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RESUMO 

 

Selecionar animais que possuem alelos favoráveis em genes que participam do controle 

genético de características de interesse econômico pode aumentar a eficiência dos programas 

de melhoramento de bovinos de corte. Neste sentido, dois artigos foram desenvolvidos com o 

objetivo principal de identificar genes candidatos funcionais (FCG) para características 

importantes em bovinos da raça Nelore. No primeiro artigo, “Genes underlying genetic 

correlations between growth, reproduction and parasite burden traits in beef cattle”, estimamos 

a correlação genética entre características de crescimento, reprodução e carga parasitária e 

identificamos FCG que influenciam mais de uma dessas características. Avaliamos seis 

características, incluindo duas de crescimento (peso corporal - PC e ganho médio diário - 

GMD), uma de reprodução (circunferência escrotal - CE) e três de carga parasitária (contagem 

de carrapatos - CAR, ovos de nematóides gastrointestinais por grama fezes e oocistos de 

Eimeria spp. por grama de fezes - EIM). As correlações genéticas foram obtidas por meio de 

modelos multicaracterísticos. Um total de 21.667 marcadores SNP foram utilizados para 

realizar os GWAS (Genome Wide Association Studies) e identificar janelas genômicas que 

explicavam pelo menos 1% da variação genética para as características avaliadas. As 

correlações genéticas foram positivas e de magnitude moderada para os pares de características 

PC-GMD (0,64), PC-CE (0,38), PC-CAR (0,39), GMD-CE (0,27) e CAR-EIM (0,33). Somente 

o par GMD-EIM apresentou correlação negativa (-0,22). Para todos os outros pares, as 

correlações genéticas foram próximas de zero. Os efeitos dos SNPs foram calculados como 

proporção do desvio padrão genético e mostraram que existem SNPs mapeados próximo a FCG 

que promovem o melhoramento genético de ambas as características em sentido favorável. 

Além disso, análises funcionais foram realizadas e os FCGs foram selecionados com base no 

controle genético destes sobre processos biológicos para cada uma das características. As 

análises funcionais apontaram sete genes, SLC16A4, KCNA2, LAMTOR5, DUSP10, 



 
 

 

MAP3K1, TPMT e KIF13A como FCGs com efeitos sobre mais de uma característica. 

Independentemente dos valores de correlação genética (baixo a moderado), existem FCG que 

podem influenciar as características de produção, reprodução ou resistência, em conjunto. No 

segundo artigo, “Candidate genes for longitudinal traits under selection in beef cattle”, 

identificamos FCG que participam do controle genético do peso corporal em cinco idades 

diferentes idades (330, 385, 440, 495 e 550 dias), em dois arquivos de dados distintos, um com 

registros completos de peso corporal (AD100) e outro com uma seleção sequencial simulada 

de 70% dos animais mais pesados (AD70). Os parâmetros genéticos para o peso corporal foram 

estimados por meio de dois tipos de modelos, unicaracterísticos (UNI) e modelos de regressão 

aleatória com funções spline (REG) para os dois bancos de dados. Os pesos corporais foram 

padronizados para 330, 385, 440, 495 e 550 dias de idade para UNI. Para o REG, os nós de 

splines lineares foram ajustados para as idades 274, 330, 385, 440, 495, 550 e 594 dias. Os 

GWAS foram realizados com os resultados dos modelos UNI e REG. O GWAS e o 

enriquecimento funcional foram realizados conforme descrito anteriormente para o primeiro 

artigo. Identificamos sete FCG (DUSP10, LAMTOR5, PAFAH2, SLC30A2, TRIM63, 

NCAM1 e SCL16A4) para peso corporal em diferentes idades. O gene DUSP10 foi associado 

ao peso corporal em todas as cinco idades avaliadas, sugerindo a importância desse gene para 

os diferentes estágios do crescimento animal. Por outro lado, a maioria dos FCG associados ao 

peso corporal foram diferentes para diferentes idades, sugerindo que a importância de cada gene 

para o crescimento animal também pode mudar em diferentes estágios de desenvolvimento e 

diferentes genes podem ser mais relevantes para o peso corporal em cada estágio de 

crescimento. Quando a seleção sequencial foi simulada, diferentes FCG foram associadas ao 

peso corporal no AD100 e AD70 para cada idade, mesmo quando o REG foi utilizado. Portanto, 

a seleção sequencial pode influenciar os resultados de GWAS e esse pode ser mais um motivo 

para inconsistências frequentes verificadas nestes estudos para características de crescimento 



 
 

 

medidas em bovinos de corte. Ressaltamos que os resultados aqui apresentados são essenciais 

para sugerir genes importantes que participam do controle genético de características de 

interesse zootécnico em bovinos de corte. Ainda, os FCG sugeridos no presente trabalho, esses 

poderiam ser validados para cada característica em populações maiores e outras raças, a fim de 

aperfeiçoar a compreensão do controle genético desses genes sobre as características avaliadas. 

 

Palavras-chave: correlação, parâmetros genéticos, estudo de associação ampla do genoma, 

Nelore, seleção sequencial  



 
 

 

ABSTRACT 

 

Selecting animals which have favorable alleles in genes that participate in the genetic control 

of economic interest traits may increase the efficiency of beef cattle breeding programs. In this 

way, two papers were developed with the main aim of identified functional candidate genes 

(FCG) for important traits in Nellore cattle. In the first paper, “Genes underlying genetic 

correlations between growth, reproduction and parasite burden traits in beef cattle”, we aim to 

estimate genetic correlations between growth, reproduction and parasite burden traits and 

identified FCG that influence more than one of these traits. We evaluated six traits, comprising 

two of growth (body weight - BW and average daily gain - ADG), one of reproduction (scrotal 

circumference - SC) and three parasite burden (counts of tick - TICK, gastrointestinal nematode 

eggs per gram of feaces - GIN, and Eimeria spp. oocysts per gram of faeces - EIM). The genetic 

correlations were obtained through multiple trait models. A total of 21,667 SNP markers were 

used to perform single-step GWAS (Genome Wide Association Studies), and to identify 

genomic windows that explained at least 1% of the genetic variance for the evaluated traits. 

The genetic correlations were positive and of moderate magnitude for the pairs of traits BW-

ADG (0.64), BW-SC (0.38), BW-TICK (0.39), ADG-SC (0.27), and TICK-EIM (0.33). Only 

the pair ADG-EIM presented a negative correlation (-0.22). For all the other pairs, the genetic 

correlations were close to zero. The effects of the SNPs were calculated as genetic standard 

deviation and showed that there were SNPs mapped in FCG that promoted genetic improvement 

to both traits. Additionally, functional analyses were performed and FCGs were selected based 

on their roles in biological processes for each trait. The functional analyses selected seven 

genes, SLC16A4, KCNA2, LAMTOR5, DUSP10, MAP3K1, TPMT, and KIF13A as FCGs 

with effects over more than one trait. Independently of the genetic correlation (low-moderate) 

there are FCG that can influence both production, reproduction or resistance traits in beef cattle. 

In the second paper, “Candidate genes for longitudinal traits under selection in beef cattle”, we 



 
 

 

aim to identify functional candidate genes which take part in genetic control of body weight in 

five different ageS (330, 385, 440, 495 and 550 days) for a beef cattle population for two 

databases which one with complete body weight records (DB100) and another one which a 

sequential selection of 70% of heaviest animals (DB70). The genetic parameters for body 

weight were estimated by a single trait (STM) and a random regression model with spline 

functions (RRM) for both databases. Body weights were standardized at 330, 385, 440, 495 and 

550 days of age for STM. In RRM, the knots of linear splines were fitted at 274, 330, 385, 440, 

495, 550 and 594 days of age. The GWAS were performed with both STM and RRM. The 

GWAS and the functional enrichment were performed as previous described from the first 

paper. We identified seven FCG (DUSP10, LAMTOR5, PAFAH2, SLC30A2, TRIM63, 

NCAM1 and SCL16A4) to body weight in different ages. of each gene for animal growth can 

change in different development stages and different The DUSP10 gene was associated with 

body weight in all the five ages evaluated, appointing for the relevance of this gene for different 

stages of the animal growth. On the other hand, the majority of the FCG associated with body 

weight were different for different ages suggesting that the importance genes can be more 

relevant to body weight in each growth stage. When the sequential selection was simulated 

different FCG were associated with body weight in DB100 and DB70 for each age, even when 

the RRM was performed. Also, when GWAS and post GWAS are performed, the sequential 

selection influenced the results and this may be one more reason for frequent inconsistences in 

GWAS results performed for growth traits measured in beef cattle. We suggested genes as FCG 

which take part in the genetic control of important traits to beef cattle. Therefore, these genes 

could be validated in largest populations and different breeds, in order to improve the 

understanding about the genetic control of them over the traits here evaluated. 

 



 
 

 

Key words: correlation, genetic parameters, genome wide association study, Nellore, 
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1. INTRODUÇÃO GERAL 

No melhoramento genético animal, informações sobre variações nas sequências 

de DNA entre os animais têm sido utilizadas com maior frequência para estimação de 

valores genômicos (GEBVs) quando comparada aos estudos dedicados a descoberta de 

genes e vias (Goddard e Hayes 2009). Entretanto, a identificação de genes que contribuem 

para o controle genético de características de importância econômica é igualmente 

importante, uma vez que possibilita a seleção de animais portadores de alelos desejáveis 

em genes que tem, de fato, associação com a característica sob avaliação (Ayuso et al., 

2016). Estes genes podem ser, por definição, genes candidatos funcionais (FCG), por 

estarem envolvidos em vias metabólicas de interesse e codificar uma proteína relacionada 

com o fenótipo em questão (Tizioto, 2014). 

Um passo além da identificação de FCG que contribuem para o controle genético 

de uma única característica é a identificação de genes que participam do controle genético 

de pelo menos duas características geneticamente correlacionadas. A correlação genética 

entre diferentes características tem sido quantificada por modelos que permitem 

particionar a correlação entre fenótipos em correlações genéticas e residuais (Searle, 

1961; Wright, 1968). Os valores de correlações genéticas entre características importantes 

de bovinos de corte são comumente utilizados em programas de melhoramento animal 

para a definição de critérios de seleção (Simões et al., 2019). No entanto, pouco se sabe 

sobre quais genes estão subjacentes à correlação genética entre essas características. 

Neste sentido, identificar genes candidatos funcionais comuns entre as características 

geneticamente correlacionadas permite que SNPs (single nucleotide polimorphism) 

associados a genes possivelmente pleiotrópicos sejam ponderados no momento da 

avaliação genômica de modo a favorecer o ganho genético obtido para ambas as 
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características. Além disso, identificar FCG subjacentes a correlação genética pode ser 

um primeiro passo para a sugestão de genes importantes que participam do controle 

genético de pelo menos duas caraterísticas associadas a crescimento, reprodução e 

sanidade em bovinos de corte e que podem ser melhor investigados em estudos futuros. 

Características de crescimento em bovinos de corte (ex: peso em diferentes 

idades) têm sido amplamente utilizadas nos estudos de associação ampla do genoma 

(GWAS - Genome Wide Association Study - Campos et al., 2019; Zhang et al., 2012). 

Uma vez que essas características podem ser medidas em diferentes estágios da vida do 

animal, é necessário considerar a complexidade de mecanismos metabólicos e 

fisiológicos envolvidos no crescimento (Owens et al., 1995). Por isso, do ponto de vista 

genético, é possível que a mesma característica medida em diferentes estágios do 

crescimento seja controlada por diferentes conjuntos de genes, como apontado por 

Campos et al. (2019). Esses autores encontraram janelas genômicas diferentes quando o 

peso de bovinos Hereford e Braford foi avaliado em diferentes idades (peso ao nascer, 

peso ao desmame ajustado para 205 dias, peso ao sobreano ajustado para 550 dias de 

idade e ganho de peso pós-desmame ajustado para 345 dias de idade).  

Outro aspecto que deve ser considerado no momento da avaliação de 

características de crescimento em bovinos de corte é que nem todos os animais que 

possuem registro de peso em idades mais jovens serão novamente medidos em idades 

mais avançadas. Isso acontece porque, com intuito de obter-se recursos financeiros para 

a operação ou para oferecer melhores condições ambientais para os demais candidatos à 

seleção, animais são descartados e consequentemente o número de registros é reduzido o 

longo do processo de crescimento (Toral et al., 2019). Esses pré-descartes resultam 

também em pré seleção dos animais que permaneceram no rebanho e que serão medidos 

para outras características em idades posteriores (seleção sequencial).  
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A seleção pode ter efeito sobre parâmetros e valores genéticos estimados por meio 

de informações de fenótipo e genealogia (Kaps et al., 1999; Long et al., 1991; Schaeffer 

et al.,1997). Por isso, modelos que consideram uma estrutura de covariância entre efeitos 

aleatórios, como modelos multicaracterísticos ou modelos de regressão aleatória (RRM), 

foram sugeridos como uma boa alternativa com o propósito de minimizar os efeitos da 

seleção sobre a estimativa de parâmetros genéticos (Boligon et al., 2009, Toral et al., 

2019). A utilização destes modelos pelos programas de melhoramento de bovinos de corte 

é extremamente pertinente, dado que a pré seleção é uma realidade dentro dos rebanhos 

comerciais. No entanto, os efeitos de seleção sobre a identificação de regiões genômicas 

associadas a características de interesse, e até mesmo sobre a identificação de FCGs que 

contribuem para o controle genético dessas características, ainda não foram objetos de 

estudos.  

Assim, nesta tese foram desenvolvidos dois trabalhos, ambos, com objetivo geral 

de identificar FCG associados à características economicamente importantes em bovinos 

da raça Nelore. No primeiro trabalho, “Genes underlying genetic correlations between 

growth, reproduction and parasite burden traits in beef cattle”, estimamos os valores de 

correlação genética entre características de crescimento, reprodução e resistência e 

identificamos FCG que participam do controle genético de mais de uma característica e 

que podem contribuir para a correlação genética aditiva. No segundo trabalho, “Candidate 

genes for longitudinal traits under selection in beef cattle”, identificamos FCG para peso 

corporal em cinco idades (330, 385, 440, 495 e 550 dias) e posteriormente simulamos um 

processo de seleção sequencial entre as idades a fim de avaliar os efeitos da seleção sobre 

resultados de GWAS e pós-GWAS. 
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2. REVISÃO DE LITERATURA 

2.1. Características de crescimento, reprodução e resistência em 

bovinos de corte 

Características de crescimento como peso e ganho de peso recebem maior atenção 

durante o processo de seleção de bovinos de corte, pois estão diretamente associadas ao 

principal produto de venda, a carne (Van Melis et al., 2010; Santana Jr et al., 2012). Essas 

características são facilmente mensuradas, favoravelmente correlacionadas com outras 

características de interesse econômico e respondem à seleção individual (Boligon et al., 

2010), pois apresentam herdabilidade de média magnitude (Retallick et al., 2017). 

A circunferência escrotal está incluída como critério de seleção na grande maioria 

dos programas de melhoramento genético como indicador da idade a puberdade em 

machos e fêmeas, bem como fertilidade em fêmeas (Eler et al., 2006; Van Melis et al., 

2010; Santana Jr et al., 2012; Loaiza-Echeverri et al., 2013). A circunferência escrotal 

possui alta herdabilidade e uma relação favorável com outras características reprodutivas, 

como idade ao primeiro parto e taxa de prenhez precoce (Eler et al., 2006). 

