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Abstract Let (X, [|-][x) and (Y, [|-|ly) be Banach spaces over R, with X uniformly
convex and compactly embedded into Y. The inverse iteration method is applied to
solve the abstract eigenvalue problem A(w) = A Hw\lly)_q B(w), where the maps
A:X — X*and B : ¥ — Y* are homogeneous of degrees p — 1 and ¢ — 1,
respectively.
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1 Introduction

Many eigenvalue-type problems involving quasilinear elliptic equations are formu-
lated as a functional equation of the form

A(w) = 1w B(w), (N

where (X, ||-lx) and (Y, [|-]ly) are Banach spaces over R, X compactly embedded
into Y, and the maps A : X — X*and B : ¥ — Y™ are homogeneous of degrees
p—1=>0and g —1 > 0, respectively, that is:

(A1) A(fw) = [t|P2tA(w) forall 1 € R;
(B1) B(tw) = |t|92tB(w) forallt € R.

B Grey Ercole
grey @mat.ufmg.br

Departamento de Matemiitica - ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos
6627, Caixa Postal 702, Belo Horizonte, MG 30161-970, Brazil

@ Springer



578 G. Ercole

We say that the pair (A, w) € R x X\ {0} solves (1) if, and only if,

(Aw), v) =2 [wly™ (B(w),v), YveX, (2)

where we are using the notation (f, v) e f).
In this paper we apply the inverse iteration method to solve the abstract equation
(1) by assuming the following additional hypotheses on the maps A and B:

(A2) (A(u),v) < HulIi_l lv]lx forall u, v € X, with the equality occurring if, and
only if, either u = 0 or v =0 or u = tv, for some t > 0;

(B2) (B(u),v) < |\u||§7,_l lvlly forall u, v € ¥, with the equality occurring whenever
u = tv, forsome t > 0;

(AB) foreach w € Y\ {0} given, there exists at least one # € X\ {0} such that

(A(u), v) = (B(w),v), YvelX.

We observe from (A1) and (B1) that (1) is homogeneous, thatis: if (A, w) solves (1)
the same holds true for (4, fw), for all # # 0. Motivated by this intrinsic property of
eigenvalue problems, we say that X is an eigenvalue of (1) and that w is an eigenvector
of (1) corresponding to A or, for shortness, we simply say that (A, w) is an eigenpair
of (1).

Hypotheses (A2) and (B2) imply, respectively, that

(Aw), w) = [w]f, YweX (3)

and
(Bw),w) =|w|}, YweVY. 4)
Thus, by choosing v = w in (2), we see that

P
_ lwl
iy

which shows that the eigenvalues of (1) are nonnegative. Actually, they are bounded
from below by

po=inf {wl} : we X NSy},

where Sy :={w € Y : ||lw|y = 1} is the unit sphere in Y.

We note that the compactness of the embedding X < Y (which we are assuming in
this paper) implies that 1 is positive and reached in Sy . Moreover, assuming in addition
the conditions (Al), (A2), (B1), (B2) and (AB) we will show (see Proposition 2) that
w1 1s an eigenvalue and that its corresponding eigenvectors are precisely the scalar
multiple of those vectors in Sy at which u is reached. Because of this, we refer to
o as the first eigenvalue of (1) and any of its corresponding eigenvectors as a first
eigenvector.
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Solving an Abstract Nonlinear Eigenvalue Problem... 579

As we will see, hypothesis (AB) allows us to construct, for each wg € Sy, an
inverse iteration sequence {wq, wy, wa, ...} C X N Sy satisfying

(A(wpg1).v) = 2y (Blwy),v), YvelX

where &, > p.
Our main result in this paper is stated as follows.

Theorem 1 Assume that X is uniformly convex and compactly embedded into Y, and
thatthemaps A : X — X*and B : Y — Y™ are continuous and satisfy the hypotheses
(A])., (A2),'(B]), (B2) and (AB). The sequences {)\n.}nel\; and {||wn+l”§}ﬂ€N are
nonincreasing and converge to the same limit h, which is bounded from below by
. Moreover, X is an eigenvalue of (1) and there exists a subsequence [n j }jeN such

that both {w,; }jeN and {wy; ¢ }je converge in X to the same vector w € X N Sy,

i
which is an eigenvector corresponding to .

