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LOGARITHMIC NLS EQUATION ON STAR GRAPHS:

EXISTENCE AND STABILITY OF STANDING WAVES

Alex H. Ardila

Instituto Nacional de Matemática Pura e Aplicada - IMPA,
Estrada Dona Castorina 110, CEP 22460-320, Rio de Janeiro, RJ, Brazil.

Abstract. In this paper we consider the logarithmic Schrödinger equation on
a star graph. By using a compactness method, we construct a unique global
solution of the associated Cauchy problem in a suitable functional framework.
Then we show the existence of several families of standing waves. We also
prove the existence of ground states as minimizers of the action on the Nehari
manifold. Finally, we show that the ground states are orbitally stable via a
variational approach.

1. Introduction

Partial differential equations on graphs, or on higher-dimensional ‘networked’
domains, arise naturally in many topics of physics such as optics, acoustics, con-
densed matter and polymer physics. Modern applications of PDEs on graphs in-
clude machine mechatronics, biology, electrical and communication networks and
traffic flow. We refer to [29] for further information and bibliography. Earlier, the
linear Schrödinger equation on a metric graph was subject of extensive research
due to its applications in quantum chemistry, nanotechnologies and mesoscopic
physics (see [14, 15] and references therein). Studies of the nonlinear Schrödinger
equation on graphs have started appearing recently. In particular, existence and
stability of standing waves for nonlinear Schrödinger equation on a star graph with

a power nonlinearity |u|p−1
u have been studied extensively. Among such works,

let us mention [17, 1, 2, 3, 4, 5, 7, 8, 9, 13, 20, 21, 22, 27, 30].
In recent years, the logarithmic NLS equation has attracted a great deal of

attention from both the mathematicians and physicists (see e.g. [12, 24, 32]); this
equation is applied in many branches of physics, e.g., quantum optics, nuclear
physics, fluid dynamics, geophysics and Bose-Einstein condensation (see, e.g. [34]
and references therein).

To set the stage, let Γ be a star graph consisting of a central vertex c and N
edges (half-lines) attached to it. For simplicity, each edge will be identified with
the positive semi-axis Je = (0,+∞), where zero corresponds to the central vertex
c. Thus we see that we can identify Γ with the (disjoint) union of the intervals
Je = (0,+∞), e = 1, . . ., N , augmented by the central vertex. The following
notation will be convenient: given a function on the graph u : Γ −→ CN , its
restriction to the semi-axis Je is denoted with ue. Moreover, we will denote with
ue(0) the limit of ue(x) as x → 0 in Je. For a function u to be continuous on
Γ, in addition to the continuity of every restriction ue on Je, one has to require
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2 ALEX H. ARDILA

continuity at the central vertex; that is, ue(0) = ur(0) for e, r = 1, . . ., N . Given
a function F : C → R, if the integrand does not require more precision, we will
abbreviate

N
∑

e=1

∫

R+

F (ue(x))dx =

∫

Γ

F (u)dx.

Associated to a star graph Γ, we have a natural Hilbert space L2(Γ), which is
defined as the orthogonal direct sum of spaces L2(R+). The space L2(Γ) consists
of functions that are in L2(R+) for every edge of Γ, equipped with the norm given
by

‖u‖2L2(Γ) =

∫

Γ

|u|2dx =

N
∑

e=1

∫

R+

|ue(x)|2dx.

Lp-spaces on Γ are defined analogously. The Sobolev space H1(Γ) on the graph
Γ consists of all continuous functions u = (ue)

N
e=1 such that ue ∈ H1(R+). The

continuity condition imposed on functions from the Sobolev space H1(Γ) means
that any function u from this space assumes the same value at the central vertex,
and thus u(0) is uniquely defined. We say that u is symmetric if ue does not depends
on e. For a general reference on analytical properties of functions defined over a
graph, see the classical monograph [15].

This paper is devoted to the analysis of existence and stability of the ground
states for the logarithmic Schrödinger equation on a star graph Γ with an attractive
delta condition in the vertex,

i∂tu+∆γu+ uLog |u|2 = 0, (1.1)

where u is a complex-valued function of (x, t) ∈ Γ×R. Here, the nonlinear term in
(1.1) is defined componentwise: namely,

(

uLog|u|2
)

i
= ui Log|ui|2 for i = 1,. . .,N .

For γ ∈ R, the Laplace operator −∆γ on the graph Γ which appear in (1.1) ad-
mit a precise interpretation as self-adjoint operator on L2(Γ) associated with the
quadratic form Fγ (see [26]),

Fγ [u] =
N
∑

e=1

∫

R+

|∂xue(x)|2dx− γ |u1(0)|2 ,

defined on the domain dom(Fγ) = H1(Γ). To be more specific, it is clear that this
form is bounded from below and closed on H1(Γ). Then the self-adjoint operator
on L2(Γ) associated with Fγ is given by

− (∆γu)i = −∂2xui for i = 1, . . ., N,

on the domain

dom(−∆γ) =
{

u ∈ H1(Γ) : ui ∈ H2(R+),

N
∑

i=1

∂xui(0) = −γu1(0)
}

. (1.2)

When γ = 0, the condition at the vertex (1.2) is usually referred to as the Kirch-
hoff’s boundary condition. Notice that −∆γ generalizes to the graph the well know
Schrödinger operator with delta potential of strength γ on the line. The follow-
ing spectral properties of −∆γ are known: σess(−∆γ) = [0,∞); if γ ≤ 0, then
σp(−∆γ) = ∅; if γ > 0, then σp(−∆γ) =

{

−γ2/N2
}

.
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The nonlinear Schrödinger equation (1.1) is formally associated with the energy
functional E defined by

E(u) =
1

2
Fγ [u]−

1

2

∫

Γ

|u|2 Log |u|2 dx.

Unfortunately, due to the singularity of the logarithm at the origin, the functional
fails to be finite as well of class C1 on dom(Fγ) = H1(Γ). Due to this loss of
smoothness, it is convenient to work in a suitable Banach space endowed with a
Luxemburg type norm in order to make functional E well defined and C1 smooth.

Indeed, we will work with functions in the Banach space (see Section 2)

W (Γ) =
{

u ∈ H1(Γ) : |ue|2 Log |ue|2 ∈ L1(R+) for e = 1, . . ., N
}

. (1.3)

Then, we have that the energy functional E is well-defined and of class C1 onW (Γ).
In [11], when Γ = R, by considering the line as a two-edge star graph, it is proved

that the Cauchy problem for (1.1) is globally well-posed in W (R). Moreover, it was
shown in [11] that there exists a unique positive (up to a phase) ground state and
it is orbitally stable in the case where γ > 0.

The main aim of this paper is to extend the existence and stability results of [11]
by considering a N -edge star graph with N ≥ 2. An analogous analysis is given for
the standard NLS equation on a star graph in [5], and both are inspired by [22, 8].

The next proposition gives a result on the existence of weak solutions to (1.1) in
the energy space W (Γ). The proof is contained in Section 3.

Proposition 1.1. For any u0 ∈ W (Γ), there is a unique maximal solution u ∈
C(R,W (Γ)) ∩C1(R,W ′(Γ)) of (1.1) such that u(0) = u0 and supt∈R ‖u(t)‖W (Γ) <

∞. Furthermore, the conservation of energy and charge hold; that is,

E(u(t)) = E(u0) and ‖u(t)‖2L2(Γ) = ‖u0‖2L2(Γ) for all t ∈ R.

In the previous proposition, W ′(Γ) is the dual space of W (Γ). A standing wave
solution of (1.1) is a solution of the form u(x, t) = eiωtϕ(x) where ω ∈ R and
ϕ ∈W (Γ)\ {0} is a real valued function which has to solve the following stationary
problem

−∆γϕ+ ωϕ− ϕLog |ϕ|2 = 0 in W ′(Γ). (1.4)

An explicit description of all the solutions of the stationary problem (1.4) is
obtained for every value of γ > 0. In fact, the stationary solutions to (1.4) are
given in the following result. We denote by [s] the integer part of s.

