tuning di�erent architectures on CIFAR-10.

Architecture
Time (hours) for

Fine-Tuning (1 epoch)

VGG16 0.0283

MobileNetV1 0.0250

MobileNetV2 0.0402

ResNet56 0.0458

ResNet110 0.0827

127

Appendix B

Pruning Structures

Current deep learning frameworks implement the convolutional operation as tensor

operations to take advantage of parallel processing of the GPUs. For this purpose, a

layer i store its input (the output of i− 1 layer) and output tensor. Below we explain

how these tensor operations in�uence in removing �lters and layers.

Pruning Filters. When pruning �lters from the layer i, we need to remove the

connections of tensors and ensure that the dimensions will match. Such a requirement

prohibits us to prune some layers, as illustrated in Figure B.1. In this �gure, blue

boxes indicate the layers we can prune and the red box indicates the layer we cannot.

64 x 256

256 x 64

64 x 64

256

256

48 x 256

256 x 32

32 x 48

256

256

After
Pruning

Figure B.1. Left. Layers before removing �lters. Right. Layers after removing �lters. In
both �gures, left and right values in each box represent the output (i..e, the number of �lters
composing the layer) and input tensor, in this order.

To the layers that we can prune, we need to remove the �lters of tensors of input

and output. For example, in Figure B.1, we remove 16 and 32 �lters from the �rst

and second layers, respectively. Note that, when removing such �lters, the next (i+1)

layer had its input tensor changed. Finally, we are not able to prune the last layer

129

130 Appendix B. Pruning Structures

because it will generate an incompatible match in the element-wise addition operation

(represented by '+'). For example, let us consider we remove 56 �lters from this layer.

It turns out that we would have 200 �lters in this layer and the element-wise will fail

because it expects an operation between two tensors with 256 �lters each.

Pruning Layers. The process to remove layers consists in connecting the output

tensor of a layer i to the input tensor of a layer i + j. For example, Figure B.2

illustrates a single module of ResNet50 (top leftmost) and the removal of the �rst (case

1), second (case 2) and third (case 3) layer of this module. In this �gure, the cases 1

and 3 generate incompatible dimensions between the input and output tensor; thus we

cannot remove such layers. In practice, considering this module, we can remove only the

second layer (case 2). Following this implementation, to a convolutional architecture

with six modules we can remove only six layers. Instead, we can prune entire modules.

To this end, we need to connect the output tensor of a module to the input tensor

of another module, as shown in Figure B.2 (bottom). In this implementation, to a

convolutional architecture with six modules, we can remove up to 12 layers (4 modules

with 3 layers each). It is important to mention that the �rst and last module of the

stage cannot be removed due to incompatible dimensions of tensors. Thus, given a

Case 1 Case 3

64 x 256

256 x 64

64 x 64

256

256

Module bith

256 x 64

64 x

256

256

64

64 x 256

 x 64

256

256

64

 x 256

256 x

256

256

64

64

Case 2

64
 x

 2
56

25
6

x
64

64
 x

 6
4

25
6

64
 x

 2
56

25
6

x
64

64
 x

 6
4

64
 x

 2
56

25
6

x
64

64
 x

 6
4

25
6256 256

Module b1 Module b2 Module b3

Figure B.2. Top. Module before removing layers (leftmost) and possible layers to be
removed. Red arrows indicate the is impossible to execute the removal. Bottom. Example
of pruning considering entire modules instead of layers. In this example module b2 was
removed. To this end, we connect the output of the module b1 to the input of module b3.

131

stage of k modules, we can remove at most k − 2 modules. Finally, this limitation

restricted us to remove only �ve modules of MobileNetV2.

Appendix C

Neural Architecture Search

Tables C.1 and C.2 show our candidate architectures considering residual and cells

by Zoph et al. [2018] as modules, respectively.

Table C.1. Performance of our discovered architectures considering residual modules. W.
transfer indicates our weight transfer mechanism. The best accuracy is shown in bold. The
arrows indicate which direction is better.

