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Abstract
Investigation of simple far-from-equilibrium systems exhibiting phase separation leads to the
conclusion that phase coexistence is notwell defined in this context. This is because the properties of
the coexisting nonequilibrium systems depend on how they are placed in contact, as verified in the
driven lattice gas with attractive interactions, and in the two-temperature lattice gas, under (a)weak
global exchange between uniform systems, and (b) phase-separated (nonuniform) systems. Thus, far
from equilibrium, the notions of universality of phase coexistence (i.e., independence of how systems
exchange particles and/or energy), and of phases with intrinsic properties (independent of their
environment) are lost.

1. Introduction

Consider a liquidmixture, for examplemethanol and n-hexane, cooled below the unmixing temperature, so
that two distinct phases emerge, separated by an interface ofmicroscopic thickness. The properties of the
coexisting phases can be predicted by equating the chemical potentials of the two components, in homogeneous
samples of each phase. Similarly, knowing the chemical potential of the homogeneous liquid and vapor phases as
functions of temperature and pressure permits one to predict the liquid–vapor coexistence curve. Is the same
thermodynamic analysis possible far from equilibrium?

A central issue in nonequilibriumphysics is whether thermodynamics can be extended to systems far from
equilibrium, in particular, to steady states [1–12]. A key thermodynamic concept is phase coexistence; indeed,
one of the principal applications of equilibrium thermodynamics is the prediction of phase coexistence based
upon knowledge of the isolated phases.

While there has beenmuch study of nonequilibrium statistical systems and their associated phase transitions
[13–17], the issue of coexistence between far-from-equilibrium phases remains largely unexplored. An
important contribution in this regard is the study of intensive thermodynamic parameters (ITPs) in
nonequilibrium steady states (NESSs) by Bertin et al, who showed that such parameters can be defined in a
consistentmanner provided a certain asymptotic additivity property holds. These authors further show that
ITPs of coexisting nonequilibriumphases are equal for a specific kind of exchange dynamics. Pradhan et al [8]
tested, via numerical simulation of driven lattice gases in contact, the validity of the zeroth law for temperatures
inNESS. They found that the zeroth law holds to good approximation, and suggest that observed deviationsmay
be attributed to the nonuniformities induced by the contact itself. In [18] it is found that such inconsistencies,
though small, exist even if nonuniformities are eliminated by using global rather than local exchange of particles,
unless a particular class of exchange rates (Sasa–Tasaki (ST) rates, see below) are employed.Despite the
inconsistencies noted in [18], Pradhan and Seifert [9]were able to construct amean-field theory of phase
coexistence in the driven lattice gas that compares well with simulation. Chatterjee and coworkers [10, 11] have
argued that ITPs can be defined consistently for interacting systems inNESS provided spatial correlations are
short-ranged, and that the systems interact weakly.

Instances of phase separation inNESSs have been known for some time, for example in the driven lattice gas
with attractive interactions [13–15]. It appears to have been assumed, implicitly, that nonequilibriumphase
coexistence is well defined.
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Equilibriumphase coexistence enjoys a high degree of universality. That is, if phases A andBwith different
densities, for example, are known to coexist when present in a single nonuniform system, (e.g., as a result of
phase separation), then theymust also coexist if a pair of uniform systems, prepared in phases A andB, are
permitted to exchange particles and/or energy across afixed boundary.Here I show, via explicit examples, that
which nonequilibriumphases actually coexist depends uponhow theymake contact, that is, on how they are
permitted to exchange particles. Thus, far from equilibrium, the universality associatedwith equilibriumphase
coexistence is lost.

Equilibrium statisticalmechanics has established a very general notion of ‘phase’ in terms ofGibbsmeasures
[19]; since such a formalism is not available far from equilibrium, I revert to simple operational definitions. I
consider systemsmaintained out of equilibriumby a steady drive acting on the particles, or via contact with two
reservoirs having different temperatures. The conditionmaintaining the system away from equilibrium is called
a drive; the drive provokes aflux of energy and/ormatter through the system.

