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cr+d
the set I, of irreducible polynomials of degree n (for n > 2), this map is a permutation

f(z) of degree n we define Ao f = (ex+d)™ f (M+b). Tt turns out that, when restricted to

of I, and, GLa(F,) acts on [, via the compositions A ¢ f. This was first noticed by
Garefalakis [5]. Recently, this action (and others related) has attracted attention from
several authors (see [6], [7] and [8]), and some fundamental questions have been discussed
such as the characterization and number of invariant irreducible polynomials of a given

degree. The map induced by A preserves the degree of elements in I, (for n > 2), but not

in the whole ring [ [z]: for instance, A = 1 [1)) is such that Ao(z"—1) = (z+1)"—a"

has degree at most n — 1. However, if the “denominator” ex + d is trivial, i.e., ¢ = 0
and d = 1, the map induced by A preserves the degree of any polynomial and, more
than that, is an Fg-antomorphism of Fy[x]. This motivates us to introduce the following:

let An = Fylz1,.... 2] be the ring of polynomials in n variables over Fy and G be
the subgroup of GLa(IFy) comprising the elements of the form A = 8 l{) The set

G" := G x -+ x G, equipped with the coordinate-wise product induced by G, is a group.
~—————

n times

The group G™ induces Fy-endomorphisms of A,,: given A € G, A = (44,..., A,), where

A; = (%Z bf), and f € A, we define

Ao f:=flaiw1+b1,...,an2, +by) € Ay

In other words, A induces the Fy-endomorphism of \A,, given by the substitutions x; —
a;z; + b;. In this paper, we show that this map induced by A is an F,-automorphism of
A, and, in fact, this is an action of G™ on the ring A,,, such that A o f and f have the
same multidegree (a natural extension of degree in several variables). It is then natural
to explore the algebraic properties of the fixed elements. We define Ra as the subring
of A, comprising the polynomials invariant by A, i.e.,

RAZZ{fE.An‘AOf:f}-

The ring Ra is frequently called the fized-point subring of A, by A. The study of
the fixed-point subring plays an important role in the Invariant Theory of Polynomials.
Observe that R is an Fg-algebra and a well-known result, due to Emmy Noether, ensures
that rings of invariants from the action of finite groups are always finitely generated; for
more details, see Theorem 3.1.2 of [1]. In particular, Ra is finitely generated and some
interesting questions arise.

o Can we find a minimal generating set Sa for Ro? What about the size of Sx7
o Is Ra a free Fy-algebra? That is, can Ra be viewed as a polynomial ring in some
number of variables?
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Any polynomial is invariant by A if and only if is invariant by any element of the group
(A) generated by A in G™. In particular, we can explore the fixed-point subring for any
subgroup H of G™. For n = 1, the equality Ao f = f becomes f(xz) = f(ax+b) for some
a € [y and b € Fy. In other words, we are taking the substitution 2 — az +b. It turns out
that, with an affine change of variable, we are able to reduce to the cases of translations
x — x + b and the homotheties z + az. In these cases, the fixed-point subring is well
understood and we can easily answer the questions above (see Theorems 2.5 and 3.1
of [7]).

In this paper, we discuss those questions for any n > 1. We find a minimal generating
set Sp for Ra and show that the size of such set is related to the number of some special
minimal product-one sequences in the multiplicative group Fj. Also, we give necessary
and sufficient conditions on the clement A for Ra to be a free Fy-algebra.

The paper is structured as follows. In Section 2, we recall some basic theory of
multivariate polynomials over commutative rings and present some preliminary results.
Section 3 provides many informations on the set Ra. such as a minimal generating set
Sa for Ra and conditions to be a free algebra. In Section 4, we find sharp estimates for
the size of S and. in Section 5, we study the fixed-point subring by the action of H of
G", where H is any Sylow subgroup of G™.

2. Preliminaries

Throughout this paper, A, := Fy[z1,...,2,] denotes the ring of polynomials in n
variables over F,. Also, for elements a € Fj, A € GLo (Fq) and A € G™, we denote by
ord(a), ord(A) and ord(A) the multiplicative orders of a, A and A, respectively.

As mentioned before, the univariate polynomials that remains invariant by the sub-
stitution z + ax + b are well described and, for completeness, we state the results.

Theorem 2.1. Suppose that f is a polynomial over Fy and let a,b € Fy, with a # 0 and
k = ord(a). The following hold:

(x+b) = f(z) if and only if f(x) = g(zP — P~ 1x) for some g € Fylx].

(1)
i) f(az) = f(z) if and only if f(z) = g(z*) for some g € Fy[z].

f

(i) f

For the proof of this result, see Theorems 2.5 and 3.1 of [7]. The case a # 1 and

b # 0 can be reduced to the case b = 0. In fact, we have f(axz +b) = f(z) if and only if
folaz) = fo(x), where fo(z) = f (a: - %)

From Theorem 2.1, the fixed-point subrings are F,[2? — 0P~ 1] and F,[y*], where
y=x+ TL or y = x. Clearly, these rings are isomorphic to F,[z], the ring of univariate
polynomials over F,. We start with some basic theory on multivariate polynomials over
commutative rings. For more details, see Chapter 2 of [2].

Throughout this paper, we always consider the graded lezicographical order in A,,, de-

noted by <, such that @y > x93 > .-+ > x,,. For a given monomial in A,,, say ="' ...z,
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we write X®, where a = (aq,...,a,) € N For convention, z{ = 1. Sometimes, we
simply write X or Y for generic monomials in A4,. It turns out that the graded lex-
icographical order is induced by the following ordering of the vectors a € N™: given
two elements a = (aq,...,a,) and & = (of,...,al), we have a > o' if and only if
S > > g or Y a; =y of and the leftmost nonzero coordinate of the difference
vector o — ¢ is positive. In this case, we write X > X&'

Any nonzero polynomial f € A, can be written uniquely as Y a, X" for some

acB
nonzero elements a, € Fy and a finite set B.

Definition 2.2. Let f be any nonzero element of A,,. The multidegree of f is the maxi-
mum « (with respect to the graded lexicographical order) such that o € B.

2.1. A natural action of G™ over A,

In the following lemma, we observe that the compositions A o f have some bhasic
properties. Its proof follows directly by calculations so we omit the details.

