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“A hero is no braver than an ordinary man,
but he is brave five minutes longer.”

Ralph Waldo Emerson
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Abstract

This work deals with the problem of coordination of multi-agent systems, with interconnected
systems subject to time-varying delays and input saturation. The proposed approach consists
in deriving sufficient conditions for the asymptotic convergence of the network, based on the
Lyapunov-Krasovskii framework. Two tasks are tackled in this manuscript: the consensus and
the formation-containment. The consensus is investigated in the discrete- and continuous-time
domains, considering directed networks composed of agents modeled as linear systems of arbi-
trary order, subject to input saturation and time-varying delays. The main results are sufficient
conditions for consensus analysis and the design of feedback gains for distributed consensus pro-
tocols for multi-agent systems. Besides, in this context, it is also proposed a strategy to com-
pute a region from which the consensus is always guaranteed. On the formation-containment
problem, the node dynamics of the network are extended to distinct systems modeled by the
Euler-Lagrange equation, also subject to bounded inputs and time-varying delays. The main
results on the formation-containment are the design of new control algorithms and sufficient
conditions to ensure the convergence of the network. The control algorithms are designed as
distributed dynamic controllers, in such a way that the number of neighbors of each agent is
decoupled from the bound of the control inputs. Finally, the utilization of the proposed methods
is illustrated through numerical examples, and it is shown that they can improve related recent
works from the literature that deal with similar issues.

Keywords: Sistemas multi-agentes. Lyapunov-Krasovskii. Saturação. Atrasos. Sistemas Euler-
Lagrangea. Consensus.
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Resumo

Este trabalho aborda o problema de coordenação em sistemas multiagentes, com agentes su-
jeitos a atrasos e a saturação nos atuadores. A abordagem proposta consiste em obter condições
suficientes para a convergência assintótica dos sistemas interconectados, por meio da teoria de
Lyapunov-Krasovskii. Neste manuscrito, são abordadas duas tarefas diferentes, o consenso e
o controle de formação-contenção. O consenso é estudado levando em consideração redes di-
recionadas compostas por agentes descritos por modelos lineares de ordem arbitrária, sujeitos
a saturação na entrada e a atrasos variantes no tempo. Neste contexto, o estudo é realizado
em tempo discreto e em tempo contínuo. Os resultados obtidos para o problema de consenso
são: condições suficientes que garantem a convergência; e o projeto dos ganhos para protocolos
distribuídos para sistemas multiagentes. Além disso, neste contexto também é proposto uma
estratégia para calcular a região a partir da qual o consenso é sempre garantido. No estudo
do problema de formação-contenção, a dinâmica dos nós da rede é estendida para sistemas
possivelmente diferentes, modelados pela equação de Euler-Lagrange, igualmente sujeitos a re-
strições nos atuadores e a atrasos variantes no tempo. Os principais resultados alcançados neste
contexto são o um novo algoritmo para o projeto de controle e condições suficientes que garan-
tem a convergência dos sistemas interconectados. Os controladores projetados são dinâmicos
e distribuídos, além de possibilitar o desacoplamento dos vizinhos de cada sistema do limite
dos atuadores. O uso dos métodos propostos é ilustrado por meio de exemplos numéricos, e a
comparação com resultados recentes encontrados na literatura sugere que a abordagem proposta
pode levar a resultados menos conservadores.

Palavras-chave: Multi-agent systems. Lyapunov-Krasovskii. Saturation. Delays. Euler-Lagrange
systems. Consensus.
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Chapter 1

Introduction

The wide range of applications for networked systems that work cooperatively have made the
research of these arrangements remarkably attractive. This type of system is desirable since it
provides features like robustness to individual failure, network scalability, and the possibility
to attain tasks otherwise very hard for single systems (for example, carry a heavy and sparse
load). That is to say, there are situations where it is simpler to develop solutions for a group of
systems than for a single one.

These networked systems are often called multi-agent systems, where each agent is an indi-
vidual entity able to make decisions and interact with the environment. Agents in such networks
are required to operate harmoniously with each other in order to achieve a global level objec-
tive, usually having limited access to information and using simple rules. It is possible to divide
the control approach for multi-agent systems into two large groups, according to the kind of
information that each agent has access to and the group communication. Namely, there are
centralized and decentralized methods. In the former, the actions of each agent are planned by
a central controller which has access to information on the whole group. Whereas in the latter,
the agents share information only with a subset of the group, called neighbors, and use local
information to plan their actions.

Although the centralized approach may be applicable to ensure the accomplishment of various
tasks, it is not scalable in general because the complexity of these systems grows fast with the
number of agents. On the other hand, decentralized methods impose that each agent has rules
that use only local information, in this way, it may be possible to add agents without a great
increase in the complexity of the algorithm to be performed by the networked system.

In the field of networked systems, some of the most important problems that have been
investigated are: the so-called consensus problem (Saber and Murray, 2003), in which the agents
must reach an agreement on pre-specified variables; the containment problem (Ji et al., 2008),
in which the agents are required to move into a referred convex hull; the distributed parameter
estimation (Gubner, 1993); and the problem of formation (Lewis and Tan, 1997), where the
main objective is that each agent keeps a desired relative position, distance, or orientation in
relation to neighbor agents. Within these topics, the consensus problem is probably the most
investigated one, partly due to the applications that can be improved from the development of
this topic (see the studies by Qin et al. (2017) and Dorri, Kanhere, and Jurdak (2018), and
references therein for recent advances).

From the topics listed above, a very general and challenging problem in multi-agent systems is
the formation-containment. The main purpose of this problem is to stabilize multiple leaders in
a formation and move a group of followers towards the convex hull constituted by the leaders. An
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Figure 1.1: Formation-containment representation.

example of this desired objective is illustrated in Figure 1.1, where the vehicles in gray and brown
represent leaders and follower agents, respectively. As a matter of fact, the problems of leaderless
and the leader following consensus can be seen as particular cases of the formation-containment
problem (Dong et al., 2015). In fact, by selecting a single leader the formation-containment
problem becomes the consensus in which the followers have to synchronize their states with
the states of the leader, and by considering some leaders with no followers the problem can
be reduced to the leaderless consensus problem. The formation-containment not only extends
other problems in multi-agent systems, but it also has many applications, for example, in the
maneuver of a team of vehicles it might be required that only a portion of the group be aware
of the environment and target position.

