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1. Introduction

It is a classical result that all holomorphic vector fields on a flag manifold in C™
are fundamental for the natural action of the general linear Lie group GL,(C). More
precisely the Lie algebra of holomorphic vector fields on a flag manifold is isomorphic
to pal,,(C). A similar statement holds with some exceptions for flag manifolds which are
isotropic with respect to a non-degenerate symmetric or skew-symmetric bilinear form
in C™. These results were obtained by A.L. Onishchik in 1959, see [1] for details.

In [8] Yul. Manin constructed four series of complex compact homogenecous super-
manifolds corresponding to four series of classical linear Lie superalgebras: gl,,,,(C),
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08P 1, (C), msp,,(C) and q,,(C), see [6] for precise definitions. The present paper is de-
voted to the calculation of the Lie superalgebras of holomorphic vector fields on complex
mln(C). Tt turns out that
under some restrictions on the flag type all global holomorphic vector fields are funda-

flag supermanifolds corresponding to the Lie superalgebra gl

mental with respect to the natural action of the Lie superalgebra gl C). In case of

m\n(

super-Grassmannians the similar result was obtained in [9].
In the present paper we study flag supermanifold an

superspace C™". Here we put k = (k1,..., k) and I = (l4,...,1,) such that

of type k|l in the vector

0<k.<...<ki<m, 0<[,...<[1<n and

(1)
0<k,+1l.<...<ki+1li <m+n.

The number r is called the length of Fgﬂ” The idea of the proof is to use results of [9] and

the following fact. For r» > 1 the supermanifold F?‘l‘” is the total space of a holomorphic

m|n
K|l
isomorphic to a flag supermanifold of length » — 1. The projection of this superbundle is

superbundle with base space isomorphic to the super-Grassmannian F and the fiber

equivariant with respect to the natural actions of the Lie supergroup GLy,|,(C) on the
total space and base space of Fz‘ll‘n
Let p: M — B be a morphism of supermanifolds. A vector field v defined on M is

said to be projectable with respect to p if there is a vector field vq on B such that

p(vi(f)) = v(*(f))

for any f € Op. A vector field v on M is called vertieal if it is projected to 0. If p is a
projection of a superbundle, then every projectable vector field v is projected to a unique
vector field v1. In [2] the following statement was proven. If p: M — B is the projection
of a superbundle with fiber § with Os(So) = C, that is, any global holomorphic function
on § is constant, then every vector field on M is projectable with respect to p. Denote
by v(M) the Lie superalgebra of holomorphic vector fields on M. If Og(8;) = C, we
have a map

P o(M) = v(B).

This map is a Lie superalgebra homomorphism, and its kernel KerP is the set of all
vertical vector fields.

Consider the superbundle F:H". The space of global holomorphic functions Os(So)
was computed in [14]. It was shown that Os(Sp) = C under some restrictions on the
flag type k|l. Therefore, in general all holomorphic vector fields on M are projectable
to the super-Grassmannian B = FE“E and we have the following homomorphism of Lie
superalgebras

. m|n mln
P n(Fk” ) — n(Fkl“l).
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From the equivariance of p with respect to the actions of GL,,|,(C) it follows that the
natural Lie algebra homomorphisms

m\n)

ja g[mln(c) — U(Fk\[

and  pg: ﬂ[mln((c) —* U(Fkﬂh

satisfy the relation pug = P o . Assuming that the homomorphism pp is surjective, in
other words assuming that

o(F ) = pal, (),

we see that P is also surjective. The main goal of this paper is to prove that P is injective.
Then P is invertible and we have

p="P"opp
Therefore,
o(F};") = polyup (©)
The main result of this paper was announced in [15] in case 0 < k, < ... < k; <m

and 0 < I, < ... <!y < nand the idea of the proof was sketched in [12] also in this case.
Here we give the proof in general case. Our main result is the following.

Theorem. Assume thatr > 1 and that we have the following restrictions on the flag type:

(ki i) # (ki_1,0), (0,1i_y), i > 2;

(ki1 killi1, 1) # (LO0lhiq, iy — 1), (1,1[li1,1), @ > 1;
(ki1 killic1, 1) # (kiq. komq — 1]1,0), (ki_y, 1]1,1), @ > 1
kL (0,....0[n ... 0n), k|l (m, k. ... k. |0,....,0).

Then
0(Fy") = paln (C).
If kL= (0,...,0[n,lo,.... 1) or k|l = (m,ka,... k:|0,...,0), then
0(Fy1") 2~ Wi & (A (€1, &mnn) @ 001, (0)),

where Wi, = Der A(€1, ..., &mn)-
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2. Preliminaries
2.1. Flag supermanifolds

A detailed introduction to the theory of supermanifolds can be found in [3,5,7,8].
Throughout we will restrict our attention to the complex-analytic version of the theory.
Recall that a complez-analytic superdomain of dimension s|t is a Zy-graded locally ringed
space of the form

U= (MO:}—UO Ac /\(t))

where Fyy, is the sheaf of holomorphic functions on an open set Uy € C* and A () is the
Grassmann algebra with ¢ generators. A compler-analytic supermanifold of dimension
s|t is a Zg-graded locally ringed space that is locally isomorphic to a complex-analytic
superdomain of dimension s|t. We will denote a supermanifold by M = (Mg, Op),
where My is the underlying complex-analytic manifold and Qa4 is the structure sheaf.

Let us give an explicit description of a flag supermanifold in terms of charts and local
coordinates (see also [8,14.13]). Let us take two non-negative integers m,n € Z and two
sets of non-negative integers

k= (ki,....,k) and [=(l1,....0)

such that (1) holds. The underlying space of the supermanifold an is the product
F? x F} of two flag manifolds of types k = (k1,.... k) and | = (I4,....l;) in the vector
spaces C™ and C™, respectively. Let us fix two subsets

Igc{l,....;ke—1} and Igc{l,...,le—1},

where ko :=m and ly := n, such that |I 5| = kg, and |I ;| = I, for any s =1,...,r. We
put I, == (I 5,1,7) and I := (Iy,...,1,). We assign the following (ko1 + ls—1) % (ks +
l)-matrix

X, = _ i
ZIS(HS Ys)’ s=1,...,m7, (2)

to any [;. We assume that the matrices Xg = (zf;) and Yy = (y5;) from (2) are of size

(ks—1 % kg) and (ls—1 x lg), respectively. We also assume that Z; contains the identity
submatrix E, 4+, of size (ks +1¢) % (ks +1s) in the lines with numbers i € I g and kg_1 41,
i € I 5. For example in case

Is(j = {k5,1 — ke + 1,...,k3,1}, Iﬂ = {13,1 — .+ 1,...,:{3,1}
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the matrix Z;_ has the following form:

XS :S

E.. 0
n=1y vy
0 E

Here Ej, is the identity matrix of size g x g. For simplicity of notation we use here the
same letters Xy, Y, 25 and Hg as in (2).