Além de características de crescimento e reprodução, características relacionadas 

a sanidade animal têm ganhado cada vez mais atenção em programas de melhoramento 

genético de bovinos de corte (Passafaro et al., 2015; Sollero et al., 2017; Mota et al., 

2018), uma vez que a infecção por parasitos promove perdas econômicas representativas 

por causa da perda de peso, mudanças comportamentais, infecções secundárias de pele e 

transmissão de patógenos (Léger et al., 2013). Características como infecção por endo e 

ecto parasitos têm sido avaliadas com intuito de verificar se a infecção por parasitos pode, 

de fato, causar danos ao desempenho produtivo e reprodutivo dos animais (Biegelmeyer 

et al., 2015), dado que, especialmente no Brasil, em virtude da predominância do clima 
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tropical a proliferação de espécies parasitárias é favorecida. Apesar das infecções por 

parasitos provocarem perdas produtivas significativas, a inclusão dessas caraterísticas 

como critérios de seleção nos principais programas de melhoramento genético ainda é 

modesta. Por isso, se faz necessário o estudo mais aprofundado das características 

associadas a infecção por parasitos, bem como da inter-relação delas com as demais 

características de crescimento e reprodução a fim de verificar sua relevância dentro dos 

programas de melhoramento genético animal de bovinos de corte. 

Nos últimos anos, abordagens que fazem uso da informação genômica para 

otimizar o melhoramento genético animal têm sido empregadas com sucesso como, por 

exemplo, a seleção genômica, o GWAS e mais recentemente a identificação de genes que 

participam do controle genético das características. Neste sentido, a incorporação de 

informações genômicas nos programas de melhoramento genético animal pode auxiliar, 

também, na elucidação do controle genético das caraterísticas individualmente, bem 

como sobre as inter-relações gênicas entre caraterísticas de produção, reprodução e 

resistência.  
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2.2. Inclusão de dados genômicos nos programas de avaliação genética  

Na década de 1970, o desenvolvimento de técnicas de genética molecular 

forneceu novas oportunidades para aperfeiçoar os programas de melhoramento genético 

de bovinos, permitindo o uso de marcadores de DNA para identificar genes ou regiões 

genômicas que controlam características de interesse (Dekkers, 2012). Em seguida, o 

desenvolvimento de tecnologias para o sequenciamento do genoma possibilitou a 

identificação de SNPs. 

Os SNPs são gerados na replicação do DNA por mutação espontânea ou induzida, 

constituem a classe mais abundante de sítios polimórficos em qualquer genoma (The 1000 

Genomes Project Consortium, 2010), são amplamente distribuídos e, de modo geral, 

podem estar presentes em todos os loci gênicos (Caetano et al., 2009). As vantagens do 

uso desses marcadores são, a baixa taxa de mutação e a relativa facilidade e custo para 

genotipagem, quando comparados a outros marcadores. A elaboração de chips de SNPs 

permitiu a genotipagem simultânea para milhares de marcadores, disponibilizando maior 

volume de informações para um único animal (Caetano, 2009) e, assim, os marcadores 

moleculares do tipo SNP passaram a ser utilizados, também, para GWAS.  

Estudos de associação foram inicialmente realizados com o objetivo detectar 

variantes em locos genômicos que estavam relacionadas a características complexas na 

população e, em particular, na detecção de associações entre SNPs e doenças comuns em 

humanos como as cardíacas, diabetes, doenças autoimunes e transtornos psiquiátricos 

(Visscher et al., 2012). Posteriormente, com aumento do número de diferentes espécies 

que tiveram seu genoma sequenciado, os GWAS foram incorporados à diferentes espécies 

com intuito de mapear QTLs associados a expressão de características de importância 

econômica ou com a regulação de alguma rota metabólica (Bush e Moore, 2012).  
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O sequenciamento do genoma bovino, realizado pelo consórcio The Bovine 

Genome Sequencing and Analysis Consortium (2009), além de permitir a implementação 

de GWAS para características economicamente importantes, sugeriu que, o genoma 

bovino é composto por, pelo menos, 22 mil genes, apresenta altos níveis de conservação 

em sua estrutura, quando comparado ao genoma humano, e os genes envolvidos no 

metabolismo são, de modo geral, altamente conservados. Apesar de apenas uma 

proporção muito pequena dos marcadores (SNPs) estar localizada dentro dos genes ou 

sequências reguladoras, associações populacionais entre os alelos do SNP e os alelos de 

mutações que afetam características de interesse econômico podem ser descobertas 

devido ao desequilíbrio de ligação entre o marcador e o QTL (Hayes e Goddard, 2009). 

O desequilíbrio de ligação é, por definição, a associação não-aleatória de alelos em dois 

ou mais loci, não necessariamente no mesmo cromossomo (Falconer e Mackay, 1996).  

De modo geral, os resultados de GWAS para bovinos são referentes, 

principalmente, a características de crescimento e reprodução. Para o ganho médio diário, 

medido em bovinos da raça Nelore, Santana Jr et al. (2014) verificaram que os dez SNPs 

estatisticamente mais significativos que foram associados a esta característica estavam 

localizados nos cromossomos 3, 6 e 10. Ainda, o SNP mais significativo estava localizado 

no cromossomo 3 e apresentou um efeito médio de substituição estimado de -0,27kg/dia 

sendo que o alelo favorável foi o T e o alelo C foi aquele que provocou efeito negativo 

sobre o ganho médio diário. Soares et al. (2017) realizaram um GWAS multicaracterístico 

para circunferência escrotal em diferentes idades de bovinos da raça Brahman e 

encontraram uma sobreposição de janelas genômicas no cromossomo 14 que explicou em 

torno de 0,8% da variação para circunferência escrotal aos 12, 18 e 24 meses de idade dos 

animais. 
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Além dos GWAS para características relacionadas ao crescimento e à reprodução, 

GWAS para características vinculadas à sanidade animal, como por exemplo, contagem 

de parasitos, também têm sido desenvolvidos. Em um GWAS para infecção por 

carrapatos em bovinos leiteiros foram encontraram 25 SNPs estatisticamente associados 

à infecção por carrapatos, distribuídos nos cromossomos 1, 2, 4, 6, 7, 8, 10, 11, 13, 14, 

19, 20 e 26 (Turner et al.; 2010). Ainda, os autores verificaram que o efeito médio de 

substituição para 17 dos 25 SNPs significativos é negativo e positivo para os 8 demais. 

Mota et al. (2016) encontraram SNPs estatisticamente associados a resistência a 

carrapatos em bovinos das raças Hereford e Braford em 17 cromossomos e verificaram 

que houve interação entre os SNPs significativos quando avaliados em altas e baixas 

cargas parasitárias indicando que a expressão genética da resistência depende do nível de 

infecção parasitária. 

Os GWAS têm contribuído, cada vez mais, para elucidação de fatores que 

associam determinada região do genoma à expressão de um caráter. Desta maneira, os 

resultados destes estudos podem ser utilizados como ferramenta auxiliar no momento da 

seleção e contribuir para maior efetividade dos programas de melhoramento genético de 

bovinos de corte. É importante destacar que os GWAS devem ir muito além da 

identificação de regiões do genoma que estão associadas à característica de interesse. É 

necessário identificar os genes que estão localizados dentro e nas adjacências das regiões 

associadas à característica sob estudo e, se possível, identificar as rotas metabólicas que 

justificam a influência deste gene sobre a expressão do fenótipo a fim de acrescentar 

informações sobre o controle genético da característica. 
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2.3. Genes candidatos no melhoramento genético animal 

A maioria das características de interesse econômico em bovinos são quantitativas 

e geralmente com arquiteturas genéticas complexas (Tang et al., 2019). Até pouco tempo 

atrás, a seleção dos animais para tais características era baseada na obtenção e avaliação 

de parâmetros genéticos estimados basicamente por meio de informações de fenótipo e 

parentesco. Isso foi bem-sucedido, mas o processo é lento se a característica for 

mensurável em apenas em um sexo, após a morte ou no final da vida ou se o custo de 

mensuração for elevado (Goddard e Hayes, 2009).  

A rápida evolução e popularização das tecnologias relacionadas à genética 

molecular proporcionou o desenvolvimento de diversas abordagens aplicadas ao 

melhoramento genético animal, dentre elas a seleção genômica, proposta inicialmente por 

Mewissen et al. (2001) e os GWAS (Hayes et al., 2009; Bolormaa et al., 2010). Os 

benefícios promovidos pela seleção genômica, como por exemplo, a redução no intervalo 

de gerações, aumento da intensidade de seleção e da acurácia dos valores genômicos 

estimados (Goddard e Hayes, 2007) tem contribuído para a maior efetividade dos 

programas de melhoramento genético animal. 

Para que o melhoramento genético de característica complexas em animais 

domésticos seja mais eficiente, além da seleção genômica, seria vantajoso identificar 

genes que contribuem para o controle genético dessas características e selecionar animais 

portadores dos alelos desejáveis (Meuwissen e Goddard 1996, Ayuso et al., 2016). Assim, 

a abordagem de genes candidatos passou a ser aplicada aos estudos de várias 

características em várias espécies, na tentativa de elucidar sua base genética (Brown et 

al., 2013).  

Um gene candidato é qualquer gene que tenha sido identificado como variação 

subjacente em um fenótipo específico em um organismo e, portanto, pode influenciar um 
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fenótipo semelhante em outro organismo (Fitzpatrick et al., 2005). Genes podem ser 

candidatos posicionais, quando estão localizados em uma região cromossômica associada 

com a característica de interesse e/ou candidatos funcionais, quando estão envolvidos na 

via metabólica de interesse e codificam uma proteína que está relacionada com a 

característica fenotípica em estudo (Tizioto, 2014).  

O acesso à informação (bases públicas) de genes ligados a diversas funções em 

combinação com os métodos de priorização baseados em redes, possibilita caracterizar e 

associar determinados genes a um fenótipo de interesse. Estão, atualmente, disponíveis 

pacotes e servidores que atribuem índices de probabilidade para genes indicados por 

determinada palavra-chave (anotação funcional ou qualquer associação fenotípica) 

usando dados integrados dos principais repositórios de dados biológicos disponíveis ao 

público, como por exemplo o BIANA (Aguirre-Plans et al., 2019). Assim, é possível 

classificar ou priorizar a lista de genes proveniente do GWAS por similaridade da 

anotação funcional com o conjunto de genes provenientes das bases públicas. As 

pontuações de similaridade das características, obtidas por GO terms (termos de 

ontologia) individuais são combinadas em uma pontuação geral por meio de uma 

abordagem multivariada baseada na lógica fuzzy (difusa) e um valor p de cada anotação 

de um gene é obtido por amostragem aleatória de todo o genoma (Chen et al., 2009). 

Os estudos com genes candidatos funcionais têm sido aplicados, também, a 

questões antes pouco elucidadas a nível molecular, como por exemplo, a pleiotropia, 

previamente definida como o fenômeno em que um único gene controla mais de uma 

característica (Wright, 1968; He e Zhang, 2006; Paaby e Rockman, 2013). Dado que a 

pleiotropia é uma causa permanente da correlação genética entre características (Falconer 

e Mackay,1996), genes candidatos funcionais poderiam ser sugeridos como pleiotrópicos 

quando identificados para duas características geneticamente correlacionadas. 
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Uma associação significativa entre genótipos de cada um dos genes CAST 

(cromossomo 29) e CAPN4751 (cromossomo 7) para as características força de 

cisalhamento e índice de fragmentação miofibrilar em bovinos da raça Nelore foi 

verificada por Curi et al. (2009). Para o gene CAST o genótipo AA foi favorável em 

relação ao AG e conferiu uma redução de -0.42kgf/cm² para força de cisalhamento e um 

incremento de 7,83 para o índice de fragmentação miofibrilar. Já para o gene CAPN4751 

o genótipo CT heterozigoto foi favorável em relação ao TT homozigoto sendo que a 

substituição do alelo C por T provocou redução de -0.38kgf/cm² para força de 

cisalhamento e um incremento de 8,06 no índice de fragmentação miofibrilar. Os autores, 

sugeriram, portanto, a possibilidade de efeitos gênicos pleiotrópicos e, ou, desequilíbrio 

de ligação entre marcadores e polimorfismos funcionais em genes próximos.  

É importante ressaltar que considerar o estágio do desenvolvimento animal para 

determinadas características é de fundamental relevância para a consistência dos genes 

apontados como candidatos para uma mesma característica em uma mesma espécie. 

Características associadas ao crescimento, como por exemplo, o peso medido em 

diferentes idades, são influenciadas por uma complexidade de mecanismos metabólicos 

e fisiológicos (Owens et al., 1995). Por isso, é razoável que genes candidatos associados 

ao peso de bovinos não sejam os mesmos quando a característica é avaliada e diferentes 

idades (Campos et al.; 2019). Outro aspecto que deve ser considerado quando genes 

candidatos são sugeridos para características de crescimento em bovinos é o efeito da 

seleção sobre as estimativas dos componentes de variância e a precisão das predições dos 

valores genéticos (Kaps et al., 1999; Long et al., 1991; Schaeffer et al., 1997, Toral et al., 

2019), que pode refletir, também, sobre os genes candidatos associados a característica. 

Neste caso, alguns genes poderiam ser sugeridos não pela real associação com o fenótipo, 

mas sim pelos efeitos da seleção sobre a característica. 



 
 

 

32 
 

A aplicação do conhecimento de genes candidatos no melhoramento genético 

animal tem se tornado cada vez mais eficiente. Atualmente, alguns sumários das 

avaliações genéticas de touros trazem informação de alelos desejáveis em genes 

importantes, por exemplo, genes relacionados à proteína (Kappa-caseína, Beta-caseína e 

β-lactoglobulina) e percentual de gordura no leite (diacilglicerol O-aciltransferase 1- 

DGAT1) e às doenças hereditárias (Deficiência de Adesão Leucocitária Bovina- BLAD, 

Deficiência da Uridina Monofosfato Sintase- DUMPS e Complexo de Má Formação 

Vertebral - Silva et al., 2019).  

É importante ressaltar que a seleção ao nível de alelos favoráveis em genes 

específicos requer extenso estudo e validação. Após validação, o uso desses genes pode 

levar ao aumento do ganho genético uma vez que permite a seleção direcionada de 

animais portadores dos alelos desejáveis em genes que, de fato, participam do controle de 

um fenótipo importante. Esse incremento no ganho genético ocorre pela possibilidade de 

seleção dos animais, antes mesmo que estes expressem o fenótipo, o que leva a redução 

do intervalo de geração, além do aumento da intensidade de seleção e da acurácia dos 

valores genômicos. 
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3. GENES UNDERLYING GENETIC CORRELATIONS 

BETWEEN GROWTH, REPRODUCTION AND PARASITE 

BURDEN TRAITS IN BEEF CATTLE 

 

3.1. Abstract 

Genetic correlation is the outcome of linkage disequilibrium and/or pleiotropic genes. As 

such, identifying which genes take part in the genetic control of genetically correlated 

traits can help us better understand the relationship between economic traits and promote 

more efficient breeding programs. We aim to estimate the genetic correlations between 

growth, reproduction and parasite burden traits and to identify functional candidate genes 

(FCG) underlying these correlations. Six traits were evaluated, comprising two of growth 

(body weight - BW and average daily gain - ADG), one reproductive trait (scrotal 

circumference - SC) and three related to parasite burden (tick count - TICK, 

gastrointestinal nematode eggs per gram of feaces - GIN, and Eimeria spp. oocysts per 

gram of faeces - EIM). The genetic correlations were estimated using a multiple-trait 

model. A total of 21,667 SNP markers were used to perform a single-step GWAS and to 

identify genomic windows explaining at least 1% of the genetic variance for the studied 

traits. The posterior means and highest posterior density intervals of the genetic 

correlations were positive and of moderate magnitudes for the pairs of traits BW-ADG 

(0.64; 0.52, 0.76), BW-SC (0.38; 0.26, 0.50), BW-TICK (0.39; 0.25, 0.76), ADG-SC 

(0.27; 0.11, 0.43), and TICK-EIM (0.33; 0.12, 0.53). Only the pair ADG-EIM presented
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a negative correlation (-0.22; -0.39, -0.05). All the other pairs showed genetic correlations 

close to zero. Additionally, functional analyses were performed and FCGs were selected 

based on their roles in biological processes for each of the traits. The effects of the SNPs 

were calculated as a proportion of the genetic standard deviation. Seven FCGs 

(SLC16A4, KCNA2, LAMTOR5, DUSP10, MAP3K1, TPMT, and KIF13A) were 

identified for more than one trait. Regardless of the genetic correlation values (low to 

moderate), there were FCGs which could influence both correlated traits. There were 

SNPs mapped in FCGs that might be used to promote genetic improvement in multiple 

traits. There are common FCGs that might control production, reproduction and parasite 

burden traits in beef cattle and contribute to genetic correlation values. 