In the context of multi-agent systems, there is a growing body of literature investigating
issues such as consensus (Savino, Souza, and Pimenta, 2018; Savino et al., 2020; Alves Neto,
Mozelli, and Macharet, 2020), tracking in multi-robots settings (Pacheco, Pimenta, and Raffo,
2020; Yao, Ding, and Ge, 2018; Chu et al., 2018), teleoperation (Souza et al., 2008; Lima et al.,
2019; Yuan, Wang, and Guo, 2019; Kebria et al., 2020), line formation (or convoy) (Neto, Mozelli,
and Souza, 2019; Borkar, Borkar, and Sinha, 2019; Souza et al., 2020), segregation in robotic
swarms (Ferreira Filho and Pimenta, 2020; Inácio, Macharet, and Chaimowicz, 2019; Santos,
Pimenta, and Chaimowicz, 2014), input saturation (Jesus et al., 2014; Deng and Yang, 2017;
Li and Lin, 2017), and challenges related to implementation like event-triggered (Dimarogonas,
Frazzoli, and Johansson, 2012; Cui et al., 2018; Wang et al., 2017), intermittent communication
(Li and Liu, 2018a; Savino et al., 2016; Yang, Wang, and Ni, 2013), nonlinear systems (Araújo,
Torres, and Palhares, 2019; Gu et al., 2019; Li and Liu, 2018b), signed networks (Altafini, 2013;
Valcher and Misra, 2014) and heterogeneous systems (Li and Liu, 2018a; Zheng and Wang, 2015;
Wen et al., 2016). In this large field, few relevant works can be found where input saturation and
time-delay are addressed together, although this is not a rare situation in physical networked
systems. In fact, on the field of interconnected systems there are issues that arise from both, the
interconnection and from each system itself. In the following the main difficulties that emerge
on the study of multi-agent systems are summarized.
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1.1 Seminal Works

The cooperative control of multi-agent systems has its roots in statistical analysis (Winkler, 1968;
Degroot, 1974) and computer science (Tsitsiklis, Bertsekas, and Athans, 1986). The authors in
Winkler (1968), Degroot (1974), and Tsitsiklis, Bertsekas, and Athans (1986) started to use
ideas and terms that later composed the lexicon of multi-agent systems that lead the research
line on consensus, which is closely related to formation control, flocking, and other tasks on
multi-agent systems. Winkler (1968) suggested multiple methods to formally combine several
probability distributions to obtain a single distribution to be used as a basis for decision-making,
a problem which he referred to as “consensus problem”. Degroot (1974) proposed a technique
for a group of individuals to reach an agreement on an estimation of an unknown quantity given
that each individual had its probability distribution of this quantity. While Tsitsiklis, Bertsekas,
and Athans (1986) proposed a model for asynchronous distributed computation and showed that
distributed versions of a large class of gradient-like algorithms preserve convergence properties
of their centralized counterparts.

Another field that preceded and influenced the research area of cooperative control in multi-
agent systems was the computer graphics modeling of flocks of birds and herds of land animals.
Inspired by the motion of groups of individuals in nature, the objective was to simulate the
emergent behavior that occurs in large groups of animals, without using a central controller.
One example is the alignment and movement at the same speed that these groups tend to attain
(Okubo, 1986). A remarkable characteristic is that in these models each individual is designed to
react to its neighborhood with simple rules. Reynolds (1987) proposed an algorithm to simulate
this behavior in a three-dimensional space and established his results using simulations, without
convergence proofs. Then, Vicsek et al. (1995) proposed a simpler model for particles moving on
the plane, a particular case of Reynolds’ results. In their paper Vicsek et al. (1995), provide a
variety of simulations to show that the agents eventually move in the same direction in absence
of centralized control and with the varying neighborhood. The theoretical explanation of the
results of Vicsek et al. (1995) was given later by Jadbabaie, Lin, and Morse (2003).

More specifically in the context of control of multi-agent systems, the studies started to
arise more frequently later in the 90’s with the problem of formation control, inheriting the
theoretical development of statistics and graphical modeling (Sugihara and Suzuki, 1996; Suzuki
and Yamashita, 1999; Singh et al., 2000; Liu, Passino, and Polycarpou, 2001; Mesbahi and
Hadaegh, 2001). At this time the main objective was to establish protocols to make a group of
robots cooperatively perform a given task. Particularly, Suzuki and Yamashita (1999) studied
algorithms that distribute groups of robots to form geometrical patterns with rigorous proofs of
convergence. Singh et al. (2000) suggested an adaptive control system for multiple unmanned
aerial vehicles asymptotically track the desired shape. While Liu, Passino, and Polycarpou
(2001) proposed distributed models of interaction for members of groups of systems required to
behave as a swarm. The authors in Liu, Passino, and Polycarpou (2001) established simple rules
in such a way the swarm convergence is guaranteed whenever the systems follow these rules.
By this time an interesting interplay between Lyapunov theory and algebraic graph theory was
shown in the works by Mesbahi and Hadaegh (2001) and Fax and Murray (2002). After that,



4 Chapter 1. Introduction

the study of distributed networked systems using this framework became standard.

1.2 State of the Art

In the past twenty years, considerable research has been made on multi-agent systems (Suzuki
and Yamashita, 1999; Singh et al., 2000; Mesbahi and Hadaegh, 2001; Fax and Murray, 2002;
Olfati-Saber and Murray, 2004), mostly motivated by the potential capacity to solve several
problems more efficiently if compared to single controlled systems. However, to fully enjoy these
benefits some drawbacks intrinsically associated with networked systems have to be solved. The
next sections present various research issues in multi-agent systems and some recent approaches
to handle these problems.

1.2.1 Network Issues

Connectivity maintenance

The connectivity of the network topology is critical in guaranteeing the desired behavior of
the agents and, more often than not, the connectivity is assumed a priori. However, it was
shown in Ji and Egerstedt (2007) that in scenarios where the topology is state-dependent, for
example, a network in which agents can only exchange information with other agents within
some range, under the traditional consensus algorithm the connectivity could be lost even if
the network topology is initially connected. Yang, Shi, and Constantinescu (2019) proposed a
control strategy to preserve the connectivity of networked Euler-Lagrange systems subject to
time-delays. Their methodology is formulated as a strict minimization of an energy-like function
of the neighbors’ states of each agent. In the work of Su and Lin (2019) the problem of consensus
with a virtual leader and agents with double-integrator dynamics, previously studied (Olfati-
Saber, 2006), is revisited and extended, and the proposed control strategy can maintain initially
existent connections and new ones created during the network evolution, hence the requirement
of initially connected topology is relaxed.

Quantization

In practical systems, the finite sampling capacity implies that no perfect state information can
be processed. Without exact neighbors information, the multi-agent system might not attain
convergence, and depending on the information precision the convergence might be attainable
only to a certain range, which can prevent some tasks to be performed with a desirable perfor-
mance, for example, the load balancing (Li et al., 2014). To deal with that sort of problem Li,
Ho, and Li (2018) investigated an adaptive control strategy on the consensus problem, consid-
ering logarithmic quantizer measurements. The distributed adaptive controller is designed to
handle quantized information among agents, which are modeled as structured uncertainties.