Lemma 2.3. Given A, A’ € G"™ and f,g € A,, the following hold:

a) If f is nonzero, f and A o f have the same multidegree;

b) If T denotes the identity element of G, 1o f = f;

c) (A'A)of=A"o(Aof) and, in particular, the endomorphism induced by A is an
F,-automorphism of A, with its inverse induced by A~!.

d) The automorphism induced by A on A, is of finite order and its order coincides with
the order of A in G™.

We observe that, from Lemma 2.3, the group G" aets on A, via the compositions
A o f. From now, A denotes an element of G™ and the automorphism of A,, induced by
it. The order of the automorphism A coincides with ord(A). We observe that the order
of any element in G is either p or a divisor of ¢ — 1. From this fact, we can easily deduce
the following lemma.

Lemma 2.4. The group G™ has ¢"(q —1)" elements and any element has order a divisor
of p(qg — 1). Moreover, for n > 1, there exists an element of order p(q — 1).

Recall that, in the univariate case (i.e., n = 1), the study of invariant polynomials
can be reduced to the study of the invariants by translations = — x + b or homotheties
x +— ax. The idea relies on the change of variable y = = + Tgr In terms of matrices,
we are just taking conjugations. For an element A € G distinct from the identity, with
A= (8 llj) we say that A is of h-type or t-type, according to b = 0 and a # 1,0

or a = b = 1, respectively. We can easily see that any element of G, distinct from the
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identity, is conjugated in G to an element of h-type or t-type. The first case occurs when
A is diagonalizable (a # 1) and the second one occurs when a = 1 and b # 0.
We have the following result.

Theorem 2.5. Let A and B two elements in G™ that are conjugated, A = AOBAEI,
where Ay € G™. The following hold:

a) The Fg-automorphism induced by Aal, when restricted to Ra, is an Fy-isomorphism
between Ra and Rg. Morcover, if Ra = Fq[f1,..., fm], where f; € Ay, then Rg =
F,[Ag o fi,..., Ay o fl.

b) There exist unique nonnegative integers t = t(A) and h = h(A) and an element
A’ € G™ such that t entries of A’ are of t-type, h are of h-type and the n —h —t
remaining equal to the identity matriz with the additional property that Ra and Ra
are isomorphic, via the isomorphism indueed by an element A, € G™.

Proof. a) Notice that AalAAO = B. Hence, for any f € A,, Beo f = f if and only if
Ao (Agof)=Ago f, ie, Agof e Ra. In other words, Ry is the homomorphic
image of Ra by the Fg-automorphism Agl of A,. Hence, if oo B : Ra — Rp is the
restriction of this automorphism to Ra, ¢a B is an Fg-isomorphism. Suppose that
Ra =Fg4(f1,..., fm], where f; € A,,. and let g € Rgp. In particular, 99;:B (g)isin Ra,
hence it is a polynomial expression in terms of the elements fi,..., f;,. Therefore,
g= LPA7B(30;3B (g9)) is a polynomial expression in terms of @A B(f1),...,¢A.B(fm)-
In other words, Rp C Fgloa B(f1),- ... 9a.B(fm)]- The inverse inclusion follows in a
similar way. Notice that, from definition, each f; is in R4, hence pa g(fi) = Ay Lo fi
for 1 <i<m.

b) Write A = (Aq,..., An) and let Cy (resp. Cp) be the sets of integers @ (resp. j)
with 1 < i,j < n such that the i-th (resp. j-th) coordinate of A € G is conjugated
in G to an element of h-type (resp. t-type), and set h = |Cyl|, t = |Cr|. Also,
for each i € C}, U Cy, let B; be the element of GG such that BiAiBfl is of t-type
or h-type and B; = I for i ¢ C, U Cy. If we set Ay = (By,...,B,), the element
Al = A1AA171 € G™ is such that t entries of A’ are of t-type, h are of h-type and
the n — h — ¢ remaining equal to the identity matrix. The result follows from the

previous item. The uniqueness of h and ¢ follows from the fact that the sets C'y and
Ct are uniquely determined by A. O

Theorem 2.5 shows that any element A € G™ is conjugated to another element
A’ € G™ in a reduced form (any coordinate is either of h-type, t-type or the iden-
tity matrix), such that the rings Ra and Ras are isomorphic. We also note that, if we
reorder the variables, no algebraic structure of the ring Rpa is affected. From now, we
assume that A € G" has the first coordinates as matrices of the h-type, the following
ones of the t-type and the last ones equal to the identity matrix.



L. Reis / Finite Fields and Their Applications 51 (2018) 218-237 223

Definition 2.6. Let A € G™. For nonnegative integers t and h such that t +h < n, A is
of type (h,t) if the first h coordinates of A are of h-type, the following ¢ are of t-type
and the n — h — t remaining equal to the identity matrix.

The type of A, along the elements we are considering now, is well defined. We fix
some notation on the coordinates of h-type of A.

Definition 2.7. Let A be an element of G™ of type (h,t) and write A = (A1,..., An).
For h =0, set H(A) = 0 and, for h > 1, set H(A) = {aq,...,ap}, where each a; is the
first entry in the main diagonal of A; and a; # 1 for 1 <i < h.

It is clear that an element A € G™ of type (h,t) is uniquely determined by ¢ and the
set H(A).

2.2. Translations and homotheties

We start looking at the elements of type (0,t), i.e., maps consisting of translations
x; — x; + 1 for 1 <i <t, that fixes the remaining variables. In the univariate case we
see that the set of invariant polynomials equals Fy[2P — x]. Let us see what happens in
two variables: notice that ¥ — 2 and y? —y are polynomials invariant by the translations
x+— x4+ 1and y+— y+ 1 and, if we consider these maps independently, i.e., if we look
at the identity

flz+1y) = flz,y+1) = fz,y),

one can show that the fixed-point subring is Fy[2P —a, y? —y]. However, we are considering
a less restrictive identity, f(z + 1,y + 1) = f(x,y) and, in this case, the polynomial
f(z,y) = x — y appears as an invariant element. Is not hard to see that @ — y does not
belong to F[z? — 2, y?” — y]. We ask if there is any other exception. We observe that any
polynomial f(x,y) € Fy[,y] is written uniquely as an univariate polynomial in (z —y)
with coefficients in Fy[y]. In fact, f(z,y) = gz — y,y), where g(x,y) = f(z + y,y).
Hence f(x,y) = Y imo(z — y)'P;(y), and then f(z + 1,y +1) = f(z,y) if and only if
Pi(y+1) = Pi(y). In particular, from Theorem 2.1, each P;(y) is a polynomial expression
in ¢ = y? —y. From this fact, one can see that the fixed-point subring is Fy[z —y, ¥ —y].
We observe that 2P — 2 = (x —y)? — (z —y) + (v — y), hence 2P —z € Fy[z —y, y? — ],
as expected.