A nonequilibriumphase corresponds to amacroscopic state of a systemunder a drive, having time-
independent, reproducible properties that vary smoothly with the drive intensity and the external parameters
(such as temperature and chemical potential) associatedwith the reservoir or reservoirs in contact with the
system. If themacroscopic properties depend in a singularmanner on the drive or other external parameters, the
system is said to suffer a (nonequilibrium)phase transition.

Now consider two systems inNESSs, subject to the same drive and external parameters, butwith distinct,
spatially uniformmacroscopic properties. The systems represent coexisting phases if, when allowed to exchange
energy ormatter, the net flux of the quantity or quantities theymay exchange is zero. Nonequilibriumphase
coexistence emerges spontaneously at phase separation, inwhich, varying some external parameter, a
homogeneous phase becomes unstable, yielding a new stable steady state containing distinctmacroscopic phases
separated by a sharp interface. (The coexisting phases are clearly free to exchange particles and energy in this
situation.)

The stochastic particle system known as the driven lattice gas with attractive interactions (orKatz–Lebowitz–
Spohn (KLS)model [13]) provides a simple realization of phase separation far from equilibrium. The drive,
which favors particlemotion along a certain axis, tends to increase the potential energy, because it increases the
likelihood of transitionswithD >E 0 more than it doees thosewithD <E 0. Under steady conditions, energy
increase due to the drive is balanced by energy transfer to a reservoir at temperatureTR, the temperature
appearing in the transition rates, as specified in the next section.

At high temperatures, the state with uniformdensity is stable, but (in two ormore dimensions) below a
certain value ofTR, the system segregates into high- and low-density phases separated by a narrow interface,
much as its equilibrium counterpart (equivalent to the Isingmodel with fixed totalmagnetization) undergoes
phase separation. The high- and low-density regions relax to a state inwhich theirmacroscopic properties are
time-independent, despite the presence of the drive. These ‘empirical’ facts about themodel (known from
extensive numerical simulations) provide an unambiguous example of coexisting nonequilibriumphases. I note
that phase separation occurs in theKLSmodel for bothMetropolis andKawasaki transition rates in the direction
perpendicular to the drive, as well as for the ST rates used here. The critical temperature depends uponwhich
rate is chosen [15].

Suppose a pair of coexisting phases, A andB, are found in a driven, phase-separated system, and that we
prepare uniform systemswith the samemacroscopic properties (such as density), as observed in phases A andB,
respectively, subject to the same drive and external parameters as in the phase-separated system.Wemay
now ask:

(1)Are the isolated uniformphases A andB stable?

(2) If they are stable, and are allowed to exchange particles and/or energy, will they coexist?

In equilibrium, the stability and coexistence of the uniformphases (given their coexistence under phase
separation), is so ‘obvious’ that the corresponding questions have hardly been explored, far from equilibrium. I
investigate these questions in the context of two far-from-equilibriummodels: the KLSmodelmentioned above,
and a two-temperature lattice gas (TTLG). Precise definitions of themodels are given below.

In the present study, the transition rates for particle exchange between (potentially) coexisting phases are
taken as ST rates1, which depend on the interaction energy before, but not after, the transition. I use ST rates for
two reasons. First, as argued in [12], these rates correspond to thermally induced transitions over an energy

1
The ST rate for transfer of a particle from systemA to systemBdepends exclusively on parameters associatedwith A, and vice-versa [12].

Imposing detailed balance, the ST rate for this transition takes the form [ ( )] b m= -w EexpST A A , where EA is the energy of interaction
between the particle and its neighbors, and ò is an arbitrary rate factor. The ST expression can be seen as resulting from ahigh energy barrier
betweenA andB; the particlefirstmakes a transition fromA to the barrier, and from there to B.
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barrier: as in the classic Kramers escape problem, the particle cannot ‘know’ the energy landscape on the other
side of the barrier. Second, as shown in [18], consistent definitions of intensive properties (temperature,
chemical potential) for the driven system are in general only possible using ST rates. (Here ‘consistent’ is used in
the sense of the zeroth law of thermodynamics.)