 

Key words: average daily gain, body weight, genome-wide association, Nellore, parasite, 

pleiotropy 
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3.2. Introduction 

Growth and reproduction traits are, in general, genetically correlated (Abreu et 

al., 2018; Boligon et al., 2010; Kluska et al., 2018) and are frequently used as selection 

criteria in beef cattle breeding programs. On the other hand, even though the genetic 

correlation between growth and parasite burden traits is known to be close to zero 

(Biegelmeyer et al., 2015), to include the latter in a selection index would be a good 

alternative, since the decrease in parasite burden can lead to better conditions for cattle 

growth (Simões et al., 2019). 

The genetic correlation between different traits can be quantified by models which 

allow for partitioning the correlation between phenotypes into genetic and residual 

correlations (Searle, 1961; Wright, 1968). The values of genetic correlations between 

important livestock traits have been widely used in animal breeding programs for the 

definition of selection criteria (Simões et al., 2019). However, little is known about which 

genes are underlying genetic correlation. 

Identifying genes which take part in the genetic control of complex traits for 

domestic animals would be advantageous to animal breeding programs, since animals 

which carry desirable alleles could hence be selected (Meuwissen and Goddard 1996, 

Ayuso et al., 2016). In addition, in genomic selection, higher SNP weights could be 

considered for those SNPs mapped close to or in FCGs underlying each specific trait or 

two correlated traits. Therefore, we aim to estimate the genetic correlations between 

growth, reproductive and parasite burden traits and to identify common functional 

candidate genes across the evaluated traits.  
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3.3. Materials and Methods 

Field management description 

Phenotype data of Nellore bulls born between 2001 and 2016 were used in this 

study. The bull calves were raised in pasture with the predominance of Urochloa genus 

grass, and the stocking rate on the pastures was of approximately 0.98 AU/ha. Mineral 

supplementation was provided ad libitum over the year. During the cow-calf phase, calves 

were kept with their dams on 30-hectare pastures and were weaned at approximately 205 

days of age. At weaning, management groups with 45 bulls on average were assembled 

and kept on the same pasture under the same rearing conditions. 

The experimental data were collected during performance tests at pasture, 

commonly starting in August and finishing in July of the following year. These 

performance tests lasted 294 days, comprising 70 days of adaptation and 224 days of test. 

During the performance test, all bulls from a single management group were kept under 

the same management conditions. The bulls were weighted at the beginning and the end 

of the adaptation period (70th trial day), which effectively corresponds to the beginning 

of the trial, but follow-up weighings were conducted every 56 days until the end of the 

test (test days 0, 70, 126, 182, 238 and 294). The data collected at the beginning of the 

test (day 0) were not taken into consideration. During the performance test at pasture, the 

management groups were rotated among different paddocks in order to offer similar 

rearing conditions for all individuals from the same birth season. A thorough description 

of the farm can be found in Passafaro et al. (2015). 
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Performance traits 

Two growth traits were considered for analyses, average daily gain (ADG) and 

body weight (BW), as well as a reproductive trait, scrotal circumference (SC) (Table 1). 

 

Table 3.1. Summary statistics for body weight at 550 days of age, average daily gain, 

scrotal circumference at 550 days of age and tick, gastrointestinal nematode and Eimeria 

spp. counts for each evaluated period 

Periods N° MG¹ N° of records Minimum Mean Maximum Sd² 

 Body weight (Kg) 

 121 4979 162.00 320.35 456.63 39.07 

 Average Daily Gain (Kg/day) 

 121 4979 -0.11 0.53 1.35 0.14 

 Scrotal circumference (cm) 

 122 4714 15.50 26.00 38.00 3.17 

 Tick 

First 48 1538 0 5.32 80 6.65 

Second. 40 

 

1209 0 9.09 131 11.31 

Third 48 1542 0 5.34 63 7.36 

Fourth 44 1453 0 6.22 80 8.20 

Fifth 48 1545 0 6.49 72 8.72 

 Gastrointestinal Nematodes 

First 48 1538 0 3.99 153 9.56 

Second. 40 1209 0 4.50 255 11.30 

Third 48 1542 0 3.39 284 13.18 

Fourth 44 1453 0 3.62 182 12.80 

Fifth 48 1545 0 3.29 328 13.93 

 Eimeria spp. 

First 48 1538 0 4.70 80 6.80 

Second. 40 1209 0 4.90 43 6.30 

Third 48 1542 0 5.76 80 7.63 

Fourth 44 1453 0 5.10 71 6.25 

Fifth 48 1545 0 4.21 73 6.20 

¹Nº MG = number of management groups; ²Sd = standard deviation 

 

The average daily gain was obtained through the equation: 

𝐴𝐷𝐺 = (𝐵𝑊𝐸𝑛𝑑 − 𝐵𝑊𝑆𝑡𝑎𝑟𝑡)/(𝐴𝑔𝑒𝐸𝑛𝑑 − 𝐴𝑔𝑒𝑆𝑡𝑎𝑟𝑡) 
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in which: 𝐵𝑊𝐸𝑛𝑑, represents the weight obtained at the final weighing (test day 294); 

𝐵𝑊𝑆𝑡𝑎𝑟𝑡 the animal weight obtained at the initial weighing (test day 70); 𝐴𝑔𝑒𝐸𝑛𝑑, the age 

at the end of the test, and 𝐴𝑔𝑒𝑆𝑡𝑎𝑟𝑡, the age at the beginning of the test. 

The evaluated weight was the one corresponding to the final weighing (trial day 

294) in which animals were 550 days old on average. Because age differences up to 90 

days are allowed in performance tests, the weight obtained on the day 294 was 

standardized for 550 days through the equation: 

𝐵𝑊550 = 𝐵𝑊𝑒𝑛𝑑 − 𝐴𝐷𝐺(𝐴𝑔𝑒𝑒𝑛𝑑 − 550)
, 

in which: 𝐵𝑊550 represents the standardized weight for 550 days old, and the remaining 

terms were as previously described in equation. The scrotal circumference considered for 

analyses was measured at the final weighing (weighing day 294). 

 

Parasite burden traits 

Data of tick infestation (TICK), as well as gastrointestinal nematodes (GIN) and 

Eimeria spp. (EIM) infection (Table 1) were collected between 2010 and 2017 during 

performance tests at pasture as previously described. All data collected between the 

beginning (day 70) and the end of the trial (day 294) were used, with a total of up to five 

counts per animal, performed every 56 days within the test period. 

Since the data used in the present study came from a farm with commercial 

purposes, parasite infestations occurred naturally, and our results were obtained based on 

the actual biological variability of the traits in pasture-raised cattle. In addition, 

approximately 65% of the bulls in the study were dewormed at weaning and at the 

beginning of the performance test. This procedure was always performed either in all 

individuals from the same management group or in none, using ivermectin at 4% (Master 

LP, Ouro Fino Saúde Animal, Cravinhos, SP) in a dose of 1 ml/50kg of body weight. No 
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preferential treatments were applied for defining the groups to be dewormed. In order to 

keep the parasitic load at non harmful levels for the bulls’ performance, management 

groups were rotated among different paddocks. 

Tick infestations (Rhipicephalus microplus) were evaluated following the method 

described by Wharton and Utech (1970), so that only counts of ingurgitated female ticks 

were registered (> 4.5 mm in length). Also, we must highlight that in the present study, 

only ticks on the whole right side of the animal were counted (Table 1). For GIN and EIM 

traits, samples of faeces were collected straight from the rectum of the bulls by using 

lubricated and identified plastic bags. The collected material was kept cold up to the 

moment of its laboratorial analysis, which was performed in the Laboratory of Parasitic 

Diseases of the Federal University of Minas Gerais (UFMG). This analysis consisted in 

counting GIN eggs and EIM oocysts following the modified Mac Master method (Ueno 

and Gonçalves, 1998). To perform the counts, 2g of faeces were diluted with 28 ml of 

drinking water. Then, after sifting the mixture, a 2 ml aliquot was mixed with 2 ml of 

saturated Sheater’s solution (500 g of sugar, 6.5 ml of phenol and 360 ml of water). The 

McMaster chamber, consisting of two slides separated by a 1.5 mm space, between which 

there are two count chambers of 1 cm² (Castilho et al., 1984), was filled with a 0.15 ml 

aliquot of the final solution and thereafter the egg and oocyst counts were performed using 

a light microscope at a 10 x magnification. 

All procedures and data collections were approved by The Ethics and Animal 

Experimentation Committee of the Universidade Federal de Minas Gerais (Protocol 

255/2010).  
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Genotypic database  

During the performance tests at pasture, samples of hair, blood or semen were 

collected for DNA extraction. A total of 1,230 bulls were genotyped through a low-

density panel (Z-chip) with approximately 30 thousand SNP markers. A Z-chip v2 

(Neogen, Lincoln, Nebraska, EUA) was especially built by its subsidiary Deoxi 

(Araçatuba, SP, Brazil) for the molecular genotyping of the Zebu cattle. 

Quality control of samples and markers was implemented through R/ SNPStats 

statistical package (Clayton, 2020). In the quality control of samples, those with call rate 

lower than 0.90, as well as duplicated records (correlation between samples > 0.95), were 

excluded. In the quality control of markers, only SNPs mapped in autosomal and X 

chromosomes, which presented GenCall (GC score) > 0.6, call rate > 0.95 and minor 

allele frequency (MAF) > 0.05, were considered. After editing, a total of 21,667 SNP 

markers (77.12%) and 1,075 samples (88.04%) were considered for analyses. 

 

Variance components 

In order to obtain the covariance estimates for BW, ADG, SC, TICK, GIN and 

EIM traits, they were grouped two by two and used as response variables for analyses 

through a two-trait animal model. Preliminary analyses were conducted in order to 

ascertain which fixed effects should be included in the model for each trait. For BW, 

ADG, TICK, GIN and EIM, the management group was included as a fixed effect. Within 

each management group, the age range did not exceed 96 days and only groups consisting 

of at least 7 bulls which were offspring of at least 3 distinct bulls were considered as 

having valid records. For SC, in addition to management group, the bulls’ age was also 

included as a covariable. For the parasite burden traits, in addition to the random additive 

and residual genetic effects, which were obtained too for the performance traits, the 
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permanent environmental effect was also estimated since each bull presented up to five 

repeated measurements taken over the performance test at pasture. Moreover, bulls 

presenting at least one count for the three parasites at the same moment (TICK, GIN, 

EIM) were considered. 

Because TICK, GIN and EIM traits do not have a normal distribution, a 

logarithmic transformation was performed: 

𝑇𝑟𝑎𝑖𝑡 = (log10(𝑇𝑟𝑎𝑖𝑡 + 1.001)), 

and its result was used as a response variable (Ayres et al., 2013). The constant 1.001 was 

included since some counts were equal to zero. Coefficients of asymmetry (-0.3-TICK; 

0.94-GIN and -0.19-EIM) and kurtosis (-1.0- TICK; -0.39- GIN and -1.1- EIM) were 

obtained and the normality of the residuals of the adjusted models was assumed (Ibelli et 

al., 2012; Mota et al., 2016). 

The multiple-trait model can be described in a matrix notation as: 

[
𝑦ℎ

𝑦ℎ´
~

] = [
𝑋ℎ 𝛷
𝛷 𝑋ℎ´

] [

𝛽ℎ
~

𝛽ℎ´
~

] + [
𝑍ℎ 𝛷
𝛷 𝑍ℎ´

] [

𝑎ℎ
~

𝑎ℎ´
~

] + [
𝑊ℎ 𝛷
𝛷 𝑊ℎ´

] [

𝑝ℎ
~

𝑝ℎ´
~

] + [

𝑒ℎ
~

𝑒ℎ´
~

] 

in which: ℎ and ℎ´ represent the different traits analyzed in the multiple-trait model; y
~

 

represents the vector of observations of the trait (BW, ADG, SC, TICK, EIM, GIN);  X, 

the incidence matrix of the systematic effects (management group for all traits and ages 

for SC);  𝛷, a null matrix;  𝛽
~

, the vector of solutions for the fixed effects;  Z, the incidence 

matrix of the direct additive genetic effects; a
~
, the vector of solutions for the direct 

additive genetic effects;   𝑊, the incidence matrix of the permanent environmental effects, 

𝑝
~

, the solution vector for the permanent environmental effects (only for parasite burden 

traits); and  e
~
, the vector of errors. 
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The following presuppositions were taken on for the effects included in the MULT 

model: [𝛽ℎ
~

𝛽ℎ´
~

]
t

~constant;  
t

t

´ 00
~ ~

A,G ~N( 0 0 ,G A)h ha a
 

  
, 

[𝑝ℎ
~

𝑝ℎ´
~

]
t
|P0~N([0 0]t,P0 ⊗ I) and  [𝑒ℎ

~
𝑒ℎ´

~
]

t
|R0~N([0 0]t,R0 ⊗ I), in which A 

represents the additive genetic relationship matrix between animals (10.541);  𝐺0, the 

matrix of additive genetic covariances between traits so that 𝐺0 = [
𝜎𝑎11

2 𝜎𝑎12
2

𝜎𝑎21
2 𝜎𝑎22

2 ]; N refers 

to normal distribution; ⊗ is the direct product operator between matrices; 𝑃0  is the matrix 

of permanent environmental for traits 𝑃0 = [
𝜎𝑃11

2 𝜎𝑃12

𝜎𝑃21
𝜎𝑃12

2 ], considering that just the parasite 

burden traits had permanent environmental effects adjusted for those; 𝑅0 is the matrix of 

residual variances for traits so that 𝑅0 = [
𝜎𝑒11

2 𝜎𝑒12

𝜎𝑒21
𝜎𝑎12

2 ]; and I is an identity matrix of order 

equal to the number of observations. 

Inverted Wishart distributions were assumed for the covariance matrices (2 x 2) 

G0(G0~IW(Σa

2
,n

a
)), P0(P0~IW(ΣP

2
,n

P
)) and R0(R0~IW(Σe

2
,n

e
)), where: Σa

2, Σ𝑝
2 ,  Σe

2 , na, and ne 

represent the inverted Wishart distribution’s hyperparameters. Information on full 

conditional posterior distributions was previously published by Sorensen and Gianola 

(2002). 