Further we consider elements from X¢ = (27;) and Y, = (yfj) which are not contained

in the identity matrix, as the coordinate functions on CFs—1—k<)xks|0 gy a1 L) %110,

respectively. These coordinate functions are assumed to be even. The elements of the
s
i
sumed to be the coordinate functions on COl(ks—1=Fs)xls apd COlU—1-1s)

matrices =5 = (&) and Hy = (ny;), which are not contained in the identity matrix, are as-

*ks respectively.
They assumed to be odd. Summing up, the matrices (2) determine the superdomain
with even coordinates x7; and yj;, and odd coordinates ; and 7.

Let us define the transition functions between two superdomains Uy and Uy that
correspond to I = (1) and J = (.J,), respectively, by the following formulas:

Zy =Z1,C5,. Z5,=Cr_,15. ,Z1,Cr5 . s=>2 (3)

Here C7, ;. is an invertible submatrix in Z; that consists of the lines with numbers
i€ Jgand k;_1+1, where 7 € J 5. In other words, we choose the matrix Cp, 5. in such a
way that Z; contains the identity submatrix E}_4;_ in lines with numbers i € J 5 and
ks_1 + i, where i € J_. These charts and transition functions define a supermanifold
that we denote by FTH‘”. This supermanifold we will call the flag supermanifold of type
k|l. In case r = 1 this supermanifold is called the super-Grassmannian and is denoted
b}’ Grm‘n,k”.

Further, the underlying space Uy, x Vi, of the superdomain Uy is a chart on F}I* x F}'.
Indeed, we can take the non-trivial elements (i.e., those are not contained in the identity
submatrix) from X, and Y; as standard local coordinates in F7* and F}, respectively.
So we have the following atlas on FJ* x F[":

{UI = UID X UII}

with charts parametrized by I = (I5). The reduction of the transition functions (3) leads
to the usual transition function for F}' x F}'. Therefore the underlying space of F:‘Ll‘n is
F7 x F1,

Let M = (Mo, Oaq) be a complex-analytic supermanifold. Denote by T = Der (Ou)
the sheaf of vector fields on M. It is a sheaf of Lie superalgebras with respect to the

following multiplication

(X,Y]= XY — (—1)p0orMy X,
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The global sections of T are called holomorphic vector fields on M. They form a complex
Lie superalgebra that we denote by v(M). This Lie superalgebra is finite dimensional
in case when Mg is compact. Let us sketch a proof of this statement. The sheaf Oy,
possesses the following filtration

Ou=T"2T">7°>

where 7 is the subsheaf of ideal in O 4 generated by odd elements. This filtration induces
the following filtration in 7

T=T2Tw>Tay >,
where
Ty ={veT | v(Onm) C I, v(J)C TP}
Consider the following exact sequence.
0= Ty — Ty — Tw)/Tp+1y = 0

Clearly the sheaf T(,)/T 11y is a locally free sheaf of Oxq/J-modules on the usual
complex manifold My. Now our statement follows from two facts. First of all 7, = {0}
for enough large p. Secondly, it is well-known that the sheaf cohomology of any coherent
sheaf (and in particular of a locally free sheaf) on a compact complex manifold is finite
dimensional.

The goal of this paper is to compute the Lie superalgebra n(M), when M is a flag
supermanifold of type k|l in C™n As usual we denote by 0l (C) the general Lie
superalgebra of the superspace C™ ™. Tt consists of the following matrices:

A B
here [ a .
(C D) , where Aegl,(C) and B e gl,(C)

Denote by GLy|,,(C) the Lie supergroup of the Lie superalgebra g, ,,(C). (See [16] for
more infcnmation about Lie supergroups.) In [8] an action of GLy,,(C) on the super-

manifold FI," was defined. Let
Li; Ly
I —
(Lm Lo

be a coordinate matrix of GL,,),(C). This meant that we consider elements of the ma-

k\z

trices L1y and Los as even coordinates, and elements of Lis and Lo as odd coordinates
of a certain superdomain. 111 addition we assume that det Ly; # 0 and det Las # 0. The
action of GL,,|,,(C) on Fk\ , in coordinates is given by the following formulas:
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(L,(Z1,,.... Z1.)) > (Z5,,...,Z1), where 0
=LZ,C7Y, Z; =Ce1Z; C7L
Here ] is an invertible submatrix in LZ;, that consists of the lines with numbers i € J;
and m + ¢, where i € J;1, and C,, where s > 2. is an invertible submatrix in Cs_1Z;,
that consists of the lines with numbers i € J5 and ks_; + 4. where i € J;,. This Lie
supergroup action induces a Lie superalgebra homomorphism
: m|n

J glmln((c) — U(Fku )
In case r = 1 in [9, Lemma 1] it was proven that Ker p = (E,,+,), where E,, 4, is the
identity matrix of size m + n. In general case r > 1 we also have Ker u = (E,,,4,,) and
the proof is similar to [9, Lemma 1]. We see that p induces an injective homomorphism
of Lie superalgebras

i 0 (©)/(Ermn) — 0(F").
We will show that with some exceptions this homomorphism is an isomorphism.
2.2. Superbundles and projectable vector fields

Recall that a morphism of complex-analytic supermanifolds M to N is a pair f =
(fo. f*), where fy : Mo — Ay is a holomorphic map and f* : Ox — (fo)«(Onq) is a
homomorphism of sheaves of superalgebras.

Definition 1. A superbundle is a set (M, B, p, §), where § is the fiber, B is the base space,
M is the total space and p = (po,p*) : M — B is the projection, such that there exists
an open covering {U;} on By, isomorphisms 1, : (py ' (U;), Opq) — (Us, Op) x S and the
following diagram is commutative:

(po " (Ui), Om) s (Ui, 0p) x S
p pr
(Uia 03) i (Ul*oB)

where pr is the natural projection.
Usually we will denote a superbundle (M, B, p, §) just hy M.