The balance of this paper is organized as follows. In section 2 I report on studies of phase coexistence in the
KLSmodel, followed, in section 3, by studies of the TTLG. Section 4 presents our conclusions.

2. KLSmodel

TheKLSmodel [13–15], is a stochastic lattice gas inwhich each site i of a lattice is either vacant (occupation
variable s = 0i ) or occupied (s = 1i ). The interaction energy is:

( )ås s= -
á ñ

E , 1
i j

i j
,

where the sum is over nearest-neighbor (NN) pairs of sites; eachNNparticle pair lowers the energy by one unit.
In equilibrium, this system is equivalent to theNN ferromagnetic Isingmodel; on the square lattice, it exhibits a
continuous phase transition at temperature =T T 4 0.5673c c i, , whereTc i, denotes theOnsager temperature
of the Isingmodel [20]. TheKLSmodel is equippedwith a particle-conservingNNhopping dynamics, and,
crucially, a nonequilibriumdrive = DD i imposed via hopping rates favoring displacements along the+x
direction (whichmust be periodic), and inhibiting those in the opposite sense. The acceptance probability for a
particle displacementDx, along the x direction is

{ [ ( )]} ( )b= - D - Dp E D xmin 1, exp , 2a x,

where b = T1 R. In the present work I study the infinite-D limit: all attempts to hop along the+x direction are
accepted (provided the target site is unoccupied), while hopping in the opposite direction is prohibited. The
acceptance probabilities for hopping by particle j in the transverse directions (y) follow the ST prescription:

[ ] ( )b= -p nexp , 3a y j,

where nj is the number of occupiedNNs of particle j prior to hopping. I use ST rates for hopping perpendicular
to the drive because, under phase separation, the interface is along the drive. (An interface perpendicular to the
drive is unstable [13–15].)Thus exchange between coexisting phases is governed by ST rates.

I simulate theKLSmodel on square lattices of ´L Lx y sites, with periodic boundaries, using L=100, 200
and 400. (Inmost of the studies, Lx= Ly.) In the continuous-time stochastic evolution, each particle is equally
likely to be the next to attempt to hop; hopping is always to aNN site. If the latter is unoccupied, the particle
displacement is acceptedwith the probabilities defined above. AMonte Carlo step (MCS) corresponds to one
attemptedmove per lattice site; simulations are run for a total of 1– ´4 107 MCS,with an initial period of
1– ´2 107 MCS for relaxation to the steady state. Averages are performed over 5–10 independent realizations.

A preliminary study revealed that phase separation occurs for temperatures <T T 0.90r c . (This is
somewhat higher than the value, ( )=T 0.769 2c , for the square lattice under infinite drive, usingMetropolis rates
[21].) For present purposes a precise result forTc is not needed: the only need for an estimate ofTc is to study
valueswell below it, to avoid finite-size effects and largefluctuations associatedwith the critical region.

Starting from a random, statistically uniform distribution of particles, the system evolves to a configuration
with a number of dense stripes separated by rarefied regions: the hallmark of phase separation in theKLSmodel.
Tominimize interfacial effects and facilitate determination of the coexisting densities, I employ a single-stripe
initial configuration in a half-filled system,which relaxes to a stationary state consisting of a single dense and a
single rarefied region (see figure 1). The coexisting densities rL and rV are determined through analysis of the
final density profile ( )r y (see figure 2). To obtain reliable estimates for the coexisting densities and their
uncertainties, six such profiles, taken after a total of ´3 107 MCS, are analyzed. Each profile yields estimates for
rL and r ;V the results for the six independent studies are averaged to yield (for L = 400 andTR=0.6),

( )r = 0.9890 2L and ( )r = 0.0451 4V , where the figures in parentheses denote statistical uncertainties (standard
deviation of themean). Profiles taken after only ´2 107 MCS yield densities of 0.9889(2) and 0.0450(5),
showing that the densities have indeed relaxed to their stationary values. Studies of a smaller system (L = 200)
yield coexisting densities of 0.9893(2) and 0.0459(3), showing thatfinite-size effects areminimal.

