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The output-errormethod is amainstay of aircraft system identification from flight-test data.
It is the method of choice for a wide range of applications, from the estimation of stability and
control derivatives for aerodynamic database generation to sensor bias estimation in flight-path
reconstruction. However, notable limitations of the output-error method are that it requires
ad hoc modifications for applications to unstable systems and it is an iterative method which
is particularly sensitive to the initial guess. In this paper, we show how to reformulate the
estimation as a collocation problem, an approach common in other disciplines but seldomly
used in flight vehicle system identification. Both formulations are equivalent in terms of having
the same solution, but the collocation-based can be applied without modifications or loss of
efficiency to unstable systems. Examples with simulated and real-world flight-test data also
show that convergence to the optimum is obtained even with poor initial guesses.

Nomenclature

Mathematical symbols

R the set of real numbers
t time
A−1 matrix inverse of A
AT matrix (or vector) transpose of A
Ûx time derivative of x, i.e., dx/dt
CD , CC , CL wind-axis force coefficients
C` , Cm, Cn body-axis moment coefficients
nx, ny number of system states and outputs
nu, nθ number of system inputs and unknown parameters
N number of measurement instants in the experiment
:= equal by definition, i.e., defined as
ln natural logarithm (base e)
det matrix determinant

Acronyms

CEA Centro de Estudos Aeronáuticos
CEACoEst CEA Control and Estimation Library
CPU Central Processing Unit.
COIN-OR Computational Infrastructure for Operations Research.
DLR German Aerospace Center.
FAA Federal Aviation Administration.
GPU Graphics Processing Unit.
HARV High Angle of Attack Research Vechicle.
HATP High Angle of Attack Technology Program.
i.i.d. Independent and Identically Distributed.
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IPOPT Interior Point OPTimizer.
IVP Initial-Value Problem.
ML Maximum Likelihood.
ODE Ordinary Differential Equation.
OEM Output-Error Method.
SIMD Single Instruction, Multiple Data.

I. Introduction

As the need for building mathematical models of dynamical systems from data, known as system identification,
arises in several application areas, several scientific communities are active in the development of its theory and

algorithms, as noted by Ljung [1, Sec. 3] in a recent survey. The different uses of the identified models and the context of
the systems and tests shapes the identification methods. In the systems and automatic control community, for example, a
major need for system identification was the obtention of models for control [1, Sec. 3.9]. As in their main application
only the input–output relationship matters, a focus can be seen on black-box, discrete-time, transfer function models and
methods [1–4].

For aircraft system identification, however, a major driver were research aircraft with novel configurations or
operating at previously unexplored flight regimes. Notable examples of novel configurations are the lifting-body M2
prototypes and HL-10, tilt-wing XC-142A, thrust-vectored X-31, human-powered Gossamer Albatross, and the active
aeroelastic wing program. Among previously unexplored flight regimes we have hypersonic speeds as in the X-15
and the space shuttle; and high angles of attack which were studied in the High Angle of Attack Technology Program
(HATP), the F-18 High Angle of Attack Research Vechicle (HARV), and in the X-29. For more details on these aircraft
and the role of system identification in their programs, consult the reviews and retrospectives of the area in Refs. 5–9 and
the ample references therein. The investigative nature of these programs favored parameter estimation techniques that
allowed for a deeper understanding of the underlying aerodynamic phenomena, their relationship to the aircraft stability
and control, and the validity of the theoretical and wind-tunnel results. System identification was also a supporting
technique in the safe expasion of the operational flight envelope.

To some extent, these needs are also present in the flight-testing of production aircraft prototypes, for which
system identification is also routinely used [10, 11]. For these, the estimated stability and control derivatives are also
used to build high-fidelity aerodynamic databases for training, engineering and in-flight simulators meeting the FAA
requirements. Finally, the identified models are also used for control law synthesis and controller tuning. Consequently,
for flight vehicle system identification the focus has been on white-box or light-gray-box phenomenological models,
whose parameters have physical meaning and can be related across different reference flight conditions. Most models
are multiple-input multiple-output and are represented in the state-space form.

With respect to the estimation algorithms, for aircraft the maximum likelihood (ML) estimators have dominated.
Of these, the output-error method (OEM), which amounts to a nonlinear weighted least-squares problem when the
noise covariance matrix is assumed known is the most widely used [9, p. 681], even for applications such as flight-path
reconstruction [12] and aeroelastic modeling [13, 14]. Notable limitations of the classical OEM, however, are its
inapplicability to unstable systems [15; 11, Chap. 9] and its convergence to local minima when poor initial estimates are
used.

