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RESUMO 

Estudos de associação ao longo do genoma (GWAS) tem identificado muitos alelos associados 

a doenças e fenótipos humanos na última década. A identificação de genes e variantes causais para 

fenótipos complexos é importante para elucidar a base genética envolvida na patogênese das doenças e 

melhorar o tratamento, diagnóstico e prevenção. Contudo, os estudos GWAS tem sido 

predominantemente desenvolvidos em populações de origem européia. Estudos em outras populações 

são importantes para revelar novos loci de susceptibilidade e mecanismos etiológicos. Nesse contexto, 

a população brasileira é de especial interesse devido à sua natureza multirracial. A imputação 

genotípica é uma importante etapa em GWAS e é o processo de predizer ou imputar genótipos que não 

estão diretamente observados em uma amostra de indivíduos. Um de seus usos é para aumentar o 

poder do GWAS e ajudar a combinar resultados de estudos com diferentes plataformas de 

genotipagem para meta-análise. No entanto, pouco esforço tem sido gasto no desenvolvimento de 

painéis de referência que permitam uma imputação robusta em populações latino-americanas 

miscigenadas e poucos estudos tocaram neste tópico. Nosso objetivo ao longo dos projetos era 

fornecer GWAS mais robustos e eficazes com populações latino-americanas, através do 

desenvolvimento de um painel de referência de imputação para populações brasileiras miscigenadas e 

latino-americanas e um masterscript para organizar todas as tarefas do processo de imputação. 

Portanto, com base em dados de 4,3 milhões de SNPs de 265 indivíduos miscigenados da Iniciativa 

EPIGEN-Brasil, criamos um novo painel de referência de imputação combinando esses dados com 

dados do 1000 Genomes Project Phase 3 (1KGP). Em seguida, imputamos SNPs do novo painel 

proposto nos dados alvo, composto de 6,487 indivíduos genotipados para 2,5 milhões de SNPs, e 

analisamos os resultados para comparar o desempenho do nosso painel de referência proposto em 

relação ao painel público disponível (1KGP). Observamos que com o painel EPIGEN-5M+1KGP 

foram imputados 140.452 SNPs a mais no total e 788.873 SNPs adicionais com altos valores de 

probabilidade de serem os genótipos corretos (info score ≥ 0,8) do que quando usamos apenas o painel 

1KGP. Portanto, o principal efeito da inclusão dos dados EPIGEN-5M na proposição de um novo 

painel de imputação não é apenas de obter mais SNPs, mas também de melhorar a qualidade da 

imputação. Além disso, o painel EPIGEN-5M+1KGP melhora a qualidade da imputação em relação 

ao 1KGP em uma ampla faixa de frequências alélicas. Também estamos participando de alguns 

consórcios de metanálise de GWAS com dados imputados e genotipados da Coorte de Bambuí do 

EPIGEN-Brasil. Nós realizamos um GWAS do intervalo PR para o consórcio CHARGE e observamos 

três picos importantes nos cromossomos 7, 12 e 14 nos resultados preliminares da análise de 

regressão. Os resultados serão meta-analisados em conjunto com outros GWAS. 

Palavras chave: Imputação, Estudos de Associação Genômica, Epidemiologia Genética, 

Bioinformática. 



  13 

 

 

ABSTRACT 

Genome-Wide Association Studies (GWAS) have identified many alleles associated with 

human diseases and traits in the last decade. The identification of genes and causal variants for 

complex phenotypes is important to elucidate the genetic basis involved in the pathogenesis of 

diseases and to improve treatment, diagnosis and prevention. However, GWAS studies have been 

predominantly developed in populations of European origin. Studies in other populations are 

important to reveal new susceptibility loci and etiological mechanisms. In this context, the Brazilian 

population is of special interest due to its multiracial nature. The genotype imputation is an important 

step in GWAS and is the process of predicting or imputing genotypes that are not directly typed in a 

sample of individuals. One of its uses is to increase the power of GWAS and help combining results of 

studies with different genotyping platforms for meta-analysis. Nevertheless, little effort has been 

expended in the development of reference panels that allow robust imputation in admixed Latin 

American populations and few studies had touched this topic. Our goal throughout the projects was to 

provide more robust and effective GWAS with Latin American populations by developing an 

imputation reference panel for Brazilian admixed and Latin American populations and a masterscript 

to organize all imputation process tasks. Thus, based on data of 4.3 million SNPs from 265 admixed 

individuals of the EPIGEN-Brazil Initiative, we created a new imputation reference panel combining 

these data with 1000 Genomes Project Phase 3 data (1KGP). We then imputed SNPs from the new 

proposed panel on a target dataset, composed of 6487 individuals genotyped for 2.5 million SNPs, and 

analysed the results to compare the performance of our proposed reference panel in relation to the 

public panel (1KGP) available. We observed that with the EPIGEN-5M+1KGP panel were imputed 

140,452 more SNPs in total and 788,873 additional SNPs with high probability values of being the 

correct genotypes (info score ≥ 0.8) than when using the 1KGP panel alone. Thus, the major effect of 

the inclusion of the EPIGEN-5M dataset in the proposition of a new imputation panel is not only to 

gain more SNPs but also to improve the quality of imputation. Besides that, the EPIGEN-5M+1KGP 

panel improves imputation quality in respect to 1KGP across a wide range of allele frequencies. We 

are also participating of some consortia of meta-analysis of GWAS with imputed and genotyped data 

from EPIGEN-Brazil Bambuí Cohort. We performed a PR interval GWAS for The CHARGE 

consortium and observed three important peaks at chromosomes 7, 12, and 14 in the preliminary 

results of regression analysis. The results will be meta-analyzed together with other GWAS. 

Keywords: Imputation, Genome-Wide Association Studies, Genetic Epidemiology, 

Bioinformatics. 
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PRESENTATION: Thesis Structure 

 

The following thesis is written in a hybrid format composed of a scientific manuscript 

and a more classical thesis chapter.  

First of all, an introduction with a wide view of the whole thesis theme is presented. 

After, important subjects like Genome-Wide Association Studies (GWAS), Imputation and its 

application on consortia of meta-analysis are discussed.  

The first chapter is about the development of the EPIGEN-Brazil imputation reference 

panel for Brazilian admixed and Latin American populations, the implementation of a 

masterscript to organize the whole process for future uses and its availability in the EPIGEN-

Brazil Scientific Workflow. It is presented as a manuscript submitted to Genome Research 

(https://genome.cshlp.org/), which I share the first authorship with Dr. Wagner Carlos Santos 

Magalhães (Biologist, PhD in Bioinformatics) and Thiago Peixoto Leal (Computer scientist, 

PhD student in Bioinformatics). This chapter includes a conclusion and perspectives. 

Then, the second chapter refers to the EPIGEN-Brazil Bambuí Cohort participation on 

consortia of meta-analysis of GWAS. It describes our participation in the The Cohorts for 

Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, where we 

performed a PR interval GWAS of genotyped and imputed Single Nucleotide Polymorphisms 

(SNPs). This chapter includes all the methodology, Manhattan plots and quality controls for 

submitting the results to the consortium followed by conclusions and perspectives for this 

section. It also contains our participation in the TCEA3-SNP rs2298632 interactions on QT 

and QRS interval GWAS as an ongoing project. 

My specific contributions for each research project are described at the beginning of 

each chapter in the section "Author Summary and Contribution to the Research”. Finally, the 

general conclusions are presented. 

 

 

 

 

https://genome.cshlp.org/
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1. INTRODUCTION 

 

1.1. Genome-Wide Association Study 

The Genome-Wide Association Study (GWAS) is an experimental design in which 

thousands (currently >10
6
) genetic variants spread across the genome are genotyped and 

tested for statistical association with a phenotype in individuals from populations (Rosenberg 

et al. 2010; Visscher et al. 2017).  

GWAS is used to identify genes and causal variants for complex human diseases and 

thus elucidate its genetic basis (Manolio et al. 2009). It may leads to a better understanding of  

biological mechanisms and pathogenic processes of complex diseases and can help defining 

the relative role of genes and the environment in disease risk. Thus allowing improvements in 

diagnosis, treatment and prevention and assisting in risk prediction, enabling preventative and 

personalized medicine. Finally, it has also been applied for investigating natural selection and 

population differences (Bush and Moore 2012; Visscher et al. 2017) 

In 2008, the National Human Genome Research Institute (NHGRI) founded the GWAS 

Catalog (https://www.ebi.ac.uk/gwas/) due to the fast increase in the number of published 

GWAS and the need to systematically catalogue and summarize the observed associations 

(MacArthur et al. 2017). Until May 2018, the catalog contained 3,361 publications and 61,173 

unique SNP-trait associations.  

GWAS uses principles of linkage disequilibrium (LD), the nonrandom association of 

alleles at two loci in a population that results from historical evolutionary forces, particularly 

finite population size, mutation, admixture, recombination rate, and natural selection 

(Visscher et al. 2017). When there is an association between a Single Nucleotide 

Polymorphism (SNP) and a phenotype, there are two possible explanations. When the causal 

SNP is directly genotyped in the study sample and statistically associated with the disease or 

phenotype, it is known to be directed associated and the genotyped SNP is called functional 

SNP. Another possibility is that the causal SNP is not directly genotyped. Instead a tag SNP 

in high LD with the causal one is genotyped and statistically associated to the phenotype, thus 

being called as indirect association (Hirschhorn and Daly 2005). 

GWAS strategy has the ability of screening a large number of both people and SNPs 

(genotyped or imputed). It is an important step for studies which focus on finding association 

https://www.ebi.ac.uk/gwas/
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with diseases because loci containing possibly causal SNPs (or SNPs in LD with the causal 

variant) are identified. For that, the genome-wide scan is based on the simultaneous study of 

millions of polymorphisms without a previous hypothesis (McCarthy et al. 2008; Manolio et 

al. 2009). Such studies usually employ arrays having a matrix capable of detecting variants of 

a particular polymorphism (commonly two alleles of a SNP). Followed by:  i) identification 

of the genomic region statistically associated with an outcome; ii) region annotation which 

generates a list of genes or non-gene regions involved in the regulation of gene expression, 

such as regulatory sequences and transcript factors, potentially involved in the phenotypic 

expression of the trait (Consortium et al. 2007). 

In the last 10 years, many changes led to the feasibility of better study designs and 

consequently better GWAS. New types of data, new molecular technologies and new 

analytical methods have been developed. Larger samples are now available and large groups 

have realised the power of collaborations to combine resources; many advances in genotyping 

technologies allowed high-throughput pipelines and accurate, reproducible genotyping; and 

finally efforts such as 1000 Genomes Project (1KGP) and HapMap improved our knowledge 

about sequence variation and LD patterns across the genome by providing large catalogues of 

SNPs, variations and haplotypes (Zeggini and Ioannidis 2009; Visscher et al. 2017). 

The development of relatively inexpensive SNP arrays facilitated GWAS. So far, most 

variants studied by them are common in the population and have a Minor Allele 

Frequency (MAF) larger than 1%. Based on it, it would be natural for future studies to seek 

for rare variants using Whole-Genome Sequencing (WGS) data. The difference between 

WGS and SNP arrays data used for GWAS is the density of coverage of variation in the 

genome and the MAF spectrum. However, SNP arrays cost considerable less than WGS and 

array technology is still more robust than sequencing (Visscher et al. 2017). 

According to Visscher et al. (2017), the statistical power to detect associations 

between variants and phenotype depends on the sample size, the distribution of effect sizes of 

unknown causal genetic variants that segregate in the population, their frequency and finally 

the LD between them and the genotyped ones. For the last option, it is known that statistical 

imputation can help recovering some of the information lost because of imperfect LD 

between observed genotypes and unobserved causal variants. With this in mind, it is known 

that the potential of a GWAS to succeed relies on how many loci affecting the trait segregate 

in the population, the joint distribution of effect size and allele frequency at those loci (genetic 
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architecture), the experimental sample size, the panel of genome-wide variants that are used in 

the GWAS and how heterogeneous (biologically or diagnostically speaking) the trait or 

disease being studied is. Therefore, if the genetic architecture of the disease is known, it is 

possible to design optimal experiments to detect specific variants (Visscher et al. 2017).  

One potential problem is that GWAS studies have predominantly been developed in 

populations of European origin. Studies in other populations are important to reveal new 

susceptibility loci and etiological mechanisms, as well as for examining the consistency of 

already established associations. In this context, the Brazilian population is of special interest 

due to its multiracial nature. Such condition confers specific challenges and opens new 

perspectives to understand the variability of the genome, to map ancestry and to explore the 

association between genetic variants and complex diseases in admixed populations (Peprah et 

al. 2015). 

 

1.2. Admixture Mapping as a GWAS strategy  

Admixture mapping (AM) is a powerful method to identify genetic variants associated 

with traits and/or diseases that present different risk by ancestry (Shriner 2017). The 

strategy is useful for recent admixed populations in which the risk alleles have different 

frequencies among the ancestral populations (Qin and Zhu 2012).  

GWAS uses more than a thousand of markers (genotype-phenotype correlation) while 

AM demands only a few thousand for estimating the ancestry of genomic segments (ancestry-

phenotype correlation). Due to the reduced number of statistical tests performed, AM is 

less susceptible to false positives and valuable in genomic regions that are poorly covered by 

typical GWAS marker sets. Therefore, for medium-size studies, AM improves the power to 

detect an association when compared to GWAS including only a few thousands of individuals 

(Rosenberg et al. 2010; Qin and Zhu 2012; Shriner 2017). 

Future analyses in admixed populations may be done with a combination of GWAS and 

AM. It considers a joint test of the allele and ancestry which can be more powerful than a 

single GWAS when the causal variant has a large allele frequency difference in ancestral 

populations. After all, AM and GWAS are complementary and each case should be 

evaluated before analysis (Rosenberg et al. 2010; Qin and Zhu 2012; Shriner 2017). AM may 

also be followed-up by fine-mapping, if high density data are available (Jeff et al. 2014). 
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During the last year of the Ph.D., I participated of the Imputation and Fine-mapping 

processes described in the manuscript “Admixture mapping and GWAS-hits replication of 

body mass index in Brazilian children, young adults and elderly”. In this article, headed by 

our group, Laboratory of Human Genetic Diversity (LDGH), we used genome-wide data to 

perform Admixture Mapping/fine-mapping of Body Mass Index (BMI) in the EPIGEN-Brazil 

Iniciative cohorts. As a result, we found suggestive associations with African associated 

alleles in children from Salvador and in young adults from Pelotas. The overall results support 

the concept that the BMI global genetic architecture is partially age- and sex-dependent 

(Attachments).  

 

1.3. Genotype Imputation for GWAS 

According to Marchini and Howie (2010), genotype imputation is the process of 

predicting or imputing genotypes that are not directly genotyped in a sample of 

individuals. This strategy uses LD patterns observed in a reference panel of haplotypes, with a 

dense set of SNPs, to infer genetic variants in a target sample genotyped for a smaller subset 

of SNPs. In this sense, genotype imputation is used to increase power of GWAS, to allow 

fine-mapping, to extract maximum value from existing family samples and to help combining 

results of studies with different genotyping platforms for meta-analysis (Li et al. 2009; 

Marchini and Howie 2010). It has also been used in the context of GWAS and has become, in 

recent years, a mandatory process (Zheng et al. 2015). 

Briefly, Figure 1 demonstrates imputation of SNPs in the genomes of unrelated 

individuals: 
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Figure 1: How genotype imputation works (Adapted from Marchini and Howie, 2010). 

The study (or target) samples comprise a set of genotyped SNPs with a large number of non-

genotyped SNPs (a). Association tests with only these SNPs may not lead to a significant 

association (b). The aim of imputation is to predict those missing genotypes. Although many 

software have been developed for imputation, some basic steps should be followed and the 

first one is strand alignment between datasets and phasing each individual in the study at the 

typed SNPs. In Figure 1, three phased individuals are exhibited (c). Then, target sample 

haplotypes are compared to a dense set of haplotypes from a reference panel (d). The figure 

shows target haplotypes coloured according to the match with the reference panels 

haplotypes. Then, missing genotypes from the target sample are predicted using the match 

between datasets (e). This can increase both the power to detect association signals and the 

signal resolution near a causal or associated variant (f). 

 

Several methods and software have been developed to impute genotypes beyond its 

aplications at GWAS: Mach (Li et al. 2010), Beagle (Browning and Browning 2009), 

fastPhase (Scheet and Stephens 2006), IMPUTE v1 (Marchini et al. 2007) and IMPUTE v2 

(Howie et al. 2009). In our projects we decided to use IMPUTE v2 (Howie et al. 2009), a 

software based on an Hidden Markov Model (HMM) of each individual´s vector of 
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genotypes, conditional on a number of haplotypes of SNPs and a set of parameters. The 

HMM is a class of statistical model that can be used to relate an observed process across the 

genome to an underlying, unobserved process of interest. Besides that, IMPUTE v2 has the "-

merge_ref_panels" option, which allows the combination of reference panels from different 

populations and can often improve imputation accuracy. 

Once that target study haplotypes may match with different references haplotypes, 

imputation softwares give a score or probability of a genotype based on the haplotype 

overlap. Instead of assigning an imputed SNP with a single alelle A, the three possible 

genotype probabilities AA, AB and BB (0.943 0.057 0, respectively for example) are 

reported for each individual based on haplotype frequencies. Such information may be used in 

the imputed data analysis in order to consider the uncertainty in the genotype inference 

(Zeggini and Ioannidis 2009; Bush and Moore 2012). 

In the absence of any true set of genotypes to compare it is standard practice to perform 

additional filtering for quality of imputed genotypes (Marchini and Howie 2010). Post-

imputation quality control steps should be applied to remove unreliably imputed SNPs, 

aiming to filter out as many of these SNPs as possible while retaining a good proportion of 

significant SNPs that might not behave badly in association tests (Southam et al. 2011). 

Imputing genotypes in admixed populations and conducting robust GWAS is a major 

problem faced due to the complex pattern of LD generated by admixture. Chromosomes of 

admixed populations are mosaics of many ancestral fragments formed since admixture of 

chromosomes of the parental populations. In the Brazilian population, these mosaics are 

formed by African, Native American and European ancestry fragments (Kehdy et al. 2015). 

An efficient imputation requires information about the ancestry, which is equivalent to 

select an appropriate reference for each fragment and its ancestry (“matching strategy”) 

(Huang and Tseng 2014). If a study is conducted using a reference panel of individuals from a 

different ancestry, then genotype imputation quality can be poor as there is a lower 

probability of a haplotype match. In other words, it is supposed that the reference panel 

should contain haplotypes from the same population as the study sample in order to facilitate 

a proper haplotype match (Bush and Moore 2012). 

Despite of all the features that make admixed populations extremely interesting, little 

effort has been expended on the development of reference panels that allow robust imputation 

(amount of added variants and quality of these variants) in admixed Latin American 
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populations and few studies had touched this topic. There is a consensus that Latino American 

populations are underrepresented in GWAS and WGS initiatives (Gao et al. 2012; Roshyara 

et al. 2016).  

 

1.4. Meta-analysis of GWAS and the establishment of consortia 

Although single GWAS have identified many genetic variants associated with complex 

human diseases, most of them explain only a small part of the risk variability (Manolio et 

al. 2009; Evangelou and Ioannidis 2013). Genetic effects due to common alleles are small, 

and detection of confident association signals requires large sample sizes. If a single GWAS 

is underpowered, meta-analysis methods can statistically synthetize information from 

different independent studies, increasing sample size and scanning more variants on the 

genome than each dataset alone. For this reason, meta-analysis of GWAS increases power to 

detect associations, reduce false-positive findings and allow researchers to investigate the 

consistency or heterogeneity of these associations across different datasets and study 

populations. Besides that, meta-analysis techniques can use summary data, do not demand the 

submission of protected individual-level genotypes and clinical data to groups that are not 

part of the initial plan accepted by the ethics committee. Therefore, only statistical results 

need to be transferred, which facilitates data sharing (Zeggini and Ioannidis 2009; Bush and 

Moore 2012; Evangelou and Ioannidis 2013). 