Distance dependent disturbance

An interesting observation made by Cucker and Smale (2007) is that in some networks the
influence between two agents is related to the distance between them. Specifically, to address
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this aspect, Cucker and Smale (2007) modeled the multi-agent system in such a way the closer
two agents are, the bigger the influence among them. After that, the extended idea of modeling
non-ideal measurements associated with the distance among agents came along, which also
extended the information modeling with additive noise and reliability to a more appropriate
representation of multi-agent systems (Ren, Beard, and Kingston, 2005; Huang et al., 2010).
One recent strategy to deal with this particularity is proposed in Mo, Guo, and Yu (2019), where
a mean-square H∞ formation problem, also subject to external disturbances, is investigated.

Packet loss

Due to non-ideal environment and communication channels, networked systems are almost al-
ways subject to data packet dropout. On the literature there are three main strategies used
to deal with the analysis of stability under this problem, namely: i) the formulation as input
delay (Souza et al., 2012; Souza et al., 2016; Zhao et al., 2017) in such a way the delayed in-
formation encompasses the time between two valid data packets; ii) the use of hybrid systems
to handle deterministic packet losses (Chen and Zheng, 2012; Sui et al., 2018), such that each
agent is composed of an uncontrolled (when loss happens) and a controlled system (when there
is no packet loss); and iii) by representing the input random packet losses as an input stochastic
sampled-data that fulfill a Bernoulli distribution (Zhang et al., 2017; Sui et al., 2018).

Time-delay

Time-delay is an important feature to take into account on system stabilization. It is almost
inevitable and its presence can lead to undesirable performance and even to instability. Its
presence is critical in multi-agent systems, as first shown by Olfati-Saber and Murray (2004),
it can prevent the network to reach convergence even for agents with simple dynamics. Olfati-
Saber and Murray have started the analysis of consensus in multi-agent systems with constant
uniform time-delays and then their research was expanded for different types of delays, for
example, considering multiple time-varying delays (Sun, Wang, and Xie, 2008) and nonuniform
delays, in other words delays that are distinct over the network (Bliman and Ferrari-Trecate,
2008). Nevertheless, it is important to notice that time-delays not necessarily lead to degradation
in performance, as it was shown in Michael et al. (2014) and Edwards et al. (2020), it can be
used to induce behaviors on flocking or even to improve the convergence of networked systems.

Recent strategies to handle delays are often based on the Lyapunov-Krasovskii framework
together with the derivation of LMI conditions to verify the network convergence. Some examples
are the works in Savino et al. (2016), Zhou et al. (2018), and Fattahi and Afshar (2019).

1.2.2 Node Issues

Energy constraint

In some applications, each agent of the network may have a limited source of energy, which
makes its autonomy limited. One promising strategy to design efficient networks that have been
gaining popularity is event-triggered control and measurement. Roughly speaking, the main
objective is to alleviate the assumption of continuous and periodic controller updates. That is,
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efficiently update the controllers’ states at specific events (Nowzari, Garcia, and Cortés, 2019).
There are several studies on event-based control for multi-agent systems, see for example the
works by Wang, Yu, and Sun (2018), Nowzari, Garcia, and Cortés (2019), and Yi et al. (2019)
and references therein for recent approaches.

Input saturation

Input saturation is a bound imposed by physical limitations in the actuators of the agents, and
as such, it is naturally part of almost every real-world system. This constraint causes a nonlinear
behavior in the closed-loop system that can lead to performance degradation, the occurrence of
limit cycles, and instability, which may prevent the multi-agent system to attain the desirable
goal. Two main strategies are generally used to deal with saturated control systems (Tarbouriech
and Turner, 2009): the first one is to design the controller without considering the limits of the
actuators and then appropriately tune it and/or introduce modifications to minimize saturation
effects (Oliveira et al., 2013). In this approach, the system behaves as a linear one whenever
the limits of the actuators are not reached and the modifications, if any, become active only in
the presence of saturation. The second strategy is to take into account the limits of actuators
a priori while trying to ensure performance requirements. This approach usually allows a clear
trade-off between performance and the region of operation (when global stabilization is not
guaranteed) (Paim et al., 2002; Castelan et al., 2006). It is worth mentioning that within this
strategy there are promising approaches to deal with saturation, for example, Zhang, Wang, and
Li (2013) presents a distributed model predictive control to deal with actuator saturation and
derive linear matrix inequalities conditions to solve it. Cheng et al. (2015) also suggest model
predictive control protocols for multi-agent systems with double-integrators dynamics. Yi et
al. (2019) have studied the problem from the perspective of event-triggered control on single
integrators dynamics, and in Sakthivel et al. (2018) conditions for the analysis of a stochastic
fault-tolerant control subject to input saturation is proposed as LMIs, to study the leader-
following consensus.

Model uncertainty

Uncertainties and unmodeled dynamics are typical sources of undesired behavior and even in-
stability in the control of dynamic systems. Naturally, not all control strategies are robust to
these characteristics, and there are some controllers more sensitive than others. On networked
systems, these uncertainties have a critical impact, since a “bad” behaving node would propagate
its dynamics through the network, and could disrupt the accomplishment of the group task. It
is noteworthy that most works on multi-agent systems are usually concerned with agents with
precisely known dynamics. However, there is a research line in which the primary interest is to
derive robust control strategies for multi-agent systems, see for instance the works by Li, Soh,
and Xie (2018) and by Khalili et al. (2018) and references therein.
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Nonlinear dynamics

Most real-world systems would be better modeled using nonlinear differential equations. How-
ever, more often than not, linear control techniques are applied to stabilize nonlinear systems,
even though linear representations are generally valid only in the vicinity of the linearization
point (Slotine and Li, 1991). Following this tendency, the research on multi-agent systems
started considering agents with integrators and double-integrators dynamics, then it was ex-
panded to finite-order linear systems, and only a small portion of the field was involved with
nonlinear dynamics. Only over the past ten years, the results have been largely extended to
nonlinear systems (Chung and Slotine, 2007; Ren, 2009; Nuño et al., 2011; Nuño et al., 2012).
Some recent approaches to handle nonlinear nodes on networked systems are proposed by Zhou
et al. (2018), Gong and Lan (2018), and Chen et al. (2019b).

This research fits into the context of multi-agent systems with time-varying delays and input
saturation. The main purpose is to extend the research area by deriving analysis conditions
and designing appropriate controllers such that the networked system reaches convergence. The
problem is tackled considering linear and nonlinear node dynamics, and input and communica-
tion delays. The contributions in each context are summarized at the end of this chapter and
specifically discussed in Chapters 2 and 3, where they are also contrasted with similar studies
found in the literature.

One should note that this section is limited to the presentation of problems associated with
multi-agent systems, and has not addressed the challenge of different tasks, nor specific control
strategies. The chosen topics are by no means complete–their main purpose is to provide a
feeling of the fundamental problems of the field and to indicate some recent approaches to
address them.

1.3 Contributions Overview

This work investigates a scenario that has started to be studied only recently in the field of
multi-agent systems, nevertheless it is an important one as it considers scenarios closer to real-
world by considering models for the agents with saturating inputs and time-varying delays. New
conditions to analyze the convergence and design ot feedback controllers for the agents of the
network are proposed.