A field with similar requirements for system identification as for flight vehicles is chemical engineering, in which
the output error method was also developed independently∗ [16–20]. Their applications also required estimation of
parameters of white-box continuous-time models in state-space, usually reaction rates in chemical equations. The
application of the maximum likelihood principle to this class of problems leads, naturally, to the output-error method.
Differences in their application context, however, resulted in alternative implementations routes. Some estimation
problems in chemical engineering involve ill-conditioned differential equations which may not have a valid solution
for some parameter values. Additionally, not much a-priori information is available on the parameters for the initial
guess of iterative methods. This should be contrasted with aircraft parameter estimation, for which reasonably good
guesses for the stability and control derivatives can be obtained from theoretical analyses, wind-tunnel experiments and
computational-fluid-dynamics calculations.

As a result, the chemical reaction system identification community developed implementations of the OEM capable of
coping with these issues: multiple shooting and collocation [17, 18]. In these approaches to implement the output-error

∗The author’s search did not yield any references to the aircraft literature when the OEM was developed in the chemical engineering literature.
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method, the decision variables of the optimization problem are augmented with the states at several mesh points across
the experiment time interval. Equality constraints are then added to encode the system dynamics and enforce continuity
of the solution. These methods are also very common in optimal control [21], as there is a certain duality between
estimation and control, and were developed by researchers active in both fields like H. G. Bock [22]. The author has
also used collocation methods in state and parameter estimation problems [23, 24].

Traditionally, in the aeronautical literature, the output-error method is implemented using the single shooting or
initial-value problem (IVP) approach, in which only the unknown parameters and initial values of the states are used
as decision variables of the nonlinear optimization problem. Good explanations of the problems that arise with this
formulation were given by Bock [17, Sec. 8.2; 18, p. 97]: neglecting the information of the states by rewriting the
problem only in terms of the parameters results in a “reinversion of the inverse problem” which spoils “the very nature
of the inverse problem”, leading to a “deterioration of efficiency” and a “substantial loss of stability”. A defining
property of the system identification problems is that there is plentiful information on the states but comparatively little
on the parameters. This information is efficiently exploited by estimation methods implemented with the collocation
and multiple-shooting approaches.

A notable improvement allowed by collocation and multiple shooting to aircraft system identification with the
output-error method is applicability to unstable systems without ad hoc modifications. The multiple shooting formulation
has already been applied to unstable flight vehicles for that end [15; 11, Sec. 9.12], but is generally shunned in favor of
the stabilized OEM due to programming complexity and reuse of existing code [11, Sec. 9.15]. Another disadvantage of
the single shooting problem formulation with respect to the state-augmented ones is divergence of the optimization and
convergence to suboptimal local minima. While these issues may not be a problem for estimation of the rigid-body
dynamics, they are an issue for aeroelastic or aeroservoelastic system identification which feature larger and more
complex models with parameters that are more difficult to predict accurately [25, Sec. I].

In this paper, we present the collocation formulation of the output-error method, which is seldomly used for system
identification of aircraft from flight-test data—one of the few examples available was presented by Betts [21, Sec. 7.4].
The method is applied to experimental and simulated flight data bundled with the supplemental material of Jategaonkar
[11] and ground vibration test data from the experiment described by Gupta et al. [26]. The convergence basin of the
collocation implementation is explored to investigate its robustness against poor starting values for the parameters.

This paper is organized as follows. In Sec. II, the output-error method is presented, together with the three main
approaches to implement it: single shooting, multiple shooting and collocation. In Sec. III the properties of the
collocation implementation are illustrated with three examples. Finally, in Sec. IV the conclusions are drawn out and
directions for future work are outlined.

II. The output-error method
In this section we formulate the output-error method for parameter estimation and describe the three main

implementations used to write it as a nonlinear optimization problem in a form suitable for computational solution.

A. Problem formulation

1. General case
The general problem consists of estimating the vector of unknown parameters θ ∈ Rnθ of a system described by

ordinary differential equations (ODEs) of the form

Ûx(t) = f
(
x(t), u(t), θ), x(0) = x0(θ), (1)

where t ∈ R is the time, x : R → Rnx is the state-path of the system, u : R → Rnu are the external inputs,
f : Rnx ×Rnu ×Rnθ → Rnx is a possibly nonlinear function encoding the system dynamics, and x0 : Rnθ → Rnx is the
initial state of the experiment which is, without loss of generality, assumed to start at t = 0. The parameter vector θ
holds all unknown system parameters, which may include aerodynamic stability and control derivatives, initial states,
sensor bias, and even parameters of the stochastic noise model such as variance. The system outputs y : R→ Rny are
described by a static function g : Rnx ×Rnu ×Rnθ → Rny which can also depend on the unknown parameters,

y(t) = g
(
x(t), u(t), θ) . (2)
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While the outputs y represent the ideal measurables, we only have access to the measurements zk , sampled at a finite
number N of time instants t̃k . Under the statistical framework of maximum likelihood estimation, the zk are interpreted
as noise-corrupted measurements of the outputs,

zk = y(t̃k) + ek,

where the measurement noise ek is described by some suitable probability distribution. The maximum likelihood
estimate θ̂ML is then the value which maximizes the likelihood function: the joint conditional probability density pz1:N

of all measurements, given the parameters

θ̂ML := arg max
θ

pz1:N

(
z1, . . . , zN

��θ) . (3)

