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ABSTRACT
In this paper, we study the existence and stability of normalized standing
waves for the nonlinear Schrödinger equation on a general starlike graph
with potentials. Under general assumptions on the graph and the poten-
tial, we show the existence of orbitally stable standing waves when the
nonlinearity is L2-critical and supercritical.
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1. Introduction

In this paper, we are interested in the existence and stability of standing waves with prescribed
L2-norm for the following nonlinear Schrödinger equation on a metric graph �:

i∂tu = Hu − |u|p−1u, x ∈ �. (1)

We recall that the nonlinearity in (1) is understood componentwise. In this paper, we are interested
in the L2-critical and supercritical cases, so we restrict our discussion to the cases where p ≥ 5.

Equation (1) models propagation through junctions in networks [1–3]. The study of nonlinear
propagation on graphs/networks is a topic of active research in several branches of pure and applied
science. Modern applications of partial differential equations on networks include nonlinear elec-
tromagnetic pulse propagation in optical fibers, the hydrodynamic, biology, etc, see, e.g. [2] and the
references therein.

Recently numerous results on existence and stability of standing waves, local well-posedness of
initial value problem, blow up and scattering results for nonlinear Schrödinger equation on a metric
graph were obtained. Among such works, let us mention [4–18]. In particular, the NLS on the real
line with a point interaction (which can be understood as a metric graph with only two edges) has
been also studied substantially in the literature [19–22]. We refer to [23] for further information and
bibliography.

Let � be a connected finite metric graph, by V we denote the set of its vertices, and by J we denote
the set of its edges. We will assume � has at least one external edge, so that � is noncompact. If an
edge e ∈ J emanates from a vertex v ∈ V , then we will write this as follows: e ≺ v. The differential
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1360 A. H. ARDILA

operator under consideration in this paper is the Schrödinger operator H in L2(�) equipped with
delta conditions concentrated at all vertices v ∈ V of the graph:

(Hu)e = −u′′
e + Weue (2)

dom(H) =
{
u ∈ H2(�) :

∑
e≺v

∂oue(v) = −αvue(v) for all v ∈ V

}
, (3)

where αv are real constants associated with the delta potentials concentrated at vertices v ∈ V . Here,
as elsewhere, the Sobolev spaceH1(�) is defined as the space of continuous functions on� that belong
to H1(Ie) on each edge, i.e.

H1(�) = {
u ∈ C(�) : ue ∈ H1(Ie) for all e ∈ J

}
,

where C(�) is the set of continuous functions on �, and the corresponding norm defined by

‖u‖2H1 =
∑
e∈J

‖ue‖2H1 ,

and H2(�) denotes the Sobolev space

H2(�) = {
u ∈ H1(�) : ue ∈ H2(Ie), for all e ∈ J

}
.

Finally, we denote by ∂oue(v) the outward derivative of u at v along the edge e.
Formally, the NLS (1) has the following conserved quantity,

E(u) = 1
2

∫
�

|u′|2 dx + 1
2

∫
�

W(x)|u|2 dx − 1
2

∑
v∈V

αv|u(v)|2 − 1
p + 1

∫
�

|u|p+1 dx.

The potentialW(x) can be thought of as modeling inhomogeneities in the medium.
Following [16,17], for our analysis we make the following assumptions about the metric graph �

and the Schrödinger operator H.

Assumption 1.1: � is a finite, connected metric graph, with at least one external edge.

We recall that a metric graph is a graph � equipped with a function L : J → (0,+∞] such that
each edge e ∈ J is identified with a finite segment [0, Le] of positive length Le or an infinite segment
[0, Le) with Le = +∞. Naturally we have the decomposition J = Jint ∪ Jex, where the set Jex denotes
the set of external edges of � and the set Jint denotes the set of internal edges.

Assumption 1.2: W = W+ − W− with W± ≥ 0,W+ ∈ L1(�)+ L∞(�) andW− ∈ Lr(�) for some
r ∈ [1, 1 + 2/(p − 1)].

We remark that Assumption 1.2 implies that the operatorH on the graph � admits a precise inter-
pretation as self-adjoint operator on L2(�) (see [17, Remark 2.1] for more details). Denote by F[u]
the quadratic form associated with the operator H,

F[u] :=
∫
�

|u′|2 dx +
∫
�

W(x)|u|2 dx −
∑
v∈V

αv|u(v)|2,

defined on the domain dom(F) = H1(�). Let

−λ0 := inf
{
F[u] : u ∈ H1(�), ‖u‖2L2 = 1

}
.
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Assumption 1.3: λ0 > 0 and it is an isolated eigenvalue.

Notice that these assumptions are satisfied in many interesting cases, see introduction in [17] for
more details. Our work is motivated by the recent papers [16,17], where the orbital stability of stand-
ing waves of (1) on a general starlike graph with potentials is considered, with a special focus on the
L2-subcritical and critical case.

Local well-posedness of the Cauchy problem for (1) in the energy space H1(�) is established in
Cacciapuoti et al. [17, Propositions 2.3 and 2.8] for any p> 1.