Remark. From the form of transition functions (3) it follows that for » > 1 the superman-
ifold F:ﬂ" is a superbundle with base Gr,,|, k|1, and fiber szllll,l ,where k' = (ka, ..., k)
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and I" = (la,...,l). In local coordinates introduced above the projection p is given by
(Zl, ZQ, .. Zn) — (Zl)

Moreover, formulas (4) tell us that the projection p is equivariant with respect to the
action of the supergroup GL,,,,(C) on F:‘Ll‘n and Gy n k|1, -

Let p = (po,p*) : M — N be a morphism of supermanifolds.

Definition 2. A vector ficld v € v(M) is called projectable with respect to p, if there
exists a vector field v1 € v(N) such that

p (vi(f)) =v(p*(f)) forall feOpn.
In this case we say that v is projected to vy.

Projectable vector fields form a super Lie subalgebra 5(M) in v(M). In case if p is a
projection of a superbundle, the homomorphism p* : Oxr — p.(Oaq) is injective. Hence,
any projectable vector field v is projected into unique vector field v1 = P(v) and we have
the following map

P:o(M)—=oN), v

It is a homomorphism of Lie superalgebras. A vector field v € v(M) is called wvertical, if
P(v) = 0. Vertical vector fields form an ideal Ker P in u(M).
We will need the following proposition proved in [2].

Proposition 1. Let p : M — B be the projection of a superbundle with fiber S. Assume
that Os(So) = C, i.e. any global holomorphic function is constant. Then any holomorphic
vector field from v(M) is projectable with respect to p and we have a homomorphism of
Lie superalgebras v : v(M) — v(B).

Let p: M — B be a superbundle with fiber §. We define the sheaf W on By in the
following way. We assign to any open set U C By the set of all vertical vector fields on
the supermanifold (py " (U), Oaq). In [12] the following proposition was proven.

Proposition 2. Assume that Sy is compact. Then W is a locally free sheaf of Og-modules
and dim W = dim v(S).

Clearly, the Lie algebra W(By) coincides with the ideal of all vertical vector fields
in v(M). We describe the corresponding to W graded sheaf. Consider the following
filtration in Og

Og=J"2T'>7J°%...
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where J is the sheaf of ideals in Op generated by odd elements. We have the corre-
sponding graded sheaf of superalgebras

Op = @(@B)p, where (Og)p = J*/J7.

p>0

Putting W,y = JPW we get the following filtration in W:
W=Wo oW1 D.... (5)

We define the Z-graded sheaf of Fp,-modules by

W = @Wp, where W, = Wiy /Wip+1)- (6)

p=0

Here Fp, is the structure sheaf of the underlying space By. The Zz-grading in W,
induces the Zo-grading in Wp. Using Proposition 2 we get the following result.

Proposition 3. Assume that Sy is compact. Then W, is a locally free sheaf of Fr,-modules.
Any fiber of the corresponding vector bundle is isomorphic to v(S).

2.3. The Borel-Weil-Bott Theorem

To calculate the Lie superalgebra of vector fields we will use the Borel-Weil-Bott
Theorem, see for example [1] for details. This theorem permits to compute cohomology
with values in a holomorphic homogeneous bundle over a flag manifold. For completeness
we formulate it here, adapting to our notations and agreements.

Let G = GL,,(C) x GL,,(C) be the underlying space of GL,,,,(C), P be a parabolic
subgroup in G and R be the reductive part of P. Assume that E, — G /P is the homo-
geneous vector bundle corresponding to a representation ¢ of P in £ = (E,)p. Denote
by &, the sheaf of holomorphic section of this vector bundle. In the Lie superalgebra
Al n(C)g = 91, (C) @ gl,,(C) we fix the Cartan subalgebra t = t; @ ta, where

t; = {diag(p1, ..., o)} and  to = {diag(A1,..., An) }
the following system of positive roots:
AT = AT UAT,
where

A ={pi —pj, i<j} and AF ={\, = A, p<aql,
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and the following system of simple roots ® = ®; U ®5, where

D1 ={a1,...,0n-1}, @ =pi—pit1, Po={B1,....0Bn-1}, Bp=Ap — Apt1.

Denote by t*(R) a real subspace in t* spanned by p; and A;. Consider the scalar product
(, ) int*(R) such that the vectors p;, A; form an orthonormal basis. An element y € t*(R)
is called dominant if (v, ) > 0 for all @ € AT,

Theorem 1 (Borel Weil Bott). Assume that the representation ¢ @ P — GL(F) is
completely reducible and Ay, ..., s are highest weights of ¢|R. Then the G-module
HY(G/P,E,) is isomorphic to the sum of irreducible G-modules with highest weights
Nigs -5 Ny, where A; are dominant highest weights.
2.4. Holomorphic functions on flag supermanifolds

Holomorphic functions on homogeneous supermanifolds and in particular on flag su-
permanifolds were studied in [14]. It is well-known that any holomorphic function on a
connected compact complex manifold is constant. This statement is false for a superman-
ifold with a connected compact underlying space. However in case of flag supermanifolds
the following theorem holds true:

Theorem 2. (See [14].) Consider the flag supermanifold M = F:‘”” Assume that

(k1) # (my...,mykera, .o kelly, oo 16,0,...,0),

(7)
(k‘l) 7é (klt"'1k5707"':O‘TL?"':n:lerQ:"'vlT):

forany s > 0. Then Op(My) = C. In other words under conditions (7) any holomorphic

funetion on Fzﬂ‘tl‘n is constant.