Under the assumption that the noise is idenpendent and identically distributed (i.i.d.) across measurement instants,
Eq. (3) can be simplified by noting that

pz1:N

(
z1, . . . , zN

��θ) = N∏
k=1

pe
(
zk − ŷ(t̃k, θ)

��θ),
where pe(·|θ) is the conditional probability density of the noise vectors ek and ŷ(t, θ) is the predicted system output for a
given value of θ, i.e., the solution of Eqs. (1) and (2),

Û̂x(t, θ) = f
(
x̂(t, θ), u(t), θ), x̂(0, θ) = x0(θ),

ŷ(t, θ) := g
(
x̂(t, θ), u(t), θ) .

As the logarithm is a monotonic function which does not change the location of maxima, the logarithm of the
likelihood function, known as the log-likelihood, is usually maximized in (3) as it leads to better-conditioned problems:

`(θ) := ln pz1:N (z1, . . . , zN |θ) =
N∑
k=1

ln pe
(
zk − ŷ(t̃k, θ)

��θ) = N∑
k=1

`e(zk − ŷ(t̃k, θ), θ),

`e(ε, θ) := ln pe(ε |θ).

The most general form of the output-error method estimation problem is then

maximize
θ∈Rnθ

N∑
k=1

`e(zk − ŷ(t̃k, θ), θ) (6a)

subject to x̂(0, θ) = x0(θ) (6b)
Û̂x(t, θ) = f

(
x̂(t, θ), u(t), θ) (6c)

ŷ(t, θ) = g
(
x̂(t, θ), u(t), θ) . (6d)

2. Special case: Gaussian measurement noise
Due to the tractability of the maximization problems it produces and its ubiquity in statistical models, the noise is

often assumed to be zero-mean and normally distributed. In that case, denoting by R : Rnθ → Rny×ny its covariance
matrix,

ek ∼ N
(
0, R(θ)) k = 1, . . . , N,

the noise log-density is

`e(ε, θ) = − 1
2 ε

TR(θ)−1ε − 1
2 ln det

(
R(θ)) − ny

2 ln(2π). (7)
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When the noise covariance is known or fixed (R does not depend on θ), the last two terms in the right-hand side of (7)
can be dropped as they are constants which do not influence the location of maxima. The maximum likelihood estimator
reduces to a nonlinear weighted least-squares problem with R−1 as the weighting matrix,

minimize
θ∈Rnθ

N∑
k=1

[
zk − ŷ(t̃k, θ)

]TR−1 [zk − ŷ(t̃k, θ)
]

(8a)

subject to x̂(0, θ) = x0(θ) (8b)
Û̂x(t, θ) = f

(
x̂(t, θ), u(t), θ) (8c)

ŷ(t, θ) = g
(
x̂(t, θ), u(t), θ), (8d)

in which the sign of ` was inverted and the maximization converted to a minimization. If, furthermore, the elements of
the noise vector ek are assumed to be independent of each other, then R is diagonal,

R =


r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...

0 0 · · · rny


and the maximum likelihood estimation problem is

minimize
θ∈Rnθ

N∑
k=1

ny∑
i=1

[
zk − ŷ(t̃k, θ)

]2
i

ri
(9a)

subject to x̂(0, θ) = x0(θ) (9b)
Û̂x(t, θ) = f

(
x̂(t, θ), u(t), θ) (9c)

ŷ(t, θ) = g
(
x̂(t, θ), u(t), θ), (9d)

in which [ε]i denotes the i-th element of the ε vector.

3. A pragmatic view on the statistical model
We note that although the maximum likelihood estimator is derived from a statiscal framework for which it is an

optimal solution, it makes sense regardless of the probabilistic iterpretation [see 4, pp. 16, 222]. From a pragmatic
viewpoint, we could regard the noise log-density `e in (6a) as a metric or norm on the error size. In (8a) and (9a), for
example, the estimate minimizes the mean squared Mahalanobis distance between the measurements and the model
outputs. When the log-density `e depends on the parameter θ as in (7), the “best” metric is not known beforehand [4,
p. 200] so it is chosen by the help of a criterion which penalizes “small” metrics, e.g., the ln det

(
R(θ)) term of (7).

