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Resumo

Em diversas áreas do conhecimento como, por exemplo, Epidemiologia e Demogra�a, dados de

contagem são coletados com o intuito de avaliar ou monitorar os riscos associados aos even-

tos de interesse. No entanto, muitas vezes esses dados não são completamente registrados. Em

vez disso, apenas uma fração do verdadeiro total de eventos é observada, caracterizando o

fenômeno conhecido por subnoti�cação, muito comum em estudos epidemiológicos. Se a sub-

noti�cação ocorre e não é levada em consideração, as inferências feitas a partir das contagens

observadas serão viesadas e, consequentemente, os riscos relacionados aos eventos de interesse

seraão subestimados. Além da questão da subnoti�cação, dados de contagem podem apresentar

alta esparcidade, como geralmente ocorre em estudos demográ�cos a respeito dos padrões de

mortalidade em populações humanas. Nesta tese, nós abordamos estes problemas desa�adores

comumente presentes na análise estatística baseada em dados de contagem. Dentre os modelos

propostos, tem-se duas abordagens para a correção do viés de subnoti�cação, as quais foram

publicadas em periódicos relevantes em Estatística, além de uma metodologia alternativa para

a estimação e suavização de curvas de mortalidade por idade e sexo na presença de dados es-

parsos, a qual está em estágio de aprimoramento. Um introdução mais aprofundada sobre os

problemas práticos abordados é fornecida no capítulo inicial, o qual também traz uma descrição

detalhada das contribuições em cada modelo proposto. Os capítulos sequentes são apresenta-

dos no formato de coleção de artigos, os quais apresentam metodologias independentes com

discussões individuais dos problemas abordados. Em todos os casos, o processo de inferência é

feito sob o paradigma Bayesiano. Algumas abordagens disponíveis na literatura são discutidas

e, em certos casos, utilizadas para comparação com os modelos propostos. Dados simulados e

conjuntos de dados reais são utilizados para explorar e ilustrar as principais caracterÍsticas dos

modelos. O capítulo �nal traz um resumo compacto dos métodos e resultados obtidos nos estu-

dos desenvolvidos ao longo da tese, destacando alguns pontos interessantes para estudos futuros.

Palavras-chave: curvas de mortalidade; identi�cabilidade; inferência Bayesiana; métodos Monte

Carlo via cadeias de Markov, modelo Poisson censurado; modelo Poisson composto; mortali-

dade neonatal, sub-registro, taxa de incidência de tuberculose; técnica de aumento de dados;

.
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Abstract

In several �elds, such as epidemiology and demography, count data is collected in order to as-

sess or to monitor the risks associated with the events of interest. However, in many situations

only a fraction of the true total of events is observed, characterizing the phenomenon known as

underreporting, which is very common in epidemiological studies. If the underreporting occurs

and it is not accounted for, the inference made from the observed counts will be biased and,

consequently, the risks related to the events of interest will be underestimated. In addition

to the issue of underreporting, in some studies the observed counts may be highly sparse, as

usually occurs in the analysis of mortality patterns in demographic studies. In this dissertation,

we address these challenging problems commonly faced when analyzing count data. Among the

proposed models, there are two approaches for the correction of underreporting bias, which

have been published in relevant journals in statistics, as well as an alternative methodology

for estimating and smoothing mortality curves by age and sex in the presence of sparse data,

which is been improved. A broader introduction to the practical problems addressed in the dis-

sertation is provided in the opening chapter, which also provides a detailed description of the

contributions related to each proposed model. The subsequent chapters corresponds to a col-

lection of papers, which present independent methodologies with individual discussions of the

problems addressed. In all cases, the inference process is made under the Bayesian paradigm.

Some approaches available in the statistical literature are discussed and, in some cases, used

for comparison with the proposed models. Simulated data as well as real datasets are used to

explore and to illustrate the main features of the models. The �nal chapter summarizes the

methods and results obtained throughout the dissertation, highlighting some interesting points

for future research.

Keywords: Bayesian inference; censored Poisson model; compound Poisson model; data aug-

mentation; Markov chain Monte Carlo methods, model identi�ability; mortality schedules;

neonatal mortality, tuberculosis incidence, underreporting.
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Chapter 1

Introduction

The main goal of statistical modeling is to describe the characteristics of a given system and its

relationship with possible external factors through probabilistic models. Theoretical knowledge

about the phenomenon under study, assumptions about the data collection process, search for

parsimony, among other things, may guide the construction of such models.

However, even if the model is adequate to describe the behavior of the data, the inference

may be compromised if the process of observation and measurement of the data has been

impaired in any way. That is the case, for example, in several studies involving the estimation

of rates based on count data in which only a fraction of the total number of events is reported,

characterizing what we call underreporting.

Although information about unreported events is somewhat missing, underreporting di�ers

from the widespread concept of missing data. In the common missing data problems, informa-

tion about the lack of part of the observations is available and, therefore, it can be directly

incorporated into the analysis. In the case of unreported events, which is the focus in this work,

no information is generated regarding the loss of a certain amount of observations. Thus, sta-

tistical methods that allow the incorporation of extra information about such a phenomenon

throughout the modeling process are of great practical interest.

Another problem that can compromise the inference process when dealing with count data

is the low occurrence of cases (e.g., high frequency of null counts) in many sample units.

This problem can naturally occur when modeling rare events or when there is a high degree

of underreporting. Such a problem commonly arises when one are analyzing the occurrence

of events in small populations where there are few sample units at risk. That is the case,

for example, when the goal is to estimate mortality rates by sex and age groups (mortality

schedules) in small areas. The use of adequate methods and models to deal with such data

features is quite relevant to avoid poor and biased inferences.

In this work we approach two problems involving count data: (i) the correction of under-

reporting bias and (ii) the estimation of mortality schedules in small populations. The text is

organized in chapters as a collection of papers in which the methods are presented, applied

and discussed. For the appropriate treatment of underreported data we present two Bayesian

hierarchical methodologies which can be applied in di�erent situations (Chapters 2 and 4). For

1



1 MODELING UNDERREPORTED COUNT DATA: MOTIVATION AND CONTRIBUTIONS 2

the estimation of mortality curves we propose the use of Bayesian dynamic models which have

shown to be promising in many scenarios (Chapter 3). Finally, Chapter 5 closes this dissertation

with the main concluding remarks, emphasizing the challenge of modeling count data with a

defective reporting mechanism as well as the problem of estimating and smoothing mortality

patterns in subnational small populations. In Chapter 5 we also suggest some potential topics

for future research. In the following Sections 1.1 and 1.2 we brie�y present the motivations and

main contributions regarding the methods presented in Chapters 2, 3 and 4.

1.1 Modeling Underreported Count Data: Motivation and

Contributions

1.1.1 Motivation

Count data is collected in several �elds of science, such as criminology, epidemiology and

tra�c safety. These data are used to assess and monitor the risks inherent to the associated

events they represent. The quality of the risk estimates depends on the quality of the available

data. Any system for counting and reporting events is prone to errors which may arise from

di�erent sources.

In the public health �eld, for example, the reporting systems for infectious diseases, such as

HIV, or chronic diseases, such as leprosy, usually present record failures as a result of diagnosis

error or by the fact that some patients avoid diagnosis. The incidence of several other diseases

is commonly underreported in several parts of the world, especially in less developed regions

[Campbell et al., 2011; Alfonso et al., 2015; Shaweno et al., 2017]. Epidemiologists around

the world also points failures in the civil system for reporting deaths, especially for infant

deaths in underdeveloped countries and regions with low educational levels [Campos et al.,

2007; Szwarcwald et al., 2011; Viswanathan et al., 2010; Xu et al., 2014]. Likewise, Tennekoon

[2017] shows that zero in�ation in self-reported intentional abortion counts is also related to

underreporting. In actuarial sciences, insurance companies usually face an unknown number of

total claims, as some claims are usually made late. Such a delay on the number of insurance

claims produce underreporting at least for a certain period of time, that is, until the events

being properly claimed. As discussed by Bastos et al. [2019] and Stoner and Economou [2020]

reporting delay is also an obstacle for real-time tracking of epidemics such as dengue, Ebola

or COVID-19. An example in industrial production is the total number of products that are

broken within a certain period, usually the warranty period. Knowing this number is important

for quality management. However, only the number of products returned is known, while the

total number also includes products that, although defective, are not returned by customers.

A similar problem occurs in noti�cations of tra�c accidents with minor damage [Wood et al.,

2016]. In criminology, it is known that crimes associated with factors that cause embarrassment

for the victim and those committed by family members are not always reported to the police
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[Li et al., 2003]. The same is observed for crimes involving the robbery of goods of low �nancial

value [Tibbetts and Hemmens, 2010]. Another important motivational example in this �eld

is evidenced by the National Victimization Survey (PNV) performed in Brazil in 2013 [PNV,

2013]. The PNV revealed an average underreporting of 80.1% of cases related to twelve types

of crimes, including kidnapping, assaults and sexual o�ense. In the speci�c case of rape crimes

in Brazil, the underreporting is even more several. It is estimated that only 10 % of cases are

reported to police agencies [Cerqueira and Coelho, 2014]. Decision-making based on crime rate

estimates obtained from these poor quality data will certainly be inappropriate.

Therefore, if the occurrence rates for these crimes are calculated with basis only on the

reported cases, the authorities responsible for the public security sector will �nd di�culties to

identify the need for implementation of protective measures or an increase in the number of

specialized police agencies, for example.

From the previous discussion, it can be seen that underreporting in count data is a widespread

phenomenon. Independently of the source, from the statistical point of view, any incorrectness

on the data registration process represents a bias problem. If underreporting occurs and is not

accounted for, the inference made from the observed counts will be biased and, consequently,

the risks and other amounts associated with the events of interest will be underestimated.

Bias correction in statistical estimators can be made, for example, through techniques such

as Bartlett's correction and bootstrap [Cordeiro and Cribari, 2014]. However, techniques to

correct bias induced by data collection problems, such as underreporting, are less common.

Problems related to zero-in�ation, delayed data, sample selection and preferential sampling

will not be discussed. Some models to address these problems can be �nd, e.g., in Piancastelli

and Barreto-Souza [2019]; Gonçalves and Barreto-Souza [2020]; Bastos et al. [2019]; Stoner and

Economou [2020]; Bastos and Barreto-Souza [2020]; Dinsdale and Salibian-Barrera [2019] and

references there in.

The treatment of the underreporting problem to be approached in this work is not a simple

task, as the data itself does not carry any information about the quality (or precariousness)

of the event reporting process. Because of that, it is always necessary to introduce extra infor-

mation in the modeling process so that some correction of the bias induced by this problem

can be made. In a general context, the strategy is to specify a joint model for the counting

and reporting processes. The few methods currently available in the literature are applicable

in restricted situations, being conditioned to the existence of validation datasets or informative

prior distributions for speci�c, and ideally interpretable, parameters. The two approaches that

have been frequently considered in the literature are brie�y discussed in Sections 1.1.2 and

1.1.3. They serve as the basis for the models we developed in Chapters 2 and 4.



1 MODELING UNDERREPORTED COUNT DATA: MOTIVATION AND CONTRIBUTIONS 4

1.1.2 Contributions on Censored Poisson Models

One way to approach the underreporting in count data is to treat the data suspect of

su�ering from such a phenomenon as censored data. Terza [1985] introduced the so-called

censored Poisson regression model by extending the class of the Poisson regression models to

the context of censored count data in which the censoring threshold is known and constant

for all observations. Caudill and Mixon [1995] extends this model by considering that the

censoring thresholds are known and they may vary between observations. This sort of models

are approached in details in Cameron and Trivedi [1998]. Bailey et al. [2005] considered the class

of models proposed by Caudill and Mixon [1995] for handling underreported count data, more

speci�cally, the leprosy counts in the neighborhoods of Olinda, Brazil. In this case, observations

suspected of being underreported are treated as censored observations.

In order to assimilate the theoretical construction of the censored Poisson model, consider

a region divided into A areas and assume that a total of N individuals are at risk in the

region, over a �xed period of time. Denote by Ti the total number of events in the i-th area,

i = 1, . . . , A, and by Ni the total number of individuals at risk in that area. Consider that Ei

is a known o�set quantity representing the expected number of events at area i. The o�set Ei

allows for the variation in the population size over the areas. In practice one can assume that,

for instance, Ei = Ni or Ei = (Ni

∑A

i=1 Ti)/N . Finally, assume that Ti | θi
ind
∼ Poisson(Eiθi),

where θi is the event occurrence risk at area i. The assumption that all Ti variables are fully

observed is not realistic in many practical situations. Then, consider that some of them can be

right-censored (underreported), that is, for some regions Ti ≥ Yi, with Yi being the reported

(observed) count. Let γi be a censoring indicator variable whose value is 1 if the count at area

i is censored and 0 otherwise. Then, the associated likelihood function is given by

f(y | γ,θ) =
n
∏

i=1

{

[

eEiθi(Eiθi)
yi

yi!

]1−γi
[

∑

y≥yi

eEiθi(Eiθi)
y

y!

]γi
}

, (1.1)

where θ = (θ1, . . . , θA) and γ = (γ1, . . . , γA). In this context, the o�set representing the expected

number of events at area i can be calculated using the naive estimator Ei = (Ni

∑A

i=1 Yi)/N .

In the approach of Bailey et al. [2005], the binary censoring variable γ = (γ1, . . . , γA) is

considered to take into account the possible data reporting failures in some areas. However, in

this context, γ is not directly observed as in Caudill and Mixon [1995]'s approach. To overcome

this problem, Bailey et al. [2005] suggest the use of ad hoc procedures to de�ne the censored

(underreported) areas, based on some socioeconomic indicators and information obtained from

specialists. Oliveira [2016] performed a sensitivity analysis on the censored Poisson model using

simulated datasets �nding that such an approach is quite restrictive because it is very sensitive

to small changes in the censoring criterion. Thus, its use is appropriate only for situation in

which one precisely know the censored areas.

In order to introduce more �exibility into the censored Poisson model presented in equation
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(1.1), in my master's thesis [Oliveira , 2016] I introduced a more general model which considers

the censoring indicator variables γi, i = 1, . . . , A, as parameters of the model in order to account

for the uncertainty associated to the censored data. A probabilistic structure is assigned to the

censoring mechanism instead of requiring its precise prior speci�cation, leading to the called

Random-Censoring Poisson Model (RCPM). Under the RCPM, the term γi is considered as a

latent random variable such that γi | πi
ind
∼ Bernoulli(πi) ∀ i, i.e., in each area i the count Yi is

assumed to be underreported with probability πi. In addition, it is assumed that, given θ, the

observed counts and the censoring variables are independent. Then, the joint model for Y and γ

is hierarchically obtained through the likelihood function given in equation (1.1) and f(γ | π) =
n
∏

i=1

πγi
i (1− πi)

1−γi . Under the RCPM, it is possible to estimate both the risks associated with

the event of interest and the probability of each observation being censored (underreported).

The key point is to model the uncertainty about the censoring probabilities π = (π1, ..., πA), for

which is considered a logistic regression. Extra information coming, for instance, from expert's

opinion is required to model the uncertainty about the regression parameters. Inference is made

under the Bayesian paradigm and a data augmentation technique [Tanner and Wong, 1987] is

proposed for sampling from the full conditional posterior distributions.

Although the theoretical structure which de�nes the RCPM was introduced in Oliveira

[2016], such an approach was substantially improved during the �rst three semesters of my Ph.D.

The MCMC scheme introduced in Oliveira [2016] for sampling from the posterior distribution

was modi�ed, improving adequacy and e�ciency of the estimation process. More speci�cally,

the Metropolis-Hastings algorithm and the blocking strategy used to sample from the model

parameters was completely reformulated. The competing model introduced by Moreno and

Girón [1998] was implemented. A broader simulation study was performed also including a

comparison with the approach of Moreno and Girón [1998]. A sensitivity analysis considering

di�erent prior distributions for parameters related to the reporting process was accomplished

under both the RCPM and the Moreno and Girón [1998]'s approaches. The application to infant

mortality data in Minas Gerais, Brazil, was also improved by including a sensitivity analysis

to the prior speci�cations for the censoring probabilities π and also by considering datasets

from di�erent periods of time. The RCPM methodology and the improvements mentioned

above generated a paper published in Statistics in Medicine [Oliveira et al. , 2017]. The paper

with the complete model speci�cation, the proposed MCMC scheme, simulation studies and

applications, as well as its supplementary material, are presented in Chapter 4. Chapters 2

and 3 present the most important contributions of this dissertation, which are described in the

following.
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1.1.3 Contributions on Compound Poisson Models

Another usual approach in the context of underreported data is to treat the model for the

observed counts as a composition of the model associated with the total (unobserved) counts.

The resulting model belongs to the class of the so-called compound Poisson models (CPM),

which is based on a Binomial thinning scheme.

As in the previous section, assume that Ti | θi
ind
∼ Poisson(Eiθi), i = 1, . . . , A, where

θi is the event occurrence risk and Ei is a known o�set quantity representing the expected

number of events at area i. For the number of reported events, Yi, assume that Yi | Ti, εi
ind
∼

Binomial(Ti, εi), where εi represents the reporting probability or, equivalently, the proportion

of the total count Ti that is e�ectively recorded. It can be shown that the marginal distribution

of Yi with respect to (w.r.t.) the total unobserved count Ti is

Yi | θi, εi
ind
∼ Poisson(Eiθiεi), ∀ i = 1, . . . , A. (1.2)

Although it is a quite attractive modeling strategy, if no additional information is available,

the model given in expression (1.2) is not identi�able. It is straightforward seeing that in each

area only the product ηi = θiεi is estimated from the observed count Yi, since, any other

combination of parameters, say θ̃i and ε̃i, which provide the same product ηi = θ̃iε̃i generates

the same likelihood function.

The lack of identi�ability inherent to the CPM can be overcome by imposing restrictions in

the parametric space or introducing extra information into the analysis. A detailed discussion

on this issue is presented in Chapter 2. In the following, we summarize the strategies currently

proposed in the literature in order to introduce the reader to the modeling di�culties under

the CPM.

Firstly, we discuss about the approach proposed by Schmertmann and Gonzaga [2018],

which make use of additional information to directly elicit an informative prior distribution

for each εi, i = 1, . . . , A. In their application, such extra information comes from additional

samples obtained by an active search procedure available from previous related studies. A

similar strategy is used by Moreno and Girón [1998]. However, this approach is feasible only

for practical situations where there is available strong prior information about the reporting

probability within each sample unit i. Also, especially in areas experiencing the worst quality in

the registration process, the uncertainty surrounding the available information can be so high

that it becomes useless to guarantee the model identi�ability.

Another approach for the CPM, which has been considered in several works in the literature

(e.g., Whittemore and Gong [1991]; Powers et. al [2010]; Papadopoulos and Silva [2008]; Stoner

et al. [2019]), assumes that, in each area, both the risk θi and the reporting probability εi depend

on a set of covariates, say xi and wi, such that

log(θi) = β0 + x′
iβ and logit(εi) = α0 +w′

iα, (1.3)
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where β and α denote the �xed e�ects and β0 and α0 denote the intercept terms, i = 1, . . . , A.

The model de�ned by equation (1.3) is usually called by Pogit (Poisson-Logistic) model. Eventu-

ally, random e�ects are included in the model in order to take into account spatial and regional

information complementary to that contained in the available covariates. From the modeling

point of view, xi and wi can be the same or one can be a subset of the other. A convenient

and less restrictive modeling strategy would be to include all available variables as regressors

in both parts of the model. However, Papadopoulos and Silva [2008] show that, even with the

inclusion of covariates, it is not possible to identify the model without using extra information.

These authors suggest considering the inclusion of signal restrictions or exclusion restrictions

in components of the �xed e�ects β and α and intercepts terms β0 and α0. Such identi�ability

constraints may not be feasible in general practical situations.

Still under the Pogit model, another way to get around the intrinsic lack of identi�cation

is to include an additional validation dataset. This is the case in the problem addressed by

Whittemore and Gong [1991], Stamey et al. [2006], Powers et. al [2010] and Dvorzak andWagner

[2015]. The main dataset of interest to these authors concerns to the number of deaths caused

by cervical cancer in four European countries for women in four age groups. The diagnosis

of the cause of death is subject to error leading to under-registration of the total amount of

deaths. In this particular application, a sample of 50 physicians from each country �lled out

a death certi�cate for a speci�c patient who had died by cervical cancer and the number of

correct death certi�cates in each country was recorded. With this, a validation (gold-standard)

dataset is available as a proxy for quality of the cervical cancer deaths registration process in

each country. The incorporation of these data into the likelihood function makes it possible

to identify the model and estimate the parameter vectors θ and ε separately. However, in

general applications, validation datasets are rarely available and they can be very expensive to

obtain. Stoner et al. [2019] proposed a di�erent Bayesian modeling framework when applying the

Pogit model to Brazilian tuberculosis data. Nevertheless, similar to the previously mentioned

approaches, their model can only be applied when strong prior information is available for some

speci�c model parameters.

From the previous discussion it becomes evident the di�culty related to the wide application

of the CPM as it has been approached in the literature. Its identi�ability depends on speci�c

additional information about the reporting process that is not always available. With focus

on practical situations in which trustful prior information is only available for areas known to

experience the highest data quality levels, we propose in Chapter 2 a novel Bayesian approach

for the compound Poisson model. We model the probability of underreporting in a di�erent

way by assuming a dependence among such probabilities provided that the areas of interest

are grouped according to their data quality. We use such a clustering structure to relate the

reporting probabilities such that they decrease as we move from the best group to the worst

ones. A deep discussion on the model identi�ability is provided. We obtain constraints for model

identi�ability and we prove that only prior information about the reporting probability in areas

experiencing the best data quality is required to identify the model. We assess some model
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characteristics using simulation experiments and illustrate its use by analyzing Brazilian infant

mortality datasets. Our approach for the CPM also requires the availability of speci�c prior

information to guarantee the model identi�ability, but it emerges as an alternative modeling

strategy for the adequate treatment of underreported count data. The proposed methodology

has been accepted for publication in Bayesian Analysis [Oliveira et al., 2020]. In addition, a

new application of the model in a real epidemiological problem is provided in the appendix

of Chapter 2. We reanalyze the Brazilian tuberculosis data considered by Stoner et al. [2019].

This analysis is used to exemplify the potential application of the proposed model and the

necessary paths to adapt the available data to the model's structure in general contexts. We

use a conventional procedure to de�ne the clusters. Our solution is compared with the results

obtained under the approach given in Stoner et al. [2019].

The research developed in Chapter 2 originated from discussions in the scope of the project

"Sensitivity analysis and Bayesian robustness in partition model with application in neo-natal

mortality mapping". This is an international cooperation project Brazil-Italy CNPq-CNR, grant

19/2011, 2012-14 coordinated by researchers Márcia D'élia Branco (USP, Brazil) and Fabrizio

Ruggeri (CNR-IMATI, Italy) and with the participation of Rosangela Helena Loschi (UFMG,

Brazil) and Ra�aele Argiento (Università Cattolica del Sacro Cuore, Italy).

1.2 Estimation and Smoothing of Mortality Schedules: Mo-

tivation and Contributions

The challenge of estimating human mortality rates is faced in di�erent �elds, specially in

demography. The death rates are used along with other indicators, such as the probability

of dying and the number of survivors for each age or speci�c age groups, to create a speci�c

tabulation called life table. Life expectancy at birth, an output of a life table, is a widely used

indicator to compare levels of mortality and health status among populations. A complete set of

age-speci�c mortality rates is the starting point for deriving the value of life expectancy at birth

and other summary indicators of mortality or longevity. Often, life tables are also calculated

separately for males and females.

Some important goals of mortality modeling include describing the shape of mortality curves

by age and sex (referenced in this work as mortality schedules), estimating and projecting

mortality patterns over time and investigating di�erences in mortality patterns across di�erent

populations. The data is available in the form of counts of deaths and individuals exposure to

risk in each speci�c age and sex stratum. The representation of mortality patterns is a special

issue in small populations where observed data tends to be sparse and erratic. Also, it is a

di�cult task when dealing with populations from less developed regions because data coming

from such areas is usually unreliable or incomplete.

Traditionally, mortality rates from large populations that present good data quality are used

to observe empirical and mathematical regularities in the mortality schedules, which could be
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Chapter 2

Bias correction in clustered underreported

data

Abstract

Data quality from poor and socially deprived regions have given rise to many statistical

challenges. One of them is the underreporting of vital events leading to biased estimates for

the associated risks. To deal with underreported count data, models based on compound Poisson

distributions have been commonly assumed. To be identi�able, such models usually require extra

and strong information about the probability of reporting the event in all areas of interest,

which is not always available. We introduce a novel approach for the compound Poisson model

assuming that the areas are clustered according to their data quality. We leverage these clusters

to create a hierarchical structure in which the reporting probabilities decrease as we move from

the best group to the worst ones. We obtain constraints for model identi�ability and prove

that only prior information about the reporting probability in areas experiencing the best data

quality is required. Several approaches to model the uncertainty about the reporting probabilities

are presented, including reference priors. Di�erent features regarding the proposed methodology

are studied through simulation. We apply our model to map the early neonatal mortality risks

in Minas Gerais, a Brazilian state that presents heterogeneous characteristics and a relevant

socio-economical inequality.

Keywords: compound Poisson; generalized Beta distribution; Je�reys prior; model

identi�ability; neonatal mortality; underreporting.

The content of this chapter has been accepted for publication in Bayesian Analysis [Oliveira et al., 2020].
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2.1 Introduction

The estimation of economic, health and social indicators in underdeveloped and developing

countries has been a challenging task due to the low quality of the available data. In such areas,

even with the recent advances, data coming from o�cial collection systems usually experience

considerable underreporting of events. To cite an example, it is common to miss the report of

infants who die shortly after birth. If not accounted for, such a phenomenon typically lead to

the underestimation of vital statistics, compromising the de�nition of appropriate government

intervention policies and distribution of �nancial resources.

In the statistical literature, the bias problem induced by a defective data reporting process is

commonly handled by considering hierarchical models that accommodate truncated or censored

observations. For mapping the risks associated to count events subjected to underreporting,

Bailey et al. [2005] consider the censored Poisson regression model proposed by Caudill and

Mixon Jr. [1995] assuming that, for suspected areas, the observed count represents a right-

censoring threshold for the true non-observed total number of events. This approach relies on the

fact that, a priori, all areas experiencing underreporting are precisely known. Bailey et al. [2005]

consider ad-hoc procedures to determine the censored (underreported) areas. Later, Oliveira

et al. [2017] de�ne a random-censoring Poisson model (RCPM) introducing more �exibility

in the analysis of underreported count data. The RCPM allows for the estimation of both

the associated occurrence rates and the probability of each area to experience censoring. The

authors showed that quality of posterior estimates is related to the availability of informative

prior distributions for the censoring probabilities.

The compound Poisson model (CPM) is an alternative approach to deal with potentially

underreported counts. It allows for the joint modeling of the event occurrence rates and the

associated reporting probabilities. The main di�erence between RCPM and CPM is that the

former models the underreporting status of each area: Is area i su�ering from underreporting

or not? In turn, the latter models the area-speci�c probability of each particular event being

reported, then all areas are, in principle, subject to underreporting.

To guarantee the CPM identi�ability, it is necessary to introduce prior information on the

reporting process. This has been carried out in di�erent ways in the literature depending on

the context and the type of information available. For example, Whittemore and Gong [1991],

Stamey, Young and Boese [2006] and Dvorzak and Wagner [2015] resort to a validation dataset

on the reporting process. This refers to another independent data source, free of underreporting,

that can be used to calibrate the bias induced by the underreporting in the main dataset under

analysis. Such additional gold standard dataset does not necessarily have to be on the same scale

as the primary data but it has to be available for each sample unit. Thus, validation datasets

are rarely available and they can be very expensive to obtain. All three previous papers use the

same illustrative example which is based on a single validation dataset of severely restrictive

extent. Speci�cally, their validation dataset is based on a 1987 study that selected a sample

of 203 physicians divided in four groups according to their nationality (England, Belgium,
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France and Italy). In each group, the sample of physicians was asked to complete a specimen

death certi�cate for the case history of a single 51-year-old woman with an ulcerating tumor

of the cervix. The certi�cate had enough information to induce the correct classi�cation of the

patient as a victim of cervical cancer. However, the groups reached di�erent proportions of

death certi�cates correctly coded as cervical cancer. The result is then used as a gold-standard

estimation of the correct diagnosis and completion of death certi�cates for this speci�c cancer

as the underlying cause of death. Hence, this validation dataset is outdated and should be

looked cautiously if used for recent death data. Furthermore, it is useful only for one single

cancer (cervical cancer) in four speci�c countries, being hardly generalizable for other sorts of

cancers or other regions.

Moreno and Girón [1998] resort to a di�erent strategy as they did not have a validation

dataset in their studies of reported assaults in Málaga and Stockholm. They provide a detailed

investigation under the CPM whenever conjugate families are considered to independently

model the prior uncertainty for the reporting probabilities and the occurrence rates. The au-

thors emphasize that prior information on the reporting probabilities is expected to be included

to make feasible the posterior estimation. Such information can be obtained through speci�c

surveys or from experts' opinion and then it must be conveniently used to set the hyperpa-

rameters of the conjugate prior distributions. Following Moreno and Girón [1998]'s approach,

Schmertmann and Gonzaga [2018] consider the CPM to estimate the age-speci�c mortality and

life expectancy for small areas with defective vital records in Brazil. Probabilistic prior infor-

mation on the death registration coverage in each area is considered to elicit an informative

Beta prior distribution for the death reporting probability in three age groups. The authors

derived such a prior information from standard demographic estimation techniques, such as the

Death Distribution Methods, and also from intensive �eld audits conducted by Brazilian public

health researchers.