Distinct groups may have used different datasets, genotyped with different platforms 

that resulted in different variants. In an ideal setting, all GWAS of a specific trait should be 

performed following the same steps, detailed in a previous specific protocol established 

before any analysis, aiming the combination of data from different working groups as they 

have been executed and, consequently, leading to new discoveries. According to Zeggini and 

Ioannidis (2009), each protocol should consider: (1) the epidemiological design of each study 

and dataset; (2) quality control steps like evaluation of Hardy-Weinberg equilibrium, missing 

rate, imputation accuracy scores, quality metrics and any other of interest; (3) analytical 

methods, definitions, metrics and adjustments of variables and outcomes of each dataset; (4) 

independence of samples adjusting for relatedness and population stratification, besides 

dealing with overlapping samples if necessary; (5) the consistency of strand and build of the 

human genome, looking for right allelic correspondence among different studies, correcting 

for any difference; and finally (6) the analysis of directly genotyped versus imputed variants 
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considering the uncertainty of genotype assignments and the imputation method. At last, it is 

also important that the protocol define a method to describe all the informations and results in 

the final summary data. Taking rigorous quality control at all steps is particularly important 

and the exact protocol should be followed in order to avoid spurious associations. The 

development of consortia composed by different working groups can facilitate such 

standardization. For this reason, several large-scale consortia have been formed intending to 

carry out GWAS meta-analysis for various phenotypes. Figure 2 shows a typical workflow for 

conducting a meta-analysis of GWAS and Table 1 shows some successful high-profile 

consortia for which workflows and methods are available for consulting (Zeggini and 

Ioannidis 2009; Bush and Moore 2012; Evangelou and Ioannidis 2013).  

 

Figure 2: Workflow for conducting a meta-analysis of genome-wide association datasets 

(Evangelou and Ioannidis 2013). 
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Table 1: Examples of high-profile consortia for various disease phenotypes (Evangelou and 

Ioannidis 2013). 

Consortium 

(acronym) 

Phenotype (or 

phenotypes) 

Publicly 

available 

genome-wide 

data? 

Website 

AMD  Age-related 

macular 

degeneration  

Yes, accessible 

through the 

website  

http://www.sph.umich.edu/cs

g/abecasis/public/ 

amdgene2012  

BCAC  Breast cancer  No  http://ccge.medschl.cam.ac.u

k/consortia/bcac  

CHARGE  Heart disease and 

ageing  

No  http://web.chargeconsortium.

com  

GEFOS  Osteoporosis  Yes, accessible 

through the 

website  

http://www.gefos.org  

GIANT  Anthropometric 

traits  

Yes, accessible 

through the 

website  

http://www.broadinstitute.org

/collaboration/giant/index. 

php/GIANT_consortium  

GLGC  TC, HDL-C, 

LDL-C, 

triglycerides  

Yes, accessible 

through the 

website  

http://www.sph.umich.edu/cs

g/abecasis/public/lipids2010  

IIBDGC  Inflammatory 

bowel disease  

Yes, accessible 

through the 

website  

http://www.ibdgenetics.org  

IMSGC  Multiple sclerosis  Yes, accessible 

through the 

website  

https://www.imsgenetics.org/  

ISC  Schizophrenia  No  http://pngu.mgh.harvard.edu/i

sc  

MAGIC  Glycaemic traits  Yes, accessible 

through the 

website  

http://www.magicinvestigator

s.org  

NARAC-III  Rheumatoid 

arthritis  

No  http://www.naracstudy.org/N

aracStudy/narac.aspx  

TREATOA  Osteoarthritis  Yes, accessible 

through the 

website  

http://treatoa.eu  

WTCCC  Various 

phenotypes  

Yes, accessible 

through the 

website  

http://www.wtccc.org.uk  

HDL-C: high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total 

cholesterol. 
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1.5. The EPIGEN-Brazil Initiative 

The EPIGEN-Brazil Initiative (Genomic Epidemiology of Complex Diseases in 

Population-based Brazilian Cohorts, http://epigen.grude.ufmg.br) performed a genome-wide 

analysis of nearly 2.2 million of SNPs in 6,487 admixed individuals (3,151 males and 3,336 

females) from Salvador, Bambuí and Pelotas, three population-based cohorts from different 

geographic regions and with distinct demographic histories and socio-economic backgrounds 

(Kehdy et al. 2015). 

During the first year of the Ph.D., I participated of the quality control analyses and the 

writing process of the first article headed by the LDGH about the EPIGEN-Brazil Initiative. 

The article “Origin and dynamics of admixture in Brazilians and its effect on the pattern of 

deleterious mutations” (Kehdy et al. 2015) was published in 2015 in the journal Proceedings 

of the National Academy of Sciences and has already been cited by other 62 articles, since its 

publication. I am co-author of this article, as part of the consorciate authorship: The Brazilian 

EPIGEN Project Consortium (Attachments). 

 

1.5.1. Target Samples 

The original datasets received from Illumina are the result of 2.5M and 5M genotyping 

procedures, as follows: 2,379,855 SNPs for 6,504 individuals and 4,301,332 SNPs for 270 

individuals. The 2.5M dataset was genotyped with the Illumina HumanOmni2.5-8v1 array 

and the 5M dataset was genotyped with the HumanOmni5-4v1 array. Both datasets contained 

individuals from the three cohorts, in which 90 individuals from each cohort were randomly 

selected and genotyped for the 5M dataset. These 270 individuals are not present in the 2.5M 

dataset. All data were generated in the Illumina facility in San Diego (CA, US). After 

extensive Quality Control (QC) procedures and filtering, the EPIGEN-Brazil Initiative kept 

high quality genotyping data for 6,487 Brazilian individuals. To perform the imputation 

analysis presented in this thesis (Chapter 1) we used consensus datasets containing shared 

SNPs between the 2.5M and 5M datasets (Kehdy et al. 2015).  

 

 

 

http://epigen.grude.ufmg.br/
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1.5.1.1. Cohorts 

1.5.1.1.1.Salvador 

 The Salvador-SCAALA (Social Changes, Asthma and Allergy in Latin America 

Program) Project is a longitudinal study involving a sample of 1,445 children aged 4-11 years 

in 2005, living in Salvador, a city of 2.7 million inhabitants in Northeast Brazil. The 

population is part of an earlier observational study that evaluated the impact of the sanitation 

program on diarrhoea in 24 small geographical areas selected to represent the population 

without sanitation in Salvador. From these study participants, 1,309 were successfully 

genotyped as part of the EPIGEN-Brazil Initiative. Further details are available in (Barreto et 

al. 2006).  

 

1.5.1.1.2. Bambuí 

 The Bambuí cohort study of ageing is in progress in Bambuí, a city in Minas Gerais 

State in Southeast Brazil, of approximately 15,000 inhabitants. The cohort population 

consisted of all residents aged 60 years and over on January 1997, who were identified from a 

complete census in the city. From 1,742 eligible residents, 1,606 constituted the original 

cohort, and 1,442 of these participants were successfully genotyped as part of the EPIGEN-

Brazil Initiative. Further details of the Bambuí study can be seen in (Lima-Costa et al. 2011). 

 

1.5.1.1.3. Pelotas 

 The 1982 Pelotas birth cohort study was conducted in Pelotas, a city in Brazil 

extreme South, near the Uruguay border, with 214,000 urban inhabitants in that year. 

Throughout 1982, the three maternity hospitals in the city were visited daily and births were 

recorded, corresponding to 99.2% of all births in the city. The 5,914 live born infants whose 

families lived in the urban area constituted the original cohort. We have genome-wide data for 

3,736 individuals. Further details are available in (Victora and Barros 2006).  
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Summary of working target datasets: 

1. EPIGEN_2.5M_autosomal (2,235,109 SNPs for 6,487 samples)  

2. Salvador_2.5M_autosomal (2,234,755 SNPs for 1,309 samples)  

3. Bambuí_2.5M_autosomal (2,233,665 SNPs for 1,442 samples)  

4. Pelotas_2.5M_autosomal (2,234,985 SNPs for 3,736 samples)  

 

1.5.2. EPIGEN-5M dataset and imputation reference panel 

The EPIGEN-5M dataset was genotyped with the HumanOmni5-4v1 array. After 

quality control, the dataset is composed by 4,102,271 SNPs for 265 individuals from three 

Brazilian cohorts (90, 88, and 87 individuals from Salvador, Bambuí, and Pelotas, 

respectively (Kehdy et al. 2015). Posteriorly, we transformed the EPIGEN-5M genotyping 

dataset in an imputation reference panel, as fully described in Chapter 1. 
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2. CHAPTER 1: IMPUTATION AND SCIENTIFIC WORKFLOW 

 

2.1. Author Summary and Contribution to the Research 

The identification of alleles associated with human diseases by GWAS is possible due 

to the existence of better databases of human genetic variation (International HapMap et al. 

2010; Genomes Project et al. 2015), advances in genotyping technology and also by the 

development of genotype imputation methods that allowed researchers to find associations in 

large and complex datasets (Howie et al. 2009). In this scenario, imputation of non-directly 

typed genotypes has considerably improved the results, becoming a mandatory procedure in 

GWAS (Zheng et al. 2015). However, GWAS have been predominantly developed in 

European populations. For this reason, studies with other populations are important to reveal 

new loci of susceptibility and etiological mechanisms, as well as to examine the consistency 

of already established associations. 

Our hypothesis was that imputation of admixed Latin American populations using a 

reference panel of Brazilian admixed samples from EPIGEN-Brazil would increase 

imputation accuracy for general Latin American populations when genotyped for less dense 

arrays.  

Our long-term goal was to provide support for more robust and effective GWAS with 

admixed Latin American populations: in cohorts sampled in the context of the EPIGEN-

Brazil Initiative or in other projects which evaluate genotyped data of less dense arrays. For 

example, several studies with lower density arrays in admixed populations may be imputed 

using our panel as reference, increasing the statistical power to infer variants associated with 

diseases or clinical outcomes.  

Huang and Tseng (2014) argued that using a reference panel that closely matches the 

ancestry of the study population may increase imputation accuracy. Therefore, based on data 

of 4.3 million SNPs from 265 admixed individuals of the EPIGEN-Brazil Initiative, we aimed 

to create a new imputation reference panel combining these data with 1000 Genomes Project 

Phase 3 data (1KGP). We then imputed SNPs from the new panel on a target dataset 

composed of 6,487 individuals genotyped for 2.5 million SNPs (Kehdy et al. 2015) and 

analysed the results. 

In order to achieve these objectives, we: 
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 (1) Developed an imputation reference panel for Brazilian admixed and Latin 

American populations, using data from Brazilians obtained from high density genotyping 

arrays; 

 (2) Compared the performance of our proposed reference panel to impute Latin 

American populations with publicly available ones. 

 

This project was developed by (1) Dr. Wagner Carlos Santos Magalhães (PhD in 

Bioinformatics, coordinator of the project), (2) I (PhD student in Genetics, that was 

responsible for the data management, quality controls and whole imputation procedures and 

analyses) and last (3) Thiago Peixoto Leal (PhD student in Bioinformatics, that was 

responsible for the whole computational architecture including the development of the 

masterscript). We three shared the first authorship of the manuscript submitted to Genome 

Research. 

My contribution to this project/manuscript was based on my background in genetics. I 

have been working on genotype imputation since the beggining of the PhD: I planned, 

organized and executed the experiments according to imputation basic steps, always trying to 

improve results and searching for the best methodology. I was responsible for the creation of 

the EPIGEN-Brazil Reference Panel and for the tests and analyses with chromosome 22 

looking for the best imputation strategy, combination between haplotype phasing and 

imputation reference panel and consequently, results. After defining the strategy, I executed 

the imputation process for all chromosomes with two different reference panels, applyed 

quality controls and analysed the results. I also participated of the writing process of the 

manuscript (Item 2.2), especially the supplemental material where the operational processes 

are fully described. 
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2.2. Manuscript Submitted to Genome Research 

 

“EPIGEN-Brazil Initiative resources: a Latin American imputation panel and the 

Scientific Workflow (a tool for transparent and reproducible bioinformatics analysis)” 



EPIGEN-Brazil Initiative resources: a Latin American
imputation panel and the Scientific Workflow

Wagner C.S. Magalhães,1,2,10 Nathalia M. Araujo,1,10 Thiago P. Leal,1,10

Gilderlanio S. Araujo,1 Paula J.S. Viriato,1 Fernanda S. Kehdy,1,3 Gustavo N. Costa,4

Mauricio L. Barreto,4,5 Bernardo L. Horta,6 Maria Fernanda Lima-Costa,7

Alexandre C. Pereira,8 Eduardo Tarazona-Santos,1,11 Maíra R. Rodrigues,1,9,11

and The Brazilian EPIGEN Consortium12

1Departamento de Biologia Geral, Universidade Federal deMinas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; 2Instituto
Mario Penna, Núcleo de Ensino e Pesquisa, Belo Horizonte, Minas Gerais, 30380-472, Brazil; 3Laboratório de Hanseníase, Instituto
Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-900, Brazil; 4Instituto de Saúde Coletiva, Universidade
Federal da Bahia, Salvador, Bahia, 40110-040, Brazil; 5Center for Data and Knowledge Integration for Health, Institute Gonçalo
Muniz, FundaçãoOswaldo Cruz, Salvador, Bahia, 40296-710, Brazil; 6Programa de Pós-Graduação em Epidemiologia, Universidade
Federal de Pelotas, Pelotas, Rio Grande do Sul, 96020-220, Brazil; 7Instituto de Pesquisa Rene Rachou, Fundação Oswaldo Cruz, Belo
Horizonte, Minas Gerais, 30190-009, Brazil; 8Instituto do Coração, Universidade de São Paulo, São Paulo, São Paulo, 05403-900,
Brazil; 9Faculdade de Ciências Médicas e Instituto de Matemática, Estatística e Ciência da Computação, Universidade de Campinas,
São Paulo, 13083-894, Brazil

EPIGEN-Brazil is one of the largest Latin American initiatives at the interface of human genomics, public health, and com-

putational biology. Here, we present two resources to address two challenges to the global dissemination of precision med-

icine and the development of the bioinformatics know-how to support it. To address the underrepresentation of non-

European individuals in human genome diversity studies, we present the EPIGEN-5M+1KGP imputation panel—the fusion

of the public 1000Genomes Project (1KGP) Phase 3 imputation panel with haplotypes derived from the EPIGEN-5M data set

(a product of the genotyping of 4.3 million SNPs in 265 admixed individuals from the EPIGEN-Brazil Initiative). When we

imputed a target SNPs data set (6487 admixed individuals genotyped for 2.2 million SNPs from the EPIGEN-Brazil project)

with the EPIGEN-5M+1KGP panel, we gained 140,452 more SNPs in total than when using the 1KGP Phase 3 panel alone and

788,873 additional high confidence SNPs (info score≥ 0.8). Thus, the major effect of the inclusion of the EPIGEN-5M data set

in this new imputation panel is not only to gainmore SNPs but also to improve the quality of imputation. To address the lack

of transparency and reproducibility of bioinformatics protocols, we present a conceptual Scientific Workflow in the form of

a website that models the scientific process (by including publications, flowcharts, masterscripts, documents, and bioinfor-

matics protocols), making it accessible and interactive. Its applicability is shown in the context of the development of our

EPIGEN-5M+1KGP imputation panel. The Scientific Workflow also serves as a repository of bioinformatics resources.

[Supplemental material is available for this article.]

The EPIGEN-Brazil Initiative (https://epigen.grude.ufmg.br/) is
one of the largest Latin American initiatives at the interface of hu-
man genomics, public health, and computational biology. Here,
we present howwe are addressing two challenges to global dissem-
ination of precision medicine and to the development of the bio-
informatics know-how to support it. These challenges are (1) the
persistent and severe underrepresentation of non-European indi-
viduals in human genome diversity studies and well-designed ge-
netic epidemiology studies (Alexander et al. 2009; Bustamante

et al. 2011; Check Hayden 2016; Popejoy and Fullerton 2016);
and (2) the lack of transparency and reproducibility in the entire
scientific process, including bioinformatics protocols (Iqbal et al.
2016).

The underrepresentation of globally diverse individuals in
genomic studies is not simply due to lack of their enrollment in
these studies. Muchmore compelling is the need for a more global
distribution of research groups with a strong background in geno-
mics and bioinformatics, leading and performing this kind of
study. In this context, the overarching goal of the EPIGEN-Brazil
Initiative is to study the genomic diversity and its effects on

10These authors contributed equally to this work as first authors.
11These authors contributed equally to this work as senior authors.
12A complete list of the Brazilian EPIGEN Consortium authors appears
at the end of this paper.
Corresponding authors: maira.r.rodrigues@gmail.com,
edutars@icb.ufmg.br
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.225458.117.
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nc/4.0/.
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complex phenotypes in Brazil, the most populous Latin American
country (Borges et al. 2016; Lima-Costa et al. 2016; Marques et al.
2017). Brazil’s more than 200 million inhabitants are the
product of admixture that occurred during the last 500 years be-
tween Amerindians, Europeans, Africans, and their descendants.
Interestingly, Brazil was the largest destiny of the African diaspora,
and we have recently shown that Brazilians host on their genomes
the diversity of African groups that have not yet been included
in population genomics studies, such as Bantu Angola and
Mozambique populations, two sources of the slave trade that orig-
inated in territories controlled by the Portuguese Crown (Kehdy
et al. 2015).

The EPIGEN-Brazil Initiative is studying 6487 Brazilians from
the three largest population-based cohorts of the country (Fig. 1;
Supplemental Table S1; Supplemental Material Sections 1, 2.1):
(1) Salvador-SCAALA in northeast Brazil, with predominant
African ancestry (18 years of follow-up) (Barreto et al. 2006); (2)
the Bambuí Cohort Study of Aging in Minas Gerais in the south-
east of the country (15 years of follow-up) (Lima-Costa et al.
2011); and (3) the 1982 Pelotas Birth-Cohort Study in southern
Brazil (30 years of follow-up) (Victora and Barros 2006).

The EPIGEN-Brazil Initiative is a strategic project funded by
the Brazilian Ministry of Health, and it integrates research areas
well established in the country, such as epidemiology, public
health, and human genetics (Salzano and Freire-Maia 1967;

Barreto 2004; Salzano 2018) with bioinformatics, that is a vigorous
emerging area in Brazil. To address the need for more global re-
search groups, one of the main goals of the EPIGEN-Brazil
Initiative is to strengthen research capabilities in these research ar-
eas in Brazil, and we are training dozens of graduate students and
postdoctoral researchers from Brazil and other Latin American
countries. In Latin America, we are collaborating with the Na-
tional Institute of Health from Peru to study the genomic diversity
of the Peruvian population (Harris et al. 2017), which differs from
the Brazilian population in having a predominant Native Ameri-
can ancestry.

The failing on diversity of human genomics and the

EPIGEN-Brazil imputation panel

Imputation is the prediction of missing genotypes based on the
pattern of linkage disequilibrium of a reference panel. For GWAS
and fine-mapping studies, cosmopolitan public panels for imputa-
tion exist, such as the 1000 Genomes Project (1KGP) Phase 3
(Sudmant et al. 2015), based on whole-genome sequencing
(WGS) data. In addition to the 1092 individuals from Phase 1,
Phase 3 of the 1KGP panel has incorporated 1412 new individuals,
including four new populations from Africa, one from admixed
Latin America, two from East Asia, and five from South Asia,
each with 61–113 individuals (Supplemental Table S3; Sup-

plemental Material Section 2.2.2). Not-
withstanding this improvement in the
coverage of global genetic diversity, stud-
ies continue to show that imputation ac-
curacy may be improved by using WGS
or high-density SNP data from individu-
als with similar genetic background to
the target population (Thornton and Ber-
mejo 2014; Ahmad et al. 2017; Mitt et al.
2017). However, for studies performed
in non-European populations, WGS or
high-density array data are still rare. Next
we present a new imputation panel spe-
cific for admixed Brazilian and Latin
American populations and show that
the inclusion of high-density array data
from the Brazilian population improve
imputation quality in respect to the use
of the 1KGP (Phase 3) panel alone.

Addressing lack of transparency and

reproducibility of genomic studies

A second challenge faced by global dis-
semination of bioinformatics and the
know-how to support precisionmedicine
is the lack of transparency and reproduc-
ibility of the entire scientific process
(Iqbal et al. 2016). This limits the world-
wide flow of bioinformatics knowledge
necessary to build and train research
groups with a solid bioinformatics back-
ground.Although there are several claims
for more transparency and reproducibili-
ty of all the scientific process in biomed-
ical literature (Sandve et al. 2013; Kolker
et al. 2014; Iqbal et al. 2016), advances

Figure 1. Continental admixture of the EPIGEN-Brazil population-based cohorts. Ancestrywas estimat-
ed using the ADMIXTURE software (Alexander et al. 2009), as in Kehdy et al. (2015). European, African,
and Native American ancestry are, respectively: 42.8%, 50.8%, and 6.4% in Salvador; 78.5%, 14.8%,
and 6.7% in Bambuí; and 76.1%, 15.9%, and 8% in Pelotas. Figure adapted from Kehdy et al. (2015).
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from genomic initiatives to share bioinformatics protocols are
still rare.