The choice of the output noise distribution pe can then be transformed to the choice of a metric L : Rny ×Rnθ → R

for the error size in the optimization problem

minimize
θ∈Rnθ

N∑
k=1

L(zk − ŷ(t̃k, θ), θ) (10a)

subject to x̂(0, θ) = x0(θ) (10b)
Û̂x(t, θ) = f

(
x̂(t, θ), u(t), θ) (10c)

ŷ(t, θ) = g
(
x̂(t, θ), u(t), θ) . (10d)

The estimation yields the “smallest” mean error, acording to L. Several metrics have emerged as robust alternatives to
the quadratic form associated with the normal distribution [27–31].

B. Single shooting implementation
The optimization problems in the preceding section, represented in (6), (8), (9) and (10), are still in an abstract

form, as the true solution of the ODE (1) is referenced. Except for the case of linear or affine systems, the predicted
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state-path does not admit closed-form solutions. Hence, the most obvious way to implement the output-error method is
to compute an approximate solution of the system state-path by using a numerical integration scheme like a Runge–Kutta
method. This is known as the single shooting or initial-value problem (IVP) implementation. For a survey of numerical
integration methods as it pertains to aircraft system identification using single shooting, see Jategaonkar [11, Sec. 3.8.1].

A single time mesh of m distinct instants τk of the experiment interval [0,T], including the endpoints, is selected to
perform the integration:

0 = τ1 < τ2 < · · · < τm = T .

We will assume here that the mesh includes all measurement times t̃k , as this simplifies the implementation and notation.
However, this is not needed if an associated interpolation scheme (dense output) is used with the integration method
[e.g., 32]. In any case, it is important that the mesh be kept fixed during the optimization as its variation for different θ,
which can occur when using variable-step methods, can introduce noise into the objective function and its derivatives
[21, pp. 44, 110]. Nevertheless, estimates of the integration error are useful to evaluate the need for mesh refinement or
alternative integration schemes.

Let us denote by I one step of the integration method,

x̂k+1 = I(x̂k, τk, τk+1, u, θ, f ), (11)

i.e., the method applied to the solution of the differential equation defined by f , with the input function u, starting with
the value x̂k at the time τk and returning the value x̂k+1 corresponding to τk+1. With Euler’s method, for example, we
would have

I(x̂k, τk, τk+1, u, θ, f ) = x̂k + (τk+1 − τk) f
(
x̂k, u(τk), θ

)
.

The output-error method is then

maximize
θ∈Rnθ

N∑
k=1
τi=t̃k

`e(zk − ŷi, θ) (12a)

subject to x̂1 = x0(θ) (12b)
x̂k+1 = I(x̂k, τk, τk+1, u, θ, f ), k = 1, . . . ,m − 1 (12c)
ŷk = g

(
x̂k, u(τk), θ

)
, k = 1, . . . ,m. (12d)

Eqs. (12b)–(12d) are explicit and can be calculated one after the other, iteratively.
When the f , g and `e functions are continuous and differentiable the problem is amenable to solution with Newton’s

method. The gradients can be obtained by finite differences [11, Sec. 4.8], automatic differentiation or symbolic
differentiation of the model functions. The resulting nonlinear programming problem can then be readily solved with a
wide range of available software packages like the open-source IPOPT from the COIN-OR initiative [33]. If the Gaussian
distribution is assumed for the measurement error in the form of (7), (8) or (9), nonlinear least-squares optimization
methods such as the Gauss–Newton or Levenberg–Marquardt algorithms can be used to obtain the solution [11, Sec. 4.6
and 4.13]. The problem is dense but relatively small-sized, usually with up to hundreds of decision variables which are
the elements of the unknown parameter vector θ.

However, it should be noted that the numerical solution of the differential equation might diverge or deviate far from
the measurements for parameter values far from the optimum. This can, in turn, lead to divergence of the optimization or
convergence to suboptimal local maxima. Furthermore, in unstable, marginally stable, poorly damped or systems with
slow dynamics the errors in the integration method can accumulate or be amplified by the system dynamics, degrading
the estimates.

C. Multiple shooting implementation
In the multiple shooting implementation [17; 18; 11, Sec. 9.12] of the output-error method, a numerical integration

scheme is used as in the single shooting approach, but divided into multiple segments with independent initial states
which are appended to the decision variables of the optimization. Equality constraints are then included to enforce
continuity of the state solution across segments.