As an alternative to these previous models, Stoner, Economou, and Drummond [2019]

present a Bayesian hierarchical CPM to account for the underreporting in tuberculosis counts

in Brazil. To complement the partial information in the data, their model only requires an infor-

mative prior distribution for the mean reporting rate. To elicit such an informative prior across

all Brazilian microregions, the authors consider external estimates of the overall tuberculosis

detection rate derived by the World Health Organization through an inventory study.

Trustful prior information about the overall mean reporting process is not always available.

Sometimes, one can only count with pieces of prior information on the reporting process for

some subsets of areas, obtained through local inventory studies (local active search for cases) or

experts' opinion. In many epidemiological studies, for example, one may only know a priori that

the severity levels of underreporting are likely associated with some socioeconomic indicators

or, merely, that less socially deprived areas properly record a greater percentage of their events,

producing more reliable information [see Campos, Loschi and França, 2007; Bailey et al., 2005;

Silva et al., 2017, for instance]. That is the case, for example, when mapping the infant mortality

rates in underdeveloped regions, such as Africa and Latin America, based on data coming from
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defective death registration systems [World Health Organization, 2006; Alkema and New, 2014;

Alexander and Alkema, 2018].

Inspired by situations in which validation datasets are unaccessible and reliable prior infor-

mation about the reporting process is only available for areas experiencing the best data quality,

we propose a new hierarchical Bayesian approach for the CPM (Section 2.2). It considers that

the areas composing the region of interest are ordered according to data quality categories.

If it is reasonable to additionally cluster the areas into homogeneous groups, then the model

becomes more parsimonious. The clusters may be de�ned with basis on experts' opinion or

applying some clustering technique to data quality indicators provided by previous studies and

surveys. In our model, the data quality clustering of the areas is a tool used to model their

reporting probabilities. We leverage the clusters to create a hierarchical structure in which the

reporting probabilities decrease as we move from the best data quality areas to the worst ones.

The novelty in our approach is that only an informative prior distribution about the report-

ing probability at areas experiencing the best data quality is required to ensure identi�ability

(Section 2.2.1). To model the event occurrence rates, we consider a set of potential covariates

through a regression structure. Bayesian variable selection is incorporated into the model to

identify regressors with a non-zero e�ect.

Extensive simulation studies are presented to evaluate the performance of the proposed

model in di�erent scenarios (Section 2.3). We apply the developed Bayesian methodology to

estimate the early neonatal mortality rates in Minas Gerais State, Brazil, for the periods 1999�

2001 and 2009�2011 (Section 2.4), where the death counts are known to be underreported

[Campos, Loschi and França, 2007]. In this context, the proposed approach is attractive because

neither validation datasets nor prior knowledge about the overall mean reporting probability

are available. Section 2.5 closes the paper with our main conclusions.

2.2 Model speci�cation

Consider a region divided into A areas and denote by Ti the total number of events at area

i, for i = 1, . . . , A. Assume that Ti | λi
ind
∼ Poisson(λi), where λi is the mean expected counts in

the ith area. The relative risk for the event at area i is given by θi = λi/Ei, where Ei is a known

o�set quantity representing the expected number of events in such area. The o�set Ei allows

for a variation in the population size over the areas. In the context of underreported data, Ti
is not fully observed for, at least, part of the areas, so that the reported number of events Yi
may corresponds to only a fraction of Ti. To consider this data feature, each event occurring at

area i is associated to a binary random variable Zi,t ∼ Bernoulli(εi) that determines whether

the tth event will be reported or not, where εi ∈ [0, 1] represents the associated reporting

probability. The random variables in the sequence Zi,1, Zi,2, , Zi,3, . . . are assumed as being

identically distributed, mutually independent and also independent of Ti. Consequently, Yi =
∑Ti

t=1 Zi,t has a compound Poisson distribution in which Yi | Ti, εi
ind
∼ Binomial(Ti, εi) and
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Ti | θi
ind
∼ Poisson(Eiθi). By marginalizing the joint distribution of (Yi, Ti) over Ti, it follows

that the observed count Yi has the conditional distribution

Yi | θi, εi
ind
∼ Poisson(Eiθiεi). (2.1)

The model in expression (2.1) will be refereed as compound Poisson model (CPM) through-

out this work. To model the relative risks θ = (θ1, . . . , θA), we assume that they are related

to a set of p potential covariates such that log(θi) = β0 + β1X1i + · · · + βpXpi, i = 1, . . . , A.

Random e�ects may be included in the log-linear predictor to capture any residual spatial or

local variation in the relative risks. The greatest challenge under the CPM is the modeling

of the reporting probabilities ε = (ε1, . . . , εA). If no further information is available, only the

parameter ηi = θiεi is identi�ed from the observed data Yi since any parameter combination

such that η̃i = θ̃iε̃i = θiεi yields the same likelihood function.

Di�erent approaches to model ε have been discussed in the literature. Moreno and Girón

[1998] and Schmertmann and Gonzaga [2018] directly model the uncertainty about εi using in-

formative beta prior distributions. A more general approach assumes that εi = g(H1i, . . . , Hmi),

where H1i, . . . , Hmi is a set of m covariates related to the reporting process and g is any non-

negative function such that 0 < g(H1i, . . . , Hmi) < 1 for all i. There are many possible choices

for g. The most popular one is to assume that g is a logistic function, as in Whittemore and

Gong [1991], Dvorzak and Wagner [2015] and Stoner, Economou, and Drummond [2019]. As

discussed in Section 2.1, all these approaches require either strong prior information about ε

or validation datasets to ensure model identi�ability.

One of the main goals in this work is to model ε in situations where no validation dataset

is available to guarantee model identi�ability and whenever reliable prior information about

the percentage of underreporting is only available for areas where data are known to be better

reported. In this context, we assume that εi = g(H1i, . . . , Hmi) = 1 − γ − f(H1i, . . . , Hmi),

where γ ∈ [0, 1) is the basal underreporting probability in the area with the best data quality

and f is any non-negative function such that f(H1i, . . . , Hmi) < 1− γ for all i. The function f

captures the increase in the basal underreporting probability explained by the covariates. If f

equals to zero in the best area, then f(H1l, . . . , Hml) denotes the increase in the underreporting

probability for area l when compared to the best one. As in the model proposed by Stoner,

Economou, and Drummond [2019], covariates H1i, . . . , Hmi are assumed to be di�erent from

X1i, . . . , Xpi to guarantee model identi�ability. This model limitation may be avoided only if

validation datasets are accessible as in Dvorzak and Wagner [2015]. A further discussion on this

issue is given in Section 2.2.1.

The de�nition of a general f which satis�es all these constraints is not a simple task. To

facilitate its construction, we assume that it is possible to sort the areas according to their data

quality. Additionally, we assume that the reporting probabilities are equal for areas where the

covariates related to the reporting process experience similar values. For this purpose, we assume

that the A areas are grouped into K known data quality clusters, where K ≤ A. We allow for
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K = A to account for situations in which there is no prior information for clustering the areas.

However, if such information is available and then K < A, we obtain a more parsimonious

model and more data information to estimate the reporting probabilities throughout the areas.

In practice, there are many ways to de�ne the clusters. We may consider some grouping

proposals available from previous works or to be guided by experts' information. Another

possibility is to perform usual clustering techniques based on available covariates that are

related to data quality in the region of interest.

Based on such grouping structure, we use a convenient coding scheme to represent the clus-

tering indicator variable, which is di�erent from variables inX1i, . . . , Xpi. Let hi = (h1i, . . . , hKi)
T

be the clustering variable composed by binary quantities h1i, . . . , hKi and de�ned according to

the following split-coding scheme: if area i belongs to cluster j then hli = 1 for all l ≤ j and

hli = 0 otherwise. Let γ = (γ1, . . . , γK), where γj ∈ [0, 1) for all j = 1, . . . , K, such that
∑K

j=1 γj < 1. We assume that the reporting probability at area i is given by

εi = 1− h
T
i γ. (2.2)

The constraint imposed on γ is necessary to guarantee that εi 6= 0 ∀ i, and, consequently, to

ensure non-null mean for the associated Poisson distribution.

The proposed model has some interesting features. Firstly, to be identi�able, it only requires

information about the reporting probabilities in the best areas (see discussion in Section 2.2.1).

Besides that, εi is represented in terms of interpretable parameters, which facilitates prior

elicitation. For a given area i, hi = (1, 0, . . . , 0)T and hi = (1, 1, . . . , 1)T represent the two most

extreme situations. If hi = (1, 0, . . . , 0)T then the ith area has the highest level of data quality.

We will assume that data in such area are recorded with a higher probability (εi = 1 − γ1) if

compared to the areas in the remaining data quality groups. At the other extreme situation, if

hi = (1, 1, . . . , 1)T then the ith area lies in the worst data quality category. Data in this region

are recorded with a lower probability (εi = 1−γ1−· · ·−γK) if compared to those areas belonging

to clusters with better data quality. Thus, the parameter γ1 represents the probability of not

recording an event in areas classi�ed in the highest level of data quality. The parameter γ2 is

the increment on such probability for areas experiencing the second highest data quality level,

and so on. Another attractive feature of the proposed model is that, although the clustering

indicator variable cannot be used to also model the relative risks θ, the covariates used for

clustering are indirectly taken into consideration when estimating θ, since the areas belonging

to the same cluster are homogeneous w.r.t. such clustering covariates.

2.2.1 On model identi�ability

The lack of identi�ability of the compound Poisson model presented in expression (2.1)

has been discussed by several authors [Whittemore and Gong, 1991; Moreno and Girón, 1998;

Stamey, Young and Boese, 2006; Papadopoulos and Silva, 2012; Dvorzak and Wagner, 2015;
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Schmertmann and Gonzaga, 2018; Stoner, Economou, and Drummond, 2019]. All these previous

works impose some constraints on θ and ε to attain model identi�ability.

A well-known way to overcome non-identi�ability problems requires extra information about

the reporting probabilities ε = (ε1, . . . εA). In the most extreme cases, all components of vector ε

should be �xed at a known quantity. Moreno and Girón [1998] and Schmertmann and Gonzaga

[2018] show that this extreme constraint may be relaxed when the target of the statistical

analysis is to estimate the relative risks. This is done by incorporating external estimates of

registration coverage through very informative prior distributions about each component of ε.

To the best of our knowledge, there are two approaches to obtain an identi�able model

when sets of covariates, say X and H , are used to model the relative risk θ and the reporting

probability ε, respectively. The �rst one requires extra information from independent validation

datasets [Whittemore and Gong, 1991; Stamey, Young and Boese, 2006; Dvorzak and Wagner,

2015]. This is a rare situation in practice that, however, does not require the intersection of X

and H to be empty. The second one, adopted by Papadopoulos and Silva [2012] and Stoner,

Economou, and Drummond [2019], creates some kind of linear separability of the covariates

sets X and H . Stoner, Economou, and Drummond [2019] build X and H by splitting the

set of all available covariates into two disjoint sets based on experts' opinion. Hence, there is

an empty intersection between the covariates in the sets X and H but this is not enough to

guarantee identi�ability. In their modeling framework, they also had available an informative

prior distribution for the overall mean reporting rate which was su�cient to complete the

identi�ability conditions. Papadopoulos and Silva [2012] allow intersection between the two

sets of covariates but impose prior information to establish appropriate constraints on the

parametric space, such as restrictions on the signs or exclusion of some coe�cients. This avoids

the need for validation datasets.

Our approach also assumes, as in Stoner, Economou, and Drummond [2019], that the clus-

tering covariates associated with ε are not considered in the log-linear predictor of the relative

risks θ. In principle, this constraint seems to be quite restrictive. Nevertheless, for model iden-

ti�ability, what is required is the lack of strict mathematical collinearity between X and H ,

but not their statistical independence. Thus, the two disjoint sets X and H may be correlated.

In many practical situations, we can and probably we will have the two sets composed by

covariates carrying similar information, measuring related aspects of the areas. For instance,

to estimate infant mortality rates, one expects that poor social-economic conditions will a�ect

both the relative risks and the reporting probabilities. It is true that to avoid the identi�ability

issues we must not use the same covariates when modeling θ and ε. However, we are allowed

to use correlated variables, since our identi�ability assumption requires just the strict empty

intersection between the two sets, not the orthogonality of the information they carry. This

makes our model much more attractive for practical implementation with respect to some of

the previously proposed alternatives.

If the number of clusters K is smaller than the initial number of areas A, the clustering

strategy proposed in expression (2.2) imposes a reduction in the parametric space related to
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the CPM in expression (2.1). Even under such a reduction and assuming that X and H are

disjoint sets, the proposed CPM remains unidenti�able. Its identi�cation will depend on the

only trustful prior information we have available: the percentage of data reported in areas

with the best data quality. Nevertheless, if such a piece of information is not available, other

constraints for model identi�cation are possible as discussed in the following.

Assume log(θi) = β0 + β1X1i + · · · + βpXpi, i = 1, . . . , A, and denote by Aj the subset of

areas belonging to the j-th data quality cluster, for j = 1, . . . , K. Under these assumptions,

the log-likelihood function associated with the proposed model is

l(Ψ;y) =
K
∑

j=1

∑

i∈Aj

{

−Ei exp {β0 + β1X1i + · · ·+ βpXpi}

(

1−

j
∑

l=1

γl

)

(2.3)

+ yi

(

logEi + β0 + β1X1i + · · ·+ βpXpi + log

(

1−

j
∑

l=1

γl

))

− log yi!

}

,

where Ψ = (β0, β1, . . . , βp, γ1, . . . , γK). As the proposed model belongs to the exponential

family, we obtain that T (y) =

(

A
∑

i=1

yi,
A
∑

i=1

yiX1i, . . . ,
A
∑

i=1

yiXpi,
∑

i∈A1

yi,
∑

i∈A2

yi, . . . ,
∑

i∈AK

yi

)

is the

(p + K + 1)-dimensional su�cient statistic for the parameter vector Ψ. Note that, the �rst

coordinate of vector T (y) is a linear combination of the last K coordinates. Thus, the number

of unknown parameters exceeds by one the number of linearly independent pieces of sample

information (su�cient statistics). This implies that only p + K parameters can be estimated

without additional information [McHugh, 1956; Picci, 1977; Huang, 2005].

Proposition 2.2.1. The proposed model under the speci�cation in expression (2.3) is identi�-

able if β0 or one of the coordinates of vector γ is �xed at a known value.

Proof. Firstly, �x β0 at a known value. In this case, model identi�ability follows by noticing that

the vector of su�cient statistics associated to the parameter vectorΨ∗ = (β1, . . . , βp, γ1, . . . , γK)

is given by T ∗(y)=

(

A
∑

i=1

yiX1i, . . . ,
A
∑

i=1

yiXpi,
∑

i∈A1

yi,
∑

i∈A2

yi, . . . ,
∑

i∈AK

yi

)

, which is composed by

independent pieces of information. Similarly, without losing generality, let γ1 to be known. Un-

der this assumption the su�cient statistics related to the parameter vectorΨ∗∗ = (β0, β1, . . . , βp,

γ2, . . . , γK) are given in T ∗∗(y) =

(

A
∑

i=1

yi,
A
∑

i=1

yiX1i, . . . ,
A
∑

i=1

yiXpi,
∑

i∈A2

yi, . . . ,
∑

i∈AK

yi

)

. In this

case, the proof follows straightforwardly by noticing that the �rst coordinate of T ∗∗(y) can

not be recovered as a linear combination of the last p + K − 1 coordinates as it depends on
∑

i∈A1

yi.

Our proposal is to approach situations in which trustful prior information is only avail-

able about γ1. This parameter is easily interpretable as the underreporting probability in those

areas having the best data quality. Thus, only prior information about the proportion of un-

recorded data in such areas is required to identify the proposed model. Despite its appealing
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interpretation, the precise choice of the value for γ1 may not be a simple task in practical

situations. However, it is possible to obtain from experts some pieces of information about the

most likely values for such parameter. This information may be suitably expressed by means

of a non-degenerated informative prior distribution for γ1 thus relaxing the requirement of ex-

actly knowing its value (for further discussion on the use of prior information to attain model

identi�cation see Gustafson et al. [2005]).

Another way to investigate model identi�ability is to consider the associated Fisher in-

formation. The Fisher information plays an important role in the asymptotic theory of max-

imum likelihood estimation as well as in Bayesian reference analysis. Besides that, Rothen-

berg [1971] showed that a model that belongs to the exponential family is globally identi-

�able if the Fisher information matrix is nonsingular. Let Λ(j) =

(

1−
j
∑

l=1

γl

)

and µij =

Ei exp {β0 + β1X1i + · · ·+ βpXpi}Λ(j). The Fisher information matrix I(Ψ) resulting from ex-

pression (2.3) is given by

I(Ψ) =






















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























K
∑

j=1

∑

i∈Aj

µij . . .
K
∑

j=1

∑

i∈Aj

µijXpi

K
∑

j=1

∑

i∈Aj

−µij

Λ(j)

K
∑

j=2

∑

i∈Aj

−µij

Λ(j)
. . .

∑

i∈AK

−µij
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K
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−µijXpi
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K
∑

j=2

∑

i∈Aj

−µijXpi
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. . .
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i∈AK

−µijXpi
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K
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−µij

Λ(j)
. . .

K
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−µijXpi

Λ(j)
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,

Which is a matrix of order (1+p+K)× (1+p+K). The K×K sub-matrix highlighted in bold

will () be considered in Section 2.2.2 to build the Je�reys prior for γ given β = (β0, β1, . . . , βp).

Proposition 2.2.2. The Fisher matrix information I(Ψ) associated with the model given in

expressions (2.1) and (2.2) is singular.

Proof. Denote by Cκ the column vector of I(Ψ) associated to the parameter κ ∈ Ψ such that

I(Ψ) =
[

Cβ0 . . . Cβp
Cγ1 Cγ2 . . . CγK

]

. Let ξ0 = 1, ξ1 = (1 − γ1) and ξj = −γj for j = 2, . . . , K.

Assuming these non-null constants, it follows that ξ0Cβ0 + ξ1Cγ1 +
K
∑

j=2

ξjCγj = 0. Thus, I(Ψ) is a

singular matrix. From the results in Rothenberg [1971] it follows that the associated statistical

model is not locally identi�able for at least a subset of the parametric space, thus characterizing

the model lack of identi�ability since local identi�cation is a necessary condition to global

identi�cation.

As previously shown in Proposition 2.2.1, model identi�ability is achieved provided that the

parameter γ1 is �xed at a known value. In the general case, it is di�cult to prove directly that

the Fisher information matrix I(Ψ) is nonsingular when we �x γ1. However, some special cases

are amenable to analytic treatment and they are illuminating for this identi�ability discussion

as we show in Proposition 2.2.3.
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Proposition 2.2.3. Assume that the A areas experience a common relative risk such that

log(θi) = β0, for i = 1, . . . , A. If γ1 is �xed at a known value γ01 ∈ [0, 1] then the Fisher infor-

mation matrix associated with the model given in expressions (2.1) and (2.2) is nonsingular.

Proof. The Fisher information matrix I(Ψ∗) under this model speci�cation is obtained from

I(Ψ) by removing the columns and rows related to parameters β1, . . . , βp and γ1 and setting

γ1 = γ01 . After some calculation, we obtain that the determinant of I(Ψ∗) is

det I(Ψ∗) =

(

∑

i∈A1

µi1

)





K
∏

j=2

∑

i∈Aj

µij

(

1− γ01 −

j
∑

l=2

γl

)−2


 .

All sum terms in det I(Ψ∗) are positive. Consequently, we have det I(Ψ∗) > 0 implying that

I(Ψ)∗ is a nonsingular matrix. From Theorem 3 in [Rothenberg, 1971], it follows that the

associated statistical model is globally identi�able.

The previous propositions provide some mathematical constraints for model identi�ability,

which are necessary to guarantee that all parameters can be estimated from the observed data.

However, it is important noting that such constraints do not guarantee that all parameters

will be well estimated, that is, having theoretical identi�ability may not guarantee the prac-

tical identi�ability. Even for an identi�able model, large sample sizes might be required to

obtain good parameter estimates in some situations. On the other hand, for a non-identi�able

model, some parameters might not be estimated even with large datasets if the identi�ability

constraints are not considered.

Remark 2.2.1. As suggested by an anonymous referee, an equivalent representation of our

model is obtained by considering the parameterization

εi = exp
{

−h
T
i δ
}

, (2.4)

where δ1 = − log(1− γ1), δj = − log
(

1−
∑j

l=1 γl

)

+ log
(

1−
∑j−1

l=1 γl

)

and hi is as de�ned in

equation (2.2). Under this parametrization, the likelihood function is given by

l(Ψ;y) =
A
∑

i=1

{−Ei exp {β0 + β1X1i + · · ·+ βpXpi − δ1 − δ2h2,i − . . .− δKhK,i}

+ yi (logEi + β0 + β1X1i + · · ·+ βpXpi − δ1 − δ2h2,i − . . .− δKhK,i)} .

Concerning the model identi�cation, the parametrization in (2.4) is quite attractive as it leads

to a regular Poisson generalized linear model (GLM). By framing the model as a GLM, the

conditions for model identi�cation are easily found, especially the requirement that θ and ε

are associated with disjoint sets of covariates. Also, as the �rst component of hi is equal to 1

for all i, such parameterization makes it clear that δ1 works like a second intercept for which

an informative prior must be elicited. However, such a parametrization brings some additional
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challenges to model the uncertainty about ε. While γj has a clear and meaningful interpretation

for practitioners, δj is interpreted as the ratio between the reporting probability in cluster j − 1

and cluster j in the log scale, for j = 2, ..., K. As for δ1, it is the log of the proportion of recorded

data in a perfect scenario where ε = 1 in relation to the proportion of data recorded in the best

cluster. Besides those interpretation issues, we also have a challenge regarding the appropriate

prior speci�cation for δ. To ensure a valid Poisson model we must have δj > 0 for all j. As,

a priori, we only have trustful information about ε1 and we know that 0 < εK ≤ εK−1 ≤ · · · ≤

ε2 ≤ ε1 ≤ 1, we can not simply assume independent positive distributions for each parameter δ.

Notice that δ1 = log(1)− log (ε1) and δl = log (εl−1)− log (εl), for l = 2, . . . , K. Then, we must

transform the prior information of ε1 to the log-scale and use it to build a distribution with

positive support for δ1. Then, the prior distribution of δ2 should be such that the distribution of

δ2 + δ1 = − log(ε2) is a truncated distribution putting all probability mass in values higher than

δ1. Similar constraints should be imposed to the prior distributions of the remaining δs.

2.2.2 Prior distributions

In this section, we detail the prior distributions for the parameters θ = (θ1, . . . , θA) and

γ = (γ1, . . . , γK) which are required to complete our model speci�cation.

2.2.2.1 Modeling the prior uncertainty about γ

As a starting point, we could consider independent informative Beta distributions by eliciting

γj
ind
∼ Beta(αj, νj), j = 1, . . . , K, where the hyperparameters αj > 0 and νj > 0 should be

elicited by experts. This strategy was considered by Schmertmann and Gonzaga [2018] in their

particular application to estimate age-mortality rates in Brazil. This is a cumbersome approach

as it might lead to some di�culties in the computational implementation of our model. First

of all, the constraint
∑K

j=1 γj < 1 should be satis�ed since some events are recorded even in

areas belonging to the worst data quality cluster and also because, to have a valid Poisson

model, εi must be non-null for all i. Furthermore, some dependence among the γj's is desirable.

To deal with the �rst problem, we may consider a Dirichlet distribution on the augmented

vector (γ1, . . . , γK , γK+1), where γK+1 = 1−
∑K

j=1 γj is the percentage of data recorded in the

worst cluster. More interestingly, both issues may be jointly addressed as described below. We

propose considering a joint prior for γ = (γ1, . . . , γK) as follows:

γ1 ∼ GBeta(α1, ν1; a1, a
∗
1),

γk | γ1:k−1 ∼ GBeta
(

αk, νk; ak[1−
∑k−1

j=1 γj], a
∗
k[1−

∑k−1
j=1 γj]

)

, k = 2, . . . , K,

}

(2.5)

where GBeta(α, ν; a, b) denotes the generalized Beta distribution with probability density func-

tion (p.d.f.) given by f(x | α, ν; a, b) = Γ(α+ν)
Γ(α)Γ(ν)(b−a)

(

x−a
b−a

)α−1 (
1− x−a

b−a

)ν−1
, x ∈ (a, b), α > 0,

ν > 0, a ∈ R, b ∈ R with a < b. Such generalized Beta distribution can be obtained as the

linear transformation X = a + (b− a)B, where B ∼ Beta(α, ν). In our case, 0 ≤ aj < a∗j ≤ 1,
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j = 1, . . . , K. By letting aj = 0 and a∗j = 1 for all j = 1, . . . , K, the prior distribution in ex-

pression (2.5) is the well-known stick-breaking representation of the Dirichlet process, in which

we consider independent random variables Zj ∼ Beta(αj, νj), j = 1, . . . , K, and we let γ1 = Z1

and γj = Zj

∏j−1
l=1 (1 − Zl) for j = 2, . . . , K. This is an advantageous feature we consider to

facilitate the computational implementation of the generalized Beta prior distribution given in

expression (2.5).

If we set αj = νj = 1, for j = 1, . . . , K, the conditional prior distributions given in expression

(2.5) corresponds to a simpler model which is based on conditional uniform distributions so

that
γ1 ∼ U(a1, a

∗
1),

γk | γ1:k−1 ∼ U
(

ak[1−
∑k−1

j=1 γj], a
∗
k[1−

∑k−1
j=1 γj]

)

, k = 2, . . . , K,

}

(2.6)

where 0 ≤ aj < a∗j ≤ 1, j = 1, . . . , K. The uniform prior distribution in expression (2.6) is

more parsimonious and easier to be elicited. In turn, the generalized Beta prior distribution in

expression (2.5) is more �exible and provides di�erent shapes for the marginal prior distribution

of each γj. Thus, the choice between the prior distributions given by expressions (2.5) and (2.6)

will depend on the information that the practitioner has available. In practice, the choice of

all prior hyperparameters might be driven by experts' opinion or guided by results of previous

studies. Special attention, however, should be given to the prior distribution of γ1 as it plays an

important role in the model identi�cation. As discussed in Section 2.2.1, prior distribution of

γ1 has to be informative, putting a signi�cant probability mass in the subset of the parametric

space indicated by the experts as containing the most likely values for such parameter.

Independently of the prior that is chosen for γ, the generalized Beta or the particular

case of the conditional uniform, by assuming the structure in expression (2.2), the increment

in the underreporting probability associated with each cluster j amounts just to a fraction

of what is left after considering the probabilities of the previous (better) groups. Thus, the

prior distribution for εi outside the best cluster inherits the prior information for the reporting

probability in the best areas.

The unconditional prior expectation and variance of εi are useful whenever an informative

prior distribution for γ1 or any other component of parameter vector γ is to be elicited. As-

suming the distribution in (2.5), respectively, the prior unconditional expectation and variance

of εi, for all i ∈ Aj, i.e., all areas classi�ed in the jth data quality cluster, for j = 1, . . . , K, are

E(εi) =

j
∏

l=1

{1− cl} and V(εi) = V

(

j−1
∑

l=1

γl

)

[

dl + (1− cl)
2
]

+ dl

[

1− E

(

j−1
∑

l=1

γl

)]2

,

where cl = al + (a∗l − al)αl[αl + νl]
−1 and dl = [(a∗l − al)

2αlνl] [(αl + νl)
2(αl + νl + 1)]

−1. For the
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particular case in which aj = 0 and a∗j = 1 for all j, it follows that

E(γj) =
αj

αj + νj

j−1
∏

l=1

νl
αl + νl

, and

V(γj) = E(γj)

(

αj + 1

αj + νj + 1

j−1
∏

l=1

νl + 1

αl + νl + 1
− E(γj)

)

.

Similar results under the conditional uniform prior distribution in expression (2.6) are provided

in the Supplementary Material [Oliveira et al. Supplement, 2020].

In the Bayesian modeling framework, another way to model the prior uncertainty about

the model parameters is to consider the Je�reys' approach [Je�reys, 1946]. Let Yi | θi, εi
ind
∼

Poisson(Eiθiεi) in which log(θi) = β0 + β1X1i + · · · + βpXpi. We assume that, a priori, γ is

independent of β = (β0, β1, . . . , βp) and we only focus on the Je�reys prior for γ. The Fisher

information matrix for the vector γ, given β, is the bottom right K×K submatrix highlighted

in bold in I(Ψ) which is given in Section 2.2.1. Consequently, the Je�reys prior distribution

for γ becomes

πJ(γ | β) ∝

√

√

√

√

K
∏

j=1

(

1−

j
∑

l=1

γl

)−1

. (2.7)

Our goal is to prove that the prior in expression (2.7) is a proper distribution and, more

importantly, we aim to investigate the level of prior information about γ1 that is induced by

the Je�reys prior.

Proposition 2.2.4. The Je�reys prior distribution for γ given in expression (2.7) is proper.

Proof. The proof of Proposition 2.2.4 follows straightforwardly by noticing that

the Je�reys prior given in expression (2.7) may be represented as πJ(γ | β) ∝

ψ(γ1)ψ(γ2 | γ1) · · · ψ(γK | γ1, . . . , γK−1), where ψ(γ1) is the kernel of the generalized Beta distri-

butionGBeta(1, 1/2; 0, 1) and ψ(γj | γ1, . . . , γj−1) is the kernel of aGBeta

(

1, 1/2; 0, 1−
j−1
∑

l=1

γl

)

,

for j = 2, . . . K. Consequently, πJ(γ | β) is proper as it belongs to the generalized Beta family

of distributions given in expression (2.5).

Assuming the Je�reys prior in expression (2.7), the prior expected value of γ1 is 0.6667

and its marginal prior distribution concentrates most probability mass around large values (see

Figure 2.1). It is expected that such prior does not provide good posterior estimates for the

model parameters whenever the true percentage of underreported events in areas with the best

data quality is small and far from that prior expected value. Particularly, it is not an appropriate

prior to model the uncertainty about γ1 in the case study addressed in the paper where the

probability of underreporting in the best areas is expected to be close to zero. To illustrate the

e�ect of the marginal Je�reys prior distribution of γ1 on the joint Je�reys prior for γ, we also

present in Figure 2.1 the joint Je�reys prior distribution for parameters γ1 and γ2. As the prior
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associated to γ1 is centered around large values, the most probable prior values for the vector

(γ1, γ2) are associated to large values for γ1 and small values for γ2.