Otherwise
F" = (pt, \(mn)) x (F}* x F})
and Op(Mo) = A(mn), where \(mn) is the Grassmann algebra with mn generators.
3. Vector fields on Hlag supermanifolds
3.1. Vector fields on super-Grassmannians
Recall that a supermanifold M is called homogeneous if it possesses a transitive action
of a certain Lie supergroup. An action of a Lie supergroup on a supermanifold M is called

transitive if the underlying action of the Lie group is transitive on the underlying space
My of M and the corresponding action of the Lie superalgebra is transitive, see [14] for
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m|n

k|l
superspace. Indeed, the action of GLy,j,(C) on F:‘”l‘n is given by formulas (4). Clearly

the underlying action is transitive: it is just the standard action of GL,,(C) x GL,(C)
on F' x F}'. The corresponding action of the Lie superalgebra is also transitive. This

details. From previous sections it can be deduced that F, ;" is a GL,,),,(C)-homogeneous

can be explicitly commuted in coordinates.
The action (4) induces the Lie algebra homomorphism

He g[mln(C) — U(Grm\n,k\l)v

The kernel of this homomorphism is equal to (B, p), [9, Lemma 1]. Further we will use
the following notation:

pg[m\n(c) = glm\n((c)/(Em-l-n)

The Lie superalgebra of holomorphic vector fields on super-Grassmannian Gr,,|,, p;; was
computed in [4,9-11].

Theorem 3. The homomorphism pu : gl,,,1,(C) = 0(GT k1) is almost always surjective
and

o(GTmin ki) =~ pglm‘n(C).
The exceptional cases are the following.
1.1 For the super-Grassmannian Grajs 1)1 we have
v(Graj2,111) ~ pslys(C) 2 s(C),

where psly o (C) = slo)p(C) /< Ey >.
1.2 For Gryjp ojn—1 =~ Gryj1n_1j0 ~ Gryn 11 >~ Gryjp 11, n > 2, we have

1.3 In the degenerate case Gryp,jp 0n =~ GTpnmlo we have

U(Grmln,ﬂ\n) o~ Wpn = Der /\(Cla S Cmn)

1.4 For Gr?\?,[]\l o~ GFQ\Q,I\D o~ GI‘Q‘Q’HQ o~ G—[‘2|2,2‘1 we have

v(Grajz01) ~ Ha 3 (2),

where ad z acts on the Lie superalgebra of Cartan type Hy as the grading operator.
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In case
O<k<m and 0<l<mn, (mnk|l)+#(2]2,1[1),

the Lie superalgebra of vector fields was computed in [9]. Results 1.1 and 1.2 of Theorem 3
were obtained in [4] (see also [9] for an explicit description of the Lie superalgebra) and
[10,11], respectively. Result 1.3 of Theorem 3 is obvious. Result 1.4 of Theorem 3 follows
from arguments in [11], Proof of Theorem 2.6. Note that in the statement of Theorem 2.6
in [11] and also in [9, Theorem 7] the Lie superalgebra of vector fields in case 1.4 was
pointed incorrectly.

We will need an explicit description of the Lie superalgebra of holomorphic vector
fields on Gryjg )1, case 1.1 of Theorem 3, in the following local chart

z
1

—_ T O I

i
0

The image of gly5(C)p with respect to the homomorphism y from Theorem 3 is given
by:

p(En) = +€d§ n(Er2) = %, p(Ea2) = *I% - ?78%,
p(E2) = *»’02% - ma% 85 +€ﬂd p(Es) = 3%7 .
j(Es3) = yza% - yf% - yna% - 6@7%7 ((Es3) = ya% + ”a%’
pi(Eaa) = o 6—5

The image of glyo(C)7 with respect to the homomorphism g from Theorem 3 is given
by:

w(E14) = 5 p(E13) = U +y%a

0 d ) ) o
Es))=¢— 42— Eoa) = —2n— — py— <
(Es1) €8y +T87;’ p(E23) L wyag —I—yﬁay o
0 o 0 ) 9
#(Ea) = *yf% ™ taly o p(Er) = T +U%,

o d
W(E2) = —y—— +eo

Y an
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Additional holomorphic on Grgjs 11 vector fields are

0 d
7787{’ 58777 (10)

A direct computation shows that

0(Groja.1)1) =~ pale2(C)g @ pala2(C)1 (7?86; ?f ) (11)

as glyjo(C)g-modules.
Let us give an explicit description of the Lie superalgebra of holomorphic vector fields

on Gryjg 12, case 1.4 of Theorem 3 in the following local chart

3

—
oy
bo

(12)

= o O

0
1
0

O O = R

The definition of the Lie superalgebra Hy can be found in [6]. For completeness we
f4) and H, consists of all elements in the

remind it here. We have Hy € Der A\ (61, ...,

form:

4 f C)
Z()_d_’ feNbr.....00). f(0)=0.
i=1

The Lie superalgebra Hy is Z-graded and in chosen chart the image of an injective
homomorphism Hy — 0(Graj2.1)2) is given by the following vector fields:
- 0 e 7] a
= (5e a5t “a6)
- o o a o 7]
<3 T +&1 96, »1?6—,-1-52?7 518—62,
5 0
= 13
525, 61£+€2€+ > (13)
(= (62 G atit Gl o b
ox ox’ RISN &1

- o
Hy): = <9 = —>;
(Ha)2 S
The Z-graded operator mentioned in Theorem 3 is given by
o

75105 +528€



14 E.G. Vishnyakova / Journal of Algebra 459 (2016) 1-28

We will call the super-Grassmannians from 1.1-1.4 of Theorem 3 exceptional. Note
that the super-Grassmannian Gro|, oi =~ Grpjp )0 18 just usnal Grassmannians isomor-
phic to Gry ;. It is well-known that

v(Gryy) =~ pgl, (C),
see [1] for details.
3.2. Vector fields on flag supermanifolds. Main case
Assume that 7 > 1. From now on we use the following notations:

m|n k|l
M= Fk“‘ . B=Gr, i and S= Fk}“l,l,
where &' = (ko,... k) and I' = (ly,....[.). If Os(Sy) = C, then by Proposition 1 the
projection of the superbundle M — B determines the homomorphism of Lie superalge-
bras

P o(M) = v(B).

This projection is GLyy, ), (C)-equivariant. Hence for the natural Lie superalgebra homo-
morphisms p : gl,,,,,(C) = v(M) and pgp : gl,,),(C) — v(B) we have

i =Po.