By the choice of a grid

0 = t(1) < t(2) < · · · < t(ns+1) = T . (13)
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the experiment interval is divided into ns segments, each of which is further subdivided by a finer mesh of mk points for
numerical integration,

t(k) = τ(k)1 < τ
(k)
2 < · · · < τ

(k)
mk
= t(k+1), k = 1, . . . , ns. (14)

The vector ξ of decision variables of the optimization is then augmented with the state at the beginning of each segment
after the first,

ξ =
[
θ x̂(2)1 x̂(3)1 · · · x̂(ns)

1

]
and the state equations (1) are integrated using the chosen numerical scheme along the mesh of each segment,
independently.

Using the same notation for the integration scheme as in (11), the multiple shooting approach for the output-error
method is

maximize
θ, x̂
(2)
0 ,..., x̂

(ns)
0

N∑
k=1

τ
( j)
i =t̃k

`e
(
zk − ŷ

(j)
i , θ

)
(15a)

subject to x̂(1)1 = x0(θ) (15b)

x̂(i)
k+1 = I(x̂

(i)
k
, τ
(i)
k
, τ
(i)
k+1, u, θ, f ), k = 1, . . . ,mi − 1; i = 1, . . . , ns (15c)

ŷ
(i)
k
= g

(
x̂(i)
k
, u(τ(i)

k
), θ), k = 1, . . . ,mi; i = 1, . . . , ns (15d)

x̂(i)mk
− x̂(i+1)

1 = 0 i = 1, . . . , ns − 1. (15e)

Eqs. (15b)–(15d) are explicit and can be calculated one after the other, iteratively. In addition, the iterations of each
segment i are independent, permitting a considerable speedup when using modern computer hardware with parallel
capabilities. Finally, we note that (15e) are the continuity constraints, requiring that the final point of each segment
coincide with the initial point of the next. They are, generally, nonlinear functions of the decision variables even for
linear dynamical systems. The optimization problem resulting from (15) is larger, due to the inclusion of the additional
variables and constraints, but it is sparse.

This method is far more robust against divergence of the numerical solution to the differential equation than single
shooting. As each segment is kept short, even when for inadequate parameter values, the solution does not deviate much
from the first point of the segment. Furthermore, from the very inverse nature of the inverse problem, more information
on the states is usually available than on the parameters, allowing for better starting values for the optimization.

The continuity constraints are enforced by the optimization solver with a small tolerance which can offset the
integration errors accumulated on unstable, marginally stable or poorly damped systems. This allows the method to be
used without modifications on this important class of systems, yielding good results. Furthermore, the expansion of
the search domain gives more degrees of freedom to the optimization solver, which can now explore search directions
which violate the continuity constraints. This endows the method with better numerical and convergence properties,
allowing it to overcome local minima which would otherwise capture the single shooting implementation.

D. Collocation implementation
The collocation approach for formulating the output-error method consists of adding all (or most) state points used

by the integration scheme as decision variables of the optimization and encoding the integration method as equality
constraints. Instead of iterating the integration scheme, the integration error of the candidate solution is evaluated
and passed on to the optimization routine, which drives it to zero at the same time it works to maximize the objective.
Because of this, implicit integration schemes are a natural choice for collocation methods.

The method is very general with many variations, so we will exemplify it here with a family of Lobatto methods
which includes the trapezoidal method. A very thorough reference on collocation methods for parameter estimation,
with implementation details and examples is Betts [21]. Additional information can also be found in the works of Betts
and Huffman [34] and Williams and Trivailo [35].

Like in the multiple shooting, the experiment interval is divided into a grid of ns segments (13), each of which is
further subdivided into a finer mesh (14) of mk points, including the endpoints. The vector ξ of decision variables of the
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optimization problem is then augmented with the state at all mesh points,

ξ =
[
θ x̂(1)1 · · · x̂(1)m1 x̂(2)2 · · · x̂(2)m2 x̂(3)2 · · · x̂(3)m3 · · · x̂(ns)

mns

]
.

Notice that the end of each segment coincides with the start of the next, but only one decision variable is needed to
represent it. To simplify notation in what follows, we will use both x̂(i)mi

and x̂(i+1)
1 to refer to these variables.

To derive the method, we first note that both sides of the differential equation (1) can be integrated, leading to the
integral form of the system equations:

x(tb) − x(ta) =
∫ tb

ta

f
(
x(τ), u(τ), θ) dτ ∀ta, tb ∈ [0,T]. (16)

This integral relation holds for any two time values in the experiment interval. A way of approximating this relation is to
build a polynomial approximation f̂ (t) of the function f at the mesh points and enforce (16) to hold for f̂ and any pair
ta, tb in the mesh.

Let λ(i)
k
(t) denote the k-th Lagrange basis polynomial for the mesh of the i-th segment:

λ
(i)
k
(t) =

∏
1≤ j≤mi

j,k

t − τ(i)j
τ
(i)
k
− τ(i)j

.