As above, we are frequently interested in writing an arbitrary polynomial f € A, as a
finite sum of the form >, .5 gihi, where the variables appearing in g; € Ay are disjoint
(or at least not contained) from the ones appearing in each h; € A,,. This allows us to
reduce our identities to well-known cases. In the following lemma, we summarize this
idea.
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Lemma 2.8. Let m and n be positive integers such that m < n. Then any nonzero f € A,
can be written uniquely as

f:ZXﬂPﬂ:

BeB

where B is a finite set (of distinct elements) and, for any 3 € B, X? is a monomial

(or a constant) in Fy[z1,... ,xm] and each Pg is a nonzero element of Fy[zmy1 ..., a]
(which is By for m =n).

Proof. Since the variables are independent, A,, can be viewed as the ring of polynomials
in the variables x4, ..., z,, with coefficients in the ring R = Fy[xy41...,2,] and the
result follows. O

It is straightforward to check that, in Lemma 2.8, we can replace z4,...,z,, and
Tmats- .., &y by any partition of {xq, ..., 2, } into 2 sets. We present a natural extension

of the ideas that we have discussed for translations in Fy[z, y].

Theorem 2.9. Suppose that A is of type (0,1), where t < n is a nonnegative integer. Then
Ra = A, ift =0, Ry =Fy[a] —z1,20,...,2,] if t =1 and, fort > 2,

P
Ra =TFylx1 — o, ... 20— — @, @) — Xy, Ty, - - ., T

Proof. The case t = 0 is straightforward since the only element of type (0, 0) is the iden-

tity of G™. For t = 1, we obtain f(x1+1,20,...,2,) = f(21,...,2,). From Lemma 2.8,
any f is written uniquely as f =37 5 X*F,(21), where B is a finite set and X® is a
monomial in the variables xs, ..., z, and P, € F,[z1]. In particular, we have f € Rp if

and only if f =37 . p X¥Pa(x1 + 1), that is, Pa(21 4+ 1) = Pa(x). From Theorem 2.1,
we know that the last equality holds if and only if Py(z1) is a polynomial in =] — z1,
and then

Suppose now that t > 2; given f € A, notice that, from Lemma 2.8, g = f(z; + a2,
To, ... &y) € Ay Is written uniquely as g = Y.;" @i P;, where P, € Fylwo, ..., ay)
and P, is nonzero. Therefore, f = g(x1 — 2o, 20,...,2,) is written uniquely as f =
S (21 — 29) Py, In particular, f € Ra if and only if

From the uniqueness of the polynomials P;, Ao f = f if and only if A o P; = P;, where
each P; is in Fy[xg, ..., z,]. In other words, Ra = L[x; — xo], where L is the fixed-point
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subring of Fy|xo,...,2,] by A. We follow in the same way for the ring L. After t — 1
iteration of this process, we obtain

Ra = Lolwy — 72,29 — 23, ..., 201 — T4,

where Ly is the fixed-point subring of Fylxy, ..., z,] by A. Since A maps z; to a; + 1
and fixes z; for ¢ < i < n, we are back to the case t = 1 (now with n — ¢ + 1 variables)
and so Ly = Fy[al — zp, 20qq, ... 2], O

The following notation is useful.

Definition 2.10.

(i) For any nonnegative integers h,t such that h +t < n, set L(h,0) = 0, L(h,1) =
{zh 1 —Zny1} and, for t > 2,

L(h,t) = {Zn11 — Thios- s Thit1 — Thits Thyy — Thoit)-

(ii) For any nonnegative integer d < n, set Vy = 0 if d = n and, for d < n — 1,
Vd = {$d+1, ‘o ,xn}.

From definition, Theorem 2.9 implies that if A is of type (0,1), the set L(0,t) UV} is
a set of generators for Ra as an Fg-algebra. We have the following “translated” version
of Theorem 2.9. Its proof is straightforward so we omit.

Corollary 2.11. Let W(h,t) be the Fy-automorphism of A, that maps x; to x; +1 for
h+1 <1< h+t, where h and t are nonnegative integers such that h +t < n. Let
I be a polynomial in Fylwnt, ... xn]. Then f is invariant by V(h,t) if and only if
[ is a polynomial expression in terms of the elements of L(h,t) U Vj4y, i.e., the fized
point subring of Fylrpiq, ... x,] by U(h,t) coincides with the F,-algebra generated by
L(h,t) UVt

We now look at the elements A of type (h,0), i.e., maps consisting of homotheties
x; — a;x; for 1 < i < h, that fixes the remaining variables.

Proposition 2.12. Suppose that A is of type (h,0), where h is a nonnegative integer and,
for h > 1, set H(A) = {aq,...,a} and d; = ord(a;). For h > 1, let C's € N" be the set

of all vectors (by,...,by) € N" such that b; < d;, at least one b; is nonzero and
b b
ay' -t =1 (1)
For each b € Cp, b = (by,...,by) we associate the monomial Y® := x4 .. a% . Let

Mp = {Y"|bc Cp} and hp := |Mu|. Then Ra = A,, if h =0 and, for h > 1,
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RA - ]F‘q[ylj e 7yilA7xh+13 et 1:1:'"‘]?
where y; runs through the distinct elements of M.