All profiles exhibit well defined bulk regions, inwhich the density ( )r y is free of any significant linear trend
or curvature; the bulk regions are separated by interfaces. To decide if a given point y (near the interface) should
be taken as part of the bulk, I use the criterion illustrated in the inset offigure 2: theminimumvalue rmin , within
the bulk of the high-density region is identified, and themaximal set { }¼y y, ,1 2 such that ( ) r ry min is taken as
the bulk, and used to calculate rL. An analogous criterion (using themaximumdensity in the low-density
region) is employed in calculating rV. Note that this proceduremight be expected to yield a slight underestimate
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of rL, and a slight overestimate of rV, as relatively rare density values, thatmight arguably be assigned to the
interface, are included in the bulk. The absence of significant finite-size effects nevertheless suggests that such
overestimates (or underestimates) areminimal.

In thismanner, I determine the coexisting densities for temperatures ranging from0.5 to 0.7, well below the
critical temperature. In contrast to the equilibrium lattice gas (or theKLSmodel usingMetropolis rates), here
the coexisting densities do not obey r r+ = 1L V . This is because ST rates do not respect particle-hole
symmetry. I verify that the coexisting densities are insensitive tomodest changes in the aspect ratio, that is, using

=L L2x y or =L L 2x y .
I turn now to studies of composite systems, consisting of a pair of uniform systems of the same size (with

periodic boundaries), at the same reservoir temperature and subject, as before, to an infinite drive. The two
systems, L andV, are preparedwith the densities rL and rV found to coexist in the phase-separated systems.
These systems are allowed to exchange particles with an overall attempt rate pr, again using ST rates, via weak
global exchange. (It is important to note that there are no interactions between particles in different systems.)
Global exchangemeans that any particle in one systemmay attempt to jump to any site in the other.Weak
exchange corresponds to the limit p 0r , and is similar to theweak interaction condition defined in [11].
Important consequences of weak exchange are: (1) the systems in contact are statistically independent; (2)
particle exchange does not provoke spatial inhomogeneities within these systems; (3) underweak global

Figure 1.A typical steady-state configuration in theKLSmodel. System size L=200, temperatureTR=0.6, drive directed to right.

Figure 2.A typical density profile associatedwith the final configuration in theKLS lattice gas with Sasa–Tasaki exchange rates. The
profile consists of statistically uniformhigh- and low-density regions separated by narrow interfaces (four points). System size
L=400, temperatureTR=0.6, total time ´3 107 MCS. Inset: detail of the high-density portion of the profile, showing the criterion
used to estimate rL, namely, an average over all points  y y y1 2 such that ( ) r ry min , the smallest value in the bulk region. In
this case r = 0.975min , and all points on or above the dashed line are included in the estimate for rL, even thought the leftmost such
pointmight be considered part of the interface.
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exchange using ST rates, it is possible to associate a temperature and a chemical potential with spatially uniform
NESSs in a thermodynamically consistentmanner [18].

Using the same simulation algorithm as before, Imonitor the particle densities in systems L andVover
periods of order 107MCS; relaxation to stationary values typically requires fewer than 106MCS. Thefinal
configuration is checked to assure that both systems remain spatially uniform, i.e., that phase separation has not
occurredwithin either system. Figure 3 shows a typical evolution of the densities in the uniform systems under
global exchange. Typical steady-state configurations are shown infigure 4. Varying the exchange attempt rate pr
between 0.01 and 0.001, no significant change in the stationary densities rL and rV is found.

In the stationary state, systems L andV coexist, but not at the densities observed under phase separation in a
single system.Compared to the single, phase separated system, the density rL in the uniform system is
consistently smaller, while rV is consistently larger. (Recall that the procedure for estimating coexisting densities
in the single phase-separated system is likely to underestimate not overestimate, these differences.)Aquantitative
comparison of the coexisting densities is given in table 1, for system size L=400 (no significant differences are
observed between studies using L = 200 and L = 400);figure 5 illustrates the general trends. The coexisting
densities under phase separation and underweak global exchange between uniform systems are clearly
incompatible.While the differences between the coexisting liquid densities rL,1 and rL,2 amount to but a few
percent, those for the vapor are considerably larger, with r r2V,2 V,1 at the highest temperatures studied.