This basis is defined such that

λ
(i)
k
(τ(i)

k
) = 1, λ

(i)
k
(τ(i)j ) = 0, ∀ j , k,

simplifying the construction of a polynomial interpolant of f at the grid points:

f̂ (i)(t) =
mi∑
k=1

λ
(i)
k
(t) f ( x̂(i)

k
, u(τ(i)

k
), θ) .

If we apply the integral form of the system equation (16) to f̂ , we obtain the collocation constraints for this family of
Lobatto methods:

x̂(i)
k+1 − x̂(i)

k
=

∫ τ
(i)
k+1

τ
(i)
k

f̂ (i)(τ) dτ =
mi∑
j=1

f
(
x̂(i)j , u(τ

(i)
j ), θ

) ∫ τ
(i)
k+1

τ
(i)
k

λ
(i)
j (τ) dτ. (17)

We note that the last integral on the right-hand side of (17) depends only on the location of the mesh points and can be
calculated beforehand

C(i)
j,k

:=
∫ τ

(i)
k+1

τ
(i)
k

λ
(i)
j (τ) dτ.

Furthermore, as the integral of a polynomial it has a simple analytic solution. The mesh points must be carefully
chosen to avoid Runge’s phenomenon and guarantee a low bound on the solution error. A good general choice are the
Legendre–Gauss–Lobatto nodes of the segment [35, Sec. 3].

The collocation-based output-error method then amounts to the following optimization problem

maximize
θ, x̂
(1)
1 ,..., x̂

(1)
m1, x̂

(2)
2 ,..., x̂

(ns)
mns

N∑
k=1

τ
( j)
i =t̃k

`e
(
zk − ŷ

(j)
i , θ

)
(18a)

subject to 0 = x̂(1)1 − x0(θ) (18b)

0 = x̂(i)
k+1 − x̂(i)

k
−

mi∑
j=1

f
(
x̂(i)j , u(τ

(i)
j ), θ

)
C(i)
j,k
, k = 1, . . . ,mi − 1; i = 1, . . . , ns (18c)

ŷ
(i)
k
= g

(
x̂(i)
k
, u(τ(i)

k
), θ), k = 1, . . . ,mi; i = 1, . . . , ns. (18d)
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Of the three approaches presented in this section, collocation leads to the largest optimization problem, but also the
most sparse. Both the objective function and the constraints are very simple and can be parallelly evaluated. Each
segment’s mesh and length is usually kept small, such that there is little variation of the state and inputs within it, which
makes the linearization of the constraints by sequential quadratic programming solvers reasonable approximations.
When most states are measured, good initial values of the states can be used for the optimization, improving convergence
even starting with inadequate parameter values.

The same considerations made on the end of Sec. II.C about the multiple shooting approach also apply here, even
to a higher degree. Divergence of the numerical integration does not make sense unless the whole vector of decision
variables diverges. The error tolerance on the constraint violation prevents integration error from accumulating even in
a single integration step. The segments are even smaller and the collocation constraint is closer to a linear function, as
the function f is not applied recursively into itself. This makes the problem more amenable to solution with Newton’s
method, which employs quadratic approximations for the objective and linear approximations for the constraints.

III. Examples
We illustrate the collocation-based output-error method with three experiments: a linear model parameter estimation

of the short period dynamics from a simulated unstable aircraft; a nonlinear longitudinal model estimation of a HFB-320
Hansa Jet from experimental data collected by the DLR; and a high order (24 states) black-box linear model estimation
from an experimental ground vibration test of a unmanned flexible flying wing aircraft. The examples were chosen to
demonstrate the robustness of the collocation approach to poor start parameters; its applicability, without modifications,
to parameter estimation in unstable systems; and its use in a challenging large-scale problem, with several states and
many samples, typical of flexible vehicle parameter estimation. The source code of the analyses performed for this
article were released as open-source software†.

The estimation routines were implemented in the open-source CEA Control and Estimation Library (CEACoEst)‡,
under development by the author. It is written in the Python programming language and uses the open-source large-scale
interior point nonlinear optimization solver IPOPT [33], part of the COIN-OR initiative. The solver, in turn, uses the
efficient sparse linear system solvers of the HSL Mathematical Software Library§ to obtain the search direction of
Newton’s method. The HSL and OpenBLAS [36] libraries in the implementation used were compiled with the OpenMP
parallel computing framework [37] enabled, exploiting the parallelism inherent in the collocation formulation.