Theorem 1.2. Let N ≥ 2, γ > 0 and ω ∈ R. Then, the stationary problem (1.4)
has [(N − 1)/2] positive solutions φκω,γ, with κ = 0, . . ., [(N − 1)/2], given, up to
permutations of edges, by

(φκω,γ)i(x) =

{

e
ω+1

2 e−
1
2
(x−hκ)

2

, i = 1, . . ., κ

e
ω+1

2 e−
1
2
(x+hκ)

2

, i = κ+ 1, . . ., N ;
(1.5)

where hκ = γ/(N − 2κ).

The proof of this result is contained in Section 4. We remark that the solution
is unique only in the case N = 2, that is, in the case of a two-edge star graph.

The next step in the study of stationary solutions to (1.4) is to understand their
stability. To this aim, and when possible, we give a variational characterization of
the stationary solutions.
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For γ > 0 and ω ∈ R, let us define the following functionals of class C1 onW (Γ):

Sω,γ(u) =
1

2
Fγ [u] +

ω + 1

2
‖u‖2L2(Γ) −

1

2

∫

Γ

|u|2 Log |u|2 dx,

Iω,γ(u) = Fγ [u] + ω ‖u‖2L2(Γ) −
∫

Γ

|u|2 Log |u|2 dx.

Note that (1.4) is equivalent to S′
ω,γ(ϕ) = 0, and Iω,γ(u) =

〈

S′
ω,γ(u), u

〉

is the
so-called Nehari functional. Moreover, we consider the minimization problem

dγ(ω) = inf {Sω,γ(u) : u ∈W (Γ) \ {0} , Iω,γ(u) = 0}

=
1

2
inf
{

‖u‖2L2(Γ) : u ∈ W (Γ) \ {0} , Iω,γ(u) = 0
}

,
(1.6)

and define the set of ground states by

Gω,γ =
{

ϕ ∈W (Γ) \ {0} : Sω,γ(ϕ) = dγ(ω), Iω,γ(ϕ) = 0
}

.

Remark 1.3. The set
{

u ∈W (Γ)\{0} , Iω,γ(u) = 0
}

is called the Nehari manifold.

Since Iω,γ(u) =
〈

S′
ω,γ(u), u

〉

, it clearly contains all the nontrivial critical points of
Sω,γ. It is standard to show that if u ∈ Gω,γ, then u is a solution to the stationary
equation (1.4).

Before proceeding to our main results, we recall the definition of the error func-
tion

erf(s) =
2√
π

∫ s

0

e−t2dt for all s ∈ R. (1.7)

We remark that the error function is strictly monotonically increasing on R. We
define the inverse error function as follows. For a positive r, if r = erf(s) the inverse

function s = erf−1(r). The domain r for the inverse function is the interval [0, 1],
and the range is [0,+∞).

The existence of minimizers for (1.6) is obtained through variational argument.
We will show the following theorem in Section 6.

Theorem 1.4. Let N ≥ 2, ω ∈ R and γ∗(N) := N
(

erf−1(1− 2/N)
)

. Then, there
exists a minimizer of dγ(ω) for any γ > γ∗(N). Moreover, the set of ground states
is given by Gω,γ =

{

eiθφ0ω,γ : θ ∈ R
}

, where φ0ω,γ is defined by (1.5).

So Sω,γ admits a constrained minimum on the Nehari manifold for every ω ∈ R

if the strength γ of the δ-interaction at the vertex is sufficiently strong. Moreover,
in this case, any minimizing sequence of (1.6) is relatively compact in W (Γ). On
the other hand, if 0 ≤ γ < γ∗(N), then the infimum dγ(ω) is approximated by
the action of a soliton (i.e. the ground state on the line) escaping to infinity. In
particular, there exists a minimizing sequence of dγ(ω) that converges weakly to the
vanishing function; see the proof of Proposition 5.1 for more details. Notice that,
for N ≥ 2, the function N → γ∗(N) is strictly monotonically increasing, γ∗(2) = 0
and γ∗(N) → +∞ as N → +∞. In particular, in the case of a two-edge star graph
we have the following result which was proved in [11]: there exists a unique (up
to a phase) ground state for all γ > γ∗(2) = 0. On the other hand, when N ≥ 3
and 0 < γ ≤ γ∗(N), it is conjectured that the action Sω,γ has a local constrained
minimum that is larger than the infimun, but we do not have a proof of this fact.
We note that the conjectured behavior has in fact been proved recently for the
standard power nonlinearity by Adami-Cacciapuoti-Finco-Noja in [6].
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It is important to note that the basic idea underlying this work as well as [5], is
that a ground state exists if and only if the action Sω,γ of the unique symmetric
stationary state φ0ω,γ is lower than the action of the soliton associated with the
same frequency; see Sections 5 and 6 for a complete description. This explains the
fact that the threshold γ∗(2) for the two-edge graph equals zero.

Now we come to the stability of the ground state. The basic symmetry associated
to equation (1.1) is the phase-invariance. Thus, the definition of stability takes into
account only this type of symmetry and is formulated as follows.

Definition 1.5. We say that a standing wave solution u(x, t) = eiωtφ(x) of (1.1)
is orbitally stable in W (Γ) if for any ǫ > 0 there exists η > 0 such that if u0 ∈W (Γ)
and ‖u0 − ϕ‖W (Γ) < η, then the solution u(t) of (1.1) with u(0) = u0 exist for all

t ∈ R and satisfies

sup
t∈R

inf
θ∈R

‖u(t)− eiθφ‖W (Γ) < ǫ.

Otherwise, the standing wave eiωtφ(x) is said to be unstable in W (Γ).

Making use of the arguments in [11, 22], from the compactness of the minimizing
sequences (see Lemma 7.1 below) and uniqueness of the ground states up to phase
shown in Theorem 1.4, the orbital stability of the ground states follows.

Theorem 1.6. Let N ≥ 2, ω ∈ R and γ > γ∗(N). Then the standing wave eiωtφ0ω,γ

is orbitally stable in W (Γ).

We end this introduction with two remarks. Firstly, nothing rigorous is known
about orbital stability or instability of excited states, which exists for every N ≥ 3
and ω ∈ R; it is conjectured that excited states are unstable, but we do not have a
proof of this fact. On the other hand, an important breakthrough in the problem
of determining the existence of ground states for Kirchhoff’s graphs has come with
the paper by Adami-Serra-Tilli [10]. We claim that the techniques presented in
that paper can be easily adapted to the focusing logarithmic nonlinearity. Indeed,
the rearrangements preserve the energy space W (Γ) (see the proof of Proposition
2.3 below). Thus, implementing on graphs the rearrangement theory in a more
thorough way, it is possible to give results for a general class of graphs (with no
reason to limit to star-shaped only).

The rest of the paper is organized as follows. In Section 2, we analyse the struc-
ture of the energy space W (Γ). Moreover, we recall several known results, which
will be needed later. In Section 3, we give an idea of the proof of Proposition 1.1.
In Section 4, an explicit construction of all stationary states of problem is obtained.
In Section 5 we compute explicitly the infimum d0(ω) (Kirchhoff’s case), which will
be a key ingredient for our analysis to follow. In Section 6 we prove, by variational
techniques, the existence of a minimizer of dγ(ω) for any γ > γ∗(N). We also
explicitly compute the ground states (Theorem 1.4). The Section 7 is devoted to
the proof of Theorem 1.6. In the Appendix we show that the energy functional E
is of class C1 on W (Γ).

Notation: The space L2(R+,C) will be denoted by L2(R+) and its norm by ‖ ·
‖L2(R+). This space will be endowed with the real scalar product

(u, v) = ℜ
∫

R+

uv dx for u, v ∈ L2
(

R
+
)

.
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The space H1(R+,C) will be denoted by H1(R+), its norm by ‖ · ‖H1(R+). We

denote by C∞
0 (R+) the set of C∞ functions from R+ to C with compact support.

〈·, ·〉 is the duality pairing between E′ and E, where E is a Hilbert (more generally,
Banach space) and E′ is its dual. Throughout this paper, the letter C will denote
positive constants.