Proposition 1.1: If Assumptions 1.1–1.2 hold true, for any u0 ∈ H1(�), there exist T = T(u0) > 0 and
a unique maximal solution u ∈ C([0,T),H1(�)) of (1)with u(0) = u0 such that the following ‘blow up
alternative’ holds: either T = ∞ or T < ∞ and limt→T‖u(t)‖H1 = ∞. Furthermore, the conservation
of energy and charge hold, that is,

E(u(t)) = E(u0) and ‖u(t)‖2L2 = ‖u0‖2L2 for all t ∈ [0,T).

If 1< p< 5, the global well-posedness of the Cauchy problem for (1) holds in H1(�) by
Gagliardo–Nirenberg estimates, conservation of the L2-norm and energy, see [17, Theorem 3] for
more details.

We recall the notion of stability of a setM ⊂ H1(�) (see [24, Chapter 8] for review of this theory).
ForM ⊂ H1(�), we say that the setM isH1(�)-stable with respect to NLS (1) if for arbitrary ε > 0
there exists δ > 0 such that if u0 ∈ H1(�) satisfies

inf
ϕ∈M

‖u0 − ϕ‖ < δ,

then

sup
t∈R

inf
ϕ∈M

‖u(t)− ϕ‖H1 < ε,

where u(t) is a solution to the Cauchy problem of (1) with initial datum u0. One natural idea to con-
struct orbitally stable standingwave solutions with prescribedmass for (1) is to consider the following
minimization problem:

νc = inf
{
E(u) : u ∈ H1(�), u ∈ S(c)

}
, (4)

where

S(c) = {
u ∈ H1(�) : ‖u‖2L2 = c

}
.

Now if Assumptions 1.1–1.3 hold true, then in the subcritical case 1< p< 5, the energy functional
E(u) is bounded from below and νc > −∞ for every c> 0. Furthermore, there exists c∗ > 0 small
enough such that for 0 < c < c∗ any minimizing sequence for problem (4) is precompact in H1(�).
In particular, the setMc := {ϕ ∈ H1(�) : ‖ϕ‖2L2 = c, νc = E(ϕ)} isH1(�)-stable with respect toNLS
(1), see [17, Theorem 1] for more details. An analogous result can be proven for the critical case
p= 5 (see [16, Theorem 2]). Other results in this direction, for the NLS on graphs without confining
potentials, were obtained in [12,13].

On the other hand, suppose that � is a star-graph consisting of a central vertex v0 and N edges
(half-lines) attached to it. If one assumes that p> 5, then νc = −∞. Indeed, first note that there exist
constants a> 0 and b> 0 such that (see Lemma 2.2 (ii) below)

E(u) ≤ a
∫
�

|u′|2 dx + b
∫
�

|u|2 dx − 1
p + 1

∫
�

|u|p+1 dx.



1362 A. H. ARDILA

Next, if we fix φ ∈ S(c) and define φλ(x) = λ1/2φ(λx), then ‖φλ‖2L2 = ‖φ‖2L2 ,

E(u) ≤ aλ2
∫
�

|u′|2 dx + b
∫
�

|u|2 dx − λ(p−1)/2

p + 1

∫
�

|u|p+1 dx → −∞,

as λ → ∞ and hence νc = −∞. For this reason, in the supercritical case p> 5, it is not convenient
to consider the minimization problem (4) to construct normalized solutions.

The purpose of this paper is to complement the existence and stability results of Cacciapuoti
et al. [16,17] by considering the supercritical case p> 5. Following the ideas developed in [25,26],
we introduce a local minimization problem. Indeed, set

B(r) := {
u ∈ H1(�) : ‖u‖2G := F[u] + 2λ0‖u‖2L2 ≤ r

}
. (5)

If Assumptions 1.2–1.3 hold true, then the energy functional E restricted to S(c) ∩ B(r) is bounded
from below (see Lemma 3.1 below). Thus for every r> 0, we consider the following local minimiza-
tion problem on the metric graph �,

νrc = inf
{
E(u) : u ∈ H1(�), u ∈ S(c) ∩ B(r)

}
, (6)

and we denote the set of nontrivial minimizers of (6) by

Mr
c = {

ϕ ∈ H1(�) : ϕ ∈ S(c) ∩ B(r), νrc = E(ϕ)
}
.

Now we are ready to state our first result.

Theorem 1.2: Let p ≥ 5 and Assumptions 1.1–1.3 hold true. For every r > 0, there exists c∗ = c∗(r) >
0 such that:

(i) S(c) ∩ B(r) �= ∅ and νrc > −∞ for every c < c∗.
(ii) For any c < c∗, there exists u ∈ H1(�) with u ∈ S(c) ∩ B(r) such that E(u) = νrc . In particular,

this implies thatMr
c is not the empty set.