By Theorem 3, the homomorphisms g and hence the homomorphism P is almost always
surjective. We will prove that P is injective. Hence,

p="P"opug (14)
is surjective and
o(M) =~ Qrm\n(c)/<Em+n>-

In previous section we constructed a locally free sheaf W on By. The sheaf W pos-
sesses the natural action of the Lie group ¢ = GL,,,(C) x GL,(C), because G is the
underlying space of GL,},,(C). This action preserves the filtration (5) and induces the
action in the sheaf W. Hence the vector bundle Wy — By = G /H, where H is the
stationary subgroup of a point o € By, corresponding to the locally free sheaf W is
homogeneous. Our goal now is to give a description of the homogeneous bundle Wy,
Such bundles are determined by the representation of H in the fiber (Wg),, see [1] for
details.
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Consider the local chart on the super-Grassmannian B corresponding to
Lg={m—k1+1,...,m} and Ty={n—-11+1,...,n}h (15)

The coordinate matrix Zj, in this case has the following form

Xl =1
Ej 0
75, = ! . 16
Iy H1 }/1 ( )
0 F

1

Denote by o the point in By defined by the following equations:
X1:Y1251:H1:O.

Then By is naturally isomorphic to G/H, where H is the stabilizer of 0. An easy com-
putation shows that H contains all matrices in the following form:

A0 0 0
C; B 0 0

17
0 0 Ay 0 |’ (17)

0 0 Cy By
where
Al c Gmekl(C), AQ c GLnfgl(C), B1 = GLk1 (C) and BQ = GLh (C)

The reductive part R of H is given by the following equations

Let us compute the representation ¢ of H in the fiber (Wy), of Wy over the point o.
We identify (Wg), with the Lie superalgebra of holomorphic vector fields v(8), see
Proposition 3. Let us choose an atlas on M defined by I = (15, I,7), see (15), and hy
certain I, s = 2,...,r. In notations (16) and (17) the group H acts in the chart on the
super-Grassmannian B defined by Z7, in the following way:

A 0 0 0 X = A X4 A=
Ci By 0 0 Ekl 0 - Xy + By =4
0 0 A 0 H Y| Ao Hy A2Ys
0 0 CQ BQ 0 Eh CQ Hl Cr2Y1 + BQ

(Note that a chart on B is defined only by Z;,, and a chart on the whole flag superman-
ifold M is defined by Z;,, where s = 1,...,7.) Further, for Z;, we have
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CiXi+ B Ci1Z X2 =o _
CQ H1 CQYl -+ BQ H2 YQ
_ (C1X1 4+ B1)Xo+ C1Z1Hy  (C1Xq + B1)Z2+ C1E1Ya
CoHy Xo + (CoY1 + Bo)Ha CoHiZ9 + (CoY1 + Bo)Ys |-

(18)

Note that the local coordinates of Z; , s > 2, can be interpreted as local coordinates on
the fiber S of the superbundle M. To obtain the action of H in the fiber (Wy), in these
coordinates we put

X1:Y1:0 and 51:H1:O

in (18) and modify Z; , s > 3, accordingly. We see that the nilradical of H and the
subgroup GLp,_g, (C) x GL,—;,(C) in R act trivially on S and that the subgroup
GLk, (C) x GL,,(C) c R acts in the natural way. In other words the action of H in
S over o is given by the following formulas:

Bl 0 Xg =9 _ B]_XQ BlEQ (19)
0 B Hy Y ByHy ByYs |-
This means that H acts as the underlying space of the Lie supergroup GLg,|;, (C) on the
flag supermanifold S, see (4). Furthermore assume that

Z1 T
U(S) = g[kﬂh (C)/<Ek1+l1> - { (Tgl Zlg) +< E-'ﬂlJrh >} ’

where Z; € gl (C) and Zy € gl (C). Then the induced action of the Lie group
GL, (C) x GL, (T) on (Wp), = v(8) coincides with the adjoint action of the underlying
Lie group of the Lie supergroup GLy, 7, (C). More precisely, we have

By 0 Z I Bt 0
E -
(0 32)((T2 .22)*‘( m”)( 0 By

(20)
(Bllel_l BT By!

E
BoToBy ! BQZQB;) < B >

where By € GLg, (C) and By € GLy, (C).

Denote by Ady, and Ad;, the adjoint representations of GLy, (C) and GL;, (C) on
sl (C) and sl;, (C), respectively, and by pg, and p;, the standard representations of
GLg, (C) and GLy, (C) in C* and Ch, respectively. We denote by 1 the one dimensional
trivial representation of GLy, (C) x GL;, (C). The following lemma follows from (20).

Lemma 1. The representation v of H in the fiber (Wy), = v(S) is completely reducible.
The nilradical of H acts trivially in (Wo),. If 0(8) ~ aly 11, (C) /(Ek, 41, ), then
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Ady, +Ady, +pg, @ pf, + o, @ pf, + 1 for ky,lyp >0,
’UJ‘R = Adk1 fOT k1> 0, (L =0, {21)
Adz1 fOG‘” kl = O, ll > 0.

Further we will use the chart on an defined by I, = I U I g, where I; is as above,

and
Isﬁ = {k‘S,1 — ke + 1,.. .,kgfl}, Isi = {1571 — I, + 1,.. .,53,1}

for s > 2. The coordinate matrices of this chart have the following form

X, =

E; 0
e N =1,...k
I, o, Y, y 8 s

0 L

where again the local coordinates are
Xo = (I?j)’ Yo = (yisj)v B = (fzs;) and Hg = (77:1)

We denote this chart by U and the corresponding chart on B by Ug. In other words,
Up is given by the coordinate matrix (16).

Lemma 2. The vector fields 3_?1_ and ﬁi— are fundamental. That is, they are induced by
ij if
the natural action of GL,,,,(C) on M.

Proof. Let us prove this statement for example for the vector field B_EBH' This vector field
corresponds to the one-parameter subgroup exp(7£1,4), wherea =m+n—1I0; +1and 7
is an odd parameter. Indeed, the action of this subgroup is given by

X1 F X1
Er, 0 Ey,
— and Zy — Z > 92
H Y H W WME AL T AL, S =5
0 Ep 0 E,
where
T + g]].-l A g%ll
él = : : . O
grlnfki,l s fiifk‘hil

Let us choose a basis v;, where i = 1,...dim(v(S)), in v(S). Any holomorphic vertical
vector field on M can be written uniquely in the form
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w = Z fqVq: (22)
q

where f, are holomorphic functions on U depending only on coordinates from Zy,. We
will need the following two lemmas:

Lemma 3. If Ker P # {0}, then dim W (By) > dim W4)(Bo).
Note that since By is compact, dim W;(By) < oo for all 4.