A still valid and compelling claim and concept were formulat-
ed by Bourne (2010), proposing to move away from the classical
scientific articles to a more interactive publication of Scientific
Workflows. Bourne defined a Scientific Workflow as “part process
and part container for content (or pointers to that content), that is
significantly broader and more integrated than what is sent for
publication today, namely, a manuscript and supplemental infor-
mation in an essentially computationally unusable form.” Thus,
a ScientificWorkflow is amore complex concept than, and should
not be confused with, a bioinformatics Workflow/Pipeline Man-
agement System such as Taverna (Wolstencroft et al. 2013) or
Galaxy (Afgan et al. 2016), although the latter may be used to im-
plement Scientific Workflows.

Here, we present the EPIGEN-Brazil Scientific Workflow
(http://www.ldgh.com.br/scientificworkflow), a tool for transpar-
ent and reproducible bioinformatics analyses, and exemplify it in
the context of our EPIGEN-5M+1KGP imputation panel. Our
Scientific Workflow includes four self-contained components—
scientific publications, flowcharts, masterscripts, and docu-
ments—that represent different stages of the scientific process.
The scientific publications include both the final research products
and thescientifichypotheses.The flowcharts are conceptualvisual-
izations of research tasks performed as part of scientific publica-
tions, and the masterscripts are the operational computational
execution (programs) of tasks represented by the flowcharts.
Documents comprise other information such as technical reports,
workshop presentations, and intermediate results.

Results and discussion

Imputation experiments

We genotyped 4.3 million SNPs in 265 admixed individuals from
the EPIGEN-Brazil Initiative (90, 88, and 87 individuals randomly
selected from the Salvador, Bambuí, and Pelotas cohorts, respec-
tively) (Fig. 1; Supplemental Table S2; Supplemental Material
Section 2.2.1).We present a new imputation reference panel (here-
after, the EPIGEN-5M+1KGP panel), which is the fusion of the
haplotypes derived from the EPIGEN-5M data set with the public
1KGP Phase 3 imputation panel (Supplemental Table S4; Sup-
plemental Fig. S1; Supplemental Material Sections 2.3, 2.4, 2.5.
1). Hereafter, the 1KGP Phase 3 panel will be simply called
1KGP. In the context of GWAS and fine-mapping studies in
Brazilian and other Latin American populations with a predomi-
nant mix of European and African ancestries, we tested whether
using the EPIGEN-5M+1KGP imputation panel improves imputa-
tion in respect to the 1KGP imputation panel alone.

The EPIGEN-5M+1KGP and the 1KGP imputation panels
have a similar number of variants and allele frequency spectra
(Fig. 2A; Supplemental Fig. S2), although the EPIGEN-5M+1KGP
has 14,970 more SNPs and 530 (∼10%) more haplotypes than
the 1KGP imputation panel (5538 versus 5008 haplotypes, respec-
tively) (Supplemental Table S4). More importantly, after phase in-
ference (Supplemental Tables S5, S6; Supplemental Material
Section 2.5.2), when we imputed a target SNPs data set (the 6487
admixed individuals genotyped for 2.2 million SNPs from the
EPIGEN-Brazil project) (Fig. 1; Kehdy et al. 2015) with the
EPIGEN-5M+1KGP panel, we gained 140,452 more SNPs in total
and 788,873 additional high confidence SNPs (info score ≥0.8)
than when using the 1KGP panel alone (Fig. 2B; Supplemental

Tables S7, S8; Supplemental Material Section 2.5.3). Thus, the ma-
jor effect of the inclusion of the EPIGEN-5M data set in a new im-
putation panel is not only to gain more SNPs but also to improve
the quality of imputation. Particularly, the EPIGEN-5M+1KGP
panel improves imputation quality in respect to 1KGP across a
wide range of allele frequencies (Fig. 2C; Supplemental Figs. S3–
S6). Therefore, imputation quality (i.e., info score) improves with
the inclusion of the EPIGEN-5M data set even if it derives from
high-density array data, rather than from WGS (which would be
optimal). Imputation quality improves whether we input the en-
tire EPIGEN-Brazil target data set or each of the cohorts separately.
This suggests that the assembled EPIGEN-5M+1KGP imputation
panel performs better than the 1KGP panel for a variety of study
sizes, admixture levels, and post-Columbian demographic histo-
ries. Moreover, because high-density array data improve imputa-
tion quality, the 2.2 million SNPs data set previously published
by Kehdy et al. (2015) may also be used for imputation for
GWAS performed in Latin American populations with lower-den-
sity arrays.

The case of the EPIGEN-5M+1KGP imputationpanel exempli-
fies the applicability of the Scientific Workflow (Supplemental
Material Section 3). All methodological steps to obtain the panel
are delineated in Methods and are also visualized as a Scientific
Workflow flowchart in http://www.ldgh.com.br/scientificworkflow/
flowcharts.php (Fig. 3). The corresponding masterscripts that
computationally operationalize the flowchart are available at
http://www.ldgh.com.br/scientificworkflow/master_scripts.php
(Supplemental Material Section 3; Supplemental Figs. S7, S8).

In conclusion, although high-coverageWGS data from popu-
lations underrepresented in genomic studies are the optimal
source of haplotypes to be used for imputation in genome-wide/
fine-mapping association studies, we show here that, in the ab-
sence of this kind of data, high-density array data from a few hun-
dreds of individuals from the same populations, used together
with the public 1KGP data set, is an alternative to improve impu-
tation quality. Therefore, we expect that the EPIGEN-5M+1KGP
imputation panel will allow for better GWAS, admixture map-
ping/fine-mapping studies in Latin American populations with
ancestries that are similar to the Brazilian population studied by
the EPIGEN-Brazil Initiative. We also use the EPIGEN-5M+1KGP
imputation panel to exemplify our implementation of the concept
of ScientificWorkflow, in sensu Bourne (2010), which has the goal
of making publicly available as much of the scientific process as
possible. Since the Scientific Workflow represents different steps
of the scientific process, from project development to publication,
and with different levels of abstraction and detail, it emerges as a
concrete initiative thatmoves us towardmore transparency and re-
producibility in bioinformatics analyses.

Methods

Imputation overview

Target data set

The EPIGEN-2.5M data set comprises 2,235,109 SNPs for 6487
Brazilians from three population-based cohorts (1309, 1442, and
3736 individuals from Salvador, Bambuí, and Pelotas, respectively)
(Supplemental Table S1, published in Kehdy et al. 2015). EPIGEN-
Brazil genome-wide data genotyped for the Illumina Omni 2.5M
array are available in the European Nucleotide Archive under
EPIGEN Committee Controlled Access mode.
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Reference panels

We used two reference panels: (1)
the public 1000 Genomes Project Phase
3 haplotypes, version 20130502,
(1KGP) (Sudmant et al. 2015); and (2)
The EPIGEN-5M+1KGP reference panel,
which is the merge of the 1KGP panel
and our unpublished EPIGEN-5M panel,
bearing 14,970 more SNPs than the
public panel solely. The EPIGEN-5M
data set was genotyped with the Illu-
mina HumanOmni5-4v1 array. After
quality control, the data set comprises
4,102,271 SNPs for 265 Brazilians from
the three cohorts (90, 88, and 87 individ-
uals from Salvador, Bambuí, and Pelotas,
respectively) (Supplemental Table S2).
We used SHAPEIT2 (Delaneau et al.
2013) to infer the chromosome phase of
the EPIGEN-5M data set (Supplemental
Tables S4–S8).

Pre-phasing between the target and

reference panels

We used SHAPEIT2 (Delaneau et al.
2013) to check the consistency of the
SNP’s strand of the target and the refer-
ence panels with the human genome ref-
erence sequence (GRCh37/hg19), and
PLINK software (Purcell et al. 2007) to
flip the strands in case of inconsistencies.
Because our data are genotyped with the
highest-density array (Omni 5.0) and
not NGS-based, a new alignment to
GRCh38 would not significantly affect
the conclusions.

Haplotype phase inference of the target data set

We phased the target EPIGEN-2.5M data
set using (1) the 1KGP haplotypes as
phasing references, for the imputation
with the 1KGP reference panel; and
(2) the EPIGEN-5M data set as phasing
reference, for the imputation with the
EPIGEN-5M+1KGP reference panel.

Imputation

We performed the imputation using
IMPUTE2 v.2.3.2 (Howie et al. 2009) on
chromosome chunks of 7 Mb, with addi-
tional 250 kb of buffer on both sides
(these were used for imputation infer-
ence but omitted from the results). We
used the effective size parameter (Ne)
set to 20,000 and the IMPUTE2 info
score as a metric of imputation quality
(Supplemental Fig. S1).

Data access

The data generated in this study have
been submitted to the European

A

B

C

Figure 2. Comparison between the 1000 Genomes Project (1KGP) and EPIGEN-5M+1KGP imputation
reference panels for autosomal chromosomes. The EPIGEN-5M+1KGP panel is the fusion of the haplo-
types derived from the EPIGEN-5M data set (the genotyping of 265 EPIGEN-Brazil individuals for 4.3 mil-
lion SNPs) with the public 1KGP Phase 3 imputation panel. (A) Allele frequency spectrum of variants by
their minor allele frequency (MAF) in each imputation reference panel. The number of SNPs is described
in each category, and the percentages are calculated dividing the number of SNPs in each MAF class by
the total number of SNPs of each imputation reference panel (top). (B) Distribution of the info scorequality
metric for imputation results. The dashed vertical line indicates the 0.8 threshold info score value, and the
horizontal line indicates the highest number of SNPs info score ≥0.8 achieved by a reference panel.
(C ) Imputation quality (mean info score) as a function of MAF for the target data set after imputation
with each of the tested reference panels (MAF bin sizes of 0.01).
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A

B

C

D

Figure 3. Flowchart of thewhole imputation process (see the EPIGEN-Brazil ScientificWorkflow: http://www.ldgh.com.br/scientificworkflow/flowcharts.
php). (A) Overview of the complete imputation process. (B,C) Two previous tasks may be required for imputation if it is necessary to create or merge ref-
erence panels. The Reference Panel Creation task (B, and orange color process in A) converts a data set of unphased genotypes into a reference panel, pro-
ducing the EPIGEN-5M Reference Panel of haplotypes from the EPIGEN-5M data set. The Merge Reference Panels task (C, and pink color process in A)
produces combinations of two different panels using IMPUTE2 software, generating the EPIGEN-5M+1KGP Reference Panel. The imputation process itself
consists of three main tasks: pre-phasing, haplotype phase inference, and imputation. The pre-phasing task (D, and green color processes in A) performs
strand alignment between target and reference panel using software SHAPEIT2, PLINK, and the scripting language AWK. Haplotype phase inference task
(yellow color processes in A) of the target data set uses the methodology implemented in the software SHAPEIT2, generating .haps and .sample files (target
data set aligned and phased with the Reference Panel). The latter files serve as input for the imputation task (red color processes in A) conducted with soft-
ware IMPUTE2, following the “best practices” guidelines in the software documentation.
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Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena) under acces-
sion number PRJEB9080 in EPIGEN Committee Controlled Access
mode. All imputation tasks were performed using our Perl master-
script available as Supplemental Material (Supplemental Scripts)
and also at our Scientific Workflow website (http://www.ldgh.
com.br/scientificworkflow/master_scripts.php). The EPIGEN-5M
+1KGP imputation panel in haplotype format is freely available
at http://www.ldgh.com.br/scientificworkflow/documents.html.
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1. THE EPIGEN-BRAZIL POPULATION-BASED COHORTS 

The EPIGEN-Brazil Project studied the following population-based cohorts, from which both the 

imputation target panel and the EPIGEN-5M imputation reference panel derive. 

The Salvador-SCAALA (Social Changes, Asthma and Allergy in Latin America) project is a longitudinal 

study involving 1,445 children aged 4-11 years in 2005, living in Salvador, a metropolitan area 

inhabited by 2.7 million people in Northeast Brazil. The population is part of an earlier observational 

study that assessed the impact of sanitation on diarrhea in 24 small sentinel-areas selected to 

represent the population without sanitation in Salvador (Barreto et al. 2006). 

The Bambui cohort study of ageing is ongoing in Bambuí, a city of around 15,000 inhabitants, in 

Minas Gerais State in Southeast Brazil. The population eligible for the cohort study included all 

residents aged 60 years and over on January 1997, who were identified from a complete census in 

the city (Lima-Costa et al. 2011).  

The 1982 Pelotas birth cohort study was conducted in the homonymous city, a city in Southern Brazil, 

with 214,000 urban inhabitants in that year. Throughout 1982, the three maternity hospitals in the 

city were visited daily and births were recorded, corresponding to 99.2% of all births in the city. The 

5,914 live-born infants whose families lived in the urban area constituted the original cohort (Victora 

and Barros 2006). 

 

2. THE EPIGEN-BRAZIL IMPUTATION PANEL  

Our long-term goal is to provide support for more robust and effective GWAS with admixed Latin 

American populations. To achieve that, we worked on: (i) developing an imputation reference panel 

for Brazilian admixed and Latin American populations, using data from Brazilians obtained from high 

density genotyping arrays and next generation sequencing; and (ii) comparing the performance of 

our proposed reference panel to impute Latin American populations with publicly available ones. 

Huang and Tseng (2014) argued that using a reference panel that closely matches the ancestry of the 

study population may increase imputation accuracy. Therefore, based on data of 4.3 million SNPs 

from 265 admixed individuals of the EPIGEN Project, we created a new imputation reference panel 

combining these data with 1000 Genomes Project Phase 3 data (1KGP). We then imputed SNPs from 

the new panel on a target dataset composed of 6,487 individuals genotyped for 2.5 million SNPs 

(Kehdy et al. 2015) and analysed the results. 

Imputation quality depends on both the quality of the reference panel and the target panel. To 

guarantee high quality data, we applied the guideline parameters suggested by IMPUTE2 (Howie et 
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al. 2009) authors in our experiments. As reference, we used the “phasing with a reference panel” 

guidelines from SHAPEIT2 (Delaneau et al. 2013) documentation, the guideline “GARNET GWAS in 

Breast Cancer Patients from the SUCCESS-A trial study” and the“ best practices for Imputation” from 

IMPUTE2 (v.2.3.2) software guidelines documentation (See Web resources 1, 2, 3). 

The target and imputation reference panels are represented in Figure S1-A (Imputation Overview), 

that is also available in the EPIGEN-Brazil Scientific Workflow as flowchart 

(http://www.ldgh.com.br/scientificworkflow/flowcharts.php) 

 

2.1. Target dataset 

The EPIGEN-2.5M dataset comprises 2,235,109 SNPs for 6,487 individuals from three Brazilian 

cohorts (1,309; 1,442; and 3,736 individuals from Salvador, Bambuí and Pelotas, respectively). This 

dataset has been presented by Kehdy et al. (2015, Table S1). This dataset is already deposited in the 

European Nucleotide Archive (PRJEB9080 (ERP010139) Genomic Epidemiology of Complex Diseases 

in Population-Based Brazilian Cohorts), accession no. EGAS00001001245, under EPIGEN Committee 

Controlled Access mode. 

 

Table S1: Number of SNPs per chromosome in the EPIGEN-2.5M target dataset. 

Chromosome Number of SNPs EPIGEN-2.5M (Target dataset) 

1 177,661 

2 187,930 

3 159,006 

4 148,260 

5 141,166 

6 148,074 

7 124,881 

8 121,728 

9 99,341 

10 115,507 

11 112,277 

12 108,994 

13 80,949 

14 74,150 

15 69,868 

http://www.ldgh.com.br/scientificworkflow/flowcharts.php
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16 73,455 

17 63,441 

18 66,461 

19 45,045 

20 54,519 

21 30,942 

22 31,454 

TOTAL 2,235,109 

 

2.2. Reference panels 

2.2.1. EPIGEN-5M 

The unpublished EPIGEN-5M dataset was genotyped with the HumanOmni5-4v1 array. After quality 

control, the dataset is composed by 4,102,271 SNPs for 265 individuals from three Brazilian cohorts 

(90, 88, and 87 individuals from Salvador, Bambuí, and Pelotas, respectively)(Table S2). 

 

Table S2: Number of SNPs per chromosome in the EPIGEN-5M dataset. 

Chromosome Number of SNPs EPIGEN-5M 

1 330,051 

2 338,735 

3 299,347 

4 263,347 

5 251,767 

6 285,731 

7 224,538 

8 214,722 

9 183,563 

10 201,620 

11 198,975 

12 203,117 

13 149,149 

14 138,551 

15 129,880 

16 138,624 
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17 122,875 

18 122,499 

19 88,123 

20 101,132 

21 57,824 

22 58,101 

TOTAL 4,102,271 

 

2.2.2. 1000 Genomes Project Phase 3 (1KGP) - Public 

We used the 1000 Genomes Project Phase 3 (Sudmant et al. 2015) haplotypes (1KGP), version 

20130502 released on 12 Out 2014. They are available in separated files for each chromosome (.hap, 

.legend, genetic_map) and a .sample for all chromosomes (See Web Resources 4). This dataset 

contains 81,706,022 variants, including more than 77 million biallelic SNPs and 2 million biallelic 

indels. The Phase 3 panel represents an improvement respect to the previous Phase 1 panel as 

shown in Table S3, which describes populations and their sample sizes for 1KGP. 

 

Table S3: 1000 Genomes Project Phase 1 and Phase 3 populations. 

Population Code Analysis Panel Phase 1 Phase3 

African ancestry     

Esan in Nigeria ESN AFR  99 

Gambian in Western Division, Mandinka GWD AFR  113 

Luhya in Webuye, Kenya LWK AFR 97 99 

Mende in Sierra Leone MSL AFR  85 

Yoruba in Ibadan, Nigeria YRI AFR 88 108 

African Caribbean in Barbados ACB AFR/AMR  96 

People with African Ancestry in Southwest 

USA 
ASW AFR/AMR 61 61 

Americas     

Colombians in Medellin, Colombia CLM AMR 60 94 

People with Mexican Ancestry in Los 

Angeles, CA, USA 
MXL AMR 66 64 

Peruvians in Lima, Peru PEL AMR  85 

Puerto Ricans in Puerto Rico PUR AMR 55 104 
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East Asian ancestry     

Chinese Dai in Xishuangbanna, China CDX EAS  93 

Han Chinese in Beijing, China CHB EAS 97 103 

Southern Han Chinese CHS EAS 100 105 

Japanese in Tokyo, Japan JPT EAS 89 104 

Kinh in Ho Chi Minh City, Vietnam KHV EAS  99 

European ancestry     

Utah residents (CEPH) with Northern and 

Western European ancestry 
CEU EUR 85 99 

British in England and Scotland GBR EUR 89 91 

Finnish in Finland FIN EUR 93 99 

Iberian Populations in Spain IBS EUR 14 107 

Toscani in Italia TSI EUR 98 107 

South Asian ancestry     

Bengali in Bangladesh BEB SAS  86 

Gujarati Indians in Houston, TX, USA GIH SAS  103 

Indian Telugu in the UK ITU SAS  102 

Punjabi in Lahore, Pakistan PJL SAS  96 

Sri Lankan Tamil in the UK STU SAS  102 

Total   1092 2504 

 

2.3. Imputation Overview 

If necessary, tasks prior to imputation must be performed for: (2.3.1) converting data to create a 

reference panel or (2.3.2) merging two reference panels. The imputation process comprises three 

tasks: (2.3.3) Pre-phasing (strand alignment between Target and Reference Panel), (2.3.4) Haplotype 

phase inference of the Target dataset and (2.3.5) Imputation itself. These Five tasks are described in 

detail below. 

 

2.3.1. Converting data to create the EPIGEN Reference Panel (Figure S1-A orange 

color process, detailed at Figure S1-B) 

We transformed the EPIGEN-5M genotyping dataset (.ped and .map files for each chromosome) in a 

reference panel performing two steps using SHAPEIT2 (Delaneau et al. 2013). First, we phased the 

data without any reference, producing .haps and .sample files. Then, we used the flag -convert to 
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convert the .haps and .sample files into the EPIGEN-5M Reference Panel format. This step generated 

three files: .hap, .leg, .sam. 

 

2.3.2. Merging two Reference Panels (Figure S1-A pink color process, detailed at 

Figure S1-C) 

We combined the EPIGEN-5M and 1KGP panels using the -merge_ref_panels flag from the software 

IMPUTE2 (Howie et al. 2009), (creating the EPIGEN-5M+1KGP reference panel, bearing 14,970 more 

SNPs than the public panel. 