A. HFB-320 Hansa Jet longitudinal motion
Experimental data collected from a HFB-320 Hansa Jet aircraft by the DLR are availabe with the supplemental

material¶ of the book by Jategaonkar [11]. It consists of an elevator 3-2-1-1 input followed by a pulse.
A nonlinear model was estimated with 4 states, the airspeed V , angle of attack α, pitch angle ϑ, pitch rate q;

2 inputs, the elevator deflection δe and the thrust force T ; and 7 measurements, Ṽ , α̃, ϑ̃, q̃ and the pitch acceleration
ãq , longitidinal acceleration ãx , and vertical acceleration ãz . A total of 28 unknown parameters θ were estimated: the
dimensionless stability and control derivatives CD0 , CDV , CDα , CL0 , CLV , CLα , Cm0 , CmV , Cmα , Cmq , and Cmδe

; the
measurement biasses bq , baq , bax , and baz ; the measurement noise standard deviations σV , σα, σϑ , σq , σaq , σax , and
σaz ; and the initial states V0, α0, θ0, and q0.

The function f of the dynamics is defined by the following relations:

ÛV = − ρS
2m

V2 (CD0 + CDV ( VVref
− 1) + CDαα

)
+

T
m

cos(α + εT ) − g0 sin(θ − α)

Ûα = − ρS
2m

V
(
CL0 + CLV ( VVref

− 1) + CLαα
) − T

mV
sin(α + εT ) +

g0
V

cos(θ − α) + q

Ûϑ = q

Ûq = ρSc̄
2Iy

V2
(
Cm0 + CmV ( VVref

− 1) + Cmαα + Cmq

c̄q
2V
+ Cmδe

δe

)
+
`T
Iy

T .

†Available for download at https://github.com/dimasad/aviation-2019-code
‡Available for download at https://github.com/cea-ufmg/ceacoest
§HSL. A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/
¶Freely available for download at https://arc.aiaa.org/doi/suppl/10.2514/4.102790
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parameter lower starting value upper starting value optimal

CD0 0 0.5 0.0580
CDV −0.5 0.5 −0.0316
CDα 0 1 0.2453
CL0 0 2 0.1808
CLV −2 2 0.2012
CLα 0 10 3.0904
Cm0 0 0.5 0.1184
CmV 0 0.5 0.0137
Cmα −5 1 −0.9941
Cmq −50 0 −28.6517
Cmδe

−10 0 −1.4714
Table 1 Limits of the uniform distribution from which the starting parameters of the HFB-320 example were
drawn, together with their optimal values.

Similarly, the function g of the outputs is defined by

Ṽ = V

α̃ = α

ϑ̃ = ϑ

q̃ = q + bq

ãq = baq +
ρSc̄
2Iy

V2
(
Cm0 + CmV ( VVref

− 1) + Cmαα + Cmq

c̄q
2V
+ Cmδe

δe

)
+
`T
Iy

T

ãx = bax +
ρS
2m

V2
[
sinα

(
CL0 + CLV ( VVref

− 1) + CLαα
) − cosα

(
CD0 + CDV ( VVref

− 1) + CDαα
) ]
+

T
m

cos(εT )

ãz = baz +
ρS
2m

V2
[
− cosα

(
CL0 + CLV ( VVref

− 1) + CLαα
) − sinα

(
CD0 + CDV ( VVref

− 1) + CDαα
) ] − T

m
sin(εT ).

Finally, the `e log-density associated with Gaussian noise (7) was used, with a diagonal R(θ) consisting of the
measurement variances σ2

V to σ2
az
.

The estimation was performed a total of 1000 times with random starting values for the stability and control
derivatives, drawn from uniform distributions whose intervals are shown in Tab. 1. The starting value for the bias
parameters were zero and for the noise standard deviations was one. The mesh states were initialized with the measured
values. Of all starting points of the optimization, 98.6 % converged to the global optimum whose parameter values are
listed in the last column of Tab. 1 and model outputs are shown in Fig. 1.

We note that the optimization converges even for very bad values of θ which pose problems for the single shooting
implementation. Particularly, if we set all aerodynamic derivatives to zero, there is no lift, drag or aerodynamic pitching
moment and the model plummets down, its initial-value problem simulation diverging. However, the collocation-based
estimation manages to reach the optimal solution.

B. Simulated unstable aircraft short period
To demonstrate that the collocation-based output-error method can be used without modifications to estimate

unstable dynamics, we apply it on data from an unstable simulated aircraft. The data was used by Jategaonkar [11,
Sec. 9.16.1] to compare various methods for unstable aircraft system identification. It should be noted that, for this
system, the initial-value problem approach for the output-error method obtains very poor estimates.