Proof. By definition we have the inclusion of sheaves W1y < W) and hence we have
the inclusion of the vector spaces of global sections

Wy (Bo) = W) (Bo).

Therefore we need to show that there exists a vector field v € W) (Bo) such that
v ¢ Wq)(Bp). Consider a vector field w € Wy)(By) written in the form (22). Assume
that there is a function f, that depends for example on odd coordinate §1lj Then w =
iljw’ +w”, where w’ and w” are local vertical vector fields and their coefficients (22) do
not depend on 5113 and w’ # 0. Using Lemma 2 and the fact that Ker P is an ideal in
v(M), we see that

w =

—.w| € Ker P.
o],

In particular, w’ is a global vertical vector field. In this way we can exclude all odd
coordinates filj and 1721,’,-. Therefore there exists a vector field v from Ker P such that

v e W(o)(Bo) but v ¢ W(l)(Bo). O

Lemma 4. Assume that o(S) ~ gl ; (C)/(Ey,11,). Then we have

(C, 0<ki<m, 0<ly <n;
t1EdC, 1<ki=m 0<l; <n;
e dC, O0<ki<m, 1<l =mn;
o @ C, l=k=m, 0<li <mn
vy & C, O<kr<m, 1=10=mn;
Wo(Bo) = { {0}, 0<ki<m, 0=1I <n, or (23)
O0=Fk <m, 0<ly <n, or
0=k <m, 1=10 <n, or
1=k <m, 0=10 <n;
ty, l<ki=m, 0= <n;
\ ¥4, 0:k1<m,1<l1:n,
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where vy, to, t3, vy are irreducible s, (C) & sl,(C)-modules with the highest weights
M1 — [, 1 — Ap, A1 — [t and Ay — Ay, respectively. The trivial 1-dimensional module
C corresponds to the highest weight 0.

Proof. We compute the vector space of global sections of W using the Borel-Weil-Bott
Theorem 1. The representation 4 of H in (Wy), is described in Lemma 1. From (21) it
follows that the highest weights of ¢/ have the form:

* Mm—ki+1 = fms Bm—ki4+1 — Ans An—ly+1 = Hms Aa—1;41 — Ap, 0 for ky, [1 > 1;
* fm — Any Al 41 — s Al 41 — Ap, 0 for by =1, 1 > 1;

o k41 — My Bm—ky 41 — Any Ap — fim, 0 for ky > 1,11 = 1;

ol — An, Ap — ftm, 0 for ki =1,1; = 1;

o 1 — fm fOT kB > 1,1 = 0;

. )\n711+1 — )\n for kfl = 0, ll > 1.

(Note that for k1 =1, l; =0 and k1 = 0, [; = 1 the representation space of v is trivial.)
Therefore the dominant highest weights of 1 have the following form:

0,if0< ki <mand 0< [y <mn;

o 0, p1 — fimy pi1 — Ap, if L <k =m, 0 <y < n;
o 0,1 — A, ifl=k1=m,0<l; <m

o 0, A = A, AL — i, IO <Ry <my 1<y =m;
o 0, M — i, f0 <k <m, 1 =11 =mn;

o 1 — pm, if 1<k =m, 0=10 <n;

o A=A, if0=k <m, 1 <l; =n.

We have no dominant weights in the following cases:

e D<ky<m,0=10 <n;

e 0=k <m,0<ly <n;

e 0=k <m,1=10 <n;

e 1=k <m,0=10 <n.
By Borel-Weil-Bott Theorem we get the result. O

We are ready to prove the following theorem.
Theorem 4. Assume that r > 1. If
Os(So) =C, 0(S) ~ paly,, (C), (k1,11) # (m,0) and (k1,11) # (0,n),

then Ker P = {0}.
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Proof. Consider the super-stabilizer H C GL,,),,(C) of o. It contains all super-matrices
of the following form:

A 0 * 0
Cy B o+ Dy
* 0 Ay 0 '
x Do Co DB

(24)

where the size of all matrices is as in formula (17). Consider also the following Lie

By Dy
Dy By )~

Clearly, £ ~ GLy,|;, (C). Repeating computations (18) for the super-matrix (24), we see
that £ acts on § in the natural way, see (4), and the [-module (Wy), =~ pgl; |, (C) is
isomorphic to the adjoint I-module. Here [ ~ gl; |, (C) is the Lie superalgebra of L.

Let #: W — '1?\70 = W/W(y be the natural map and 7, : W — (Wp), be the
composition of 7 and of the evalnation map at the point 0. We have the following

subsupergroup £ in H:

commutative diagram:

W(Bo) 2L WiBy)

Trol HDJ,
X, -
(Wo)o s (W),

where X € [. (Note that the vector space W(Bp) is an ideal in v(M) and in particular it
is invariant with respect to the action of £.) Denote by V' the image 7,(W(By)). From
the commutativity of this diagram it follows that

V C (WO)U o pg[kllh {C)

is invariant with respect to the adjoint representation of pgly ;, (C). Therefore, V' is an
ideal in pgly, ;, (C).

Let us describe ideals of the Lie superalgebra pgly ; (C), where (kq,l1) # (1,1), see
6] for details. (The Lie superalgebra pglyj;(C) is nilpotent. We do not consider this case
here because Og(Sy) # C for S = F}c!b,) This Lie superalgebra contains two trivial
ideals I = {0}, pgly,|;, (C) and it has one proper ideal

P51k, (C) = b, 1, (C)/ (B, )

for kl — l]_.
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Clearly, we have V' C Tm(y), where 7 : Wy(By) — (W), is the evaluation map.
By Lemma 4, we see that Im(7) never coincides with pgl; |, (C) or psl; |, (C). Hence,
V' = {0}. In other words, all sections of m(W(By)) are equal to 0 at the point o. Since W,
is a homogeneous bundle, we get that 7(W(By)) are equal to 0 at any point. Therefore,

T(W(By)) = {0} and
W(Bo) o) = W(Bo)q)-
From Lemma 3 it follows that Ker P = {0}. 0O
Using Theorem 4 and formula (14), we get the following statement:
Theorem 5. Assume that r > 1. If
Os(So) = C. v(F}) = pglya(C) and v(FL') = paby, i, (C),
then
O(FY3;") = Pl (C).
3.3. Vector fields on flag supermanifolds, some exceptional cases

3.3.1. The base B is an exceptional super-Grassmannian
Assume that » > 1, Os(Sp) = C and B = FE“’;l is one of the following super-Grass-
mannians:

a) i — i or T case 1.3 of Theorem 3.