 

2.3.3. Pre-phasing - Strand Alignment between Target and Reference Panels 

(Figure S1-A green color processes, detailed at Figure S1-D) 

Target and reference data alleles must be on the same physical strand of DNA as the human genome 

reference sequence (GRCh37/hg19) for high imputation quality (See Web resources 5). We used 

SHAPEIT2 software (Delaneau et al. 2013) to check SNPs strands that needed to be flipped to have all 

sites on the same DNA strand, both in the imputation reference panel and in the target dataset for 

those SNPs shared between them. We performed the strand alignment following the “phasing with a 

reference panel” guideline in the SHAPEIT2 documentation (See Web resources 1). 

Then, we used the software PLINK (Purcell et al. 2007) to flip the strand of those SNPs that were in 

different DNA strands and performed a double-checking view with SHAPEIT2. Finally, SNPs with 

remaining strand inconsistencies and exclusive SNPs of the target dataset were eliminated. 

 

2.3.4. Haplotype Phase Inference of the Target dataset (Figure S1-A yellow color 

process) 

We performed the statistical phasing using the methodology implemented in SHAPEIT2 (Delaneau et 

al. 2013). Briefly, SHAPEIT2 was developed to phase large datasets without compromising accuracy, 

while retaining its computational tractability. Phasing of the target dataset was performed using each 

of the single reference haplotypes (1KGP or EPIGEN-5M) as reference according to the reference 

panel used to impute. More details are described in section “2.5.2 Target phasing experiments with 

different reference panels for chr 22”. 
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2.3.5. Imputation (Figure S1-A red color process)  

Imputation analyses were performed with software IMPUTE2 (Howie et al. 2009)(v.2.3.2). Each 

chromosome was divided in chunks of 7Mb, with additional 250 Kb buffer on both sides that were 

used for imputation inference but omitted from the results. These buffer regions avoid a decrease in 

imputation quality near the chunk extremities. Since imputation was performed on a high 

performance cluster, we took advantage of IMPUTE2’s strategy of splitting each chromosome in 

chunks of around 7Mb to allow these chunks to be imputed in parallel on multiple computer 

processors. This decreased the real computing time and limited the amount of memory needed for 

each run. We used the effective size (Ne) parameter set to 20000. 

 

2.3.6. Quality Metrics of Imputed Genotypes 

The filter for quality of imputation was based on the IMPUTE2 info score metric, which is the 

measure of the observed statistical information associated with the imputed allele frequency 

estimate. This metric has a range of values from 0 to 1, suggesting lower to higher imputed genotype 

confidence (Marchini and Howie 2010; Southam et al. 2011). We used a filter threshold of info score 

≥ 0.8. 

To double-check the imputation quality, independently of the use of the IMPUTE2-specific info score 

metric, we performed an additional experiment by imputing 17.842 masked SNPs from 

chromosomes 22 and 14, shared between the target and reference panels, and matching the same 

intervals of minor allele frequency bins (MAF) from Figure S2. We performed two imputation 

experiments with reference panels 1KGP and EPIGEN-5M+1KGP. We then calculated the Spearman 

correlation (ρ), between the true genotypes (the observed number of the minor allele) and the 

imputed genotypes (the expected number of imputed minor alleles or Allelic Dosage) (Willer et al. 

2008). Considering three genotypes AA, AB and BB, and their probabilities (P), the Allelic Dosage of B 

is estimated as 0*P(AA) + 1*P(AB) + 2*P(BB). 

The flowchart on Figure S1 describes the whole imputation process, including tasks performed for 

quality control and data imputation using public data (1KGP) and data from the EPIGEN Project. 
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Figure S1: Flowchart of the whole Imputation process (see the EPIGEN-Brazil Scientific Workflow: 
http://www.ldgh.com.br/scientificworkflow/flowcharts.php#). Overview of the complete 
imputation process (Figure S1-A). Two previous tasks may be required for imputation if it is 
necessary to create or merge reference panels (Figures S1-B and S1-C). The Reference Panel 
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Creation task (Figure S1-B and Figure S1-A orange color process) converts a dataset of unphased 
genotypes into a reference panel; producing the EPIGEN-5M Reference Panel from the EPIGEN-5M 
dataset. The Merge Reference Panels task (Figure S1-C and Figure S1-A pink color process) 
produces combinations of two different panels using IMPUTE2 software, generating the EPIGEN-
5M+1KGP Reference Panel. The imputation process itself consists of three main tasks: Pre-Phasing, 
Haplotype Phase Inference and Imputation. The Pre-Phasing task (Figure S1-D and Figure S1-A 
green color processes) addresses strand alignment between target and reference panel using 
software SHAPEIT2, PLINK and the scripting language AWK. Haplotype Phase Inference task (Figure 
S1-A yellow color processes) of the target dataset uses the methodology implemented in the 
software SHAPEIT2; generating .haps and .sample files (target dataset aligned and phased with the 
Reference Panel). The latter files serve as input for the Imputation task (Figure S1-A red color 
processes) conducted with software IMPUTE2, following the “best practices” guidelines in the 
software documentation. 

 

2.4. Masterscript  

We developed a masterscript to summarize and organize all imputation tasks, including 

standardization and process optimization with checkpoints for data quality control. This tool is 

implemented in perl and is guided by two files, as described below: 

 Masterscript: developed in perl language (.pl), it generates the command lines, executes the 

different software, and creates directories and output files; following instructions in the Path and 

Instructions files, as follows; 

 Path file: It is a text file (.txt) containing the paths to the software used (SHAPEIT2, PLINK and 

IMPUTE2); 

 Instructions file: It is a text file (.txt) containing the paths for the target dataset, datasets to 

be converted (.ped, .map or .bed, .bin, .fam) and reference panels files (genetic map, .hap, .leg and 

.sam). Additional to the paths, the user canset flags to indicate:(i) which reference panels must be 

created and/or used to impute; (ii) which dataset will be used for phasing haplotypes or if a dataset 

pre-phased by other method will be used; (iii) which target dataset will be used; and (iv) set the size 

of the chunks or interval to be imputed. By setting these flags, the user can inform the masterscript 

the combination of files to be used and whether to run the whole process (pre-phasing, phasing and 

imputation) or only some tasks.  

This imputation masterscript is available in the EPIGEN-Brazil Scientific Workflow website 

(http://www.ldgh.com.br/scientificworkflow/master_scripts.php). It is portable and can be used in 

machines with different operating systems (Windows, Linux, MAC) that have the perl interpreter 

installed. The masterscript tool is also used by our group for different projects, since it allows the 

user to perform only pre-phasing or phasing steps, with different reference panels and for all 

chromosomes with one command line.  

http://www.ldgh.com.br/scientificworkflow/master_scripts.php
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2.5. Results and discussion 

2.5.1. EPIGEN Reference Panels 

We created a new reference panel combining EPIGEN-5M and 1KGP Phase 3 datasets. The number of 

SNPs in each reference panel is detailed below (Table S4). 

 

Table S4: Number of SNPs per chromosome in each imputation reference panel. 

Chromosome 

Number of SNPs in each reference panel 

1KGP EPIGEN-5M+1KGP 

(5008 Haplotypes) (5538 Haplotypes) 

1 6,500,358 6,503,104 

2 7,117,614 7,120,509 

3 5,862,629 5,865,415 

4 5,763,673 5,766,431 

5 5,293,915 5,299,694 

6 5,051,641 5,054,461 

7 4,741,583 4,743,885 

8 4,622,575 4,624,981 

9 3,579,889 3,580,959 

10 4,013,458 4,014,877 

11 4,067,158 4,068,432 

12 3,889,061 3,887,967 

13 2,872,968 2,873,412 

14 2,669,300 2,670,419 

15 2,437,477 2,438,695 

16 2,713,871 2,713,392 

17 2,341,782 2,340,681 

18 2,279,214 2,280,500 

19 1,843,199 1,843,320 

20 1,822,225 1,822,871 

21 1,112,215 1,097,187 

22 1,110,217 1,109,800 

TOTAL 81,706,022 81,720,992 
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We observed that EPIGEN-5M+1KGP reference panel (5538 haplotypes - 81,720,992 SNPs) has a 

larger number of haplotypes and SNPs (530 and 14,970; respectivelly) than the 1KGP (5008 

haplotypes - 81,706,022). 

 

An analysis of the minor allele frequency (MAF) allelic spectra (Figure S2) shows slight differences 

between both panels. Most of the variants of the EPIGEN-5M+1KGP reference panel and the 1KGP 

panel are “very rare” (MAF≤0.3%)(61,077,452 SNPs for 1KGP and 60,856,365 SNPs for EPIGEN-

5M+1KGP panel). When we look for common variants (MAF˃5%), the EPIGEN-5M+1KGP panel has 

45,930 more SNPs than the 1KGP panel (i.e., 1KGP presents 7,963,730 variants vs. EPIGEN-5M+1KGP 

8,009,660 SNPs), but these common SNPs represent only about 10% of the total SNPs in both panels, 

indicating that there are more rare SNPs serving as reference for imputation. 

 

Figure S2: Allele frequency spectrum of variants by Minor Allele Frequency (MAF) in each 
imputation reference panel. The number of SNPs is described in the categories and proportions are 
calculated dividing the number of SNPs in each MAF class by the total number of SNPs of each 
reference panel (at the top).  
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2.5.2. Target phasing experiments with different reference panels for chromosome 

22 

We tested the effects of phasing our target dataset (EPIGEN-2.5M dataset) with two different 

reference haplotypes (1KGP Phase 1 and EPIGEN-5M panels), using data from chromosome 22. The 

goal was to compare the efficiency of each Target/Reference combination during haplotype phase 

inference and choose the best combinations to proceed with the imputation of other chromosomes. 

After the test, we compared the total number of imputed SNPs, and the number of SNPs with info 

score ≥ 0.9 and info score ≥ 0.8 at the end of the imputation process. For these experiments, the 

whole imputation process was performed and the results for different combinations are shown on 

Table S5. 

 

Table S5: Comparison between target haplotype phase inferences with different reference 
haplotypes using the number of imputed SNPs for chromosome 22. 

Imputation 

Reference Panel 
1KGP EPIGEN-5M+1KGP 

Haplotype Phase 

Inference 

Reference Panel 

1KGP 5M 1KGP 5M 

Total imputed SNPs: 489,093 490,852 490,001 491,095 

SNPs imputed with info score ≥ 90%: 204,283 204,615 210,915 212,000 

SNPs imputed with info score ≥ 80%: 259,177 259,493 271,714 272,938 

 

The results show that, when phase is inferred using EPIGEN-5M panel as reference, the imputation 

output presents more SNPs in total and with info score ≥ 0.9 and ≥ 0.8 than when using the 1KGP 

Phase 1 as reference, regardless of the reference panel used for imputation, although the differences 

were small. 

Because we have very similar results for imputation using the different references for phasing of the 

reference panel, we decided that when imputing with the 1KGP panel, pre-phase and phase will be 

done using it as reference for haplotyping. We are following such approach because the differences 

between EPIGEN-5M and 1KGP throughout phasing inferences are small for quality terms (info score 

≥ 0.9 and ≥ 0.8), and literature advises that accurate imputation is dependent upon the target 

dataset and the reference panel allele calls being on the same physical strand of DNA (See Web 

resources 2). For the imputation with the EPIGEN-5M+1KGP panel, pre-phase and phase will be 

performed with EPIGEN-5M reference considering that it has slightly better results both in quantity 
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and quality parameters. Thus, the following combinations between Target and Reference during 

haplotyping inference were chosen: 

In experiments using single imputation reference panels, target will be phased with the same 

reference used to impute. 

In experiments using the combination between EPIGEN-5M and 1KGP reference panels, 

target will be phased with EPIGEN-5M. 

After haplotype phase inference, the number of phased SNPs has been evaluated for each 

chromosome as shown in Table S6. It confirms that the number of target SNPs decreases after 

phasing and that phasing with EPIGEN-5M reference results in 116,875 more SNPs for imputation 

than phasing with 1KGP. 

 

Table S6: Number of target SNPs before and after haplotype phase inference with 1KGP or EPIGEN-
5M as reference. 

 
Number of SNPs 

Chr 
Target 

Imputation Basis 

Target phased with: 

StudySNPs 1KGP EPIGEN-5M 

1 177,661 161,883 171,902 

2 187,930 172,500 182,125 

3 159,006 145,511 154,106 

4 148,260 136,009 143,823 

5 141,166 127,136 136,574 

6 148,074 135,189 143,691 

7 124,881 114,567 121,031 

8 121,728 112,140 118,175 

9 99,341 92,121 96,322 

10 115,507 106,086 112,081 

11 112,277 102,911 108,599 

12 108,994 99,586 105,590 

13 80,949 74,571 78,599 

14 74,150 68,108 72,058 

15 69,868 64,338 67,829 

16 73,455 67,925 71,176 

17 63,441 58,256 61,341 
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18 66,461 61,652 64,676 

19 45,045 41,136 43,703 

20 54,519 50,699 53,042 

21 30,942 28,558 30,100 

22 31,454 29,402 30,616 

Total 2,235,109 2,050,284 2,167,159 

 

2.5.3. Imputation Results 

Tables S7 and S8 show how the number of SNPs vary along the imputation process for chromosomes 

1 to 22, in particular, the amount of target SNPs before and after haplotype phase inference, the 

total output SNPs after imputation, and the number of SNPs after filtering for info score ≥ 0.8 for 

different reference panels (1KGP and EPIGEN-5M+1KGP). Imputed data using EPIGEN-5M+1KGP 

reference panel provides more output SNPs than the 1KGP reference panel (140,452 more SNPs in 

total and 788,873 more SNPs with info score ≥ 0.8). Specifically, while the EPIGEN-5M+1KGP 

reference panel increased the number of SNPs imputed in approximately 36.60 times (79,575,201 

more SNPs), with the 1KGP panel this increase was of 36.54 times (79,434,749 more SNPs). In 

addition, when comparing well imputed SNPs (info score ≥ 0.8), EPIGEN-5M+1KGP reference panel 

increased the number of SNPs imputed in approximately 13.44 times (27,820,615 more SNPs) and 

1KGP panel, 13.09 times (27,031,742 more SNPs). 

 

Table S7: Number of target SNPs before imputation, after phasing with 1KGP, the total output and 
after filtering for info score ≥ 0.8 for 1KGP reference panel for chromosome 1 to 22. 

Chr 

Target 

Study 

SNPs 

Imputation Basis: 

Phased 1KGP 

Imputation Output: 

Total 

Panel 1KGP 

Filtered (info≥0.8) 

Panel 1KGP 

1 177,661 161,883 6,499,115 2,288,020 

2 187,930 172,500 7,116,785 2,530,773 

3 159,006 145,511 5,862,226 2,124,168 

4 148,260 136,009 5,763,229 2,125,871 

5 141,166 127,136 5,292,923 1,931,714 

6 148,074 135,189 5,051,023 1,896,389 

7 124,881 114,567 4,741,208 1,719,435 

8 121,728 112,140 4,622,420 1,671,052 
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9 99,341 92,121 3,579,050 1,256,488 

10 115,507 106,086 4,012,554 1,464,838 

11 112,277 102,911 4,066,169 1,463,778 

12 108,994 99,586 3,885,697 1,396,938 

13 80,949 74,571 2,871,655 1,057,942 

14 74,150 68,108 2,668,862 944,355 

15 69,868 64,338 2,437,183 846,882 

16 73,455 67,925 2,711,905 910,663 

17 63,441 58,256 2,339,329 794,486 

18 66,461 61,652 2,278,960 820,670 

19 45,045 41,136 1,842,148 623,852 

20 54,519 50,699 1,821,784 637,217 

21 30,942 28,558 1,096,482 389,021 

22 31,454 29,402 1,109,151 372,299 

Total 2,235,109 2,050,284 81,669,858 29,266,851 

 

Table S8: Number of target SNPs before imputation, after phasing with EPIGEN-5M, the total 
output and after filtering for info score ≥ 0.8 for EPIGEN-5M+1KGP reference panel for 

chromosome 1 to 22. 

Chr 

Target 

Study 

SNPs 

Imputation Basis: 

Phased 5M 

Imputation Output: 

Total Panel 5M+1KGP 
Filtered (info≥0.8) 

Panel 5M+1KGP 

1 177,661 171,902 6,510,806 2,337,222 

2 187,930 182,125 7,128,012 2,594,579 

3 159,006 154,106 5,872,005 2,175,930 

4 148,260 143,823 5,772,298 2,177,759 

5 141,166 136,574 5,305,426 1,978,589 

6 148,074 143,691 5,061,115 1,944,576 

7 124,881 121,031 4,749,061 1,758,291 

8 121,728 118,175 4,629,526 1,718,923 

9 99,341 96,322 3,584,420 1,300,509 

10 115,507 112,081 4,019,477 1,501,510 

11 112,277 108,599 4,073,007 1,496,055 

12 108,994 105,590 3,892,675 1,429,360 

13 80,949 78,599 2,876,441 1,088,754 
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14 74,150 72,058 2,673,307 969,005 

15 69,868 67,829 2,441,442 873,256 

16 73,455 71,176 2,716,071 939,701 

17 63,441 61,341 2,343,267 823,485 

18 66,461 64,676 2,282,710 851,261 

19 45,045 43,703 1,845,342 646,229 

20 54,519 53,042 1,824,769 661,471 

21 30,942 30,100 1,098,354 403,183 

22 31,454 30,616 1,110,779 386,076 

Total 2,235,109 2,167,159 81,810,310 30,055,724 

 

The observed increase in the number of SNPs when compared to the 1KGP panel, even if small, is 

due to the addition of EPIGEN-5M panel to the 1KGP panel, and also by the ancestry matching, once 

that EPIGEN-5M panel is composed by individuals from the same populations as the target dataset. It 

is known that a better matched reference will result on better imputed genotypes (Deelen et al. 

2014; Huang and Tseng 2014). Huang and Tseng (2014) also concluded that larger reference panels 

can reduce imputation error and missing genotype, but the improvement may be limited. Besides, 

for an admixed study population, the simple selection of a single best-reference panel among 

HapMap African, European, or Asian population is not appropriate. The composite reference panel 

combining all available reference data should be used (Huang and Tseng 2014). 

We also compared the MAF spectra for data before and after imputation with the different panels 

(Figure S3). It shows a considerable increase on the number of very rare SNPs (MAF ≤ 0.3%) when 

imputing the target dataset both with the 1KGP or the EPIGEN-5M+1KGP reference panel. 

Approximately 10% of the variants imputed with the 1KGP and the EPIGEN-5M+1KGP references are 

common (MAF > 5%). These findings are compatible with the MAF distribution through reference 

panels seen on Figure 2A in the Main Text (or Figure S2). 
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Figure S3: The allele frequency spectrum of variants by Minor Allele Frequency (MAF) of target 
dataset before and after imputation with distinct reference panels, without filtering for any info 
score cutoff threshold. The number of SNPs is described in the categories and proportions are 
calculated dividing the number of SNPs in each MAF class by the total number of SNPs (at the top). 

 

This analysis was repeated for SNPs with info score ≥ 0.8 (Figure S4). It shows a small increase for 

very rare SNPs when imputing the Target dataset with the 1KGP or the EPIGEN-5M+1KGP reference 

panel. Finally, about 25% of the variants imputed with the 1KGP and the EPIGEN-5M+1KGP reference 

panels are common. 

 

Figure S4: The allele frequency spectrum of variants by Minor Allele Frequency (MAF) of target 
dataset before and after imputation with distinct reference panels, using the cutoff of info score ≥ 
0.8. The number of SNPs is described in the categories and proportions are calculated dividing the 
number of SNPs in each MAF class by the total number of SNPs (at the top). 
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We also evaluated the performance of imputation (info score) as a function of their MAFs (Figure S5) 

and for both reference panels. For most of MAFs bins, the EPIGEN-5M+1KGP panel performs better 

than the 1KGP panel. 

 

 

Figure S5: Imputation quality (mean info score) as a function of Minor Allele Frequency (MAF) for 
the target dataset after imputation with each of the tested reference panels. MAF bin sizes of 
0.01). 

 

We further assessed the quality of IMPUTE2 imputation by performing a masking/imputation 

experiment for 17.842 SNPs and using for each SNP the Spearman correlation (ρ) between the 

observed and masked/imputed genotypes. Both for EPIGEN-5M+1KGP and the 1KGP reference 

panels, the mean ρ across SNPs was higher than 0.92 for all the MAF bins (Figure S2), which 

demonstrate that genotypes were accurately imputed. Importantly, for all MAF bins, the Spearman 

correlation (ρ) was slightly but consistently higher for EPIGEN-5M+1KGP than for 1KGP reference 

panels (Figure S6), consistently with the improvement of the imputation determined by the inclusion 

of the EPIGEN-5M dataset. 
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Figure S6: Spearman correlation difference between EPIGEN-5M+1KGP and 1KGP as a function of 
MAF bins. (ρEPIGEN-5M+1KGP – ρ1KGP) is represented for each MAF bin, and is consistently positive. 