2. Preliminaries

In this section we analyse the structure of the energy space W (Γ). We also
recall several known results on the logarithmic Schrödinger equation and the basic
properties of the symmetric rearrangements on a star graph.

2.1. The energy space. First we need to introduce some notation. Define

F (z) = |z|2 Log |z|2 for every z ∈ C,

and as in [18], we define the functions A, B on [0,∞) by

A(s) =

{

−s2 Log(s2), if 0 ≤ s ≤ e−3;

3s2 + 4e−3s − e−6, if s ≥ e−3;
B(s) = F (s) + A(s). (2.1)

Furthermore, let be functions a, b, defined by

a(z) =
z

|z|2 A(|z|) and b(z) =
z

|z|2 B(|z|) for z ∈ C, z 6= 0. (2.2)

Notice that we have b(z) − a(z) = z Log |z|2. It follows that A is a nonnegative
convex and increasing function, and A ∈ C1 ([0,+∞)) ∩ C2 ((0,+∞)). The Orlicz
space LA(R+) corresponding to A is defined by

LA(R+) =
{

u ∈ L1
loc(R

+) : A(|u|) ∈ L1(R+)
}

,

equipped with the Luxemburg norm

‖u‖LA(R+) = inf

{

k > 0 :

∫

R+

A
(

k−1|u(x)|
)

dx ≤ 1

}

.

Here as usual L1
loc(R

+) is the space of all locally Lebesgue integrable functions.
It is proved in [18, Lemma 2.1] that A is a Young-function which is ∆2-regular

(see [31, Chapter III] for more details) and
(

LA(R+), ‖ · ‖LA(R+)

)

is a separable

reflexive Banach space. Let us denote by W (R+) the reflexive Banach space
W (R+) = H1(R+) ∩ LA(R+) equipped with usual norm ‖ · ‖W (R+) defined by
‖u‖W (R+) = ‖u‖H1(R+) + ‖u‖LA(R+).

Finally, we consider the reflexive Banach space

W (Γ) =
{

u ∈ H1(Γ) : ue ∈ W (R+) for e = 1, . . ., N
}

,

equipped with norm

‖u‖2W (Γ) =
N
∑

i=1

‖ui‖2W (R+) .

It is easy to see that one has the following chain of continuous embedding W (Γ) →֒
L2(Γ) →֒W ′(Γ). Moreover, we have that

W (Γ) =
{

u ∈ H1(Γ) : |ue|2 Log |ue|2 ∈ L1(R+) for e = 1, . . ., N
}

. (2.3)
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The proof of (2.3) follows immediately from analogous equality for functions of the

real half line: namely, W (R+) =
{

u ∈ H1(R+) : |u|2 Log |u|2 ∈ L1(R+)
}

. For the
proof of the last statement we refer to Cazenave [18, Proposition 2.2].

The following remark will be useful later on.

Remark 2.1. For every ǫ > 0, there exists Cǫ > 0 such that

|B(z)−B(w)| ≤ Cǫ

(

|z|1+ǫ + |w|1−ǫ
)

|z − w| for all z, w ∈ C.

Integrating the above inequality on R+, applying Hölder’s and Sobolev’s inequalities
and summing on each edge of graph Γ, we deduce that for all u, v ∈ H1(Γ),

∫

Γ

|B(|u|)−B(|v|)| dx ≤ C
(

1 + ‖u‖2H1(Γ) + ‖v‖2H1(Γ)

)

‖u− v‖L2(Γ) . (2.4)

We list some properties of the Orlicz space LA(R+), which will be needed later.
For a proof of such statements we refer to [18, Lemma 2.1].

Proposition 2.2. Let {um} be a sequence in LA(R+), the following facts hold:
i) If um → u in LA(R+), then A(|um|) → A(|u|) in L1(R+) as n→ ∞.
ii) Let u ∈ LA(R+). If um(x) → u(x) a.e. x ∈ R+ and if

lim
n→∞

∫

R+

A (|um(x)|) dx =

∫

R+

A (|u(x)|) dx,

then um → u in LA(R+) as n→ ∞.
iii) For any u ∈ LA(R+), we have

min
{

‖u‖LA(R+) , ‖u‖
2
LA(R+)

}

≤
∫

R+

A (|u(x)|) dx ≤ max
{

‖u‖LA(R+) , ‖u‖
2
LA(R+)

}

.

(2.5)

2.2. Variational characterization of the ground state on the half-line and

on the line. We recall a well-known result on the logarithmic Schrödinger equation
on the line: namely, the set of solutions of the stationary problem (see [16, Appendix
D])

−∂2xϕ+ ωϕ− ϕLog |ϕ|2 = 0, x ∈ R, ω ∈ R, ϕ ∈W (R),

is given by
{

eiθφω(· − y); θ ∈ R, y ∈ R
}

, where

φω(x) = e
ω+1

2 e−
1
2
x2

. (2.6)

In addition, the soliton φω is the only minimizer (modulo translation and phase)
of problem

dR(ω) = inf {SR(u, ω) : u ∈ W (R) \ {0} , IR(u, ω) = 0} , (2.7)

where

SR(u, ω) =
1

2
‖∂xu‖2L2(R) +

ω + 1

2
‖u‖2L2(R) −

1

2

∫

R

|u|2 Log |u|2 dx,

IR(u, ω) = ‖∂xu‖2L2(R) + ω ‖u‖2L2(R) −
∫

R

|u|2 Log |u|2 dx.

Moreover dR(ω) = eω+1√π/2. For the proof of this result we refer to A.H. Ardila
[12]. This implies that half soliton χ+φω is the solution of the problem

dR+(ω) = inf
{

SR+(u, ω) : u ∈W (R+) \ {0} , IR+(u, ω) = 0
}

, (2.8)
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where

SR+(u, ω) =
1

2
‖∂xu‖2L2(R+) +

ω + 1

2
‖u‖2L2(R+) −

1

2

∫

R+

|u|2 Log |u|2 dx,

IR+(u, ω) = ‖∂xu‖2L2(R+) + ω ‖u‖2L2(R+) −
∫

R+

|u|2 Log |u|2 dx.

Moreover, we have that dR+(ω) = dR(ω)/2. To prove the last statement, assume
that u ∈W (R+) \ {0} is such that IR+(u, ω) = 0 and

SR+(u, ω) ≤ SR+(χ+φω , ω).

Then, denoted by û the even extension of u, we see that IR(û, ω) = 0 and

SR(û, ω) ≤ SR(φω , ω).

Thus, since û is even and φω is the only minimizer (modulo translation and phase)
of problem (2.7), we infer that û must be equal to φω up a phase factor.

2.3. Symmetric rearrangements. In this subsection we recall the basic proper-
ties of symmetric rearrangements u∗ of a measurable function u : Γ → CN , where
Γ is a star graph.

Given u : Γ → CN , we introduce λu(s) and ςu(s) defined by

λu(s) = |{|u| ≥ s}| and ςu(s) = sup {s|λu(s) > Nt} ,

and as in [5], we define the symmetric rearrangement u∗ of u by u∗ = (u∗1, . . . , u
∗
N)

with

u∗1(x) = . . . = u∗N (x) = ςu(x).

The basic properties of the function u∗ are given in the following proposition.

Proposition 2.3. Let u ∈ H1(Γ). Then the following assertions hold.
(i) The symmetric rearrangement u∗ is positive, symmetric and non increasing.
Moreover, u∗ ∈ H1(Γ), ‖u∗‖Lp(Γ) = ‖u‖Lp(Γ) and ‖∂xu∗‖L2(Γ) ≤ (N/2) ‖∂xu‖L2(Γ).

(ii) If u ∈W (Γ), then u∗ ∈W (Γ) and

∫

Γ

|u∗|2 Log |u∗|2 dx =

∫

Γ

|u|2 Log |u|2 dx.