Proof. The case t = 0 is straightforward since the only element of type (0,0) is the
identity of G™. Suppose that h > 0. From Lemma 2.8, we know that any f € A,, can be
written uniquely as f = 3 5 X P, where B is a finite set, each X is a monomial
in the variables 1, ...,z and each P, is a nonzero element of Fylzpiq,. .., zx]. Notice

that

Aof=) X"(aulu),

acB

where, for ecach a = (¢q,...,¢,) € N, a, is defined as the product af' .. .aj". If f € Ra,
then Aof = f and, from the uniqueness of the polynomials P, it follows that a, P, = P,
for any o € B. In particular, since P, # 0, we get a, = 1, that is, af* - a}* = 1.

If we write ¢; = d;Q; + ri, where 0 < r; < d;, the last equality implies that
a’{‘ ...a;;h = 1, i.e,, (r1,...,rn) is either the zero vector or belongs to Ca. In other
words, X* = (z41)Q1 . (2f")@» . Y? where Y? is cither 1 € F, or an element of Ma.
acp X* Py is such
that each X® is a finite product of elements in Ma (or equal to 1 € F,) and, in par-

We observe that, since a* = 1, each 2% is in Ma. Hence f = 3

ticular, Ra € Fg[y1,...,Unhp.Tht1, ..., Ty), where y; runs through the distinct elements
of Ma. For the reverse inclusion Ra 2 Fy[y1,....UnasThs1. ..., 2], Dotice that each
monomial y; satisfies A oy; = y; and A trivially fixes the variables xp11, ..., z,. Thus,
Ra =Fy[y1,. .., Ynas Thtt, - .., &n) and we conclude the proof. 0O

Example 2.13. Let ¢ be odd and, for f € F[z.y, 2|, consider the identity f(z,y,z
f(=x,—y, 2). In other words, A o f = f, where A € G? is of type (2,0) and H(A
{~1,—1}. Tt follows from Proposition 2.12 that My = {22, 42 zy,2?y?} and Ry =
Fy[z2, 42, 2y, 222, 2].

— —

In the previous example, the element z2y? is already in F, (22, 4%, xy, 2], since 2%y? =
x? - y? or even 2%y? = (xy)?. We then may write Ry = F, (22, y%, xy, 2]. We introduce a
subset of Ma to remove these redundant elements.

Definition 2.14. Suppose that A is of type (h,0), where h is a non negative integer. Let
My =0 if h =0 and, for h > 1, M3 is the subset of M comprising the monomials
X of Mp that are not divisible by any element of Ma \ {X®}, where My is as in
Theorem 2.12. We set N(A) = |Mj | — h.

From definition, if A is of type (h,0), where & > 1 and H(A) = {a1,...,an}, then
{afr, ... ,Iih} C M3, where d; = ord(a;); one can verify that any other element of My
is a “mixed” monomial. We always have the bound N(A) > 0 and, in fact, N(A) counts
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the number of mixed monomials appearing in Mj. In the previous example, we have
My ={22,y% 2y} and N(A) = 1.

We observe that any element of My, is divisible by some element of My . Moreover,
from Eq. (1), it X € My is divisible by Y € M3, then X/Y = 1 or X/Y is another
element of Ma. From this fact, one can see that any element of M 2 M} is a finite
product of elements in My . In particular, if A is of type (h,0), the sets Mz U Vy, and
Ma UV, generate the same Fg-algebra, ie., M3 U V), generates R as an Fy-algebra.
We finish this section showing that M} is minimal in some sense.

Lemma 2.15. For any X* € M, X% cannot be written as a polynomial expression in
terms of the elements in M3y \ {X*}.

Proof. Suppose that there is an element X* € M3 with this property; such a polynomial
expression in terms of the elements in My \ {X®} has constant term equals zero (we can
see this, for instance, evaluating at the point (0,...,0) € Fy). In particular, X* belongs
to the monomial ideal generated by the set M3 \ {X“} in A,,. But it is well known that,
a monomial belongs to the monomial ideal T € A, generated by a set C' if and only if
the monomial itself is divisible by some element in C. But, from definition, X% is not
divisible by any element of Ma \ {X*} 2 M3 \ {X*} and we get a contradiction. DO

3. The structure of the fixed-point subring Ra

In the previous section, we have characterized the fixed-point subring R in the case
that A is of type (0,t) or (h,0). We now extend this characterization to the general case.

Proposition 3.1. Suppose that A € G™ is of type (h,t). There exist unique elements A4
and Ao with the following properties:

(i) A1 if of type (h,0).
(ii) The first b and the last n —h —t coordinates of Ao are the identity matric and the
remaining t (in the middle) are elements of t-type.
(ifi) A=A, As.

Additionally, Ry = Ra, N Ra, and, in particular, Ra is the F -algebra generated by
ﬂ[/*\1 U L(h‘, t) U Vh+t'

Proof. Write A = (A4,...,4,) and set Ay = (Aq,..., Ap, I,...,]) € G", where each
A; is of h-type. Given A of type (h,t), such an A; is unique. We notice that Ay = AflA
has the required properties. It turns out that the elements A; and Ao commute in G™
and Dy = ord(Aq), D2 = ord(As) divide g — 1 and p, respectively. Since p and ¢ — 1
are relatively prime, then so are Dy and Ds. In particular, if A o f = f. one can easily
see that this implies Ay o f = Ag o f = f. Therefore, Ry C Ra, N Ra,. The reverse
inclusion is trivial and then Ry = Ra, N Ra,.
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Let R be the F -algebra generated by the elements of My U L(h,t) U V. From
Theorem 2.9, Proposition 2.12 and Corollary 2.11, we see that any element f € R
satisfles Ajo f = Ago f = f and then R C Ra, N Ra, = Ra. Conversely, suppose that
[ € Ra = Ra, N Ra,. From Lemma 2.8, f can be written uniquely as f =3 X*F,,
where B ¢ N" is a finite set, each X® is a monomial in Fylzy,...,25) and P, is a
nonzero polynomial in Fy[zpq,...,2,). Since Ag fixes each element of {X*|a € B}
and Aso f = f, we obtain Aso P,, = P, and then, from Corollary 2.11, we see that each
P, is a polynomial expression in terms of the elements in L(h,t) U V4. Also, since A4
fixes each polynomial P, € B and Ajof = f, we obtain (A 0X%).- P, = X*. P, and,
since P, is nonzero, we conclude that A;oX® = X“. Therefore, from Theorem 2.12, each
X% is a polynomial expression in terms of the elements in M} . In particular, f must
be a polynomial expression in terms of the elements of M3 U L(h,t) UV, Le., f € R.
Thus R = R4, as desired. O

From now, if A is an element of type (h,t), the identity A = A{As as in Proposi-
tion 3.1 is defined as the canonical decomposition of A.