 

 

 

Additional information is available about the whole bioinformatic workflow for each of the 

EPIGEN-Brazil Cohorts (Salvador, Bambuí, Pelotas). 

The EPIGEN-Brazil Imputation Panel – Cohorts Section. 

Which can be accesed at: 

http://www.ldgh.com.br/scientificworkflow/documents.html 

 

 

 

 

 

http://www.ldgh.com.br/scientificworkflow/document_files/Mat%20Sup.%20Scientific%20Workflow%20-%20Cohorts.pdf
http://www.ldgh.com.br/scientificworkflow/documents.html
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WEB RESOURCES 

 

1- SHAPEIT - Phasing with a reference panel. Available from: 

 https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html#reference 

 

2- GARNET GWAS in Breast Cancer Patients from the SUCCESS-A trial study. Available from: 

 https://www.genome.gov/27541119/genomics-and-randomized-trials-network-garnet/#top 

 

3- IMPUTE2 - Best practices for Imputation. Available from: 

 https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#best_practices 

 

4- IMPUTE2 - Phasing with a reference panel. Available from: 

 https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html 

 

5- Illumina, Inc. (2006). “TOP/BOT” Strand and “A/B” Allele [Technical Note]. Available from: 

 http://www.illumina.com/documents/products/technotes/technote_topbot.pdf 

 

 

 

 

 

 

 

 

 

https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html#reference
https://www.genome.gov/27541119/genomics-and-randomized-trials-network-garnet/#top
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#best_practices
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
http://www.illumina.com/documents/products/technotes/technote_topbot.pdf


58 

3. EPIGEN-BRAZIL'S SCIENTIFIC WORKFLOW 

The Scientific Workflow is implemented as a freely available and interactive website. Importantly, 

because openness is a valuable feature of a Scientific Workflow, the website allows the gathering of 

comments from visitors and users, which helps to improve and validate its content. Here we detail 

the different building blocks of the Scientific Workflow. 

Description of the scientific workflow components and use cases. 

 

3.1. Flowcharts 

We use Flowcharts as a standardized approach for describing research methodologies and scientific 

analyses (Leach 2016) .Flowcharts main advantage is allowing to go from conceptual to operational 

level of data analyses. The principle of a Flowchart is to connect inputs, processes and outputs in a 

graphical execution pipeline. Inputs and outputs can be, for example, datasets or text files in several 

formats. Processes represent the execution of a task that transforms the input into a desired output. 

A process can range from a single command line to scripts, Masterscripts and third-party software. 

An example of Flowchart available in the EPIGEN-Brazil repository is the Ancestry analysis (Figure 3, 

Flowcharts and, in detail, Figure S7). This flowchart describes the steps to estimate both individual 

and chromosome local ancestry in admixed individuals. The Ancestry Flowchart summarizes steps to: 

(1) join different genetic datasets, (2) perform individual ancestry analysis by the model-based 

population genetics method implemented in the software Admixture (Alexander et al. 2009), (3) 

analyse population structure by Principal Component Analyses (PCA) (Price et al. 2006), and (4) 

perform local ancestry analysis using the method implemented softwares such as PCAdmix (Brisbin 

et al. 2012) or RFmix (Maples et al. 2013). A visitor that wants to perform its own individual ancestry 

analysis with Admixture will note that the Ancestry Flowchart indicates the need for a format 

conversion step beforehand (the process "recode12 function of PLINK"). Similarly, for a PCA the 

visitor will note the need to run an intermediate task (the process "EIGENSTRAT PCA Smart 

Eigenstrat.pl") that prepares the inputs for the smartpca software of the EIGENSTRAT package. These 

small details provided by the flowchart's big picture may save the visitor a few hours work in 

understanding the specific requirements of the analysis of interest. Other advantages of a Flowchart 

are that it provides an overview of the whole analysis and allows the identification of tasks that need 

to be executed either in parallel or sequentially. Also, it can be used to identify collaboration points 

and modules to be reused across teams, since its graphical visualization is easy to understand. 

Although such sharing practices are common among software development teams, it is seldom 

applied to research in bioinformatics. 
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Figure S7: Ancestry analysis flowchart. 

 

3.2. Masterscripts 

Masterscript is a set of commands that orchestrates and executes an analysis task, such as command 

line calls of third-party software and scripts or data conversion. In our Scientific Workflow concept, 

Flowchart processes that involve complex tasks (such as requiring several command line executions 

and in-house scripts) are associated with a Mastercript that contains the executables of that task. 

The level of detail in a Masterscript is such that one can access even the parameters used to run 

software. Following the previous example, a visitor consulting the Ancestry Flowchart to 
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reproduce/perform population structure analysis with the smartpca software can click on the 

intermediate process ("EIGENSTRAT PCA Smart Eigenstrat.pl") to access all the commands used to 

run that step of the analysis (Figure S7 and, in detail, Figure S8). We standardized the description of 

Masterscripts by applying a default heading that makes them self-explanatory in terms of execution 

command, parameters and input formats. They also identify the author or developer in case of 

questions to ask or bugs to report. To the best of our knowledge, this is the first attempt to provide a 

web tool that implements a Scientific Workflow by interactively associating descriptive analyses 

(Flowcharts) with their executables (Masterscripts and scripts). 

 

Figure S8: Masterscript example. 

  

3.3. Documents 

The Documents area contains two kinds of material. One corresponds to methodological and 

technical reports that are too detailed even for a journal's Supplementary Material. When preparing 

manuscripts from large research projects, the leading authors receive detailed methodological 

reports and intermediate results from different collaborators, which are processed and pruned 

several times before the final version submitted for publication. We believe that the high level of 

detail of such documents, seldom made publicly available, adds to the transparency and 

reproducibility of Science and may contribute a great deal to other investigators developing similar 

projects. For this reason, the visitor of the EPIGEN Scientific Workflow may find, for example, 

laboratory protocols regarding DNA extraction and preparation of samples for data generation, as 

well as extended versions of Supplementary Materials, such as one of the earliest versions 

corresponding to the article by Kehdy et al. 2015 about the origin and dynamics of admixture in 
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Brazil. This kind of Documents also includes workshops and congress presentations. The second kind 

corresponds to organizational documents of the project that, although initially for internal use and 

with no apparent scientific value, may be helpful for investigators organizing similar projects. Such 

organizational documents, seldom publicly available by large research projects, describe how the 

computational infrastructure of our multi-centric project was organized, and which were the data-

sharing procedures among the participating Centers (both inspired by Noble 2009). 

 

3.4. Other Resources 

Complementary to the Scientific Workflow approach, the EPIGEN-Brazil website also provides a 

repository of bioinformatics tools developed by the EPIGEN-Brazil investigators. It includes a 

Sequencing Pipeline (Machado et al. 2011), a database system for genetic variants - DIVERGENOME  

(Magalhaes et al. 2012), a web tool that integrates, summarizes and visualizes GWAS-hits and human 

diversity - DANCE: Disease ANCEstry Networks (Araujo et al. 2016), and a software to infer 

population structure from multilocus Copy Number Variation loci (Zuccherato et al. 2017). These are 

mostly targeted at investigators in the areas of population genetics and genetic epidemiology. All 

tools are freely available and contain detailed documentations to guide users. 
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2.3. Conclusions and Perspectives 

We presented and tested the EPIGEN-5M+1KGP imputation panel for Brazilian 

admixed and Latin American populations, using high-density genotyping arrays data from the 

EPIGEN-Brazil Initiative. In addition, we also compared the performance of our proposed 

reference panels with a public available (1KGP) to impute Latin American populations.  

The EPIGEN-5M+1KGP imputation panel is the fusion of the public 1KGP Phase 3 

imputation panel with haplotypes derived from the EPIGEN-5M dataset (a product of the 

genotyping of 4.3M SNPs in 265 admixed individuals from the EPIGEN-Brazil Initiative). 

The filter for quality of imputation was based on the IMPUTE2 info score metric, which 

is the measure of the observed statistical information associated with the imputed allele 

frequency estimate. It is based on the ratio of the observed and complete information where 

the expectations are taken over the imputed genotype distribution and evaluated at the allele 

frequency estimate. This metric has a range of values from 0 to 1, suggesting lower to higher 

imputed genotype confidence (Marchini and Howie 2010; Southam et al. 2011). We used a 

filter threshold of info score ≥ 0.8. 

When we imputed a target SNP dataset (6,487 admixed individuals genotyped for 2.2M 

SNPs from the EPIGEN-Brazil Initiative, manuscript Figure 1) (Kehdy et al. 2015) with the 

EPIGEN-5M+1KGP panel, we gained 140,452 more SNPs in total and 788,873 additional 

high confidence SNPs (info score ≥ 0.8) than when using the 1KGP panel alone (Figure 2B, 

Supplemental Tables S7, S8, Supplementary Material Section 2.5.3). Thus, the major effect of 

the inclusion of the EPIGEN-5M dataset in a new imputation panel is not only to gain more 

SNPs but also to improve the quality of imputation.  

Particularly, the EPIGEN-5M+1KGP panel improves imputation quality in respect to 

1KGP across a wide range of allele frequencies (manuscript Figure 2C, Supplemental Figs 

S3-S6). Therefore, imputation quality (i.e. info score) improves with the inclusion of the 

EPIGEN-5M dataset even if it derives from high-density array data, rather than from WGS, 

which would be optimal. Imputation quality improves whether we impute the entire EPIGEN-

Brazil target dataset or each of the cohorts separately. This suggests that the assembled 

EPIGEN-5M+1KGP imputation panel performs better than the 1KGP panel for a variety of 

study sizes, admixture levels and post-Columbian demographic histories. Moreover, because 

high-density array data improves imputation quality, the 2.2M SNPs dataset previously 
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published by Kehdy et al. (2015) may also be used for imputation for GWAS performed in 

Latin American populations with lower-density arrays. 

 

We also developed a masterscript to summarize and organize all imputation tasks, 

including standardization and process optimization with checkpoints for data quality control. 

This tool is implemented in perl (programing language) and is available in the EPIGEN-

Brazil Scientific Workflow website 

(http://www.ldgh.com.br/scientificworkflow/master_scripts.php). It is portable and can be 

used in machines with different operating systems (Windows, Linux, MAC) that have the perl 

interpreter installed. The masterscript tool is already used by our group in different projects, 

since it allows the user to perform only pre-phasing or phasing steps, with different reference 

panels for all chromosomes with only one command line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ldgh.com.br/scientificworkflow/master_scripts.php
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3. CHAPTER 2: THE EPIGEN-BRAZIL BAMBUÍ COHORT PARTICIPATION IN 

GENOME-WIDE ASSOCIATION STUDY META-ANALYSIS CONSORTIA 

 

3.1. Author Summary and Contribution to the Research 

Meta-analysis methods statistically synthetize information from different independent 

studies, thus increasing sample size and scanning even more variants on the genome than each 

dataset alone. For this reason, meta-analysis of GWAS is an alternative to small-medium 

underpowered GWAS. It can increase power to detect associations, reduce false-positive 

findings and allow researchers to investigate the consistency or heterogeneity of these 

associations across different datasets and study populations. Besides that, meta-analysis 

techniques can use summary data, not demanding the submission of individual-level 

genotypes and clinical data to groups that are not part of the initial plan approved by the 

ethics committee. Therefore, only summary statistical results are transferred, which facilitates 

data sharing (Zeggini and Ioannidis 2009; Bush and Moore 2012; Evangelou and Ioannidis 

2013). 

This chapter describes our participation in The Cohorts for Heart and Aging Research in 

Genomic Epidemiology (CHARGE) Consortium, where we performed a PR interval GWAS 

of imputed and genotyped SNPs. It includes all the methodology, Manhattan plots and quality 

control for submitting the results to the consortium. It also contains our participation in the 

TCEA3-SNP rs2298632 interactions on QT and QRS interval as an on-going project. 

The GWAS analyses described here were performed by a team of our research group 

composed by: (1) I (which was responsible for the data management, quality controls and 

imputation procedures); (2) Thiago Peixoto Leal (PhD student in Bioinformatics responsible 

for the computational architecture); (3) Meddly Leslye Santolalla Robles (PhD in Genetics, 

with epidemiological background, which was responsible for the association analysis); and (4) 

Prof. Dr. Renan Pedra Sousa from our Graduate Program in Genetics, with academic 

background in statistics. 

My involvement and contribution to this manuscript was based on my background in 

Genotype Imputation. I worked on the quality control of genotyped data before imputation, 

the imputation process itself and quality controls of imputed genotypes for association itself. 

All the steps were done strictly following the analysis plan of each consortium. 
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3.2. The Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) Consortium 

The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

Consortium (http://www.chargeconsortium.com) was formed in 2008 to facilitate GWAS 

meta-analyses and replication opportunities among multiple large and well-phenotyped 

longitudinal cohort studies (Psaty et al. 2009). 

The CHARGE initial cohort design included the group effort of five prospective 

population-based cohort studies from Europe and The United States, with multiple 

cardiovascular and aging phenotypes in common and with genome-wide data completed or in 

progress in 2007 - 2008. The cohort design represents one of the best methods to estimate 

disease incidence and evaluate risk factors. Together, the five founder cohorts collected 

genome-wide data and a large number of phenotypes measured in a similar way for about 

38,000 individuals. The main objective is to study the genetic factors that contribute to 

healthy aging, as well as the chronic conditions common in old age (Psaty et al. 2009). The 

founded cohorts are described below: 

 (1) Age, Gene, Environment Susceptibility (AGES) designed to study risk factors 

associated with cardiovascular, neurocognitive, musculoskeletal systems, body composition, 

and metabolic regulation on the Reykjavik population-based cohort of 32 - 60 year old 

Icelandic individuals (Harris et al. 2007).  

 (2) Atherosclerosis Risk in Communities Study (ARIC) investigates its etiology and 

clinical consequences in 35-74 years old US community residents and in a cohort of a sub-

sample including 45 - 64 years old individuals (1989). 

 (3) Cardiovascular Health Study (CHS) investigates the risk factors for coronary 

heart disease and stroke in adults 65 years or older in a longitudinal US population-based 

cohort (Fried et al. 1991). 

 (4) Framingham Heart Study (FHS) aims to investigate cardiovascular disease and 

stroke risk factors in a cohort of 30 – 62 years old individuals, their spouses, children and 

grandchildren (from 2002) from the town of Framingham (MA,US) (Dawber et al. 1951; 

Splansky et al. 2007). 

http://www.chargeconsortium.com/
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 (5) Rotterdam Elderly Study (RS) designed to investigate the risk factors of 

cardiovascular, neurological, ophthalmological and endocrine diseases a prospective cohort 

study of 45 year or older individuals from the Netherlands (Hofman et al. 2007). 

 

To analyze the large amount of phenotypes and genetic data the consortium is organized 

in 33 phenotype-specific working groups, 11 groups of laboratory genomics and 

bioinformatics procedures, and one group of family studies 

(http://www.chargeconsortium.com/main/Consortium-Documents).  These working groups 

are not only responsible to elaborate and execute the analysis plan, but also to standardize 

phenotypes across the cohorts and decide about the inclusion of nonmember studies with 

similar phenotypes, frequently with supervision from the Analysis Committee. The working 

groups includes: Adiposity, Atrial fibrillation/PR interval, Aging and longevity, Blood 

pressure, Depression, Echocardiography, Educational attainment, and Electrocardiography 

(EKG), among others. 

Without a doubt, the CHARGE Consortium and collaborating non-member studies or 

consortia, with a prospective meta-analysis of association from five genome-wide studies, 

provide a great opportunity with a powerful strategy for discovering true phenotype 

associations with new genetic loci related with risk factors, subclinical disease measurement 

and clinical events (Psaty et al. 2009). 

 

3.3. EPIGEN-Brazil Bambuí Cohort Participation in the CHARGE Consortium 

Recently, the admixed Brazilian Bambuí Elderly Study Cohort, described in the 

introduction, was incorporated to this initiative contributing with the EKG data (PIs Prof. Dr. 

Maria Fernanda Lima-Costa from Centro de Pesquisa René Rachou and Prof. Dr. Antonio 

Ribeiro from Faculdade de Medicina from UFMG) and genomic data (Coordinated by Prof. 

Dr. Eduardo Tarazona) from the EPIGEN-Brazil consortium. At the moment, we are 

participating in two CHARGE Working Groups: (1) Atrial fibrillation/PR interval, and (2) 

EKG (QT, QRS, RR). 

The first study was already analyzed, results were sent to the coordinator of the group 

(Ioanna Ntalla) and are described below. The second one is under organization and will be 

processed by our group soon. 

http://www.chargeconsortium.com/main/Consortium-Documents
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The GWAS analyses were performed by a team of our research group which works 

interacting with the project leaders from the Consortium, controlling genotyped data, 

performing genotype imputation, extracting the imputed data in the appropriate format 

(usually a binary format that makes tasks computationally feasible), implementing the 

regression models in the most appropriate software to test associations, planning, distributing 

and running the analyses in a way compatible with our computational infra-structure, 

performing quality controls and finally, preparing the results as requested by the Consortium. 

All those steps were done following the instructions from the pre defined Consortium analysis 

plan (Attachments). 

 

3.3.1. PR Interval GWAS 

Electrocardiography (EKG) is the process of recording the electrical activity of the heart 

over a period of time using electrodes. They detect the electrical changes on the skin that arise 

from the heart muscle’s electrophysiology pattern of depolarizing (positive charged) and 

repolarizing (negative charge) during each heartbeat. On the EKG, the PR interval is the time 

measured in milliseconds (ms) from the beginning of the P-wave (atrial depolarization) to the 

beginning of the following QRS complex (ventricular depolarization). The normal values are 

around 120 to 200 ms (Bidstrup et al. 2013).  

Recent studies have shown that prolonged PR interval is more frequent in older patients 

and is associated with atrial fibrillation, increased mortality and left ventricular dysfunction 

(Bidstrup et al. 2013; Kwok et al. 2016). Published GWAS and ongoing exome chip analysis 

have identified a large number of common genetic variants associated with PR interval, 117 

chromosomal regions with sixty seven genes identified on GWAS catalog (Bidstrup et al. 

2013; Kwok et al. 2016; MacArthur et al. 2017). The best established associations are: the 

locus 3p22.2 containing two voltage-gated sodium channels genes: SCN10A, SCN5, and seven 

loci near to cardiac developmental genes: 7q31.2 (CAV1-CAv2), 3q25 (NKX2-5), 12p12.1 

(SOX5), 11q13.5 (WNT11), 2p14 (MEIS1), and TBX5-TBX3 (12q24.21), and 4q21.23 

(ARHGAP24) (Pfeufer et al. 2010; Smith et al. 2011; Sano et al. 2014). Besides that, still 

remains a large amount of heritability that has not been defined.  
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3.3.1.1.  Objective 

This project aimed to discover further variants influencing the PR interval by taking an 

imputation strategy based on sequencing data available from the 1KGP. 

 

3.3.1.2.  Methodology 

3.3.1.2.1. Study population 

The EPIGEN-Brazil Bambuí Cohort study of ageing is in progress in Bambuí, a city in 

Minas Gerais State in Southeast Brazil, of approximately 15,000 inhabitants. The cohort 

population consisted of all residents aged 60 years and over on January 1997, who were 

identified from a complete census in the city. As part of the EPIGEN-Brazil Initiative 1,442 

of these participants were successfully genotyped. Laboratory measurements and clinical 

information includes, among others, calcium, potassium and magnesium values, and EKG 

analyzed and coded at the Epicare Center, in Winston-Salem (NC, US). All cardiology 

evaluations were coordinated by Prof. Dr. Antonio Ribeiro. Because of the high prevalence of 

Chagas infections in the study population (one third of enrolled participants) and its known 

relationship with cardiomyopathy (Lima-Costa et al. 2011), patients with serology confirmed 

of Chagas infections were excluded from the CHARGE analyses. A total of 741 individuals 

were included in the project, containing data on: age, sex, BMI, height, RR interval, and PR 

interval. 

 

3.3.1.2.2. Genotyping, ancestry, genetic relatedness estimation and imputation 

The EPIGEN-Brazil Initiative has genotyped data for 1,442 individuals from Bambuí 

Cohort as described in the Introduction. The proportions of African, European, and Native 

American ancestry were estimated for each individual (Kehdy et al. 2015), using the software 

ADMIXTURE (Alexander et al. 2009). We used those estimates in the present study to 

describe the population and perform descriptive analysis. Principal Component Analysis 

(PCA) was performed using EIGENSOFT (Price et al. 2006). Additionally, kinship 

coefficients were estimated using REAP method (Thornton et al. 2012) in order to exclude 

first and second degree relative individuals (first degree: individual's parents, full siblings, or 

children, and second degree, grandparents, grandchildren, aunts, uncles). 
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Genotype imputation was performed following the imputation masterscript, 

implemented in the LDGH and fully described in Chapter 1 in the Scientific Workflow 

Manuscript. This masterscript was used following the instructions and requirements from the 

analysis plan.  