Eq|ly 0|n \0
2|2 . .
b) Frin = F22 or F2P) case 1.4 of Theorem 3. (We do not consider super-
k|l 1)2 2\17
Grassmannians FI}O and FD}I here, because in these cases Og(Sp) # C.)

c) inlﬁl = an 1, where n > 2, or F 1‘0, where m > 2, case 1.2 of Theorem 3. This
case we will consider in a separate paper.

d) inll?l = Fﬂ? case 1.1 of Theorem 3. In this case Og(Sp) # C. We do not consider
this case here.

k ‘; = Fm‘ In this

min . B . . . .
case the base space FO‘L is a superpoint, i.e. it is a superdomain with the undellymg

space {pt}, one point, and with mn odd coordinates. Since F:Tlln is a superbundle with

Case a. Without loss of generality we may consider only the case F

the base space isomorphic to a superpoint, we have

Fz‘llln = Fgfl:l FE!T‘;,, where k' = (0,...,0) and I' = (l2,...,1;).

Our goal now is to prove the following theorem.
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Theorem 6. Assume that r > 1 and (ky,l1) = (m,0) or (k1,l1) = (0,n). Then

U(F:T[\n) = Win & (/\(mn) ® pg[n(c)),
where Wi, = Der(A\(mn)).

Proof. The result follows from the following facts:

Fil" = Pyl < B Os(S0) =C, Op(Bo) = [\(mn),

o(FI™) & Wi, 0(FOP) = pat, ().

In more details, since Qg(Sp) = C, we have a Lie superalgebra homomorphism

P o(Fp") = o(Fg™) o Wi,

Since the bundle projection FZTI‘" — Fg‘l?‘ln is just the projection to the first factor

mln _ mln 0|n min
Foo =Fon XFup = Fos

m|n

all vector fields on Fgﬂln can be lifted to F Kl The kernel of P is isomorphic to A (mn) @
pal,,(C). The proof is complete. O

Case b. Assume that r = 2. Without loss of generality we may consider only the case

FE'EZ = Fﬂg Under restriction Og(Sp) = C the fiber § can be one of the following

Super—Grassmannians :

o2 12
S = Fl‘1 or Fo\l'

We have seen that U(F?B) ~ Hy = (2), see (13), Theorem 3. A standard computation
shows that the image of gly5(C) in U(Fﬂg) is

(Ha)—1 @ (Ha)o @ (Ha)1 © (2) = pgly5(C).
Therefore,
0(F33) ~ palypa(C) @ (6), (25)

as vector superspaces. (See (13) for the definition of 6.) By Theorem 2 we have
Os(Sp) = C. Hence by Proposition 1 we have a homomorphism of Lie superalgebras

P u(Fi“f) N u(Fflg).
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By Theorem 3 we see that v(S) =~ pgl;5(C). Therefore by Theorem 4 the homomorphism
P is injective. The vector fields from pgly,(C) are fundamental with respect to the action
of the Lie superalgebra g[Q‘Q(C) Hence they can be lifted to the flag supermanifold F? k‘ z

Therefore we need to find P~1(#). We will show that ¢ ¢ Im(P), i.c. @ cannot be lifted

2[2
to Fk“.

Theorem 7. We have

2|2 2|2
0(F (1 1)) = Palya(C) and o(F5g) 5 5)) = palaa(C).

P . o char 2|2 .
Proof. Consider the following chart on F(l‘l)‘(m).

SRS

r
1 0
1 0 0
Zy = A=\ n vy (26)
0 1 0 0 1
0o 0 1

Assume that w := P~1(0) is well-defined. Since all vector fields on F?Pl)‘ (2,1) Are pro-
jectable, in coordinates (26) w is equal to 8 +v, where v = fa +gd is a vertical vector
field and f, g are holomorphic functions in coorchnates (26). Let us find f and g. We
need the following fundamental vector fields on F(l,l)‘(m) written in coordinates (26):

9] o d
Bigr— ——, Fur— -, Ep— O — +y—,
Eap —» 5 i — E Eay — 5 o 3
32 e an’ o Yag,  ay
Here we denote by Ej; the elementary matrix from glyo(C).
Since Ker P = {0}, using (27), we get
0 af 0  dg o . 0 J
[d& w| = 52 afldy—i_@_fl%_&‘_—l_y@_n’
3] J df o dg 0O 8
iyl + 5
o6 = gt oyt e~ Oa oy
Hence,
of dg af dg
—— =0, ==y, —=0, —=
R R e
Furthermore,
a d Bf g dg o
El% + B_y w| = El 8y By + = By 671 =0
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Hence, %5 =0 and gg = —¢;. Now we see that
g - 9g B
9619y Tdyds

This is a contradiction. Therefore,
-1 22
P~ (2) =0 and v(F (1.1)(2,1)) = Pala2(C).
The proof in the case F%Eﬂ)\(m) is similar. O
3.3.2. The fiber § is an exceptional super-Grassmannian

Assume that r = 2, Og(8Sp) = C and S = F:;};’; is one of the following super-Grass-
mannians:

V]

) = Fl\l case 1.1 of Theorem 3;

b) § gﬁ Fﬂg, Fﬂg or Fg}l case 1.4 of Theorem 3;

c) §= Fé};l F:iljlm! F‘Hi1 or F1\11‘ , where n > 2, case 1.2 of Theorem 3.
) S

gh\h r Fﬁi}é‘, case 1.3 of Theorem 3. In both cases Og(Sp) # C. We do not

consider this case here.

d

Our goal now is to prove the following theorem.

Theorem 8. Assume that r = 2 and the fiber S of the superbundle FW” is a super-Grass-
mannian of type a or b. Then we have

O(F}") 2 polyn (C).

First of all let us compute the representation 1 of the stabilizer H in these cases.
Formula (19) tells us that the action of H in & coincides with the restriction of this
action on GLgjo(C)5. We need the following lemma:

Lemma 5. The representation ¢ of H in the fiber (Wy), is completely reducible and its
highest weights are:

1. i1 — fom, An—1— An, Hm—1 — Ans An—1— Py O, pn—1 + fln — An—1—An, A1+
An — Mhm—1 — fim, N case a.
2. Mm—1—m, An—1—An, Hm—1 —An, An—t — Hm, 0, Hm—1 +le_/\n—1 — A, in case b,

. 212 212
super-Grassmannians Fo\l and F1}2.