The key ingredient in the proof of the above result is the concentration compactness method for
starlike structures [17]. We remark that the same local minimization problem was exploited, in the
case of NLS on bounded domains of R

N , in [27,28].
Notice that Theorem 1.2 implies that every minimizing sequence {un} of νrc is relativity compact

inH1(�). We also note that for any r1, r2 > 0 and sufficiently small c> 0, we have thatMr1
c = Mr2

c .
Indeed, just to fix the ideas, assume that r1 > r2 > 0. It is clear that νr1c ≤ ν

r2
c . Moreover, if u ∈ S(c) ∩

B(r1) andE(u) = ν
r1
c , then taking c sufficiently small in Lemma3.2 below,we getu ∈ B(r2). Therefore,

ν
r1
c ≥ ν

r2
c , which implies that νr1c = ν

r2
c . In particular, since Mr

c ⊂ B(rc) (see (11)) for c sufficiently
small, it follows easily thatMr1

c = Mr2
c .

By a standing wave, we mean a solution of (1) with the form u(x, t) = eiωtϕ(x), where ω > 0 and
ϕ(x) should satisfy the following elliptic equation:

Hϕ + ωϕ − |ϕ|p−1ϕ = 0. (7)

In the following theorem, we give some properties about the structure ofMr
c.

Theorem 1.3: Let p ≥ 5 and Assumptions 1.1–1.3 hold true. Then for every fixed r> 0 and c < c∗(r),
we have
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(i) For any ϕ ∈ Mr
c, there exists ω ∈ R such that u(x, t) = eiωtϕ(x) is a standing wave solution to

NLS (1) with the estimates

λ0 < ω ≤ λ0(1 + Kc(p−1)/2),

where K is a positive constant. Notice in particular that ϕ is a solution of the stationary problem
(7), and ω → λ0 as c → 0.

(ii) Suppose that W ≤ 0. If ϕ ∈ Mr
c, then there exists θ ∈ R such that ϕ(x) = eiθρ(x), where ρ is a

positive function on �.

The following orbital stability result follows from Theorems 1.2 and 1.3.

Corollary 1.4: Let p ≥ 5. Then for every fixed r> 0 and c < c∗(r) we have that Mr
c is H1(�)-stable

with respect to NLS (1).

Now assume that � is a star-graph with N edges. If W = 0 and αv = γ > 0 in (2)–(3), then it is
well known that Equation (7) has [(N − 1)/2] + 1 (here [s] denote the integer part of s ∈ R) solutions
φω,j = (ϕω,j)

N
j=1 with j= 0, 1, . . . , [(N − 1)/2], which are given by

(ϕω,j)i(x) =
{
f (x − aj) i = 1, . . . , j
f (x + aj) i = j + 1, . . . ,N

aj = tanh−1
(

γ

(N − 2j)
√
ω

)
, (8)

where

f (x) =
[
(p + 1)ω

2
sech2

(
(p − 1)

√
ω

2
x
)]1/(p−1)

, ω >
γ 2

(N − 2j)2
.

Moreover, in this case (see Assumption 1.3),

−λ0 = − γ
2

N2 = inf
{
Fγ [u] : u ∈ H1(�), ‖u‖2L2 = 1

}
.

In [8] (see also [29]), the authors study the stability of u(x, t) = eiωtφω,0(x) in the L2-critical and
supercritical cases. Notice that the stability analysis in [8,29] relies on the theory by Grillakis, Shatah
and Strauss.

In the L2-supercritical case p> 5, we apply Theorem 1.3 and Corollary 1.4 in order to deduce
directly the stability of the standing wave u(x, t) = eiωtφω,0(x), which was previously treated in the
literature only with the Grillakis–Shatah–Strauss theory.

Corollary 1.5: Let � be a star graph. Assume that W= 0 and α = γ > 0 in (2)–(3). If p ≥ 5, then
there exists ω∗ > 0 such that eiωtφω,0 is stable in H1(�) for any ω ∈ (γ 2/N2,ω∗).

The plan of the paper is the following. In Section 2, we recall several known results, which will be
needed later. In Section 3, we prove the existence of a minimizer for νrc . Section 4 contains the proof
of Theorem 1.3. Section 5 is devoted to the proof of Corollaries 1.4 and 1.5. Throughout this paper,
the letter Cmay stand for various strictly positive constants, when no confusion is possible.

2. Preliminary

We recall that a function u on � is a collection of functions ue(x) defined on each edge e ∈ J. On
� we consider the Hilbert space L2(�) of measurable and square-integrable functions u : � → C

|J|,
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equipped with the standard norm,

L2(�) =
⊕
e∈J

L2(Ie), ‖u‖2L2 =
∑
e∈J

∫
Ie

|ue(x)|2 dx,

where ue ∈ L2(Ie). Analogously, we define the Lp(�)-spaces for 1 ≤ p < +∞ as,

Lp(�) =
⊕
e∈J

Lp(Ie), ‖u‖pLp =
∑
e∈J

‖ue‖pLp .

From Proposition 2.2 in [17], we have that −λ0 is a simple eigenvalue of H corresponding to strictly
positive eigenfunction, more precisely.