In this research, two different tasks of cooperative control are studied, the consensus and
formation-containment, each one with distinct node dynamics. The consensus problem is ad-
dressed in the continuous- and discrete-time domains considering saturated linear agents. The
consensus is translated into a stability analysis problem, with saturation represented as a dead-
zone function. In this context, input time-delays are considered nonuniform over the network
and possibly non-differentiable within a closed set (Savino, Souza, and Pimenta, 2014). On the
formation-containment problem, the node dynamics are considered nonlinear and modeled as
Euler-Lagrange systems subject to input saturation. In this context, the time-delays that affect
the network are considered in the communication channels and are also nonuniform, meaning
that they can vary independently over the network.
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The main improvements to the field that this work provides come in twofold: in the context
of consensus with linear agents i) firstly, it is proposed a method to study the consensus in terms
of the stability of linear multi-agent systems subject to input saturation and input time-varying
delays, based on the transformation carried by Sun and Wang (2009). Then, it is proposed
systematic procedures to study the stability and to synthesize the gains of controllers for the
agents in continuous- and discrete-time multi-agent systems. In both scenarios, the methods can
maximize the size of the region in which the consensus is always reachable; and ii) regarding the
formation-containment with Euler-Lagrange systems, it is proposed new distributed dynamic
controllers that take into account the communication delays and provide a bounded input for
each agent. The control strategy is elaborated such that it is applicable on networks composed
of heterogeneous systems with the same number of degrees of freedom. Then, it is proposed
an LMI test that provides the convergence analysis by considering some controller gains and
upper-bounds on the delays.

The remaining of this text is divided in the following way:

• Chapter 2: In this chapter the proposed methods for the consensus analysis and gains
design on saturated linear systems are presented, as well as mathematical proofs of these
results and numerical examples.

• Chapter 3: In this chapter, it is presented the design of distributed dynamic controllers,
along with sufficient conditions for the networked Euler-Lagrange systems subject to input
saturation and communication delays attain the formation-containment.

• Chapter 4: Finally, final considerations about the results are made, and a perspective of
future developments is shown.
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Chapter 2

Multi-Agent Systems with General Linear
Dynamics

This chapter investigates the consensus problem subject to saturating inputs and time-delays.
The problem is examined in the continuous- and discrete-time domains. In the continuous-time,
the question is tackled employing the Lyapunov-Krasovskii methodology, the approach presented
in this text is an extension of the results presented in the Master Thesis (Silva, 2019). In the
discrete-time domain, two different approaches are given, one based on the Lyapunov-Krasovskii
framework and another developed by writing the multi-agent delayed system as an equivalent
switching system. The primary points presented in this chapter are i) the use of sectorial non-
linearity to represent the saturation, ii) the transformation of the consensus problem into a
stability problem on disagreement variables, and finally, iv) the formulation of stability and gain
design conditions.

An important highlight on the notation used through this chapter is that because it will
be presented two approaches, considering continuous- and discrete-time multi-agent systems,
and part of the theory is shared among the two, a portion of the notation will also be given
jointly. More specifically, the definitions and manipulations presented up to Section 2.1.6 are
introduced together. Particularly, until Section 2.1.6 the independent variable t might represent
the continuous- (t ∈ R) or the discrete-time (t ∈ N) variable. For this reason, I will use the
operator

δ[x(t)]

to refer to the time-derivative in the continuous-time domain, i.e., δ[x(t)] = ẋ(t) with t ∈ R,
while in discrete-time domain to refer to the time-shift, i.e., δ[x(t)] = x(t+ 1) with t ∈ N.
In the sections in which this notation might insert some ambiguity, I will indicate specifically
which context is being considered.

2.1 Introduction and Preliminaries

It is noteworthy that the first works on multi-agent systems were mainly concerned with agents
modeled by linear models (Suzuki and Yamashita, 1999; Saber and Murray, 2003; Olfati-Saber
and Murray, 2004; Ren, Beard, and Kingston, 2005; Cucker and Smale, 2007). Despite the fact
that this approach can be used to model a rather small set of real world-systems, interesting
problems can be solved from this perspective (see for example the results in Cheng et al. (2015),
Chen et al. (2017a), Li, Soh, and Xie (2018), and Yi et al. (2019)), and as it gives flexibility and
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eases the system analysis, it remains a valuable tool to access the stability and stabilization of
real-world systems. With this in mind, this chapter presents new contributions to address the
consensus of linear systems subject to input saturation and time delays.

Consensus is one of the fundamental problems in multi-agent systems, as pointed out by Ren
and Beard (2008). That is because consensus algorithms have applications in several problems
of multi-agent systems, for example, the problem of rendezvous (Cortes, Martinez, and Bullo,
2006; Dong and Huang, 2018), formation control (Porfiri, Roberson, and Stilwell, 2007; Ren,
Beard, and Atkins, 2007), and sensor networks (Spanos and Murray, 2005; Mohammadi and
Asif, 2015). Consensus means to reach an agreement on a joint variable value, where agents
share information and update its variable according to some rule until the network converges.
Formally, the definition of consensus can be stated as:

Definition 2.1. A multi-agent system with n agents and state variables xi(t) ∈ Rm, where
i ∈ {1, . . . ,n} is the index of the agents, asymptotically reaches consensus on these variables if,
for all i 6= j,

lim
t→∞

(xi(t)−xj(t)) = 0. (2.1)

A consensus protocol is the interaction rule among agents that aims to drive the system
toward consensus. The classical protocol discussed in this text was introduced by Saber and
Murray (2003), and for the ith agent it has the following form:

ui(t) = −
n∑
j=1

aijK
(
xi(t)−xj(t)

)
, (2.2)

where ui(t) ∈ Rp is the input signal and K ∈ Rp×m is a constant gain matrix. This is a simple
distributed protocol that uses only local information with a linear relationship between the states
of agents. The constant aij is the (i, j) entry of the adjacency matrix (formally presented below
in Section 2.1.4), and in the consensus protocol (2.2) it selects only the information provided
by the agents which the ith agent interacts with. Note that this constant is equal to zero for
non-neighbor agents.

This chapter is concerned with the problem of consensus subject to constrained control
signals according to the following assumption:

Assumption 2.1. All the control inputs of agents, ui(t), are constrained by symmetric limits
−umax,i(k) ≤ ui(k)(t) ≤ umax,i(k), for all k ∈ {1, . . . , p}, in which umax,i(k) ∈ R is a scalar limit
of the kth input in the ith agent, and the subscript in parenthesis selects the kth element of the
vector.

Without loss of generality, the analysis is carried by assuming that umax,i(k) = umax, for
all i, k. This is done to ease notation, however, one can observe that the proposed conditions
are checked in each of the np inputs in the network. Thus, to recover the general instance the
upper-bound for each input can be set individually.