Figure 2.1: Marginal Je�reys prior for γ1 (left) and the joint Je�reys prior for γ1 and γ2 (right).

2.2.2.2 Modeling the prior uncertainty about θ

To model the uncertainty about the relative risk θ, assume that p covariates are available

such that log(θi) = β0+β1X1i+ · · ·+βpXpi, i = 1, . . . , A. The intercept β0 represents a common

term a�ecting the risk of all areas with prior N(0, σ2
β0
). To model the prior uncertainty about

the �xed e�ects β = (β1, . . . , βp), we assume that β | Σβ ∼ Np(0,Σβ), where Np denotes

the p-variate Gaussian distribution and Σβ = diag{σ2
1, . . . , σ

2
p}. It is also appealing to consider

some technique to perform Bayesian variable selection. The goal is to identify covariates that

are statistically signi�cant (non-zero e�ect) to explain the relative risks. The stochastic search

variable selection (SSVS) method, proposed by George and McCulloch [1993], assigns a spike-

slab mixture of Gaussian distributions to the �xed e�ects β. The spike element concentrates

closely around zero, re�ecting whether the covariate should be included in the model. The slab

component has a su�ciently large variance to allow the covariate e�ect to spread over larger

values. Thus, to complete the SSVS prior speci�cation we, additionally, assume that

σ2
m | ωm, σ

2
slab, σ

2
spike

ind
∼ (1− ωm)δσ2

spike
(σ2

m) + ωmδσ2
slab

(σ2
m) (2.8)

ωm | ρm
ind
∼ Bernoulli(ρm),

where δx(·) denotes the Kronecker delta concentrated at point x and the hyperparameters

σ2
slab, σ

2
spike and ρm, for m = 1, . . . , p, should be speci�ed (see example in Section 2.3).

To allow for local di�erences among the risks, apart from the covariates pattern, a more

complete model with regional e�ects u = (u1, . . . , uA) can be considered in the log-linear

regression by assuming that ui
iid
∼ N(0, σ2

u), i = 1, . . . , A. Spatial e�ects s = (s1, . . . , sA) that
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quantify the in�uence of neighboring areas can also be added into the regression structure such

that log(θi) = β0+Xiβ+si+ui. The usual joint prior distribution for s is the intrinsic conditional

autoregressive distribution (ICAR) with variance parameter σ2
s (see Besag, York, and Mollié

[1991] for details on the ICAR prior de�nition). We further assume that the model variance

parameters are such that σ2
s ∼ IG(as, ds) and σ2

u ∼ IG(au, du), where IG denotes the Inverse-

Gamma distribution. The parameters β0, β, u and s are considered as being independent.

Assuming the prior distributions discussed in this section, the joint posterior distribution for

all model parameters is not known in closed form. Posterior inference can be carried out through

a Markov chain Monte Carlo (MCMC) scheme. The posterior full conditional distributions

that can be considered for sampling from the joint posterior distribution are given in the

Supplementary Material [Oliveira et al. Supplement, 2020].

2.3 Simulated data studies

In this section, we investigate the performance of the proposed model through Monte Carlo

simulations. To mimic our case study presented in Section 2.4, we consider the map of Minas

Gerais State that is composed of A = 75 areas. A total of 100 datasets are generated from

Poisson distributions such that Yi
ind
∼ Poisson(Eiθiεi), for i = 1, . . . , 75, where εi = 1 − h

T
i γ

and the expected number of cases Ei is known and equal to the one available for the case study.

We also consider the same clustering indicator variable used in the case study, which has K = 4

data quality categories (clusters), partitioning the map in groups with a total of 28, 16, 14 and

17 areas, respectively, from the best to the worst category. This clustering variable is based on

the adequacy index (AI) introduced by França et al. [2006]. We provide a detailed explanation of

the clustering construction in Section 2.4. We set γ = (0.05, 0.10, 0.15, 0.20) imposing that 5%

of events are not reported in those areas classi�ed at the highest level of data quality whereas

only 50% of events are reported in those areas belonging to the worst data quality cluster. To

generate the relative risks, we consider independent observations from �ve covariates such that

log(θi) = β0 + β1X1i + · · · + β5X5i, where β0 = 0.50 and β = (−0.25,−0.25, 0, 0, 0.25). These

covariates are di�erent from the clustering covariate. They were selected from our real dataset

such that part of them are correlated with the clustering covariate. All covariates considered

here are provided in the Supplementary Material [Oliveira et al. Supplement, 2020].

When �tting the simulated datasets, three di�erent structures are considered for the relative

risk θ. In Model 1, we let log(θi) = β0 + β1X1i + · · · + β5X5i, where βm
iid
∼ N(0, 100) for

m = 0, . . . , 5. Model 2 di�ers from Model 1 by considering a variable selection scheme on the set

of covariates through the SSVS prior distribution given in expression (2.8) with σ2
spike = 0.001,

σ2
slab = 100 and ρm = 0.5 for m = 1, . . . , 5. Model 3 di�ers from Model 2 by the inclusion

of both local and spatially structured random e�ects in the log-linear regression such that

log(θi) = β0 + β1X1i + · · · + β5X5i + ui + si, where ui
iid
∼ N(0, σ2

u) is the local e�ect of area

i and s = (s1, . . . , sA) denotes the spatial e�ects having the ICAR prior distribution [Besag,
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York, and Mollié, 1991] with precision parameter τs = σ−2
s . The neighboring structure inherent

to the map of case study in Section 2.4 is adopted to model the spatial e�ects s and we further

assume that the model precision parameters are modeled as 1/σ2
s ∼ Gamma(0.5, 0.0005) and

1/σ2
u ∼ Gamma(2, 0.01).

The prior speci�cation for γ di�ers throughout the simulation studies and it will be properly

described in each case. Basically, the joint prior distributions given in expressions (2.5) and (2.6)

are elicited with di�erent levels of information, specially focusing on the prior distribution for

the parameter γ1 which is associated with the model identi�ability.

Posterior estimates (posterior means) for the relative risks, θ, are compared in terms of

bias (Bias), relative mean squared error (RMSE) and the nominal coverage of the 95% highest

posterior density intervals (Cov.) averaged over the R = 100 Monte Carlo replications. Speci�-

cally, the bias =
[

∑R

r=1

∑A

i=1

(

θ̂i,r − θ
)]

/(R×A) and RMSE =

[

∑R

r=1

∑A

i=1

(

θ̂i,r−θ

θ

)2
]

/(R×

A). All simulations were performed in OpenBUGS (available at http://www.openbugs.net/w/

FrontPage) through the rbugs package from software R [R Core Team , 2015]. A sample of

the BUGS code is provided in the Supplementary Material [Oliveira et al. Supplement, 2020].

For each generated dataset, the MCMC scheme considered a total of 100,000 iterations, being

the �rst 50,000 discarded as a burn-in period and a lag of 25 iterations was selected to avoid

autocorrelated posterior samples.

2.3.1 Simulation Study I: comparing the generalized Beta and the

conditional uniform priors for γ

In this study, we mainly evaluate the sensitivity of the posterior estimates of θ when di�erent

degrees of information are assumed in the prior distributions for γ de�ned in expressions (2.5)

and (2.6). In both cases, two di�erent levels of prior information, named partially informative

and fully informative, are considered. The partially informative case assumes an informative

prior only for the parameter γ1. Here, that is attained by choosing hyperparameters such that

the prior π(γ1) is centered and highly concentrated around the true value of γ1. We elicited γ1 ∼

GB(2.9, 55.1; 0, 1) under the generalized Beta prior and γ1 ∼ U(0, 0.10) under the conditional

uniform prior. For all remaining γj, j = 2, . . . , 4, the associated prior distribution assumes

aj = 0, a∗j = 1 and, additionally for the generalized Beta case, it also considers αj = νj = 1.

By doing so, we impose a strong constraint on the reporting probability associated to areas

belonging to the best data quality cluster but, for all the remaining areas, the only prior

information is the one inherited from the prior of γ1. Finally, in the case of fully informative

prior distributions, all hyperparameters aj and a∗j and, additionally αj and ν∗j in the generalized

Beta case, are chosen such that π(γj) is centered and highly concentrated around the true value

of γj, for j = 1, . . . , 4. For comparison purposes, we also consider the standard Poisson model

which does not take underreporting into account.

Table 2.1 summarizes the results. By eliciting an informative prior distribution only for pa-
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Table 2.1: Bias, relative mean squared error (RMSE) and nominal coverage of 95% credible intervals (Cov.)
for the estimated relative risks θ; Simulation Study I.

RMSE Bias Cov. RMSE Bias Cov.
proposed model with generalized Beta prior on γ

partially informative fully informative
Model 1 0.001 0.004 0.989 0.001 −0.004 0.991
Model 2 0.001 0.004 0.993 0.001 −0.003 0.993
Model 3 0.002 0.002 0.997 0.002 −0.003 0.997

proposed model with conditional uniform prior on γ

partially informative fully informative
Model 1 0.001 −0.001 0.988 0.001 −0.001 0.989
Model 2 0.001 −0.001 0.993 0.001 −0.002 0.992
Model 3 0.002 −0.003 0.997 0.002 −0.003 0.996

standard Poisson model (underreporting ignored)
Model 1 0.069 −0.622 0.069 � � �
Model 2 0.069 −0.621 0.106 � � �
Model 3 0.076 −0.626 0.424 � � �

rameter γ1 (partially informative case), the proposed model provides good posterior estimates

for the risks with bias and RMSE close of zero. The results are quite close to those obtained

under informative prior for all components of parameter vector γ (fully informative case). In

general, we observe a slight di�erence between results obtained under the generalized Beta

prior and the conditional uniform distributions for γ, where the former has a greater number of

hyperparameters to be chosen. Results under Models 1�3 are quite similar showing that spatial

and local e�ects do not signi�cantly in�uence the posterior inferences. This is an interesting

result as the data are generated from a model that does not include any spatial or local corre-

lation. It should be also mentioned that the non-signi�cant (null) e�ect of covariates X3 and

X4 (results not shown) is well identi�ed even under Model 1 which does not consider variable

selection.

Table 2.1 also shows that, as expected, the standard Poisson model fails in estimating

the relative risks, θ, whenever applied to analyze underreported data. It produces very poor

estimates, always underestimating the relative risks no matter the structure imposed to model

them. The RMSE under such a model is reasonably small but the 95% credible intervals do not

contain the true value of the relative risk for the great majority of the Monte Carlo replications,

which means that the posterior distribution for θ tends to put negligible probability mass around

its true value.

2.3.2 Simulation Study II: e�ect of the prior uncertainty about γ1

The prior distribution for parameter γ1 plays an important role in model identi�cation

and, consequently, in the quality of the posterior estimates. In this section, we reexamine

the datasets considered in Section 2.3.1 �tting the proposed model with di�erent partially



2 SIMULATED DATA STUDIES 31

informative prior distributions for γ, that is, an informative prior distribution is considered

only for the component γ1. A sensitivity analysis is performed in order to evaluate the in�uence

of such prior distribution on the posterior inference.

The evaluation metrics for the posterior estimates of θ under six di�erent conditional uni-

form priors for γ1 (Table 2.2) show that the relative risks tend to be underestimated if, a priori,

we elicited γ1 ∼ U(0.0, 0.01) and γ1 ∼ U(0.0, 0.05). Such prior distributions put all probability

mass below 0.05 which is the true value of γ1. On the other hand, the risks tend to be overesti-

mated whenever the prior expectation exceeds the true value of γ1. The highest the di�erence

between the prior expectation E(γ1) and the true value of γ1, the highest are the bias and RMSE

of the posterior estimates of θ. This is not a surprising result and it evidences the importance

of searching for reliable prior information about parameter γ1 in practical situations.

Table 2.2 also shows that, if we assume γ1 ∼ U(0, 0.05) or γ1 ∼ U(0, 0.15), the prior means

di�er from the true value of γ1 by the same amount. Although the latter prior imposes much

higher prior variance than the former, the posterior estimates present similar absolute values for

the bias and the RMSE in both cases. This suggests that quality of posterior estimates under

the proposed model are more strongly related to the prior expectation of γ1 than to its prior

variance. Such an idea is supported by the results in Table 2.3 which exhibits some evaluation

metrics related to posterior inference for θ assuming di�erent partially informative generalized

Beta prior distributions for γ. In all cases, γ1 ∼ GB(α1, ν1; 0, 1) where hyperparameters α1 and

ν1 are chosen such that this prior is centered around the true value of γ1, that is, E(γ1) = 0.05,

but the prior uncertainty about γ1 varies from 0.00002 to 0.00950.

Table 2.2: Bias and relative mean squared error (RMSE) for the estimated relative risks θ assuming partially
informative conditional uniform priors to γ with six levels of prior information on γ1 (E(γ1) and V (γ1) are
di�erent in all cases); Simulation Study II.

RMSE Bias RMSE Bias RMSE Bias

γ1 ∼ U(0.0,0.01) γ1 ∼ U(0.0,0.05) γ1 ∼ U(0.0,0.15)
Model 1 0.004 −0.091 0.002 −0.050 0.002 0.055
Model 2 0.003 −0.090 0.002 −0.050 0.002 0.047
Model 3 0.004 −0.093 0.002 −0.053 0.002 0.049

γ1 ∼ U(0.0,0.30) γ1 ∼ U(0.0,0.50) γ1 ∼ U(0.0,0.70)
Model 1 0.014 0.225 0.062 0.440 0.137 0.570
Model 2 0.015 0.227 0.065 0.467 0.112 0.527
Model 3 0.014 0.215 0.078 0.494 0.240 0.766

Table 2.3 shows that the RMSE approaches zero in all cases. As expected, the bias tends to

increase as the prior uncertainty about γ1 increases. If the generalized Beta prior distributions

with V (γ1) = 0.00024 and V (γ1) = 0.00226 are assumed, the biases are much smaller than those

observed in Table 2.2 under priors γ1 ∼ U(0.0, 0.05) and γ1 ∼ U(0.0, 0.15) whose variances are

similar (respectively, V (γ1) = 0.00021 and V (γ1) = 0.00188). Moreover, the bias and RMSE

under the prior U(0.0, 0.30), which has variance equal to 0.0075, are much higher than those

obtained when assuming a generalized Beta prior with a variance equal to 0.0095. In summary,
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these �ndings provide more evidence that the posterior inference is more in�uenced by the prior

expectation of γ1 than by its prior variance.

Table 2.3: Bias and relative mean squared error (RMSE) for the estimated relative risks θ assuming partially
informative generalized Beta priors to γ with six distinct levels of information on γ1 (E(γ1) = 0.05 (true γ1)
and a di�erent prior variance in each case); Simulation Study II.

RMSE Bias RMSE Bias RMSE Bias

V(γ1) = 0.00002 V(γ1) = 0.00024 V(γ1) = 0.00083
Model 1 0.001 0.002 0.002 0.003 0.001 0.005
Model 2 0.001 0.000 0.001 0.002 0.001 0.005
Model 3 0.002 0.001 0.002 0.000 0.002 0.002

V(γ1) = 0.00144 V(γ1) = 0.00226 V(γ1) = 0.00950
Model 1 0.001 0.006 0.001 0.007 0.002 0.017
Model 2 0.001 0.006 0.001 0.009 0.002 0.028
Model 3 0.002 0.004 0.002 0.007 0.002 0.026

Table 2.4 exhibits the averaged posterior means for parameters β0, β, γ and ω under three

out of the di�erent partially informative conditional uniform prior distributions for γ1 considered

in previous studies. Results for Models 1�3 are quite similar, thus we only present the results

obtained under Model 3. The vector of �xed e�ects β and variable selection parameter ω are

well estimated regardless of the prior distribution elicited for γ1 but very little is learned about

γ1 from the data. The posterior mean of γ1 tends to be close to its prior expectation, reinforcing

the importance of obtaining reliable prior information about this parameter. Posterior estimates

for the remaining components of γ become worse as the prior expectation of γ1 gets far from

its true value and the prior variance of γ1 increases.

Table 2.4: Averaged posterior means of β0, β, γ and ω under three di�erent prior speci�cations on parameter
γ1; Simulation Study II.

Parameter True Value
U(0, 0.01) U(0, 0.10) U(0, 0.70)

Mean ω̂ Mean ω̂ Mean ω̂

β0 0.500 0.450 � 0.500 � 0.780 �
β1 −0.250 −0.250 1.000 −0.250 1.000 −0.250 1.000
β2 −0.250 −0.260 1.000 −0.260 1.000 −0.260 1.000
β3 0.000 0.000 0.020 0.000 0.020 0.000 0.020
β4 0.000 0.000 0.030 0.000 0.030 0.000 0.030
β5 0.250 0.240 0.990 0.240 0.990 0.240 0.990
γ1 0.05 0.005 � 0.048 � 0.261 �
γ2 0.100 0.103 � 0.099 � 0.077 �
γ3 0.150 0.155 � 0.148 � 0.114 �
γ4 0.200 0.211 � 0.202 � 0.156 �

Goodness of posterior estimation for parameters β0 and γ1 are closely related, which is not

a surprising result given the identi�ability issues discussed in Section 2.2.1. The intercept β0 is

overestimated (resp., underestimated) if γ1 is also overestimated (resp., underestimated). Since
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β0 directly a�ects the estimation of the relative risks θ, by overestimating (resp., underestimat-

ing) β0, the relative risks θ is overestimated (resp., underestimated) inducing the larger positive

(resp., negative) bias shown in Table 2.2.

2.3.3 Simulation Study III: breaking the identi�cation constraints

Our goal here is to show the e�ect of using the same source of information to model both

the relative risk θ and the reporting probability ε. We consider two di�erent scenarios. In the

�rst one, the same covariate is present in both sets X and H . Consequently, as the constraints

for the model identi�cation are not ful�lled, we should have problems to estimate the model

parameters. In the second scenario, we will use the same variable but coded in two di�erent

ways: In X it is continuous while for H it is considered in a discretized scale obtained by

breaking its continuous range into four intervals and coding them with dummy variables. In

this case, despite the very strong correlation betweenX andH , we should obtain good posterior

estimates for all model parameters.

We consider the same four clusters used in the previous simulation studies, which are based

on a variable called adequacy index (AI) available in our case study (Section 2.4). In the �rst

scenario, named Categorical AI, the variable AI is considered in its discretized version with four

categories indicating the clusters and the variable AI enter in this discretized form in both X

and H . In the second scenario, named Continuous AI, its discretized version is maintained in

H but, for X, we consider the original continuous AI re-scaled to have a zero mean and a unit

standard deviation. To generate the datasets, we set γ = (0.05, 0.10, 0.15, 0.20) and assume

the covariates X1i, . . . , X4i as in the previous studies. In the Continuous AI scenario, we let

log(θi) = β0 + β1X1i + · · · + β5X5i, where X5i is the AI in its continuous scale, β0 = 0.15 and

β = (−0.25,−0, 25, 0, 0,−0.25). In the Categorical AI scenario, we assume log(θi) = β0+β1X1i+

· · ·+β4X4i+β5,1D1i+· · ·+β5,3D3i, where β0 = 0.15 and β = (−0.25,−0.25, 0, 0, 0.25, 0.50, 0.75).

The dummy variable Dli represents the lth level of the discretized AI for l = 1, 2, 3. To analyze

the data, we consider the partially informative conditional uniform prior for γ in which γ1 ∼

U(0, 0.10).

As expected, Table 2.5 shows that the posterior inferences for the relative risks are much

worse if we break the identi�ability constraints (Categorical AI case). However, such estimates

do not lose quality if we consider strongly correlated variables to model θ and ε (Continuous AI

case). In the Categorical AI case, Table 2.6 shows confounding between the parameters γ and

the e�ects of the dummy variables, being all these parameters poorly estimated. This problem

is not experienced by the parameters in the Continuous AI case. These �ndings are in perfect

agreement with the theoretical identi�ability results discussed in Section 2.2.1.
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Table 2.5: Bias, relative mean squared error (RMSE) and nominal coverage of 95% credible intervals (Cov.)
for the estimated relative risks θ; Simulation Study III.

RMSE Bias Cov. RMSE Bias Cov.
Continuous AI Categorical AI

Model 1 0.002 −0.009 0.982 5.789 3.785 0.880
Model 2 0.002 −0.009 0.986 12.654 4.207 0.885
Model 3 0.002 −0.010 0.995 11.489 4.670 0.823

Table 2.6: Averaged posterior means of β0, β, γ and ω under Model 2; Simulation Study III.

Continuous AI Categorical AI
Parameter True Value Posterior Mean ω̂ True Value Posterior Mean ω̂

β0 0.150 0.141 � 0.150 0.146 �
β1 −0.250 −0.248 1.000 −0.250 −0.248 1.000
β2 −0.250 −0.253 1.000 −0.250 −0.251 1.000
β3 0.000 −0.001 0.018 0.000 0.002 0.016
β4 0.000 0.002 0.018 0.000 0.003 0.020
β5 −0.250 −0.255 0.999 0.250 0.507 0.938
β6 � � � 0.500 1.144 0.997
β7 � � � 0.750 1.811 0.996
γ1 0.050 0.048 � 0.050 0.048 �
γ2 0.100 0.093 � 0.100 0.256 �
γ3 0.150 0.152 � 0.150 0.272 �
γ4 0.200 0.196 � 0.200 0.182 �

2.3.4 Comments on further simulation studies

Section S.3 of the Supplementary Material [Oliveira et al. Supplement, 2020] presents addi-

tional simulation studies exploring other features of the proposed model. In the following, we

present the main results obtained from such studies. A discussion about the misspeci�cation

of the number of data quality clusters, K, is provided in Section S.3.1 of the Supplementary

Material. In summary, for the simulated datasets, we note that the misspeci�cation of K in-

troduces more bias as well as higher variability in the posterior estimates of θ. Both bias and

RMSE are much higher if the number of clusters assumed when �tting the proposed model is

smaller than the true value of K if compared with the case of assuming a value for K that is

greater than the true one.

We also evaluate whether the number of areas within the best and worst data quality

clusters signi�cantly a�ects the posterior inference for the relative risks θ (Section S.3.2 of

the Supplementary Material). In summary, we observed that having a greater number of areas

within the best data quality cluster decreases the bias in the posterior estimates of θ. This is

an expected behavior since, whenever the number of areas within the best group is larger, the

model induces an informative prior for a greater number of areas.

Finally, from the study presented in Section S.3.3 of the Supplementary Material, we note
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that, if the data are correctly recorded (that is, assuming εi = 1 ∀ i), the relative risks θ are

overestimated under our approach and the bias magnitude depends on the prior knowledge

about γ (see Table 2.10). In this context, as expected, the standard Poisson model performs

very well presenting both bias and RMSE close to zero. However, the standard Poisson model

always underestimates the relative risks if counts are partially recorded (see Table 2.1), and the

bias magnitude depends on the amount of underreporting in the data. Therefore, it is important

mentioning that the proposed model shows better results whenever �tted to analyze perfectly

recorded data (in terms of bias and RMSE) than the standard Poisson model does whenever

�tted to analyze underreported data. In practical situations, the relative risk estimates may

guide the de�nition of government policies for control and intervention. Thus, the underesti-

mation of such quantities leads to undesirable consequences, for instance, if we are mapping

disease or mortality risks.

2.4 Early neonatal mortality data in Minas Gerais, Brazil

Our goal here is to map the relative risk of early neonatal mortality (ENM) in Minas

Gerais State (MG), Brazil, and also to identify factors that are possibly associated to the event

occurrence. The ENM refers to the deaths occurring in the �rst seven days of life. Quality of

infant mortality information produced in MG is usually underreported [Campos, Loschi and

França, 2007], mainly in the socio-economically more deprived areas located in northern and

northeastern regions of the state. In order to de�ne e�cient policies to diminish the number of

early neonatal deaths and properly distribute the �nancial resources, it is important to correctly

estimate the associated risks.

The counts were obtained from the Sistema de Informações sobre Mortalidade (SIM) and

Sistema de Informações sobre Nascidos Vivos (SINASC) from the National Health System of

the Brazilian Ministry of Health (BMH). The 853 municipalities of MG were grouped in A = 75

microregions (areas) following the o�cial division suggested by the BMH. Two periods of time

comprising the two most recent Brazilian Demographic Censuses are considered, namely, 1999�

2001 and 2009�2011.

To analyze the datasets, we �t the proposed model assuming that Yi and Ei are, respectively,

the observed and the expected counts of ENM at area i = 1, . . . , 75. We assume Yi | θi, εi
ind
∼

Poisson(Eiθiεi) for all i. We consider the usual naive estimator for the o�set Ei given by

Ei = ni

(

∑A

i=1 yi/
∑A

i=1 ni

)

, where ni represents the total number of newborn children at

risk in the ith area and yi is the observed count of early neonatal deaths in such area. For

comparison purposes, we also �t the standard Poisson model which ignores the underreporting

in its structure by assuming εi = 1 for all areas.

The ENM relative risk assumes a log-linear regression structure which includes local and

spatial random e�ects, that is, log(θi) = β0 + Xiβ + ui + si, i = 1, . . . , 75. Five covariates

are introduced in this regression model: the Municipal Human Development Index (MHDI),
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the proportion of mothers with more than twelve years of formal education (MomEduc), the

proportion of children with weight at birth smaller than 2.5 Kg (LowWeight), the proportion of

children who were born with some congenital anomaly (Anomaly) and the proportion of mothers

who made seven or more prenatal visits during the pregnancy (Prenatal). The MHDI was

collected from the Atlas of Human Development in Brazil (2010) and the other four covariates

were obtained from the DATASUS repository, maintained by the BMH.

To de�ne the clustering structure, we consider the adequacy index (AI) introduced by França

et al. [2006] as a measure of the quality of infant mortality data collected in Minas Gerais. Based

on the adequacy index, França et al. [2006] proposed a partition of the A = 75 microregions

of MG into K = 4 groups: MG1 (most adequate, AI > 70.0, 28 microregions), MG2 (group

intermediate A, 50.1 < AI < 70.0, 16 microregions), MG3 (group intermediate B, 20.0 <

AI < 50.0, 14 microregions) and MG4 (less adequate group, AI < 20.0, 17 microregions). We

consider these four groups to analyze the ENM data in both periods, 1999�2001 and 2009�2011.

Since there is an expectation of improved data reporting quality in recent years, the K = 4

clusters induced by this partition may be more heterogeneous in the period 1999�2001. In

order to provide a sensitivity analysis and also attempting to reduce the e�ect of within cluster

heterogeneity, we divide each of the previous groups in two new groups obtaining another

clustering structure with K = 8 categories of data quality. The median of the AI within each

of the four initial groups is considered for de�ning the new partition into eight groups. Panels

(b) and (d) of Figure 2.2 display the groups de�ned in both cases (each color corresponds to a

di�erent group).

2.4.1 About prior elicitation

To complete the model speci�cation a prior distribution must be elicited for each parameter,

with special attention to the informative prior needed for parameter γ1. According to experts'

opinion, the reporting probability in areas experiencing the best data quality likely approaches

one. Based on the information obtained from the specialists (local epidemiologists and health

researchers) for both periods of interest, we adopt the conditional uniform prior distribution

given in expression (2.6) eliciting an informative prior distribution only for parameter γ1 (par-

tially informative prior distribution). When considering the clustering structure with K = 4

data quality groups, we set γ1 ∼ U(0, 0.10) for period 1999�2001 and, as an improvement on

data reporting quality is expected in more recent years, for period 2009�2011 it is assumed

γ1 ∼ U(0, 0.05). When �tting the data with K = 8 clusters, we set the prior γ1 ∼ U(0, 0.05)

for both periods.

To model the prior uncertainty about the relative risks, θ, we assume the structure of

Model 3 described in the simulation studies (Section 2.3). We set β0 ∼ N(0, 100) and perform

a variable selection by eliciting the SSVS prior given in expression (2.8) for β = (β1, . . . , β5)

with σ2
slab = 100, σ2

spike = 0.001 and ρm = 0.5, m = 1, . . . , 5. For parameters s, u, σ2
s and

σ2
u we assume the prior distributions elicited in the simulated studies (Section 2.3). Also, for
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the MCMC performed in OpenBUGS, we consider the same speci�cations as in the simulated

studies. The complete dataset and the BUGS code considered in this case study are provided

in the Supplementary Material [Oliveira et al. Supplement, 2020].

2.4.2 Posterior results

Figures 2.2 and 2.3 show the posterior estimates of the ENM risks in MG for periods 1999�

2001 and 2009�2011, respectively. By �tting the proposed model, we estimate the probability

of recording the events in each area, see Panels (b) and (d) of Figures 2.2 and 2.3. Panel (d)

of Figure 2.2 show that, for the period 1999�2001, the posterior mean for the probability of

recording an early neonatal death at areas with the worst data quality is 0.551. Such estimate

increases to 0.806 in the period 2009�2011 (Panel (d), Figure 2.3) indicating an improvement

in the data reporting process in North and Northeast areas. The same occurred for the other

areas showing that an improvement in data reporting process spread out over the state. For

those areas classi�ed in the best data quality cluster, the estimated reporting probability tends

to be close in both periods, which is expected as the posterior estimate for parameter εi in the

best group is quite in�uenced by its prior mean (see the discussion in Sections 2.2.1 and 2.3.2).