Samples with full conditional posterior distributions were obtained through the 

Gibbs sampler using the software GIBBS3F90 (Misztal et al., 2014). Chains of 1100 000 

iterations were considered, with a burn-in of 100000 iterations and samplings at every 

100 iterations. The chain size was determined in a preliminary analysis following the 

method described by Raftery and Lewis (1992), available in the BOA package (Smith, 
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2005). The convergence of chains was evaluated through the criterion proposed by 

Geweke (1991) available in the same package, through inspection of the sampled values. 

 

Genome-wide Association Study (GWAS) 

The single-trait model was applied for each trait in analyses performed with only 

phenotype and pedigree information. Afterwards, the variance components obtained in 

these analyses were fixed and the genomic breeding values and the SNP solutions were 

obtained through the single-step genomic BLUP method (ssGBLUP- (Aguilar et al., 

2011, 2010; Misztal et al., 2009)) and ssGWAS (genome-wide association study using a 

single-step BLUP (Vitezica et al., 2011; Wang et al., 2012)). In the single-trait model, we 

included the same fixed and random effects previously described for the multiple-trait 

model for each of the traits. They can be described in a matrix notation as: 

𝑦
~

= 𝑋𝛽
~

+ 𝑍𝑎
~

+ 𝑊𝑝
~

+ 𝑒
~

 

where y
~

 represents the vector of observations; X is the incidence matrix of the systematic 

effects; β
~

 is the solution vector for the systematic effects; Z is the incidence matrix of the 

individual genetic effects; a
~
 is the solution vector for the individual genetic effects; W is 

the incidence matrix of the individual permanent environmental effects (only for TICK, 

GIN and EIM traits); p
~

 is the solution vector for the individual permanent environmental 

effects (only for TICK, GIN and EIM traits); and e
~
 is the vector of errors. 

Flat-type a priori distributions were assumed for β
~

 (β
~

~constant); normal 

distributions were assumed for a
~

 (a
~
|A,σa

2~N(0,Aσa
2)), p

~

 (p
~

|σp
2~N (0,Iσp

2)) and 

e
~

 (e
~
|σe

2~N(0,Iσe
2)); scaled inverse chi-squared distributions were assumed for 
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σa
2  (σa

2~χ−2(va,Sa
2)), σp

2 (σp
2~χ−2 (vp,Sp

2)) and σe
2  (σe

2~χ−2(ve,Se
2)); where A is the 

relationship matrix, I is an identity matrix of order equal to the number of animals with 

data, I is an identity matrix of order equal to the number of observations, and va, vp, ve, 

Sa
2
, Sp

2
 and Se

2
 are the hyperparameters of the scaled inverse chi-squared distributions. 

Information on full conditional distributions was previously published by Sorensen and 

Gianola (2002).  

To estimate the genomic breeding values, the following covariance matrix of 𝑎, 𝑝 

and 𝑒 was used: 

var [
𝑎
𝑝
𝑒

] = [

𝐻𝜎𝑎
2 0 0

0 𝑊𝜎𝑝
2 0

0 0 𝐼𝜎𝑒
2

], 

where, 𝜎𝑎
2, 𝜎𝑝

2 and 𝜎𝑒
2 are the components of additive genetic, permanent environment 

and residual variances for each trait, respectively; 𝐼 and 𝑊 are identity matrices; and 𝐻, 

the relationship matrix comprising information of genotyped and non-genotyped animals, 

as described by Aguilar et al. (2010), in which the inverse of H can be described as: 

𝐻−1 = 𝐴−1 + [
0 0
0 𝐺−1 − 𝐴22

−1], 

where 𝐴−1 represents the inverse of the additive relationship matrix; 𝐴22
−1, the inverse of 

the additive relationship matrix considering only genotyped animals; 𝐺−1, the genomic 

relationship matrix estimated according to VanRaden et al. (2009). Subsequently, the 

estimated breeding values for genotyped young bulls (GEBV) were converted to SNP 

effects, and the equation for predicting SNP effects was as described in Wang et al. 

(2012). The analyses were performed using Gibbs sampling with the software 

GIBBS3F90 (Misztal et al., 2014). The chain length, discard and sampling were the same 

as those used in the multiple-trait analyses, as well as the adopted convergence criterion. 
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Additionally, the genomic breeding values were predicted with BLUPF90 (Misztal et al., 

2014) and the effects of SNPs were calculated with POSTGSF90 (Wang et al., 2012). 

The results of GWAS were described as the proportion of variance explained by genomic 

windows with approximately 0.5 Mb. In this approach, adjacent SNPs within 0.5Mb were 

used, and their variance was assumed for obtaining the total variance of the window. 

Additionally, only non-overlapping windows which explained at least 1% of the additive 

genetic variance were considered, avoiding a double count. 

 

Identification of positional and functional candidate genes 

In order to recover the positional candidate genes inserted within the windows that 

explained at least 1% of the additive genetic variance, we used the R/GALLO package 

(Fonseca et al., 2020) considering the latest assembly of the bovine genome ARS-

UCD1.2. 

The analysis of prioritization of candidate genes was conducted using the 

softwares GUILDify 2.0 (Aguirre-Plans et al., 2019) and ToppGene (Chen et al., 2009). 

First, a list of training candidate genes associated with key-words (Table S1) was obtained 

for each of the six traits by using GUILD framework (Guney and Oliva, 2012) to 

determine the relevance of known gene products related to the given keywords. The gene 

products were searched at BIANA knowledge base and used to construct a species-

specific network (for the present study we used Homo sapiens as model species). Then, 

by using a prioritization algorithm based on the network topology for classifying the 

genes, the top-100 classified genes obtained in this analysis were used to build a list of 

trained genes. 

Further, this list of trained genes was taken to the software ToppGene (Chen et 

al., 2009) together with the list of positional candidate genes recovered through the 
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R/GALLO package (Fonseca et al., 2020). The software ToppGene- Gene Prioritization 

(Chen et al., 2009) was used to perform a prioritization analysis based on annotations, 

through a multivariate approach based on fuzzy (diffuse) logic. The functional 

information shared by the list of trained genes and the list of positional candidate genes 

was used to perform a multivariate analysis. These functional data were recovered from 

the following sources: terms of gene ontology; molecular function; biological process; 

cell component; human and mouse phenotypes; metabolic pathways; works in Pubmed; 

Transcription factor binding site; coexpression and disease patterns. By using 

statistics of meta-analysis, p-values were obtained through random sampling of 5000 

genes from the whole genome for each annotation information, and then combined into a 

global p-value. A false discovery rate (FDR) of 5% for multiple correction (p-value ≤ 

0.05) was considered and the genes with p-values ≤ 0.05 were shown as functional 

candidate genes. 

To evaluate the relationship between additive genetic correlations and important 

genomic regions associated with a pair of traits, we considered only SNPs that were 

mapped in each FCG interval. Also, we converted the SNP effects into a proportion of 

genetic standard deviations, which allowed the evaluation of the differences between SNP 

effects at the same scale.   
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3.4. Results 

The additive variance obtained by the single-trait analysis for BW, ADG, SC, 

TICK, GIN and EIM were 168.06, 0.13 × 10−2, 2.30, 1.24 × 10−2, 0.70 × 10−2 and 2.19 × 

10−2, respectively (Table 2). The heritability values for the growth and reproductive traits 

were moderate for BW (0.23) and SC (0.41) and low for ADG (0.15). Also, for all parasite 

burden traits TICK (0.11), GIN (0.06) and EIM (0.16) the heritability values were low. 

 

Table 3.2. Posterior means and highest posterior density intervals1 with 90% of samples 

(in brackets) for genetic (𝝈𝒂
𝟐), permanent environment (𝝈𝒑𝒆

𝟐 ), residual (𝝈𝒆
𝟐) and 

phenotypic variance (𝝈𝒑
𝟐) and heritability (h²) for body weight (BW), average daily gain 

(ADG), scrotal circumference (SC) and log10(𝑐𝑜𝑢𝑛𝑡 + 1.001) of tick (TICK), 

gastrointestinal Nematodes (GIN) and Eimeria spp (EIM) in Nellore cattle 

𝝈𝒂
𝟐 𝝈𝒑𝒆

𝟐  𝝈𝒆
𝟐 𝝈𝒑

𝟐 h² 

BW 

168.06 

(121.70; 220.10) 

- 559.83 

(518.00; 604.00) 

727.89 

(696.90; 759.00) 

0.23 

(0.17; 0.30) 

ADG¹ 

0.13 

(0.09;0.19) 

- 0.73 

(0.68; 0.78) 

0.86 

(0.82; 0.90) 

0.15 

(0.10; 0.21) 

SC 

2.30 

(1.82; 2.83) 

- 3.30 

(2.98; 3.67) 

5.60 

(5.32; 5.87) 

0.41 

(0.33; 0.49) 

TICK¹ 

1.24 

(0.55; 1.92) 

1.74 

(1.15; 2.32) 

7.83 

(7.54; 8.14) 

10.81 

(10.40; 11.26) 

0.11 

(0.05; 0.17) 

GIN¹ 

0.70 

(0.34; 1.11) 

0.67 

(0.31; 1.04) 

9.67 

(9.31; 10.03) 

11.05 

(10.66; 11.43) 

0.06 

(0.03; 0.09) 

EIM¹ 

2.19 

(1.34; 3.12) 

1.53 

(0.80; 2.23) 

9.86  

(9.49; 10.23) 

13.59 

(13.01; 0.22) 

0.16 

(0.10; 0.22) 
¹Trait x102 
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The posterior means of the additive genetic correlations showed moderate 

magnitudes and were positive between BW-ADG, BW-SC, BWTICK, ADG-SC and 

TICK-EIM but negative between ADG-EIM (Figure 1). For all the remaining pairs of 

traits, the high posterior density (HPD) intervals included zero (Figure 1). 

 

 

Figure 3.1. Posterior means and lower and upper limits of the high posterior density 

intervals (HPD), of additive genetic correlations between body weight at 550 days of age 

(BW), average daily gain (ADG), scrotal circumference at 550 days of age (SC) and 

log10(count + 1.001) of ticks (TICK), gastrointestinal nematodes eggs (GIN) and 

Eimeria spp. oocysts (EIM) in Nellore cattle.  

 

An average of 3,538 genomic windows with up to 82 SNP markers each were 

built throughout the 29 autosomal and X chromosomes (chr.) considered for analysis. We 

verified genomic windows that explained at least 1% of the additive genetic variance in 
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the chromosomes 3, 15, 16, 17, 18, 20, 21 and 23 (Figure 2) for the six traits. Moreover, 

two (chr. 3 and 23), three (chr. 3, 16 and 20), one (chr. 3), one (chr. 20), two (chr. 20 and 

21), and five (chr. 3, 15, 16, 20 and 23) genomic windows explained at least 1% of the 

total additive genetic variance for BW, ADG, SC, TICK, GIN and EIM, respectively 

 

 

 
Figure 3.2. Manhattan plots for percentage of variance explained by genomic windows 

(0.5Mb adjacent SNPs) for body weight at 550 days of age (BW), average daily gain 

(ADG), scrotal circumference at 550 days of age (SC) and log10(count +1.001) of tick 

(TICK), Eimeria spp. (EIM) and gastrointestinal nematodes (GIN). 

 

The size of the windows which explained at least 1% of the additive genetic 

variance varied from 0.35Mb to 0.49Mb and contained between 15 and 82 SNPs (Table 

3). The genomic window present in chromosome 3 was the one that could explain the 

greatest percentage of additive genetic variance, representing 2.63%, 3.99%, 3.32% and 

7.81% of the variance for BW, ADG, SC and EIM, respectively (Table 3). For TICK, the 

highest percentage of additive genetic variance was explained by the window located in 

the chromosome 20, representing 1.59% of the total additive genetic variance (Table 3). 
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For GIN, the genomic window located in the chromosome 21 explained the highest 

percentage (2.78%) of additive genetic variance (Table 3). 

 

Table 3.3. Description of genomic windows which explained at least 1% of variance for 

body weight, average daily gain, scrotal circumference and log10(count + 1.001) of tick, 

gastrointestinal Nematodes and Eimeria spp. in Nellore cattle 

Chr Poss Pose Size SNPs %Var 

Body Weight 

3 32676738 33110685 433947 82 2.63 

23 39323760 39680863 357103 51 1.20 

Average daily gain 

3 32676738 33110685 433947 82 3.99 

20 22126973 22480484 353511 43 2.18 

16 24919996 25374981 454985 46 1.56 

Scrotal Circunference 

3 32727140 33224436 497296 79 3.32 

Tick  

20 21946439 22423318 476879 56 1.59 

17 56171681 56663231 491550 19 1.18 

18 64937253 65401508 464255 26 1.02 

Gastrointestinal Nematodes 

21 56675767 57165861 490094 50 2.78 

20 22126973 22480484 353511 43 1.55 

Eimeria spp. 

3 32676738 33110685 433947 82 7.81 

16 24913318 25374981 461663 47 3.70 

23 39148251 39639650 491400 51 2.30 

20 21946439 22423318 476879 56 1.62 

15 23650235 24099827 449592 41 1.51 

17 56464616 56962591 497975 15 1.23 

Chr = Chromosome; Poss = start position in base pair of the window; Pose = end position 

in base pair of the window; SNPs = number of SNPs within of the window; %Var = 

percentage of genetic variance explained for the window 

 

Eight, 7, 5, 5, 4 and 14 positional genes were recovered within the windows which 

explained at least 1% of the additive genetic variance for BW, ADG, SC, TICK, GIN and 

EIM, respectively, (Figure 3). In addition, 4 (SLC16A4, KCNA2, TPMT and KIF13A), 

4 (LAMTOR5, KCNA2, DUSP10 and MAP3K1), 2 (LAMTOR5 and KCNA2), 1 
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(MAP3K1), 3 (MAP3K1, TRIP11 and SLC24A4) and 9 (SLC16A4, LAMTOR5, 

KCNA2, NCAM1, DUSP10, MAP3K1, TPMT, KIF13A and DEK) genes had functional 

information recovered from the trained list through GUILDify 2.0 and ToppGenes 

(ToppGene - Gene Prioritization) for BW, ADG, SC, TICK, GIN and EIM, respectively, 

and they were also chosen as FCGs for each of these traits (Figure 3). 

 

 

Figure 3.3. Positional and functional candidate genes for body weight at 550 days of age 

(BW), average daily gain (ADG), scrotal circumference at 550 days of age (SC) and 

log10(count + 1.001) of tick (TICK), Eimeria spp. (EIM) and gastrointestinal 

nematodes (GIN).  

 

Furthermore, seven FCGs had functional effects over more than one trait (Figure 

3). The genes KCNA2, LAMTOR5, SLC16A4 (BW, ADG, SC and GIN) and MAP3K1 

(ADG, TICK, GIN and EIM) were connected to four different traits, being followed by 
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the genes DUSP10 (ADG and EIM) KIF13A and TPMT (BW and EIM) which were 

associated with two different traits. In general, the pairs of traits with genetic correlation 

values different from zero (Figure 1) shared at least one FCG, except the pair BW-TICK. 