Assumption 2.1 portrays a practical constraint present in most real systems which can lead
to performance degradation or even to instability. It has been studied in different scenarios (see
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the work of Bernstein and Michel (1995) for a chronological review on saturation until 1995,
and the book of Tarbouriech et al. (2011) on the topic of stability and stabilization of linear
systems with input saturation). A consequence of the nonlinear behavior that Assumption 2.1
represents is that it might be impossible to steer the agents from some initial condition to the
origin, when using static state-feedback control without additional assumptions on the dynamics
of the agents, e.g., open-loop stability, as it is shown in Schmitendorf and Barmish (1980). Hence,
with stabilizing feedback and agents potentially open-loop unstable, it is necessary to compute
a region of the state space where for any initial condition exists bounded controls that stabilize
the agents.

Associated with the saturation phenomenon, the problem of input time-delay is also consid-
ered. It is assumed that the delay occurs locally on each agent i. This is stated in the form of
the following assumption:

Assumption 2.2. The consensus protocol has access to all neighbors states instantaneously,
but the controller action is delayed.

This problem has been studied from different points of view to find maximum delays that
allow consensus achievement, for example, the works by Olfati-Saber and Murray (2004), Savino
et al. (2013), Wen et al. (2016), You et al. (2016), and Zhao et al. (2017). In the consensus
protocol (2.2) the input delay can be represented with the following adaptation:

ui(t) = −
n∑
j=1

aijK
(
xi(t− τi(t))−xj(t− τi(t))

)
, (2.3)

where the function τi(t) maps the time-varying delay of the ith agent. In light of this, we define
a region for time-delay systems from which the consensus can be attained.

Definition 2.2. The domain of consensus is a region S ⊂ Cnmt0,τ̄ in which for any ϕ(t0) ∈ S, the
multi-agent system achieves consensus. The domain of consensus can be written in the following
way,

S =
{
ϕ(t0) ∈ Cnmt0,τ̄ : lim

t→∞
xi(t) = xj(t), ∀i, j ∈ V, i 6= j

}
, (2.4)

where τ̄ denotes the maximum delay upper-bound, Cnmt0,τ̄ represents the set of states of order nm
on the interval [t0 − τ̄ , t0], and ϕ(t0) ∈ Cnmt0,τ̄ is a continuous- (discrete-) time signal of state
variables of the agents on [t0 − τ̄ , t0].

In general, the exact computation of the region of convergence is a challenging task, even for
delay-free single agent systems (Tarbouriech et al., 2011). Typically, this problem is tackled by
estimating a subset of S less conservative as possible.

As shown in the seminal studies in Olfati-Saber and Murray (2004) and Saber and Murray
(2003), depending on the time-delay some trajectories might converge or diverge to consensus.
In this work, the objective is to investigate the scenario in which both, saturation and time-
delays, might be present. To the best of the author’s knowledge, this type of restriction have
started to be studied just recently with works in continuous-time domain in You et al. (2016),
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Yanumula, Kar, and Majhi (2017) and in Ding, Zheng, and Guo (2018), and there is only one
work addressing saturation and time-delays simultaneously on discrete-time multi-agent systems
by Zhang, Saberi, and Stoorvogel (2020). Nevertheless, the approach presented here extend those
results in significant aspects. Namely, the work in You et al. (2016)

i) deals only with the problem of leader-following consensus, while our approach can be used
on problems with and without leader;

ii) even though they said that the approach is appropriated for global consensus, no guarantees
is given in order to ensure that only systems with this characteristic will be analyzed. Thus,
there might be cases where their conditions are satisfied and global consensus cannot be
reached (this is illustrated in Example 2.1);

iii) considers undirected switching communication topologies, while the network communica-
tion topology in this work is directed, but fixed;

iv) the proposed conditions are matrix inequalities but are not linear, which makes it difficult
to find optminal solutions.

The work in Ding, Zheng, and Guo (2018)

i) also is concerned only with the problem of leader-following consensus, while we deal with
consensus with and without leader;

ii) formulates the problem of consensus analysis with bilinear matrix inequalities. Although
this formulation might have some advantages, it is a nonconvex problem and in general
there is no unified method to solve it;

iii) considers buffers over the network used to synchronize the input delays, in such a way that
the control action is updated only after all agents receive a confirmation signal. In other
words, their approach assumes that the ith agent receives the confirmation signal from all
the other agents, leading to a centralized type of communication. The approach presented
here is more general, considering decentralized, distinct time-delays.

In the discrete-time domain, Zhang, Saberi, and Stoorvogel (2020)

i) investigate the convergence of agents subject to input saturation and unknown nonuniform
constant delays, here we consider time-varying delays;

ii) assume agents having open-loop stable dynamics. This facilitates the study since it is not
required to compute regions of guaranteed convergence. In the approach proposed here no
such assumption is made;

iii) derive an upper bound for the delay tolerance and, therefore, ensure the stability for a
set of networks with different constant delays. Here, similarly, it is considered nonuniform
time-delays based on upper-bounds of their values.
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2.1.1 Review of Lyapunov-Krasovskii Methodology

A fundamental assumption of systems modeled by ordinary differential equations (difference
equations in the discrete-time domain), such as

δ[x(t)] = f(t,x(t)),

is that the future state variables of the system are completely determined by the current state
values. That is, the values of the state x(t) can be established once the initial condition x(0) is
known. However, in the class of delayed systems the future evolution of state variables not only
depends on the current value x(t), but also on historical values xt = x(t+ η), with η ∈ [−τ , 0].
The Lyapunov-Krasovskii framework is a generalization of the Lyapunov second method to
attest the stability of time-delay systems, and its main theorem can be expressed as follows:

Lemma 2.1 (Lyapunov-Krasovskii (Gu, Kharitonov, and Chen (2003))). Suppose f : R ×
Cm−τ̄ → Rm and that u, v, and w : R+ → R+ are continuous nondecreasing functions, and
u(0) = v(0) = 0. The time-delay system δ[x(t)] = f(t,xt) has a uniformly stable equilibrium
point if there exists a continuous functional V (xt) : R×Cm−τ̄ → R+ which is positive definite

u(‖xt‖) ≤ V (xt) ≤ v(‖xt‖C),

and its derivative (forward difference for discrete-time systems) along the solution of the system
is such that

V̇ (xt) ≤ −w(‖xt‖)
(
or ∆V (xt) ≤ −w(‖xt‖) in the discrete-time domain

)
,

where xt represents the system states x(σ) with σ ∈ [t− τ̄ , t], ‖xt‖C= supσ∈[t−τ̄ ,t]‖x(σ)‖, and
the constant τ̄ represents the maximum value of the delay.

As in the second method of Lyapunov, the main difficulty with the application of the above
theorem is the choice of an appropriate functional V (xt). Moreover, even for single linear agent
systems subject to time-varying delay, without saturation, it is still challenging to put together
an exact Lyapunov-Krasovskii functional that gives necessary and sufficient stability conditions.
Hence, several strategies have been proposed in the literature to cope with the conservatism of
the approach. Usually, the technique is to add information about the delay. See for example
the works in Wang et al. (2018) and in Fridman (2014) and references therein for some standard
strategies.