In the two-system studies, the total particle numberN is determined using the bulk densities observed in the
single, phase-separated system: ( )r r= +N L2

L,1 V,1 . Initially, one system is fully occupied ( ( )= =N t L0L
2),

while the other contains the remaining = -N N LV
2 particles, inserted at randomly chosen sites. During the

stochastic evolution under exchange, the particle numbersNL andNV quickly attain stationary values, subject, of
course, to the constraint offixed = +N N NL V. For temperatures T 0.6R , thefinal configurations are
spatially uniform (see figure 4). At higher temperatures, however, one observes the formation of stripes: one or
both systems have undergone phase separation, showing that the phase that is stable in the single system is
unstable in the composite system (see figure 6). To determine the coexisting densities in this case, I search for
values ofN such that both systems remain uniform. In table 1, the values for T 0.625R were obtained in this
manner; the densities listed are the smallest for which the composite system is stable. Stable coexistence in the
composite system is not observed for any density, forTR=0.7. (The situation is reminiscent of a somewhat
different system, studied byAchahbar and coauthors, [22, 23], who employed exchange between pairs of
corresponding sites, rather than global exchange, in a pair of KLSmodels. These authors observed phase
separationwithin each system (in corresponding regions), for temperatures between the critical values for the

Figure 3.Time evolution of the densities rL and rV in a pair of uniform systems under global exchange. Parameters L=400,
TR=0.55, pr=0.005.

Table 1.KLSmodel: coexisting densities in a single phase-separated sys-
tem (rL,1, )rV,1 , and in a pair of uniform systems underweak global
exchange (rL,2, )rV,2 .

TR rL,1 rV,1 rL,2 rV,2

0.50 0.9965(1) 0.0216(1) 0.9826(1) 0.0360(1)
0.55 0.9939(1) 0.0330(2) 0.97088(2) 0.05603(2)
0.60 0.9890(2) 0.0451(4) 0.9521(1) 0.0818(1)
0.625 0.9859(1) 0.0531(1) 0.9411(1) 0.1008(1)
0.65 0.9821(2) 0.0621(1) 0.9297(1) 0.1266(1)
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Figure 4.A typical steady-state configuration in theKLSmodel: two-system coexistence underweak global exchange (Von left, L on
right). System size L=200, temperatureTR=0.6, exchange rate pr=0.003, drive directed to right.

Figure 5.KLSmodel: coexisting densities rL (right side) and rV (left side) versus reservoir temperatureTR. The points nearer the
vertical axes correspond to the single phase-separated system; those further from the axes correspond to uniform systems under weak
global exchange. System size L=400. Error bars smaller than symbols.

Figure 6.A typical steady-state configuration of the dense system (L) in the KLSmodel under weak global exchange. (The other system
(V) is uniform and is not shown.)Although systems L andVwere given initial densities equal to those observed in the single phase-
separated systemwith the same parameters, an empty strip has formed. System size L=200, temperatureTR=0.65, drive directed
to right.
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driven and undriven systems, and phase coexistence between uniform systems at temperatures below the critical
value for the undrivenmodel.)

Discrepancies between coexisting densities in the single and composite systems naturally lead to differences
in other stationarymacroscopic properties, such as themean interaction energy per particle e, andmean current
density j. Plotting these functions versus particle density ρ affords some insight into the nature of the coexisting
phases. In the high-density (L) phase, both e and j appear to be functions of ρ alone, and arewell-approximated
by the random-mixing expressions r=e 2 and ( )r r= -j 1 , as shown infigures 7 and 8. The corresponding
plots for the low-density (V) phase (see figures 9 and 10) show substantial differences between the single- and
composite-systemproperties, and strong deviations from the random-mixing predictions. This is rather
natural, sincewe expect e and j to depend on density and temperature, andwhen the densities are equal, the
temperatures are different. The low sensitivity to temperature evident in the L phase is consistent with its
approximation to a randommixture, whichwould appear to be a feature of a density close to unity and a
correspondingly short correlation length.