Genotype imputation of the EPIGEN-Brazil Bambuí Cohort dataset was done with 

IMPUTE v2 (Howie et al. 2009) software. The autosomal and X (female and males) 

chromosomes dataset were imputed using the reference panel from 1KGP Phase 3. From the 

initial dataset of 2,062,535 autosomal SNPs genotyped, after imputation, a total of 81,648,651 

SNPs were obtained, without any filter for imputation quality. For chromosome X, 43,425 

SNPs were used and a total of 3,456,910 SNPs were obtained after using 1KGP Phase3 

refecence panel. Imputed genotypes probabilities datasets were posteriorly transformed to 

binary GEN format using QCTool (http://www.well.ox.ac.uk/~gav/qctool). During this 

transformation, filters to maintain the final number of individuals and for excluding SNPs 

with IMPUTE v2 info score smaller than 0.1 were applied. For the X-chromosome we 

performed a stratified analysis by sex. Genotypes from X-chromosome were coded as 0 or 2 

within the non-pseudo-autosomal region (non-PAR). Pseudo-autosomal region (PAR) part of 

the X chromosome in males was not analyzed. 

After all the quality controls required by the Atrial fibrillation/PR interval Working 

Group analysis plan (exclusions of individuals due to family structure or absent data on any 

covariable; and SNP filtering before and after imputation), a total of 485 individuals and 

67,234,936 SNPs were finally included in the association analysis. 

 

3.3.1.2.3. Association analysis 

A total of 485 individuals remained for the GWAS meta-analysis after exclusions. The 

variables included in the analysis were: age (years), sex, BMI (kg/m
2
), height (cm), RR 

interval (ms) (RR), and PR interval (ms) (PR). Additionally to clinical data, 5 PCs were 

included in the regressions to control for potential stratification. GWAS was performed 

assuming an additive genetic linear regression model. The association tests were performed 

by regressing the PR interval onto the allele dosage (genotype uncertainty) of the coded allele 

(i.e. allele T for: AA=0, AT=0.58, TT=0.42) at each SNP. All GWAS analysis were done 

using SNPtest v2.5.2 software (Marchini and Howie 2010) using the –method expected, 
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which takes into account the genotype uncertainty of the imputed SNPs using the genotype 

probability file output by IMPUTE v2. The additive genetic model was indicated in the flag –

frequentist 1.  

Due to the necessity of measure variability between databases in meta-analysis 

methods, we performed two separate analyses: one having PR interval as outcome, and 

another having the residuals from the previous association. A total of 6 analyses were 

performed, two for each SNP datasets: autosomals, female-ChrX, and males-ChrX. 

 

Analysis 1, Outcome: PR interval 

PR ~ SNP + age + sex + height + BMI + RR + PC1 + PC2 + PC3 + PC4+ PC5 

 

Analysis 2, Outcome: Rank-based inverse normal transformed residuals 

 a. Take residuals from: 

PR ~ age + sex + height + BMI + RR (exclude Sex covariate for Chr X) 

 b. Apply rank-based inverse normal transformation to those residuals using the 

function “rankTransPheno” from FRGEpistasis R package (adjust parameter; ½) to obtain 

INVN_PR_RES. 

 c. Analyze: 

INVN_PR_RES ~ SNP + PC1 + PC2 + PC3 + PC4+ PC5 

 

GWAS results for all participating studies will be combined by inverse variance 

weighting by the Atrial Fibrillation/PR interval CHARGE Working Group. 

 

3.3.1.3.  Results 

3.3.1.3.1. Population description  

Half of the studied subjects were women (54%). The PR interval had a mean of 162.6 

and a SD of 21.3 milliseconds. Almost 5% of the individuals presented PR values higher than 
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200 ms. Age, BMI, height and RR interval were highly associated with PR interval in our 

population study, justifying the inclusion of all those variables in the analysis. Quality control 

analyses were performed using R core (Team 2013). The final model included the covariates: 

sex, age (years), BMI (kg/m2), Height (cm), and RR intervals (ms). 

 

3.3.1.3.2. Quality control 

In order to evaluate if there was a systematic bias in the association results, we 

calculated the genomic inflation factor, lambda gc (gc) for all six analyses. The genomic 

inflation factor is defined as the ratio of the median of the observed chi-squared test statistics 

and the expected median of the chi-squared distribution. The expected value  for a normal 

chi-squared distribution (no inflation) is 1.0. All lambda inflation factor values were around 

1.00 (Figure 3). Q-Q plots for all analyses showed a standard normal pattern, with the 

exception of the Autosomal PR interval analysis, that showed a little of departure from the 

normality line (gc=1.002) (Figure 3-A).  
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Figure 3: Quantile-Quantile plots for additive model PR interval GWA. Regression model for 

PR interval (left) and residuals (right) are presented for the three datasets. The red line shows 

normal distribution. Plots were created using qqman R package (Turner 2014). 

 

3.3.1.3.3. Preliminary results 

Manhattan plot of the six analyses are presented on Figure 4. Although there are marked 

peaks on chromosomes 7, 12, and 14, they should be considered with caution because the 

degree of uncertainty of genotyping. Top SNPs of each peak are rs147645426 (CHST9 gene), 

rs12099890 (chr12, intergenic of LIN7A and ACSS3 genes), and rs187786786 (chr14, 

intergenic of ELMSAN1 and DNAL1 genes) respectively. None of them directly associated 

with cardiac biological processes. The LIN7A and ACSS3 genes have been associated with 

age-related cataracts, as reported on the GWAS catalog.  
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Figure 4: Manhattan plots for additive model PR interval GWAS. GWAS significance level 

of each SNP, genotyped and imputed, by chromosome location. Blue lines indicate the 

suggestive threshold of -log10(1e-5), and the red lines indicate the significance threshold 

value of -log10(5e-8), according to the consensus Bonferroni adjustment of 1million 

independent tests. Manhattan plots were created using qqman R package (Turner 2014). 
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3.4. EPIGEN-Brazil Bambuí Cohort Participation on TCEA3-SNP rs2298632 

interactions on QT and QRS interval. 

Besides participating in two CHARGE phenotype groups (Atrial fibrillation/PR interval 

and EKG (QT, QRS, RR)), Dr. Christy Avery (Department of Epidemiology, University of 

North Carolina at Chapel Hill) invited us to join the “TCEA3-SNP interactions affecting 

ventricular conduction in multi-ethnic populations” Consortium, also with data from the 

Brazilian Bambuí Elderly Study Cohort. 

As part of a preliminary analysis, Dr. Christy Avery´s group performed a GWAS 

evaluating evidence for TCEA3-SNP rs2298632 interactions on QT, reasoning that SNPs 

affecting TCEA3 might interact with SNPs affecting genes that TCEA3 targets given TCEA3’s 

role as a transcription factor. Briefly, in n=17,240 Atherosclerosis Risk in Communities Study 

(ARIC) and Women’s Health Initiative (WHI) African American, European ancestry, and 

Hispanic/Latino participants, were tested whether the GWAS-identified TCEA3 lead SNP 

rs2298632(Arking et al. 2014) interacted with other SNPs. The group identified one genome-

wide significant interaction (P=4.3x10
-9

) at chromosome 6. The lead SNP (mean MAF=0.49) 

was flanked by CDKN1A, a gene previously associated with QT component QRS duration 

(Holm et al. 2010; Sotoodehnia et al. 2010; Ritchie et al. 2013). Although preliminary and 

pending larger discovery samples, replication, and extension to QRS duration, these results 

suggest that TCEA3 may affect QT (or QRS) through regulation of CDKN1A transcription. 

Based on that, they propose the evaluation of two traits measured on EKG: QT and QRS. 

The data for TCEA3-SNP rs2298632 interactions on QT and QRS interval are under 

final organization and will be sent to Dr. Christy Avery´s group very soon. 

 

3.5. Conclusions and Perspectives 

Many genetic markers were discovered since the massive genome sequencing around 

the world. Unfortunately, Latin American admixed populations of European, African and 

Native American ancestries are not well represented in those big studies, where most of 

individuals have European ancestry in almost all the genome. In this scenario, EPIGEN-Brazil 

Bambuí Cohort was invited and is now participating of two CHARGE phenotypes (Atrial 

fibrillation/PR interval and EKG (QT, QRS, RR)) and of the TCEA3-SNP rs2298632 

interactions on QT and QRS interval GWAS from Dr. Christy Avery´s group. 
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We performed the PR interval GWAS and observed three important peaks at 

chromosome 7, 12, and 14 in the preliminary results of regression analysis The results will be 

meta-analyzed together with other GWAS. The second CHARGE phenotype EKG (QT, QRS, 

RR) GWAS is under organization and will be processed by our group soon. Besides that, data 

for TCEA3-SNP rs2298632 interactions on QT and QRS interval are under final organization 

and will be sent to Dr. Christy Avery´s group very soon. 

Meta-analysis of GWAS reaffirms the power of collaborations to combine resources 

when boosting power to detect associations and consequently improving and leveraging 

results from distinct groups. So that, we are planning collaborations with other CHARGE 

Working Groups and looking for other consortia to participate once that we are learning more 

about association analysis, meta-analysis of GWAS and extracting even more information 

about our data. It is also a great opportunity to apply not only our acquired knowledge along 

this project, but also the masterscript developed for imputation as described in the EPIGEN-

Brazil Initiative resources manuscript for Genome Research (Chapter 1).  
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4. CONCLUSION 

During my Phd studies at LDGH, it was possible to develop the EPIGEN-5M+1KGP 

imputation panel for Brazilian admixed and Latin American populations, using high-density 

genotyping arrays data from EPIGEN-Brazil Initiative. The major effect of the inclusion of 

the EPIGEN-5M dataset in a new imputation panel is not only to gain more SNPs but also to 

improve the quality of imputation, inclusive across a wide range of allele frequencies. We 

also developed a masterscript to summarize and organize all imputation tasks, including 

standardization and process optimization with data quality control checkpoints. 

With these results we show that high-density array data from few hundreds of individual 

from the same population, combined with the public 1KGP dataset, is a powerful way to 

improve imputation quality. This is a valuable strategy in the absense of high-coverage WGS 

data, from populations underrepresented in genomic studies, which would be the optimal 

source of haplotypes for imputation. Moreover, with the EPIGEN-5M+1KGP reference panel, 

we look forward providing support for more robust and effective GWAS and admixture 

mapping/fine mapping studies in admixed Latin American populations with similar ancestries 

to the Brazilian population from EPIGEN-Brazil initiative. 

Besides that, the EPIGEN-5M+1KGP imputation panel was used to exemplify our 

implementation of the concept of Scientific Workflow, which main goal is to make, as much 

of the scientific process as possible, publicly available and reproductible. Once the Scientific 

Workflow presents different steps of the scientific process, from project development until 

publication, it comes up as a concrete initiative that provides more transparency and 

reproducibility in bioinformatics analyses. 

After all, conducting GWAS for meta-analysis has been a great opportunity to apply the 

results and the masterscript produced by the imputation project, the acquired knowledge on 

meta-analysis of GWAS and to extract more information about EPIGEN-Brazil data.  

At last, during the development of these projects, I had the opportunity to work with 

different researchers from different areas (bioinformatics and statistics) and have learned a lot 

with them. 
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ABSTRACT  
Admixed populations, with their chromosomes that are mosaics of tracts of different ancestries, are 
a resource to study the global genetic architecture of complex phenotypes, in the context of the 
under-representation of non-European populations in genomic studies. Leveraging on admixture in 
Brazilians, who have Native American, European and African ancestries, we used genome-wide data 
to perform Admixture Mapping/fine-mapping of Body Mass Index in three population-based cohorts. 
We found suggestive associations with African-associated alleles in children from Salvador (10q22.1, 
10q22.3), and in young adults from Pelotas (CYLD and MACROD2 genes). In Pelotas young females, 
the intergenic rsXXX (p=2.39x10-8), very rare in Europeans, with frequencies of ~5% in Africans, has 
an effect of 3.2-6.6 Kg/m2 per each A allele (95%CI). We confirmed the association of FTO rsXXX 
(male-specific) and rsXXX in Pelotas young adults. Our results support the concept that the global 
genetic architecture of BMI is partially age- and sex-dependent.  
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While South Americans are underrepresented in human genomic
diversity studies, Brazil has been a classical model for population
genetics studies on admixture. We present the results of the EPIGEN
Brazil Initiative, the most comprehensive up-to-date genomic anal-
ysis of any Latin-American population. A population-based genome-
wide analysis of 6,487 individuals was performed in the context of
worldwide genomic diversity to elucidate how ancestry, kinship,
and inbreeding interact in three populations with different histories
from the Northeast (African ancestry: 50%), Southeast, and South
(both with European ancestry >70%) of Brazil. We showed that
ancestry-positive assortative mating permeated Brazilian history.
We traced European ancestry in the Southeast/South to a wider
European/Middle Eastern region with respect to the Northeast,
where ancestry seems restricted to Iberia. By developing an approx-
imate Bayesian computation framework, we infer more recent Eu-
ropean immigration to the Southeast/South than to the Northeast.
Also, the observed low Native-American ancestry (6–8%) was
mostly introduced in different regions of Brazil soon after the
European Conquest. We broadened our understanding of the Af-
rican diaspora, the major destination of which was Brazil, by
revealing that Brazilians display two within-Africa ancestry com-
ponents: one associated with non-Bantu/western Africans (more
evident in the Northeast and African Americans) and one associ-
ated with Bantu/eastern Africans (more present in the Southeast/
South). Furthermore, the whole-genome analysis of 30 individuals
(42-fold deep coverage) shows that continental admixture rather
than local post-Columbian history is the main and complex deter-
minant of the individual amount of deleterious genotypes.

Latin America | population genetics | Salvador SCAALA |
Bambuí Cohort Study of Ageing | Pelotas Birth Cohort Study

Latin Americans, who are classical models of the effects of
admixture in human populations (1, 2), remain underrepre-

sented in studies of human genomic diversity, notwithstanding re-
cent studies (3, 4). Indeed, no large genome-wide study on
admixed South Americans has been conducted so far. Brazil is

the largest and most populous Latin-American country. Its over
200 million inhabitants are the product of post-Columbian
admixture between Amerindians, Europeans colonizers or
immigrants, and African slaves (1). Interestingly, Brazil was the
destiny of nearly 40% of the African diaspora, receiving seven
times more slaves than the United States (nearly 4 million vs.
600,000).
Here, we present results of the EPIGEN Brazil Initiative (https://

epigen.grude.ufmg.br), the most comprehensive up-to-date genomic
analysis of a Latin-American population. We genotyped nearly
2.2 million SNPs in 6,487 admixed individuals from three
population-based cohorts from different regions with distinct
demographic and socioeconomic backgrounds and sequenced
the whole genome of 30 individuals from these populations at an
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average deep coverage of 42× (Fig. 1B and SI Appendix, sections
1, 2, and 8). By leveraging on a population-based approach,
we (i) identified and quantified ancestry components of three
representative Brazilian populations at a previously unmatched
geographic resolution; (ii) developed an approximate Bayesian
computation (ABC) approach and inferred aspects of the admixture
dynamics in Northeastern, Southeastern, and Southern Brazil;
(iii) elucidated how aspects of the ancestry-related social history of
Brazilians influenced their genetic structure; and (iv) studied how
admixture, kinship, and inbreeding interact and shape the pattern
of putative deleterious mutations in an admixed population.

Results and Discussion
Populations, Continental Ancestry, and Population Structure. We
studied the following three population-based cohorts (Fig. 1B).
(i) SCAALA (Social Changes, Asthma and Allergy in Latin America
Program) (5) (1,309 individuals) from Salvador, a coastal city
with 2.7 million inhabitants in Northeastern Brazil that harbors
the most conspicuous demographic and cultural African contri-
bution (6). We inferred (7) that this population has the largest
African ancestry (50.8%; SE = 0.35) among the EPIGEN
populations, with 42.9% (SE = 0.35) and 6.4% (SE = 0.09) of

European and Amerindian ancestries, respectively. Notably, this
African ancestry is lower than that usually observed in African
Americans (8, 9). (ii) The Bambuí Aging Cohort Study (10),
ongoing in the homonymous city of ∼15,000 inhabitants, in the
inland of Southeastern Brazil (1,442 individuals who were 82%
of the residents older than 60 y old at the baseline year). We
estimated that Bambuí has 78.5% (SE = 0.4) of European,
14.7% (SE = 0.4) of African, and 6.7% (SE = 0.1) of Amerindian
ancestries. (iii) The 1982 Pelotas Birth Cohort Study (11) (3,736
individuals; 99% of all births in the city at the baseline year).
Pelotas is a city in Southern Brazil with 214,000 inhabitants.
Ancestry in Pelotas is 76.1% (SE = 0.33) European, 15.9% (SE =
0.3) African, and 8% (SE = 0.08) Amerindian.
By comparing autosomal mtDNA and X-chromosome di-

versity, we found across the three populations the signature of a
historical pattern of sex-biased preferential mating between
males with predominant European ancestry and women with
predominant African or Amerindian ancestry (12) (SI Appendix,
sections 6.6 and 6.9, Fig. S12, and Table S18). We determined
(13) that individuals from Salvador and Pelotas were, with few
exceptions, unrelated and have low consanguinity (Fig. 1A and SI
Appendix, Figs. S1 and S2). Conversely, the Bambuí cohort has
the highest family structure and inbreeding [Fig. 1A and SI Ap-
pendix, section 4.1 (discussion about the age structure of this
cohort) and Figs. S1 and S2]. Bambuí includes several families
with more than five related individuals showing at least one
second-degree (or closer) relative. Bambuí mean inbreeding
coefficient (0.010; SE = 0.0008) (SI Appendix, Fig. S2) is com-
parable with estimates observed in populations with 15–25% of
consanguineous marriages from India (14). Interestingly, in-
breeding in Bambuí was correlated with European ancestry
(ρSpearman = 0.20; P < 10−15). These higher inbreeding and kin-
ship structures are consistent with Bambuí being the smallest and
the most isolated of the EPIGEN populations.
Continental genomic ancestry in Latin America (and specifi-

cally, in Brazil) is correlated with a set of phenotypes, such as
skin color and self-reported ethnicity, and social and cultural
features, such as socioeconomic status (15–17). We observed a
positive correlation across the three EPIGEN populations be-
tween SNP-specific Africans/Europeans FST (a measurement
of informativeness of ancestry) and SNP-specific FIT (a mea-
surement of departure from Hardy–Weinberg equilibrium)

Fig. 1. Continental admixture and kinship
analysis of the EPIGEN Brazil populations.
(A) Kinship coefficient for each pair of individuals
and the probability that they share zero identity
by descent (IBD) alleles (IBD = 0). Horizontal lines
represent a kinship coefficient threshold used to
consider individuals as relatives. (B) Brazilian
regions, the studied populations, and their con-
tinental individual ancestry bar plots. N repre-
sents the numbers of EPIGEN individuals in the
Original Dataset (including relatives; detailed in
SI Appendix, section 6). (C) PCA representation,
including worldwide populations and the EPIGEN
populations, using only unrelated individuals
(Dataset U; explained in SI Appendix, section 6).
The three graphics derive from the same analysis
and are different only for the plotting of the
EPIGEN individuals. AP, admixed population;
ASW, Americans of African ancestry in USA;
CEU, Utah residents with Northern and Western
European ancestry; CLM, Colombians from
Medellin, Colombia; EAFR, east Africa; FIN,
Finnish in Finland; French B, Basque; GBR, Brit-
ish in England and Scotland; IBS, Iberian pop-
ulation in Spain; LWK, Luhya in Webuye, Kenya;
ME, Middle East; MXL/MEX, Mexican ancestry
from Los Angeles; N., (North) Italian; NAT, Native American; NE, northeast; NEUR, north Europe; PC, principal component; PUR, Puerto Ricans from Puerto
Rico; S, south; SE, southeast; SEUR, south Europe; TSI, Toscani in Italia; YRI, Yoruba in Ibadan, Nigeira; WAFR, west Africa.