2.1.2 Dynamic Network

Consider a multi-agent system consisting of n agents subject to saturation and input time-delay,
in which the open-loop dynamics of the ith agent is given by

δ[xi(t)] = Axi(t) +B sat(ui(t)), (2.5)
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where xi(t) ∈ Rm is the agent state variable, ui(t) ∈ Rp the input control subject to delay, and
A and B are real constant known matrices of appropriate dimensions. Initial conditions for the
ith agent are given by

ϕi(t0) ∈ Cmmax{τi(t)},

in which Cmmax{τi(t)} represents the set of states in the continuous-time domain of order m on
the interval [t0 −max{τi(t)}, t0]. The time-varying delay that affects the ith agent’s input is
implicit in (2.5) (with input given as (2.3)) and is given by τi(t), as in Savino et al. (2016), and
it is modeled by

τi(t) = τ + µi(t), ∀i ∈ {1, . . . ,n},

where τ is a constant value and µi(t) a possibly non-differentiable time-varying perturbation
that satisfies |µi(t)| ≤ µm ≤ τ with µm known, hence the delay belongs to an interval given by
τi(t) ∈ [τ − µm, τ + µm].

The function sat(·) maps the saturation as:

sat(ui) = [sat(ui(1)) · · · sat(ui(p))]′, with

sat(ui(r)) = sign(ui(r))min(umax, |ui(r)|), (2.6)

for all r ∈ {1, . . . , p}, and the scalar umax represents the limit of the actuators. The subscript
in parenthesis M(r) denotes the rth element or the rth row, if M is a vector or a matrix,
respectively, and M ′(r) represents the transpose of its rth row. Without loss of generality, it is
assumed that all inputs are independent and have the same maximum value. Observe that due
to the saturation it is impossible to steer the agents’ states from some initial conditions ϕi(t0)
to the origin with static state-feedback control, if the open-loop system in (2.5) is unstable,
i.e., having some eigenvalues of A with i) positive real part in the continuous-time domain or
ii) outside the unit circle in the discrete-time domain (Tingshu Hu, 2001; Schmitendorf and
Barmish, 1980).

2.1.3 Problem Statement

In the present chapter we address the following problems:
Problem 1. Given the state-feedback matrix K in (2.3), determine whether the multi-agent
system with dynamics given by (2.5) reaches consensus, with agents subject to input time-delay
and input saturation. In addition, establish a region from where the agents always attain the
consensus.
Problem 2. Design the stabilizing state-feedback matrix K in (2.3) for the agents subject to
input time-delays and input saturation of the multi-agent system with dynamics given by (2.5)
to guarantee consensus, along with an estimate of the domain of consensus.
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2.1.4 Graph Theory

In this investigation, the interaction between agents is represented using graphs. This abstraction
allows to represent the communication complexity as essentially combinatorial: it identifies which
pairs of agents have interactions and to what degree. To illustrate this idea consider the group
of five range sensors in Figure 2.1, where each dot on the left side represents a sensor and the
gray area represents its range. The communication topology is abstracted on the right side as
a graph, where the nodes represent the sensors and an edge exists only if a sensor can perceive
a neighbor sensor, the arrows represent the direction of the information flow. The algebraic
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Figure 2.1: Graph representation of agents interaction.

theory of graphs to model interactions between systems has been used by several authors in the
context of networked systems. Mesbahi and Hadaegh (2001) were one of the first authors to
use it in the multi-agent systems context and then this representation became popular, most
references in this text represent the multi-agent system communication in this way.

A finite, directed, simple graph is built upon a finite set called vertex set denoted by V =

{v1, . . . , vn} (Mesbahi and Egerstedt, 2010). To formally define a graph G we use a particular
subset of the Cartesian product V × V, named edges of G, and assign the symbol E to it.
Each element of the edge set, eij , represents a directed information flow in the multi-agent
system. Thus, set E is built by choosing ordered pairs that represent two agents that interact
with each other. In each element eij = (vi, vj), the first argument vi is the parent node (the
arrow’s tail) and the second argument vj is the child node (the arrow’s head), formally we have:
E = {(vi, vj) : vj receives information from vi}. The neighborhood of the vertex vi is the set
of all vertices that vi receives information from, specifically, Ni = {vj ∈ V : (vj , vi) ∈ E}.
Additionally, an adjacent node, or neighbor of vi, is a node vj that belongs to the neighborhood
Ni. The adjacency matrix A is defined by assigning values to its elements according to the edge
set:

aij =

{
0, if i = j or @ eji,
1, if eji ∈ E .

Then, the idea of moving from node to node through the edges comes naturally using the notion
of adjacency. Thereby, a path related to the graph G is given by a sequence of nodes {v1, . . . , vn}
such that for all k ∈ {1, . . . ,n− 1}, the nodes vk and vk+1 are adjacent and vk+1 is a child
node. Finally, the degree matrix D associated with the graph G is a diagonal matrix with
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elements given by dii =
∑n
j=1 aij , and the Laplacian matrix associated with the graph is defined

as L = D−A.
The idea of sub-graph of a graph G is used during the text to facilitate notation. In general,

a sub-graph of a graph G is a graph constituted of a subset of nodes and edges of G. In this
manuscript, the interest relies on sub-graphs composed of a node vi along with all the other
nodes and the so-called incoming edges of vi. A sub-graph is denoted by the same symbol of the
primary graph with a subscript, for example, Gi is the sub-graph of the ith node associated with
the graph G. Thus, the sub-graph of the ith node is a graph Gi = (V, Ei), where Ei = {(vi, vj) ∈
E : ∀vj ∈ V}. To illustrate this idea, the graph formed in Figure 2.1 is shown in Figure 2.2 with
its sub-graphs.

v1

v2 v3

v4 v5

(a) G1

v1

v2 v3

v4 v5

(b) G2

v1

v2 v3

v4 v5

(c) G3

v1

v2 v3

v4 v5

(d) G4

v1

v2 v3

v4 v5

(e) G5

Figure 2.2: Sub-graphs formed by the nodes of Figure 2.1.

To ensure the convergence the following assumption is necessary:

Assumption 2.3. The graph G associated with the communication topology of the network have
a directed spanning tree.

A directed tree is a directed graph where all nodes but one, which is called root and has no
parent node, has exactly one parent, and there is a path from the root to any other node. A
spanning tree of a directed graph is a directed tree composed of the graph edges that connect
all the nodes of the graph.

2.1.5 Tree-Type Transformation

The tree-type transformation, proposed in Sun and Wang (2009), is used to translate the con-
sensus problem into a stability problem. Under Assumption 2.3, defining the disagreement of



2.1. Introduction and Preliminaries 17

state variables as follows

zi(t) = x1(t)−xi+1(t),

for i = 1, . . . ,n−1. The disagreements of states for all i ∈ {1, . . . ,n− 1} are written in one
equation by using the transformation,

z(t) = (U ⊗ Im)x(t), (2.7)

where z(t) = [z1(t)′ . . . zn−1(t)′]′, x(t) = [x1(t)′ . . . xn(t)′]′, the symbol ⊗ represents the
Kronecker product between two matrices, and Im is an identity matrix of order m and the
matrix U is given by

U=
[
1n−1 −In−1

]
.