The proof of this result is presented in Sect. 2 by combining two lemmas. In Lemma
4 we obtain, from the hypotheses (A2) and (B2), the monotonicity of the sequences
{An}pen and {HwnH Hi}neN as well as their convergence to 1.

In Lemma 5 we use the uniform convexity of X and the compactness of the embed-
ding X — Y to guarantee the existence of a subsequence {wnj }jeN converging in X
to a function w € X N Sy. A delicate issue in the conclusion of the lemma is to show
that the subsequence {wﬂjH }jeN also converges to w in order to pass to the limit, as
j — 0o, in

(A(wnj+1), v) = lnj (B(wnj), v), YvelX.

For this we use the hypothesis (A2), which plays the same structural role that the
Holder’s inequality plays in the quasilinearelliptic problems (we recall that the equality
in the Holder’s inequality implies that the functions involved, raised to conjugate
exponents, are proportional).

We conclude Sect. 2 by remarking that when A is simple, meaning that its corre-
sponding eigenvectors are scalar multiple of each other, then w and —w are the only
cluster points of the sequence {w,,}, cx - Thus, in some concrete situations a suitable
choice of wp € Sy guarantees that the vector w is the only cluster point of {wy},en
when 2 is known to be simple. In such a situation one has w, — w.

It is important to highlight that the factor HwH’;_q in (1) makes it possible to
formulate this problem as an eigenvalue problem by balancing two (possibly different)
degrees of homogeneity. Our motivation for adopting this strategy came from Franzina
and Lamberti (2010). In that paper, Franzina and Lamberti considered the following
Dirichlet problem in an arbitrary domain € of RY with finite measure:

(5)

—Apu = A|u ||;?7q lul9=2uin Q
u=~0 on 082,
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580 G. Ercole

where A pu := div (IVMI‘”*2 Vu) is the p-Laplacian operator,

Np .
| <q<pt= —N7p1f1<p<N
oo if p=N,

and [|-]|, denotes the norm of L"(£2) for 1 < r < oo (we use this notation from now
on). By introducing the factor ||« ”g—q at the right-hand side of (5), instead of simply
incorporating it to the parameter A, they were able to make (5) homogeneous, which
is a feature of eigenvalue problems.

The Dirichlet problem (5) is a prototype for (1). Indeed, the concept of (weak)
solution for (5) takes the form of (2) with

(A(u),v) :=f |VulP~2Vu-Vodx and (B(u),v) :=f |92 wvdx.  (6)
Q Q

In this setting, Y is the Lebesgue space L9(€2) endowed with the standard norm

1
q
lull, := (f |ue|9 dx)
1 Q

and X is the Sobolev space
Wé‘p(Q) = {u e LP(Q):Vue LP(@)" and u=0on 89} ,

endowed with the norm

1

P
ull 1 = ||Vul|, = Vul|? dx
il g.r = 19ull, (]Q| |

which makes WOI’p(Q) a uniformly convex Banach space.

The hypotheses (A1) and (B1) can be easily checked for the maps A and B defined
in (6). whereas (A2) and (B2) are deduced from Hélder’s inequality. The compactness
of the Sobolev embedding Wol‘p(ﬂ) — L9(Q), for 1 < ¢ < p*, is a well-known
fact as well as the continuity of the functions A : W(;"U(Q) — ng‘p’(Q) and

B : L9(Q) — L9(Q). (Itis usual to denote the dual space of W(}’])(Q) by WJI'])!(Q),

where r’ := -5 is the Holder conjugate of 7 > 1. i. e. % + % =1)

Property (AB) also holds true since A is surjective and B(w) € W(;l'p’(Q) for
all w € L9(2). We refer the reader to Dinca et al. (2001), Lé (2006) where all the
properties are proved.