Significance

The EPIGEN Brazil Project is the largest Latin-American initia-
tive to study the genomic diversity of admixed populations and
its effect on phenotypes. We studied 6,487 Brazilians from
three population-based cohorts with different geographic and
demographic backgrounds. We identified ancestry components
of these populations at a previously unmatched geographic
resolution. We broadened our understanding of the African
diaspora, the principal destination of which was Brazil, by re-
vealing an African ancestry component that likely derives from
the slave trade from Bantu/eastern African populations. In the
context of the current debate about how the pattern of dele-
terious mutations varies between Africans and Europeans, we
use whole-genome data to show that continental admixture is
the main and complex determinant of the amount of delete-
rious genotypes in admixed individuals.
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(SI Appendix, Fig. S3). This finding indicates that, after five
centuries of admixture, Brazilians still preferentially mate with
individuals with similar ancestry (and its correlated morpholog-
ical phenotypes and socioeconomic characteristics), a trend also
observed in Mexicans and Puerto Ricans (18). Interestingly, the
highest correlations were found in Pelotas and Bambuí, consis-
tent with their higher proportion of individuals with a clearly
predominant ancestry (European or African) compared with Salvador
(Fig. 1 B and C). Conversely, in Salvador, despite its highest
mean African ancestry, individuals are more admixed (Fig. 1 B
and C), probably because of a combination of a longer history of
admixture (see below) and the lower and more homogeneous
socioeconomic status of this cohort (5).
Three outcomes illustrate how population subdivision and in-

breeding (both partly ancestry-dependent) interact to shape pop-
ulation structure in admixed populations with different sizes (SI
Appendix, Figs. S1 and S3). First, Bambuí (the smallest city) has
the strongest departure from Hardy–Weinberg equilibrium
(FIT =0.016; SE = 0.00003) because of both inbreeding (FIS =
0.010; SE = 0.0008) and ancestry-based population subdivision
(ρFIT-FST = 0.18; P < 10−16). Second, Pelotas (a medium-sized
city; FIT = 0.012; SE = 0.00002) has negligible inbreeding (FIS =
−0.001; SE = 0.0002) but the strongest ancestry-based pop-
ulation subdivision (ρFIT-FST = 0.38; P < 10−16). Third, the large
city of Salvador shows the lowest inbreeding and ancestry-based
population subdivision (FIT = −0.003; SE = 0.00002; FIS =
−0.001; SE = 0.0003; ρFIT-FST = 0.08; P < 10−16).
Overall, the EPIGEN populations studied by a population-based

approach exemplify how ancestry, kinship, and inbreeding may be
differently structured in small (Bambuí), medium (Pelotas), and
large (Salvador) admixed Latin-American populations. These pop-
ulations fairly represent the three most populated Brazilian regions
(Northeast, Southeast, and South) with their geographic distribution
and continental ancestry (Fig. 1) and are good examples of the
Latin-American genetic diversity with their ethnic diversity.

Differences in Admixture Dynamics. We estimated the continental
origin of each allele for each SNP along each chromosome of the
EPIGEN individuals (19) (SI Appendix, section 6.7) and calculated
the lengths of chromosome segments of continuous specific ancestry
(CSSA) (Fig. 2A), with distribution that informs how admixture
occurred over time. By leveraging on the model by Liang and
Nielsen (20) of CSSA, we developed an ABC framework to infer
admixture dynamics (SI Appendix, section 6.8). We simulated CSSA
distributions generated by a demographic history of three pulses of
trihybrid admixture that occurred 18–16, 12–10, and 6–4 generations
ago, conditioning on the observed current admixture proportions of
each of the EPIGEN populations. This demographic model con-
ciliates statistical complexity and the real history of admixture. We
inferred the posterior distributions of nine parameters mn,P, where

m is the proportion of immigrant individuals entering in the
admixed population from the n ancestral population (African,
European, or Native-American ancestry) in the P admixture pulse.
Interestingly, ABC results (Fig. 2B) show that the observed low

Native-American ancestry was mostly introduced in different regions
of Brazil soon after the European Conquest of the Americas, which
is consistent with the posterior depletion of the Native-American
population in Brazil. Also, we inferred a predominantly earlier Eu-
ropean colonization in the Northeast (Salvador) vs. a more recent
immigration in Southeastern and Southern Brazil (Bambuí and
Pelotas), consistent with historical records (brasil500anos.ibge.gov.br/).
Conversely, African admixture showed a decreasing temporal trend
shared by the three EPIGEN populations (21). Complementary
explanations are continuous local immigration into the admixed
populations from communities with high African ancestry
already settled in Brazil [for example, quilombos (i.e., Afro-
Brazilian slave-derived communities in Brazil) (22)].

Dissecting European Ancestry. To dissect the ancestry of Brazilians at
a subcontinental level, we applied (i) the ADMIXTUREmethod (7)
by increasing the number of ancestral clusters (K) that explains the
observed genetic structure (SI Appendix, Figs. S4 and S5) and (ii) the
Principal Component Analysis (PCA) (23) (Figs. 1C and 3 B and D
and SI Appendix, Fig. S6). To study biogeographic ancestry, we ex-
cluded sets of relatives that could affect our inferences at the within-
continent level (24). We developed a method based on complex
networks to reduce the relatedness of the analyzed individuals by
minimizing the number of excluded individuals (SI Appendix, section
6.1). Using this method, we created the Dataset Unrelated (Dataset
U), including 5,825 Brazilians, 1,780 worldwide individuals, and no
pair of individuals closer than second-degree relatives. Hereafter,
PCA and ADMIXTURE results are relative to Dataset U.
Brazil received several immigration waves from diverse Eu-

ropean origins during the last five centuries (brasil500anos.ibge.
gov.br/): Portuguese (the first colonizers), who also arrived in
large numbers during the last 150 y; Italians (mostly to the South
and Southeast); and Germans (mostly to the South). In our PCA
representation (Fig. 3B), the European component of the genomes
of most Brazilians is similar to individuals from the Iberian Penin-
sula and neighboring regions. The resemblance in within-European
ancestry of individuals from Pelotas (South) and Bambuí (South-
east) to central North Europeans and Middle Easters, respectively
(Fig. 3B), reflects a geographically wider European ancestry of these
two populations with respect to Salvador. Considering the total
European ancestry estimated by ADMIXTURE, we inferred a
higher proportion of North European-associated ancestry in Pelotas
(40.2%) than in Bambuí (35.8%) and Salvador (36.7%; P < 10−15;
Wilcoxon tests) (Fig. 3A, red cluster in K = 7). We confirmed these
results by analyzing a reduced number of SNPs with a larger set of

A

B

Fig. 2. Distributions of lengths of chromosomal
segments of (A) CSSA and (B) admixture dynamics
inferences estimated for three EPIGEN Brazilian
populations. (A) CSSA lengths were distributed in
50 equally spaced bins per population. Red, blue,
and green dots represent a European, an African,
and a Native-American CSSA, respectively. (B) We
inferred the posterior densities of the proportions
of immigrants (with respect to the admixed pop-
ulation) from each origin, and we show their 90%
highest posterior density (HPD) intervals. Inferences
are based on a model of three pulses of admixture
(vertical axis) simulated based on the model of CSSAs
evolution by Liang and Nielsen (20). Inferences are
based on approximate Bayesian computation. An-
cestry color codes are red for European, blue for Af-
rican, and green for Native American.
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European individuals and populations (25, 26) (SI Appendix,
section 6.2).

Brazil, the Main Destination of the African Diaspora. African slaves
arrived to Brazil during four centuries, whereas most arrivals to the
United States occurred along two centuries, and the geographic and
ethnic origin of Brazilian slaves differ from Caribbeans and African
Americans (27). In fact, the Portuguese Crown imported slaves to
Brazil from western and central west Africa (the two are the major
sources of the slave trade to all of the Americas) as well as
Mozambique. We detected two within-Africa ancestry clusters in
the current Brazilian population (Fig. 3C, K = 9 and SI Appendix,
section 6.3): one associated with the Yoruba/Mandenka non-Bantu
western populations (Fig. 3C, blue) and one associated with the
Luhya/HGDP (Human Genome Diversity Project) Bantu pop-
ulations from eastern Africa (Fig. 3C, mustard). Interestingly, the
proportions of these ancestry clusters, which are present across all
of the analyzed African and Latin-American populations, differ
across them. The blue cluster in Fig. 3C predominates in African
Americans and in Salvador, accounting for 83% and 75% of the
total African ancestry, respectively (against 17% and 25%, re-
spectively, of the mustard cluster in Fig. 3C) (SI Appendix, Table
S17). Comparatively, the mustard cluster in Fig. 3C is more evident

in Southeastern and Southern Brazil (36% and 44% of African
ancestry in Bambuí and Pelotas, respectively). These results are
consistent with the fact that a large proportion of Yoruba slaves
arrived in Salvador, whereas the Mozambican Bantu slaves dis-
embarked primarily in Rio de Janeiro in Southeastern Brazil (21).
These results show for the first time, to our knowledge, that the
genetic structure of Latin Americans reflects a more diversified
origin of the African diaspora into the continent. Interestingly, the
two within-African ancestry clusters in the Brazilian populations
(showing an average FST of 0.02) are characterized by 3,318 SNPs,
with the 10% top FST values higher than 0.06, and include 38 SNPs
that are hits of genome-wide association studies (SI Appendix, sec-
tion 7 and Table S25).

Pattern of Deleterious Variants: Effect of Continental Admixture,
Kinship, and Inbreeding. Based on whole-genome data from 30
individuals (10 from each of three EPIGEN populations), we
identified putative deleterious nonsynonymous variants (28) (SI
Appendix, section 8). There are recent interest in and apparently
conflicting results on whether Europeans have proportionally
more deleterious variants in homozygosis than Africans (29–32).
Lohmueller et al. (29) explained these differences as an effect of
the Out of Africa bottleneck on current non-African populations.
Out of Africa would have enhanced the effect of genetic drift
and attenuated the effect of purifying natural selection, pre-
venting, in many instances, the extinction of (mostly weakly)
deleterious variants in non-Africans.
We investigated how European ancestry shapes the amount

of deleterious variants in homozygosis (a more likely genotype
for common/weakly deleterious variants) and heterozygosis in
admixed Latin-American individuals. We observed three pat-
terns (Fig. 4). (i) Considering all (i.e., weakly and highly) dele-
terious variants, for a class of individuals with high European
ancestry (>65%; from Bambuí and Pelotas), the individual
number of deleterious variants in homozygosis is correlated with
European ancestry, but importantly, this correlation is not ob-
served among individuals with intermediate European ancestry
(from Salvador) (Fig. 4A). (ii) The individual number of dele-
terious variants (both all and rare classes) in heterozygosis (Fig. 4
B and D) decreases linearly with European ancestry, regardless
the cohort of origin. This result is also observed for rare dele-
terious variants in homozygosis, although the pattern is not very
clear in this case (Fig. 4C). (iii) There are no differences in the
amount of deleterious variants between individuals from Bambuí
and Pelotas. These populations have similar continental admixture
proportions and dynamics, but different post-Columbian population
sizes and histories of isolation, assortative mating, kinship structure,
and inbreeding. Taken together, our results are consistent with the
results and evolutionary scenario proposed by Lohmueller et al.
(29) and Lohmueller (31), and suggest that, in Latin-American
populations, the main determinant of the amount of deleteri-
ous variants is the history of continental admixture, although in a
more complex fashion than previously thought (pattern i). Com-
paratively, the role of local demographic history seems less relevant.

Conclusion
A thread of historical facts has modeled the genetic structure of
Brazilians. Our population-based and fine-scale analyses revealed
novel aspects of the genetic structure of Brazilians. In 1870, blacks
were the major ethnic group in Brazil (21), but this scenario
changed after the arrival of nearly 4 million Europeans during the
second one-half of the 19th century and the first one-half of the
20th century. This immigration wave was encouraged by Brazilian
officials as a way of “whiting” the population (33), and it trans-
formed Brazil into a predominantly white country, particularly in
the Southeast and South. Consistently, (i) we observed that larger
chromosomal segments of continuous European ancestry in the
southeast/south are the signature of this recent European immi-
gration, and (ii) we traced the European ancestry in the Southeast/
South of Brazil to a wider geographical region (including central
northern Europe and the Middle East) than in Salvador (more

Fig. 3. European and African ancestry clusters in the Brazilian populations. We
show (A and C) relevant ADMIXTURE individual ancestry bar plots and (B and D)
plots of principal components (PCs) that dissect ancestry within (A and B)
Europe and (C and D) Africa. We performed the analyses using Dataset U
(unrelated Brazilians and worldwide individuals). We only plot individuals from
relevant ancestral populations. Complete ADMIXTURE and PCA results are
represented in SI Appendix, section 6 and Figs. S4–S6. Black ellipses in B show
some individuals from Pelotas (Southern Brazil) clustering with northern Euro-
pean individuals toward the top and individuals from Bambuí (Southeastern
Brazil) clustering with Middle Eastern individuals toward the bottom. AP,
admixed population; ASW, Americans of African ancestry in USA; CEU, Utah
residents with Northern and Western European ancestry; CLM, Colombians
from Medellin, Colombia; EAFR, east Africa; FIN, Finnish in Finland; French B,
Basque; GBR, British in England and Scotland; IBS, Iberian population in Spain;
LWK, Luhya in Webuye, Kenya; ME, Middle East; MXL/MEX, Mexican ancestry
from Los Angeles; N., (North) Italian; NAT, Native American; NE, northeast;
NEUR, north Europe; PUR, Puerto Ricans from Puerto Rico; S, south; SE, south-
east; SEUR, south Europe; TSI, Toscani in Italia; YRI, Yoruba in Ibadan, Nigeira;
WAFR, west Africa.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1504447112 Kehdy et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1504447112


restricted to the Iberian Peninsula). However, neither this massive
immigration nor the internal migration of black Brazilians have
concealed two components of their African ancestry from the
genetic structure of Brazilians: one associated with the Yoruba/
Mandenka non-Bantu populations, which is more evident in the
Northeast (Salvador), and one associated with central east African/
Bantu populations, which is more present in the Southeast/South.
This result broadens our understanding of the genetic structure of
the African diaspora. Furthermore, we showed that positive assor-
tative mating by ancestry is a social factor that permeates the
demographic history of Brazilians and also, shapes their genetic
structure, with implications for the design of genetic association
studies in admixed populations. For instance, because mating by
ancestry produces Hardy–Weinberg disequilibrium, filtering SNPs
for genome-wide association studies based on the Hardy–Weinberg
equilibrium conceals real aspects of the genetic structure of these
populations. Finally, in Latin-American populations, the history of
continental admixture rather than local demographic history is the
main determinant of the burden of deleterious variants, although in
a more complex fashion than previously thought. We speculate that
future studies on populations fromNorthern Brazil (including large
cities, such as Manaus, next to the Amazon forest) or the Central-
West may reveal larger and different dynamics of Amerindian
ancestry. Also, fine-scale studies on large urban centers from the
Southeast and South of Brazil, such as Rio de Janeiro or Sao
Paulo, that have been the destination of migrants from all over the
country during the last decades, may show an even more diversified
origin of Brazilians, including Japanese ancestry components, for
instance, that we did not identify in our study. The EPIGEN Brazil
initiative is currently conducting studies to clarify how the genetic
variation and admixture interact with environmental and social
factors to shape the susceptibility to complex phenotypes and dis-
eases in the Brazilian populations.

Methods
Genotyping and Data Curation. Genotyping was performed by the Illumina
facility using the HumanOmni2.5–8v1 array for 6,504 individuals and the
HumanOmni5-4v1 array for 270 individuals (90 randomly selected from each

cohort). After that, we performed quality control analysis of the data using
Genome Studio (Illumina), PLINK (34), GLU (code.google.com/p/glu-genetics/),
Eigenstrat (35), and in-house scripts. This study was approved by the Brazilian
National Research Ethics Committee (CONEP, resolution 15895).

Whole-Genome Sequencing and Functional Annotation. We randomly selected
10 individuals from each of the three EPIGEN populations. The Illumina facility
performed whole-genome sequencing of these individuals from paired-end
libraries using the Hiseq 2000 Illumina platform. CASAVA v.1.9 modules were
used to align reads and call SNPs and small INDELs (insertion or deletion of
bases). Each genome was sequenced, on average, 42 times, with the following
quality control parameters: 128 Gb (Gigabase) of passing filter aligned to
the reference genome (HumanNCBI37_UCSC), 82% of bases with data quality
(QScore) ≥30, 96% of non-N reference bases with a coverage ≥10×, a
HumanOmni5 array agreement of 99.53%, and a HumanOmni2.5 array
agreement of 99.27%. Functional annotation was performed with ANNOVAR
(August 2013 release) with the refGene v.hg19_20131113 reference database in
April of 2014. The nonsynonymous variants were predicted to be deleterious
using CONDEL v2.0 (cutoff = 0.522) (28), which calculates a consensus score based
on MutationAssessor (36) and FatHMM (37). These results were corrected for the
bias reported in the work by Simons et al. (30), which evidenced that, when the
human reference allele is the derived one, methods that infer deleterious vari-
ants tend to underestimate its deleterious effect (SI Appendix, section 8).

Relatedness and Inbreeding Analysis. We estimated the kinship coefficients for
each possible pair of individuals from each of the EPIGEN populations using the
method implemented in the Relatedness Estimation in Admixed Populations
(REAP) software (13). It estimates kinship coefficients solely based on genetic
data, taking into account the individual ancestry proportion from K parental
populations and the K parental populations allele frequencies per each SNP. For
these analyses, we calculated individual ancestry proportion and K parental
populations allele frequencies per each SNP using the ADMIXTURE software (7)
in unsupervised mode assuming three parental populations (K = 3). Inbreeding
coefficients were also estimated for each individual using REAP. We repre-
sented families by networks, which were defined as groups of individuals
(vertices) linked by kinship coefficient higher than 0.1 (edges).

F Statistics. The FIS statistic for each population is estimated as the average of the
REAP inbreeding coefficients across individuals. For each SNP i and each pop-
ulation, we estimated the departure from Hardy–Weinberg equilibrium as FIT(i) =
(Hei − Hoi)/Hei, where Hoi and Hei are the observed and the expected hetero-
zygosities under Hardy–Weinberg equilibrium for the SNP i, respectively. We
estimated the population FIT by averaging FIT(i) across SNPs. We estimated the FST
for each SNP between the YRI and CEU populations using the R package hierfstat
(38). The correlation between YRI vs. CEU FST and FIT values for each SNP was
calculated by the Spearman’s rank correlation-ρ using the R cor.test function.

Population Structure Analyses. To study population structure, we applied (i) the
ADMIXTURE method (7), increasing the number of ancestral clusters (K) that
explains the observed genetic structure from K = 3, and (ii) PCA (35) (Figs. 1C
and 3 and SI Appendix, section 6 and Figs. S4–S6). To study biogeographic
ancestry, we have to exclude sets of relatives that could affect our inferences at
within-continental level (24). We conceived and applied a method based on
complex networks to reduce the relatedness of the analyzed individuals by
minimizing the number of excluded individuals (SI Appendix, section 6.1). Ap-
plying this method, we created Dataset U, with 5,825 Brazilians, 1,780
worldwide individuals, and no pairs of individuals closer than second-degree
relatives (REAP kinship coefficient >0.10) (SI Appendix, Table S13). We per-
formed ADMIXTURE analyses with both the Original Dataset and Dataset U (SI
Appendix, section 6 and Figs. S4 and S5).

PCA and ADMIXTURE analyses were performed with integrated datasets
comprising the three cohort-specific EPIGEN working datasets and the public
datasets populations described in SI Appendix, section 5. For the PCA and
ADMIXTURE analyses, we used the SNPs shared by all of these populations,
comprising a total of 8,267 samples and 331,790 autosomal SNPs (called the
Original Dataset).

Analyses with X-chromosome data used only female samples from the
Original Dataset. To perform such analyses, we integrated genotype data of
shared SNPs from the X chromosome of EPIGEN female samples (from all
three cohorts) and the X chromosome of female samples from the public
datasets populations described in SI Appendix, section 5. This data in-
tegration yielded genotyping data with 5,792 SNPs for 4,192 females.