For three trait pairs (BW-GIN, SC-TICK, SC-GIN), when the genetic correlation was not 

different from zero (when zero is included in HPD) there were no FCGs associated with 

both traits in the pair. On the other hand, the majority of trait pairs that presented genetic 

correlation values very close to or equal to zero (BW-GIN, BW-EIM, ADG-TICK, ADG-

GIN, SC-TICK, SC-GIN, SC-EIM, TICK-GIN and GINEIM) had FCGs found for both 

traits of the pair. 

The solution of the SNPs, presented as a proportion of the standard deviation 

(Figure 4 and table S2), showed that there were SNPs mapped in FCGs that promoted a 

significant improvement in both traits of a pair, for example, the Hapmap40909-BTA-

121580SNP linked with KCNA2, which simultaneously promoted an increase in BW, 

ADG and SC and a decrease in the EIM parasite burden trait. 
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Figure 3.4. Differences in SNP effects, in genetic standard deviations (sd), according to 

each trait, body weight at 550 days of age (BW), average daily gain (ADG), scrotal 

circumference at 550 days of age (SC) and log10(count + 1.001) of tick (TICK), 

gastrointestinal nematode (GIN) and Eimeria spp. (EIM).  
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3.5. Discussion 

The variance components and the heritability values were similar to those 

available in the literature for growth and reproduction traits (Boligon et al., 2010), as well 

as for tick burden (Biegelmeyer et al., 2017). As in most traits of economic interest for 

beef cattle, the largest part of the phenotypic variance was explained by the environmental 

variance, which reflects low to moderate heritabilities. 

The genetic correlation, which is a populational parameter based on genetic 

variants (Ni et al., 2018), could happen due to QTLs that have pleiotropic effects on 

multiple traits or due to closely linked QTLs, each one affecting different traits (Bolormaa 

et al., 2011). Previous studies associated the genetic correlations with sets of loci shared 

between traits (Carey, 1988; Falconer and Mackay, 1996), findings that are corroborated 

by our results, because we found that most pairs of genetically correlated traits showed 

the same FCG for both traits. On the other hand, a low genetic correlation can arise even 

when the same genes are involved in two traits (Carey, 1988) as found in our results, in 

which pairs of traits that presented genetic correlation values that were not significantly 

different from or close to zero also had FCGs in common. 

Thus, we suggest that independently of the genetic correlation values (low-

medium-high) there are FCGs that influence production, reproductive or parasite burden 

traits in beef cattle concurrently, and that they probably have pleiotropic effects. It is 

reasonable to expect a negative genetic correlation between traits of growth and parasite 

burden. However, a positive genetic correlation between BW and TICK (0.39) was 

surprisingly seen in our results, conceivably suggesting that an increase in body weight 

would result in an increase in the tick burden. Positive correlations between tick burden 

and body weight in yearlings were found by Porto Neto et al., 2011 for Tropical 

Composite cattle. In addition, Rocha et al. (2019) suggested that larger animals have a 
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wider skin surface with a denser vasculature contributing to higher tick burden in heavier 

animals. We believe it is possible that in our study there was an indirect selection for the 

reduction of the tick burden by the farmer, because they are visible to the naked eye. 

Therefore, we believe that if there were an effective selection for the resistance and the 

reduced tick burden, this selection could have been responsible for the positive 

correlation. On the other hand, for GIN and EIM, there may have been no selection 

because these parasites are not visible to the naked eye, or they were not measured in 

breeding programs. Therefore, the genetic correlation between them and productive traits 

was low or negative. 

It should be highlighted that the direction of the SNP effects which were 

associated with FCGs can be considered in selection processes to promote better 

responses to selection in animal breeding. Thus, greater attention should be given to SNPs 

which present positive effects on growth or reproduction traits and negative effects on 

parasite burden simultaneously, since these SNPs can be linked and assigned to real 

causal variants that influence both traits. 

 

Functional Enrichment -Chromosome 3 

Three FCGs were identified on chromosome three (LAMTOR5, SLC16A4, and 

KCNA2). These genes were associated with four traits, comprising growth (BW and 

ADG), reproduction (SC) and parasite burden (EIM). The LAMTOR5 gene (Late 

Endosomal/Lysosomal Adaptor, MAPK and MTOR Activator 5) is associated with the 

regulation of TLR4 intracellular fate and immune homeostasis (Zhang et al., 2019). 

Toll-like receptors (TLRs) are components that recognize conserved structures in 

pathogens and their function is associated with how the body recognizes a pathogen 

invasion, triggers innate immune responses and assembles an antigen-specific adaptive 
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immune response (Kawai and Akira, 2010). TLR4 is distinguished by its ability to 

recognize a variety of exogenous and endogenous agents and activates different signaling 

pathways depending on its cellular localization (Brubaker et al., 2015). A homeostatic 

function was suggested for LAMTOR5, specifically one of coupling pathogen insults and 

nutrient availability to optimize the inflammatory response, and its function might have 

implications for TLR4-associated inflammatory and metabolic disorders (Zhang et al., 

2019). Besides the immune responses, the LAMTOR5 gene was also appointed as a 

candidate gene for weight gain adjusted for 345 days of age for Hereford and Braford 

beef cattle (Campos et al., 2019). 

The SLC16A4 gene (Solute Carrier Family 16 Member 4) was also appointed as 

a candidate gene for post-weaning gain adjusted for 345 days of age for Hereford and 

Braford beef cattle (Campos et al., 2019). This gene is a member of the SLC16 gene 

family, known as monocarboxylate transporters and, in humans, the product of SLC16A4 

is found mainly in the brain, muscle, liver, kidneys, lungs, ovaries, placenta and heart 

(Halestrap, 2013). In salmonid fish, the activity of this gene was shown to be influenced 

by a parasite infestation (Tetracapsuloides bryosalmonae) in a transcriptomics study 

(Sudhagar et al., 2019). In cattle, MTC5, which is an isoform of SLC16A4, was detected 

in both cortex and medulla of the adrenal glands, and even though these glands are 

associated with the metabolism of carbohydrates, fats and proteins, as well as with stress 

response and reproduction, few studies have been conducted on MCT5 in cattle (Kirat et 

al., 2009). Considering that the product of this gene is distributed among important body 

organs and a fundamental gland in bovines, even though our findings appointed this gene 

as a FCG for important animal traits (BW, ADG, SC and EIM), it is important to validate 

its activity in larger animal populations to improve our understanding about the genetic 

control of this gene over growth and parasite burden traits. 
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The KCNA2 gene (Potassium Voltage-Gated Channel Subfamily A Member 2) 

belongs to the voltage-gated potassium channel family and its main biological function is 

to maintain the membrane potential and to modulate electrical excitability in neurons and 

muscle cells (Gutman et al., 2005). But as for animal performance and parasite burden 

traits, we have not found any associations described in the literature 

 

Chromosome 16 

The DUSP10 gene (dual specificity phosphatase 10), identified on chromosome 

16, was a FCG for the traits ADG and EIM. In a Simmental beef cattle population, a 

significant association was shown between a SNP for carcass weight and the DUSP10 

gene (Chang et al., 2018). Also, previous studies associated this gene with infections by 

Mycobacterium bovis (Meade et al., 2008) and Mycobacterium avium ssp. (Kiser et al., 

2018). Our results corroborate the findings in the literature, which suggest that the 

DUSP10 gene is associated with traits of growth and infection by parasites. 

 

Chromosome 20 

The MAP3K1 gene (Mitogen-activated protein kinase 1), identified on 

chromosome 20, was pointed out as a FCG mainly for parasite burden traits (TICK, GIN 

and EIM), but it also encodes a TLR family protein (Slawinska et al., 2011), previously 

characterized for LAMTOR5. A study in dairy cattle associated MAP3K1 with mastitis 

(Li et al., 2015). In chicken, it was suggested to be included in follow-up studies on model 

genetic networks of innate humoral immune response (Slawinska et al., 2011). Similarly, 

MAP3K1 was also appointed as a FCG for a growth trait (ADG), and it was associated 

with the marbling score in cattle (Ryu and Lee, 2016, 2014). Since previous studies 

related the MAP3K1 gene with the capacity of organisms to respond to different stressor 
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stimuli such as parasite infections, and to traits associated with growth in cattle, it is 

reasonable to suggest that this gene influences four different traits (ADG, TICK, GIN and 

EIM), which were associated in the present study, and that it might be a FCG to more 

than one trait. 

 

Chromosome 23 

Two FCGs (KIF13A and TPMT) associated with a growth trait (BW) and a 

parasite burden trait (EIM) were found in chromosome 23. The KIF13A gene (Kinesin-

like protein) is highly expressed in all regions of the central nervous system and its 

transcripts are present in several tissues, with a higher expression in the pancreas, kidneys 

and placenta  (Jamain et al., 2001). In a study with buffalos, it was suggested that this 

gene may be involved in the regeneration of the immune function (Singh et al., 2019); 

and this gene also was associated with body weight in Landrace pigs (Lee et al., 2018). 

Also, the TPMT gene (Thiopurine S-methyltransferase) was associated with porcine 

infections by Streptococcus suis, and it was suggested by the authors to be a candidate 

gene that may influence either the susceptibility to parasites or the parasite burden in pigs 

(Gaur et al., 2014). 

In general, our results corroborate the current literature, which support the 

hypothesis that a single gene may take part in the genetic control of different traits. 

However, the literature findings did not always correspond to beef cattle, the focus of the 

present work. Therefore, it is necessary to validate these findings to each gene in each 

trait in both larger populations of Nellore cattle and other bovine breeds to improve the 

understanding about the control of genetic correlations and the architecture of growth, 

reproductive and parasite burden traits in cattle, especially concerning the functional 

candidate genes studied in the present work. In the short term, we suggest that higher 
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weights may be applied for the SNPs mapped in the FCGs identified by the present study 

when a genomic selection is performed for the same traits evaluated here. 

Finally, we would like to emphasize that a high parasite infection leads to severe 

production losses, especially in tropical climate countries, where conditions for parasite 

proliferation are favorable. Therefore, despite the moderate magnitude of genetic 

correlation between performance and parasite burden traits, the identification of genes 

that can simultaneously control both parasite burden and performance traits highlight the 

need to evaluate more thoroughly selection criteria related with parasite burden in beef 

cattle breeding programs. 
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3.6. Conclusion 

There are common functional candidate genes (SLC16A4, KCNA2, LAMTOR5, 

DUSP10, MAP3K1, TPMT, and KIF13A) that control growth, reproductive and parasite 

burden traits in beef cattle and contribute to genetic correlation values. 
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3.7. Supplementary Material 

Table S3.1. Keywords used on GUILDify to retrieve the trained list of genes for body 

weight, average daily gain, scrotal circumference and 10log (count 1.001)  of tick, 

gastrointestinal Nematodes and Eimeria spp. in Nellore cattle 

Trait Used keywords 

Body weight Body weight, protein, muscle, obesity, growth and 

growth factors 

Average daily gain Weight gain, protein, muscle, obesity, growth and 

growth factors 

Scrotal circumference Scrotal circumference, fertility, infertility and sperm 

Tick Immunity, immune response, inflammation, 

ectoparasite, cytokines and tick 

Gastrointestinal Nematodes Immunity, immune response, inflammation, 

endoparasite, cytokines and nematodes 

Eimeria spp. Immunity, immune response, inflammation, 

endoparasite, cytokines and Eimeria 
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Table S3.2. SNP name, allele frequency and SNP effect, in genetic standard deviation, for body weight at 550 days of age (BW), average daily 

gain (ADG), scrotal circumference at 550 days of age (SC) and 10log (count 1.001)  of tick (TICK), gastrointestinal nematode (GIN) and Eimeria 

spp. (EIM). 

SNP Name Allele Frequency SNP effect (genetic SD) 

 Common Rare BW ADG SC TICK GIN EIM 

Chr3 – KCNA2 

Hapmap40909-BTA-121580 1041 (A) 34 (G) 3.1x10-3 5.4x10-7 1.5x10-3   -3.6x10-4 

Chr3-LAMTOR5 

BovineHD0300010331 1030 (A) 45 (G)  5.4x10-5 4.4x10-3   6.7 x10-4 

Chr3- SLC16A4 

BovineHD0300010335 715(A) 360 (G) -1.8x10-2     -9.4x10-4 

BovineHD0300010336 905 (A) 170 (G) 1.8x10-2     9.4x10-4 

BovineHD0300010337 1011 (A) 64 (G) 2.6x10-2     6.4x10-4 

BovineHD0300010338 905 (A) 170 (C) 1.8x10-2     9.4x10-4 

BovineHD0300010341 617 (G) 458 (A) -2.6x10-2     -6.4x10-4 

BovineHD0300010342 1049 (A) 26 (G) -7.3x10-3     2.8x10-4 

Chr16- DUSP10 

BovineHD1600007202 735 (A) 340 (C)  4.5x10-5    -8.9x10-4 

BovineHD1600007203 872 (A) 203 (G)  4.1x10-5    -1.1x10-3 

BovineHD1600007204   864 (A) 211 (C)  4.9x10-5    -1.5x10-4 

BovineHD1600007205 1067 (A) 8 (G)  1.7x10-5    -4.1x10-4 

BovineHD1600007206 850(G) 225 (A)  -1.8x10-5    4.1x10-4 

BovineHD1600007207 1024 (A) 51 (G)  1.1x10-5    -2.1x10-4 

BovineHD1600007208 618 (C) 457 (A)  4.1x10-5    -6.3x10-4 

BovineHD1600007209 792 (A) 283 (G)  -1.2x10-4    -7.4x10-4 

BovineHD1600024421 615 (T) 460 (C)  4.6x10-5    1.2x10-3 
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BTA-38177-no-rs  890 (A) 185 (C)  -5.6x10-5    8.6x10-4 

Hapmap53517-rs29024619  800 (G) 275 (A)  -5.3x10-5    2.1x10-4 

Chr20- MAP3K1 

BovineHD2000006722 654 (A) 421 (C)  -3.4x10-5  6.2x10-5 -2.2x10-4 -3.7x10-4 

BovineHD2000006729 944 (G) 131 (A)  -2.0x10-5  2.9 x10-5 2.0x10-5 1.7x10-5 

BovineHD2000006730 873 (A) 202 (G)  5.3x10-5  -8.5x10-5 1.6x10-4 2.4x10-4 

BovineHD2000006731 1072 (A) 3 (G)  1.6x10-5  -3.7x10-5 -3.2x10-5 -1.5x10-4 

BovineHD2000006735 884 (A) 191 (G)  4.3x10-5  -9.2x10-5 2.1x10-4 2.8x10-4 

BovineHD2000006736 1069 (A) 6 (G)  1.9x10-5  -3.5x10-5 -1.8x10-5 -2.0x10-5 

BovineHD2000006738 729 (A) 346 (C)  -4.4x10-5  9.2x10-5 -1.9x10-4 -2.7x10-4 

Hapmap43594-BTA-50052 777 (G) 298 (A)  9.8x10-6  1.5x10-4 -1.1x10-5 3.5x10-4 

Chr23- KIF13A 

ARS-BFGL-NGS-87354 726 (G) 349 (A) 2.1x10-2     -6.8x10-5 

BovineHD2300011352 790 (G) 285 (A) -1.0x10-2     -6.8x10-4 

BovineHD2300011353 790 (G) 285 (A) -1.0x10-2     -6.9x10-4 

BovineHD2300011354 731 (B) 352 (A) 2.2x10-2     -6.8x10-3 

BovineHD2300011355 790 (G) 285 (A) -1.0x10-2     -6.8x10-4 

BovineHD2300011357 1056 (A) 19 (G) 1.0x10-2     6.7x10-4 

BovineHD2300011358 1056 (A) 19 (C) 1.0x10-2     -6.7x10-4 

BovineHD2300011359 1034 (A) 41 (G) -1.8x10-2     -8.0x10-5 

BovineHD2300011360 789 (C) 286 (A) -1.0x10-2     -6.7x10-4 

BovineHD2300011361 790 (G) 285 (A) -1.1x10-2     -6.9x10-4 

BovineHD2300011362 788 (G) 287 (A) -1.0x10-2     -6.9x10-4 

BovineHD2300011363 1046 (A) 29 (C) 1.6x10-2     5.9x10-4 

BovineHD2300011364 736 (G) 339 (A) -1.7x10-2     -6.0x10-4 

BovineHD2300011366 1038 (A) 37 (G) 1.7x10-2     4.2x10-4 

BovineHD2300011368  694 (G) 381 (A) -1.7x10-2     -4.3x10-4 

BovineHD2300011369 694 (G) 381 (A) -1.7x10-2     -4.3x10-4 

BovineHD2300011370 581 (A) 494 (G) 1.1x10-2     -6.3x10-4 

BovineHD2300011371 694 (C) 381 (A) -1.7x10-2     -4.3x10-4 
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BovineHD2300011373  694 (C) 381 (A) -1.8x10-2     -4.3x10-4 