Example 3.2. Let ¢ be odd and consider the element A € G® of type (2,2), with
H(A) = H(Ay) = {-1,-1}. The ring Ra comprises the clements f € As satisfying
[z, .. x5) = f(—x1, —xo, 23 + 1,24 + 1, 25). In this case, Proposition 3.1 implies

R P
Ra =Fylx1, x5, wwe, 3 — w4, x — x4, 5],

We ask if M3 UL(h,t)UVhy¢ contains redundant elements. This leads us to introduce
the following definition.

Definition 3.3. Suppose that R C A, is a finitely generated Fy-algebra and let S be a
set of generators for R. We say that S is a minimal generating set for R if there is no
proper subset " < S such that S” generates R.

In other words, minimal generating sets S are those ones with the property that no
element E of S can be written as a polynomial expression in terms of the elements in
S\ {E}. We will prove that the set of generators for Ry given in Proposition 3.1 is
minimal, but first we explore the algebraic independence on the set M3 U L(h, 1)U Vyyy
(which is, somehow, stronger than the concept of redundant elements).

3.1. Algebraic independence in positive characteristic

If K is an arbitrary field, given polynomials fi,..., fm in K[zq,...,2,], we
say that fq,....fm are algebraically independent if there is no nonzero polynomial
P e Klyi,...,ym] such that P(fy,..., f,) is identically zero in K[zy,...,x,]. Given
polynomials fi,...,f, in K[zy,...,x,], we define their Jacobian as the polynomial
det(J(f1,..., fu)), where J(f1,..., fn) is the n x n matrix with entries a;; = %I%, Here,
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%% denotes the partial derivative of f; with respect to x;. The well known Jacobian
Criterion says that, over characteristic zero, a set of n polynomials in K(zy,...,2,] is
algebraically independent if and only if their Jacobian is nonzero. This may fail in pos-
itive characteristic; the elements 2P and y? are algebraically independent over F[x,y],
but det(J(zP,yP)) = 0. However, we have at least one direction of this result.

Theorem 3.4 (Jacobian Criterion — weak version). Suppose that fi,..., fn is a set of
polynomials in Fylz1, ..., xy] such that their Jacobian is nonzero. Then fi,..., f, are
algebraically independent.

For the proof of this result, see Theorem 3.1 of [3].

Corollary 3.5. For any nonnegative integers h and t such that h +t < n and any se-
quence dy, ..., dy (which is empty for h = 0) of divisors of ¢ — 1, the n elements of
{zft, .. 2} U L(h,t) U Vit are algebraically independent.

Proof. We observe that the Jacobian of the elements in {z{",... 2%} U L(h,t) U Vit
equals £(t) if A = 0 and and equals

e(t) - (dy---dp) - (a1 T,

if h # 0, where £(t) = 1 for t = 0 and ¢(t) = —1 for ¢t # 0. Since each d; is a divisor of
g — 1 (which is prime to the characteristic p), this Jacobian is never zero and the result
follows from the (weak) Jacobian Criterion for F,. 0O

We are ready to prove the minimality of M3 U L(h,t) U Vy .

Proposition 3.6. Let A € G™ be an element of type (h,t) and A = A1As its canonical
decomposition. Then Mz U L(h,t) U Vi is a minimal generating set for Ra .

Proof. We already know that this set is a generator. To prove the minimality of such
set, let I7 be the ideal generated by L(h,t) U V, 1+ over the ring Ra. We first show
that no element of MZ is redundant. For this, suppose that an element X € M},
is a polynomial expression in terms of the clements in M3 U L(h,t) U Vjq, \ {X}.
Looking at the quotient Ra /I7, this yields an equality X* = P, (mod Ir), where P,
is a polynomial expression in terms of the elements in My \ {X“}. In other words,
X — P, is an element of I7. One can see that this implies X® — P, = 0, a contradiction
with Lemma 2.15. In the same way (taking Iy as the ideal generated by M3 U Vi
over Rp), we see that if there is a redundant element 1" in L(h,t), then such a 7" can
be written as a polynomial expression in terms of the elements of L(h,t)\ {1'}. But this
vields a nonzero polynomial P € Fylyi,...,ys] such that P(13,...,Ts) = 0, where 7;
runs through the elements of L(h,t), which is impossible since Lemma 3.5 ensures that
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these elements are algebraically independent. Finally, it is clear that no element of V4,
is redundant in M3 U L(h,t)U Vi, O

For an element A of type (h,t) with canonical decomposition A = A1As, Sa =
MZ, U L(h,t) U Vi is the canonical generating set for Ra. We note that [Sa| =
n+ N(Aj) and, in fact, |Sa| —n = N(Aj) is the number of “mixed” monomials in Sx.

3.2. Free algebras

Given a field K and a finitely generated K-algebra R C Klzq,...,3,), R is free if
R can be generated by a sequence fi,..., fi, € Kz1,...,z,] comprising algebraically
independent elements. In other words, R (as a ring) is isomorphic to the polynomial ring
of m variables over K, for some m > 1.

As follows, we have a simple criterion for R4 to be a free F,-algebra.

Theorem 3.7. Let A € G™ be an element of type (h,t) and A = A1As its canonical
decomposition. Write H(A) = H(Ay) = {ay,...,an} for h > 1 and d; = ord(a;) > 1 for
1 < i< h. The following are equivalent:

(i) Ra is free;
(ii) h=0,1 or h > 1 and the numbers d; are pairwise relatively prime;
(iii) N(Aq)=0;
)

(iv) Ra is isomorphic to Ay.

Proof. (i) — (ii): it suffices to prove that, if h > 1 and there are two elements d; and d,
not relatively prime, then R is not a free [Fy-algebra. Without loss of generality, suppose
that ged(dy.dy) = d > 1. If Ry were a free Fg-algebra, then it would be isomorphic to
the ring K[y1,- .., ym] of m variables over K for some m, which is always an Unique

Factorization Domain. As we will see, the ring R does not have this property.