Posterior estimates for the relative risks under the standard Poisson model are displayed in

Panel (e) of Figures 2.2 and 2.3. For the period 1999�2001 (Figure 2.2), such estimates shows

that areas in the North and Northeast regions of Minas Gerais experienced the lowest ENM

risks, being smaller than the risk obtained for Belo Horizonte city, the capital of the Minas

Gerais State. This �nding goes against the results obtained in some epidemiological studies

that relate the quality of data to socioeconomic and access to health care indicators (e.g.,

Campos, Loschi and França [2007]). Because the North and Northeast regions are the poorest

and present the lowest socio-educational indicators in the state, experts believe that the ENM

risks in such areas are much higher than those estimated through the standard Poisson model,

evidencing the incapacity of this model to account for a high underregistration level. In relation

to the most recent period 2009�2011 (Figure 2.3), the spatial distribution of the posterior

estimates provided by the standard Poisson model are more compatible to what is expected

by the specialists. The posterior estimates for the ENM risks in the poorest areas (North and

Northeast) are higher than the ones obtained for more developed regions of Minas Gerais. It

points to an improvement in the quality of the data reporting process as indicated by the

estimates for the reporting probabilities obtained under the proposed model in both periods.

Moreover, compared to the estimates for period 1999�2001 (Figure 2.2), the ENM risks for

most regions in South and Southwest of Minas Gerais decrease by 2009�2011. These results are

possibly indicating the advance in the socio-economic conditions and the access to health care

in Minas Gerais.

Panels (a) and (c) of Figures 2.2 and 2.3 show that the proposed model provides estimates

for the ENM risks in Minas Gerais that are more compatible with the �ndings in Campos,

Loschi and França [2007], especially in northeastern areas for both periods. Its performance is
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Figure 2.2: Posterior mean for the relative risks, θ, of early neonatal mortality (Panels (a) and (c)) and the
reporting probabilities, ε, (Panels (b) and (d)) under the proposed model with K = 4 (Panels (a) and (b)) and
K = 8 (Panels (c) and (d)) and the standard Poisson model (Panel (e)); Minas Gerais data, period 1999-2001.

specially good when estimating the ENM risks in the period 1999�2001, in which data quality

is more questionable. By accounting for underreporting, the proposed model corrects at least

part of the underestimation experienced by the poorest microregions of the state providing
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Figure 2.3: Posterior mean for the relative risks, θ, of early neonatal mortality (Panels (a) and (c)) and the
reporting probabilities, ε, (Panels (b) and (d)) under the proposed model with K = 4 (Panels (a) and (b)) and
K = 8 (Panels (c) and (d)) and the standard Poisson model (Panel (e)); Minas Gerais data, period 2009-2011.

more realistic estimates for the ENM risks in such areas. As expected, for areas experiencing

a good data quality, estimation under both the proposed and the standard Poisson models

are similar. As observed for the standard Poisson model, the maps for the ENM relative risks
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estimated under the proposed model in period 2009�2011 disclose a decrease in the risk for

most microregions in South and Southwest of Minas Gerais if compared to period 1999�2001.

Table 2.7 summarizes the results under the �tted models. The log pseudo-marginal likelihood

(LPML) criterion [Ibrahim, Chen, and Sinha, 2001] points that data from 1999�2001 are better

�tted by the proposed model with K = 8 data quality clusters whereas for period 2009�2011

the proposed model with K = 4 provides the best data �t. The expected improvement in

the quality of the data reporting process in the most recent period, 2009�2011, makes the

microregions more homogeneous in relation to such data feature. Therefore, a smaller number

of data quality categories is actually expected. For each period, only results related to the best

�tted models are considered in the following analysis.

Table 2.7: Posterior summaries for the regression e�ects β0 and β under proposed and standard Poisson
models; Minas Gerais data in both periods 1999�2001 and 2009�2011. We provide the posterior mean (Mean),
the standard deviation (St.Dev.), the posterior probability of being positive (P(β > 0)) and the posterior
inclusion probability (ω̂).

Covariate Mean St.Dev. P(β > 0) ω̂ .Mean St.Dev. P(β > 0) ω̂
proposed model with K = 4

1999�2001 (LPML = −334.107) 2009�2011 (LPML = −281.833)
Intercept 0.834 0.410 0.989 � 1.402 0.632 0.998 �
MHDI −1.592 0.647 0.000 1.000 −0.860 0.725 0.150 0.670

MomEduc −0.398 1.144 0.428 0.250 −0.218 0.558 0.399 0.190
LowWeight 1.694 2.462 0.706 0.706 −0.688 1.435 0.380 0.274
Anomaly 2.653 7.731 0.604 0.534 3.685 6.588 0.687 0.553
Prenatal 0.080 0.216 0.630 0.159 −0.949 0.552 0.084 0.791

proposed model with K = 8
1999�2001 (LPML = −325.948) 2009�2011 (LPML = −283.863)

Intercept 1.986 0.181 1.000 � 1.946 0.300 1.000 �
MHDI −3.369 0.311 0.000 1.000 −1.400 0.465 0.005 0.989

MomEduc −0.033 0.615 0.491 0.128 −0.120 0.357 0.425 0.140
LowWeight −0.095 0.592 0.483 0.168 −0.843 1.944 0.393 0.253
Anomaly 2.450 7.211 0.579 0.476 3.586 6.446 0.644 0.515
Prenatal 0.104 0.212 0.678 0.222 −1.170 0.306 0.000 1.000

standard Poisson model
1999�2001 (LPML = −338.997) 2009�2011 (LPML = −286.665)

Intercept 2.007 0.238 1.000 � 2.006 0.507 1.00 �
MHDI −3.797 0.486 0.000 1.000 −1.686 0.837 0.044 0.894

MomEduc −0.086 0.785 0.470 0.171 −0.058 0.279 0.444 0.091
LowWeight 0.545 1.374 0.587 0.294 −2.260 2.932 0.255 0.507
Anomaly 1.499 8.679 0.542 0.548 3.028 6.292 0.643 0.513
Prenatal 0.097 0.240 0.625 0.228 −0.934 0.507 0.050 0.865

Assuming that a covariate Xm, m = 1, . . . , 5, should be included into the model whenever

ω̂m ≥ 0.5, where ω̂m denotes the posterior estimate for the associated inclusion probability,

then Table 2.7 shows that di�erent sets of covariates are signi�cant to explain the ENM risks

in the two analyzed periods. Under the best models, only the covariate MHDI shows to be

signi�cant (likely non-zero e�ect) to explain the ENM risk for the period 1999�2001 while, for



2 DISCUSSION 41

the period 2009�2011, MHDI, Anomaly and Prenatal were signi�cant. As expected in practice,

the e�ect of the covariate MDHI is negative in both periods, indicating that the highest the

MHDI, the smallest the ENM risk. The e�ect of MHDI is smaller in the period 2009�2011.

Also for this most recent period, we observe that the ENM risk is smaller in areas with a high

proportion of mothers who have made seven or more prenatal visits during the pregnancy.

Furthermore, the positive e�ect associated to the proportion of children who were born with

some congenital anomaly (Anomaly) indicates that such characteristic has been an important

factor to the occurrence of early neonatal deaths in recent years. Covariates MomEduc and

LowWeight, usually pointed out as important factors to explain the infant mortality rate, are

not signi�cant in the best model for both periods considered in our study.

In closing, it is important to mention that the relative risk estimates provided by the pro-

posed and the standard Poisson models are closer in the period 2009�2011 than their estimates

obtained for the period 1999�2001. This is an evidence of improvement in the quality of the

ENM data recorded in the civil registration systems SIM and SINASC in Minas Gerais State.

2.5 Discussion

We presented a novel Bayesian modeling framework to analyze potentially underreported

count data. We propose a clustering scheme that relates the reporting probabilities among

the areas according to a previous data quality partitioning. Auxiliary variables and experts'

opinion can be considered to assess data quality throughout the areas. One interesting feature

of the proposed model is that, to ensure its identi�ability, only an informative prior for the

underreporting probability in areas experiencing the best data quality is required. That is

attractive because in the best areas information about the reporting probability tends to be

easily accessed.

Naturally, some care should be taken as the posterior inference tends to be highly in�uenced

by our prior speci�cation for parameter γ1, the underreporting probability in the best areas. In

the simulation experiments, a sensitivity study involving di�erent levels of prior information for

γ1 was performed. The results indicated that if the speci�ed prior mean for γ1 turns out to be

widely di�erent from the truth, then the bias correction is likely to be inaccurate. Therefore, in

practical situations, it is truly relevant searching for reliable information about this particular

prior distribution, especially the associated prior mean.

Our model was applied to correct the underreporting bias in a Brazilian neonatal mortality

dataset. In this case, previous works guided the partitioning of the region according to the data

quality experienced by its microregions. It is worth mentioning that in other case studies in

which the clustering structure may not be previously available, one can apply usual clustering

techniques to de�ne the groups with basis on covariates related to the quality of the reporting

system. In our application, some local epidemiologists and health researchers provided infor-

mation about the reporting process in areas where data are known to be better recorded. This
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information is used to elicit the required informative prior distribution for γ1. It is likely that

a di�erent prior speci�cation in the neonatal mortality application might result in di�erent

inference on the reporting probabilities. Consequently, it also a�ects the bias correction on the

mortality relative risks. However, the subjective nature of the solution for completely underre-

ported data is not unique. In Bailey et al. [2005], for example, a di�erent choice for the threshold

used to de�ne the censored areas can lead to di�erent predictions. That may be also observed in

the model introduced by Oliveira et al. [2017] if a di�erent informative prior is elicited for the

censoring probabilities. Also, in the approach proposed by Stoner, Economou, and Drummond

[2019], a distinct prior speci�cation to the mean reporting rate could lead to quite di�erent

posterior inference. The usage of a complete validation dataset (as, e.g., Whittemore and Gong

[1991]; Stamey, Young and Boese [2006]; Dvorzak and Wagner [2015]) might be a less subjective

approach depending on the quality, quantity and experimental design of collecting such data.

In many cases, as the one analyzed here, the elicitation of an informative prior distribution for

one parameter is a feasible and reasonable solution.

The precise mapping of risks related to vital statistics is an important tool to guide health

policies that may lead to a reduction of events such as infant mortality. Estimates for the

event reporting probabilities, which provide a measure of severity of underreporting, help to

decide about where additional resources for surveillance programs would be most necessary

and e�ective. The model introduced in this work is another attractive tool to account for

underreporting bias in this context.

It is an interesting topic for future research to introduce partitioning models, such as Dirich-

let process or product partition models, for underreported data. Such kind of models will allow

us to also infer about the clusters throughout the estimation process. Extensions of the proposed

model should also consider the situation in which there are spatial patterns in the reporting

process. By borrowing strength from spatial modeling and extreme learning machines, Prates

[2019] introduce a hierarchical model to perform imputation over missing count data whose

usage and adaptation for the context of underreporting is an interesting point for further inves-

tigation as well. Although not approached in this paper, the modeling of underreported count

time series has been suggested in recent years, for instance, by Bracher and Held [2020] and

Fernández-Fontelo et al. [2016]. Another related problem that may interest readers is the es-

timation of animal abundance with di�erential probability of detection (see, e.g., Dorazio and

Royle [2005]; Hickey and Sollmann [2018]). In this context, hierarchical Poisson models are also

used to model both the underlying process and the detection (reporting) probability.
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Supplementary Material

S.1 Web Appendix A: Prior unconditional means and vari-

ances for the reporting probabilities ε under the con-

ditional uniform prior distribution

It is expected that in regions where the data quality is poor one will have a small value for the

reporting probability. The opposite is expected for regions where the data quality is good. The

conditional uniform prior speci�cation for γ (given in expression (2.6) of the main paper), as

well as the generalized Beta prior speci�cation (expression (2.5) in the main paper), can capture

this prior behavior if the hyperparameters al and a∗l are appropriately chosen. The unconditional

prior expectation and variance of γj may be useful when eliciting these parameters. Especially,

these statistics are helpful whenever the speci�cation of an informative prior distribution for

all components of the parameter vector γ is needed. If the area i is classi�ed in the jth data

quality cluster, such prior summaries are, respectively, given by:

E(γj) =







aj+a∗j
2

∏j−1
l=1

[

1−
(al+a∗l )

2

]

j ≥ 2

(a1+a∗1)

2
j = 1,

and

V(γj) =







[

(a∗j−aj)
2

12
+

(a∗j+aj)
2

4

]

V
(

∑j−1
l=1 (γl)

)

+
(a∗j−aj)

2

12

[

1−
∑j−1

l=1 E(γl)
]2

j ≥ 2

(a∗1 − a1)
2/12 j = 1.

Consequently, the prior expectation for εi is E(εi) =
∏j

l=1

[

1−
(al+a∗l )

2

]

if i ∈ Aj, i =

1, . . . , A, where Aj represents the jth data quality cluster for j = 1, ..., K. If the experts believe

that data are fully recorded in the best cluster, then one should set P (γ1 = 0) = 1 and the

prior expectation of γj, for all j ≥ 2, would be modi�ed by removing the factor 1− a1+a∗1
2

. When

moving from one speci�c cluster to the next and worse one, the factor
[

1−
(aj+a∗j )

2

]

represent

the experts knowledge on how the recording probability in latter decreases if compared to the

former. Such decrease depends on the sum aj + a∗j rather than on the distinct values of aj and

a∗j . This existent identi�ability issue may be solved by also considering the variances V (εi),

which describe how con�dent the experts are on their assessment of the expected value E(εi).

These variances are given by

V(εi) =



















[

(a∗j−aj)
2

12
+

(2−a∗j−aj)
2

4

]

V
(

∑j−1
l=1 (γl)

)

+
(a∗j−aj)

2

12

[

1−
∑j−1

l=1 E(γl)
]2

if i ∈ Aj, j = 2, ..., K,

(a∗1 − a1)
2/12 if i ∈ A1.
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S.2 Web Appendix B: Posterior full conditional distribu-

tions

This section provides the posterior full conditional (p.f.c.) distributions needed for sampling

from the joint posterior distribution. Consider the model for the observed data de�ned by

expressions (2.1) and (2.2) in the main paper with log(θi) = β0 + X
′
iβ + ui + si, Denote

Ψ = (β0,β, s,u, σ
2
s , σ

2
u), ω = (ω1, . . . , ωp), γ = (γ1, ..., γK) and y = (y1, ..., yA). To simplify the

notation, consider Ψ−κ as the vector Ψ without the coordinate κ and let φp(. | M,V) be the

probability density function (p.d.f.) of the p-variate Gaussian distribution with mean vector M

and covariance matrix V. In the univariate case, p is omitted.

Assuming the prior distributions discussed in Section 2.2.2 of the paper, the joint posterior

distribution for (Ψ,γ,ω) is not known in closed form. Posterior inference for all these param-

eters can be carried out through a Markov chain Monte Carlo (MCMC) scheme. The p.f.c.

distributions for parameters u, s, σ2
u, σ

2
s and β0 are, respectively, given by

π(u | Ψ−u,γ,ω,y) ∝ φA(u | σ2
uy

′, σ2
uIA) exp

{

−

A
∑

i=1

Ei(1− hiγ)e
ui

}

,

π(si | Ψ−si ,γ,ω,y) ∝ φ

(

si |

∑

j δijsj − yiσ
2
s

∑

j δij
,

σ2
s

∑

j δij

)

exp {−Ei(1− hiγ)e
si} , ∀ i,

π(σ2
u | Ψ−σ2

u
,γ,ω,y) ∼ IG

(

A
∑

i=1

u2i + au, A+ du − 3

)

,

π(σ2
s | Ψ−σ2

s
,γ,ω,y) ∼ IG

(

∑

i∼j

δij(si − sj)
2 + as, A+ ds − 3

)

,

π(β0 | Ψ−β0 ,γ,ω,y) ∝ φ

(

β0 |
A
∑

i=1

yiσ
2
β0
, σ2

β0

)

exp

{

−
A
∑

i=1

Ei(1− hiγ)e
β0

}

,

where δij is related to the neighborhood structure inherent to the region such that δii = 0 and,

for all i, j = 1, . . . , A, i 6= j, δij = 1 if i and j are �rst order neighboring areas and, δij = 0

otherwise.

Assuming the SSVS prior in expression (2.8) of the paper, the p.f.c. distribution for each

�xed e�ect βm, m = 1, . . . , p, is given by

π(βm | Ψ−βm
,γ, ωm,y) ∝ φ

(

βm |

A
∑

i=1

yiXmi[σ
2
spikeωm + σ2

slab(1− ωm)], σ
2
spikeωm + σ2

slab(1− ωm)

)

× exp

{

−

A
∑

i=1

Ei(1− hiγ)e
βmXmi

}

.

The p.f.c. distribution for the weights ωm, m = 1, ..., p, is a Bernoulli distribution with
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parameter ρ∗m = ρmφ
(

βm | 0, σ2
spike

) [

ρmφ
(

βm | 0, σ2
spike

)

+ (1− ρm)φ (βm | 0, σ2
slab)

]−1
.

If the generalized Beta prior distribution (given in expression (2.5) of the main paper) is

assumed for γ, then the p.f.c. distribution of γj, for j = 2, . . . , K, depends on γ1, . . . , γj−1 and

it is given by

π(γj | Ψ,γ−j, ω,y) ∝ exp

{

γj

K
∑

l=j

∑

i∈Al

Eiθi

}

K
∏

l=j

[L(l + 1)]

∑

i∈Al

yi

× [γj − ajL(j)]
αj−1 [a∗jL(j)− γj

]νj−1
if γj ∈

(

ajL(j), a
∗
jL(j)

)

.(2.9)

where L(j) = 1 −
∑j−1

k=1 γk. The p.f.c. distribution of γ1 will depend on L(2), . . . , L(K + 1)

but not on L(1). Thus, π(γ1 | Ψ,γ−1, ω,y) is obtained by deleting the term L(1) from

π(γj | Ψ,γ−j, ω,y) wherever it appears. If, instead, the conditional uniform prior distribution

(expression (2.6) of the main paper) is assumed for for γ, the p.f.c. distributions of γ1, . . . , γK
are obtained from expression (2.9) by simply setting αj = νj = 1, for all j = 1, . . . , K.

S.3 Web Appendix C: Further simulated data studies

In this section, we provide additional simulation studies exploring the potential of proposed

model in further scenarios than those presented in the main manuscript.

S.3.1 Simulation Study IV: E�ect of wrongly de�ning the number K

of data quality categories

Another important feature to be analyzed in the proposed model is the e�ect of misspecifying

the number of data quality categories on the posterior inference. We consider again the R = 100

datasets analyzed in Section 2.3.1 of the main paper, which were generated assuming K = 4

categories. Besides the analysis with the correct number of categories (K = 4) presented in

Section 2.3.1 of the paper, we analyze these datasets considering K = 2 and K = 6. To �t the

models whenever K = 2, we merge the two best and the two worst data quality clusters creating

two new groups composed by a total 44 and 31 areas, respectively. When assuming K = 6, we

divide both the best and the worst original clusters into two new groups with balanced number

of areas. To simplify the analysis, we only assume the partially informative conditional uniform

prior for γ in which γ1 ∼ U(0, 0.10). Note that the prior mean induced for γ1 equals the true

value of such parameter in the best data quality cluster when assuming K = 4 and K = 6.

However, it underestimates γ1, at least for part of the areas, if only K = 2 clusters are assumed

to �t the generated data.

Table 2.8 shows that the misspeci�cation of K introduces more bias as well as higher vari-

ability in the posterior estimates for θ. Bias and RMSE are much higher if the number of clusters

assumed in the proposed model is smaller than the true value of K. This is probably occurring
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because, in this simulation study, the number of misclassi�ed areas is higher if K = 2. Despite

of this, we still have better posterior estimates than the ones obtained by �tting the standard

Poisson model (see Table 2.1 of the main paper), indicating that the proposed methodology is

an attractive approach to model underreported count data even when the number K of data

quality categories is not precisely known.

Table 2.8: Bias and relative mean squared error (RMSE) for the estimated relative risks θ under proposed
model with K = 2, 4 and 6 data quality categories; Simulation Study IV.

RMSE Bias RMSE Bias RMSE Bias

K = 2 K = 4 K = 6
Model 1 0.016 -0.285 0.001 -0.000 0.002 0.055
Model 2 0.015 -0.276 0.001 -0.002 0.002 0.051
Model 3 0.021 -0.295 0.002 -0.003 0.003 0.060

S.3.2 Simulation Study V: E�ect of the number of areas within the

best and worst data quality categories

To �t the proposed model, we must �rst classify the A areas into K data quality cluster-

s/categories. This section aims at evaluating whether the number of areas within the best and

worst data quality categories signi�cantly a�ects the posterior inference for relative risks θ. For

doing that, R = 100 datasets are generated for a region containing A = 75 areas as described

in the introduction of Section 2.3 of the main paper. We assume a total of K = 4 clusters but

varying the number of areas within the best and the worst ones. For all scenarios, we consider

a total of 16 and 14 areas within the second and third clusters, respectively. In relation to the

best and worst groups, we assume the following cases: 28 areas (best) and 17 areas (worst) in

Case 1; 17 areas (best) and 28 areas(worst) in Case 2; 40 areas (best) and 5 areas (worst) in

Case 3; and 5 areas (best) and 40 areas(worst) in Case 4. The prior distributions are the same

considered in Section 2.3.1 of the paper.

Table 2.9 shows that, under both partially informative and fully informative prior distri-

butions for γ, the models produced very similar results in terms of bias and RMSE. We note

that having a greater number of areas within the worst data quality cluster (Case 4) makes the

bias in the posterior estimates of θ increases without substantially a�ecting the RMSE. This is

an expected behavior since, whenever the number of areas within the best group is bigger, the

model induce an informative prior for a greater number of areas. Under the standard Poisson

model (results not shown) the rates θ are always underestimated. The bias and the RMSE get

higher as the number of areas in the worse data category increase, becoming even higher if the

di�erence between the number of areas in the best and worse categories increases. That is not

an unexpected result since as greater the number of areas within the best data quality cluster

the greater is the underreporting severity in the simulated data. In general, such a behavior is



2 WEB APPENDIX C: FURTHER SIMULATED DATA STUDIES 50

also observed for estimates obtained under the partially informative and fully informative pro-

posed models but biases and RMSEs under such models tend to be closer than in the standard

Poisson model.

Table 2.9: Bias, relative mean squared error (RMSE) and nominal coverage of 95% credible intervals (Cov.)
for the estimated relative risks θ under proposed model; Simulation Study V.

RMSE Bias Cov. RMSE Bias Cov.
Case 1

partially informative fully informative
Model 1 0.001 -0.000 0.988 0.001 -0.000 0.989
Model 2 0.001 -0.001 0.993 0.001 -0.002 0.992
Model 3 0.002 -0.003 0.997 0.002 -0.003 0.996

Case 2
partially informative fully informative

Model 1 0.002 0.003 0.988 0.002 0.002 0.989
Model 2 0.001 0.003 0.992 0.001 0.003 0.992
Model 3 0.002 0.005 0.996 0.002 0.004 0.997

Case 3
partially informative fully informative

Model 1 0.001 -0.002 0.987 0.001 -0.002 0.989
Model 2 0.001 -0.002 0.989 0.001 -0.003 0.987
Model 3 0.001 -0.002 0.995 0.002 -0.003 0.996

Case 4
partially informative fully informative

Model 1 0.002 -0.036 0.970 0.002 -0.023 0.980
Model 2 0.002 -0.035 0.991 0.002 -0.020 0.992
Model 3 0.002 -0.029 0.998 0.002 -0.020 0.998

S.3.3 Simulation Study VI: Data perfectly recorded

To evaluate the performance of the proposed model when data is free of underreporting,

we generate R = 100 datasets from the Poisson distribution Yi|θi
ind
∼ P(Eiθi), i = 1, . . . , 75,

where the expected number of cases Ei is known and equal to that one available for case study

presented in Section 4 of the main paper. We assume �ve independent variables as potential

regressors X and the rates θ are such that log(θi) = β0 + βX i, i = 1, . . . , A, where β0 = 0.50

and β = (−0.25,−0.25, 0, 0, 0.25).

To �t the proposed model, we assume K = 4 data quality categories composed by a total

of 28, 16, 14 and 17 areas from the best to the worst category, respectively, as done in the

study presented in Section 2.3.1 of the paper. We address this situation assuming di�erent

degrees of information about γ1. In Case 1, we consider the same prior distributions given in

Section 2.3.1 of the paper. In Case 2, when eliciting the prior distribution for γ in the partially

informative case, we assume the conditional uniform distribution in which γ1 ∼ U(0, 0.01) thus,

a priori, E(γ1) = (0.005). For the fully informative case, we additionally assume that γ2|γ1 ∼
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U(0, 0.1005(1 − γ1)), γ3|γ1, γ2 ∼ U(0, 0.2116(1 − γ1 − γ2)) and γ4|γ1, γ2, γ3 ∼ U(0, 0.2367(1 −

γ1 − γ2 − γ3)). Consequently, the prior expectation of γ2, γ3 and γ4 are, respectively, given by

0.05, 0.10 and 0.10. Under this prior speci�cation, the prior means for the reporting probabilities

ε approximate better the situation generated in this simulation study if compared to the prior

speci�cation considered in Case 1.

As expected, the standard Poisson model performs very well regardless of the structure

used to model the rates θ (see Table 2.10). Estimates for the rates θ under the proposed model

assuming both the partially informative and the fully informative prior distributions for γ

present a small RMSE but a high bias. This is an expected result since, by construction, the

proposed model imposes some correction on the relative risks. Models 1 and 2 present smaller

bias than Model 3 but the nominal coverage for the credible interval is worse for such models.

If the prior speci�cation for γ is more informative about the true value considered to generate

the datasets (Case 2), then an improvement on estimates of θ is observed as the biases and

RMSE are substantially reduced.

Table 2.10: Bias, relative mean squared error (RMSE) and nominal coverage of 95% credible intervals (Cov.)
for the estimated relative risks θ under proposed model; Simulation Study VI.

RMSE Bias Cov. RMSE Bias Cov.
proposed model - Case 1

partially informative fully informative
Model 1 0.008 0.192 0.501 0.008 0.192 0.501
Model 2 0.007 0.189 0.477 0.007 0.190 0.478
Model 3 0.009 0.209 0.823 0.009 0.209 0.824

proposed model - Case 2
partially informative fully informative

Model 1 0.002 0.094 0.750 0.002 0.094 0.752
Model 2 0.002 0.092 0.742 0.002 0.091 0.743
Model 3 0.003 0.110 0.945 0.003 0.109 0.943

standard Poisson model
Model 1 0.000 0.000 0.958 - - -
Model 2 0.000 0.000 0.967 - - -
Model 3 0.000 0.000 0.996 - - -
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Appendix

A.1 Application to Brazilian tuberculosis data

Tuberculosis (TB) is one of the world's major public health problems. According to the

World Health Organization (WHO), TB is the ninth leading cause of death worldwide and the

leading cause from a single infectious agent, ranking above HIV/AIDS. In 2016, an estimated

1.7 million people died from TB, including nearly 400,000 people who were co-infected with

HIV. Brazil is among the top twenty countries by absolute mortality [World Health Organiza-

tion, 2017]. Ending the TB epidemic by 2030 is among the health targets of the Sustainable

Development Goals of the United Nations. To assess whether these targets are reached and to

provide better estimates for the incidence rates, robust monitoring and evaluation of trends in

the burden of TB are essential.

Estimation of TB incidence is a major challenge in many countries due to underreporting

and under-diagnosis of TB cases. Tackling the epidemic requires action to close gaps in care and

availability of �nancial resources. The WHO Global Tuberculosis Report 2017 also evidences

that underreporting and underdiagnosis of TB cases continues to be a challenge, especially

in countries with large unregulated private sectors and weak health systems [World Health

Organization, 2017]. The WHO has performed some inventory studies to measure the level of

TB underreporting in civil registration systems, especially in endemic countries [World Health

Organization, 2012].

In Brazil, the Noti�able Diseases Information System (SINAN) provides information about

the tuberculosis occurrence, patterns and trends. The noti�cation of TB cases in SINAN is

mandatory and, despite its high spatial coverage, the system is not able to report all TB cases

[Stoner et al., 2019]. Santos et al. [2018] showed that the variables associated with underreport-

ing of TB were mostly related to the healthcare system rather than to individual characteristics

of the patients, which indicates the need for training the health professionals in order to cor-

rectly notify the information in the systems. As pointed out by the Brazilian Ministry of Health

[Ministério da Saúde do Brasil, 2016], underreporting of TB represents a major loss as it leads

to a delay in starting the TB treatment.

In this paper, we apply the model proposed in Oliveira et al. [2020] to estimate the TB

incidence rates in the A = 557 mainland Brazilian microregions considering SINAN's data

from 2012 to 2014. We consider usual clustering techniques to de�ne the required data quality

groups. That dataset were previously analyzed by Stoner et al. [2019], from which we obtained

all variables considered in our analysis. Results are compared to those obtained by �tting Stoner

et al. [2019]'s model.

The content of this appendix have contributions of Guilherme Oliveira, Rosangela Loschi and Renato
Assunção. At the time of dissertation submission, the analysis were being improved for posterior submission to
a peer-reviewed journal.



2 APPLICATION TO BRAZILIAN TUBERCULOSIS DATA 53

Based on our �nal dataset (after usual cleaning for missing data and inconsistent infor-

mation), we found that between 2012 and 2014 there were 208,901 TB cases noti�ed in the

557 Brazilian microregions. As we aim to map the TB incidence in Brazilian territory, we ex-

clude the microregion of Fernando de Noronha from our analysis since it is an island with no

contiguous neighboring area.

A.1.1 Model speci�cation

We assume Yi | θi, εi
ind
∼ Poisson(niθiεi), i = 1, ..., 557, where ni is an o�set representing the

total population in the ith area. The TB relative risk assumes a log-linear regression structure

which includes local and spatial random e�ects, that is, log(θi) = β0+Xiβ+ui+si, ∀ i, where ui
and si represent the usual local and spatial e�ects, respectively. Five covariates are introduced

in this regression model: the proportion of economically active adults without employment

(Unemployment), the the proportion of people residing in households with more than two

persons per room (Density), the proportion of people living in an urban setting (Urbanisation),

the proportion of the population made up by indigenous groups (Indigenous) and average

monthly coverage (%) of the Brazil's Family Health Strategy (ESF) from 2012 to 2014 in

relation to the total population (ESF).