BovineHD2300011374 1059 (A) 16 (G) -1.8x10-2     1.9x10-4 

BovineHD2300011375 1044 (A) 31 (G) 1.3x10-2     5.6x10-4 

BovineHD2300011378 1044 (A) 31 (G) 1.3x10-2     6.2x10-4 

BovineHD2300011379 1044 (A) 31 (G) 1.3x10-2     6.0x10-4 

BovineHD2300011380 1044 (A) 31 (C) 1.3x10-2     6.2x10-4 

BovineHD2300011381 1044 (A) 31 (G) 1.3x10-2     6.2x10-4 

BovineHD2300011384 698 (G) 377 (A) 1.8x10-2     7.0x10-5 

BovineHD2300011385 1034 (A) 41 (C) -1.7x10-2     7.0x10-5 

BovineHD2300011386 968 (A) 94 (C) 9.2x10-3     9.4x10-3 

BovineHD2300011388 1046 (A) 29 (G) 1.6x10-2     5.9x10-4 

BovineHD2300011397 652 (A) 423 (G) -4.3x10-3     3.0x10-4 

Chr23- TPMT 

BovineHD2300011332 1058 (A) 17 (G) 1.0 x10-2     -1.7x10-4 

BovineHD2300011335 818 (G) 257 (A) -1.0 x10-2     1.7x10-4 

BovineHD2300011336 1056 (T) 19 (C) 6.1x10-3     -2.2x10-4 

BovineHD2300015697 1062 (A) 13 (g) 1.0x10-2     -1.6x10-4 



 
 

 

65 
 

4. CANDIDATE GENES FOR LONGITUDINAL TRAITS UNDER 

SELECTION IN BEEF CATTLE 

 

4.1. Abstract 

Animal growth includes a complexity of metabolic events that occur along time. 

Therefore, it may be possible that different sets of loci take part in the genetic control of 

body weight at different stages of life. Further, the selection effects, also, should be 

considered in the growth traits evaluations, given that the majority of animal records are 

preselected. Thus, we aim to identify functional candidate genes which take part in the 

genetic control of body weight in five different ages in a beef cattle population with and 

without sequential selection simulation. The genetic parameters were estimated by a 

single trait (STM) and a random regression model (RRM) with spline functions for two 

databases, one with complete records of body weights (DB100) and another one in which 

a sequential selection of 70% (DB70) of heaviest animals was applied. Body weights 

(BW) were standardized at 330, 385, 440, 495 and 550 days of age for the STM. In the 

RRM, the knots of linear splines were fitted at 274, 330, 385, 440, 495, 550 and 594 days 

of age. The genome wide association studies (GWAS) were performed with results from 

both STM and RRM. A total of 21,667 SNP markers were used to perform the single-step 

GWAS, and to identify genomic windows that explained at least 1% of the genetic 

variance for the evaluated traits. Additionally, functional analyses were performed and 

functional candidate genes (FCGs) were selected based on their roles in biological 

processes for each of the traits. We associated seven FCG (DUSP10, LAMTOR5, 

PAFAH2, SLC30A2, TRIM63, NCAM1 and SCL16A4) to body weight in different ages. 

The DUSP10 gene was associated with body weight in all the five ages evaluated, 

appointing for the relevance of this gene for different stages of animal growth. On the 
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other hand, the majority of the FCG associated with body weight were different for 

different ages, suggesting that the importance of each gene for animal growth can change 

in different development stages and different genes can be more relevant to body weight 

in each growth stage. The genetic parameters for DB100 and DB70 were, in general, 

similar. On the other hand, different FCG were associated with body weight in DB100 

and DB70 for each age when the sequential selection was simulated, even when the RRM 

was performed. Therefore, the sequential selection can affect the GWAS and post GWAS 

results, and this may be one more reason for frequent inconsistencies in GWAS results 

performed for growth traits measured in beef cattle.  

 

Keywords body weight, genome-wide association, growth, random regression model, 

Nellore 
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4.2. Introduction 

Genome wide association studies (GWAS) have been widely developed for 

complex traits in domestic animals (Zhang et al., 2012), mainly for growth traits in beef 

cattle (Cesar et al., 2014; Zhang et al., 2012), since these traits are extensively improved 

by breeding programs. Considering the complexity of the metabolic and physiologic 

mechanisms involved in animal growth (Owens et al., 1995), it is possible that the same 

trait, measured in different stages of the animal growth, may be controlled by different 

sets of loci, as suggested by Campos et al. (2019), which verify different genomic regions 

and consequently, different candidate genes, associated with Hereford body weight in 

different ages.  

Another point that should be consider when GWAS are performed to bovine 

growth traits is the animal culling in order to have financial resources for operation, or to 

offer better environmental conditions for the remaining candidates to selection (Toral et 

al., 2019). These may result in a decrease of animal records number, since animals which 

has body weight records in younger are discarded and, consequently, not to be weighed 

again in older ages. Further, the animals that remained in the herd, will be selected again 

at later ages. Consequently, the majority of the genetic and genomic evaluations of 

important post-weaning growth traits (age at first calving, body weight for different ages 

and residual feed intake) are performed with phenotypic records of pre-selected animals. 

It must be said that the selection process can influence the estimates of variance 

components and the accuracy of breeding values predictions (Kaps et al., 1999; Long et 

al., 1991; Schaeffer et al., 1997, Toral et al., 2019). Thus, the effects of pre-selection 

should be considered in both GWAS and genetic/genomic evaluations. 

The use of models which consider a covariance structure between random effects, 

as multiple trait models or random regression models (RRM), has been shown as a good 
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alternative for evaluation of traits which are under sequential selection (Boligon et al., 

2009, Toral et al., 2019). Recently, the use of a RRM with linear splines adjusted in 

different stages of the growth for beef cattle, submitted to sequential selection by 

simulation, was appointed as a good alternative to be used by beef cattle breeding 

programs (Toral et al., 2019). Until now, the better adjustment of the previously cited 

models for traits which have been under sequential selection were performed to 

phenotypic databases. On the other hand, the effects of sequential selection have not been 

elucidated neither for genomic regions associated with traits under selection nor over 

genes which contribute to genetic control of these traits. The incorporation of genomic 

information at genetic evaluations can allow us to verify the effects of sequential selection 

on traits at a genomic level. 

There have already been genes identified as functional candidates which take part 

in genetic control of carcass (Santana et al., 2015; Chang et al., 2019) and growth 

(Horodyska et al., 2018; Campos et al., 2019) traits. In this way, identifying genes which 

contribute for body weight genetic control in different ages can allow to verify whether 

the same trait may be controlled by different groups of genes depending on animal growth 

stage. Also, the selection effects over the GWAS results may be verified by identification 

of candidate genes for the same trait which is under sequential selection or not. Thus, we 

aim to identify FCG associated with body weight in five different ages in a beef cattle 

herd with and without simulated sequential selection. 
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4.3. Materials and Methods 

Field management description 

Phenotype data of Nellore bulls born between 2001 and 2016 were used in this 

study. The bull calves were raised in pasture with the predominance of Urochloa genus 

grass, and the stocking rate on the pastures was of approximately 0.98 AU/ha. Mineral 

supplementation was provided ad libitum over the year. During the cow-calf phase, calves 

were kept with their dams on 30-hectare pastures and were weaned at approximately 205 

days of age. At weaning, management groups with 45 bulls on average were assembled 

and kept on the same pasture under the same rearing conditions. 

The body weights were recorded during performance tests at pasture, commonly 

starting in August and finishing in July of the following year. These performance tests 

lasted 294 days, comprising 70 days of adaptation and 224 days of test. During the 

performance test, all bulls from a single management group were kept under the same 

management conditions. The bulls were weighted at the beginning and the end of the 

adaptation period (70th trial day), which effectively corresponds to the beginning of the 

trial, but follow-up weighings were conducted every 56 days until the end of the test (test 

days 0, 70, 126, 182, 238 and 294). The data collected at the beginning of the test (day 0) 

were not taken into consideration. At weaning, approximately 20% of the lightest calves 

have been discarded. During the performance test at pasture, the management groups 

were rotated among different paddocks in order to offer similar rearing conditions for all 

individuals from the same birth season. A thorough description of the farm can be found 

in Passafaro et al. (2015). 

Because age differences up to 96 days are allowed in the performance tests, it was 

necessary to standardize the body weights for ages 330 (BW330), 385 (BW385), 440 
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(BW440), 495 (BW495) and 550 days (BW550) for the single trait model (STM). The 

standardized weight at age d, was obtained by 

BWd = (ABWd + ADG(d − Aged)), 

where BW represents the standardized weight at age d; ABW represents the actual weight 

obtained near age d; ADG represents the mean daily gain for the period of 56 days prior 

to age d; and Age represents the actual age. For BW330, the ADG for standardization 

was obtained after the reference age. 

Two database were considered, the first one with complete records for all animals 

(DB100) and the second was constructed from the former file, but with simulation of a 

selective recording procedure. This file was formed by selective data recording of the 

heaviest (standard body weight) animals at weighing. The percentage of individuals who 

were selected was 70% (DB70). If an animal did not satisfy the established criteria, the 

weights of the animal that were obtained at subsequent ages were excluded. It is important 

to highlight that, all the analyses were performed to two databases independently and after 

that, the results of both were compared. The descriptive statistics of the files are presented 

in Table 1.  
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Table 4.1. Summary statistics for body weight (BW) at five different ages (330, 385, 440, 

495, 550 days) for complete database (DB100) and select database (DB70). 

Trait n. 
Body Weight Age 

Mean (Min-Max) sd Mean (Min- Max) sd 

DB100 

BW330 3783 212.07 (131-359) 30.81 318.62 (274-361) 19.70 

BW385 3783 224.53 (133-398) 34.48 376.77 (330-417) 18.17 

BW440 3783 251.71 (146-460) 37.68 432.19 (386-472) 18.47 

BW495 3783 289.98 (155-474) 39.37 487.98 (414-532) 18.82 

BW550 3783 325.92 (162-520) 39.15 547.47 (506-594) 16.11 

DB70 

BW330 3783 212.07 (131-359) 30.81 318.62 (274-361) 19.70 

BW385 2633 233.36 (154-398) 32.62 377.09 (330-417) 18.10 

BW440 1832 267.49 (169-460) 35.76 432.82 (386-471) 18.40 

BW495 1263 313.23 (196-474) 36.19 488.45 (414-532) 18.78 

BW550 868 356.11 (234-520) 36.19 547.75 (507-588) 16.09 

 

Genotypic database 

During the performance tests at pasture, samples of hair, blood and semen were 

collected for DNA extraction. A total of 1,230 male individuals were genotyped through 

a low-density panel (Z-chip) with approximately 30 thousand SNP markers. A Z-chip v2 

(Neogen, Lincoln, Nebraska, EUA) was especially built by its subsidiary Deoxi 

(Araçatuba, SP, Brazil) for the molecular genotyping of Zebu cattle.  

Quality control of samples and markers was implemented through the R/SNPStats 

statistical package (Clayton, 2017). In the quality control of the samples, those with call 

rate lower than 0.90 and duplicated records (correlation between samples > 0.95) were 

excluded. In the quality control of markers, only SNPs mapped in autosomal and X 

chromosomes, which presented GenCall (GC score) > 0.6, call rate > 0.95 and minor 

allele frequency (MAF) > 0.05 were considered. After editing, a total of 21,667 SNP 

markers (77.12%) and 1,075 samples (88.04%) were kept for analyses. Out of the 1,075 

animals with genotypic information, 644 had phenotypic information. 

Variance components 
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The variance estimates for body weight in each standard age were obtained by a 

single trait model (STM) and a random regression model with linear splines (RRM). 

Preliminary analyses were conducted in order to ascertain which systematic effects 

should be included in the model. For the STM, the standard body weight at each age 

(BW330, BE385, BW440, BW495 and BW550) was considered as a trait and only the 

management group was included as systematic effect. Also, two random effects, genetic 

and residual, were considered. Within each test, the age range did not exceed 96 days and 

a total of 97 groups with at least 25 animals each were considered as having valid records. 

The single-trait model can be described in matrix notation as: 

y
~

= Xβ
~

+ Za
~

+ e
~
, 

where y
~

 represents the vector of observations; X and Z, the incidence matrices of the 

systematic and genetic effects, respectively; β
~

 and a
~
, the solution vectors for the 

systematic and genetic effects, respectively; and e
~
 is the vector of errors. 

The following assumptions were assumed for the effects included in the STM: 

flat-type a priori distributions were assumed for β
~

 (β
~

~constant); normal distributions 

were assumed for a
~

 (a
~
|A,σa

2~N(0,Aσa
2)) and e

~
 (e

~
|σe

2~N(0,Iσe
2)); scaled inverse chi-

squared distributions were assumed for σa
2  (σa

2~χ−2(va,Sa
2)) and σe

2  (σe
2~χ−2(ve,Se

2)); 

where A is the relationship matrix, I is an identity matrix of order equal to the number of 

animals with data, I is an identity matrix of order equal to the number of observations, 

and va, ve, Sa
2
, and Se

2
 are the hyperparameters of the scaled inverse chi-squared 

distributions. 
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For adjustment of mean trajectory in RRM, the management group was included 

as a systematic effect and seven knots were adjusted at seven ages (274, 330, 385, 440, 

495, 550 and 594) as covariables. Two knots were adjusted in the lower and upper 

extremities of ages (274 and 594) in order to delineate the entire age range with available 

weights. Additive and residual effects were considered as random, also the permanent 

environmental effect, because each animal presented up to five repeated measurements 

taken over the management group at pasture. The heterogeneous residual variance was 

formed by five classes one to each age. 