Local Ancestry Analyses. We inferred chromosome local ancestry using the
PCAdmix software (19) and ∼2 million SNPs shared by EPIGEN (Original

A C

B D

Fig. 4. Individual numbers of genotypes with nonsynonymous deleterious
variants in homozygosis and heterozygosis vs. European ancestry based on
the whole-genome sequence (42×) of 30 individuals (10 from each pop-
ulation): Salvador (Northeast; brown), Bambuí (Southeast; cyan), and Pelotas
(South; gray). Deleterious variants were identified using CONDEL (28) and
corrected for the bias reported by Simons et al. (30). Spearman correlation
between European ancestry and the number of all deleterious variants in
homozygosis for Bambuí and Pelotas individuals was 0.57 (P = 0.009). The
numbers of genotypes considering all deleterious variants in homozygosis or
heterozygosis are in A and B, respectively, and considering only rare dele-
terious variants are in C (in homozygosis) and D (in heterozygosis). SNVs,
single nucleotide variants.
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Dataset) and the 1000 Genomes Project (SI Appendix, section 5.2). Consid-
ering our SNPs density, we defined a window length of 100 SNPs following
the work by Moreno-Estrada et al. (27). PCAdmix infers the ancestry of each
window. Local ancestry inferences were performed after linked markers (r2 >
0.99) were pruned to avoid ancestry misestimating caused by overfitting (4). We
considered only the windows in which ancestry was inferred by the forward–
backward algorithm with a posterior probability >0.90.

After local ancestry inferences, we calculated the lengths of the chromosomal
segments of CSSA for each haplotype from each chromosome from each in-
dividual. The distribution of CSSA lengthwasorganized in 50 equally spaced bins
defined in centimorgans and plotted for each population (Fig. 2A).

For the local ancestry analyses, we used phased data from the 1000 Genomes
Project populations YRI and LWK (Africans) as well as CEU, FIN, GBR, TSI, and IBS
(Europeans), Native-American populations Ashaninka and Shimaa [from the
Tarazona–Santos group LDGH (Laboratory of Human Genetic Diversity) dataset],
and the three EPIGEN populations (Original Dataset). The SHAPEIT software (39)
was used to generate phased datasets.

We estimated admixture dynamics parameters using ABC. We used the
model by Liang and Nielsen (20) to simulate CSSA distributions generated
by a demographic history of three pulses of trihybrid admixture occurring
18–16, 12–10, and 6–4 recent generations ago conditioned on the observed
admixture proportions of the EPIGEN populations. We inferred the posterior
distributions of nine parameters mn,P (SI Appendix, section 6.8).

Lineage Markers Haplogroups Inferences. We performed mtDNA haplogroup
assignments using HaploGrep (40), a web tool based on Phylotree (build 16)
for mtDNAhaplogroup assignment. For Y-chromosome data, we infer-
red haplogroups using an automated approach called AMY tree (41). For
Y-chromosome haplogroups, we considered the Karafet tree (42) and
more recent studies to describe additional subhaplogroups. By these
means, an updated tree was considered based on the information given by
The International Society of Genetic Genealogy (ISOGG version 9.43; www.
isogg.org).
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PR interval Analysis Plan 

1000 Genomes 

 

1. Background and Aim 
In recent years PR prolongation has been shown to be independently associated with an increased risk 

of atrial fibrillation (AF), pacemaker implantation, and all-cause mortality. Published genome-wide 

association studies (GWAS) and ongoing exome chip analyses have identified a large number of 

common genetic variants associated with PR interval, but there remains a large amount of heritability 

that has not been defined. This project aims to discover further variants influencing the PR interval by 

taking an imputation strategy based on sequencing data available from the 1000 Genomes (1000G) 

project. 

 

The proposed deadline for submission of results is Friday 30thOctober 2015. 

 

 

2. 1000G Imputation and Data Preparation 
It is assumed that the participating studies will have already performed genotype QC and 1000G 

imputation, and have all the imputed genetic data available, ready for analysis. However, some brief 

guidelines are summarised below, to ensure consistent data across studies. 

 

2.1 Genetic Data QC: Prior to 1000G imputation, an internal QC of the initial genotype data should 

have been undertaken by each cohort. 

 

A summary of the standard QC checks for SNPs and samples is given in the Appendix. 

Monomorphic SNPs: Prior to imputation, any monomorphic SNPs should have been excluded. 

Otherwise, no further MAF filter is compulsory. 

 

Different studies may have applied slightly different QC thresholds. 

Can you please complete the attachedTable labeled ‘PR_1000G_QCandSupplInfo_15092015’stating 

the QC thresholds used (INFO_Imputation sheet). 

 

Further QC will be conducted centrally at the meta-analysis stage. 

 

2.2 1000G Imputation: The analysis plan and the 1000G imputations approach assumed by the PR 

interval 1000G project follows the guidelines developed by the G Abecasis group for the GIANT 

consortium.  

 

It is important to check the consistency of 1000G data across all studies, to ensure the best overall 

imputation quality. Ideally all studies would have used exactly the same approaches for 1000G 

imputation. However, we appreciate that studies will have imputed their data to 1000G at different 

times, and this may therefore not be the case. 

For the PR interval 1000G project we will use the following: 

 Reference panel: March 2012 (v3), or more recent, and using all ethnicities. This also ensures 

all data is on NCBI build 37. 

 Include data from chromosome X. 
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If you have already performed 1000G imputation within your study, but did not use these panels, we 

would like you to re-do the imputation.  

If you have NOT yet performed 1000G imputation, please use the following guidelines.  

 

2.2.1 Reference panel: Data should be imputed to the latest reference panel, currently v3 last, updated 

December 2013, or certainly at least as recent as v3 from March 2012. 

Please use ALL haplotypes from all ethnicities, excluding monomorphic and singleton sites, for ALL 

chromosomes (1-22, X). 

 

2.2.2 NCBI Build: Before performing 1000G imputation, the GWAS data should have been lifted over 

to the NCBI Build 37, in order to be compatible with the above reference panel.  

(http://genome.sph.umich.edu/wiki/LiftOver) 

 

2.2.3 1000G Imputation Methods: Full details of these guidelines can be found from the online 

cookbooks at the links provided below: 

 UsingMinimac: 

http://genome.sph.umich.edu/wiki/Minimac:_GIANT_1000_Genomes_Imputatio

n_Cookbook 

 UsingIMPUTE2: 

http://genome.sph.umich.edu/wiki/IMPUTE2:_1000_Genomes_Imputation_Cook

book 

 

2.2.4 1000G Imputation of Chr X: Please pay particular attention, within the cookbook guidelines, to 

the specific methods for imputing Chr X.   

For example, using Minimac, imputation is performed separately for males and females. 

 

 

3. Phenotype 
3.1 Phenotypic Trait: PR interval (milliseconds).   

 

3.2 Individual Exclusions(same as the exome chip analysis plan): 

 Extreme phenotype outliers (≤ 80ms or ≥ 320 ms) 

 Second or third degree heart block 

 Atrial fibrillation on baseline ECG 

 History of myocardial infarction or heart failure 

 Wolff–Parkinson–White syndrome (WPW) 

 Pacemaker 

 Class I and III blocking medications (ATC code prefix C01B) 

 Digoxin (ATC code C01AA05) 

 Pregnant 

 

3.3 Race stratification:If your study consists of different ancestries, please separate these into 

different race-stratifiedsub-studies, e.g. STUDY_EA for European Ancestry and STUDY_AA for African 

Ancestry etc.   

http://genome.sph.umich.edu/wiki/LiftOver
http://genome.sph.umich.edu/wiki/Minimac:_GIANT_1000_Genomes_Imputation_Cookbook
http://genome.sph.umich.edu/wiki/Minimac:_GIANT_1000_Genomes_Imputation_Cookbook
http://genome.sph.umich.edu/wiki/Minimac:_GIANT_1000_Genomes_Imputation_Cookbook
http://genome.sph.umich.edu/wiki/IMPUTE2:_1000_Genomes_Imputation_Cookbook
http://genome.sph.umich.edu/wiki/IMPUTE2:_1000_Genomes_Imputation_Cookbook
http://genome.sph.umich.edu/wiki/IMPUTE2:_1000_Genomes_Imputation_Cookbook
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NB: These will be analysed as separate cohorts at a study level. Then, at the central meta-analysis 

stage, the results from different ancestries will be checked for heterogeneity before combining overall 

results, if possible. 

3.4 Case-control stratification:If your study consists of cases and controls, please separate these into 

different sub-studies, e.g. STUDY_CASE if individuals are cases. An indicator is not required if it is a 

control group (see section 6.1 for file labelling).  

NB: These will be analysed as separate cohorts at a study level. Then, at the central meta-analysis 

stage, the results from different ancestries will be checked for heterogeneity before combining overall 

results, if possible. 

 

3.5 Covariates required: Please use the following covariates (same as the exome chip analysis plan, 

detailed below): 

 Age (years) 

 Sex (except in separate analyses for males and females for Chr X) 

 Height (cm) 

 BMI (kg/m2) 

 RR interval (milliseconds) 

 any other study-specific variables needed to control for potential stratification (such as 

recruitment or study site, ancestry PCs or MDS vectors, or specific kinship variables for family 

studies, as appropriate). 

 

If you use cohort specific covariates, please include this information in the Table labeled 

‘PR_1000G_QCandSupplInfo_15092015’(INFO_phenotypes sheet). 

 

Likewise, if you have family data (e.g. FHS), please include this information in the Table labeled 

‘PR_1000G_QCandSupplInfo_15092015’(INFO_study). 

 

 

4. Genetic Data 
4.1Genetic model and coded/noncoded alleles: Assume an additive genetic model. Test for 

association by regressing the response variable onto the total dose of the coded allele (e.g. AA=0, 

AG=1, GG=2 if G is the coded allele) at each SNP, assuming a normal linear model. Designation of 

coded and non-coded allele at each SNP can be arbitrary, as long as you specify which you used.  

 

4.2 Imputed SNPs: Imputation from 1000G should be performed as described above in Section 

2.2.The imputed genotypes should be used in a way that explicitly takes account of uncertainty in the 

imputed genotypes, e.g. the .mldose file from MACH or the genotype probability file output by IMPUTE. 

For imputed SNPs, perform regression onto expected allele dosage, i.e. imputed genotypes should 

NOT be converted to "Best Guess" or "Called" genotypes. 

 

NB: It is recommended to filter SNPs for analysis based on imputation quality, in order to reduce data 

storage & computational time / memory, both at the study-level and central-level.   

e.g. please use  

 the suggested, liberal threshold of R2 = 0.1 (within MACH output, or similarly for IMPUTE), or 

 any other sensible study-specific threshold, at your discretion. 

 



4 
 

5. Association Analyses 

5.1 Summary of analyses: 

PRIMARY analysis 

Twomodels. If the cohorts consist of cases and controls,and/or different ethnic groups, these should be 

analysed separately.Therefore we will require in total 6 analyses per ethnic group (or, 12 if the cohort 

consists of cases and controls).Linear regression analyses should be performed using SNP dosages. 

 

In summary, the two models are: 

1) Untransformed:  

a. PR ~ SNP+age+ sex + height + BMI + RR + study_specific_covariates (incl. PCs / 

FamilyStructure) 

2) Rank-based inverse normal transformed residuals: 

a. Take residuals from:  

PR ~ age+sex + height + BMI + RR + study_specific_covariates (excl. PCs / 

FamilyStructure) (excl. sex covariate for chr X) 

b. Apply rank-based inverse normal transformation to those residuals to obtain 

INVN_PR_RES 

c. Analyse: 

INVN_PR_RES ~ SNP (+ PCs / FamilyStructure) 

 

In detail, all the analyses that should be performed are listed in the table below. 

 

Men and women 

combined 

Analysis 1 PR ~ SNP + age + sex + height + BMI + RR + 

study_specific_covariates (incl. PCs / FamilyStructure) 

 

Analysis 2 d. Take residuals from:  

PR ~ age + sex + height + BMI + RR + 

study_specific_covariates (excl. PCs / FamilyStructure) 

e. Apply rank-based inverse normal transformation to those 

residuals to obtain INVN_PR_RES 

f. Analyse: 

INVN_PR_RES ~ SNP (+ PCs / FamilyStructure) 

 

CHR-X, Men only Analysis 3 PR ~ SNP + age + height + BMI + RR + 

study_specific_covariates (incl. PCs / FamilyStructure) 

 

Analysis 4 a. Take residuals from:  

PR ~ age + height + BMI + RR + 

study_specific_covariates (excl. PCs / FamilyStructure) 

b. Apply rank-based inverse normal transformation to those 

residuals to obtain INVN_PR_RES 

c. Analyse: 

INVN_PR_RES ~ SNP (+ PCs / FamilyStructure) 

 

CHR-X, Women only Analysis 5 PR ~ SNP + age + height + BMI + RR + 
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study_specific_covariates (incl. PCs / FamilyStructure) 

 

Analysis 6 d. Take residuals from:  

PR ~ age + height + BMI + RR + 

study_specific_covariates (excl. PCs / FamilyStructure) 

e. Apply rank-based inverse normal transformation to those 

residuals to obtain INVN_PR_RES 

f. Analyse: 

INVN_PR_RES ~ SNP (+ PCs / FamilyStructure) 

 

 

5.2 Methods for analysis: Phenotype-genotype associations should be calculated using a linear 

regression model approach that accounts for uncertainty in imputed genotypes (and relatedness 

between individuals where appropriate).   

The following software are recommended: 

 SNPTEST (Marchini et al) to utilize output from IMPUTE 

 ProbABELormach2qtl to utilize output from MACH/Minimac  

 

5.3 Analysis of Chr X:  Stratify the analysis of the X chromosome by sex: 

 Females: Undertake the same analyses as for the autosomal chromosomes. 

 Males: Undertake the same analyses as for the autosomal chromosomes but code SNPs as 0 

or 2 within the non-pseudo-autosomal region (non-PAR), i.e. so all genotypes coded as diploid 

homozygotes (make sure that the same coded allele is used for females and males). Note that 

the pseudo-autosomal region (PAR) part of the X chromosome is NOT analysed (ideally it 

should have been removed before imputation, when imputing chr X). 

 

 

6. Files for Submission of Results 
6.1 File names: For each of the 6analyses per ethnic group (or 12 if a case/control study design) 

requested above, provide results in a whitespace delimited file with column names and contents as 

listed in Section 6.2.  

 

Compress the results files (ideally using gzip) and name them as follows: 

 STUDYNAME-RACE-TYPE-1000G-MODEL-ANALYST-DATE.gz 

where: 

 STUDYNAME is a name chosen for your trial or study 

 RACE is e.g. EA (European Ancestry) or AA (African Ancestry), or appropriate indicator for 

another ancestral group 

 TYPE is case or control, but if not a case or control series leave this file name out 

 MODEL is the name of one of the 6 analyses listed above- either untransformed(no label) or 

Rank-based inverse normal transformed residuals (INVN) 

 ANALYST is the initials of the study analyst 

 DATE is the date you upload the results 

e.g. BRIGHT-EA-1000G-PR-INVN-XMALES-HRW-01JAN2015.gz 
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REMINDER- Along with your results files, please ensure you have completedthe attached 

Supplementary Table called:‘PR_1000G_QCandSupplInfo_15092015’. Please indicate if you are 

providing results for the combined sample, Chr X (males) or Chr X (females) in the sheet labeled 

INFO_phenotypes, see below. 

 Study Demographic Data, INFO_phenotypes tab 

 QC of Genetic Data, INFO_Imputation tab1000g Imputation Method, INFO_Imputation tab 

 Study analysis_INFO_analysis tab 

 A ReadMe text file providing any further study-specific information e.g. any study-specific 

covariates you have used, in addition to sex, age, BMI, height, RR interval. 

 

Please also provide the following information for each analysis: 

 Genomic inflation factor and Q-Q plots– please send as a separate document. 

 We would also like to request that you report the genomic inflation factor, and provide a Q-Q 

plot. NB - There are various R packages, which can be used to create QQ plots, e.g. “qqman”, 

“QCGWAS”, “GenABEL”, or any other that you are familiar with.  Some of these, e.g. the 

“QCGWAS” package and the “estlambda” function within the “GenABEL” package can also 

calculate lambda. Otherwise, the general formula for calculating lambda can also be used: 

lambda = median(chisq)/qchisq(0.5,1) 

 

 

Please submit your results on the PR interval 1000G SFTP site.  

Host: ********** 
Username: ********** 
Password: ********** 

 

 

Contacts: 

Ioanna Ntalla (i.ntalla@qmul.ac.uk ) 

Helen Warren (h.r.warren@qmul.ac.uk) 

Patricia Munroe (p.b.munroe@qmul.ac.uk) 

Yalda Jamshidi (yjamshid@sgul.ac.uk) 

Steven Lubitz (slubitz@mgh.harvard.edu)  

Lu-Chen Weng (LCWENG@mgh.harvard.edu ) 

 

  

mailto:i.ntalla@qmul.ac.uk
mailto:h.r.warren@qmul.ac.uk
mailto:p.b.munroe@qmul.ac.uk
mailto:yjamshid@sgul.ac.uk
mailto:slubitz@mgh.harvard.edu
mailto:LCWENG@mgh.harvard.edu
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6.2 File format - reporting of results:  

 

Mandatory (+) 

or optional 

Column header Description Format Examples 

+ SNP SNP label for the 

variant 

Use the markername 

as it is in the 

imputation output 

rs693 

chr2:7819 

If missing 

means all + 

STRAND Orientation of the site 

to the human genome 

strand used 

+ (Should be aligned 

to forward strand) 

+ 

+ CHR Chromosome on 

which SNP resides 

Numeric for 

chromosomes 1-22; X 

and Y for the sex 

chromosomes; MT for 

the mitochondrial 

genome 

1 

+ POS Position of SNP on 

chromosome 

Basepairs on human 

genome build used 

34000345 

+ EFFECT_ALLELE Allele at this site to 

which the effect has 

been estimated 

Capital letter (A,C,G,T) A 

+ NON_EFFECT_ALLELE Other allele at this site Capital letter (A,C,G,T) G 

+ N_TOT Total number subjects 

for this SNP 

Numeric, integer 1243 

 N_0 Number of 

homozygous subjects 

with zero copies of the 

EFFECT_ALLELE 

Numeric, integer or 

float with 3 digits to the 

right of the decimal 

(imputed) 

623 

745.234 

 N_1 Number of 

heterozygous subjects 

with one copy of the 

EFFECT_ALLELE 

Numeric, integer or 

float with 3 digits to the 

right of the decimal 

(imputed) 

623 

745.234 

 N_2 Number of 

homozygous subjects 

with two copies of the 

EFFECT_ALLELE 

Numeric, integer or 

float with 3 digits to the 

right of the decimal 

(imputed) 

623 

745.234 

+ EAF Allele frequency of the 

EFFECT_ALLELE 

analysed 

Frequency with 3 digits 

to the right of the 

decimal 

0.354 

 HWE_P Exact HWE p-value 

for the subjects 

analysed 

Scientific E notation 

with 4 digits to the right 

of the decimal (set to 

missing if imputed) 

1.0000E-

02 

. 

 CALL_RATE Call rate (proportion) 

for this SNP across all 

Frequency with 3 digits 

to the right of the 

0.993 
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subjects. decimal (set to 1.000 if 

imputed) 

+ BETA Estimate of the allelic 

effect 

Numeric float with 3 

digits to the right of the 

decimal 

0.203 

+ SE Estimated standard 

error of the estimate 

of the allelic effect, 

uncorrected for 

genomic control 

Numeric float with 4 

digits to the right of the 

decimal 

0.5611 

+ PVAL Significance of the 

variant association, 

uncorrected for 

genomic control 

Scientific E notation 

with 3 digits to the right 

of the decimal 

3.244E-10 

 IMPUTED Is the SNP imputed? 0 = Genotyped 

1 = Imputed 

1 

 

 INFO_TYPE Type of information 

provided in the INFO 

column 

0 = SNP is genotyped 

1 = “r2_Hat” from 

MACH2DAT 

2 = “proper_info” from 

SNPTEST 

3 = “INFO” from PLINK 

4= ”Other” – please 

provide details if used 

1 

+ INFO Measure of 

information content for 

the imputed SNP 

result (range 0-1) 

(autosomal only) 

Numeric float with 3 

digits to the right of the 

decimal (set to missing 

if genotyped) 

0.483 

. 
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APPENDIX 

 

A1: Genetic Data QC Summary 

 

Quality checks per individual include: 

- Exclusion of individuals with poor genotype call rate 

- Exclusion of individuals who are ancestry outliers (using principal component or multi-

dimensional scaling plots) 

- Exclusion of individuals with unusually high heterozygosity 

- Check for relatedness (excluding related individuals from non-family based studies) 

 

Quality checks per SNP include: 

- Exclusion of SNPs with poor call rate (≤0.98) 

- Exclusion of SNPs out of Hardy Weinberg equilibrium (P<10-4) 

- Exclusion of SNPs with high duplicate discordance rates (>1) 

- Exclusion of monomorphic SNPs (if these have not been excluded before pre-phasing they can 

be removed after pre-phasing but before imputation) 

- Exclusion of SNPs with an excess of Mendelian inconsistencies (this only applies to data with 

parent-offspring pairs available) 

 

 