The following facts regarding the eigenvalue problem (5) are well-known (see
Garcia 1987; Franzina and Lamberti 2010; Idogawa and Otani 1995; Otani 1988):
there exists a sequence of eigenvalues tending to 0o; every eigenfunction belongs to
L*°(2) and the first eigenfunctions do not change sign in €. (When dealing with
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Solving an Abstract Nonlinear Eigenvalue Problem... 581

spaces of functions, the nomenclature “eigenfunction” seems to be more appropriate
than “eigenvector™.)
The particular case ¢ = p,

—Apu =1 lul?2uin Q A
=0 on €2,
has been extensively studied over the last three decades. Its first eigenvalue
Ap i=min { IVullh:ue WOI“"(Q) and  [|ul|, = l] (8)

is isolated and simple. Moreover, the first eigenfunctions are the only eigenfunctions
that do not change sign in €2. These and other properties of (7) can be verified in Anane
(1987), Lindqvist (2008), Otani and Teshima (1988) and references therein.

When p # 2 the eigenvalue problem (7) is very difficult to be solved analytically
and even numerically, since it loses the linear character of p = 2 and acquires the
singular or degenerate term |Vu|P~> . We remark that analytical expressions for the
first eigenvalue are not known in general, not even for simple domains, such as squares,
balls or triangles.

In Biezuner et al. (2009) the inverse iteration method was introduced to solve (7) in
the particular domain: the unit ball By := {x eRN:|x| = 1} . Starting with up = 1
and exploring the radial structure of the Dirichlet problem at each iteration step, the
authors proved that

p—1
lim (llluﬂ) =Ap and lim
n—o00

[t g1l oo n=00 ||ity || o

=up in CI(B_l),

where [|-]|, denotes the sup norm and u , denotes the positive first eigenfunction such
that H”P o =1
They also conjectured that

. llun l
lim il

AN

- lp (9)

for a general bounded domain and presented some numerical experiments for the unit
square as motivation to their conjecture.
The approach used in Biezuner et al. (2009), based on radial symmetry, was adapted
in Ercole et al. (2015) to obtain the pair (Kp. Ltp) for a radially symmetric annulus.
Recently, in Hynd and Lindgren (2016), the authors considered, for a general
bounded domain €2, the sequence of iterates

Yy 1= (}\p)p%fun

where uy € LP(Q) is given and —Apu, ) = |L:t,1|"’*2 iu,. By making use of the
minimizing property (8) of Ap. they proved the convergence, in Wol’p(Q). of the
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582 G. Ercole

sequence (), < to a function v. Then, under the assumption v # 0, they concluded
that v is a first eigenfunction and proved the conjecture (9) posed in Biezuner et al.
(2009). They also showed that ¥ # 0 if either ug > ke, for some positive constant
koruy = 0, ug # 0 and € is sufficiently smooth. (Here e, denotes the positive
eigenfunction such that H epHP = 1.) It is simple to check that ug = | leads to ¥ # 0.

We emphasize that the minimizing property (8) of the first eigenvalue 4, plays a
decisive role in the approach of Hynd and Lindgren (2016) and makes it applicable
only to this eigenvalue.

The literature on the eigenvalue problem (5) in the case ¢ # p (which is shorter
than in the case ¢ = p) shows that there are some differences between the cases
| =g < pand p < g < p* with respect to the properties of the first eigenvalue

Ag = min HVHH;; ‘U € WOI"U(Q) and lull, =1 (10)

(see Garcia 1987; Ercole 2014 Franzina and Lamberti 2010; Kawohl 2000; Nazarov
2000).

In the cases | < g < p and ¢ = p some properties of the first eigenvalue problem
are shared. For example, the first eigenvalue is simple and the first eigenfunctions are
the only that do not change sign in 2. Because of these properties, we can guarantee
that our method is successful when it is used for the purpose of achieving a first
eigenpair. In fact, if 1 < ¢ < p and ug € L9()\ {0} is nonnegative, then 1, — A4
and w, — e, where e is the positive L7-normalized eigenfunction (it is not necessary
to pass to a subsequence).