To adjust the linear splines (Misztal, 2006; Toral et al., 2019), the age of the 

animal (k) was converted into a covariate of function 1i( (P )) . Considering n  knots in 

iT  points ( 1,...,i n ), and 1i iT t T   , the covariables can be obtained at i  and 1i   

knots, through the equations: 
1

1

i
i

i i

T t
(t)

T T
 







 and φi+1(t) = 1 −

Ti+1−t

Ti+1−Ti
, respectively. For 

other values out of the iT  and 1iT   interval, 0i(t)  . Assuming that the observed value 

for the standard age corresponds to the fitted knot, 
1

0
i k

se i k
(T )

se i k



 


. The RRM 

with seven knots adjusted in different ages can be described as:  

yijk = 𝑡𝑒𝑠𝑡j + ∑ φh(Sk)bh +

7

h=1

∑ φh(Sk)aih
+

7

h=1

∑ φh(Sj)pih
+

7

h=1

eijk 

where yijk represents the weight of animal i in test j at age k; 7 denotes the number of 

knots; φh(Sk) represents the linear spline h that refers to age k; bh, is the hth coefficient 

of regression that is associated with t age k on weight; aih
, is the hth coefficient of the 

additive genetic random regression h for animal i; pih
, is the hth individual permanent 
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environment random regression coefficient h for animal i; and eijk, the error associated 

with each observation. 

For the RRM model: β
~

~constant ,a
~

|A, G0~N(0, G0 ⊗ A), 

p
~

|P,~N(0, P0 ⊗ I) and  e|R~N(0, R). Inverted Wishart distributions were assumed 

for genetic covariance matrices (7 x 7), being G0(G0~IW(Σa
2, na)) and 

P0 (P0~IW(Σp
2, np)), where: Σa

2, Σp
2, naand np represent hyperparameters of the inverted 

Wishart distributions. It was considered heterogeneity of the residual variance with R =

diag{σe
2}, where 𝜎𝑒

2, is the residual variance for BW330, BW385, BW440, BW495 and 

BW550. The residual variance presented in this paper corresponded to the sum of the 

permanent effect and the residual environment effect. 

Samples with full conditional posterior distributions were obtained through the 

Gibbs sampler using the software GIBBS3F90 (Misztal et al., 2014). Chains of 610000 

iterations were considered, with a burn-in of 10000 iterations and samplings at every 200 

iterations. The chain size was determined in a preliminary analysis following the method 

described by Raftery and Lewis (1992), available in BOA package (Smith, 2005). The 

convergence of chains was evaluated through the criterion proposed by Geweke (1991) 

available in the same package and through inspection of the sampled values. 

 

Genome-wide Association Study (GWAS) 

The genomic breeding values and the SNPs solutions were obtained by the same 

animal model (STM or RRM) which the covariance components were estimated and then, 

the variance components were fixed as obtained in previous analyses. The single-step 

genomic BLUP method (ssGBLUP- (Aguilar et al., 2011, 2010; Misztal et al., 2009)) and 
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the ssGWAS (genome-wide association study using a single-step BLUP (Vitezica et al., 

2011; Wang et al., 2012)) were used.  

To estimate the genomic breeding values the covariance matrix of a and e can be 

described as: 

var [
a
p
e

] = [

Hσa
2 0 0

0 Wσp
2 0

0 0 Iσe
2

] 

where, σa
2, σp

2  and σe
2 are the components of additive genetic, permanent environment and 

residual variances for each trait, respectively; I, and W an identity matrix; and H, the 

relationship matrix comprising information of genotyped and non-genotyped animals, as 

described by Aguilar et al. (2010). Here, it is necessary to highlight that, the permanent 

environment effect was adjusted only to RRM. In addition, for RRM these procedures 

were performed for the solutions of the regression coefficients, which for linear spline are 

given directly without need any prior transformation (Misztal, 2006). 

The inverse of H can be described as: 

H−1 = A−1 + [
0 0
0 G−1 − A22

−1] 

where A−1 represents the inverse of the additive relationship matrix; A22
−1, the inverse of 

the additive relationship matrix considering only genotyped animals; G−1, the genomic 

relationship matrix estimated according to VanRaden et al. (2009). Subsequently, the 

estimated breeding values for genotyped animals (GEBV) were converted to SNP effects, 

and the equation for predicting SNP effects was as described in Wang et al. (2012). The 

analyses were performed through Gibbs sampler with the software GIBBS3F90 (Misztal 

et al., 2014). The chain length, discard and sampling were the same as used in the multi-

trait analyses, as well as the adopted convergence criterion. Additionally, the genomic 

breeding values were estimated by BLUPF90 (Misztal et al., 2014) and the effects of 
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SNPs were calculated through POSTGSF90 (Wang et al., 2012). The results of GWAS 

were described with the proportion of variance explained by genomic windows with 

approximately 0.5 Mb. In this approach, adjacent SNPs within 0.5Mb were used, and their 

variance was assumed for obtaining the total variance of the window. Additionally, only 

non-overlapping windows which explained at least 1% of the additive genetic variance 

were considered, avoiding a double count. 

 

Identification of positional and functional candidate genes  

In order to recover the positional candidate genes inserted within the windows that 

explained at least 1% of the additive genetic variance, we used the R/GALLO package 

(Fonseca et al., 2020) considering the latest assembly of the bovine genome ARS-

UCD1.2. 

The analysis of prioritization of candidate genes was conducted through the 

software GUILDify 2.0 (Aguirre-Plans et al., 2019) and ToppGene (Chen et al., 2009). 

First, a list of training candidate genes associated with keywords (Body weight, protein, 

muscle, obesity, growth and growth factors) was obtained for each of the six traits by 

using GUILD framework (Guney and Oliva, 2012) to determine the relevance of known 

gene products related to given keywords. The gene products were searched at BIANA 

knowledge base and used to construct a species-specific network (for the present study 

we used Homo sapiens as the model species). Then, by using a prioritization algorithm 

based on the network topology for classifying the genes, the top-100 classified genes 

obtained in this analysis were used to build a list of trained genes. 

Further, this list of trained genes was taken to the software ToppGene (Chen et 

al., 2009) together with the list of positional candidate genes recovered through the 

R/GALLO package (Fonseca et al., 2020). The software ToppGene- Gene Prioritization 
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(Chen et al., 2009) was used for performing a prioritization analysis based on annotations 

through a multivariate approach based on fuzzy (diffuse) logic. The functional 

information shared between the list of trained genes and the list of positional candidate 

genes was used to perform a multivariate analysis. These functional data were recovered 

from the following sources: terms of gene ontology; molecular function; biological 

process; cell component; human and mouse phenotypes; metabolic pathways; works in 

Pubmed; Transcription factor binding site; coexpression and disease patterns. by using 

statistics of meta-analysis, p-values were obtained in a random sampling of 5000 genes 

from the whole genome for each annotation information, and then combined in a global 

p-value. A false discovery rate (FDR) of 5% of multiple correction (p-valor ≤ 0.05) was 

enforced and the genes with p-values ≤ 0.05 were shown as functional candidate genes. 
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4.4. Results 

For STM in DB100, there was overlapping of the highest density interval with 

90% of samples (HPD) between all ages for additive variance and for heritability (Table 

4.2). For residual variance, there was an increase of the values in the two last ages, BW495 

and BW550 and HPD overlap between them. The values of phenotypic variance increased 

since BW385 until BW550 and there was a short HPD overlap between BW385 and 

BW440 and between BW495 and BW550. 

When RRM was performed for DB100, the additive variances were similar 

between ages BW330, BW385 and BW440 and there was an increase between BW330 

and the last two ages, BW495 and BW550 (Table 4.2). The residual variances for BW330 

and BW385 were similar, but it increased from BW440 until BW550. However, residual 

HPD for BW495 and BW550 overlapped. Heritability HPD of body weight at all ages 

overlapped. 

The variance components for STM estimated by DB100 and DB70 were different 

after the first selection was performed (Table 4.2). On the other hand, in general, the 

variance components were similar between the DB100 and DB70, when the RRM was 

performed (Table 4.2). 
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Table 4.2 Posterior means and lower and upper limits of the highest posterior density intervals with 90% of samples (in brackets) for genetic (𝝈𝒂
𝟐), 

residual (𝝈𝒆
𝟐) and phenotypic (𝝈𝒑

𝟐) variances and heritability (h²) for body weight at 330, 385, 440, 495 and 550 days of age (BW330, BW385, 

BW440, BW495 and BW550, respectively) estimated by single trait and random regression models for complete database (DB100) and selection 

database (DB70) 

 Genetic parameters  

 Single trait  Random regression 

Ages DB100 DB70  DB100 DB70 

 𝜎𝑎
2 

BW330 84.29 (51.33, 118.10) 84.29 (51.33, 118.10)  131.44 (88.29, 180.60) 120.13 (82.25, 157.90) 

BW385 98.08 (60.07, 135.80) 35.27 (10.60, 57.36)  157.12(114.80, 207.70) 144.83 (98.29, 190.20) 

BW440 113.23 (70.25, 155.80) 24.57 (14.45, 46.94)  200.80 (143.30, 259.80) 159.33 (108.90, 213.30) 

BW495 145.75 (90.47, 200.50) 36.61 (6.23, 74.70)  285.69 (209.70, 367.20) 282.83 (185.40, 392.20) 

BW550 172.55 (110.30, 236.90) 56.37 (15.92, 100.30)  429.50(330.30, 540.10) 357.23 (217.00, 484.50) 

 𝜎𝑒
2 

BW330 299.82 (270.50, 328.40) 299.82 (270.50, 328.40)  338.16 (298.24, 375.67) 314.92 (105.00, 162.10) 

BW385 327.90 (297.60, 362.90) 226.51 (203.60, 248.50)  366.65 (328.29, 399.27) 268.00 (277.60, 349.60) 

BW440 398.76 (361.50, 435.90) 264.67 (237.80, 291.90)  589.92 (536.17, 643.48) 597.68 (227.98, 306.50) 

BW495 475.62 (431.00, 523.50) 254.02 (218.10, 291.70)  710.83 (643.79, 785.68) 605.42 (523.19, 668.05) 

BW550 542.04 (489.60, 594.60) 209.45 (166.80, 251.30)  752.29 (669.36, 837.76) 658.41 (505.71, 712.05) 

 𝜎𝑝
2 

BW330 384.12 (365.57, 403.98) 384.12 (365.57, 403.98)  469.60 (439.97, 499.86) 435.05 (407.80, 463.00) 

BW385 425.98 (405.60, 448.60) 267.78 (247.15, 276.52)  520.76 (490.68, 555.17) 412.83 (377.86, 447.24) 

BW440 512.00 (487.10. 537.20) 289.24 (270.56, 307.57)  790.72 (744.51, 841.81) 757.02 (694.67, 820.86) 

BW495 621.39 (587.86, 650.50) 290.63 (267.14, 315.15)  996.51 (934.69, 1053.76) 888.25 (800.66, 971.22) 

BW550 714.60 (678.90, 751.30) 265.83 (237.74, 291.54)  1181.79 (1115.68, 1248.29) 1015.64 (897.00, 1135.10) 

 h² 
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BW330 0.22 (0.14, 0.30) 0.22 (0.14, 0.30)  0.28 (0.20, 0.35) 0.28 (0.21, 0.34) 

BW385 0.23 (0.14, 0.31) 0.13 (0.05, 0.22)  0.30 (0.23, 0.37) 0.35 (0.27, 0.43) 

BW440 0.22 (0.13, 0.27) 0.08 (0.07, 0.16)  0.25 (0.19, 0.31) 0.21 (0.16. 0.26) 

BW495 0.23 (0.15, 0.32) 0.13 (0.01, 0.24)  0.27 (0.23, 0.35) 0.31 (0.23, 0.40) 

BW550 0.24 (0.16, 0.32) 0.21 (0.06, 0.36)  0.36 (0.30, 0.43) 0.35 (0.25, 0.44) 
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The correlation between both estimated breeding values (EBV) and genomic 

estimated breeding values (GEBV) for DB100 or DB70, when STM was performed, were 

positive and high to moderate for body weight at 330 days old (BW330 – Figure 4.1). For 

the others evaluated periods, the correlations were of low magnitude and with values 

ranging from positive to negative in the different ages. On the other hand, when RRM 

were used the correlations were positive and varied from moderate to high magnitudes 

for all the ages 

 

 

Figure 4.1: Correlation between estimated breeding values (EBV) and genomic estimated 

breeding values (GEBV) for body weight in complete (DB100) and selected (DB70) 

databases when single trait model (STM) or random regression model (RRM) were used 

in the analysis.  

 

There was difference between genomic regions associated with body weight over 

the animal growth for DB100 when STM was performed (Figure S4.1 and Table S4.1). 

The same is true for RRM (Figure 4.2). After the selection simulation (DB70), the 

genomic regions associated with body weight for each age were, in general, different from 
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those associated to the same age when selection was not simulated to both models STM 

(Figure S4.1 and Table S4.1) and RRM (Figure 4.2). 

 

 

Figure 4.2. Manhattan plots for percentage of variance explained by genomic windows 

(0.5Mb) for body weight in five different ages (330, 385, 440, 495, and 50 days) for 

complete (DB100) and selected databases (DB70), when the random regression models 

were performed. The red line indicates the threshold (windows that explained at least 1% 

of the additive genetic variance), for which the windows were considered associated to 

the body weight. 

 

As it shown on the previous results the STM was not suitable to develop both 

genetic evaluations and GWAS to longitudinal traits under sequential selection, given the 

inconsistencies in the results when the sequential selection was simulated. Thus, the 

following results related to the gene prioritization analyses were presented just to the 

RRM.  

For DB100, there were different genomic windows that explained at least 1% of 

the genetic variance for body weight along the animal’s growth, since some of these 
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windows were specific of each age (Table 4.3). For example, there were genomic 

windows associated only to BW385 in chromosomes 15 and 17. The same is true for 

chromosome 9 which contained a significant window only for BW550. Thus, it could be 

suggested that different genes are more relevant to growth in different stages of animal’s 

life. On the other hand, in chromosome 16 there were similar genomic windows that 

explained more than 1% of genetic variance for all ages. It is important to highlight that, 

even though the window of chromosome 16 was not exactly the same for the different 

ages, there is an overlap between them, and the SNPs contained within these windows 

were, in general, the same. This can indicate that an important gene can contribute to 

control of body weight in all stages, here evaluated, of the growth of the animal. 

Most of the genomic windows appointed as explicative for a portion of the genetic 

variance in the complete database (DB100) were not found in the selection database DB70 

(Table 4.3). For example, for BW550 no genomic window that explained, at least, 1% of 

the genetic variance were similar between DB100 and DB70. For BW330, of the three 

genomic windows associated to body weight, only one was similar between DB100 and 

DB70. For BW385 and BW495 only two windows (chromosome 1 and 16) were similar 

between DB100 and DB70. On the other hand, for BW440, all three windows associated 

with body weight were similar between DB100 and DB70. It is important to highlight 

that, new genomic windows were associated with body weight in different ages when the 

selection was simulated, likely as a consequence of the simulated selection effect. 
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Table 4.3. Genomic Windows (0.5Mb) description, which explained at least 1% of 

variance for body weight at five different ages (BW330, BW385, BW440, BW495, and 

BW550 days) for complete database (DB100) and select database (DB70) estimated by 

random regression model 

Chr Poss Pose SNPs %Var  Poss Pose SNPs %Var 

DB100  DB70 

BW330 

3 24735772 25234801 82 1.90      

16 32676738 33110685 44 1.35      

20      21946439 22423318 56 1.73 

23 39323760 39680863 51 1.00  39323760 39680863 51 1.35 

BW385 

1 131320440 131804990 40 1.44  131198050 131617330 46 3.10 

2 126650991 127124043 25 1.05      

15 23650235 24099827 41 1.11      

16 24913318 25374981 47 1.05  24913318 25374981 47 2.21 

17 56171681 56663231 19 1.17      

20      21946439 22423318 56 1.83 

BW440 

1 131198050 131617330 46 1.15  131198050 131617330 46 1.78 

2 126650991 127124043 25 1.33  126650991 127124043 25 1.13 

16 24735772 25234801 44 2.35  24913318 25374981 47 3.35 

BW495 

1 131198050 131617330 46 1.18  131310669 131804990 41 2.29 

2 126650991 127124043 25 1.29      

16 24735772 25234801 44 2.08  24913318 25234801 47 2.65 

17      56171681 56663231 19 1.28 

BW550 

3 32676738 33110685 82 1.10      

9 10384530 10817832 58 1.14      

16 24913318 25374981 47 1.12      

20      21946439 22423318 56 3.16 

23      39323760 39680863 51 1.16 
Chr = Chromosome; Poss = position in base pair of start of the window; Pose = position in base pair of end 

of the window; SNPs = number of SNPs within of the window; %Var = percentage of genetic variance 

explained for the window 

 

As a consequence of the differences in the associated genomic regions to body 

weight for each age in DB100, the FCG associated with body weight along the animal 

growth also can be different between different ages (Table 4.4). For example, whereas 

only the FCG DUSP10 was associated to weights in all of the measured ages, the other 
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FCG appear to be specific to each age. The LAMTOR5 gene was appointed as FCG to 

BW330 and BW550. The genes PAFAH2, SLC30A2 and TRIM63 were FCG for three 

different ages (BW385, BW440 and BW495) and the FCG SLC16A4 only for BW550. 