The approach for the compound Poisson model proposed in Oliveira et al. [2020] requires the

prior speci�cation of data quality groups for the microregions. We will refer to such model as the

Clustering Model. To de�ne the clustering indicator variable, we performed an usual clustering

method with basis on a set of numerical indicators proposed in Silva et al. [2017] to evaluate

the quality of data recorded in the Brazilian TB surveillance system. These authors considered

14 indicators to measure four attributes for the TB data recorded in SINAN from 2012 to 2014:

completeness, consistency, timeliness and acceptability. More speci�cally, we collected from Silva

et al. [2017] the indicators of consistency (percentage of cases with noti�cation date greater or

equal to diagnosis date), completeness (median for the percentage of completeness measured

in �ve attributes of the SINAN registration form), timeliness of noti�cation (percentage of

cases with an interval between noti�cation date and diagnosis date smaller or equal to 7 days)

and timeliness of treatment (percentage of cases with an interval between the date of starting

treatment and diagnosis of less than 1 day). Besides these four indicators, we included in the

clustering analysis the information of two other covariates originated from distinct data sources:

the percentage of general deaths with ill-de�ned cause (collected from the Brazilian DATASUS

repository for period 2012-2014, available at http://www2.datasus.gov.br/) and the estimated

registration coverage for the Brazilian mortality information system (available from Schmert-

mann and Gonzaga [2018]'s companion website http://mortality-subregistration.schmert.net/).

Although these two last variables may be more likely related to underreporting of TB deaths

rather than TB incidence, we consider they are relevant proxies for general quality of the civil

systems for collecting health data in Brazil. As such, they can be helpful in our data quality

clustering de�nition.
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The six previous variables was applied to the usual Ward linkage clustering method with the

squared Euclidean distance measure. By comparing the similarity measures in the clustering

algorithm steps, we found that using K = 23 groups is an interesting strategy to analyze our

TB data in period 2012-2014. The groups were labeled into hierarchical data quality categories

according to the resulting clusters' centroid (mean). As all variables considered for grouping

are measured in an increasing quality scale, we assumed that the greater the cluster mean

(centroid), the best the data quality. The best group (Cluster 1) ended with 32 microregions

whereas only 3 microregions were allocated to the worst data quality cluster (Cluster 23). Then,

following Oliveira et al. [2020] we model the TB reporting probabilities in each area i as being

εi = 1−
23
∑

j=1

hjiγj, (2.10)

where hji = 1 if area i belongs to cluster j and hji = 0 otherwise, for i = 1, . . . , A and

j = 1, . . . , 23. Parameters γ1, . . . , γ23 are related to the clustering underreporting probabilities

which are discussed in details in Oliveira et al. [2020].

For comparison purposes, we also �tted the Brazilian TB data using the modeling strategy

proposed in Stoner et al. [2019]. The relative risks θ are modeled using the same log-regression

structure previously mentioned. Stoner et al. [2019] assumes that the reporting probabilities ε

have the logistic-regression structure given by

logit (εi) = α0 + g(wi)α+ δi, for i = 1, . . . , A, (2.11)

where w represents the covariate timeliness of treatment previously mentioned; g is a function

de�ning an orthogonal polynomial of degree 3 introduced to reduce multiple-collinearity and,

at the same time, it ensures that g(w) = 0 when w = w̄, so that (at the logistic scale) α0 is the

mean reporting rate for a region with mean treatment timeliness (for more details, see Section

3 of Stoner et al. [2019]); α = (α1, α2, α3); and δi is a local random e�ect. We will refer to such

model as the Pogit Model.

A.1.2 About the prior elicitation

To �t the Clustering Model we adopt the conditional uniform prior distribution given in

expression (2.6) to model the parameter vector γ = (γ1, ..., γ23), eliciting an informative prior

distribution only for parameter γ1 (called partially informative prior distribution). To build

such informative prior distribution, we consider available studies on TB underreporting in

Brazil. As discussed in Stoner et al. [2019], in 2017 the WHO reported point estimates for

overall TB detection rate in Brazil for years 2012, 2013 and 2014 [World Health Organization,

2017]. The results are related to inventory study-derived estimates [World Health Organization,

2012] and revels that, respectively for those years, 91% (78%, 100%), 84% (73%,99%), and

87% (75%,100%) of TB cases was detected in the Brazilian microregions, where the quantities
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between parenthesis are the associated 95% con�dence intervals. The reporting probability

in those areas experiencing the best data quality (areas within Cluster 1) is likely greater

than the overall detection level. With basis on the �ndings of previous studies regarding TB

underreporting in Brazil [Sousa and Pinheiro, 2011; Sousa et al., 2012; Oliveira et al., 2012;

Silva et al., 2017; Stoner et al., 2019], we assume that γ1 ∼ U(0.0, 0.05) appropriately re�ects

our prior belief about εi, for all i ∈ Cluster 1.

When considering the Pogit Model, the prior speci�cation for the reporting probabilities ε

given in equation (2.11) are the same considered in Stoner et al. [2019]. Namely, it is assumed a

Gaussian N(0, 100) for the �xed e�ects α and a GaussianN(0, σ2
δ ) for each addictive local e�ect

δi, i = 1, ..., A. The required informative distributive for parameter α0, which represents the

overall mean reporting rate, was assumed to be a Gaussian distribution N(2, 0.36) with basis

on the information provided by the WHO. It is worth noticing that all Gaussian distributions

described in this section are parametrized in terms of mean and variance.

Regarding the prior speci�cation for the log-linear structure of the relative risks θ, in both

models we assume mean-centered covariates with Gaussian prior N(0, 100) for their �xed e�ects

β = (β1, . . . , β5). Following Stoner et al. [2019], we assume a priori that β0 ∼ N(−8, 1). This was

speci�ed by those authours using a prior predictive checking and it re�ects the belief that very

high values (such as over 1 million) for the total number of TB cases are unlikely. Additionally,

we assume that ui
iid∼ N(0, σ2

u) and that s = (s1, . . . , sA) have the ICAR prior distribution

[Besag et al., 1991] with precision parameter τs = σ−2
s . Following Stoner et al. [2019], the prior

distributions for variances σ2
u, σ

2
s and σ2

δ are truncated N(0, 1) with domain restrict to (0,∞).

Such a choice re�ects the belief that low variance values are more likely than higher ones.

The MCMC scheme is performed using package Nimble [de Valpire et al., 2017] from software

R [R Core Team , 2015]. The basic script for running each model is available in the supple-

mentary materials of Stoner et al. [2019] and Oliveira et al. [2020]. For both models two chains

were considered each with a total of 3,000,000 iterations, being the �rst 1,000,000 discarded

as a burn-in period and a lag of 3,000 iterations was selected in order to avoid autocorrelated

posterior samples. Trace plots for the MCMC samples were inspected and the potential scale

reduction factor (PSRF) [Brooks and Gelman, 1998] was calculated as less than 1.04 and 1.06

for all regression coe�cients and variance parameters, respectively, in the Clustering and the

Pogit Models, thus indicating convergence.

A.1.3 Posterior Results

Figure 2.4 displays the spatial distribution of the estimated TB incidence rates per 100,000

inhabitants and the respective reporting probabilities throughout the 557 mainland Brazilian

microregions under the Censoring Model and the Pogit Model. The models provided a quite

similar spatial structure for the tuberculosis incidence (Panels (a) and (c)), with highest values

mainly concentrated in the North and Central-West regions of the country. Clusters of microre-

gions with elevated values for the disease incidence can also be observed along the coast of
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Brazil (right edge of the map).

Regarding to the reporting probabilities, from Panels (b) and (d) of Figure 2.4, it can be

seen that, except for an speci�c microregion in the Northwest of Brazil, both models provide a

similar spatial pattern. Although the reporting probabilities showed to be more homogeneous

under the Pogit model, there is an agreement in relation to the clusters of areas with the highest

and smallest values for the posterior estimates of ε, specially regarding the highest values. In

general, estimates under the Pogit Model are more concentrated in greater values than those

observed under the Clustering Model.

(a) θ̂: Clustering Model with K = 23 (b) ε̂: Clustering Model with K = 23

(c) θ̂: Pogit Model (d) ε̂: Pogit Model

Figure 2.4: Posterior mean for the tuberculosis incidence rates per 100,000 inhabitants (left) and the reporting
probability (right) under the model proposed in Oliveira et al. [2020] with K = 23 data quality clusters (top),
denoted by Clustering Model, and also under the modeling strategy proposed in Stoner et al. [2019] (bottom),
denoted by Pogit Model; Brazilian data, 2012-2014.
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The minimum estimate for the reporting probabilities under the Pogit Model is 0.5352, the

only estimate smaller than 0.60. Under such a model, the �rst quartile, mean, third quartile

and maximum estimates were, respectively, 0.8515, 0.8722, 0.8978 and 0.9748. The four smallest

estimates (all above 0.675) were observed in microregions in which the value for covariate w is

zero. Furthermore, these four microregions �gured out among the 10% smallest populations and

17% lowest TB counts. This analysis suggests that the estimation of the reporting probabilities

is highly in�uenced by the reporting proxy variable considered in the logistic regression. In small

populations, the variable timeliness of treatment (w) may not be measured properly, inducing

to discrepant results.

A similar analysis under the Clustering model revels that the minimum estimate for the

reporting probabilities is 0.4756 (within Cluster 23). This is the only cluster with an estimate

for the reporting probability smaller than 0.60 and it composed by 3 microregions. Under such a

model, the �rst quartile, mean, third quartile and maximum estimates were, respectively, 0.7128,

0.7865, 0.8416 and 0.9759. The three regions within the worst cluster �gured out among the

13% smaller populations and 12% lower TB counts. The quite discrepant small value for the

reporting probability in this cluster may be related to the fact that it only contains microregion

with small populations.

Table 2.11 summarizes the results for relative risks θ. In both models, the 95% highest

posterior density interval (HPD95%) for covariate ESF contains the value zero, thus indicat-

ing that this proxy for access to healthcare does not have a signi�cant (non-null) e�ect in the

tuberculosis incidence rate. Among the other covariates, only the e�ect of Density was esti-

mated di�erently under the two �tted models. Result provided by the Clustering Model is more

consistent with what is expected in practice for the e�ect of such covariate.

The log pseudo-marginal likelihood (LPML) criterion [Ibrahim, Chen, and Sinha, 2001]

points that the TB data is better �tted by the Clustering Model.Such model is more parsi-

monious than the Pogit Model since only K = 23 parameters are estimated in the reporting

mechanism instead of estimating the �xed e�ects α0 and α besides the local e�ects δ1, . . . , δ557.

In some sense, there are more data information available to estimate each unknown parameter

associated to ε under the Clustering Model than under the Pogit Model. This might be one of

the reasons for the slightly better performance of the former model in relation to the latter.
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Table 2.11: Posterior summaries for the regression e�ects β0 and β under the model proposed in Oliveira et al.

[2020] with K = 23 data quality clusters, denoted by Clustering Model, and also under the modeling strategy
proposed in Stoner et al. [2019], denoted by Pogit Model; Brazilian tuberculosis data for period 2012-2014. We
provide the posterior mean (Mean), the posterior standard deviation (St.Dev.) and the 95% highest posterior
density interval (HPD95%).

Covariate Mean St.Dev. HPD95% .Mean St.Dev. HPD95%

Clustering Model (LPML=-2505.357) Pogit Model (LPML=-2528.662)
Intercept -8.254 0.052 (-8.353,-8.153) -8.360 0.065 (-8.468,-8.245)

Unemployment 0.119 0.027 (0.064,0.169) 0.047 0.011 (0.026,0.068)
Density 0.125 0.044 (0.043,0.212) -0.218 0.009 (0.003,0.016)

Urbanisation 0.206 0.030 (0.152,0.268) 0.014 0.002 (0.010,0.017)
Indigenous 0.056 0.018 (0.019,0.090) 0.015 0.005 (0.005,0.025)

ESF -0.026 0.025 (-0.078,0.020) -0.001 0.001 (-0.003,0.001)

A.2 Discussion

We addressed an important problem in Epidemiology and public health �elds. Providing

realistic estimates for the TB incidence rates is important to guide healthcare professionals in

making their decisions to control the endemic disease.

The correction of underreporting bias in Brazilian TB counts, 2012-2014, was performed us-

ing the approaches introduced by Oliveira et al. [2020] and Stoner et al. [2019]. They provided

a quite similar spatial pattern for the disease incidence rates. For the reporting probabili-

ties, estimates under the Clustering Model [Oliveira et al., 2020] showed a greater discrepancy

throughout the country if compared to the ones obtained under the Pogit Model [Stoner et al.,

2019].

For the Clustering Model, information from six data quality indicators was taken into con-

sideration to de�ne the groups, including that one used as TB reporting proxy in the logistic

regression assumed for the Pogit Model. The e�ort to de�ne the grouping was compensated by

a better data �tting, according to the LPML measure. It worth noting, however, that the �nd-

ings of this applied analysis cannot be generalized to other examples without further exhaustive

investigation.

It is intended to make a more robust comparison between the methods through simulated

scenarios. In the TB data analysis, it is also of interest to perform a sensitivity analysis regarding

e�ects of di�erent clustering de�nitions under the Oliveira et al. [2020]'s approach. Likewise, we

aim to �t the model of Stoner et al. [2019] using di�erent proxies in the logistic regression. Some

discussions on these regards are presented in the cited papers but we intend to do additional

studies focusing on this speci�c application and possibly others.
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Chapter 3

Bayesian Dynamic Estimation of

Mortality Schedules

Abstract

The determination of the shapes of mortality curves, the estimation and projection of mortal-

ity patterns over time, and the investigation of di�erences in mortality patterns across di�erent

small underdeveloped populations have received special attention in recent years. The challenges

involved in this type of problems are the common sparsity and the unstable behavior of observed

death counts in small areas (populations). These features impose many di�culties in the esti-

mation of reasonable mortality schedules. In this chapter, we present a discussion about this

problem and we introduce the use of relational Bayesian dynamic models for estimating and

smoothing mortality schedules by age and sex. Preliminary results are presented, including a

comparison with a methodology recently proposed in the literature. The analyzes are based on

simulated data as well as mortality data observed in some Brazilian municipalities.

Keywords: Bayesian smoothing, dynamic model, mortality curves, relational model.

3.1 Introduction

The mortality rate, life expectancy and other indicators of longevity are of fundamental

importance to measure the health and well-being conditions of human populations. Methods for

describing mortality patterns are common in demography, but the understanding of mortality

evolution plays an important role in many other �elds, such as actuarial science, epidemiology

and genetics.

Demographic studies often use data related to the entire population. Because of this mor-

tality studies are commonly performed at an aggregate level. More speci�cally, mortality data

61
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When dealing with large populations, specially in developed countries, the usual shape for

the mortality curve is easily identi�ed in general. That is the case for most life tables available

in the HMD (e.g., see curves in Figure 3.1). However, that is not true when analyzing data

from populations with poor data quality as, for instance, in developing countries that present

incomplete coverage of the vital registration systems as well as errors in age declaration for

both population and death counts.

Besides the data registration issues, the production of life tables is even more di�cult when

focusing in small populations. In this cases, the observed rates are often highly erratic and may

have a great amount of null death counts (numerator of mortality rates) or even the lack of

individuals exposure to risk in some age intervals (denominator of mortality rates).

In addition to the presence of extreme values, the mortality rates observed in small pop-

ulations tend to present high variability across ages and sexes (male and female). Such data

characteristics make it di�cult to identify the true underlying mortality pattern. As an exam-

ple, Figure 3.2 displays the log-mortality rates observed for some out of the 5,565 Brazilian

municipalities. There is a higher variability in the smallest populations due to the greater oc-

currence of low and null counts, as a consequence of having a small number of individuals at

risk in some ages. According to the national census of 2010, for 45% of the Brazilian municipal-

ities the population is smaller than 10,000 inhabitants and for 90% of them it is smaller than

50,000. Figure 3.2 shows that it is possible to identify the shape of usual mortality schedules for

municipalities in which population is greater than 100,000 inhabitants. It also shows that data

noise is smaller for large populations. For small populations, besides the great variability, there

are several age intervals with zero deaths count, specially at infant and young ages, making

cumbersome the identi�cation of the shape of the mortality schedules.

Naturally, the sparsity in observed data becomes even more severe when subnational groups

are disaggregated by age and sex, usual procedure in life table estimation. Reliable measure-

ments and comparative analysis of mortality levels, age patterns and sex di�erences for regional

populations help to better understand health status at local levels and to guide policy de�ni-

tions and changes in the targets for public investments. It may also help in the appropriate

derivation of life expectancy and other measures used to perform population projections.

Some important goals of mortality modeling include describing the shape of mortality curves,

estimating and projecting mortality patterns over time, and investigating di�erences in mortal-

ity patterns across di�erent populations [Gompertz, 1825; Brass, 1971; Heligman and Pollard,

1980; Coale et al., 1983; Lee and Carter, 1992; Dellaportas et al., 2001; Dowd et al., 2011;

Li, 2014; Wilmoth et al., 2012; Lima et al., 2016; Alexopoulos et al., 2019]. Because mortal-

ity schedules generally display regular patterns, smoothing approaches are a natural choice to

analyze changes in mortality rates, age-structure decompositions and the construction of con-

tinuous life tables [Kashiwagi and Yanagimoto, 1992; Alexander et al., 2017]. In this context, a

common approach involves spline smoothing functions (see, e.g., Currie et al. [2004]; De Beer

[2012]; Camarda [2012]; Gonzaga and Schmertmann [2016]; Alexander and Alkema [2018] and

references there in).
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Figure 3.2: Observed mortality schedules (in the log scale) for selected Brazilian municipalities from 2009
to 2011, both sexes. Open circles represent the log-mortality rate for each single-year of age. Tick marks
on the horizontal axis represent ages with no reported deaths or ages with no population at risk, which
makes impossible to calculate the mortality rate. Data sources: IBGE (2010) and Brazilian Ministry of Health
(http://www.datasus.gov.br).
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For developed countries, where annual population updates tends to be available and vital

registration systems have good quality, researchers have recently made important advances in

statistical modeling and smoothness of complete mortality schedules in small areas (see Lima

et al. [2016] and the references there in).

For less developed countries, the identi�cation of discrepancies in mortality patterns across

large regions (such as the states of a country) may not be a complicated task, especially because

the populations size tend to be large. In the presence of abundant population, even simple

parametric demographic models may produce good estimates for the target mortality rates.

However, studies on complete age- and sex-speci�c mortality schedules at subnational levels are

rare in developing countries due to lack of updated information. Because of that, demographers

and statistical epidemiologists have proposed a voluminous literature for estimation of partial

mortality schedules in developing countries, especially infant and child mortality indicators

[Souza et al., 2010; Walker et al., 2012; Silva, 2013; Alkema and New, 2014; You et al., 2015].

Some studies with focus in adult and old-age mortality levels in such areas can also be found

[Kannisto, 1988; Timaeus, 1991; Hill et al., 2009]. Many methods rely on indirect information

from surveys or censuses to adequately address the volatility of these estimates due to data

quality issues regarding vital registration systems.

As noted by Lima et al. [2016], a prominent and promising modeling approach for estimation

of complete mortality schedules in less developed small populations involves the combination of

statistical models with formal demography methods. The incorporation of demographic knowl-

edge into statistical modeling frameworks is intended to ensures that estimates and projections

have plausible patterns across ages.

Many authors have evaluated the e�cacy of using parametric modeling structures com-

bined with empirical regularities observed in mortality schedules obtained from external trustful

sources [Brass, 1971; Coale et al., 1983; Murray et al., 2003; Wilmoth et al., 2012; Alexander et

al., 2017; Gonzaga and Schmertmann, 2016; Clark, 2019]. Some authors refers to these sort of

methods as relational models. The idea behind relational models is that complete age patterns

in mortality, while inherently non-linear, exhibit strong similarities across di�erent populations.

Thus, patterns observed in high-quality data (e.g., mortality schedules in Figure 3.1) are used

as a standard basis for producing estimates of mortality in populations where observed data

are sparse or have poor quality, as in the small populations illustrated in Figure 3.2.

In this context of �borrowing strength� from an external mortality standard, recently, some

authors have used data available in the Human Mortality Database [Wilmoth et al., 2020] to

build more �exible systems of life tables. For instance, the Bayesian hierarchical relational model

proposed by Alexander et al. [2017] ensures a relatively smooth trend in mortality over time at

the same time of sharing information across geographic areas. As an alternative, the approach

of Gonzaga and Schmertmann [2016] linearly relates a mortality standard and penalized spline

o�sets to smooth mortality curves in small areas (populations).

The main goal of this work is to propose alternative models to estimate complete mortality

schedules, specially in small underdeveloped populations. In order to estimate and smooth the
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associated mortality curves, we propose some Bayesian hierarchical dynamic models jointly

with an underlying functional form that captures regularities in age patterns of mortality. The

dynamic terms relates mortality rates across age intervals as an attempt to relatively smooth

trend in the complete mortality curve. In turn, the use of a mortality standard is intended

to penalize departures from the usual characteristic shapes of the target curves. We consider

simulated and real datasets for di�erent population sizes in order to exploit the advantages and

drawbacks of the proposed methods. Competing approaches are compared in terms of adequacy

and quality of smoothed mortality estimates.

3.2 Estimating and Smoothing Mortality Curves

For a given population i and age x assume that the total number of deaths is Yi,x and

the total exposures individuals is Ei,x, i = 1, . . . , n and x = 0, 1, . . . , A. Assume that the

expected mortality rate is given by the product of exposures Ei,x and an unknown parameter

θi,x which represents the mortality risk in each population i and age x. A fully empirical (naive)

estimate for the risk can be obtained by computing the observed death rates at the respective

population and age Mi,x = Yi,x/Ei,x for all i, x. In terms of probabilistic modeling, a Poisson

distribution with mean Ei,xθi,x is an usual choice to model the observed count Yi,x in which

case an appropriate inferential method can be used to estimate the unknown parameter θi,x.

To simplify the presentation, mortality data are commonly prepared as rectangular arrays.

For each age in particular population, we have the number of deaths, the number of total expo-

sures and the observed mortality rates arranged in n×A matrices Y , E andM , respectively.

The rows are indexed by population and the columns are indexed by age. Without loss of

generality, in this work we consider A = 100 corresponding to ages 0, 1, 2, . . . , 98, 99.

We aim to estimate a smoothed mortality curve for each population of interest. For doing

that, we must estimate the related mortality rates at each age. We approach this problem by

using a regression structure for the mortality rates in which the covariate corresponds to a

mortality standard curve. Such a covariate is used to inform about the usual pattern observed

for human mortality curves (see discussion in Section 3.1). In order to "borrow strength� from

the relation of mortality rates in subsequent age intervals, we treat the sequence of age-speci�c

mortality rates as a time series. Then, a dynamic structure across them is imposed through the

model coe�cients, thus providing a smoothed solution.

In our analysis, the standard mortality curve corresponds to the a mortality schedule cal-

culated with basis in all life tables available in the Human Mortality Database in 2015 [HMD,

2015]. The information was obtained from the supplementary materials that were made available

by Gonzaga and Schmertmann [2016] who also used such a standard in their model de�nition

(http://topals-mortality.schmert.net). The standard mortality schedule is available separately

for males and females. The standard schedule obtained by tacking the mean between the two

sex-speci�c schedules is the �allHMD� curve displayed in Figure 3.1.
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In the following subsections we present the models we consider to analyze the datasets of

interest. The �rst model is based on the assumption that observed death counts Y follows

a Poisson distribution (Section 3.2.1) whereas the second approach models the observed log-

mortality rates log(M ) through a Gaussian distribution (Section 3.2.2).

3.2.1 Dynamic Poisson Model

Assume that the total number of deaths for population i and age x has the Poisson distri-

bution

Yi,x ∼ Poisson(Ei,xθi,x),

where Ei,x is an o�set corresponding to the total exposure individuals and θi,x denotes the

mortality risk, i = 1, , . . . , n and x = 0, 1, . . . , A. Consider that

log(θi,x) = βi,x + µi,xSi,x,

where Si,x is the mortality standard obtained from the HMD and βi,x and µi,x are the regression

parameters for population i and age x. We assume the same standard for the n populations,

that is, Si,x = Sx, but a di�erent standard can be applied for each population. The proposed

model assumes a Markovian dependence among counts in neighboring age intervals. Such a

dependence is included into the model through the Gaussian prior distributions elicited for

βi = (βi,1, . . . , βi,A) and µi = (µi,1, . . . , µi,A) for all i. It is assumed that, given the associated

precision parameters τβ and τµ, the regression parameters are independent among populations,

that is, β1, . . . ,βn and µ1, . . . ,µn are mutually independent for i = 1, ..., n. The proposed

dynamic Poisson model is hierarchically represented as follows:

Yi,x|θi,x ind∼ Poisson(Ei,x θi,x), for i = 1, . . . , n; x = 1, ..., A (3.1)

log(θi,x) = βi,x + µi,xSx

βi,0|β0
i , τβ

ind∼ N
(

β0
i , τβ

)

βi,x|βi,x−1, τβ
ind∼ N (βi,x−1, τβ) , for x = 1, . . . , A

µi,0|µ0
i , τµ

ind∼ N
(

µ0
i , τµ

)

µi,x|µi,x−1, τµ
ind∼ N (µi,x−1, τµ) , for x = 1, . . . , A

τβ, τµ
iid∼ Gamma(0.01, 0.01),

where β0 = (β0
1 , ..., β

0
n) and µ0 = (µ0

1, ..., µ
0
n) are vectors of initial values for the dynamic

structure such that µ0 ∼ Nn (0, 0.1In) and β0 ∼ Nn (0, 0.1In); with Nn(α,Ψ) denoting the

n-variate Gaussian distribution with mean vector α and precision matrix Ψ (if n = 1 then

n is removed from the notation) and In denotes the identity matrix of order n. The Normal

distributions are parameterized in terms of mean and precision. The model was implemented

in package Nimble [de Valpire et al., 2017] from software R [R Core Team , 2015].
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We propose to jointly model the n mortality schedules of interest. By doing that, a greater

amount of sample information is guaranteed to estimate the precision parameters τβ and τµ,

which are shared by the n populations. We noted that such a strategy improve smoothness of

the resulting mortality curves.

3.2.2 Gaussian Dynamic Linear Model

Although the response Yi,x, the number of deaths at population i and age x is a count

variable, another modeling strategy is the analysis of the associated observed mortality rate

Mi,x = Yi,x/Ei,x, where Ei,x is the o�set corresponding to the total exposure individuals. That

is considered, for instance, by Lee and Carter [1992]; Dowd et al. [2011]; Wilmoth et al. [2012];

Clark [2019]. We consider the well-known Gaussian dynamic linear model (GDLM) to �t the

observed mortality rates in the log scale. The GDLM is widely discussed in the statistical

literature to model multivariate time series/longitudinal data (see e.g. West, Harrison and

Migon [1985]; Migon et al. [2005]; Campagnoli et al. [2009] and references there in).

For each population i = 1, ..., n, the GDLM is considered to decompose the sequence of

age-speci�c log-mortality rates log(Mi,x), for x = 1, ..., A, as the sum of two components: an

overall age-varying trend, βi,x +µi,xSi,x, where Si,x is the standard mortality schedule obtained

from the HMD, and an error component, εi,x, that follows a zero mean Gaussian distribution

with precision τε. The dynamic evolution is taken across the age intervals x = 0, 1, ..., A. As

in the Poisson case, we assume the same standard for the n populations, that is, Si,x = Sx.

Finally, the GDLM considered in this work is hierarchically speci�ed as follows:

log(Mi,x) = βi,x + µi,xSx + εi,x, for i = 1, . . . , n; x = 1, ..., A (3.2)

βi,x = βi,x−1 + δi,x for x = 1, . . . , A and βi,0 = µ0
i + δi,0

µi,x = µi,x−1 + ωi,x for x = 1, . . . , A and µi,0 = µ0
i + ωi,0

εi,x|τε iid∼ Normal (0, τε)

δi,x|τδ iid∼ Normal (0, τδ)

ωi,x|τω iid∼ Normal (0, τω)

τε, τδ, τω
iid∼ Gamma(0.01, 0.01),

where S, β0 and µ0 and all other notations are as de�ned in Section 3.2.1. To perform posterior

inference under this GDLM, we consider the Kalman �lter and Kalman smoother algorithms

available within the dlm package from software R [Campagnoli et al., 2009]. The original func-

tion was modi�ed in order to include a discount factor term. In the literature of dynamic linear

models the discount factor is a known technique which has a crucial role in determining the

in�uence of past observations throughout the estimation and forecasting of dynamic structure

(for an in-depth discussion, see West and Harrison [1997], Section 6.3). In practice, the value

of the discount factor is usually �xed between 0.9 and 0.99, or it is chosen by model selection
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diagnostics (for details, see Section 4.3.2 in Campagnoli et al. [2009]). We consider a discount

factor with value 0.99 based on a predictive checking of model performance.

An important modeling feature regarding the GDLM approach is that the response variable

log(Mi,x) cannot be calculated in any population i and time x in which there were no observed

death, that is, whenever Yi,x = 0. The information is then treated as missing observation. It is

known that occurrence of null counts is quite common when analyzing age-speci�c mortality

data from small populations. The structure of dynamic linear models (DLM) is such that missing

observations can be easily accommodated in the �ltering recursion (for details, see Section 2.7.3

in Campagnoli et al. [2009]). As pointed out by these authors, in order to improve estimation

for the mortality rates at ages x with observed null counts, we must consider to perform the

inference process for multiple mortality schedules instead of estimating the model parameters

for each population at a time. The idea multiple analysis is that, for each individual age x,

the information contained in the non-missing components of vector Mx = (M1,x, . . . ,Mn,x) is

accounted when estimating the dynamic parameters associated to the missing components. We

performed the posterior estimation for the n mortality schedules jointly as an attempted to

improve estimation for the age mortality rates in the presence of null death counts.