3. Hm—1 — Hm; /\nfl - )\n; Hm—1 — )‘n; )‘7171 — Mm; 07 —Hm—-1 — Hm + /\nfl + /\n; in

. 2|2 2)2
case b, super-Grassmannians FIIO and FQ}I.
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Proof. As in Section 3.2, we see that the nilradical of H and the subgroup GL,, o(C) x
GL,_2(C) in H act trivially on &. The subgroup GLy(C) x GLo(C) acts in the
natural way. Consider Decomposition (11). We computed already highest weights of
gloj2(C)g-module pglyo(C). They are

Hm—1 — Hm, An—1 — An, Hm—1 — Ans Ap—1 — Py 0. (28)

Using the explicit description of v(F 1|1) given by (8), (9) and (10), we get:

J
[m—1p(E11) + pimpt(Ea2) + Ap_1pt(Eag) + App(Egq). 58—1}} =

17,
m— m— An—1 — Ap )=
(,u 1+ f 1 )68774

0
[om—1p(E11) + pimfpt(Fa2) + Ap—1p6(Fas) + Anpe(Eaa), ﬂa—g} =

0
(_,Umfl — Mtm + An—1+ /\n)na_g
Here Ej;, where i = 1...4, are elementary matrices from glyo(C)g. The result follows.

2'3 and decomposition (25) of n(FfI;)

We see easily that the vector subspaces (#) and pgly5(C) are invariant with respect to the

Let us prove the second statement. Consider F

action of the Lie algebra pglys(C)g. Again the vector space pglyo(C) was decomposed
into a sum of irreducible representations, see (20). The highest weights of ¢|pglys(C)
are given by (28). Let us compute the highest weight of (#). The image of the Cartan
subalgebra

diag(‘“mfla ,um) X diag()\nfl: )‘n)

with respect to the homomorphism p : gly(C)g — v(F 22 ) in chart (12) is given hy

12
d d 7}
#(Ell) d +£1 f +£2 5 5 [L(EQQ) = —.CE%
1(Es3) = —51 (95 , W(Eyy) = 52 0

We have

m—1(E11) + ponpp(Eoa) + An—1pu(Eas) + Anp(Eaq), 0] =
(,Ulm—l + Hm — )\n,—l - )\n)g

The result follows.

. . 2012 222
Computations in the cases lel, FOL and FJD are similar. O
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Proof of Theorem 8. First of all let us compute the vector space of global sections of the
vector bundle Wy using Theorem 1. The dominant highest weights of the representation
1 are in case a:

1. 0if m>2and n > 2;

2.0, p1 — pa, p1 — Apy 1+ o2 — A1 — Ap for m =2 and n > 2;
3.0, Ay — Aoy AL — fgns A1+ Ao — 1 — gy for m > 2 and n = 2.
In case b for Og ~ Fﬂg or Fglf the dominant highest weights of ¢ are:

1. 0form=>2 n>2;
2. 0; M1 — M2, H1 — An- 1 + Mo — )\n—l - )\n for m = 23 n> 2
3.0, A1 — Aa, A — g, form > 2, n=2.

. 22 22 . . .
In case b for Og ~ F2\1 or F1|0 the dominant highest weights of 1 are:

1. 0form=>2 n>2;
2.0, p1 — pa, p1 — Ay form =2, n > 2;
3.0, Ay — Aoy AL — fyny —fl—1 — o + A1+ Ao form > 2, n =2,

We restrict all weights on the Cartan subalgebra of sl,,, (C)®sl,,(C) c gl,,,(C)®al, (C).
By Theorem 1, in case a we have:

C, m>2 n>2;
Wo(Bo) = Chry@radbrs, m=2,n>2;
ChHrydrsdrg, m>2,n=2.

Without loss of generality we consider only the case b, Og ~ Fﬂ; or Fgﬁ We have

C, m>2 n>2;
Wo(Bo) =< Chrt1 Dro®rs, m=2,n>2;
ChryErs, m>2,n=2.

Here vy, vo, ta, w1, v5, vg are irreducible 56, (C) @ s, (C)-modules with highest weights
1 — o, 1 — Any M1+ e — Apm1 — Ans A1 — Aoy A4 — g and Ay + Ao — L1 — L,
respectively, and C is the irreducible sl,,(C) @ s, (C)-module with weight 0.

We use notations of Theorem 4. We have seen that V' is invariant with respect to the
action of Lie superalgebra pgly»(C). Consider the case a. In case WO(BD) = C, we have
V' = C or {0}. Since pgly|5(C) does not have any 1-dimensional ideals, the trivial module
C is not pgly|s(C)-invariant. Hence, V' = {0}. Consider the case WO(BU) ~ CPriPradrs.
As in the proof of Theorem 4, we see that any combination of H-modules 7(C), ~(ry),



E.G. Vishnyakova / Journal of Algebra 459 (2016) 1-28 27

7(r2) and y(r3) is not invariant with respect to pglys(C), see explicit description (8), (9)
and (10). Hence again V' = {0}. We finish the proof similarly to Theorem 4.
Other cases are similar. O

4. Main result
We put kg =m, ly = n.
Theorem 9. Assume that r > 1 and that we have the following restrictions on the flag
type:
'I"‘Lulz) ( i— 1:0)7 (O:lifl)a i 2 21
(k’lflﬂk |lz 1, ) 7é (lvolliflvlifl - 1)3 (111”1’7171)7 i> 1;
( 171:k |l1 1, ) 7& (kiflrkifl - 1‘170)* (kifla 1|11 1)? i 2 17
k|l #(0,...,0ln,la, ..., 1), K|l # (m,ka,... k. [0,...,0).
Then
O(F}") = paly, (O).

If k[l =(0,...,0|n,la,...,1.) or k|l = (m, ko, ... k. ]0,...,0), then

O(F") ~ Wi & (1. &) @ pal, (C)),
where Wi, = Der A(€1, ..., &mn)-

Note that the flag supermanifolds F " and F”L are isomorphic.
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