Different FCG were associated with body weight, to each age, after the simulation 

of sequential selection (DB70 x DB100). Only the FCG DUSP10 was associated with 

BW385, BW440 and BW495 in both databases, while all other FCG were different 

between both databases. 
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Table 4.4. Positional and functional* candidate genes for body weight at five different 

ages (BW330, BW385, BW440, BW495, BW550) when the random regression model 

was performed 

 DB100  DB70 

Chr Candidate genes  Candidate genes 

BW330 

3 CYM, KCNA2, LAMTOR5*; 

PROK1, SLC16A4 

 - 

16 DUSP10 *  - 

20 -  MAP3K1*, MIER3, GPB1 

23 KIF13A, NHLRC1, TPMT, DEK   DEK, KIF13A*, NHLRC1, TPMT 

BW385 

2 EXTL1, PAFAH2*, SLC30A2*, 

SRRM4, TRIM63* 

 - 

15 NCAM1*, TTC12  - 

16 DUSP10*  DUSP10* 

20 -  GPB1, MAP3K1*, MIER3 

BW440 

2 CEP85, EXTL1, PAFAH2*, PDIK1L, 

SLC30A2*, TRIM63*, ZNF683 

 CEP85, EXTL1, PAFAH2*, 

PDIK1L, SLC30A2*, TRIM63*, 

ZNF683 

16 DUSP10*  DUSP10 

BW495 

2 CEP85, EXTL1, PAFAH2*; PDIK1L, 

SLC30A2*; TRIM63*, ZNF683 

 - 

16 DUSP10*  DUSP10* 

17 -  SRRM4 

20 -  GPB1, MAP3K1*, MIER3 

BW550 

3 CYM, KCNA2, LAMTOR5*, 

PROK1, SLC16A4* 

 - 

9 OGFRL1  - 

16 DUSP10*   - 

20 -  GPB1, MAP3K1*, MIER3 

23 -  DEK, KIF13A*, NHLRC1, TPMT 
*Functional Enrichment FDR ≤0.05 
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4.5. Discussion 

Animal growth was previously defined as an increase of protein, fat, and bone 

over time and depends on several factors including genetic, nutritional and hormonal 

(Owens et al., 1995). Given the complexity of metabolic events that occur along the 

growth, it is reasonable that there was some difference in the set of loci that control the 

body weight when evaluated in different ages. Here, we showed that the sets of FCG 

which contribute to genetic control of body weight over time are not the same. Similar 

results were found for growth traits in Hereford and Braford cattle on what four growth 

traits (birthweight, weaning weight adjusted to 205 days, yearling weight adjusted to 550 

days age and postweaning weight gain adjusted for 345 days of age) were evaluated and 

the majority of the genomic windows and consequently the candidate genes associated to 

each trait were different between the traits (Campos et al., 2019). Further, our results 

suggested that, even for a short period of animal growth, the set of loci which take part of 

the growth genetic control may be different. 

On the other hand, there are important genes which can contribute to genetic 

control of body weight along all five ages here evaluated, such as the DUSP10 gene. This 

gene was functionally associated with body weight for all ages in DB100. The DUSP10 

(dual specificity phosphatase 10) gene was associated with the control of brown 

adipocytes. Overexpression of this gene resulted in lower lipid accumulation than that in 

cells overexpressing the inactive mutant DUSP10 (Choi et al., 2013). The amount of 

brown adipose tissue in adult humans has been found to be highly correlated with their 

degree of obesity (Frühbeck et al., 2009). Taken together with other important genes, the 

gene DUSP10 can contribute to higher capability of adipogenesis and proliferation in 

Wagyu than in Holstein cattle (Huang et al., 2017). In Simmental beef cattle, the DUSP10 

gene was also associated with carcass weight (Chang et al., 2018). Therefore, we suggest 
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that the DUSP10 gene may be considered an important gene which contributes to genetic 

control of important growth stages in beef cattle. 

After the sequential selection simulation, it was shown that the genomic regions 

associated to body weight may not be the same as those appointed when no selection was 

simulated, even with RRM was performed. The inconsistencies between GWAS results 

for the same growth trait evaluated under selection or not can be a consequence of the 

selection effect and not of the real association with phenotype. This may be one more 

factor that also contributes to frequent inconsistencies in GWAS results performed for the 

same trait measured in animal production under sequential selection. 

There has been great progress in GWAS in domestic animals and some genes for 

economically important traits have been identified. However, the main problem lies in 

the inconsistencies among the results of these GWAS reports for the same trait (Zhang et 

al., 2012). The replication studies show that only a small portion of associated loci in the 

GWAS can be replicated, even within the same populations, and factors such as 

inconsistencies between SNP arrays and between genotype calling algorithms are 

potential sources for the lack of reproducibility in GWAS results (Hong et al., 2010). It 

is important to highlight that, here, we suggest that the sequential selection is only one 

more factor which can contribute to these inconsistences and lack of reproducibility in 

animal herds which are under sequential selection. 

The majority of FCG that were associated with body weight in some age for 

DB100, as DUSP10 previously characterized, were not associated with body weight at 

the same age after the selection was simulated. For example, the DUSP10 gene was 

functionally associated with body weight for all ages when there was no selection. On the 

other hand, after sequential selection, this gene was not associated with BW330 and 

BW550. The same is true for LAMTOR5 associated with BW330 and BW550 in DB100 
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but not associated with body weight at the same ages in DB70, for the genes PAFAH2, 

SLC30A2 and TRIM63 not associated in DB70 with BW385 and BW495, for the gene 

NACAM1 with BW385 and for the gene SLC16A4 with BW550.  

Most of the genes which were FCG for body weight at some age in DB100 and 

were FCG in DB70 (DUSP10, LAMTOR5, PAFAH2, SLC30A2, TRIM63, NCAM1 and 

SCL16A4) were associated, in previous studies, to some postweighing growth trait. The 

PAFAH2 (Platelet Activating Factor Acetylhydrolase 2) gene was related to lipid 

metabolism and fatty acid composition and associated, by differential expression, with 

intramuscular beef fatty acids in Nellore (Berton et al., 2016). The TRIM63 (Tripartite 

Motif Containing 63) gene was also identified by differential expression in the muscle of 

Nellore bulls, and was indicated as a positional candidate for beef tenderness and related 

directly with skeletal muscle functions and muscle constituents (Muniz et al.; 2020). The 

TRIM63 gene was used as a reference gene of target transcripts for study of RNA-seq of 

muscle from pigs divergent in feed efficiency and, as a result, it presented significant 

differences in mRNA abundances (Horodyska et al., 2018). 

Signatures of selection overlapped with QTL terms "meat and carcass" were 

associated to the NCAM1 gene (Neural cell adhesion molecule 1) in dual purpose Gyr 

cattle (Maiorano et al., 2018). In Holstein Friesian bulls, the same gene was differentially 

expressed in M. longissimus dorsi following compensatory growth and re-alimentation 

(Keogh et al 2016). The SLC16A4 (Solute carrier family 16 member 4) gene was 

associated with carcass merit traits after an enrichment of biological functions for a beef 

cattle population (Wang et al., 2020). For Hereford and Braford beef cattle, the genes 

SLC16A4 and LAMTOR5 (Late endosomal/lysosomal adaptor, MAPK and MTOR 

activator 5) were appointed as candidate gene for post weaning gain adjusted for 345 days 

of age (Campos et al., 2019). 
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In this way, we would like to highlight two points. First, there are important genes 

which contribute to genetic control of body weight along all five ages here evaluated, as 

exemplified by the DUSP10 gene. On the other hand, the importance of each gene for 

animal growth can change in different development stages and different genes can be 

more relevant to body weight in each growth stage for beef cattle. Second, the use of 

models that consider a covariance structure are still an alternative for genetic evaluations 

of longitudinal traits under sequential selection, since the estimated genetic parameters 

are no different between DB100 and DB70. Also, moderate to high correlation values 

between EBV and GEBVs are shown here. However, when GWAS and post GWAS are 

performed, we showed that the sequential selection can influence results, and this may be 

one more reason for frequent inconsistences in GWAS results performed for growth traits 

measured in beef cattle. Furthermore, it is necessary to validate these findings for each 

gene in each trait and age in larger populations and other breeds to improve the 

understanding about the selection effects for growth traits, especially the functional 

candidate genes suggested in the present work. 
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4.6. Conclusion 

There are important genes which contribute to genetic control of body weight 

along all five ages here evaluated, as the DUSP10 gene. On the other hand, the importance 

of each gene for animal growth can change in different development stages and different 

genes can be more relevant to body weight in each growth stage for beef cattle, even for 

a short period of animal growth. 

The pre-selection which often occurs in commercial beef cattle can contribute to 

inconsistencies in GWAS results and consequently on the identification of FCG between 

studies, even when models that consider a covariance structure are used. 
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4.7. Supplementary Material 

Figure S4.1. Manhattan plots for percentage of variance explained by genomic windows 

(0.5Mb) for body weight in five different ages (BW330, BW385, BW440, BW495, 

BW550) for complete (DB100) and select database (DB70) when the single trait model 

was performed. The red line indicates the threshold from which the windows were 

considered as significantly associated to the body weight. For BW330, the parameters’ 

estimates of DB100 and DB70, so the Manhattan plots for both DB100 and DB70.  
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Table S4.1. Description of Genomic Windows (0.5Mb) that explained at least 1% of 

genetic additive variance for body weight in five different ages (BW330, BW385, 

BW440, BW495, BW550) for complete database (DB100) and select database (DB70) 

estimated by the single trait model 

Chr Poss Pose SNPs %Var  Poss Pose SNPs %Var 

DB100  DB70 

BW330   

1 131310669 131804990 41 1.32      

15 23650235 24099827 41 1.20      

23 39323760 39680863 51 1.47      

BW385 

1 131310669 131804990 41 2.06  131198050 131617330 46 2.13 

15 23650235 24099827 41 1.34      

17 56219805 56717042 20 1.00      

23 39323760 39680863 51 1.72      

BW440 

3 32676738 33110685 82 2.46  32676738 33110685 82 3.70 

15 23650235 24099827 41 1.07      

17 56219805 56717042 20 1.23      

23 39323760 39680863 51 2.58  39148251 39639650 51 1.80 

BW495 

1 131198050 131617330 46 1.08      

3 32676738 33110685 82 1.24  32727140 33224436 79 1.39 

15 23650235 24099827 41 1.05      

23 39323760 39680863 51 1.46      

BW550 

3 32676738 33110685 82 1.70      

15 23650235 24099827 41 1.37      

16      24735772 25234801 44 2.15 

18 64937253 65401508 26 1.31      

20      21989825 22480484 53 3.62 

23 39323760 39680863 51 2.00  39323760 39680863 51 1.81 
Chr = Chromosome; Poss = position in base pair of start of the window; Pose = position in base pair of end 

of the window; SNPs = number of SNPs within of the window; %Var = percentage of genetic variance 

explained for the window 
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5. CONSIDERAÇÕES FINAIS 

Nossos resultados contribuem para darmos um passo na direção da seleção de 

animais que possuem alelos favoráveis em genes que, de fato, participam do controle 

genético de características importantes. Em um primeiro momento, os genes aqui 

apontados como candidatos funcionais, poderiam ser utilizados na seleção genômica de 

modo que, pesos mais elevados seriam atribuídos aos SNPs mapeados próximos ou nos 

genes candidatos funcionais. Assim, associar informação de genes candidatos funcionais 

ao conhecimento prévio de componentes de covariância e valores genéticos poderia levar 

ao incremento da eficiência dos programas de melhoramento genético. 

A utilização de informação genômica no estudo das inter-relações de caraterísticas 

de produção, reprodução e de resistência contribuiu para aprofundarmos o conhecimento 

e esclarecermos teorias que antes não poderiam ser exploradas, como por exemplo, quais 

são os genes possivelmente pleiotrópicos que contribuem para a correlação genética entre 

características. No primeiro trabalho, além de apontarmos para genes que são candidatos 

funcionais para características importantes na bovinocultura de corte (SLC16A4, 

KCNA2, LAMTOR5, DUSP10, MAP3K1, TPMT e KIF13A), sugerimos que, 

independente dos valores de correlação genética obtidos exclusivamente por meio de 

informações fenotípicas e de pedigree, existem genes candidatos funcionais iguais que 

influenciam as características de produção, reprodução ou resistência dos bovinos de 

corte. Sugerimos ainda que os genes designados como candidatos funcionais comuns a 

mais de uma característica, e possivelmente pleiotrópicos, podem ser utilizados como 

informação auxiliar na composição de índices pelos programas de melhoramento gado de 

corte. 

Nossos resultados apontam ainda para uma questão a respeito dos efeitos da 

seleção sobre parâmetros genéticos. No segundo trabalho verificamos que, de fato, 
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modelos que consideram uma estrutura de covariância entre efeitos aleatórios minimizam 

os efeitos da seleção sobre as estimativas de parâmetros genéticos. Entretanto, quando 

estudos de associação genômica ampla (GWAS) são realizados por meio desses modelos, 

ainda sim, pode haver um viés nas regiões genômicas apontadas como associadas à 

característica em questão e, consequentemente, os genes candidatos funcionais apontados 

como aqueles que participam do controle genético da característica também são 

diferentes. Assim, os resultados do GWAS seriam reflexo também dos efeitos da seleção 

sobre a característica e não apenas da real associação com o fenótipo. Este fato poderia 

contribuir para inconsistências, muitas vezes verificadas, entre os GWAS para uma 

mesma característica mesurada em bovinos de corte, uma vez que, a grande maioria dos 

dados utilizados nas pesquisas e nos programas de melhoramento são impactados pela 

pré seleção. 

Os resultados apresentados no presente trabalho são essenciais para sugerir genes 

importantes que participam do controle genético de características de interesse zootécnico 

em bovinos de corte. Além disso, os genes apontados como candidatos funcionais para 

cada uma das características aqui avaliadas poderiam ser validados em populações 

maiores e outras raças, a fim de aperfeiçoar a compreensão do controle genético desses 

genes sobre as características de crescimento, reprodução e sanidade de bovinos de corte. 
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