1

a—1 a-1
For a given primitive element # € F#, notice that a; = 8 @ "™ and ap = 6 @ " for

q?
some positive integers r; < di and 9 < da such that ged(r1,d1) = ged(ra,da) = 1. In

particular, since d divides d; and da, ged(d,r1) = ged(d,r2) = 1 and so there exists a

positive integer j < d — 1 such that jry = —ry (mod d). Notice that

algcua;} EPXCECLIEE 1
since jrp + ro is divisible by d. In particular, (M d2 0. ,0) € N satisfies Eq. (1).
Clearly uq := 5”% < dq and us = %2 < ds,and so Y = 351 1722 belongs to Ma, . It follows
from definition that this monomial is divisible by a monomial X := "5 € Mj with

v; < u; < d;;in particular, ai*a5® = 1 and, since v; < d;, it follows that vy, ve > 0.

Is not hard to see that R, viewed as a ring, is an Integml Domain and any element
of M} is irreducible over Rp. Notice that Y?¢ = (z9)7 . 292 hence X = 23'2%? is an
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irreducible divisor of Y% and, since vy, 15 > 0, X does not divide ()7 or 242. However,
¥ and 222 are in R and then Ra cannot be an Unique Factorization Domain.

(i) — (iii): For h = 0 or 1, Mx, = 0 or {a{'}. respectively, and in both cases
N(Aq) = 0. Let h > 1 and suppose that the numbers d; are pairwise relatively prime.
We find explicitly the set My : suppose that (b1,...,bs) € N where b; < d;, at least
one b; is nonzero and all’1 -~-al,’1" =1.Set D =dy---dp and D; = %., for 1 < j < h.

J
Raising powers [); in the previous equality we obtain a?’ Pi — 1, and so d; divides b; D;.
In particular, since the numbers d; are pairwise relatively prime, it follows that d; and D,
are relatively prime and then we conclude that d; divides b;. Since 0 < b; < d;, it follows
that, for each 1 < j < h, either b; = 0 or b; = d;. This shows that M} = {xdt, . ot}
and then

N(Ay) = |Mi,|—h=h—h=0.

(iii) — (iv): If N(Ay) = 0, we know that M3 = {z{*,... 2% }. From Proposition 3.1
and Corollary 3.5 it follows that R, is an Fg-algebra generated by n algebraically inde-
pendent elements in A,,. In particular, R, is isomorphic to A,,.

(iv)— (i): This follows directly by definition. O

In other words, Theorem 3.7 says that [Za is free if and only if M4 has no mixed
monomials. For instance, if g =2, n > 1 and A € G", A has no elements of h-type as
coordinates. In particular, the algebra Ra is always isomorphic to A,,.

In the following corollary, we show that we have a sharp upper bound on the number
of coordinates of h-type in an element A such that Ra is free.

Corollary 3.8. Suppose that ¢ > 2 and let w(q—1) be the number of distinct prime divisors
of ¢ — 1. The following hold:

(i) If A € G™ is of type (h,t) with h > w(q — 1), R is not free.
(ii) For any nonnegative integers h < w(q — 1) and t such that h +t < n, there exists
an element A of type (h.t) such that Ra is free.

Proof. (i) Let A be an element of type (h,t) with A > w(q — 1) such that H(A) =
{a1,...,an} and d; = ord(a;) > 1 for 1 < i < h. Since h > w(q — 1), from the
Pigeonhole Principle, there exist two elements d; and d; that are divisible by some
prime factor r of ¢ — 1 and it follows from Theorem 3.7 that R4 is not free.

(i) If w(g — 1) <1, then h <1 and Theorem 3.7 says that, for any element A of type
(h,t), the Fg-algebra Ra is free. Suppose that w(g —1) > 1, 2 < h < w(g — 1) and
let p1, ..., pn be distinct prime factors of ¢ — 1. For each 1 <i < h, let 0; € [}, be an
element such that ord(#;) = p;. For each nonnegative integer t with h+t < n, consider
A the element of type (h,t) such that H(A) = {6;,...,60,}. Since the numbers p;
are pairwise relatively prime, from Theorem 3.7, R, is a free F-algebra. O
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4. Minimal product-one sequences in IF'E and bounds for N(A4)

So far we have provided a minimal generating set Sa for Ra. We may ask how large
is the set Sa. We have seen that [Sa| = n+ N(A1) and actually N(A;) = 0 when A
is of type (h,f) for h = 0,1 and some special cases of h > 2. Is then natural to ask
what happens in the general case h > 2. In this section, we show that N(A;) is, in
general, related to the number of minimal solutions of Eq. (1) and show how this can
be translated to the study of minimal product-one sequences in Fy. We start with some
basic theory on product-one sequences.

Definition 4.1. Given a finite abelian group H (written multiplicatively), a sequence
of elements (a1,...ar) (not necessarily distinct) in H is a product-one sequence if
aq - --ap = 1, where 1 is the identity of H; the number £ is called the length of (a1, ..., az).
We say that the sequence (aq,...,ax) is a minimal product-one sequence if a; ---ap =1
and no subsequence of (aq,...ay) share the same property.

Since we are working in abelian groups, we consider the sequences up to permutation of
their elements. The so-called Davenport constant of H, denoted by D(H), is the smallest
positive integer d such that any sequence of length d in H contains a product-one subse-
quence. In other words, D(H) is the maximal length of minimal product-one sequences
in H. In the case when H is cyclic, the constant D(H) is known: from Theorem 2.1 in [4],
we easily deduce the following result.

Theorem 4.2. Suppose that C,, is the cyclic group with m elements. Then D(C,,) = m.
Additionally, any minimal product-one sequence in C,, of length m is of the form
(g,...,9) for some generator g of Ch,.