3.2.3 TOPALS model from Gonzaga and Schmertmann [2016]

Gonzaga and Schmertmann [2016] introduce a new method to estimate age-speci�c mortal-

ity rates in small populations. It corresponds to a Poisson regression model based on TOPALS,

a relational model developed by De Beer [2012] for smoothing and projecting age-speci�c proba-

bilities of death. Their approach estimates a complete schedule of log-mortality rates by adding

a linear spline function to a pre-speci�ed standard schedule. The spline represent additive o�sets

in speci�c ages. As in Section 3.2.1 denote by Yi,x and Ei,x the death count and the total expo-

sure population in an population i and age x, for x = 0, 1, . . . , A, respectively. The TOPALS

model from Gonzaga and Schmertmann [2016] is de�ned as follows:

Yi,x|θi,x ind∼ Poisson(Ei,x exp{θi,x}) (3.3)

θi,x|α = Si,x +Bxα,

where S is a standard mortality schedule; Bx is a 1 × 7 vector of constants corresponding

to the xth line of a A × 7 matrix B in which each column is a linear B-spline basis (for

details, see Gonzaga and Schmertmann [2016] and their references); and α is a 7 × 1 vector

of parameters representing o�sets to the standard schedule for speci�c knots t0, ..., t6 at ages

(0, 1, 10, 20, 40, 70, 100), respectively. For ages x ∈ 0, 1, ..., 99 and columns k ∈ 0, ..., 6 the basis

functions in B are
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Bx,k =















x−tk−1

tk−tk−1
if x ∈ [tk−1, tk] ,

tk+1−x
tk+1−tk

if x ∈ [tk, tk+1] ,

0 otherwise.

The authors argue that under such a parameterization, the α = (α1, ..., α7) values represent

additive o�sets (θi,x − Si,x) to the log-rate schedule at exact ages (0, 1, 10, 20, 40, 70, 100) and

o�sets change linearly with age between those knots. Parameters α1, ..., α7 are estimated by

maximizing a penalized Poisson likelihood function for age-speci�c deaths, conditional on age-

speci�c exposures. The penalty term added to the log-likelihood function increases as the linear

spline o�sets become less smooth. Gonzaga and Schmertmann [2016] considered such approach

in order to avoid implausible �tted schedules for very small populations with very low numbers

of deaths. TOPALS is applied to estimate mortality schedules in Brazilian municipalities and

an illustration of the method is provided in Figure 1 of Gonzaga and Schmertmann [2016]..

All datasets and functions related to TOPALS adjustment were made accessible on the

supplementary website http://topals-mortality.schmert.net. We consider the available material

to �t the TOPALS model in the data analysis presented in the following sections and we

compare its performance with the proposed dynamic models.

3.3 Simulation Experiments

In this section, we consider simulated datasets to compare the performance of the dynamic

Poisson model introduced in Section 3.2.1, the Gaussian DLM presented in Section3.2.2 and the

TOPALS model brie�y reviewed in Section 3.2.3. To generate a complete mortality schedule,

we have to determine a true underlying mortality mechanism, which must include information

about the mortality rate and the associated total exposure population by age. For this purpose,

we consider the mortality schedule observed for the São Paulo State (SP), Brazil, available

from the case study presented in Section 3.4. As SP has a large population size, it provides a

su�ciently smooth mortality curve to be used as a reference in our simulation study. In addition,

the mortality curve of São Paulo State characterizes a modern population and it guarantees

the simulation of mortality patterns potentially conformable to those we are interested in our

application to Brazilian data.

We simulate nine populations with sizes 1,000; 2,000; 5,000; 10,000; 20,000; 50,000; 100,000;

500,000 and 1,000,000. In each case, the total exposures per 1-year age interval, Ei,x, was

proportionally calculated to mimic the population pattern of SP. By considering the mortality

rates observed for São Paulo as the true underlying risks, θi,x, we generate the death counts

Yi,x from a Poisson distribution such that Yi,x ∼ Poisson(Ei,xθi,x), for i = 1, , . . . , 9 and x =

0, 1, . . . , 99.
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The generated datasets were �tted under the three models and the estimates for the as-

sociated mortality rates, θ̂i,x, were compared in terms of relative bias (RBias), square root

of the mean squared error (
√
MSE) and mean absolute percentage error (MAPE) averaged

over the A = 100 age-mortality rates in each simulated population. Such measures are cal-

culated, respectively, as RBias = 1

A

[

∑A

x=1

(

θi,x−θ̂i,x
θi,x

)]

; MSE = 1

A

[

∑A

x=1

(

θi,x − θ̂i,x

)2
]

and

MAPE = 1

A

[

∑A

x=1

∣

∣

∣

θi,x−θ̂i,x
θi,x

∣

∣

∣

]

. Under the Poisson and Gaussian DLM models, for each gener-

ated dataset, two chains were run in the MCMC scheme considering a burn-in period of 100,000

iterations and a lag of 5,000 iterations was selected to avoid autocorrelated posterior samples,

ending with a posterior sample of size 2,000 for each chain. The TOPALS model was �tted

by using the functions available at http://topals-mortality.schmert.net. The three models were

�tted on an Intel (R) Core (TM) i7-8550U 1.80GHz CPU with 8GB RAM. Respectively, the

computational e�ort to run the algorithm for the TOPALS, Poisson and Gaussian models was

around 1, 16 and 13 minutes proportionally per population.

The log-mortality rates observed for each simulated population are showed in Figure 3.3

along with the estimates provided by the three models. The same standard mortality schedule

obtained from the HMD is considered when �tting the models. All models provided mortality

schedules that evolves smoothly across ages, even for populations with a high frequency of null

counts and a high noise in the observed data. The Gaussian DLM only provides a reasonable

�t in large populations (greater than 100,000 inhabitants) with quite smooth mortality curves.

In small populations, there are a great number of age intervals for which the number of deaths

is zero, which are treated as missing data when �tting the Gaussian model. Such data feature

imposes a restriction on the Gaussian model when applied for small populations.

Figure 3.3 shows that, as expected, Poisson and TOPALS models perform better than the

Gaussian DLM in small populations. In general, these models tend to present similar shapes for

the mortality schedules with more remarkable discrepancies in young ages, around the �bathtub�

pattern, and in the oldest ages. Such discrepancies are more evident in populations sized 1,000

and 5,000 with a visually better performance of the TOPALS model in such cases. For the

population of size 2,000 the discrepancy between the two estimates is only evident in the latest

ages, with a better performance of the Poisson model. For populations with 10,000 and 100,000

inhabitants the results are less similar for ages around the �bathtub� pattern of the mortality

schedules. Poisson and TOPALS models provided almost the same �t for populations with sizes

20,000, 50,000 and 1,000,000 .

The Poisson model seems to be more in�uenced by outliers than TOPALS model, specially

in small populations. For instance, in the population with size 1,000 a single point was observed

for younger ages. This point seems to be very in�uential, pulling the curve upwards in previous

ages. Similarly, the mortality curve tends to be pulled downwards whenever a high frequency

of null counts is observed in the latest ages. The in�uence of the mortality standard seems to

be stronger in TOPALS model, making smaller the in�uence of atypical observations. That is

a point which worth further investigation.
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Table 3.1: Relative bias (RBias), square root of the mean squared error (
√
MSE) and mean absolute per-

centage error (MAPE) for the estimated log-mortality schedules in each simulated populations.

Population RBias
√
MSE MAPE RBias

√
MSE MAPE RBias

√
MSE MAPE

Poisson TOPALS Gaussian DLM
1,000 -0.183 0.640 0.078 -0.108 0.437 0.105 0.601 3.304 0.598
2,000 -0.007 0.201 0.012 0.025 0.238 0.032 0.503 2.636 0.485
5,000 -0.143 0.512 0.063 -0.111 0.390 0.077 0.262 1.684 0.273
10,000 0.004 0.394 0.049 0.020 0.309 0.020 0.159 1.344 0.212
20,000 -0.012 0.254 0.011 -0.034 0.269 0.019 0.056 0.856 0.131
30,000 0.006 0.104 0.007 0.004 0.091 0.008 0.029 0.531 0.075
50,000 0.008 0.179 0.010 -0.001 0.174 0.011 0.013 0.396 0.050
100,000 0.007 0.133 0.014 -0.005 0.133 0.018 0.008 0.156 0.009
1,000,000 0.004 0.087 0.006 -0.001 0.057 0.006 -0.001 0.103 0.014

3.4 Application to Brazilian Municipalities
In this section we analyze data from selected Brazilian municipalities over calendar years

2009-2011. As some of them have a small population, we only consider Poisson and TOPALS

models to �t the data. In both models, we assume the same standard mortality schedule

considered in the simulation study. Population and deaths for the 5,565 Brazilian munic-

ipalities were obtained from the Gonzaga and Schmertmann [2016]'s project website http:

//topals-mortality.schmert.net. The data is available by 100 single-year ages and separately

by sex and they was collected from the Demographic Census (2010) and from the Ministry

of Health's Mortality Information System (SIM/Datasus), respectively. The 2010 census pop-

ulations is used to estimate age- and sex-speci�c exposure populations over 2009-2011. It is

worth noting that in the complete dataset, despite using three years of exposure, 49.2% of the

1,113,000 combinations of municipality, age and sex cells are null in number of deaths.

We present results in each selected municipality for both sexes (Figure 3.4) and separately

for females (Figure 3.5) and males (Figure 3.6). By comparing Figures 3.5 and 3.6 it can be

noticed the usual di�erences between mortality patterns for females and males. As noted in the

simulation study, Poisson and TOPALS models tends to present similar shapes for mortality

schedules. Both models provided smooth mortality curves even for populations with highly

erratic data. For the three smallest selected populations, the models provided almost the same

�t, except for females in Alto Bela Vista SC (population=1,000) and Fernando de Noronha

PE (population=1,338). In the most cases, the biggest discrepancies between the two models,

when they can be visually noted, occur at latest ages or at ages around the "bathtub pattern� of

the mortality schedules. In agreement with �ndings of the simulation study, the Poisson model

seems to be more in�uenced by outliers. This can be specially noted for high observed values for

the mortality rates at the end of the ages' scale, which apparently pulls the estimates upwards

(see graphs for Campos do Jordão SP, both sexes). A similar e�ect is noted when occurs a high

frequency of sequential null counts in the ages' range, which tends to pull the curve downwards

(see graphs for females in Alto Bela Vista SC and Fernando de Noronha PE).









3 CONCLUDING REMARKS 77

3.5 Concluding Remarks

The reliable measurement and comparative analysis of mortality schedules for di�erent pop-

ulations helps to highlight di�erences among groups of people and guide analysts to understand

what drives health disparities. For developing countries, specially in subnational geographic pop-

ulations that do not have the resources to establish reliable death registration, this goal could

be approached through the incorporation of empirical information to improve the estimates

provided by usual parametric models. That is a common approach in the called relational de-

mographic models. The problem with data coming from small and underdeveloped populations

is the high occurrence of low or null counts, which impairs the estimation of the true underlying

mortality rates by usual methods.

In this work we proposed two regression models with dynamic parameters to estimate the

complete mortality schedules per 1-year age intervals. Inference is made under the Bayesian

paradigm. Since mortality curves generally have a speci�c pattern, to prevent unrealistic esti-

mates, we use a standard schedule as a covariate in the regression model, similar to the idea of

relational models which are common in demography. Dynamic evolution across ages is included

in order to provide smoothed estimates for the mortality schedules.

We consider a dynamic Poisson model to directly �t the observed mortality counts as well

as the Gaussian dynamic linear model to model the observed log-mortality rates. The TOPALS

model proposed by Gonzaga and Schmertmann [2016] is also �tted for comparison purpose.

TOPALS allows the derivation of complete schedules of age mortality rates via mathematical

adjustments to a speci�ed standard schedule through penalized splines function. A simulation

study is performed leading to interesting initial visualizations of the models performance.

In general, the Poisson and TOPALS models demonstrated to be more e�cient as some of

the analyzed data are sparse. Despite the Gaussian model showed to be a competitive model

in large populations, it is not appropriated for small areas. Poisson and TOPALS models were

applied to �t data from Brazilian municipalities. The Poisson model showed to be promising to

estimate smoothed mortality schedules in�uenced to discrepant values in the observed mortality

rates.

We believe that an implementation of the model as a generalized dynamic linear model

[West, Harrison and Migon, 1985] may improve estimates, for instance, with the inclusion

of discount factors in the covariance matrix of the dynamic parameters throughout the well-

known Kalman �ltering and Kalman smoothing estimation algorithms [Campagnoli et al., 2009]

or appropriate Markov chain Monte Carlo techniques [Gamerman, 1988; Schmidt and Pereira,

2011]. In this context, the use of the generalized dynamic Poisson model proposed by Schmidt

and Pereira [2011] to �t time series of count data in epidemiological studies can be investigated.

Their model have a time-dependent parameter that captures possible extra-variation present

in the data and also zero-in�ated versions are proposed. As such, their approach may provide

interesting results in the context of mortality schedules estimation.

The simulation study presented in Section 3.3 is no longer exhaustive to support the prefer-
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ence for one speci�c model in a general case. Thus, the limited results must not be generalized.

A broader simulation study must be performed in order to provide more con�dent evidence

about the models performances in di�erent scenarios and to support the previous �ndings dis-

cussed in this work. It includes a Monte Carlo study with more populations sizes and particular

characteristics. Also, the application to a greater range of municipalities and other geographic

aggregation levels can be included. A sensitivity study on the standard schedule choice must

be performed as well. In this context, as addressed by Alexander et al. [2017], we aim to in-

vestigate the use of multiple mortality patterns, in particular the consideration of principal

components analysis with basis on a large set of trustful mortality curves such as those avail-

able in the HMD. The de�nition of a multiple regression model based on the main principal

components may increases �exibility in the estimates, potentially reducing the e�ect of outliers

in the Poisson model evidenced by the studies developed so far.

Finally, we note that the excess of null death counts in some localities can indicate that

the events is really rare or that there is a high level of underreporting of death counts. There-

fore, the appropriate use of a zero-in�ated Poisson model (Lambert [1992]; Piancastelli and

Barreto-Souza [2019]; Gonçalves and Barreto-Souza [2020]), or other models which account for

overdispersion, can be investigated as in Lima et al. [2016] besides the consideration of un-

derreporting bias correction. We intend to formulate a zero in�ated Poisson model which, in

addition to taking into account a standard mortality schedule, is capable of accounting for the

occurrence of under-registration. In particular, we aim to explore the clustering model present

in Chapter 2 [Oliveira et al., 2020] within the problem of mortality schedule estimation. In

the demography literature, it is known that the level of underreporting varies between ages

intervals. Particularly, specialists argue that such a problem is worse in infant ages than in old

ages which, in turn, tends to present a higher level of under-registration than young and adult

ages (see e.g. Schmertmann and Gonzaga [2018] and references there in). A clustering structure

between subsequent ages intervals may be determined in order to apply the clustering model

jointly with an adequate usage of a standard mortality schedule to ensure usual mortalities

patterns.
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Chapter 4

A Random Censoring Poisson Model for

Underreported Data

Abstract

A major challenge when monitoring risks in socially deprived areas of under developed coun-

tries is that economic, epidemiological and social data are typically underreported. Thus, sta-

tistical models that do not take the data quality into account will produce biased estimates. To

deal with this problem, counts in suspected regions are usually approached as censored infor-

mation. The censored Poisson model (CPM) can be considered but all censored regions must

be precisely known a priori, which is not a reasonable assumption in most practical situations.

We introduce the random censoring Poisson model (RCPM) which accounts for the uncertainty

about both, the count and the data reporting processes. Consequently, for each region we will be

able to estimate the relative risk for the event of interest as well as the censoring probability.

To facilitate the posterior sampling process, we propose a Markov chain Monte Carlo (MCMC)

scheme based on the data augmentation technique. We run a simulation study comparing the

proposed RCPM with two competitive models. Di�erent scenarios are considered. RCPM and

CPM are applied to account for potential underreporting of early neonatal mortality counts in

regions of Minas Gerais State, Brazil, where data quality is known to be poor.

Keywords: Bayesian inference; Censoring; data augmentation; infant mortality;

underreporting.

The content of this chapter has been published in Statistics in Medicine [Oliveira et al. , 2017].
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4.1 Introduction

Vital statistics such as fertility and mortality rates are typically calculated using deaths and

births counts from a civil registration system. In less developed countries this method produces

estimates that do not re�ect the reality due to the large amount of those events that go underre-

ported. Recognizing the low quality of data, the revision of population projections published by

the United Nations in 2000 used the o�cial registry counts only in 14% of the developing world

[Hill, Choi and Timaeus, 2005]. As a fundamental statistic to monitor the population health

condition, the infant mortality rate in such countries su�ers from severe underestimation bias to

the point of making the uncorrected statistics useless. For example, consider the infant mortal-

ity rates in Brazil. The worse o� regions in terms of health care and economic development are

also the best regions with respect to the infant mortality rates calculated directly from registry

data. This is obviously incorrect because these regions have more obstacles to gain health care

access and, once assessed, the health care system has low quality. A correction based on special

information collected in the Census changes this completely, reverting the order and making

them compatible with the obvious correct pattern [Simões, 1999].

Even with the advances achieved in recent years with relation to data collection systems,

the underreporting of infant mortality and disease incidence has been high in the most of

the underdeveloped and developing countries, such as Afghanistan [Viswanathan et al., 2010],

China [Xu et al., 2014] and several other countries in African, Asia, Latin America and the

Caribbean according to the World Health Organization [World Health Organization, 2006].

Although on a smaller scale, underreporting of mortality and disease cases can also be present

in more developed countries such as Japan [Campbell et al., 2011], United States of America

Gould et al. [2002] and Norway [Alfonso et al., 2015]. Also, underreporting of events is quite

common in criminology data sets [Tibbetts and Hemmens, 2010].

An alternative for correcting vital statistics are the so called indirect methods which were

developed during the 60's and 70's by demographers due to the need of studying the population

patterns in Africa, Latin America and in the poor Asian countries [Brass et al., 1968; Brass ,

1996]. They are based on stable population theory and on decennial Census collected answers

to questions about, for example, children ever born and their survival [Heligman, Finch and

Kramer, 1978]. These methods rely on assumptions that may not be true such as the time

invariance mortality and fertility rates. Also, these methods were developed for large populations

such as countries or state-level populations, where statistical variability of rates were of less

concern. Furthermore, the Census are carried out once every 10 years which is a long time

before an update can be made. A second possibility to correct vital statistics is to resource to

special data collection such through sample surveys or active search in hospitals and households

[Heligman, Finch and Kramer, 1978]. However, these are very occasional and expensive to be

used in a regular basis for monitoring a large number of regions.

From the statistical point of view, data recording problem (e.g., under or over-reporting) is

a bias problem. We are used to �x estimators' bias by techniques such as Bartlett correction
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and bootstrap [Cordeiro and Cribari-Neto, 2014]. However, techniques to correct bias induced

by data collection problems are less common. One major exception was the development of

models to deal with censored or truncated observations, which is the main in�uence for this

work.

Our motivation is the need to provide frequent and regular mortality risk estimates in small

areas. We focus on the relative risk (RR) of early neonatal mortality (ENM) in 853 munici-

palities of Minas Gerais State (MG), Brazil. We consider data from two periods of time, from

1999 to 2001 and from 2012 to 2014, available at the hospital information system (Sistema de

Informações Hospitalares, in Portuguese, abbreviated as SIH) of the Brazilian Health Ministry.

Such data set is of major interest because, although data from SIH are more reliable than other

available data sources for monitoring infant mortality in Brazilian municipalities, in Minas

Gerais the ENM data recorded in such a system are still underreported [Campos et al., 2007].

This was a problem in the past, and it still plagues the epidemiological analysis. The quality of

information produced in Minas Gerais is inadequate, mainly in the north and northeast regions

[Schramm and Szwarcwald, 2000], which are the socio-economically more deprived areas and

present the worst social indicators of the state.

The standardized mortality ratio (SMR), given by the ratio between the observed and

the expected counts in each region, is often a starting point to estimate the relative risk in

epidemiological studies. Figure 4.1 displays the SMR associated to the ENM (left) and the

Human Development Index (HDI) in 2000 (right) for the n = 75 regions of Minas Gerais. To

avoid very small or zero counts, which leads to unstable estimates for the mortality rates, the 853

municipalities of Minas Gerais were previously grouped into 75 regions (see Figure 4.1). These 75

regions were created grouping contiguous municipalities such that at least one of them is able to

provide high complexity health assistance (for further details see the Regionalization Directive

Plan for health assistance proposed by the Government of MG in 2001/2004, available at https:

//www.nescon.medicina.ufmg.br/biblioteca/imagem/3022.pdf. The SMRs given in Figure 4.1

indicate that ENM risks in northern regions of the state are very low and comparable to those

observed in highly developed countries. This result contradicts what it is expected by the

epidemiologists since those regions experience the lowest HDIs in the state (see the rightmost

map in Figure 4.1). This underestimation occurs because SMR does not take into account the

underreporting in the ENM counts.

As an alternative to SMR mapping, Clayton and Kaldor [1987] proposed estimate the RR

using a Poisson model and an empirical Bayes method that borrows information from all regions

to obtain the posterior estimates. Such an approach, however, does not consider the spatial

dependence inherent to the map. To explicitly take such dependence into account, Besag

[1974] assumes that the relative risks are functions of random e�ects that follow a conditional

autoregressive (CAR) distribution. Then, in order to achieve better estimates for the risks of

ENM in Minas Gerais, the map in the middle in Figure 4.1 shows the analysis of our dataset

using the intrinsic CAR Poisson model [Besag, York and Molliè, 1991]. Despite being a more

sophisticated model, it does not overcome the underestimation of the relative risk in the poorest
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Figure 4.1: Early neonatal mortality RR estimates using SMR (left) and CAR model (middle); and the HDI
in MG (right), 1999-2001.

regions in north and northeast of Minas Gerais. In fact, such a model aim at better �tting

the spatial and non-spatial Poisson overdispersion but not to reduce the bias induced by the

underreporting [Assunção, Potter and Cavenaghi, 2002; Assunção et al., 2005].

To properly account for potential underreporting, Bailey et al. [2005] suggest treating data

from suspected regions as censored information. Thus, models usually assumed to handle cen-

sored count data provide interesting approaches. Terza [1985] introduced the censored Poisson

model (CPM) for data that experiences a constant censoring threshold. Caudill and Mixon Jr.

[1995] extended such a model by assuming that the censoring threshold vary among areas. In

both models, all censored counts are known and �xed a priori. Extending the models proposed

by Besag, York and Molliè [1991] and Caudill and Mixon Jr. [1995], Bailey et al. [2005] intro-

duced the censored CAR Poisson model for dealing with underreported data. A challenge in

building this model is the precise speci�cation of the regions where data are underreported -

say, the censored regions. Information about such regions are usually obtained indirectly and

ad-hoc procedures are considered to determine them. In their particular application, Bailey et

al. [2005] de�ned a censoring criterion based on a social deprivation indicator.

Another way to overcome problems generated by potentially underreported data (brie�y

reviewed in Section 4.2.2) was considered by Winkelmann [1996] and Moreno and Girón [1998]

- hereafter called Moreno and Girón model (MGM). They jointly model the uncertainty about

the data generating and the data reporting processes by assuming an area-speci�c probability

of each event being recorded. An approach quite similar to MGM is considered in Whittemore

and Gong [1991], Powers, Gerlach and Stamey [2010] and Dvorzak and Wagner [2015] for

estimating the rates of cervical cancer with data subject to underreporting. These three latter

models assume that the intensity of the count process and the reporting probability are both

dependent on covariates. Because of this, additional validation data giving information on the

proportion of underreporting are required for the model identi�cation.

Good performance for the MGM-type model is attained whenever we assume informative

prior distributions for the reporting probability. The elicitation of such informative distributions
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requires the prior knowledge about the percentage of non-reporting that take place in each area.

In the public health applications we deal with, this prior knowledge is unavailable as well as

validation datasets as required in Dvorzak and Wagner [2015]. The only previous information

we can count with is the fact that some areas are more prone to experience underreporting

than others, but not how much censoring one can expect there.

Motivated by these applied situations, we develop a new censored Poisson model (Section

4.2.1). We propose a random mechanism to specify which regions are censored or, equivalently,

regions where counts are underreported. The proposed model is named the random censoring

Poisson model (RCPM). Using RCPM, we are able to estimate both, the probability of each

area being censored and its relative risk for the event of interest. We elicit di�erent prior

distributions for the censoring probabilities. By assuming degenerate prior distributions for

them, CPM arises as a particular case of RCPM. We develop an algorithm to sample from the

posterior distribution which relies on the data augmentation strategy [Chib, 1992], simplifying

the posterior sampling process.

We compare the posterior estimates for the relative risks provided by the proposed RCPM,

the CPM and the MGM through simulation (Section 4.3). Data sets with di�erent proportions of

censoring are assumed. In addition, we perform a sensitivity analysis on the prior speci�cations

for the reporting process under RCPM and MGM. Since the CPM consider that censored

regions are known, we also evaluate the e�ect of assuming di�erent censoring criteria - say,

di�erent degenerate prior distributions on the reporting process. We �t the proposed model to

estimate the relative risk of early neonatal mortality in each region of the Minas Gerais State

(Section 4.4). Results are compared with those obtained by �tting the CPM. Section 4.5 closes

the paper with some �nal comments and main conclusions.

4.2 Models for Underreported Data

Suppose a map formed by n regions. Let Ni and Yi be, respectively, the true but unobserved

total number of events and the total number of events recorded (observed) at region i, i =

1, . . . , n. To model underreported data, two approaches have being frequently considered. One

of them assumes that there are two independent probabilistic mechanisms underlying the total

number of events Ni. One of these mechanisms is associated with Yi and the other is associated

to the total number Ui of unrecorded data such that Ni = Yi + Ui. It is assumed that each

event j at region i is independently recorded with probability εi. Assuming these hypotheses

and a distribution for Ni, the distribution of Yi is obtained. Moreno and Girón model, presented

in Section 4.2.2, assumes this model with a Poisson distribution for Ni. Another approach is

the censored Poisson model (CPM) [Caudill and Mixon Jr., 1995]. It assumes that the map

is composed by regions where Ni is not completely observed being these regions considered as

censored regions. Under this approach, it is assumed that Yi
D
= Ni in non-censored regions, and

Yi ≤ Ni, otherwise. Moreno and Girón model requires the prior knowledge about the percentage
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of non-reporting that takes place in each area, which is not available in our case study. The

CPM requires the precise prior speci�cation of all censored regions, which is not a simple task

in many practical situations. Our goal in this section is to introduce a model to account for

potential underreporting, whenever none of this prior knowledge is available. We extend the

CPM by assuming that the mechanism to de�ne the censored regions is random. In our model

we assume that Yi ≤ Ni with probability πi which is also estimated.

4.2.1 Random Censoring Poisson Model

Considere Yi and Ni as previously de�ned. Denote by Ei the expected number of cases for

the event of interest at region i, i = 1, ..., n. Assume that

Ni|θi ind∼ Poisson(Eiθi), (4.1)

where θi is the relative risk associated to region i. As in Caudill and Mixon Jr. [1995], instead of

assuming that all variables Ni are completely observed, we consider that some of them may be

right-censored (underreported), which means that for some regions the true non-observed value

of Ni is higher or equal than the observed value Yi. Let γi be the censoring indicator assuming

value 1 if the count at region i is underreported and 0 otherwise. For our purpose, γi is a latent

random variable having a Bernoulli distribution with censoring probability πi ∈ (0, 1), that is,

we consider that the count Ni at region i is underreported with probability πi. Since only Yi is

observable in each region, modelling is built based on the observed counts Y = (Y1, . . . , Yn).

Assume that, given γ = (γ1, . . . , γn), θ = (θ1, . . . , θn) and π = (π1, . . . , πn), the observed

counts Y are independent. Consider also that the random censoring mechanism is independent

of the counts in each area, that is, it is assumed that underreporting may occur either in regions

with low or high counts. Under these assumptions, the joint model for (y,γ) is hierarchically

obtained as

f(y | γ,θ) =
n
∏

i=1

{

[

eEiθi(Eiθi)
yi

yi!

]1−γi
[

∑

y≥yi

eEiθi(Eiθi)
y

y!

]γi
}

, (4.2)

f(γ | π) =
n
∏

i=1

πγi
i (1− πi)

1−γi .

If the censored regions are �xed a priori such that the vector γ is known, expression (4.2)

gives the likelihood related to the censored Poisson model by Caudill and Mixon Jr. [1995].

That is equivalent to assume the proposed model with a degenerate prior distribution for each

πi, which puts all positive probability mass in one, if region i is censored, or zero, if it is a

non-censored region. Under this approach, however, Cromwell's rule is not followed and the

information about the censoring mechanism cannot be updated by data information.
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4.2.1.1 On the prior speci�cations

To complete our model speci�cation, prior distributions must be elicited for the relative

risks θ = (θ1, . . . , θn) and for the censoring probabilities π = (π1, . . . , πn). Obviously, several

structures can be chosen for modeling the uncertainty about θ. Due to conjugacy properties,

it is usual to assume that θi|αi, φi
ind∼ Gamma(αi, φi). Although not considered in this paper,

other structures for the mean µi = Eiθi of the Poisson model can be considered to account for

extra variations in each region i = 1, ..., n. Besag, York and Molliè [1991], for instance, assumed

a spatial structure for the relative risk by considering log µi = logEi + υi + si, where υi and si

denote, respectively, the non-spatially and the spatially structured random e�ects. The e�ects

υi usually account for the dependence among the counts Y induced by unmeasured covariates

while the si e�ects account for an explicit spatial dependence among them. A suitable linear

combination of L available covariates W = (W 1, ...,W L), where W
T
k = (W1k, ...,Wnk) for

k = 1, ..., L; related to suspected risk factors can also be included for modeling the relative

risks, so that log µi = logEi +
∑L

k=1
ωkWik + υi + si.