A linear model of the short period dynamics was used with 2 states, the vertical velocity w and pitch rate q; only 1
input, the elevator deflection δe; and 3 outputs, w̃, q̃, and the vertical acceleration ãz . A total of 11 parameters were
estimated, the dimensional stability and control derivatives Zw , Zq , Zδe , Mw , Mq , and Mδe ; the measurement noise
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Fig. 1 Estimation results for the HFB320 data. The marks are the measured values and the solid lines are the
estimated model output. The elevator input for the manuever is the bottommost plot.
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Fig. 2 Estimation results for the simulted unstable aircraft data. The marks are the measured values and the
solid lines are the estimated model output. The elevator input for the manuever is the bottommost plot.

standard deviations σw , σq , and σaz ; and the initial states w0 and q0.
The system dynamics is defined by

Ûw = Zww + (U0 + Zq)q + Zδe δe, Ûq = Mww + Mqq + Mδe δe,

and its outputs by

w̃ = w, q̃ = q, ãz = Zww + Zqq + Zδe δe .

The `e log-density associated with Gaussian noise (7) was used, with a diagonal R(θ) consisting of the measurement
variances σ2

w to σ2
az
. The starting mesh states were the measured values, the stability and control derivatives were

zero, and the measurement noise standard deviations were one. The estimation model outputs for the collocation-based
output-error method are shown in Fig. 2.

C. Black-box high-order ground vibration test
For the estimation of models of the rigid-body flight dynamics of aircraft, most states are measured directly and the

model structure is well-known. The estimation of flexible aircraft dynamics poses additional challenges as the structural
states are not usually measured and the model order is much larger. Many of these issues also arise in the system
identification of structural models from ground vibration tests. To illustrate the application of the collocation-based
output-error method to this class of problems, it was applied to accelerometer data from a ground vibration test reported
by Gupta et al. [26], part of the Performance Adaptive Aeroelastic Wing program‖.

A single-input single-output model with 24 states was estimated for the force input u and acceleration output y. The
‖http://www.paaw.net/
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ω1 ω2 ω3 ω4 ω5 ω6

199.06 186.17 178.44 172.64 144.37 121.47

ω7 ω8 ω9 ω10 ω11 ω12

96.52 59.57 58.57 59.03 48.99 48.90
Table 2 Starting values for the pole frequencies in the ground vibration test example.
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Fig. 3 Frequency response magnitude of the empirical transfer function estimate and of the OEM-estimated
model for the ground vibration test.

dynamics were represented in the state-space modal form:

Ûx1a = σ1x1a + ω1x1b + b1u

Ûx1b = −ω1x1a + σ1x1b

...

Ûx12a = σ12x12a + ω12x12b + b12u

Ûx12b = −ω12x12a + σ12x12b,

such that the system poles are located at σi ± jωi . The system output equation is

y = c1ax1a + c1bx1b + · · · + c12ax12a + c12bx12b .

The `e log-density associated with Gaussian noise (7) was used, with R(θ) = σ2
y . The unknown parameter vector

consists of the pole locations σi and ωi , the measurement standard deviation σy , and the coefficients bi , cia, and cib .
The data collected contains high-frequency components which we do not wish to consider, so both the input and

output were filtered with band-pass filters with a passband of 6 Hz to 32 Hz, composed of cascaded 5th-order Butterworth
filters. The data was then decimated by 20 for the estimation, dropping the sampling rate from 2 kHz to 100 Hz. The
starting value for the parameters was zero for the σi and mesh states, one for the cia, cib and bi . The starting values of
the ωi were obtained from the poles of a model identified with the N4SID algorithm which are shown in Tab. 2.

The frequency response of the identified model is shown in Fig. 3, together with that of the empirical transfer
function estimate from the test data. A portion of the estimated model outputs shown against the data can also be seen
in Fig. 4.
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Fig. 4 Portion of the time-response of the identified model in the ground vibration test example.

IV. Conclusions and future work
The collocation-based output-error method for parameter estimation, although seldomly used in aircraft system

identification, better exploits the nature of the inverse problem and has advantages over the ubiquitous single shooting
implementations: applicability to a wider class of systems, such as unstable, marginally stable or poorly damped
systems; better numerical and convergence properties such as robustness against poor parameter values; parallelizable
formulation of the objective function and constraints which can benefit from modern computer hardware and capabilities
such as single instruction, multiple data (SIMD), multicore central processing units (CPUs), graphics processing units
(GPUs) and computer clusters. These properties can help overcome the challenges in demanding applications like the
identification of flexible aircraft dynamics which pose difficulties to the single shooting method.

We note, however, that the main principle behind the collocation method is fairly general: augmenting the
optimization decision variables with the states and encoding their dynamics as equality constraints. This overall
technique can also be applied to other more general parameter estimation methods as well, notably the filter-error
method, lending it similar improvements as for the output-error method.
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