Proof. The proof of (i) is contained in Proposition A.1 and Theorem 6 of [5]. Now

we prove (ii). We first recall that, by (2.1), |z|2 Log |z|2 = A(|z|) − B(|z|) for
every z ∈ C. Moreover, since u ∈ W (Γ), it follows that A(|ue|) ∈ L1(R+) and
B(|ue|) ∈ L1(R+) for e = 1, . . ., N . Here, ue is the restriction of u on the edge
Je. As it was observed in [5, Proposition A.1], the symmetric rearrangement is
equimeasurable, that is,

|{|u| ≥ s}| = |{u∗ ≥ s}| . (2.9)
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Since A ∈ C1(R
+
) is an increasing function with A(0) = 0, it easily follows from

Layer cake representation [28, Theorem 1.13] and (2.9) that

∫

Γ

A(|u|)dx =

N
∑

i=1

∫

R+

A(|ui(x)|)dx =

∫ +∞

0

A′(s) |{|u| ≥ s}| ds

=

∫ +∞

0

A′(s) |{u∗ ≥ s}| ds =
N
∑

i=1

∫

R+

A(|u∗i (x)|)dx

=

∫

Γ

A(|u∗|)dx. (2.10)

Similarly, since B ∈ C1(R
+
) is an increasing function with B(0) = 0, by applying

the same argument as above we see that

∫

Γ

B(|u|)dx =

N
∑

i=1

∫

R+

B(|ui(x)|)dx =

N
∑

i=1

∫

R+

B(|u∗i (x)|)dx =

∫

Γ

B(|u∗|)dx.

(2.11)
In particular, A(|u∗e|) ∈ L1(R+) and B(|u∗e|) ∈ L1(R+) for e = 1, . . ., N . Therefore,
u∗ ∈ W (Γ) and the result follows from (2.10) and (2.11). �

3. The Cauchy problem

In this section we sketch the proof of the global well-posedness of the Cauchy
Problem for (1.1) in the energy space W (Γ). The proof of Proposition 1.1 is an
adaptation of the proof of [19, Theorem 9.3.4] (see also [11]). So, we will approxi-
mate the logarithmic nonlinearity by a smooth nonlinearity, and as a consequence
we construct a sequence of global solutions of the regularized Cauchy problem in
C(R, H1(Γ)) ∩ C1(R, H−1(Γ)), then we pass to the limit using standard compact-
ness results, extract a subsequence which converges to the solution of the limiting
equation (1.1). Finally, by using special properties of the logarithmic nonlinearity
we establish uniqueness of the global solution.

Before outlining the main ideas of the proof of Proposition 1.1, we first need to
introduce some notation. Let Γk be a compact star graph consisting of a central
vertex c and N edges attached to it, where each edge e of Γk is associated with
a open bounded interval Je = (0, k) of length k > 0 and zero corresponds to
the central vertex c. Let us recall that the Sobolev space H1(Γk) consists of all
continuous functions u = (ue)

N
e=1 such that ue ∈ H1(0, k) for e = 1, . . ., N . We

denote with C0(Γk) the space of all complex-valued, continuous functions on the
graph Γk, which tend to zero near all of the outer vertices. Furthermore, the
Sobolev space H1

0 (Γk) on the graph Γk consists of all functions f ∈ C0(Γk) such
that fe ∈ H1(0, k) for every e = 1, . . ., N . As usual, it follows that the inclusion
map H1

0 (Γk) →֒ H1(Γ) is continuous. The dual space of H1
0 (Γk) will be denoted by

H−1(Γk).
First we regularize the logarithmic nonlinearity near the origin. For z ∈ C and

m ∈ N, we define the functions am and bm by

am(z) =

{

a(z), if |z| ≥ 1
m ;

mz a( 1
m ), if |z| ≤ 1

m ;
and bm(z) =

{

b(z), if |z| ≤ m;
z
m b(m), if |z| ≥ m,
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where a and b were defined in (2.2). For any fixed m ∈ N, we define a family of
regularized nonlinearities in the form gm(z) = bm(z)− am(z), for every z ∈ C.

In order to construct a solution of (1.1), we solve first, form ∈ N, the regularized
Cauchy problem

i∂tu
m +∆γu

m + gm(um) = 0. (3.1)

Proposition 3.1. For any u0 ∈ H1(Γ), there is a unique solution u ∈ C(R, H1(Γ))∩
C1(R, H−1(Γ)) of (3.1) such that u(0) = u0. Furthermore, the conservation of en-
ergy and charge hold; that is,

Em(um(t)) = Em(u0) and ‖um(t)‖2L2(Γ) = ‖u0‖2L2(Γ) for all t ∈ R,

where

Em(u) =
1

2
Fγ [u]−

1

2

∫

Γ

Gm(u)dx, Gm(z) =

∫ |z|

0

gm(s)ds.

Proof. Since gm is globally Lipschitz continuous C → C, the global well-posedness
in H1(Γ) and the conservation laws are well known, and follow from the standard
fixed point argument and Gronwall lemma; see [5] for an exhaustive treatment in
the case of NLS equation with a power nonlinearity |u|p−1u. �

For the proof of Proposition 1.1, we will use the following lemma.

Lemma 3.2. Let {um}m∈N
be a bounded sequence in L∞(R, H1(Γ)). If (u|Γk

)m∈N

is a bounded sequence of W 1,∞(R, H−1(Γk)) for k ∈ N, then there exists a subse-
quence, which we still denote by {um}m∈N

, and there exists u ∈ L∞(R, H1(Γ)) for
every k ∈ N, such that the following properties hold:
(i)u|Γk

∈ W 1,∞(R, H−1(Γk)) for every k ∈ N.

(ii) um(t)⇀ u(t) in H1(Γ) as m→ ∞ for every t ∈ R.
(iii) For every t ∈ R there exists a subsequence mj such that u

mj
e (x, t) → ue(x, t)

as j → ∞, for a.e. x ∈ R
+ and e = 1, . . ., N .

(iv) ume (x, t) → ue(x, t) as m→ ∞, for a.e. (x, t) ∈ R+ × R and e = 1, . . ., N .

Proof. We just sketch the proof since it follows the same ideas as the proof of
Lemma 9.3.6 in [19]. In fact, fix k ∈ N. Note that

{

um|Γk

}

m∈N
is a bounded

sequence of L∞((−k, k), H1(Γk)) ∩ W 1,∞((−k, k), H−1(Γk)). Therefore, by [19,
Proposition 1.1.2] there exists a subsequence, which we still denote by {um}m∈N

,

and there exists u ∈ L∞((−k, k), H1(Γk)) such that um(t)|Γk
⇀ u(t) in H1(Γk)

for all t ∈ (−k, k). Letting k → +∞ and considering diagonal sequence, we see
that there exists u ∈ L∞(R, H1(Γ)) such that um(t) ⇀ u(t) in H1(Γ) for every
t ∈ R. Thus, u ∈ L∞(R, H1(Γ)), and (ii) follows. In addition, by [19, Remark
1.3.13(ii)] and (ii), we have that u ∈ W 1,∞(R, H−1(Γk)) for every k ∈ N. Hence (i)
is established. The remainder of the proof follows similarly to the remainder of the
proof of [19, Lemma 9.3.6]. �

Proof of Proposition 1.1. Our proof follows the ideas of Cazenave [19, Theo-
rem 9.3.4]. Applying Proposition 3.1, we see that for every m ∈ N there exists a
unique global solution um ∈ C(R, H1(Γ)) ∩C1(R, H−1(Γ)) of (3.1), which satisfies

Em(um(t)) = Em(u0) and ‖um(t)‖2L2 = ‖u0‖2L2 for all t ∈ R, (3.2)

where

Em(u) =
1

2
Fγ [u] +

1

2

∫

Γ

Φm(|u|)dx − 1

2

∫

Γ

Ψm(|u|)dx,
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and the functions Φm and Ψm defined by

Φm(z) =
1

2

∫ |z|

0

am(s)ds and Ψm(z) =
1

2

∫ |z|

0

bm(s)ds.