A key point in the proposed RCPM is the modeling of the uncertainty about the censoring

probabilities π. A possible approach is to assume that π1, . . . , πn are independent and identically

distributed with a non-informative uniform prior distribution, that is, πi
ind∼ U(0, 1), i = 1, ..., n.

A priori, it is not realistic to assume that the censoring probabilities are uniformly distributed

among the regions of interest. Instead, it is expected that regions with the worse social depri-

vation indicators have πi close to 1.0 whereas regions with the best ones have πi close to 0.0. If

such prior information is available, one can elicit beta prior distributions for π in such a way

that its hyperparameters re�ect this expected behavior, for instance. We propose to assume

that the censoring probability πi can be modeled using a logistic regression model such that

logit(πi) = log
(

πi(1− πi)
−1
)

= β0 +X
T
i β, (4.3)

where βT = (β1, ..., βJ) represents the �xed e�ects associated to J covariates measured in

each region i, so that XT
i = (Xi1, ..., XiJ). The set of covariates X = (X1, ...,XJ), where

XT
j = (X1j, ..., Xnj) for j = 1, ..., J ; may be related to the socioeconomic/educational level or

quality of health services in each region, for instance. To ensure the expected prior behavior of π

among the regions, the prior speci�cation of βj, j = 1, ..., J , must take into consideration that

the highest values for the censoring probabilities are associated to the regions with the worst

social deprivation indicators. Sometimes it is possible to consider the covariates Xj to create

an index representing the socio-economic/educational quality of the regions. If that is the case,

it can be easier to order the values associated to such index and then the prior distribution

for the β must be built putting positive probability mass in the appropriate part (positive or

negative) of the real axis R depending on the ordering chosen for the index. For example, if

the highest values for the social deprivation index are associated with the worse regions, then

the parametric space of β must be R+. Similarly, if the highest values for the social deprivation
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indicator are associated with the better regions, then the parametric space of β must be R−.

4.2.1.2 Posterior inference

Under the structure assumed for the prior distribution of πi in (4.3) and additionally as-

suming that β0 and β are independent, the joint distribution of the complete model is given

by

P(Y ,γ,ψ) = f(Y | γ,θ)f(γ|β0,β)P(θ)P(β0)P(β) (4.4)

=
n
∏

i=1

{[

πi

(

1− FYi|µi
(yi − 1)

)]γi

×
[

(1− πi) fYi|µi
(yi)

]1−γi
P(θi)

}

P(β0)P(β),

where πi = (1 + exp{−(β0 +X
T
i β)})−1, ψ = (θ, β0,β) and fYi|µi

and FYi|µi
denote, respec-

tively, the probability function and the cumulative distribution function (c.d.f.) of a Poisson

distribution with mean µi = Eiθi.

The main focus is to infer about the relative risks θ and about the censoring indicator latent

variables γ. It follows from Equation (4.4) that the posterior distributions for these parameters

do not have a closed form and computational approaches should be used to approximate them.

For parameter γi the posterior full conditional distribution is given by

γi|Y ,γ−i,ψ ∼ Bernoulli
(

Ai[Ai +Bi]
−1
)

, (4.5)

where Ai = πi

[

1− FYi|µi
(yi − 1)

]

, Bi = [1− πi] fYi|µi
(yi) and γ−i denotes the vector γ without

the component i. As a particular case, if it is assumed that θi
ind∼ Gamma(αi, φi), the posterior

full conditional distribution of this parameter is given by

θi|Y ,γ,ψ−θi
∼

{

Gamma (yi + αi, φi[Eiφi + 1]−1) if γi = 0;

Gamma (αi, φi)×
[

1− FYi|µi
(yi − 1)

]

if γi = 1.
(4.6)

Sampling from the posterior distributions of θ and γ by using a regular Gibbs sampler algorithm

is highly ine�cient because their f.c.d. in (4.5) and (4.6) depend on the cumulative distribution

function of a Poisson distribution.

To obtain a more e�cient sampling procedure in the presence of censored data we adopt the

data augmentation technique [Tanner and Wong, 1987; Chib, 1992]. For the well-known Tobit

model, in which the censored observations are �xed and known a priori, Chib [1992] proved

that, whenever the data augmentation technique is used, the posterior inference for parameters

of interest remains the same as in the initial model. In next section we extend Chib's proposal

and develop an algorithm to sample from the posterior distributions whenever the censoring

mechanism is random.
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4.2.1.3 Data Augmentation for Posterior Sampling

In the context of censored models, data augmentation technique consists on including latent

variables or unobserved data into the model in order to facilitate the computation procedures.

To simplify the structure of the likelihood function in a right-censored model as the proposed

RCPM, basically, the censored counts are replaced by augmented values, which are generated

from a suitable truncated distribution in order to represent the true non-observed counts.

Consider a sample Y = (y1, ..., yn) in which nc observations are censored (underreported)

and no = (n − nc) observations are non-censored (correctly observed). Denote by yc and yo

the set of censored and non-censored observations of Y , respectively. Suppose that along with

the censored observations, yc, we have available the corresponding latent data Z, which is a

vector of dimension nc × 1. Let C denote the index set of the censored observations. Following

the approach of Chib [1992], we assume that, given (Y ,γ,ψ), Z is a collection of independent

random variables such that, for all i ∈ C, Zi has a Poisson distribution with mean µi = Eiθi

truncated from below at the underreported value yi, whose conditional probability function is

given by

f(Zi = zi|Y ,ψ, γi = 1) = fZi|µi
(zi)[1− FZi|µi

(yi − 1)]−1, (4.7)

for zi = yi, yi + 1, ..., where ψ, fZi|µi
and FZi|µi

are as de�ned in (4.4).

By doing that, we now have a vector of augmented data Y z = (yz1, ..., y
z
n), which corresponds

to the original collection of data Y with yc replaced by z generated from (4.7). Consequently,

the joint distribution under the complete data-augmented model is given by

P(Y ,Z,γ,ψ) = f(Y |θ,γ)f(γ|β0,β)f(Z|Y ,θ,γ)P(θ)P(β0)P(β)

=
n
∏

i=1

{

[

πifZi|µi
(zi)

]γi
[

(1− πi) fYi|µi
(yi)

]1−γi
P(θi)

}

P(β0)P(β),

where πi, ψ, µi, fYi|µi
and FZi|µi

are as previously de�ned in (4.4).

We now must obtain posterior samples of (ψ,γ,Z). The most important point is that the

conditional probability function of the latent data is available in a tractable form (see expression

(4.7)) and the data-augmented posterior distribution P(ψ,γ|Y ,Z) do not involves a cumulative

probability function. Therefore, it has a more simple form than P(ψ,γ|Y ) and generates the

same posterior inference for the parameters of interest. In a general case, the posterior full

conditional distributions of γi, θi, β0 and β under the new structure become

P(γi|Y ,Z,γ−i,ψ) ∝
[

πifZi|µi
(zi)

]γi
[

(1− πi) fYi|µi
(yi)

]1−γi , (4.8)

P(θi|Y ,Z,γ,ψ−θi
) ∝

[

fZi|µi
(zi)

]γi
[

fYi|µi
(yi)

]1−γi
P(θi), (4.9)
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P(βj|Y ,Z,γ,ψ−βj
) ∝

n
∏

i=1

f(γi|β0,β)P(βj), j = 0, 1, ..., J. (4.10)

A Gibbs sampler strategy that can be considered is to sequentially sample from the dis-

tributions given in (4.7), (4.8), (4.9) and (4.10). Implementing such a MCMC scheme (results

not shown), we veri�ed that the algorithm is ine�cient due to slow convergence. Because of

the strong dependence between Z, γ, β0 and β, especially the dependence between γ and β,

convergence is improved if such parameters are jointly sampled. Hence, we consider their joint

posterior full conditional distribution which is given by

P(Z,γ, β0,β|Y ,θ) ∝
n
∏

i=1

{[

πifZi|µi
(zi)

]γi (4.11)

×
[

(1− πi) fYi|µi
(yi)

]1−γi
}

P(β0)P(β),

and a Metropolis-Hastings (M-H) step is thus needed to sample from (4.11). Therefore, we

suggest the following MCMC scheme for posterior sampling:

1. Sample (Z, γ, β0,β) from P(Z,γ, β0,β|Y ,θ) in (4.11) using a M-H step;

2. Sample θi from P(θi|Y ,Z,γ,ψ−θi
) in (4.9), for i = 1, ..., n.

The proposal distribution in the Metropolis-Hastings (M-H) step assumes that γ, β0, and

β are independent. We assume normal distributions for β0, and β and a Bernoulli distribution

for γi all of them centered in the value generated in the previous step. Particularly, if we

assume that, a priori, θi
ind∼ Gamma(αi, φi), then its posterior full conditional distribution

under the augmented model is θi|Y ,Z,γ,ψ−θi
∼ Gamma (zi + αi, φi[Eiφi + 1]−1) if γi = 1

and, if γi = 0, θi|Y ,Z,γ,ψ−θi
∼ Gamma (yi + αi, φi[Eiφi + 1]−1). In opposite to what was

presented in Equation (4.6), under this particular gamma prior distribution the posterior full

conditional distribution of θi has now closed form for both censored and non-censored regions.

4.2.2 Moreno and Girón's Model

Let Ni be the true but unobserved number of events at region i, i = 1, . . . , n. In the

MGM [Moreno and Girón, 1998], it is assumed that Ni
ind∼ Poisson(Eiθi), where Ei and θi

are as previously de�ned. It is also assumed that an event occurring at region i is indepen-

dently recorded with probability (1 − εi). Given Ni and εi, the observed (recorded) count

Yi is assumed to be sampled from the true number of events by binomial trials such that

Y i|Ni, εi
ind∼ Binomial(Ni, 1 − εi). Consequently, given θi and εi, the distribuition of the ob-

served count Yi, i = 1, ..., n is

Yi|θi, εi ind∼ Poisson(Eiθi(1− εi)).
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Inference is done under the Bayesian paradigm. Therefore, to complete the model speci�cation,

it is required the elicitation of prior distributions for θ and ε = (ε1, . . . , εn). It is assumed

prior independence between θ and ε to simplify the elicitation of prior distributions for such

parameters. For the relative risk θ one can elicit that, for instance, θi|αi, φi
ind∼ Gamma(αi, φi),

i = 1, ..., n.

Moreno and Girón [1998] discuss some ways to set prior distributions for ε. Informative

prior distributions for εi can be built if we obtain from the experts pieces of information about

the proportion of unrecorded events at region i. We may assume that logit(εi) = β0 + βX i,

where X i represents information from covariates related to the socio-economic or educational

level in each region and the prior distribution for (β0,β) should reveals how much such factors

in�uence the probability of any event being recorded. We can also elicit εi
ind∼ Beta(κi,Ψi),

where κi and Ψi are chosen in a way that the prior expectation of εi re�ects reasonably well

our prior knowledge about the proportion of unrecorded counts.

4.3 Simulation Study

We perform a Monte Carlo study in order to compare the performance of the proposed

model (RCPM), the censored Poisson model (CPM) [Caudill and Mixon Jr., 1995] and the

model presented by Moreno and Girón (MGM) [Moreno and Girón, 1998]. Di�erent scenarios

are considered. To mimic the case study to be presented in Section 4.4, we consider the map

of Minas Gerais State with the goal of estimating the relative risk associated to an event in

the n = 75 regions of the state. We also evaluate the performance of the proposed model in

correctly identifying the regions that experience underreporting (the censored regions).

We consider 100 replications of each data set in all scenarios. Data are generated from

Poisson distributions so that Ni|θi ind∼ Poisson(Eiθi). The expected number of cases Ei is

assumed to be known and equal to that available for the case study to be discussed in Section

4.4. However, di�erently from what occurs in that case study, here Ei is free of underreporting.

The true relative risk in each region is given by θi = exp{5.71 + 0.31Lati}, where Lati is the

latitude of the centroid of region i. Consequently, the relative risk increases from the South to

the North varying from 0.3 to 3.0.

Scenarios di�er by the percentage of censored regions and the censoring level in each obser-

vation. The censoring level δ ∈ [0, 1] is the proportion of the generated count Ni that is reported

in each censored region, that is, in each censored region, the observed count Yi is taken as the

smallest integer greater or equal than Ni×δ. It means that (1−δ)×100% of the true generated

count will be missed (unreported) in the censored regions. The smallest the δ, the lowest is

the data information available to estimate the relative risk in the censored areas. In order to

evaluate the e�ect of the amount of underreporting, we consider two di�erent censoring levels:

δ = 0.8 and δ = 0.6. Also to mimic our case study, to de�ne the censored regions, we built

three criteria based on the available adequacy index (AI) introduced by França et al. França
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et al. [2006]. The AI assesses the quality on infant mortality data collected in Minas Gerais

and was built considering four available indicators of the quality on birth and mortality data

recorded in each regions of the state: the standartized global mortality rate and its standard

deviation, the standard deviation of the global natality rate and the proportion infant deaths

with ill-de�ned cause.

The adequacy index ranges from -83.74 to 100.0 assuming negative values for eight regions

of Minas Gerais, all of then located in the North and Northeast part of the state. The smallest

the AI, the worst is the data quality in the region. Because the AI summarizes all available

information about the data reporting process in our case study, it is used as the sole covariate

in (4.3) for modeling the censoring probabilities under RCPM. We consider as censored, the

regions for which the AI ≤ 0.0 (Scenario 1), AI ≤ 20.0 (Scenario 2) and AI ≤ 45.0 (Scenario 3)

thus establishing that the proportion of censored regions are, respectively, 11%, 23% and 36%

for Scenarios 1, 2 and 3. The censored regions are shown in the top maps in Figure 4.4. Results

for scenarios with di�erent levels of censoring δ among the censored regions and also scenarios

with proportions of censored regions equals to 0% and 75% are presented in the supplementary

material.

To analyse the data sets, we �t ten di�erent models, one of them being the regular Poisson

model. The three approaches for the proposed model (RCP1-RCP3) di�er in the way the prior

distribution for the censoring probabilities π are assigned. In RCP1, we assume a distribution

with �at prior information about the censored regions by eliciting πi
iid∼ U(0, 1). Thus, with

this non-informative prior, it is expected a priori that around 50% of the regions are censored.

In RCP2 and RCP3 the censoring probabilities are modelled by a logit function such that

logit(πi) = β0 − β1AI
1
i in which AI1i represents the standardized adequacy index. An usual

approach in regression models is to consider �at normal prior distributions for the coe�cients

β0 and β1. Following this strategy, in RCP2 we assume (β0, β1) ∼ N2(0, 100I2). The top row of

plots in Figure 4.2 exempli�es this prior choice. The �rst plot shows the logistic curves resulting

from sampling from the prior distribution for (β0, β1). The solid line represents the curve with

the parameters set at their expected values (zero, in this case). The non-informative normal

prior distributions for β0 and β1 induce a poor prior distribution for πi which is symmetric with

bathtub shape and concentrating the most of its probability mass around one and zero in all

regions. The three other plots in the �rst row in Figure 4.2 show this induced prior distribution

for region 1, with the lowest AI, region 31, with the average AI, and region 75, with the highest

AI. In RCP3, we consider informative log-normal prior distributions for the coe�cients β0 and

β1 by assuming β0 ∼ LN(−1.65; 0.95) and β1 ∼ LN(0.63; 0.60) independently. The results

are shown in the bottom row of plots in Figure 4.2. The prior distribution for πi induced by

such informative log-normal prior distributions for β0 and β1 concentrate probability mass in

di�erent values depending on the adequacy index of the region. For instance, for region 75, with

the highest AI, the prior πi concentrates its probability mass around zero, pointing out that

this region is most probably non-censored. For region 1, with the lowest AI, the induced prior

distribution of πi concentrates the most of its probability mass around 1, as expected. In the
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100% of the truly censored regions are wrongly informed to the model and, at the same time,

an equal number of truly uncensored areas receive the censored status.

In all models, the prior distribution for the relative risk is θi|αi, φi
ind∼ Gamma(αi, φi). The

hyperparameters αi and φi are �xed at each region in such way that prior distributions for θi
have Var[θi] = 3.0 and E[θi] equal to the true relative risk used to generate the data sets.

For the MCMC, we run one chain of 39,500 iterations and, after convergence being reached,

we discarded the �rst 20,000 iterations as the burn-in period. The number of iterations was

suggested by the CODA functions [Plummer et al., 2016]. To avoid correlation among the

generated samples, we consider a lag of length 13 obtaining a posterior sample of total size

1,500. The algorithm was implemented using the software R 3.1.3 [R Core Team , 2015] and

MCMC convergence was monitored considering diagnosis tests available on CODA package.

The code can be obtained from the authors upon request. These speci�cations for the MCMC

parameters are also assumed in the case study presented in Section 4.4.

The posterior estimates for the relative risk θ are obtained under the square loss function.

To evaluate the quality of the estimates provided by the posterior means, in the Monte Carlo

simulation study, we consider the bias (BIAS) and the mean squared error (MSE). We also

obtained the coverage percentage of the 95% highest posterior density (HPD) intervals for θ.

Results are shown in Table 4.1. To evaluate the capacity of the proposed model in correctly iden-

tifying the censored areas, we consider the sensitivity (Sensit. = TP/(TP + FN)), speci�city

(Specif. = TN/(TN +FP )) and the accuracy (Accur. = (TP +TN)/(TP +FP +TN +FN))

rates given in Table 4.2, where TP, FP, TN and FN represent, respectively, the true positive,

false positive, true negative and false negative cases. We classify the region i as censored when-

ever the posterior mean of πi is higher than 0.5. The true censored regions are shown in Figure

4.4.

Tables 4.1 and 4.2 show the resulting evaluation metrics for the estimates of θ, separately

in censored and non-censored regions, for datasets with censoring levels δ = 0.8 and δ = 0.6,

respectively. The analysis in the following will take into consideration that, in the epidemiolog-

ical context, the underestimation of the relative risk is not desirable since it may lead to the

establishment of inappropriate healthy policies.

It can be noticed that the regular Poisson model produces undesirable relative risk estimates

in censored regions by always underestimating them. Despite of this, it tends to provide good

estimates for the relative risk in non-censored regions. Comparing models that consider the

presence of underreporting, CP3 tends to provide the less biased estimates and the smallest

MSE in the non-censored regions for almost all scenarios. It must occur in fact, since CP3

is equivalent to the regular Poisson model in these regions. However, to �t CP3 we need to

perfectly know the censored and the non-censored regions which may not be a simple task.

Among the other models, RCP3 is the one that better estimate θ in non-censored regions while

RCP1, MG1, MG2 and CP1 are the worst ones, tending to highly overestimated the relative

risk. This overestimation of θ also occurs in censored regions under RCP1 and MG1, for all

scenarios, showing that these two models are non-competitive and pointing out that it is not
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a reasonable strategy to elicit vague prior distributions for π and ε (parameters that brings

information about the data quality to the model).

In censored regions, the models that, in general, provide the best estimates for θ are RCP3

and MG3 in terms of both MSE and bias. For scenarios where δ = 0.8 (Table 4.1), MG3

presents slightly better estimates, but the opposite occurs when the data quality gets worse

and we have δ = 0.6 (Table 4.2). In non-censored regions, RCP3 �ts better than MG3 in all

scenarios. For those regions, RCP2 provides smaller MSE but more biased estimates than MG2.

Despite of this, in the non-censored regions, RCP2 has better performance presenting less bias

and variability for the estimates independently of the scenario. One undesirable feature of these

two models is their tendency to underestimate the relative risk in censored regions.

Comparing only the CP models in censored regions, the relative risks are overestimated in

all scenarios under CP3 and CP2, mainly, in those scenarios with few data information. CP1

presents the same results as the regular Poisson model since they are equivalent in these regions.

In non-censored regions, the performance of CP models gets worse as the information about

actually censored regions also gets worse. It is worthy to mention, however, that the quality

of the estimates provided by CP models are quite sensitive to the information about censored

regions considered by the model (see also Figure 4.3).

The biases obtained by �tting all the ten models considered in our study tend to be closer

to the bias obtained under the regular Poisson model as the proportion of censored regions

and the censoring level δ increase. In scenarios where δ = 0.6, even the models RCP3 and

MG3, which present the best performances, underestimate the relative risk. In these cases, the

underestimation of θ under MG3 tends to be greater than that observed by �tting RCP3. The

prior distributions for π and ε play an even more important role in the quality of the posterior

estimates as data information gets poorer.

The coverage percentage of the 95% HPD intervals (see Tables 4.1 and 4.2) in censored

regions tends to be smaller under MG2, CP1 and the regular Poisson model. In Scenario 1 with

δ = 0.6, for instance, when �tting MG2, the posterior distribution puts signi�cant probability

mass in the true region of the parametric space only for 42.1% of the generated samples. For

CP1 and the regular Poisson model, such percentage is even worse being around 0.006%. For

RCP1, MG1 and CP3, the coverage percentage for the HPD intervals is equal to 100.0% in

all scenarios, which may indicate that the posterior uncertainty about the relative risk is still

large. Similar results can be observed for RCP2, RCP3 in some scenarios with δ = 0.8.

The proposed model is more sensitive than speci�c (see Table 4.3) being more capable of

precisely classifying truly censored regions as censored. Model RCP3, which consider informative

prior about the censored regions, provides better classi�cations for both the censored and non-

censored regions in all scenarios. The accuracy for such a model is above 0.73. Regarding the

correct identi�cation of censored regions, RCP2 presents the worst performance while RCP1 is

the worst model to identify the non-censored ones. Although RCP1 and RCP2 produced relative

risk estimates quite di�erent in terms of bias and variability (see Table 4.1), the accuracy rate

of such models are comparable in all scenarios.
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Table 4.1: Evaluation of the relative risk estimates with censoring level δ = 0.8.

Model
censored regions non-censored regions

MSE BIAS %HPD MSE BIAS %HPD
Scenario 1 (AI ≤ 0.0, 11% of censoring)

RCP1 0.460 0.648 1.000 2.544 1.454 0.995
RCP2 0.057 -0.166 1.000 0.033 0.131 0.994
RCP3 0.113 0.224 1.000 0.020 0.049 0.969

MG1 0.633 0.768 1.000 1.007 0.951 0.969
MG2 0.353 -0.072 0.704 1.173 0.354 0.957
MG3 0.080 0.177 1.000 0.032 0.083 0.961

CP1 0.162 -0.369 0.384 0.555 0.242 0.943
CP2 1.453 0.906 0.818 0.105 0.054 0.942
CP3 1.775 1.316 1.000 0.011 0.002 0.942

Poisson 0.162 -0.369 0.382 0.011 0.002 0.943
Scenario 2 (AI ≤ 20.0, 23% of censoring)

RCP1 0.716 0.774 1.000 2.806 1.504 0.995
RCP2 0.049 -0.126 1.000 0.030 0.126 0.995
RCP3 0.073 0.077 1.000 0.012 0.025 0.965

MG1 0.617 0.758 1.000 0.962 0.929 0.971
MG2 0.240 -0.111 0.728 1.159 0.405 0.949
MG3 0.047 0.071 0.998 0.016 0.051 0.966

CP1 0.130 -0.313 0.416 1.559 0.639 0.940
CP2 1.405 0.910 0.856 0.360 0.169 0.941
CP3 1.787 1.319 1.000 0.382 0.216 0.941

Poisson 0.130 -0.313 0.422 0.010 0.000 0.939
Scenario 3 (AI ≤ 45.0, 36% of censoring)

RCP1 0.985 0.887 1.000 2.768 1.508 0.996
RCP2 0.041 -0.107 1.000 0.029 0.123 0.994
RCP3 0.060 0.001 0.980 0.010 0.014 0.961

MG1 0.601 0.744 1.000 0.939 0.912 0.974
MG2 0.152 -0.100 0.764 1.454 0.484 0.941
MG3 0.040 0.007 0.984 0.013 0.036 0.963

CP1 0.106 -0.272 0.447 3.697 1.360 0.947
CP2 1.781 1.065 0.904 0.789 0.326 0.945
CP3 2.742 1.587 1.000 0.009 0.000 0.941

Poisson 0.106 -0.272 0.449 0.009 0.000 0.940
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Table 4.2: Evaluation of the relative risk estimates with censoring level δ = 0.6.

Model
censored regions non-censored regions

MSE BIAS %HPD MSE BIAS %HPD
Scenario 1 (AI ≤ 0.0, 11% of censoring)

RCP1 0.163 0.346 1.000 2.590 1.447 0.996
RCP2 0.335 -0.551 0.821 0.034 0.134 0.995
RCP3 0.104 -0.193 0.996 0.021 0.053 0.970

MG1 0.141 0.330 1.000 0.999 0.948 0.969
MG2 0.877 -0.311 0.421 0.955 0.330 0.968
MG3 0.125 -0.284 0.998 0.032 0.083 0.965

CP1 0.595 -0.754 0.006 0.614 0.249 0.943
CP2 0.961 0.530 0.751 0.102 0.053 0.942
CP3 0.965 0.960 1.000 0.011 0.001 0.941

Poisson 0.595 -0.754 0.006 0.011 0.002 0.944
Scenario 2 (AI ≤ 20.0, 23% of censoring)

RCP1 0.354 0.483 1.000 2.731 1.500 0.995
RCP2 0.296 -0.481 0.778 0.031 0.125 0.994
RCP3 0.163 -0.287 0.841 0.013 0.023 0.963

MG1 0.164 0.357 1.000 0.955 0.924 0.975
MG2 0.440 -0.420 0.428 1.091 0.381 0.930
MG3 0.146 -0.320 0.882 0.016 0.051 0.965

CP1 0.492 -0.648 0.032 1.486 0.625 0.946
CP2 0.856 0.588 0.738 0.339 0.162 0.946
CP3 1.493 1.143 1.000 0.010 -0.002 0.947

Poisson 0.492 -0.648 0.036 0.010 -0.003 0.946
Scenario 3 (AI ≤ 45.0, 36% of censoring)

RCP1 0.647 0.641 1.000 3.063 1.575 0.995
RCP2 0.238 -0.409 0.800 0.028 0.122 0.995
RCP3 0.166 -0.308 0.684 0.010 0.014 0.962

MG1 0.191 0.388 1.000 0.981 0.918 0.972
MG2 0.135 -0.249 0.513 3.438 0.753 0.945
MG3 0.074 -0.243 0.681 0.033 0.055 0.963

CP1 0.391 -0.555 0.060 3.611 1.347 0.949
CP2 1.161 0.778 0.771 0.790 0.326 0.943
CP3 1.979 1.305 1.000 0.009 0.000 0.942

Poisson 0.391 -0.555 0.061 0.009 0.000 0.940
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Table 4.3: Evaluating the inference about the censored areas

Model
δ = 0.8 δ = 0.6

Sensit. Specif. Accur. Sensit. Specif. Accur.
Scenario 1 (AI ≤ 0.0, 11% of censoring)

RCP1 0.728 0.235 0.482 0.752 0.235 0.494
RCP2 0.501 0.496 0.499 0.507 0.495 0.501
RCP3 0.943 0.557 0.750 0.943 0.557 0.750

Scenario 2 (AI ≤ 20.0, 23% of censoring)
RCP1 0.737 0.231 0.484 0.755 0.232 0.493
RCP2 0.507 0.494 0.500 0.504 0.496 0.500
RCP3 0.880 0.616 0.748 0.881 0.616 0.748

Scenario 3 (AI ≤ 45.0, 36% of censoring)
RCP1 0.746 0.230 0.488 0.761 0.227 0.494
RCP2 0.504 0.496 0.500 0.504 0.495 0.500
RCP3 0.799 0.674 0.736 0.798 0.623 0.735

Figure 4.3 present the box-plots for the relative risk estimates obtained under all models

for Scenario 2 with δ = 0.6. Similarly to what is observed whenever a regular Poisson model

is �tted (Figure 4.3 (j)), if the CP model does not assume as censored the regions where

information are in fact underreported, the relative risks are underestimated in that regions.

If the CP models are assumed, the relative risk tends to be overestimated in all regions �xed

in the model as being censored. This issue is even more evident in regions that are wrongly

considered as censored in the model. In these cases, there is also a greater variability in the

estimates. Models RCP2, RCP3, MG3 and CP3 provide quite similar estimates for the relative

risk in non-censored regions. If models RCP1 and MG1 are �tted, the relative risks is highly

overestimated in all non-censored regions and great variability on the estimates is also observed.

These results can be possibly explained by the estimates obtained for the censoring probability

π and the each event non-recording probability εi under such models. The estimates for π are

above 0.70 under RCP1 and the estimates for εi are above 0.15 under MG1, for almost all

regions. In turn, the posterior estimates of π obtained under RCP2 model are around 0.5 for

all regions. Because of this, the relative risk estimates provided by RCP2 are comparable to

those observed by �tting the regular Poisson model, mainly in censored regions. In general, for

the scenario shown in Figure 4.3, the estimates provided by the RCP3 and MG3 model are the

best ones presenting the smallest MSE (Table 4.2).
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Figure 4.3: Box-plots of θ posterior means for Scenario 2 and δ = 0.6. The true values are represented by
black squares for regions considered as censored in the CP models and by black circles for the other regions.
The truly censored areas are in the left side of the vertical dashed line. Note that graphs have di�erent scales
for the y-axis.
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4.4 Case Study: Mapping the ENM rate in Minas Gerais

State, Brazil

In this section we consider the proposed random censoring Poisson (RCPM) and the censored

Poisson (CPM) models to map the relative risk of early neonatal mortality (ENM) in Minas

Gerais State (MG), Brazil. Although there was an improvment in the Brazilian socio-economic

conditions in the last decade and some investment in improving the information gathering, data

in Minas Gerais still su�er of under-recording. To show that we consider data of two di�erent

periods, 1999-2000 and 2012-2014, and described in Section 4.1. Because we do not have any

prior information about the proportion of underreporting experienced in each region, which

is needed in the construction of informative prior distribution for ε, we do not �t the model

proposed by Moreno and Girón [1998] (MGM). As noted from the simulation studies (Section

4.3), eliciting informative prior distribution for ε is a key point to obtain good estimates for

the relative risks under MGM.