Lemma 2.1: Let Assumptions 1.1–1.3 hold true. Then−λ0 is a simple eigenvalue of Hwith correspond-
ing strictly positive eigenfunction ψ0 ∈ H1(�) such that ‖ψ0‖2L2 = 1.

For convenience, we recall the Gagliardo–Nirenberg inequality on graphs.

Lemma 2.2: (i) Let � be any non-compact graph and p ≥ 1. Then there exists a positive constant C
such that for all v ∈ H1(�),

‖v‖p+1
Lp+1 ≤ C‖v′‖(p−1)/2

L2 ‖v‖(p+3)/2
L2 . (9)

(ii) Under Assumption 1.2, there exist positive constants 0 < C1 < 1 and C2 > 0 such that∣∣∣∣∣(u,Wu)−
∑
v∈V

αv|u(v)|2
∣∣∣∣∣ ≤ C1‖u′‖2L2 + C2‖u‖2L2 . (10)

In particular, there exists a constant K> 0 such that ‖u‖2H1 ≤ K(‖u‖2G + λ0‖u‖2L2). Here, the norm
‖ · ‖2G is defined in (5).

See [17, Remark 2.1] for the proof of (10). For a proof of Gagliardo–Nirenberg inequality (9), we
refer to [12, Proposition 2.1].

3. Variational analysis

In this section, we give the proof of Theorem 1.2. We have divided the proof into a sequence of
lemmas.

Lemma 3.1:

(i) Let r> 0 be fixed, then S(c) ∩ B(r) is not empty set iff c ≤ r/λ0.
(ii) For any r, c > 0, if S(c) ∩ B(r) �= ∅, then νrc > −∞.

Proof: Let u = √
cψ0 with c ≤ r/λ0. From Lemma 2.1, we see that ‖u‖2L2 = c and

‖u‖2G = F[
√
cψ0] + 2λ0‖

√
cψ0‖2L2 = −λ0c‖ψ0‖2L2 + 2λ0c‖ψ0‖2L2 = λ0c ≤ r,

this implies that S(c) ∩ B(r) �= ∅. On the other hand, if u ∈ S(c) ∩ B(r) �= ∅, we see that

r ≥ ‖u‖2G = F[u] + 2λ0‖u‖2L2 ≥ −λ0‖u‖2L2 + 2λ0‖u‖2L2 = λ0c.
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Therefore, c ≤ r/λ0. This completes the proof of statement (i). Next, let u ∈ S(c) ∩ B(r). First,
notice that from Gagliardo–Nirenberg inequality (9) and Lemma 2.2 (ii), we see that

‖u‖p+1
Lp+1 ≤ C‖u‖(p−1)/2

H1 ‖u‖(p+3)/2
L2 ≤ C1‖u‖(p−1)/2

G ‖u‖(p+3)/2
L2 + C2‖u‖p+1

L2 .

Since u ∈ S(c) ∩ B(r), it follows that

E(u) = 1
2
‖u‖2G − λ0‖u‖2L2 − 1

p + 1
‖u‖p+1

Lp+1

≥ −λ0‖u‖2L2 − C1‖u‖(p−1)/2
G ‖u‖(p+3)/2

L2 − C2‖u‖p+1
L2

≥ −λ0c − Cr(p−1)/4c(p+3)/4 − C2c(p+1)/2 > −∞.

This ends the proof. �

Lemma 3.2: Let p ≥ 5. Then for any number r > 0, there exists c∗ := c∗(r) > 0 such that for every
c < c∗, S(c) ∩ B(r) �= ∅ and

inf
S(c)∩B(rc/2)

E(u) < inf
S(c)∩(B(r)\B(rc))

E(u). (11)

Proof: From Lemma 3.1 (i), we have that if c ≤ r/λ0, then S(c) ∩ B(r) �= ∅. By Gagliardo–Nirenberg
inequality (9), we have

‖u‖p+1
Lp+1 ≤ C1‖u‖(p+3)/2

L2 ‖u‖(p−1)/2
G + C2‖u‖p+1

L2 ,

for positive constants C1 and C2. Now, if u ∈ S(c), it follows that

E(u) ≥ 1
2‖u‖2G − C1c(p+3)/4‖u‖(p−1)/2

G − C2c(p+1)/2 − λ0c,

E(u) ≤ 1
2‖u‖2G − λ0c.

(12)

Set

nc(s) = 1
2
s − C1c(p+3)/4s1+ε − C2c(p+1)/2 − λ0c, with ε = p − 5

4

mc(s) = 1
2
s − λ0c.

Notice that ε ≥ 0 because p ≥ 5. Next, it is clear that if there exists c∗ := c∗(r) > 0 such that,

mc

( rc
2

)
< inf

s∈(rc,r)
nc(s) for any c < c∗(r) << 1, (13)

then this implies (11). Note that nc ∈ C2([0,∞)) and n′
c(s) = ( 12 − C1(1 + ε)c(p+3)/4sε) > 0 for s ∈

(0, r) and for c < c∗1(r) << 1. Therefore,

inf
s∈(rc,r)

nc(s) = nc(rc) = 1
2
(rc)− C1c(p+3)/4(rc)1+ε − C2c(p+1)/2 − λ0c.