Recall that, for an element A of type (h,0) with h > 1 and H(A) = {a1,---an},

the set My is defined as the set of monomials X = z}' ~-~:z:?1’1 such that at least
one b; is nonzero, b; < ord(a;) and a?l --~ai’l = 1. In particular, X € M4 can be

associated to the product-one sequence a(X) in the cyclic group F, = Cy-1, where
a(X) == (a1,...,01,...,ap,...,ap) and each a; appears b; times. This sequence has
length 2?21 bj. We claim that, for each X € My, its associated product-one sequence
is minimal. In fact, if a(X) were not minimal, there would exist nonnegative integers
by, .-+ by, such that b < by, at least one b is nonzero, at least one b’j is strictly

. b b} N .. .
smaller than the corresponding b; and ay' ---a;* = 1. From definition, the monomial
b Bl o« o . . . ,
Y =2'---2," is in M and divides X, a contradiction since X € M5x.
1 h ; A

Based on this observation and Theorem 4.2, we can give a sharp upper bound for the
numbers N(Aq).

Theorem 4.3. Let A € G™ be an element of type (h,t) and A = A1As its canonical
decomposition, where h > 2. Write H(A) = H(A1) = {a1,...,a,} and d; = ord(a;) > 1
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for 1 < i < h. Also, let £(A) be the least common multiple of the numbers dy, ..., dy.
The following hold:

)
h)

N(Ay) < (ﬂ(‘ﬁszlﬂ”fl) — h and, in particular, |Sa| < (E(Afzj?fl) +n—h.

N(A1) = ("8 —hif and only if H(A) = H(A1) = {6,6,...,60}, where § is
an element of order £(A) in Fy.

Proof. a) Since each d; divides ¢—1, it follows that (A ) divides g—1. Let Cya) € F} be

b)

the cyelic group of order £(A). In particular, since af(A) = 1forany 1 <i < h, each
a; is in Cys). We have seen that any element a:ll’l ---a:f[‘ € Mj, can be associated
to a minimal product-one sequence in Fj of length Z?:1 b;. In fact, since cach a;
is in Cya), such a minimal sequence is in Cyay. From Theorem 4.2, any minimal
product-one sequence is of length at most £(A), hence Z};:l bj < £(A). In particular,
any monomial 7" -z} € M3, is such that E?:l by < £(A). If Mp(d) denotes the

set of all monomials 27" ---2}" such that Z?:l r; = d, we define the following map:

Mu: MR, Ma(l(A)
b ba bi ybo o bnHE(A) = (bittbn)
h .

Ty ey Iy
Clearly, Ay, is well defined. We cldim that Ay 1; one-to-one. In fact, if there are two
distinct elements X; = 28" - 2% and X = .131 . bh in M} such that A, (X4) =
Ap(XY), we have b; = b] for 1 < i< h-—1and then since the elements are dls;tmct
it follows that by # b},. For instance, suppose by > b, hence X is divisible by
a contradiction with the definition of M} . Hence, Aj is one-to-one and so [My | g

|My(£(A))|. A simple calculation yields |Mp(£(A))| = (“4)F271). Therefore,

N(Ay) = M4, | —h< (ﬁ(A; “i* 1) —h.
L J—

Suppose that N(A1) = (E(A,zﬂ“l) — h. In particular, |M} | = [Mz(£(A))], and so
the map Aj defined above is an one-to-one correspondence. We first consider the

case h > 2. We observe that the element
X=ux- Th2Ig(A) h+2€M(( A))

is in the image of My by Aj and this easily implies that X € M3 . We have
seen that the product-one sequence a(X) associated to X is minimal. Its length is
{(A) = D(Cy(ay) but, according to Theorem 4.2, only constant sequences composed
by generators have this length. It follows that a; = a1 for any i < h — 1. Similarly, if
we define the map A} as

AL My, — My({(A))

by bn b1 +€(A)—(bi+---+bn)

. ba bn
$1 C\Uh — .L'

:EQ .‘.Ih s
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one can show that Aj must be an one-to-one correspondence and in the same way
we obtain a; = ap, for any 7 > 2. Since h > 2, we conclude that a; = a1 = 0 for every
1<i¢<h.

For h = 2, since Ay, is onto, it follows that m’f:}:g(A)*k is in the image of M3 by Ay,
for any 1 < k < £(A). But the pre-image of such element is ;U’fsc‘;(k € My, for

st can not

some positive integer 1 < s(k) < £(A). From the definition of M} . z{;
divide lezz( ) for any k and j, i.e., j > k if and only if s(j) < s(k). This shows that
s(1) = £(A) — 1. Therefore, xwé(A)*l is in My, and it follows from definition that
ay - ag(A)_l =1, 1i.e., a; = as. Hence, 8 = aq = as is the desired element.

In any case, H(A) = H(A1) = {60,6,...,60}, where 0 is an element of order ¢(A)
in F,. Conversely, if H(A) = {#,...,0} for some element # of order ¢(A), we can
casily verify that any element of My (¢(A)) is in M3 and then [Mpu(£(A))| < |M3 |
Since Ap is one-to-one, Ay, must is an one-to-one correspondence (in fact, Ay is the
identity map in this case). Thus |[M} | = [Mn(£(A))], ie.,

N(Ay) = |Mj,|—h= (“Ai + ’i* 1) —h D
-

Since the number £(A) defined above is always a divisor of g—1 and |Sa| = N(A1)+n,
Theorem 4.3 implies the following:

Corollary 4.4. Let A € G™ be an element of type (h,t), where h > 2. Then |Sa| <
(QH‘ 2) +n — h with equality if and only if there exists a primitive element 6 € ¥ such
that H(A) = {6,...,0}.

Example 4.5. If ¢ = 3, —1 € Fy is the only nonzero element with order greater than one.
In particular, for i > 2 and A an element of type (h,t), |Sa| always attain the bound
(‘Hh 2) +n—h=n+ M In fact, for h = 0,1 we have [Sa| = n and so the same

equality holds.

We have seen that the bounds for the number N(A1) or even the criterion for when
R4 is free depend only on the order of the elements in H(A). We finish this section with
a simple example, showing that N(A;) depends strongly on the elements of H(A), not
only on their orders.