Let Yi and Ei be, respectively, the observed and the expected counts of ENM at region

i = 1, ..., 75, where Ei = Bi×T , Bi is the number of live births in area i and T denotes the death

rate for all Minas Gerais State. As in Section 4.2.1, assume that in some regions the observed

counts Yi may be right censored (underreported) with respect to the true but unobserved count

Ni which, given θi, has a Poisson distribution with parameter Eiθi. Despite the counts may be

underreported, the �tted models assumes that the available Ei is free of underreporting because

the possible bias is negligible due to the small number of missing deaths relatively to the large

total number for the whole state. Also, based on information provided by experts we believe

that the ENM data set is similar to the data considered in Scenario 2 of the simulation study

(Section 4.3) in relation to the proportion of censored areas.

4.4.1 On the prior speci�cation for πi and θi

To build an informative prior distribution for the censoring probabilities we consider the logit

function in (4.3) with the adequacy index (AI) França et al. [2006] as covariate. As mentioned

in Section 4.3, the AI ranges from -83.74 to 100.0 assuming negative values for eight regions of

Minas Gerais, all of then located in the North and Northeast part of the state. The smallest

the AI, the worst is the data quality in the region. We elicit the prior distributions of β0 and β1

taking into consideration that the highest values for the censoring probabilities are associated

to the regions with the worse adequacy index.

Attempting to make this elicitation a simpler task, we conveniently ordered the observed

values of AI from the smallest to the highest and let logit(πi) = β0−β1AI
1
i , where AI

1 represents

the standardized adequacy index and i = 1, ..., 75. Because of this construction, to ensure the

expected behavior of π among the regions, the prior distribution β1 should put probability mass

in positive values. To appropriately describe the expert prior knowledge about the censored
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regions in Minas Gerais, we elicit: β0 ∼ LN(−2.06; 0.95) and β1 ∼ LN(1.52; 0.60), where LN

is the Log-normal distribution. Under such prior distributions, it follows that E[β0] = 0.20,

V ar[β0] = 0.06, E[β1] = 5.50, V ar[β1] = 13.11. This prior elicitation reveals that, in average,

the underreporting probability in the eight regions with worse data quality is greater than 0.99

while for the twelve regions with highest values of AI it is smaller than 0.01. We named the

model with such log-normal prior distributions on β0 and β1 by RCPM3.

To provide a sensitivity analysis on the reporting process, similarly to what is considered

in Section 4.3, we consider here the case in which πi
iid∼ U(0, 1) (named RCPM1) and also that

one in which (β0, β1) ∼ N2(0, 100I2) (named RCPM2).

For �tting the CPM to our data set, we consider the three criteria based on the adequacy

index (AI) given in Section 4.3, that is, we consider as censored the regions for which the

AI ≤ 0.0 (named CPM1), AI ≤ 20.0 (named CPM2) and AI ≤ 45.0 (named CPM3) thus

establishing that the proportion of censored regions are, respectively, 11%, 23% and 36% for

Scenarios 1, 2 and 3. The censored regions induced by these criteria are presented in Figure 4.4

(row 1).

In epidemiological studies, the use of informative prior distributions for the relative risks

based on information provided by experts is important and it has been encouraged by many

authors as Bernardinelli, Clayton and Montomoli [1995]. To build the prior speci�cation for

the relative risks in our study we obtained information from experts in the study of the early

neonatal mortality in Minas Gerais and we summarized their knowledge through the mean

relative risks over the n = 75 regions by doing

E[θi] =































5.0, if AIi ≤ 0.0, i = 1, ..., 8, (8 regions)

3.5, if 0.0 < AIi ≤ 20.0, i = 9, ..., 17, (9 regions)

2.5, if 20.0 < AIi ≤ 45.0, i = 18, ..., 27, (10 regions)

1.5, if 45.0 < AIi ≤ 60.0, i = 28, ..., 40, (13 regions)

1.0, if AIi > 60.0, i = 41, ..., 75. (35 regions)

We then elicit Gamma distributions in which the hyperparameters αi and φi are chosen so that

the prior means are these given by the experts and the prior variance V ar[θi] is common for

all regions and equal to 3.0. By eliciting this prior, we assume that the expected relative risk is

below 3 in the majority of the regions and it is above 3 in 17 regions.

4.4.2 The posterior results

Figures 4.4 and 4.5 displays the posterior means and the 95% highest posterior density

(HPD) intervals for the relative risks of early neonatal mortality in Minas Gerais, under the CP

models in the periods 1999-2001 and 2012-2014, respectively. Compared to the standardized

mortality ratio (SMR) and the estimates provided by the CAR model (see Figure 4.1), the

relative risks estimates for the period 1999-2001 in non-censored regions remains essentially the

same. The same occurs for data from period 2012-2014 if we compare Figure 4.5 and Figure 1
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of the supplementary material, in which is shown the SMR estimates for this period. However,

when underreporting is considered, the relative risk estimates in North and Northeast regions

of the Minas Gerais State are much higher under all CP models. This result is closer to what

is expected by the epidemiologists. A critical point by using the CP model is that the risk

estimates are highly a�ected by the censoring criterion established a priori. As an example,

we can highlight what occurs with the region having the highest latitude in the State, i.e., the

region further North in the map. That region is not censored in CPM1 but censored in CPM2

and CPM3. When models CPM2 and CPM3 are �tted, the relative risk estimates belong to

the interval [2.5, 4.0) while such estimate is smaller than 0.70 under the model CPM1. For such

region the 95% HPD interval also reveals a great uncertainty about the relative risk under

CPM2 and CPM3, in which it is a censored region, but great certainty if CPM1 model is �tted,

where it is a non-censored one. Usually, the range of the HPD interval is smaller in non-censored

areas.

The posterior means and the 95% HPD intervals for the relative risk obtained by �tting the

three di�erent con�gurations for the proposed RCP models are exhibited in Figures 4.6 and 4.7

for periods 1999-2001 and 2012-2014, respectively. As can be noticed, the posterior estimates of

the relative risk are in�uenced by the prior distribution of the censoring probabilities π. How-

ever, one advantage of using the proposed model is that we quantify the posterior uncertainty

about π. Thus we can decide about the censored regions in a probabilistic way.

If the prior uniform distribution describes the uncertainty about π, RCPM1, then a posteri-

ori we have that the probability of censoring is, in average, above 0.67 in all regions (see Figure

4.6), similarly to what is observed for this model in the simulation studies. As a consequence,

we obtained that the posterior means for the relative risk in almost all areas is greater than the

standardized mortality ratio and the estimates provided by the CAR model (see Figure 4.1). In

this case the HPD intervals also reveal a great posterior uncertainty about the relative risks. By

�tting RCPM2, the posterior probability of censoring is, in average, between 0.48 and 0.55 for all

regions. Under this model the estimates for the relative risks are similar to that obtained under

the standardized mortality ratio. In both cases, RCPM1 and RCPM2, the posterior estimates

for the relative risk is far from what is expected by the experts. RCPM1 overestimated the

relative risk in Midwestern, Southeastern and Southern regions of the state, whereas RCPM2

underestimated the risks in the North and Northern regions. RCPM3 produced estimates that

are more compatible to what is expected (Figure 4.6). This model indicates that areas having

posterior probability of censoring, in average, above 0.95 are situated in the north, northeast

and northwest of the state. In fact, such areas are usually pointed out by the experts as being

the region with the worst data quality. The posterior relative risk estimates for that regions tend

to be higher than for regions with low probability of censoring, being above 4.0 only for regions

in the Northeast region of Minas Gerais. Despite the great uncertainty about the relative risk

in regions with high posterior censoring probability, the HPD intervals obtained under RCPM3

disclose less posterior variability than obtained under the CP models in almost all regions (see

Figure 4.4).
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Figure 4.4: Case study results under CPM1 (column 1), CPM2 (column 2) and CPM3 (column 3). Censored
regions are highlighted in row 1. Relative risk estimates for the early neonatal mortality in Minas Gerais 1999-
2001: the lower limit of the 95% HPD interval (row 2), the posterior mean (row 3) and the upper limit of the
95% HPD interval (row 4).
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Figure 4.5: Case study results under CPM1 (column 1), CPM2 (column 2) and CPM3 (column 3). Censored
regions are highlighted in row 1. Relative risk estimates for the early neonatal mortality in Minas Gerais 2012-
2014: the lower limit of the 95% HPD interval (row 2), the posterior mean (row 3) and the upper limit of the
95% HPD interval (row 4).
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Figure 4.6: Case study results under RCPM1 (column 1), RCPM2 (column 2) and RCPM3 (column 3).
Posterior mean of the censoring probabilities are presented in row 1. Relative risk estimates for the early
neonatal mortality in Minas Gerais 1999-2001: the lower limit of the 95% HPD interval (row 2), the posterior
mean (row 3) and the upper limit of the 95% HPD interval (row 4).
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Figure 4.7: Case study results under RCPM1 (column 1), RCPM2 (column 2) and RCPM3 (column 3).
Posterior mean of the censoring probabilities are presented in row 1. Relative risk estimates for the early
neonatal mortality in Minas Gerais 2012-2014: the lower limit of the 95% HPD interval (row 2), the posterior
mean (row 3) and the upper limit of the 95% HPD interval (row 4).
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The relative risks estimates provided by RCPM (Figure 4.7) and CPM (Figure 4.5) based on

data collected in the period 2012-2014 present the same pattern as the ones obtained for 1999-

2001 data set. However, we observe an increase in the relative risk in some regions, typically in

the North and Northeast area. Since the HDI indicates an improvement in the Brazilian socio-

economic conditions in the last decade (see HDI maps for years 2000 and 2010 in Figure 4.1 and

Figure 1 of the supplementary material, respectively), this increase in the estimates possibly

indicates an improvement in data recording, and not an increase in the neonatal mortality rate.

For some regions there is a change in the estimate for the underreporting probability πi under

the proposed RCPM.

4.5 Final comments and main conclusions

The precise mapping of risks related to vital statistics is an important tool to guide the

de�nition of adequate health policies and to reduce the occurrence of events such as the infant

mortality. Our main motivation was to obtain better estimations for the relative risk associated

to early neonatal mortality (ENM) in Minas Gerais State, Brazil, using data registered in

public hospitals between 1999 and 2001 and also between 2012 and 2014. The occurrence of

underreporting in such data sets is quite likely [Campos et al., 2007] and if it is not accounted

for, estimates will be biased (underestimated).

In this work, we introduced the random censored Poisson model (RCPM) that, by jointly

modeling the uncertainty about the counts and the data reporting process, accounts for the

underreported information more appropriately. A challenge in this approach is the elicitation of

the prior distribution for the censoring probability which discloses the prior knowledge about

regions in which the mortality counts are underreported. We built some di�erent prior dis-

tributions for that. We run a simulation study evaluating the e�ect of such di�erent prior

speci�cations in the relative risk estimates. We also compared the propose model with the so-

called censored Poisson model (CPM) in di�erent scenarios. The CPM arises as a particular

case of our RCPM under degenerate prior distribution for the reporting process. We concluded

that the proposed model tends to produce less biased estimates for the relative risk than the

CPM, mainly in scenarios with poorer data information. More importantly, the e�ort of building

informative prior distributions for the underreporting probability is compensated by a better

estimation of the relative risk as well as it permits making good posterior inference about the

data reporting process. The use of �at prior distributions for the underreporting probability

must be avoided since it leads to truly poor estimates for the relative risk. For the case study, in

both periods 1999-2001 and 2012-2014, we conclude that RCPM3 provides the best estimates

for the relative risks because the ENM data set is very similar to the data considered in Scenario

3 of the simulation study and RCPM3 provided the best estimates in such scenario.

Moreno and Girón's model (MGM) is also an appropriate and competitive tool to account
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for underreported data. The main di�erence between the proposed RCPM ad MGM is the type

of prior information required in their construction. The parameter θ represents the relative

risks in both models. Therefore, the major issue is related to parameters π and ε. To elicit a

prior distribution for the censoring probability π under RCPM we only need the information

about regions where data quality is not good or reliable. To build the prior for ε under MGM,

information about the proportion of underreporting in each area should be available. Therefore,

the proposed RCPM is an important tool for cases in which one have information about the

regions where the occurrence of underreporting is more likely but no information about the

amount of censoring in each region.

The censoring mechanisms used in the proposed RCPM is applicable to other case studies

and several other speci�cations for the logit function given in expression (4.3) can be thought.

For example, the censoring probabilities can be modeled using other available socio-economic

index, such as the human developing index. Moreover, the RCPM can easily be extended to

account for both over-reporting or even more general misclassi�cation on the data. Interesting

topics for future research include the use of spatial random e�ects in the linear predictor and

the assumption of some cluster structure between the regions in the map.
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Supplementary Material

S.1 More on simulations

We present more results obtained from the simulated studies in Section Section 4.3 and

also other results for the case study using data from 2012 to 2014 that do not appear there.

The analysis presented here are ancillary for the understanding of the main paper. In Tables

4.4 and 4.5 we present the results for two other scenarios that complements the simulation

studies presented in Section 4.3 of the main paper. In Scenario 0, there is no censored region.

In Scenario 5, the regions in which the AI ≤ 78.17 (57 regions) were de�ned as being censored,

where AI denotes the adequacy index discussed in Section 3 of the main paper. Such criteria

establish that the proportion of censored regions are, respectively, 0% and 75%. In Table 4.4

the censoring level is δ = 0.80 whereas in Table 4.5 we have δ = 0.60.

For Scenario 0, since there is no truly censored region, results are the same in both tables

and the regular Poisson model �ts the data very well. Among the other models, RCP3 is the

one with less biased estimates. RCP2 and MG3 also works well in this scenario. For Scenario

5 in Table 4.4 it can be noticed that RCP2, RPC3, MG2 and MG3 tends to subestimate the

relative risk. This is an expected result because such models tend to correct for underreporting

in a smaller number of regions than the number of truly censored regions, thus approximating

to what is obtained with the regular Poisson model.

The percentage of coverage for the 95% HPD intervals become lower for RCP3 and MG3

when compared to scenarios in Table 4.1 of the main paper. For Scenario 5 in Table 4.5 we

observe the same behavior for the evaluation metrics among the models as in Table 4.4 but, in

censored regions, the estimates get worse. It occurs because, for δ = 0.6 (Table 4.5), we have

less data information (the greater the δ, the worse the estimates).
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Table 4.4: Evaluation of the relative risk estimates with censoring level δ = 0.8.

Model
censored regions non-censored regions

MSE BIAS %HPD MSE BIAS %HPD
Scenario 0 (0% of censoring)

RCP1 - - - 2.351 1.394 0.995
RCP2 - - - 0.039 0.140 0.994
RCP3 - - - 0.068 0.111 0.972

MG1 - - - 1.047 0.975 0.967
MG2 - - - 1.143 0.337 0.961
MG3 - - - 0.075 0.139 0.965

CP1 - - - 5.214 2.171 0.950
CP2 - - - 1.261 0.630 0.942
CP3 - - - 0.014 0.002 0.943

Poisson - - - 0.014 0.002 0.944
Scenario 5 (AI ≤ 78.17, 75% of censoring)

RCP1 1.734 1.144 1.000 3.318 1.625 0.990
RCP2 0.027 -0.057 0.999 0.023 0.114 0.991
RCP3 0.039 -0.058 0.885 0.006 0.005 0.953

MG1 0.574 0.718 1.000 0.949 0.920 0.963
MG2 0.099 -0.021 0.842 3.726 0.959 0.910
MG3 0.027 -0.040 0.933 0.008 0.022 0.959

CP1 0.063 -0.191 2.349 6.367 1.360 0.929
CP2 2.956 1.367 0.933 0.007 0.003 0.933
CP3 4.250 1.918 0.999 0.007 0.003 0.938

Poisson 0.070 -0.203 0.532 0.006 0.010 0.944
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Table 4.5: Evaluation of the relative risk estimates with censoring level δ = 0.6.

Model
censored regions non-censored regions

MSE BIAS %HPD MSE BIAS %HPD
Scenario 0 (0% of censoring)

RCP1 - - - 2.351 1.394 0.995
RCP2 - - - 0.039 0.140 0.994
RCP3 - - - 0.068 0.111 0.972

MG1 - - - 1.047 0.975 0.967
MG2 - - - 1.143 0.337 0.961
MG3 - - - 0.075 0.139 0.965

CP1 - - - 5.214 2.171 0.950
CP2 - - - 1.261 0.630 0.942
CP3 - - - 0.014 0.002 0.943

Poisson - - - 0.014 0.002 0.944
Scenario 5 (AI ≤ 78.17, 75% of censoring)

RCP1 1.275 0.915 1.000 3.422 1.654 0.988
RCP2 0.132 -0.269 0.900 0.023 0.114 0.994
RCP3 0.117 -0.269 0.458 0.006 0.006 0.952

MG1 0.225 0.420 1.000 0.982 0.926 0.964
MG2 0.176 -0.194 0.633 3.074 0.869 0.879
MG3 0.103 -0.267 0.486 0.008 0.022 0.958

CP1 0.226 -0.391 0.110 6.365 2.365 0.940
CP2 2.215 1.100 0.795 0.007 0.003 0.934
CP3 3.163 1.614 1.000 0.007 0.003 0.936

Poisson 0.226 -0.391 0.107 0.007 0.004 0.937

Note from Table 4.6 that in Scenario 0 we are only able to calculate the speci�city for

RCPM since there is no truly censored region. For this scenario, RCP3 presents speci�city

that is much lower than that observed in the other scenarios. This is quite natural since RCP3

induces censoring in some areas that are truly non-censored. The performance of RCP3 in

Scenario 5 is worse than that observed in other scenarios. This result is also expected because

there are much more truly censored regions than the model tends to indicate as being censored.
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Table 4.6: Evaluating the inference about the censored areas

Model
δ = 0.8 δ = 0.6

Sensit. Specif. Accur. Sensit. Specif. Accur.
Scenario 0 (0% of censoring)

RCP1 - 0.240 - - 0.240 -
RCP2 - 0.495 - - 0.495 -
RCP3 - 0.504 - - 0.504 -

Scenario 5 (AI ≤ 78.17, 75% of censoring)
RCP1 0.746 0.230 0.488 0.758 0.203 0.481
RCP2 0.501 0.498 0.499 0.504 0.493 0.498
RCP3 0.583 0.777 0.680 0.583 0.777 0.670

Finally, following the suggestion of a anonymous referee, we performed a simulation study

considering that δ (the censoring level in the censored regions) is not the same for all censored

regions. Instead, it can vary among them. In Table 4.7 we present the results under this approach

for Scenario 2, in which regions with AI ≤ 20.0 are considered as being censored (17 regions,

23%). We specify that the censoring level δ vary and equally spaced steps between 0.5 to 0.9

according to their adequacy index (AI). This is done in such a way that δ = 0.5 is associated

to the region with the lowest AI and δ = 0.9 is associated to that one with the greatest AI.

For non-censored regions, results for the evaluation metrics are quite similar to those observed

in Scenario 2 when δ = 0.8 (Table 4.1 of the main paper) and δ = 0.6 (Table 4.2 of the main

paper). In the censored regions, the regular Poisson model provided worse results than that

observed for δ = 0.8 but better results than that obtained for δ = 0.6. The same behavior occur

for the bias obtained under the three con�gurations of both RCPM and MGM. Note that for

RCP3 and MG3 the relative risks θ tends to be underestimated as in Table 4.2 of the main

paper.

Table 4.7: Evaluation of the relative risk estimates with censoring level δ ranging from 0.5 to 0.9.

Scenario 2 (AI ≤ 20.0, 23% of censoring)
RCP1 0.567 0.619 1.000 2.757 1.506 0.996
RCP2 0.215 -0.346 0.911 0.030 0.125 0.994
RCP3 0.077 -0.152 0.992 0.012 0.024 0.964

MG1 0.385 0.534 0.999 0.979 0.932 0.970
MG2 0.364 -0.259 0.623 1.081 0.424 0.947
MG3 0.073 -0.168 0.998 0.016 0.051 0.966

CP1 0.368 -0.512 0.266 1.496 0.628 0.934
CP2 0.922 0.726 0.918 0.364 0.170 0.939
CP3 1.956 1.298 0.999 0.007 0.000 0.941

Poisson 0.368 -0.512 0.268 0.001 0.000 0.941
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S.2 More on Case Study

In this section we present in Figure 4.8 a comparison between the estimates for the relative

risks θ of early neonatal mortality (ENM) in the n = 75 regions of Minas Gerais state (MG) for

data sets from 1999-2001 and 2012-2014 using the standartized mortality ratio (SMR). Also,

the human development index (HDI) for those regions in 2010 is displayed. When comparing

the estimates obtained in both periods, it can be noticed an increase in the SMR estimates in

several regions of MG, mainly in the North, Northeast and West regions. Such a result may

indicate an improvement on the quality of data registration or a real increase on the risk for

these regions. We believe that the former is more plausible than the later, since the HDI map

indicates that the socioeconomic condition of almost all regions also had an improvement in the

decade considered. However, the estimates for the RRs in Northern regions still remain below

that risks expected by the epidemiologists. Because of this, even today is quite important to

account for underreporting when estimating the relative risks of ENM in Minas Gerais state.
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Figure 4.8: Early neonatal mortality RR estimates using SMR for data from 1999-2001 (left) and data from
2012-2014 (middle); and the HDI of MG in 2010 (right).



Chapter 5

Final Discussion and Future Work

Directions

Mortality data are important in the measurement of population health and disease incidence. As

such, providing reliable estimates for mortality rates helps in planning of public health policies

and in the evaluation of the health system. It is also helpful to guide prevention, control and

intervention by the responsible authorities, as well as to conduct the identi�cation of regions

that need special attention regarding the event under study.

Governments, international organizations and academic researchers use civil registration

systems, population censuses, household surveys and demographic surveillance systems as the

main data sources when assessing mortality status at the national and subnational levels [Silva,

2013]. The data are generally available as counts of deaths and population exposure to risk.

The civil registration systems are universally recognized as the most ideal data source for the

regular derivation of vital statistics, including mortality rates, because it entails the continuous,

permanent, compulsory and universal recording of the occurrence and characteristics of vital

events [United Nations, 2014]. Nevertheless, many countries lack basic vital registration systems

that are critical for the accurate measurement of mortality rates.

When civil registration is lacking or incomplete, there is considerable uncertainty and limi-

tations associated with mortality measurement. That is a special problem when analyzing data

from small areas, specially in underdeveloped countries. As the demand for timely and accu-

rate mortality estimates increases, there is a need to develop methods which incorporate both

more �exible statistical models and traditional demographic procedures in order to overcome

known data issues. The importance of proposing and developing new modeling frameworks to

adequately incorporate and correct biases caused by data issues is evidenced by the negative

impacts that such phenomena may cause in several systems and services essential for society.

This dissertation approached the problem of modeling count data with a defective reporting

mechanism. More speci�cally, we consider the estimation of rates based on underreported counts

as well as the problem of smoothing mortality schedules in subnational small populations where

observed counts tend to be sparse and erratic. For the appropriate treatment of underreported

count data, two Bayesian hierarchical methodologies were discussed (Chapters 2 and 4). For

117
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the estimation and smoothing of mortality curves, we propose a Bayesian relational dynamic

Poisson model which have shown to be promising in many scenarios (Chapter 3).

The new methodology introduced in Chapter 2 has been accepted for publication at Bayesian

Analysis Oliveira et al. [2020]. Such an approach allows the correction of underreporting bias

provided that a hierarchical clustering structure for the areas of interest is available. Only prior

information about the data quality in areas belonging to the best group is required to ensure

model identi�ability. In many situations, this approach might be less restrictive than some oth-

ers proposed in the literature. We provide an analysis of infant mortality data in microregions of

Minas Gerais, Brazil, and also an application to tuberculosis incidence in Brazilian subnational

areas. The model has potential for application in many other epidemiological and environment

problems.

Regarding to the modeling framework proposed in Chapter 2, interesting topics which de-

serve further investigation include the incorporation of traditional partition models within the

proposed methodology as well as the exploration of spatial correlation in the reporting process.

Teixeira et al. [2019] introduced a spatial clustering approach with basis on the well-known

product partition model that can be explored to model the uncertainty about the clustering

de�nition in our modeling framework. Another alternative for extension of the proposed model

is the aggregation of counts measured in di�erent periods of times. Authors such as Bracher

and Held [2020] have recently proposed models for time series of underreported counts. By

incorporating the time dependence into the modeling, it might be possible to required more

feasible prior information to guarantee the model identi�ability in general applications such as,

for example, the underreporting level in more recent years where, in many �elds of application,

data are known as having better quality.

Still regarding the estimation of rates from underreported count data, the method present

in Chapter 4 may provide valuable results in many practical situations in which the classi-

cal Poisson model is vulnerable to considerable bias. That method is based on the modeling

framework introduced in Oliveira [2016], called random-censoring Poisson model (RCPM).

Such an approach has been published at Statistics in Medicine [Oliveira et al. , 2017] after the

substantial improvements made during the development of this dissertation. More speci�cally,

the contributions for the RCPM involve the development and implementation of a correct and

more e�cient MCMC scheme to sample from the target posterior distributions (see the two

last paragraphs of Section 4.2.1.3). A broader simulation study was also performed, including

a comparison with the approach introduced by Moreno and Girón [1998]. A sensitivity analysis

under both, the RCPM and the Moreno and Girón [1998]'s approaches, was accomplished. The

application to infant mortality data in Minas Gerais, Brazil, was also improved by including

a sensitivity analysis to the prior speci�cations for the censoring probabilities π and also by

considering datasets from di�erent periods of time. We found that, in a general context, the

degree of underreporting bias correction is dependent on the level of information imposed by

the prior distribution speci�ed for the censoring probabilities.

The RCPM as presented in Chapter 4 is formulated to allow conjugate Gamma prior dis-
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tributions for the parameter representing the event rates. A venue for further investigation is

the inclusion of more �exibility into this model structure. For instance, the use of a regression

model for the log-rates and also allowing for the inclusion of spatial random e�ects. The great

di�cult in doing that is the implementation of an e�cient data-augmented MCMC scheme for

sampling from the resulting posterior distributions. After doing that, an interesting strategy is

to make the modeling and estimation scheme available for use by practitioners from di�erent

areas, for instance, through an R package or similar. The extension of the proposed random

censoring Poisson model for a spatio-temporal context is also an interesting point for further

investigation.

Besides the problems with imperfect vital registration systems, such as underreporting,

another issue commonly faced when analyzing mortality data is the sparsity and high variability

experienced by small subnational areas. Demographers and statistical epidemiologists have

signi�cantly improved estimates for small-area mortality schedules in recent years. We approach

such a problem in Chapter 3 considering the estimation of mortality schedules by single-year age

intervals and sexes. We propose a Bayesian regression model to relate the mortality rates to a

standard mortality schedule obtained from the Human Mortality Database (HMD) [Wilmoth et

al., 2020]. Since there exists high sampling variability in observed mortality rates in small areas,

the standard schedule is included for preventing the estimated mortality curve to departure

from the pattern usually observed in human populations. The use of such relational models

is a common strategy in demography (see references in Chapter 3). We present two di�erent

alternatives related to a Poisson and a Gaussian likelihood function, being the Poisson the

most appropriated because it allows direct use of the observed null death counts. Attempting to

provide smoothed estimates, we consider a dynamic dependence structure to �borrow strength�

across the age mortality rates thus giving the status of a time series for the data observed

in sequential age intervals. Preliminary results are presented using both real and simulated

datasets. Performance of the proposed Bayesian regression model is compared to a competing

approach proposed in the literature. The model provided accurate measurement of age-speci�c

mortality rates in many simulated scenarios, being less suitable for quite small and erratic

populations. In the application to Brazilian municipality data, the models provided similar

results except for some cases with around 1,000 exposures individuals. The limitations of our

model in quite small areas must be further explored.

As discussed in Chapter 3), along with the realization of a broader simulation study, there

are many open topics for future investigation under the proposed modeling framework. It in-

cludes the implementation of the model as a proper generalized dynamic linear model using, for

instance, the well-known Kalman �ltering and Kalman smoothing algorithms [West, Harrison

and Migon, 1985; Campagnoli et al., 2009] or appropriate Markov chain Monte Carlo techniques

for dynamic generalized linear models [Gamerman, 1988; Schmidt and Pereira, 2011]. We sus-

pect that such an strategy may increase �exibility and it may allow us to control the in�uence

of the data across the dynamic structure. It may attenuate some drawbacks of our dynamic

Poisson model, such as the strong in�uence of outliers observed in cases of very small popula-
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tions. After doing that, it may worth investigating the combination of the proposed modeling

framework with the Poisson model proposed in Chapter 2) to account for underreporting bias,

possibly also allowing for zero in�ation Piancastelli and Barreto-Souza [2019]; Gonçalves and

Barreto-Souza [2020] and considering other models which naturally account for overdispersion.

With this, we may have a model that e�ectively and reliably estimate the mortality schedule

accounting for both sparsity and underreporting in the observed counts.

To conclude, we highlight that the methodological contributions of this dissertation are mo-

tivated by their intention to enable better estimation of mortality rates with basis on defective

count data. The types of data issues discussed here are only a few among many others not

covered in this work, e.g., delayed reporting, preferential sampling, overreporting or, more gen-

erally, misreported data. As in many other studies of �awed count data, the methods presented

in this dissertation have limitations in terms of the type of extra information that is available. It

is known that, when data faces problems such as underreporting and sparsity, it is not possible

to perform bias correction in the observed rates if no extra information is incorporated into

the modeling framework or if a more complex model structure is not considered. That said, we

�nish by highlighting the potential of the proposed models in several practical situation, since

they �gure as an alternative for statistical analyses of �awed count data in conditions where

currently available methods might not be applicable.
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