When p < ¢ < p* and Q is a general bounded domain the simplicity of A, is not
guaranteed nor the exclusivity of the first eigenfunctions with respect to have a definite
sign. Thus, in this situation, we cannot guarantee that the eigenvalue A, obtained when
ug is nonnegative, coincides with A,. By the way, we think that our method could
be used to investigate, at least numerically, the existence of positive eigenfunctions
associated with A > A, for some domains.

Our first motivation. inspired by the papers (Biezuner et al. 2009; Hynd and Lind-
gren 2016), was to apply the inverse iteration method to (5). However, we realized
that the arguments we had developed to deal with this problem depend only on the
properties of the functions A and B defined in (6) combined with compactness. Thus,
we arrived at the abstract eigenvalue problem (1) under the hypotheses (A1), (A2),
(B1). (B2) and (AB).

We would like to emphasize that our abstract approach covers a large range of
eigenvalue problems involving partial ditferential equations of quasilinear elliptic type
and serves as a theoretical basis for a numerical treatment of them. For the sake of
completeness, we present in Sect. 3 two more examples of such problems: the Dirichlet
eigenproblem for the s-fractional p-Laplacian and a Steklov-type eigenvalue problem
for the p-Laplacian involving a homogenous term of degree ¢ — 1 on the boundary.

Our results in this paper complement those of Hynd and Lindgren (2017). In the
first part of that paper the authors extend their own results presented in Hynd and
Lindgren (2016) to an abstract setting, aiming to approximate the least Rayleigh quo-
tient @ (u)/ \Iu\li where, according to our notation, ® : X — [0, 00] is a functional
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Solving an Abstract Nonlinear Eigenvalue Problem... 583

satisfying certain properties (among them, strict convexity and positive homogeneity
of degree p > 1)and X := {u € ¥V : ®(u) < oo}. The authors reduce the problem
of minimizing the Rayleigh quotient above to an equivalent subdifferential equation
involving the subdifferentials of both functionals & and % ||-H§i . Then, they apply an
inverse iteration scheme to solve the subdifferential equation. Our approach, however,
embraces eigenvalue problems that are not necessarily linked to least Rayleigh quo-
tients. Moreover, it guarantees that the inverse iteration sequence always produces an
eigenvalue.

2 The Results of Convergence

In this section we assume that X is uniformly convex, compactly embedded into ¥
andthat A : X — X*and B : Y — Y™ are continuous maps satisfying the hypotheses
(Al). (A2), (B1), (B2) and (AB), stated in the Introduction.
We recall that
po=inf {[lw]§ :we X NSy}, (11)

where Sy :={w e Y : |lw|y =1}.

Proposition 2 Let {wn},cy € X N Sy be a minimizing sequence of (11), that is:
lwylly = 1 and |Jwy||lx — wn. There exist a subsequence {w”j} oy converging
weakly in X to avector w € X NSy which reaches ¢ (i.e. |[w]y = 1 and |w| x = ).
Moreover, i is an eigenvalue of (1) and its corresponding eigenvectors are precisely

the scalar multiple of those vectors where |1 is reached.

Proof Since {wy},cr 18 a bounded sequence in X, there exist a subsequence {wnj }jeN
and a vector w € X such that Wn; — W in X (weak convergence) and W — W
in Y. Here we have used that X is reflexive and compactly embedded into V. The
convergence wy; — w in ¥ implies that [[w|ly = lim;_ ” wy; ||, = 1, whereas the

weak convergence w,; — w in X yields

Iy

lwlly < jlil‘;o [, | = 17,

Thus, since & < HwH; we conclude that u = ||w||§ .
Now, let us prove that the pair (;z, w) solves (1). According to (AB) there exists
u € X\ {0} such that

(A(u), v) = (B(w),v), YvelX.
In view of (Al) we can rewrite this equation as
(A(w), v) =y (B(w),v), YveX (12)
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584 G. Ercole

where y = ||u|\ifp and W := Hu\l;l u (so that w € X N Sy). Taking v = w in (12)
we obtain, from (4) and (A2)