Summarizing results for theKLSmodel, at all temperatures studied, there is a clear discrepancy between the
densities characterizing coexisting phase in a single, phase-separated system, and those associatedwith a pair of
uniform systems that coexist under global exchange.

Figure 7.KLSmodel:mean interaction energy per particle e versus density ρ at coexistence in the high-density phase, in the single
system (filled symbols) and the composite system (open symbols). Solid line: random-mixing prediction, r=e 2 .

Figure 8.KLSmodel:mean current j versus density ρ at coexistence in the high-density phase, in the single system (filled symbols) and
the composite system (open symbols). Solid line: random-mixing prediction, ( )r r= -j 1 .
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3. Two-temperature lattice gas

TheKLSmodel is strongly anisotropic, and features a particle current along one of the lattice axes. It is natural to
askwhether these features are somehow responsible for the nonuniversality of phase coexistence documented
above. This questionmotivates study of a second far-from-equilibrium system, a TTLG. The interaction energy
is again given by equation (1). The stochastic evolution is viaNNparticle hopping, with acceptance probabilities
as in equation (3), in both the x and y directions. The nonequilibriumdrive in this case takes the formof two
reservoir temperatures,TA andTB, associatedwith sublattices A andB. (Sublattices A andB comprise the sets of
sites (i, j)with i+j even and odd, respectively.)The caseTA=TB corresponds to the equilibrium lattice gas,
equivalent to theNN Isingmodel. For ¹T TA B the system cannot reach equilibrium.Note however that the
system is isotropic and that there is no net particle current. (The drive -T TA B induces an energy flux between
the sublattices.)

TheTTLG exhibits a line of Isinglike phase transitions in the -T TA B plane [24–26]. To observe phase
separation in the formof coexisting strips, I initialize the systemwith all sites in half of the system ( j L 2)
occupied, and the other half vacant. Coexisting densities are determined from the final density profile, as in the

Figure 9.KLSmodel:mean interaction energy per particle e versus density ρ at coexistence in the low-density phase, in the single
system (filled symbols) and the composite system (open symbols). Solid line: random-mixing prediction, r=e 2 .

Figure 10.KLSmodel:mean current j versus density ρ at coexistence in the low-density phase, in the single system (filled symbols) and
the composite system (open symbols). Solid line: random-mixing prediction, ( )r r= -j 1 .
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KLS studies. I verify that the estimates for system sizes of L=400 and L=200 agree towithin uncertainty.
Next, a pair of uniform systems, with particle densities corresponding to the coexisting densities found under
phase separation, are prepared, and studied in simulations of 1–3´107 MCS.As before, the particle densities in
the coexisting systems aremonitored; final configurations are checked for uniformity.

As a test, I set = =T T 0.5A B , and observe ( )r = 0.9552 4L,1 and ( )r = 0.04454 2V,1 in the single, phase-
separated system,while coexistence in the composite system yields ( )r = 0.9556 3L,2 and ( )r = 0.0444 3V,2 .
Thus, as expected, at equilibrium the twomodes of coexistence yield phases with densities that agree towithin
uncertainty, and,moreover, r r+ = 1L V . For unequal sublattice temperatures there are discrepancies. Studies
usingTA=0.4 andTB=0.55, for example, yield ( )r = 0.9644 3L,1 and ( )r = 0.03001 3V,1 , in a single phase-
separated system. A typical configuration is shown infigure 11. Although the interface in now rough (since there
is no particle current), well defined bulk phases are present. The coexisting densities are again obtained via
analysis of thefinal density profiles; a typical profile is shown infigure 12. As before, coexisting densities between
two uniform systems under weak global exchange are determined bymonitoring the particle numbers in the
respective systems, once they have attained a steady state. For these temperatures, the composite-system studies
furnish ( )r = 0.9511 15L,2 and ( )r = 0.0333 4V,2 , clearly incompatible with the values of rL,1 and rV,1 cited
above. Similar inconsistencies are found at other values ofTA and >T TB A, as shown in table 2.