Iteration
Training

Strategy
Depth

Param.↓
(Million)

FLOPs↓
(Million)

Memory↓
(MB)

Accuracy↑
(200 epochs)

1
Scratch 43 0.60 92 7.41 92.03

W. transfer 39 0.56 83 7.00 92.88

2
Scratch 51 0.65 111 8.88 92.38

W. transfer 43 0.71 92 7.61 92.64

3
Scratch 59 0.69 130 10.32 92.62

W. transfer 51 0.90 111 9.16 92.92

4
Scratch 63 0.84 139 11.09 92.53

W. transfer 51 1.08 130 10.52 92.76

5
Scratch 67 0.88 149 11.65 92.58

W. transfer 59 1.23 139 11.31 92.39

133

134 Appendix C. Neural Architecture Search

Table C.2. Performance of our discovered architectures considering cell modules. The best
accuracy is shown in bold. The arrows indicate which direction is better.

Iteration Depth
Param.↓
(Million)

FLOPs↓
(Billion)

Memory↓
(MB)

Accuracy↑
(200 epochs)

1 109 1.3 1.8 45.20 92.06

2 121 1.4 2.0 52.81 91.93

3 133 1.5 2.2 56.96 92.03

4 157 1.9 2.5 67.92 92.60

5 181 2.3 2.9 78.87 92.78

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Hypotheses
	1.3 Objectives
	1.4 Contributions
	1.5 Work Organization

	2 Theoretical Concepts
	2.1 Neural Network
	2.1.1 Single-Layer and Multilayer Networks
	2.1.2 Convolutional Network
	2.1.3 Capacity
	2.1.4 Transfer Learning and Fine-tuning

	2.2 Partial Least Squares
	2.2.1 Variable Importance in Projection

	3 Related Work
	3.1 Convolutional Networks
	3.2 Pruning Structures in Convolutional Networks
	3.2.1 Pruning Neurons
	3.2.2 Pruning Layers
	3.2.3 Pruning Hybrid Structures

	3.3 Neural Architecture Search
	3.3.1 Reinforcement Learning
	3.3.2 Evolutionary Algorithms
	3.3.3 Morphism
	3.3.4 Differentiable

	3.4 Exploring Layers in Convolutional Networks
	3.5 Incremental Dimensionality Reduction
	3.6 Feature Selection

	4 Proposed Approaches
	4.1 Pruning Approaches
	4.1.1 Pruning Filters
	4.1.2 Pruning Layers

	4.2 Neural Architecture Search
	4.2.1 Stage-wise Architecture Search

	4.3 HyperNet Approach
	4.3.1 Latent HyperNet

	4.4 Incremental Partial Least Squares
	4.4.1 Covariance-free Partial Least Squares

	5 Experiments
	5.1 Applications and Datasets
	5.2 Experimental Setup
	5.3 Pruning Approaches
	5.3.1 Pruning Filters in Convolutional Networks
	5.3.2 Generalization Ability
	5.3.3 Pruning Layers in Convolutional Networks

	5.4 Neural Architecture Search
	5.4.1 Influence of Initial Depth
	5.4.2 Combination with other NAS approaches
	5.4.3 Comparison with state-of-the-art NAS
	5.4.4 Learning Architectures on Large Datasets
	5.4.5 Generalization Ability
	5.4.6 Ensemble of Architectures
	5.4.7 Final Remarks

	5.5 Latent HyperNet
	5.5.1 Convolutional Networks
	5.5.2 Defining Layers to be Combined
	5.5.3 HyperNet Improvements
	5.5.4 Computational Cost
	5.5.5 Importance of Dimensionality Reduction
	5.5.6 Latent HyperNet on Lightweight Networks
	5.5.7 Time Issues
	5.5.8 Final Remarks

	5.6 Covariance-free Partial Least Squares
	5.6.1 Comparison with Incremental Methods
	5.6.2 Comparison with Partial Least Squares
	5.6.3 Higher-order Components
	5.6.4 Time Issues
	5.6.5 Incremental Methods on Streaming Scenario
	5.6.6 Comparison with Feature Selection Methods
	5.6.7 Final Remarks

	6 Conclusions
	Bibliography
	A Time for Training/Fine-tuning
	B Pruning Structures
	C Neural Architecture Search