Example 4.6. Suppose that ¢ = 1 (mod 8) and let A be an element of order 8 in Fy.
Let A and A’ be the elements of type (2,0) in G? such that H(A) = {\* A%} and
H(A’) = {)\5,\7}. Both sets H(A) and H(A’) have an element of order 8 and an
clement of order 4. By a direct calculation, we find M3, = {z* 2%y,y*} and My, =
{24, 28 2%y*, 2%y, 45}, Hence N(Ay) =1 and N(A}) = 3.
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5. Invariants through the action of Sylow subgroups of G™

So far we have studied the structure of the fixed-point subring R arising from the
F,-automorphism induced by an element A € G". In this section we consider a more
restricted class of invariants. For a subgroup H < G", we define Ry the set of elements
in A, that are fixed by any element A € H. In other words, Ry = {f € A, |Aof =T,
VA € H}, is the fized-point subring of A, by H. We cousider the ring of invariants Ry,
for H a Sylow subgroup of G™.

Recall that G™ has ¢"(q — 1) elements and let ¢ — 1 = 7’f1 .1 be the prime
factorization of ¢g—1, where ¢ is a power of a prime p and s = w(g—1). From definition, the
Sylow p-subgroups of G™ have order ¢" and, for each 1 < i < s, the Sylow r;-subgroups of
G™ have order 7}’ i Tt is well known that any two Sylow r-subgroups are conjugated and,
by small modification of Theoremn 2.5, we see that any two conjugated groups H, H' ¢ G"
have isomorphic fixed-point subrings. In particular, we just have to work with specific
Sylow r-groups of G™. We will naturally choose the simplest ones.

We summarize the ideas contained in this section. Essentially, we try to find a set of
generators for H such that their correspondents Fg -automorphisms leave fixed all but
one variable in {1, ...,z }. Using separation of variables (Lemma 2.8), we characterize
independently the ring of invariants for each automorphism. The ring Ry will be the
intersection of such rings; at this step, we follow the same steps as in the proof of
Proposition 3.1. For simplicity, we omit proofs that are completely analogous to the ones
that we have already done.

5.1. Homotheties and Sylow r;-subgroups

We start fixing some notation. For any nonzero clement a € Fg, set A(a) =

(8 ?) € (. For each prime divisor r; of ¢ — 1, let G(r;) < G be the set of matri-

ces A(a), where a € F is such that a™ " = 1. Clearly G(r,) is a group with 77* elements.
Therefore, H(r;) := G(r;)™ < G™ has order r:fﬁi, ie., H(r;) is a Sylow r;-subgroup
of G". If #; € F} is an element of order r;*, we can verify that H(r;) is generated by
{A;(6;), 1 <j<n}, where A;(8;) = (I,..., A(#;),....I) is the element of G™ such that
its k-th coordinate is the identity matrix I for £ # j and the j-th coordinate of A;(#;)
is the matrix A(6;). In particular, the Fy-automorphism induced by A;(#;) fixes each
variable zy for k # j and maps z; to #;z;. Since {A;(6;),1 < j < n} generates H(r;),
I € Ry, if and only if

f=A(li)of=As(bi)of=-=An(li)of (2)

In other words, f(z1,...,@,) = f(z1, 020, ..., 2,) = -+ = f(z1,22,...,6;7,).
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We obtain the following:

Proposition 5.1. For a fized i such that 1 < i < s = w(q — 1), set d(i) = r’*. Then

Ry, = Fq[mf(i), e ,mﬁ(i)] and, in particular, Ry, is a free F4-algebra, isomorphic

to A,.

Proof. From Eq. (2), we can see that Ry, = ﬂ1<j<n Ra,(g,)- Also, a “translated”
version of Proposition 2.12 for each A;(#;) yields

RA;;(&') :Fq[ﬂil,...,fﬂ- geeey Lyl

Following the proof of Proposition 3.1, we obtain

d(i i
ﬂ RAj(Gi) = Fq{xl( )5 T ,[Eg( )]'
1<i<n
Therefore, Ry, = Fy [mf(i), . ,mﬁ(i)]. Since d(i) is a divisor of ¢ — 1, it follows from

Corollary 3.5 that Rg(,,) is generated by n algebraically independent elements of Ay.
In particular, Ryy(,,) is a free F-algebra, isomorphic to A,,. O

5.2. Translations and Sylow p-subgroups

For any element a € Fy, set B(a) = é cll € G. Also, let G(p) < G be the

set of matrices of the form B(a) for some a € F,. Clearly G(p) is a group with ¢
elements. Hence H(p) := G(p)" < G™ has order ¢", i.e., H(p) is a Sylow p-subgroup
of G™. Notice that G(p) is generated by the set {Bj(a), a € Fy, 1 < j < n}, where
Bj(a) = ({,....,B(a),...,I) is the element of G™ such that its i-th coordinate is the
identity matrix [ for i # j and the j-th coordinate of B;(a) is the matrix B(a). We start
looking at the case n = 1: B(a) o f = f(x + a). From Theorem 2.5 of [7] we can easily
deduce the following.

Lemma 5.2. A polynomial f(x) € Fylx] satisfies f(z) = f(z +b) for all b € Fy if and
only if f(z) = g(x? —x), for some g(z) € Fy[x].

We note that Ry, comprises the elements f € Ay such that

f(ml:"':mi+b:"':mﬂ):f7

for any 1 < i <n and any b € IF,. Using the previous lemma and the same ideas in the
) 3 q g P
proof of Proposition 5.1, we deduce the following result.
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Proposition 5.3. The fired-point subring Ry, of A, by H(p) satisfies
Ry =Fglzf —zq, ... 28 — ]
In particular, Ry, is a free Fy-algebra, isomorphic to A;,.
Combining Propositions 5.1 and 5.3, we conclude the following theorem.

Theorem 5.4. Let v be any prime divisor of p(¢ — 1) and H a Sylow r-subgroup of G™.
The fized-point subring Ry of A, by H is a free Fy-algebra, isomorphic to A,,.

6. Conclusions

In this paper, we notice that, for

G:{(g ?),a,bEFq,a#O},

the group G™ C GLo(F,)™ acts on the ring of polynomials in n variables over F,. For
A € G", we explore the algebraic properties of the fixed-point subring Ra. In particular,
we provide a minimal generating set Sp for Ra. We give a criteria for when Rp is free,
we provide upper bounds for the size of Sa and characterize the elements A for which
this bound is attained. In our approach, some algebraic structures of Ra are naturally
related to other topics, such as the minimal product-one sequences in abelian groups.
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