It follows from (3.2) that um is bounded in L∞(R, L2(Γ)). Moreover, we have that
the sequence of approximating solutions um is bounded in the space L∞(R, H1(Γ))
(see proof of Step 2 of [19, Theorem 9.3.4]). It also follows from the NLS equation
(3.1) that the sequence ∂tu

m|Γk
is bounded in the space L∞(R, H−1(Γk)). There-

fore, we have that {um}m∈N
satisfies the assumptions of Lemma 3.2. Let u be the

limit of um.
Now we show that the limiting function u ∈ L∞(R, H1(Γ)) is a weak solution

of the logarithmic NLS equation (1.1). To do so, we first write a weak formulation
of the NLS equation (3.1). Indeed, for any test continuous function ψ := (ψe)

N
e=1

with ψe ∈ C∞
0 ([0,+∞)) and φ ∈ C∞

0 (R), we have

−
∫

R

[〈i um, ψ〉φ′(t) + Fγ [u
m, ψ]φ(t)] dt+

∫

R

(

N
∑

i=1

∫

R+

gm(umi )ψi(x) dx
)

φ(t) dt = 0.

(3.3)

Furthermore, since gm(z) → z Log |z|2 pointwise in z ∈ C as m → +∞, we apply
the properties (ii)-(iv) of Lemma (3.2) to the integral formulation (3.3) and obtain
the following integral equation

−
∫

R

[〈i u, ψ〉φ′(t) + Fγ [u, ψ]φ(t)] dt+

∫

R

(

N
∑

i=1

∫

R+

ui Log |ui|2 ψi(x) dx
)

φ(t) dt = 0.

(3.4)
In addition, u(0) = u0 by property (ii) of Lemma 3.2. Moreover, it is easy to see
that u ∈ L∞(R,W (Γ)) (see proof of Step 3 of [19, Theorem 9.3.4]). Therefore,
by integral equation (3.4), u ∈ L∞(R,W (Γ)) is a weak solution of the logarithmic
NLS equation (1.1). In particular, from Lemma 8.2 in Appendix, we deduce that
u ∈ W 1,∞(R,W ′(Γ)).

Now we show uniqueness of the solution in the class L∞(R,W (Γ))∩W 1,∞(R,W ′(Γ)).
Indeed, let u and v be two solutions of (1.1) in that class. Then u − v satisfies a
weak formulation similar to the integral equation (3.4) for the partial differential
equation

i∂t(u − v) + ∆γ(u − v) + (uLog |u|2 − v Log |v|2) = 0.

Multiplying this equation by i(u− v) and integrating over Γ, we have

d

dt
‖u(t)− v(t)‖2L2(Γ) = −ℑ

N
∑

i=1

∫

R+

(

uiLog |ui|2 − viLog |vi|2
)

(ui − vi)dx.

Thus, from [19, Lemma 9.3.5] we obtain

‖u(t)− v(t)‖L2(Γ) ≤ 8

∫ t

0

‖u(s)− v(s)‖2L2(Γ) ds.

Therefore, the uniqueness of the solution follows by Gronwall’s Lemma.
We claim that the weak solution u of the logarithmic NLS equation (1.1) satisfies

both conservation of charge and energy. Indeed, by weak lower semicontinuity of
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the H1(Γ)-norm, Fatou’s lemma and arguing in the same way as in the proof of the
Step 3 of [19, Theorem 9.3.4] we deduce that

E(u(t)) ≤ E(u0) and ‖u(t)‖2L2(Γ) = ‖u0‖2L2(Γ) for all t ∈ R. (3.5)

Now fix t0 ∈ R. Let ϕ = u(t0) and let w be the solution of (1.1) with w(0) = ϕ. By
uniqueness, we see that w(· − t0) = u(·) on R. From (3.5), we deduce in particular
that

E(u0) ≤ E(ϕ).

Therefore, we have that both ‖u(t)‖2L2(Γ) and E(u(t)) are constant on R. Finally,

the continuity of the solution u ∈ C(R,W (Γ))∩C1(R,W ′(Γ)) in time t follow from
the arguments identical to the case of the logarithmic NLS equation on RN (see
proof of Step 4 of [19, Theorem 9.3.4]). �

4. Stationary Problem

The aim of this section is to prove Theorem 1.2. Some preparation is needed.
By elliptic regularity, the solutions of the stationary problem (1.4) are in fact

smooth on each edge, except at the vertex, where they satisfy the boundary condi-
tion.

Lemma 4.1. Let γ ∈ R \ {0}, ω ∈ R and u ∈ W (Γ) be a solution of (1.4). Then,
for l = 1, . . ., N , the restriction ul : R+ → C of u to the l-th edge verifies the
following:

ul ∈ C2(R+), (4.1)

− ∂2xul + ωul − ul Log |ul|2 = 0 on R
+, (4.2)

∂xul(x), ul(x) → 0, as x→ ∞. (4.3)

Moreover, u satisfies the jump condition ∂xu1(0) + . . .+ ∂xuN (0) = −γu1(0).
Proof. Fix l ∈ {1, . . . , N}. The proof of item (4.1) follow by a standard bootstrap
argument using test functions ξ ∈ C∞

0 (R+) (see e.g. [19, Chapter 8]). Indeed, from
(1.4) applied with ψ = (ψi)

N
i=1, where ψl = ξ and ψi = 0 for i 6= l, we deduce that

− ∂2x(ξul) + ωξ ul = −∂2xξ ul − 2∂xξ ∂xul + ξ ul Log |ul|2 , (4.4)

in the sense of distributions on R+. The right hand side is in L2(R+) and so
ξul ∈ H2(R+). This implies that ul is in C2(R+) ∩ H2

loc(R
+) and is a classical

solution of this equation on R
+, from which (4.1) and (4.2) follows. Moreover, since

ul ∈ H1(R+), it follows that ul(x) → 0 as x→ ∞. Thus, by (4.2), ∂2xul(x) → 0 as
x → ∞, and so ∂xul(x) → 0 as x → ∞. Finally, we consider any test continuous
function on Γ, ϕ = (ϕi)

N
i=1 with ϕi(0) = 1. From (1.4), we see that

Fγ [u, ϕ] +

N
∑

i=1

{

ω

∫

R+

uiϕidx−
∫

R+

ui Log |ui|2 ϕidx

}

= 0. (4.5)

Thus, starting from (4.5) and using (4.2) after an integration by parts gives the
jump condition at the vertex, which concludes the proof. �

Lemma 4.2. Let u ∈W (R+) ∩C2(R+) be a non-trivial classical solution of

− ∂2xu+ ωu− uLog |u|2 = 0, on R
+. (4.6)
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Then there exist θ ∈ R and c ∈ R such that

u(x) = eiθe
ω+1

2 e−
1
2
(x+c)2 , for all x ∈ R

+. (4.7)

Proof. We may write u(x) = eiθ(x)ρ(x), where θ, ρ ∈ C2(R+) and ρ ≥ 0. Multiply-
ing the equation (4.6) by ∂xu, we obtain

|∂xu(x)|2 − (ω + 1) |u(x)|2 + |u(x)|2 Log |u(x)|2 ≡ K, (4.8)

where K ∈ R. Since u ∈ H1(R+), it follows that u(x) → 0 as x → ∞. Thus, by
(4.6), ∂2xu(x) → 0 as x → ∞, and so ∂xu(x) → 0 as x → ∞. Then, letting x→ ∞
in (4.8), we see that K = 0, so

|∂xu(x)|2 − (ω + 1) |u(x)|2 + |u(x)|2 Log |u(x)|2 ≡ 0. (4.9)

Next, writing of the system of equations satisfied by θ and ρ we have in particular
that ρ ∂2xθ + 2∂xρ ∂xθ ≡ 0. Which implies that there exists K̂ ∈ R such that

ρ2∂xθ ≡ K̂. On the other hand, by (4.9) we have that |∂xu| is bounded, it follows
that ρ2(∂xθ)

2 is bounded. Since ρ(x) → 0 as x → ∞, we must have K̂ ≡ 0.
Therefore, ∂xθ ≡ 0 and u(x) = eiθρ(x), where θ ∈ R and ρ ≥ 0 satisfies

− ∂2xρ+ ωρ− ρLog |ρ|2 = 0, on R
+. (4.10)

We remark that if we take β(s) = ωs−sLogs2, since β ∈ C[0,+∞), is nondecreasing
for s small, β(0) = 0 and β(

√
eω) = 0, by [33, Theorem 1] we have that each solution

ρ ≥ 0 is either trivial or strictly positive. Since u 6= 0, we infer that ρ > 0 on R+.
Finally, the equation (4.10) may be integrated using standard arguments. Indeed,
by explicit integration there exists c ∈ R such that for x > 0 (see [25]),

ρ(x) = e
ω+1

2 e−
1
2
(x+c)2 ,

which completes the proof. �

Proof of Theorem 1.2. Let ϕ be a solution to (1.4). From Lemma 4.1 and from
characterization given by Lemma 4.2, the restriction ϕi : R

+ → C of the stationary
state ϕ must satisfy

ϕi(x) = eiθie
ω+1

2 e−
1
2
(x+ci)

2

, (4.11)

where θi, ci ∈ R. By continuity at the vertex we have that eiθ1 = . . . = eiθN and
ci = ǫih with h > 0 and ǫi = ±1. Moreover, by the jump condition we see that

h

N
∑

i=1

ǫi = γ.