In the TTLGwith sublattice temperaturesTA=0.4 andTB=0.6, separation intowell defined coexisting
phases in a single system is observed, but it appears to be impossible to stabilize coexistence of two uniform
phases in a composite system, regardless of how the total density is varied. Thismay be related to the fact thatTB
is above the critical temperature of the equilibrium lattice gas.

Figure 11.A typical steady-state configuration in the TTLG. System size L=200, temperaturesTA=0.4,TB=0.55.

Figure 12.A typical density profile associatedwith the final configuration in the TTLG. System size L=400,TA=0.4,TB=0.55,
total time ´6 107 MCS.
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In both theKLS andTTLG systems, the difference (at a given temperature) between coexisting densities is
smaller in the composite system than in the single system. The reason for this tendency, while not obvious, is
presumably connectedwith the presence of an interface in the single system and its absence in the composite
system.Onemight speculate that the one-step transitions taking a particle directly fromone bulk phase to the
other facilitate exchange in the composite system, as comparedwith the series of ‘uphill’ displacements required
to transport particles across the interface in the single system. This line of argument appears to fail, however,
whenwe note that for very small exchange rates pr, the rate of transfers between phases in the composite system
ismuch smaller than that in the single system. The coexisting densities in the composite system are nevertheless
essentially independent of pr as it tends to zero.

4. Conclusions

Studies of two of the simplest nonequilibriummodels exhibiting phase separation are found to have coexisting
bulk properties that depend on how the phases coexist. Violations of universality in coexistence are observed in
two systems, one anisotropic and bearing a particle current, the other isotropic and free of such a current,
suggesting that such violations are generic to phase coexistence far from equilibrium. Put another way, the
results suggest that the notion of phase as a state ofmatter with bulk properties depending only on a small set of
intensive parameters does not apply far from equilibrium. The properties of the coexsting phases in theKLS and
TTLGmodels depend not only upon the reservoir temperature(s) and the drive strength, but on the spatial
relation between the phases. Of course,many further possibilities exist, each presumably leading to a different
set of coexisting densities. For example, allowing long-range hopping in the single phase-separated system
destabilizes the coexisting regions, leading tomultiple-stripe configurations.

As shown in previous work on theKLSmodel and the lattice gas with nearest-neighbor exclusion (NNE)
[18, 27], it is possible to implement steady-state thermodynamics (SST) in a consistentmanner in spatially
uniform systems, if (and in general only if) ST exchange rates are used, and provided these rates tend to zero. By
contrast, SST is inconsistent andwithout predictive value in spatially nonuniformNNEmodels. Here, rather
than imposing nonuniformities via a nonuniformdrive, or walls, they arise spontaneously due to phase
separation.Our results imply that in this case aswell, intensive properties (whose equality would predict phase
coexistence) cannot be assigned to the coexisting phases consistently.While one could in principle assign a
temperature and chemical potential to spatially uniform systems via coexistence with thermal and particle
reservoirs [18], these parameters would be of no use in predicting phase coexistence in a single, phase-separated
system.

Although ST rates guarantee the zeroth law of thermodynamics, it remains possible that other ratesmight
also be consistent with the zeroth law, if a free energy function can be constructed [11]. In such a case itmight be
possible to devise particle-exchange rates for which the notion of phase coexistence ofNESS is well defined.

Our results suggest a new viewpoint regarding nonequilibriumphases. From the equilibrium context, we are
used to thinking of a phase as having intrinsic properties, immutable under coexistence with another phase. Far
from equilibrium, the properties of coexisting phases depend not only on the control parameters (drive,
reservoir temperature), but also on precisely how exchanges ofmatter and energy between the phases are
realized.
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