~ ~ p—1 i p]

y = v lwllf =y (Bw), w) = (A@), w) < [@TN% lwlx = @15 7 (13)
and taking v = a0 in (12) we obtain, from (3) and (B2)

~ ~ o~ ~ -1~
@5 = (A@), @) =y (Bw), @) <y [wl} " @]y =y
It follows that
~ ~np—I
Bl <y < Wl w'/r,

where the first inequality comes from the definition of 1. A simple analysis of these
latter inequalities shows that all of them are, in fact, equalities. Thus,

p=w§ and y=p.
Hence, (13) implies that
~ ~up—1
(A@D), w) = D5 wly

and then (A2) leads us to conclude that w = w (note that ||w||y = ||lw|x = p). Thus,
(12) yields

(A(w),v) = p(B(w),v), VveX,

showing that (p, w) is an eigenpair. Repeating the same arguments we can see that
any other vector at which y is reached is also an eigenvector corresponding to . In
order to complete this proof we observe that if # € X is an eigenvector corresponding
to o then u = fw for some w € X N Sy such that ||w ||[;( = . Indeed, we can pick

t = |ul|ly and w = ||u5||;1 u € X NSy, since

lully = (A@), w) = pllull ™ (Blu), u) = o llullf
implies that Jw||§ = . o

Remark 3 The previous proof does not require of X to be uniformly convex. In fact,
reflexivity is enough. However, when X is uniformly convex the minimizing subse-

quence {wnj} converges strongly to w, since [|wly = lim;_ | Wa;

jeN Hx :

Now, let us fix an arbitrary vector wp € Sy. Thanks to property (AB), there exists
u € X\ {0} such that

(A(uy),v) = (B(wo),v), YvelX.

@ Springer



Solving an Abstract Nonlinear Eigenvalue Problem... 585

Hence. by multiplying this equation by [Ju || ;f‘” and setting
wi = fug [y ey and A= ()7
we obtain
(A(w1),v) = A1 (B(wo),v), YvelkX.

Repeating inductively the above argument we construct the iteration sequence
{wyl,en € X NSy satisfying

(A(wya1),v) = Ay (B(wy),v), YvelX, (14)

1_
where A, = lugy1lly P
‘We observe that
>, Ynel (15)

Indeed. since both w, and w,4 belong to Sy, by taking v = w,41 in (14) and using

the definition of & we find

i =< w15 = (AQwni 1), woi)

) —1
= Ay (B(wn)a wn+l) < hn ”wn ”()}/ Hwn+] HY = Ap. (16)

Lemma 4 The sequences {A,}, cpy and {HwnH ||§}(}
verge to the same limit ).. Moreover,

are nonincreasing and con-
nelN

Az (17)
Proof We can see from (16) that
lwpiillf <2n ¥nel

Taking v = w, in (14) we have

—1
An = hn llwnllh =k (B(wy), wy) = (A(wns1). wn) < lwapt 15 Nwallx -
Hence,
P p-1 el 3
lwast]l? < dn < lwast 2 lwallx < ) 7 (Rae1)?. (18)
X X

from which we obtain
lwatilly < llwally and Ay < Apy.

Since the numerical sequences {X,},cn and [||wn+1 ||’§,)(}”GN are also bounded from
below they are convergent. Thus, by making # — o0 in (18) we can see that both
converge to the same limit, which we denote by A. The inequality (17) follows directly

from (15). [}
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586 G. Ercole

Lemma 5 There exist a subsequence {nj }jeN and a vector w € X NSy such that
Wp; = W in X. Moreover, (A, w) is an eigenpair of (1) and Wpip] = W in X.