The transformation from the disagreement back to original states is given by

x(t) = 1n ⊗x1(t) + (W ⊗ Im)z(t), (2.8)

where the matrix W is defined as,

W=

[
0′n−1
−In−1

]
,

with 1n−1 and 0n−1 being column vectors of size n − 1, in which all elements are ones and
zeros, respectively. Hence, the Definition 2.1 of the consensus in the network can be formulated
according to the following lemma:

Lemma 2.2. (Sun and Wang, 2009). A multi-agent system with n agents and state variables
xi(t) ∈ Rm, where i ∈ {1, . . . ,n} is the index of the agents, asymptotically reaches consensus if,
and only if

lim
t→∞

z(t) = 0. (2.9)

Therefore, the stability of a system in the new coordinates z(t) is investigated to access the
convergence of the network into consensus.

2.1.6 Consensus as a Stability Problem

In this section, the consensus is rewritten as a stability problem using the tree-type transfor-
mation. Note that the multi-agent system (2.5) can be represented compactly by using the
Kronecker product, as

δ[x(t)] = (In ⊗A)x(t) + (In ⊗B) sat(u(t)), (2.10)
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where,

u(t) =
[
u1(t)′ · · · un(t)′

]′
, and (2.11)

x(t) =
[
x1(t)′ · · · xn(t)′

]′
.

Defining the vector Ii ∈ Rn with 1 in its ith position and 0 elsewhere, for example for i = 1,
I1 = [1 0 · · · 0]′, makes it possible to rewrite (2.11) as,

u(t) =
n∑
i=1

Ii ⊗ui(t). (2.12)

Additionally, the following equalities hold:

n∑
j=1

aijxj(t− τi(t)) = (I′iAi ⊗ Im)x(t− τi(t)), (2.13)

n∑
j=1

aijxi(t− τi(t)) = (I′iDi ⊗ Im)x(t− τi(t)), (2.14)

where the subscript on the adjacency matrix Ai and on the degree matrix Di refers to the
sub-graph related to ith agent, as introduced in Section 2.1.4. Applying the consensus protocol

ui(t) = −
n∑
j=1

aijK
(
xi(t− τi(t))−xj(t− τi(t))

)
,

in (2.12), then using (2.13) and (2.14) and recalling that Li = Di −Ai, we get

u(t) =−
n∑
i=1

Ii ⊗
n∑
j=1

aijK(xi(t− τi(t))−xj(t− τi(t)))

=−
n∑
i=1

(Ii ⊗K)(I′iLi ⊗ Im)x(t− τi(t)). (2.15)

By using the mixed-product property for the Kronecker product, (2.15) becomes,

u(t) =−
n∑
i=1

(IiI
′
iLi ⊗K)x(t− τi(t))

=−
n∑
i=1

(Li ⊗K)x(t− τi(t))

Finally, the closed-loop multi-agent system (2.10) can be written in a stacked form as,

δ[x(t)] =(In ⊗A)x(t)− (In ⊗B) sat
( n∑
i=1

(Li ⊗K)x(t− τi(t))
)

. (2.16)
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Finally, the operator δ is applied on equation (2.7) and afterwards, the dynamics (2.16) is
substituted in δ[x(t)], this gives us

δ[z(t)] =(U ⊗ Im)(In ⊗A)x(t)− (U ⊗ Im)(In ⊗B) sat

 n∑
i=1

(Li ⊗K)x(t− τi(t))

. (2.17)

Replacing (2.8) in (2.17),

δ[z(t)] =(U⊗Im)(In⊗A)
(
(1n ⊗ x1(t)) + (W ⊗ Im)z(t)

)
−(U⊗Im)(In⊗B) sat

 n∑
i=1

(Li ⊗K)
(
(1n ⊗ x1(t− τi(t))) + (W ⊗ Im)z(t− τi(t))

),

then, through Kronecker properties,

δ[z(t)] =(U1n)⊗ (Ax1(t)) + (UW ⊗A)z(t)

−(U ⊗B) sat

 n∑
i=1

(Li1n)⊗ (Kx1(t− τi(t))) + (LiW ⊗K)z(t− τi(t))

,

noticing that U1n = 0, Li1n = 0, and UW=In−1, the following disagreement system is obtained

δ[z(t)]=(In−1⊗A)z(t)−(U ⊗B) sat

 n∑
i=1

(LiW ⊗K)z(t− τi(t))

. (2.18)

To handle the saturation, we study the stability analysis and the stabilization of (2.18) as a
Lur’e problem satisfying a sector condition (Khalil, 2002). Following Tarbouriech et al. (2011),
let us consider the dead-zone function

Θ(g(t)) = g(t)− sat(g(t)), (2.19)

with

g(t) =
n∑
i=1

(LiW ⊗K)z(t− τi(t)),

then summing and subtracting (U ⊗B)g(t) from the right-hand side of (2.18), it is possible to
represent the closed-loop multi-agent system as

δ[z(t)]=(In−1⊗A)z(t)−
n∑
i=1

(U ⊗B)(LiW ⊗K)z(t− τi(t))

+(U ⊗B)Θ

 n∑
i=1

(LiW ⊗K)z(t− τi(t))

. (2.20)

Thus, as presented in Lemma 2.2, the stability of (2.20) implies that the multi-agent system
reaches consensus. Moreover, because of the dead-zone function Θ(g(t)), it is possible to define
a polyhedral set and a sector condition to assist the the stability analysis and the stabilization
of the multi-agent system, specifically:
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Lemma 2.3 (Generalized Sector Condition (Tarbouriech and Silva Jr., 2005)). For a given
auxiliary signal ω(t) and saturation limits umax, define the set

S(ω(t),umax) = {u(t) ∈ Rnp : |(u(t)−ω(t))(`)|≤ umax, for ` = 1, ...,np}.

If u(t) and ω(t) belongs to S(ω(t),umax), then Θ
(
u(t)

)′
T
[
Θ
(
u(t)

)
+ω(t)

]
≤ 0 is satisfied for

any positive diagonal matrix T ∈ Rnp×np, with Θ(u(t)) given in (2.19).

2.2 Consensus of Continuous-Time Systems

This section addresses the problems of consensus analysis and design of the gains with the
consensus protocol (2.3). The main results presented in this section are extensions of the work
in the Master Thesis in Silva (2019), some important distinctions are; i) the saturation here
is modeled as a dead-zone function, which allows to tackle it as a Lur’e problem satisfying a
sector condition. Because of that, the stability and design conditions are given directly as LMIs,
while in Silva (2019) they were bilinear matrix inequalities and needed to be solved as iterative
linear matrix inequalities; ii) the Lyapunov-Krasovskii functional candidate is built taking into
account more information about delayed state variables of each agent, which possibly diminish
the conservativeness of the approach, and iii) it is proposed a methodology to characterize the
region of convergence by considering current and delayed states to find a set of initial conditions
as large as possible.