Now we determine ǫi and h. As in [4, 5], due to the bell shape of the function
ϕi, we say that a stationary state ϕ has a “bump”(resp. “tail”) on the edge i if

ǫi = −1 (resp. ǫi = 1). Notice that
∑N

i=1 ǫi must have the same sign of γ. In
particular, a stationary state must have more tails than bumps. We choose to
index the stationary states by the number κ of bumps. Therefore, we see that the
functions

(ϕκ)i (x) =

{

eiθe
ω+1

2 e−
1
2
(x−hκ)

2

, i = 1, . . ., κ

eiθe
ω+1

2 e−
1
2
(x+hκ)

2

, i = κ+ 1, . . ., N ;
(4.12)

where θ ∈ R, κ = 0, . . ., [(N − 1)/2] and hκ = γ/(N − 2κ) are the only candidates
to be solution to (1.4). Conversely we can verify directly that this is indeed the
case. This conclude the proof of Theorem 1.2. �
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5. Minimization problem for the Kirchhoff case

The aim of this section is to prove that the infimum of the action functional for
the Kirchhoff case Sω,0 restrict to the Nehari manifold is given by d0(ω) = 2dR+(ω)
(see (2.8)). The knowledge of d0(ω) will be a key ingredient in the next section in
the proof of the existence of the ground states for γ > 0.

Proposition 5.1. Let ω ∈ R. Then d0(ω) = 2dR+(ω).

Before proceeding to the proof of Proposition 5.1, we establish the following
lemma.

Lemma 5.2. Let ω ∈ R. Then there exists a sequence of functions {ϕn}n∈N
⊆

W (R+) with ϕn(0) = 0 such that

lim
n→+∞

‖ϕn‖2L2(R+) = 4dR+(ω) and lim
n→+∞

IR+(ϕn, ω) = 0.

Proof. Let n ∈ N. We consider the sequence of functions

ϕn(x) = erf(x)φω(x − n) for all x ∈ R
+; (5.1)

where the functions erf and φω are defined by (1.7) and (2.6) respectively. It is

clear that ϕn ∈ W (R+) with ϕn(0) = 0 for every n ∈ N. Set ψ̂n(x) = φω(x − n)

for all x > 0. We claim that ϕn → ψ̂n strongly in W (R+) as n→ +∞. Indeed, by
elementary computations we see that

‖ϕn−ψ̂n‖2L2(R+) ≤
√
2πe

ω+1

2 e−
n2

2 and ‖∂xϕn−∂xψ̂n‖2L2(R+) ≤ 4(n2+1)e
ω+1

2 e−
n2

2 ,

which implies that ϕn → ψ̂n strongly in H1(R+) as n→ +∞. On the other hand,

we remark that |ϕn(x)− ψ̂n(x)| ≤ e
ω+1

2 e−n for every x ∈ R
+ and n ≥ 3. Thus, by

the definition of A(s) given in (2.1), we have that for sufficiently large n,
∫

R+

A(|ϕn − ψ̂n|)dx = −
∫

R+

|ϕn − ψ̂n|2Log|ϕn − ψ̂n|2dx

≤
∫

R+

|ϕn − ψ̂n|dx+

∫

R+

|ϕn − ψ̂n|2dx ≤ 3e−
n2

3 ,

which immediately induces, by (2.5), that ϕn → ψ̂n strongly in LA(R+) as n →
+∞. In particular, ‖ϕn−ψ̂n‖2W (R+) → 0. To conclude, we remark that by continuity

lim
n→+∞

‖ϕn‖2L2(R+) = lim
n→+∞

‖ψ̂n‖2L2(R+) = eω+1√π lim
n→+∞

erf(n) + 1

2
= eω+1√π

lim
n→+∞

IR+(ϕn, ω) = lim
n→+∞

IR+(ψ̂n, ω) = −eω+1 lim
n→+∞

ne−n2

= 0,

and the lemma is proved. �

Proof of Proposition 5.1. We use the argument in [5, Theorem 3]. First, we
claim that d0(ω) ≥ 2dR+(ω). Indeed, let u ∈ W (Γ) such that Iω,γ(u) = 0 and let
u∗ be its symmetric rearrangement. Then, using Proposition 2.3 we see that u∗ is
positive, symmetric and u∗ ∈ W (Γ). Moreover, by property (ii) of Proposition 2.3
we have that

Qω,γ(u
∗) :=

4

N2
‖∂xu∗‖2L2(Γ) + ω‖u∗‖2L2(Γ) −

∫

Γ

|u∗|2 Log |u∗|2 dx ≤ Iω,γ(u) = 0,
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which combined with 2Sω,γ(u) = Iω,γ(u)+‖u‖2L2(Γ) and the properties of u∗ implies

that

d0(ω) =
1

2
inf
{

‖u‖2L2(Γ) : u ∈W (Γ) \ {0} , Iω,γ(u) = 0
}

≥ 1

2
inf
{

‖u‖2L2(Γ) : u ∈W (Γ) \ {0} , u symmetric, Qω,γ(u) ≤ 0
}

. (5.2)

Next we use the scaling uλ(·) := λ1/2u(λ·) with λ = N/2. From a simple calculation,
we obtain

Qω,γ(uλ) = Iω+Log(2/N),γ(u). (5.3)

Thus, combining (5.2), (5.3) and due to the symmetry of u leads to

d0(ω) ≥
1

2
inf
{

‖u‖2L2(Γ) : u ∈W (Γ) \ {0} , u symmetric, Iω+Log(2/N),γ(u) ≤ 0
}

=
N

2
inf
{

‖v‖2L2(R+) : v ∈W (R+) \ {0} , IR+(v, ω + Log (2/N)) ≤ 0
}

= NdR+(ω + Log (2/N)) = 2dR+(ω).

Secondly, we prove that the lower bound 2dR+(ω) is optimal by means of a mini-
mizing sequence. Let n ∈ N. We consider the sequence of functions

(un)i(x) =

{

ϕn(x) if i = 1;

0 if i 6= 1;

where the function ϕn is defined by (5.1). Notice that the sequence un belongs to
W (Γ). Moreover, it follows from Lemma 5.2 that

lim
n→∞

Iω,0(un) = lim
n→∞

IR+(ϕn, ω) = 0. (5.4)

Define the sequence vn(x) = λnun(x) with

λn = exp

(

Iω,0(un)

2‖un‖2L2(Γ)

)

,

where exp(x) represent the exponential function. Then, it follows from (5.4) that
limn→∞ λn = 1. Moreover, an easy calculation shows that Iω,0(vn) = 0 for any
n ∈ N. Thus, by the definition of d0(ω) and Lemma 5.2 leads to

d0(ω) ≤ lim
n→∞

Sω,0(λnun) =
1

2
lim
n→∞

λ2n‖un‖2L2(Γ) = 2dR+(ω),

and the proposition is proved. �

6. Existence and identification of the ground state

Before giving the proof of Theorem 1.4, we need to establish some preliminaries.
Firstly we extend the one-dimensional logarithmic Sobolev inequality to star graphs.