Finally, since p ≥ 5,

inf
s∈(rc,r)

nc(s)− mc

( rc
2

)
= c

(
1
4
r − C1c(p+3)/4+εr1+ε − C2c(p−1)/2

)

> 0 for every c < c∗2(r) ≤ c∗1(r). (14)

Combining (13) with (14), we obtain (11), if c < c∗ := min{r/λ0, c∗2(r)}. Lemma 3.1 is thus proved.
�
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Lemma 3.3: Let r> 0 and c ≤ r/λ0. Let {un} ⊂ H1(�) be a minimizing sequence for νrc . That is,

un ∈ S(c) ∩ B(r), lim
n→∞E(un) = inf

u∈S(c)∩B(r)
E(u) = νrc .

Then

lim inf
n→∞ ‖un‖p+1

Lp+1 > 0. (15)

Proof: First, let us show that

νrc = inf
u∈S(c)∩B(r)

E(u) < −λ0
2
c. (16)

Indeed, we setψc = √
cψ0, whereψ0 is defined in Lemma 2.1 and c ≤ r/λ0. It is clear that ‖ψc‖2L2 =

c‖ψ0‖2L2 = c and

‖ψc‖2G = cF[ψ0] + 2λ0c‖ψ0‖2L2
= −cλ0 + 2λ0c = cλ0 ≤ r,

thus ψc ∈ S(c) ∩ B(r) and

inf
u∈S(c)∩B(r)

E(u) ≤ E(ψc) = c
2
F[ψ0] − 1

p + 1
‖ψc‖p+1

Lp+1

= −λ0
2
c − 1

p + 1
‖ψc‖p+1

Lp+1 < −λ0
2
c.

On the other hand, assume by the absurd that lim infn→∞ ‖un‖p+1
Lp+1 = 0. Then

νrc = lim
n→∞

1
2
F[un] ≥ −λ0

2
c,

which is a contradiction since νrc < −(λ0/2)c. This completes the proof of lemma. �

For any y ∈ � and t> 0, we denote by B(y, t) the open ball of center y and radius t,

B(y, t) := {
x ∈ � : d(x, y) < t

}
.

Here, d(x, y) denotes the distance between two points of the graph (see [17, Section 3]).
To each minimizing sequence {un}n∈N ⊂ H1(�) of νrc , we define the following sequence of

functions (Lévy concentration functions)Mn,

Mn(t) = sup
y∈B(y,t)

‖un‖2L2(B(y,t)).

Let

τ = lim
t→∞ lim

n→∞Mn(t).

Since ‖un‖2L2 = c, it is clear that 0 ≤ τ ≤ c. Concentration compactness lemma for starlike structures
[17] shows that there are three (mutually exclusive) possibilities for τ .
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(i) (Vanishing) τ = 0. Then, up to a subsequence, ‖un‖p+1
Lp+1 → 0 as n → ∞ for all 2 < p ≤ ∞.

(ii) (Dichotomy) τ ∈ (0, c). Then, there exist {vk}k∈N, {wk}k∈N ⊂ H1(�) such that

supp vk ∩ suppwk = ∅ (17)

|vk(x)| + |wk(x)| ≤ |uk(x)| for all x ∈ � (18)

‖vk‖H1 + ‖wk‖H1 ≤ C‖unk‖H1 (19)

‖vk‖2L2 → τ ‖wk‖2L2 → c − τ (20)

lim inf
k→∞

(‖u′
nk‖2L2 − ‖v′

k‖2L2 − ‖w′
k‖2L2) ≥ 0 (21)

lim
k→∞

(‖unk‖p+1
Lp+1 − ‖vk‖p+1

Lp+1 − ‖wk‖p+1
Lp+1) = 0 2 ≤ p < ∞ (22)

lim
k→∞

‖|unk |2 − |vk|2 − |wk|2‖L∞ = 0. (23)

(iii) (Compactness) τ = c. Then, up to a subsequence, at least one of the two following cases occurs,
(Convergence) There exists u ∈ H1(�) such that un → u in Lp for all 2 ≤ p ≤ ∞.
(Runaway) There exists e∗ ∈ Jex, such that for any t> 0 and 2 ≤ p ≤ ∞

lim
n→∞

∑
e�=e∗

(
‖(un)e‖pLp(Ie) + ‖(un)e∗‖pLp((0,t))

)
= 0. (24)

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2: The statement (i) follows from Lemma 3.1. Next we prove statement (ii) of
theorem. Let {un} be aminimizing sequence of νrc , then {un} is bounded inH1(�). Indeed, since un ∈
S(c) ∩ B(r), from Lemma 2.2 (ii) we see easily that the sequence {un} is bounded inH1(�). Moreover,
since H1(�) is a Hilbert space, there is u ∈ H1(�) such that, up to a subsequence, un ⇀ u in H1(�)
and (un)e(x) converges to (u)e(x) a.e. x ∈ Ie, e ∈ J. Next we analyze separately the three possibilities:
τ = 0, 0 < τ < c and τ = c. From Lemma 3.3, it follows that τ > 0. Therefore, the possibility of
‘vanishing’ is ruled out. Now following the same argument as in the proof of Theorem 1 in [17], we
can rule out the possibility of dichotomy, that is τ /∈ (0, c). Thus we see that τ = c.