Proof Since Hwnﬂg)( — A, the compactness of the immersion X < Y guarantees the
existence of a subsequence [wnj} and an element w € X such that

Wy = W (weakly) in X, Wa; = W (strongly) in ¥

and
: P
Il < Jim_ o, |§ =2 19)

We also have
p—1 L
Anj (B(wnj)» w) = (Awnj+l- w) = Hwnj+l ”X lwllx < (A’ﬂj) P wlix .
so that
_1 _1
(Bwp)), w) < (ha)) 7wy <277 lwlly

The strong convergence wy,; — w in Y implies that w € Sy and then the continuity
of B yields

1
I =lwlf = (Bw), w) = lim (B(wy,), w) <177 [wl,
J— 00

so that
A< lwlf.

This inequality, in view of (19), implies that lim ; . ” W | i = Hw”i = X. Hence,

the uniform convexity of X allows us to conclude that w,;, — w in X. Applying

the same arguments to the sequence {wnj+1 }jeN' we can assume that there exist a

subsequence [wﬂij }k . and a point w € X N Sy such that
(S
@Iy =2 and w,, 41 — @ in X,
Since A and B are continuous, we can pass to the limit in
(A0, 0) = 2y (B0}, vex,
in order to obtain

(A(w), v) = A (B(w), v).
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Solving an Abstract Nonlinear Eigenvalue Problem... 587

This yields

==
Il
s

h= Al = 2 (Bw). w) = (A@), w) < [F15 " Jwly =27 2
showing thus that
(A@), w) = 1T wllx
Since |||l x = ||lw| x (= 1), our hypothesis (A2) implies that @ = w, so that
(A(w),v) = A (B(w),v), YvelX.
This shows both that A is an eigenvalue and that w is a corresponding eigenvector.

Note that our arguments show that w is the only cluster point of the subsequence
{wanrl} w - This fact implies that {w,,jH} also converges to w as claimed in the

JjE
statement of the lemma. Actually, forany m € N the shifted subsequence {wn i+m }jeN
converges o w. O
Proof of Theorem 1 Tt follows from Lemmas 4 and 5. O

Remark 6 When we know in advance that A is simple, in the sense that its correspond-
ing eigenvectors are scalar multiple of each other, we have that w and —w are the only
cluster points of the sequence {wy},cp -

Regarding the eigenvalue problem (5), when ¢ € [1, p] and wg € L7(Q)\ {0} is
nonnegative, one has

p—1

u i

wy 1= —r eq in W(]]’IJ(Q) and A, = (&) — Aq,
lutnlly lnsilly

where ¢4 denotes the positive first eigenfunction such that “ g || g = 1 and A4 s the first
eigenvalue for (5). defined by (10). Indeed, as mentioned in the Introduction, when
g € [1, p] the eigenvalue 4, is simple and its eigenfunctions are the only that do not
change sign in €. Hence, since wy > 0 a simple comparison principle guarantees that
wy = 0forall n € N, the same occurring with the limit function w given by Theorem
1. Since w is a nonnegative eigenfunction corresponding to the eigenvalue A, it must
be strictly positive in €2, according to the strong maximum principle (see Vazquez
1984). This fact implies that A = A, and then Remark 6 guarantees that w, — ¢4 in

W,y ().

3 Two Concrete Examples

In this section we present two concrete examples of eigenvalue-type problems for
which the results in the previous section apply. In both, € denotes a smooth bounded
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588 G. Ercole

domain of RY, N > 2. We anticipate that when | < ¢ < p in both examples the
first eigenvalue is simple and its eigenfunctions are the only that do not change sign.
Thus, in this situation, it follows from the Strong Maximum Principle that the choice
of an initial function wg nonnegative forces {i,} to converge to the first eigenvalue
and {w,} to converge to the only positive and normalized first eigenfunction.

3.1 Dirichlet Eigenproblem for the s-Fractional p-Laplacian

The results of Sect. 2 can be applied to the following fractional version of (5)

s —q
{ (—Ap) u=nhi HH” |92 uin Q (20)

u=~0 on 982,

where 0 <5 < I < p, ||-||; denotes the standard norm of L9(£2),

l<q<pr=] - p§1f5p<N
s 00 if sp=N

and

(—/_\.p)s u =2 lim

e—0F

[ u(x) —u(y)[P~ ‘(H(k)—u(\))
[x|=€e

\X _ \‘N—Hp

is the s-fractional p-Laplacian.