Lemma 6.1. Let u be any function in H1(Γ) and α be any positive number. Then
∫

Γ

|u|2 Log |u|2 dx ≤ α2

π
‖∂xu‖2L2(Γ) +

(

Log
(

2‖u‖2L2(Γ)

)

− (1 + Logα)
)

‖u‖2L2(Γ).

(6.1)
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Proof. The proof of (6.1) follow immediately from the standard logarithmic Sobolev
inequality on H1(R) (see [28, Theorem 8.14]), considering that any function in
H1(R+) can be extended to an even function in H1(R), and applying this reasoning
to each component of u. We omit the details. �

Lemma 6.2. Let γ > 0 and ω ∈ R. Then, the quantity dγ(ω) is positive and
satisfies

dγ(ω) ≥
1

4

√

π

2
eω+1e−2 γ2

N2 . (6.2)

Proof. Notice that if f ∈ H1(R+), then by Hölder and Sobolev inequalities we have
that

|f(0)|2 ≤ ǫ‖f‖2L2(R+) + ǫ−1‖∂xf‖2L2(R+). (6.3)

Now, let u ∈ W (Γ) \ {0} be such that Iω,γ(u) = 0. From (6.3) with ǫ = 2γ/N we
see that

γ |u1(0)|2 ≤ γ

N

N
∑

i=1

{

ǫ‖ui‖2L2(R+) + ǫ−1‖∂xui‖2L2(R+)

}

=
2γ2

N2
‖u‖2L2(Γ) +

1

2
‖∂xu‖2L2(Γ), (6.4)

which combined with Iω,γ(u) = 0 and the logarithmic Sobolev inequality (6.1) with

α =
√

π
2 gives
(

ω + 1 + Log

(
√

π

2

)

− 2γ2

N2

)

‖u‖2L2(Γ) ≤
(

Log
(

2 ‖u‖2L2(Γ)

))

‖u‖2L2(Γ) .

Thus, ‖u‖2L2(Γ) ≥ 1
2

√

π
2 e

ω+1e−
2γ2

N2 . Finally, by the definition of dγ(ω) given in (1.6),

we get (6.2). �

Lemma 6.3. Let N ≥ 2, ω ∈ R and γ∗(N) := N
(

erf−1(1− 2/N)
)

. If γ > γ∗(N),
then the following inequality holds:

dγ(ω) < d0(ω). (6.5)

Proof. We consider the symmetric function φ0ω,γ defined by (1.5). Then, it is clear

that φ0ω,γ ∈ W (Γ) and Iω,γ(φ
0
ω,γ) = 0. Moreover, by elementary computations we

see that

Sω,γ(φ
0
ω,γ) =

N

4

√
πeω+1

(

1− erf
( γ

N

))

=
N

2

(

1− erf
( γ

N

))

d0(ω). (6.6)

Since γ > γ∗(N), this implies

N

2

(

1− erf
( γ

N

))

< 1,

which combined with (6.6) and by the definition of dγ(ω) gives

dγ(ω) ≤ Sω,γ(φ
0
ω,γ) < d0(ω),

and the lemma is proved. �

The proof of the following lemma can be found in [11, Lemma 4.10].
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Lemma 6.4. Let {un} be a bounded sequence in W (R+) such that un → u a.e. in
R+. Then u ∈ W (R+) and

lim
n→∞

∫

R+

{

|un|2 Log |un|2 dx− |un − u|2 Log |un − u|2
}

dx =

∫

R+

|u|2 Log |u|2 dx.

Proof of Theorem 1.4. First, every minimizing sequence of (1.6) is bounded in
W (Γ). Let {un} be a minimizing sequence. We remark that the sequence {un}
is bounded in L2(Γ). Now, by (6.4), the logarithmic Sobolev inequality (6.1) and
recalling that Iω,γ(un) = 0, we see for α > 0,

(

1

2
− α2

π

)

‖∂xun‖2L2(Γ) ≤
(

Log

(

e
2γ2

N2 e−(ω+1)

α

)

)

‖un‖2L2(Γ)+Log
(

2 ‖un‖2L2(Γ)

)

‖un‖2L2(Γ) .

Taking α > 0 sufficiently small, we have that {un} is bounded in H1(Γ). Moreover,
it follows from Iω,γ(un) = 0, (6.4) and (2.4) that

1

2
‖∂xun‖2L2(Γ) +

∫

Γ

A (|un|) dx ≤ C,

which implies, by (2.5), that the sequence {un} is bounded in W (Γ). In addition,
since W (Γ) is a reflexive Banach space, there exists ϕ ∈ W (Γ) such that, up to a
subsequence, un ⇀ ϕ weakly in W (Γ). Moreover, as it was observed in the proof
of [5, Theorem 1], by weak convergence we have un(0) → ϕ(0).

Now we show that ϕ is nontrivial. Suppose that ϕ ≡ 0. Since un satisfies
Iω,γ(un) = 0, we obtain

lim
n→∞

Iω,0(un) = γ lim
n→∞

|u1,n(0)|2 = 0. (6.7)

Define the sequence vn = λnun with

λn = exp

(

Iω,0(un)

2‖un‖2L2(Γ)

)

,

where exp(x) represents the exponential function. Then, it follows from (6.7) that
limn→∞ λn = 1. Moreover, an easy calculation shows that Iω,0(vn) = 0 for any
n ∈ N. Thus, by the definition of dγ(ω), we see that

d0(ω) ≤ lim
n→∞

Sω,0(vn) =
1

2
lim
n→∞

{

λ2n‖un‖2L2(Γ)

}

= dγ(ω),

that it is contrary to (6.5) and therefore we conclude that ϕ is nontrivial.
Secondly, we prove that Iω,γ(ϕ) = 0 and ϕ ∈ Gω,γ . If we suppose that Iω,γ(ϕ) <

0, by elementary computations we find that there is λ ∈ (0, 1) such that Iω,γ(λϕ) =
0. Then, from the definition of dγ(ω) and the weak lower semicontinuity of the
L2(Γ)-norm, we have

dγ(ω) ≤
1

2
‖λϕ‖2L2(Γ) <

1

2
‖ϕ‖2L2(Γ) ≤

1

2
lim inf
n→∞

‖un‖2L2(Γ) = dγ(ω),

which is impossible. On the other hand, assume that Iω,γ(ϕ) > 0. Since the
embedding W (Γ) →֒ H1(Γ) is continuous, we see that un ⇀ ϕ weakly in H1(Γ).
Thus, we have

‖un‖2L2(Γ) − ‖un − ϕ‖2L2(Γ) − ‖ϕ‖2L2(Γ) → 0 (6.8)

‖∂xun‖2L2(Γ) − ‖∂xun − ∂xϕ‖2L2(Γ) − ‖∂xϕ‖2L2(Γ) → 0, (6.9)



18 ALEX H. ARDILA

as n→ ∞. Combining (6.8), (6.9) and Lemma 6.4 leads to

lim
n→∞

Iω,γ(un − ϕ) = lim
n→∞

Iω,γ(un)− Iω,γ(ϕ) = −Iω,γ(ϕ),

which combined with Iω,γ(ϕ) > 0 give us that Iω,γ(un−ϕ) < 0 for sufficiently large
n. Thus, by (6.8) and applying the same argument as above, we see that

dγ(ω) ≤
1

2
lim
n→∞

‖un − ϕ‖2L2(Γ) = dγ(ω)−
1

2
‖ϕ‖2L2(Γ) ,

which is a contradiction because ‖ϕ‖2L2(Γ) > 0. Therefore, we deduce that Iω,γ(ϕ) =

0. To conclude, by the weak lower semicontinuity of the L2(Γ)-norm, we have

dγ(ω) ≤
1

2
‖ϕ‖2L2(Γ) ≤

1

2
lim inf
n→∞

‖un‖2L2(Γ) = dγ(ω), (6.10)

which implies, by the definition of dγ(ω), that ϕ ∈ Gω,γ .
Finally, we prove that φ0ω,γ is the ground state. By Remark 1.3 and Theorem

1.2, it is sufficient to verify that

Sω,γ(φ
κ
ω,γ) < Sω,γ(φ

κ+1
ω,γ ) for 0 ≤ κ ≤ [(N − 1)/2]− 1. (6.11)

For γ > 0 and x ∈ R
+ we set fγ(x) = x(erf(γ/x)), where the function erf is defined

by (1.7). By elementary computations we have that

Sω,γ(φ
κ
ω,γ) =

√
π

4
eω+1 (N − fγ(N − 2κ)) . (6.12)

We claim that fγ is strictly increasing on R+. Indeed, it is clear that fγ ∈ C2(R+),
fγ(0) = 0 and fγ(x) → 2γ/

√
π as x → ∞. Moreover, we have that f ′′

γ (x) < 0 for

all x ∈ R
+, which combined with

lim
x→0+

f ′
γ(x) = γ, lim

x→∞
f ′
γ(x) = 0

implies that f ′
γ(x) > 0 for all x ∈ R+. In particular,

fγ(N − 2(κ+ 1)) < fγ(N − 2κ). (6.13)

Combining (6.12) and (6.13) we get (6.11). This completes the proof of theorem. �

7. Stability of the ground states

This section is devoted to the proof of Theorem 1.6. We first prove compactness
of the minimizing sequences.