Next we prove that for c < c∗ the minimizing sequence {un} is not runaway. We argue by con-
tradiction. Suppose that {un} is runaway. From (24), we see that limn→∞ ‖(un)e‖pLp = 0 for all
e �= e∗. Moreover, sinceW− ∈ Lr(�)with 1 ≤ r ≤ 1 + 2/(p − 1), following the same ideas as in [17,
Theorem 1], one can get that

lim
n→∞ |un(v)| = 0 for all v ∈ V and lim

n→∞(un,W−un) = 0.

Thus we have

lim
n→∞E(un) ≥ lim

n→∞

[∫ ∞

0
|(un)′e∗ |2 dx − 1

p + 1

∫ ∞

0
|(un)e∗ |p+1 dx

]
. (25)
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On the other hand, since un ∈ S(c) ∩ B(r), using the inequality of Gagliardo–Nirenberg it is not
difficult to show that there exists a constant K independent of n such that

‖un‖p+1
Lp+1 ≤ Kr(p−1)/4c(p+3)/4. (26)

Therefore, combining (16), (25) and (26), we obtain

inf
u∈S(c)∩B(r)

E(u) < −λ0
2
c < −Kr(p−1)/4c(p+3)/4 ≤ lim

n→∞E(un),

for sufficiently small c∗(r) << 1 and c < c∗(r), which is a contradiction and hence, every minimiz-
ing sequence for νrc must be compact if c < c∗(r). Thus we have that un converges, up to taking
subsequences, in Lp-norm to the function u satisfying ‖u‖2L2 = c. Consequently, from the weak
convergence in H1(�), it follows that

E(u) ≤ lim
n→∞E(un) = νrc and ‖u‖2G ≤ lim inf

n→∞ ‖un‖2G.

Thus u ∈ S(c) ∩ B(r) and E(u) = νrc . Now, if we assume that ‖u‖2H1 < lim infn→∞ ‖un‖2H1 , then
E(u) < νrc , which is absurd, and thus we deduce that un → u strongly in H1(�). This finishes the
proof. �

4. Proof of Theorem 1.3

The aim of this section is to prove Theorem 1.3. First, we need the following lemma.

Lemma 4.1: Let u ∈ H1(�) be a solution of (7). Then, for every e ∈ J, the restriction ue : [0, Le) → C

of u to the eth edge satisfies the following properties:

ue ∈ H2((0, Le)) ∩ C2((0, Le)), (27)

− u′′
e + Weue + ωue − |ue|p−1u = 0 on (0, Le), (28)

∑
e≺v

∂oue(v) = −αvue(v) for all v ∈ V , (29)

where We is the component of the potential W on the edge e.

Proof: Fix l ∈ J. Statements (27) and (28) are derived from a standard bootstrap argument using test
functions ζ ∈ C∞

0 ((0, Le)). Indeed, by (7) applied with ϕ = (ϕe)e∈J , where ϕl = ζul and ϕe = 0 for
e �= l, we get

−(ζul)′′ + ωζul = −Weζul − ζu′′
l − 2ζ ′u′

l + ζ |ul|p−1ul

in the sense of distributions on (0, Le). Now, since the right side is in L2((0, Le)), it follows that
ul ∈ H2((0, Le)), and hence ul ∈ H2((0, Le)) ∩ C1((0, Le)). A similar argument shows that ul ∈
C2((0, Le)). In particular, statement (28) is true. Finally, a standard argument shows that the solu-
tion u of the stationary problem (7) is an element of the domain of the operator H, and it satisfies
the boundary conditions (29) at the vertex v. For more details see, for example [8, Theorem 4], [14,
Lemma 4.1]. �

Proof of Theorem 1.3: Our proof is inspired by [25, Theorem 1], [17, Proposition 2]. First we remark
that if u ∈ Mr

c, then from Lemma 3.2 we have that u ∈ B(rc), that is, u stays away from the boundary
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of S(c) ∩ B(r). Therefore, we see that u is a critical point of E on S(c) and there exists a Lagrange
multiplier ω ∈ R such that

Hu + ωu − |u|p−1u = 0. (30)

Multiplying (30) with u, and integrating over � we obtain

−ω‖u‖2L2 = F[u] − ‖u‖p+1
Lp+1 = 2E(u)+ 2

p + 1
‖u‖p+1

Lp+1 − ‖u‖p+1
Lp+1

= 2E(u)+ 1 − p
p + 1

‖u‖p+1
Lp+1 < 2E(u).

Thus, from (16), we see that

ω > −2E(u)
c

> λ0.

Next, since u ∈ S(c) ∩ B(r), by Lemma 2.2 (ii) we see that there exists a constant K> 0 such that

‖u‖p+1
Lp+1 ≤ K(c(p+3)/4‖u‖(p−1)/2

G + λ0c(p+1)/2).