The usual space to deal with this problem is the fractional Sobolev space Wg‘p(Q)
defined as the closure of C(£2) with respect to the Gagliardo seminorm [-]5”,J in RN,
whose expression, at a measurable function u of RV | is

1
u(x) — u(y)|? \?
[ucp—(./RNfRN |,(_\|N+spdd,\ .

Thanks the fractional Poincaré inequality (see Brasco et al. 2014, Lemma 2.4) the
Gagliardo seminorm [-]; , is really a norm in Wé’p(Q).

It is well-known that Wg’p(Q), endowed with the norm [y , , is a Banach space
uniformly convex. Moreover, WS’IJ(Q) is compactly embedded into L"(£2), for all
I <r<p;.

The weak formulation of (20) is A(u) = A \|u||§;_q B(u) where A : WS'I)(Q) —
Wg“”"(g) is defined as

(A, v) = f f () — u(¥) P72 (u(x) — u(y) (v(x) — U('v))dxd};. @1
RN JRN

|x _ \‘|N+ps
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Solving an Abstract Nonlinear Eigenvalue Problem... 589

and B : LY(Q) — L9(82) is the map
(B(u), v) =f |u|9% uvdx. (22)
Q

Therefore, by considering these maps, (20) takes the form (2) with X = Wg‘p(Q)
and ¥ = L7(2). It can be shown that the functions (21) and (22) satisfy the hypotheses
(Al), (A2),(B1), (B2) and (AB). The proof of these claims as well as all of that made
in this section on the fractional Sobolev space WS *P(©2) and the operator (—A p)s can
be found in the papers (Brasco et al. 2014; Brasco and Franzina 2014; Nezza et al.
2012; Tannizzotto et al. 2016: Lindgren and Lindqvist 2014).

3.2 Steklov Eigenproblem for the p-Laplacian

Let us consider the following Steklov-type eigenvalue problem

o p=2 ., _ :
{ Apu+|ulP“u=0 in (23)

|Vu|P—2 g—ﬁ =Alulf ™ |72 u on 32,

where % denotes the outer unit normal derivative along 9€2 and

1
q
lu|, = (f |u‘7ds)
7 a2

denotes the standard norm of the Banach space L7 (9).
The appropriate space of solutions for (23) is the uniformly convex Sobolev space

Whr(Q) = [u e LP(Q): Vu e LP(Q)N}
endowed with the norm
1
lallwre = (IVully + lullp)? .

The embedding WLrP(Q) < L4(09) is known as the boundary trace operator
and associates u € WP () with its trace uly, € L9(). which we denote here by u
itself. This operator is compact if

p(N=1) .
l<qe<poi=] ¥ TP=N
00 it p=N

and just continuous when ¢ = p, (see Bonder et al. 2003; Rossi 2003).
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We say that u € WLP(Q) is a weak solution of (23), for some A € R, if and only
if,

[ (qulp’ZVu-Vv+|u\p’2 uv)dx :Mu|§*qf 92 uvds, Vv e Whr(S).
Q E194

Thus. (23) takes the form (2) with X := (W!-7(), ||u ||W1,p), Y = (L1(0R2), let]y)
0
and the maps A : X — X*and B : ¥ — Y* defined by

(Au). v) :=[ |Vu|P~2 Vu - Vodx +[ lulP2uvdx, Yve WhP(Q)
Q Q

and
(B(u), v) :=/ |72 uvds, Yo e LI(RQ).
a2

It is straightforward to check (see L.é 2006) that A and B are continuous and satisfy
the hypotheses (A1), (A2), (B1), (B2) and (AB).

For more details on the eigenvalue problem (23) we refer the reader to Bonder and
Rossi (2001) (see also Auchmuty 2004 where properties and applications regarding
the case p = g = 2 are provided).
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