Lemma 7.1. Let N ≥ 2, ω ∈ R and γ > γ∗(N) = N
(

erf−1(1 − 2/N)
)

. Let
{un} ⊆ W (Γ) be a minimizing sequence for dγ(ω). Then, up to a subsequence,
there is θ ∈ R such that un → eiθφ0ω,γ in W (Γ).

Proof. We see by the proof of Theorem 1.4 that there is ϕ ∈ Gω,γ such that, up to
a subsequence, un ⇀ ϕ weakly in W (Γ) and ui,n(x) → ϕi(x) a.e. in R+ for i = 1,
. . ., N . Furthermore, by (6.8) and (6.10) we have un → ϕ in L2(Γ). Then, since
the sequence {un} is bounded in H1(Γ), from (2.4) we obtain

lim
n→∞

∫

Γ

B (|un|) dx =

∫

Γ

B (|ϕ|) dx.

Thus, since Iω,γ(un) = Iω,γ(ϕ) = 0 for any n ∈ N, we obtain

lim
n→∞

{

‖∂xun‖2L2(Γ) +

∫

Γ

A (|un|) dx
}

=

{

‖∂xϕ‖2L2(Γ) +

∫

Γ

A (|ϕ|) dx
}

. (7.1)
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Moreover, by weak lower semi-continuity of the L2-norm and Fatou lemma, we
deduce

‖∂xϕi‖2L2(R+) ≤ lim inf
n→∞

‖∂xui,n‖2L2(R+) , (7.2)
∫

R+

A (|ϕi(x)|) dx ≤ lim inf
n→∞

∫

R+

A (|ui,n(x)|) dx, (7.3)

for every i = 1, . . ., N . Therefore, by (7.1), (7.2) and (7.3) we infer that (see, for
example, [23, Lemma 12 in chapter V])

lim
n→∞

‖∂xui,n‖2L2(R+) = ‖∂xϕi‖2L2(R+) , (7.4)

lim
n→∞

∫

R+

A (|ui,n(x)|) dx =

∫

R+

A (|ϕi(x)|) dx. (7.5)

Since un ⇀ ϕ weakly in H1(Γ), it follows from (7.4) that ui,n → ϕi in H1(R+).
Furthermore, by Proposition 2.2-ii) and (7.5) we have ui,n → ϕi in L

A(R+). Thus,
by definition of the W (Γ)-norm, we infer that un → ϕ in W (Γ) and the conclusions
follow directly from Theorem 1.4. �

Proof of Theorem 1.6. We argue by contradiction. Suppose that φ0ω,γ is not
stable in W (Γ). Then there exist ǫ > 0, a sequence (un,0)n∈N such that

∥

∥un,0 − φ0ω,γ

∥

∥

W (Γ)
<

1

n
, (7.6)

and a sequence (τn)n∈N such that

inf
θ∈R

‖un(τn)− eiθφ0ω,γ‖W (Γ) =
ǫ

2
, (7.7)

where un denotes the solution of the Cauchy problem (1.1) with initial data un,0.
Set vn = un(tn). By (7.6) and conservation laws, as n→ ∞,

‖vn‖2L2(Γ) = ‖un(tn)‖2L2(Γ) = ‖un,0‖2L2(Γ) →
∥

∥φ0ω,γ

∥

∥

2

L2(Γ)
(7.8)

E(vn) = E(un(tn)) = E(un,0) → E(φ0ω,γ). (7.9)

In particular, it follows from (7.8) and (7.9) that, as n→ ∞,

Sω,γ(vn) → Sω,γ(φ
0
ω,γ) = dγ(ω). (7.10)

Moreover, combining (7.8) and (7.10) leads to Iω,γ(vn) → 0 as n → ∞. Define the
sequence fn = ρnvn with

ρn = exp

(

Iω,γ(vn)

2‖vn‖2L2(Γ)

)

,

where exp(x) is the exponential function. It is clear that limn→∞ ρn = 1 and
Iω,γ(fn) = 0 for any n ∈ N. Furthermore, since the sequence {vn} is bounded in
W (Γ), we get ‖vn− fn‖W (Γ) → 0 as n→ ∞. Then, by (7.10), we have that {fn} is
a minimizing sequence for dγ(ω). Thus, by Lemma 7.1, up to a subsequence, there
is θ0 ∈ R such that fn → eiθ0φ0ω,γ in W (Γ). Therefore, by using the triangular
inequality, we have

‖un(tn)− eiθ0φ0ω,γ‖W (Γ) ≤ ‖vn − fn‖W (Γ) + ‖fn − eiθ0φ0ω,γ‖W (Γ) → 0,

as n→ ∞, it which is a contradiction with (7.7). This finishes the proof. �
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8. Appendix

The purpose of this Appendix is to show that the energy functional E is of class
C1 on W (Γ).

Proposition 8.1. The operator E : W (Γ) → R is of class C1 and for u ∈ W (Γ)
the Fréchet derivative of E in u exists and it is given by

E′(u) = −∆γu− uLog |u|2 − u.

The proof of Proposition 8.1 relies on the following result.

Lemma 8.2. The operator L : u → −∆γu + uLog |u|2 is continuous from W (Γ)
to W ′(Γ). Moreover, the image under L of a bounded subset of W (Γ) is a bounded
subset of W ′(Γ).

Proof. As usual, the operator −∆γ is naturally extended to −∆γ : H1(Γ) →
H−1(Γ) defined by

〈−∆γu, v〉 = Fγ [u, v], for u, v ∈ H1(Γ).

Now, using that W (Γ) →֒ H1(Γ) is a dense embedding, we obtain that u→ −∆γu
is continuous from W (Γ) to W ′(Γ). On the other hand, by [18, Lemma 2.3], u →
uLog |u|2 is continuous and bounded from W (R+) to W ′(R+). This implies that

u→ uLog |u|2 is continuous and bounded from W (Γ) to W ′(Γ), and the lemma is
proved. �

Proof of Proposition 8.1. We first show that E is continuous. Notice that

E(u) =
1

2
Fγ [u] +

1

2

∫

Γ

A(|u|)dx− 1

2

∫

Γ

B(|u|)dx. (8.1)

The first term in the right-hand side of (8.1) is continuous H1(Γ) → R, and it
follows from Proposition 2.2(i) that the second term is continuous W (Γ) → R.
Moreover, by (2.4) we get that the third term right-hand side of (8.1) is continuous
H1(Γ) → R. Therefore, E ∈ C(W (Γ),R). Now, direct calculations show that, for
u, v ∈ W (Γ), t ∈ (−1, 1) (see [18, Proposition 2.7]),

lim
t→0

E(u+ tv)− E(u)

t
=
〈

−∆γu+ uLog |u|2 − u, v
〉

Thus, E is Gáteaux differentiable. Then, by Lemma 8.2 we see that E is Fréchet
differentiable and E′(u) = −∆γ − uLog |u|2 − u. �
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