Moreover, notice that

‖u‖2G = F[u] + 2λ0‖u‖2L2 ≥ λ0‖u‖2L2 = λ0c,

which implies that

−ωc = F[u] − ‖u‖p+1
Lp+1 = ‖u‖2G − ‖u‖p+1

Lp+1 − 2λ0c

≥ ‖u‖2G − Kc(p+3)/4‖u‖(p−1)/2
G − Kλ0c(p+1)/2 − 2λ0c

= ‖u‖2G(1 − Kc(p+3)/4‖u‖(p−5)/2
G )− Kλ0c(p+1)/2 − 2λ0c

≥ λ0c(1 − Kc(p+3)/4(rc)(p−5)/4)− Kλ0c(p+1)/2 − 2λ0c

= λ0c(−1 − Kc(p−1)/2r(p−5)/4 − Kc(p−1)/2).

It follows that

ω ≤ λ0(1 + Kc(p−1)/2 + Kc(p−1)/2r(p−5)/4) = λ0(1 + Kc(p−1)/2(1 + r(p−5)/4)).

Thus, since p ≥ 5, we obtain the proof of (i) of theorem.
Let u ∈ Mr

c be a complex valued minimizer. Since ‖|u|′‖2L2 ≤ ‖u′‖2L2 , it follows that |u| ∈ S(c) ∩
B(r) and E(|u|) ≤ E(u) = νrc . In particular, |u| ∈ Mr

c and E(u) = E(|u|). This implies that

∑
e∈J

∫ Le

0
||ue|′(x)|2 dx =

∑
e∈J

∫ Le

0
|u′

e(x)|2 dx. (31)

Now we set ψ := |u|. We claim that ψ(x) > 0 for all x ∈ �.
First, since ψ ∈ Mr

c, we obtain that ψ is a critical point of E on S(c). Therefore, there exists a
Lagrange multiplier ω > λ0 such that

Hψ + ωψ − ψp = 0.

Notice that, by Lemma 4.1, ψ ∈ dom(H), ψe ∈ H2((0, Le)) ∩ C2((0, Le)) (here Le = +∞ if e ∈ Jext)
and

−ψ ′′
e + Weψe + ωψe − ψ

p
e = 0, for all x ∈ (0, Le) and e ∈ J.

We recall that W ≤ 0. We set B(s) := ωs − sp. Since B ∈ C1[0,+∞) is nondecreasing for s small,
B(0) = 0 and B(ω1/(p−1)) = 0, by [30, Theorem 1], it follows that for every e ∈ J, ψe is either trivial
or strictly positive on (0, Le).
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Second, if we suppose thatψe(0) = ψ ′
e(0) = 0, thenψe is trivial on [0, Le]. Indeed, for some ε > 0,

we define

ψ̃e(x) =
{
ψe(x) if x ∈ [0, Le),
0 if x ∈ (−ε, 0).

Then, by Sobolev extension theorem, ψ̃e ∈ H2((−ε, Le)) and
−ψ̃ ′′

e + W̃eψ̃e + ωψ̃e − ψ̃
p
e = 0, for all x ∈ (−ε, Le),

where the function W̃e is the extension by zero of We. Thus, by [30, Theorem 1] and applying the
same argument as above, we have that ψ̃e = 0 on (−ε, Le). Analogously we may consider the case
when ψe(Le) = ψ ′

e(Le) = 0.
Finally, we prove ψ > 0. To begin assume that ψ(v) = 0 for some v ∈ V . Since ψ ∈ dom(H), it

follows that
∑
v≺e ∂oψe(v) = 0. Without loss of generality, we can assume that the vertex v coincides

with x= 0. Notice that ψ ′
e(0) ≥ 0. Indeed, this follows from the fact that ψe ∈ C1([0, Le)), ψe ≥ 0

and ψe(0) = 0. Thus we obtain ψe(0) = ψ ′
e(0) = 0 due to the boundary conditions at the vertex.

Therefore ψe = 0 on (0, Le) for all e ≺ 0 and by continuity ψ = 0 on �, which is a contradiction
because ψ ∈ Mr

c. This contradiction shows that the supposition is false, and so ψe(v) > 0 for all
v ∈ V . Therefore,ψe(x) > 0 on [0, Le) for all e ≺ v and, hence, by continuityψ > 0 on�. This proves
the claim.

On the other hand, we can write ue(x) = ψe(x)ze(x) where ψe, ze ∈ C1(0, Le) and |ue| = ψe > 0.
Since |ze| = 1, it follows that

u′
e = ψ ′

eze + ψez′e = ze(ψ ′
e + ψezez′e).

Notice that Re(zez′e) = 0. This implies that |u′
e|2 = |ψ ′

e|2 + |ψez′e|2. Thus from (31), we see that

∑
e∈J

∫ Le

0
|ψ ′

e|2 dx =
∑
e∈J

∫ Le

0
|u′

e|2 dx =
∑
e∈J

∫ Le

0
|ψ ′

e|2 +
∑
e∈J

∫ Le

0
|ψez′e|2.

Using that ψe > 0, we obtain that z′
e = 0 for every e ∈ J. Since ze ∈ C1(0, Le), we get ze(x) = eiθe on

(0, Le) with θe = constant. Finally, by continuity at the vertex we have that θe = θ = constant for all
e ∈ J, and this completes the proof of theorem. �

5. Stability of standing waves

This section is devoted to the proof of Corollaries 1.4 and 1.5.

Proof of Corollary 1.4: We prove that the setMr
c is H1(�)-stable with respect to NLS (1). We argue

by contradiction. Suppose that the set Mr
c is not stable under flow associated with (1). Then there

exist ε > 0, a sequence {un,0}n∈N ⊂ H1(�) such that

inf
ϕ∈Mr

c
‖un,0 − ϕ‖H1 <

1
n

(32)

and {tn} ⊂ R
+ such that

inf
ϕ∈Mr

c
‖un(tn)− ϕ‖H1 ≥ ε for all n ∈ N, (33)

where un is the unique solution of the Cauchy problem (1) with initial data un,0. Without loss of
generality, we may assume that ‖un,0‖2L2 = c. From (32) and conservation laws, we obtain

E(un(tn)) = E(un,0) → νrc as n → ∞,

‖un(tn)‖2L2 = ‖un,0‖2L2 = c for all n.
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We note that there exists a subsequence {unk(tnk)} of {un(tn)} such that ‖unk(tnk)‖2G ≤ r. Indeed,
if ‖un(tn)‖2G > r for every n sufficiently large, then by continuity there exists t∗n ∈ (0, tn) such that
‖un(t∗n)‖2G = r. Moreover ‖un(t∗n)‖2L2 = c and E(un(t∗n)) → νrc as n → ∞. Therefore, {un(t∗n)}n∈N is
aminimizing sequence of νrc . By Theorem 1.2, we see that there exists u∗ ∈ H1(�) such that un(t∗n) →
u∗ strong in H1(�). In particular, E(u∗) = νrc , ‖u∗‖2G = r and ‖u∗‖2L2 = c, which is a contradiction,
because from Lemma 3.2 the critical points of E on S(c) do not belong to the boundary of S(c) ∩ B(r).

In conclusion, ‖unk(tnk)‖2G ≤ r, ‖unk(tnk)‖2L2 = c and E(unk(tnk)) → νrc , that is, {unk(tnk)}k∈N is
a minimizing sequence for νrc . Thus, by Theorem 1.2, up to a subsequence, there exists a function
ϕ ∈ Mr

c such that

‖unk(tnk)− ϕ‖H1 → 0, as k → ∞,

which is a contradiction with (33). �

Proof of Corollary 1.5: Let r> 0 and c∗ > 0 be as in Theorem 1.2. Notice that Mr
c �= ∅ for c < c∗.

Let ψ ∈ Mr
c. From Theorem 1.3 (i)–(ii), there exists ω > γ 2/N2 such that

Hψ + ωψ − |ψ |p−1ψ = 0,

and ω → γ 2/N2 as c → 0.
From Theorem 4 in [8], we have that

∅ �= Mr
c ⊂ {

eiθφω,j : θ ∈ R, j = 0, 1, . . . , [(N − 1)/2]
}
,

where φω,j is defined in (8). We recall that φω,j is defined for ω > γ 2/(N − 2j)2.
Notice that if c < c∗ is sufficiently small, then φω,j /∈ Mr

c for j ≥ 1. Indeed, since ω → γ 2/N2 as
c → 0, by taking c sufficiently small we have that ω < γ 2/(N − 2j)2 for every j ≥ 1. That is, there
exists c∗1 such that if c < c∗1, then φω,j /∈ Mr

c for j= 1, 2, . . . , [(N − 1)/2].
On the other hand, we define the function R(ω) := ‖φω,0‖2L2 for ω > γ 2/N2, i.e.

R(ω) = 2N
(p − 1)

(
p + 1
2

)2/(p−1)
ω(5−p)/2(p−1)h

( γ

Nω1/2

)
,

where h(x) =
∫ 1

x
(1 − t2)(3−p)/(p−1) dt.

Notice that R(γ 2/N2) = 0. Moreover, there exists ω∗
1 > 0 such that R′(ω) > 0 for all ω ∈

(γ 2/N2,ω∗
1) (see [8, Remark 6.1]). This implies that there exists c∗2 such that ‖φω(c),0‖2L2 = c for 0 <

c ≤ c∗2 and ω(c) ∈ (γ 2/N2,ω∗
1). Without loss of generality, we can assume that r ≥ ‖φω(c),0‖2L2 for

ω(c) ∈ (γ 2/N2,ω∗
1). Set c

∗
3 := min{c∗1, c∗2}. It is clear that if c < c∗3, then Mr

c = {eiθφω(c),0 : θ ∈ R}.
Therefore, the statement ofCorollary 1.5 follows fromCorollary 1.4, and this completes the proof. �
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