An appealing aspect of (2.20) is that it can be analyzed using robust control methodologies.
Particularly, in this section we address the stability analysis and stabilization of the continuous-
time version of (2.20) by employing the following Lyapunov-Krasovskii functional candidate
inspired by the studies in Souza (2013), Savino, Souza, and Pimenta (2014), Savino et al. (2016),
and Silva (2019):

V (ϕ(t)) =χ(t)′P̄χ(t) +
∫ 0

−τ

∫ 0

θ

∫ t

t+s
ż(ε)′S̄ż(ε)dεdsdθ+

∫ µm

−µm

∫ t

t+s−τ
ż(ε)′Z̄ż(ε)dεds

+
∫ 0

−τ

∫ t

t+s
ż(ε)′R̄ż(ε)dεds+ (τ + µm)

n∑
i=1

∫ 0

−τ−µm

∫ t

t+s
ż(ε)′M̄ ż(ε)dεds, (2.21)

with χ(t)′ =
[
z(t)′

∫ t
t−τ z(ε)

′dε
]
,

P̄ =

[
P̄1 P̄2

∗ P̄3

]
,

ϕ(t) ∈ Cnmt,τ+µm
, and recalling that in continuous-time δ[x(t)] = ẋ(t). Moreover, the main

differences between the functional candidate (2.21) and the ones in Savino et al. (2016), Savino,
Souza, and Pimenta (2014), and Silva (2019) are the inclusion of the n integrals of derivative of
states over [−τ −µm, 0] and the exclusion of a single integral term over [−τ , 0]. The motivation
behind these changes is to include delay information for each agent and dissociate delayed
from current states. These modifications allowed the use of the Generalized Sector Condition
(Lemma 2.3), the characterization of decoupled regions for delayed and current states, as well
as less conservatism in the investigated examples. Besides, if (2.21) is a Lyapunov-Krasovskii
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functional, then we can calculate an estimate of S as the associated level set as:

LV = {ϕ(t0) ∈ Cnmt0,τ+µm
: V (ϕ0) ≤ 1}, (2.22)

such that LV ⊂ S.

2.2.1 Stability Analysis

The following theorem presents sufficient conditions to certify consensus in the multi-agent
system (2.10).

Theorem 2.1. Let the feedback gain matrix K and the scalars τ , µm, and % be given. The
multi-agent system (2.5) with consensus protocol (2.3) subject to saturating inputs and time-
varying delays τi(t) ∈ [τ − µm, τ + µm] with τ > 0, 0 ≤ µm ≤ τ , reaches consensus if there
exist symmetric positive definite matrices P1, P3, R, S, M , and Z ∈ Rm(n−1)×m(n−1), matrices
P2 ∈ Rm(n−1)×m(n−1), G ∈ Rnp×nm(n−1), a diagonal positive definite matrix H ∈ Rnp×np, and
a non-singular matrix F ∈ Rm(n−1)×m(n−1), such that the following inequalities are satisfied:[

Φ µmΓ
∗ −µmZ

]
< 0, (2.23)[

P1 P2

∗ P3

]
> 0, (2.24)

and 
M̂ −M̂ 0
∗ M̂

(
L̄(In ⊗ F ′)−G

)′
(r)

∗ ∗ u2
max

 ≥ 0, ∀r ∈ {1, . . . ,np}, (2.25)

where

Φ = ΦP + ΦZ + ΦR + ΦS + Φsat + ΦM + ΦF , (2.26)

Γ =



B̄F ′

%B̄F ′

0
0
0
0


, ΦZ =



0 0 0 0 0 0
∗ 2µmZ 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


,
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ΦP =



P2 + P ′2 P1 −P2 0 P3 0
∗ 0 0 0 P2 0
∗ ∗ 0 0 −P3 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


, ΦR =



− 4
τR 0 − 2

τR 0 6
τ2R 0

∗ τR 0 0 0 0
∗ ∗ − 4

τR 0 6
τ2R 0

∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ −12

τ3 R 0
∗ ∗ ∗ ∗ ∗ 0


,

ΦS =



−2S 0 0 0 2
τ S 0

∗ τ2

2 S 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ − 2

τ2S 0
∗ ∗ ∗ ∗ ∗ 0


, Φsat =



0 0 0 0 0 0
∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 −G′

∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ −2H


,

ΦM =



−nM 0 0 IM̂ 0 0
∗ n(τ + µm)2M 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ −M̂ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


,

ΦF =



ĀF ′ + FĀ′ %FĀ′ − F ′ B̄F ′ 0 0 (U ⊗B)H

∗ −%(F + F ′) %B̄F ′ 0 0 %(U ⊗B)H

∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


,

and

Ā =In−1 ⊗A,

B̄ =−ULW ⊗BK,

L̄ =
[
L1W ⊗K L2W ⊗K · · · LnW ⊗K

]
,

I =1′n ⊗ Im(n−1) ∈ Rm(n−1)×nm(n−1),

M̂=In ⊗M ∈ Rnm(n−1)×nm(n−1).

Furthermore, a region from which the consensus is always attainable is given by LV = {ϕ(t0) ∈
Cnmt0,τ+µm

: V (ϕ0) ≤ 1}.

Proof. In the following, it is demonstrated that if the conditions in the theorem hold the origin
of the system in (2.20) is an asymptotically stable equilibrium point, which implies, from Lemma
2.2, that the multi-agent system (2.10) reaches consensus.

In this regard, it is used the Lyapunov-Krasovskii functional candidate proposed in (2.21),
with P̄ = F−1P (F−1)′, R̄ = F−1R(F−1)′, S̄ = F−1S(F−1)′, M̄ = F−1M(F−1)′, and Z̄ =
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F−1Z(F−1)′. Therefore, by requiring P > 0, R > 0, S > 0, M > 0 and Z > 0, the posi-
tivity of the Lyapunov-Krasovskii functional candidate is guaranteed. Moreover, the functions
u(·) and v(·) in Lemma 2.1 can be built as u(‖z(t)‖) = λmin(P1)‖z(t)‖2 and v(‖ϕ(t)‖) =

ρ supη∈[t−τ−µm,t]‖ż(η)‖2+λmax(P ) supη∈[t−τ ,t]‖[z(t)′ τz(η)′]‖2, with

ρ =
τ2

2 λmax(R) + 2µmτλmax(Z) +
τ2

6 λmax(S) +
n(τ + µm)2

2 λmax(M).

Next we show that the negativity of the functional derivative is guaranteed if the conditions in
the theorem hold.

Using the Newton-Leibniz formula and (2.20), we have the following null term

0 = 2Λ(t)

ż(t)− Āz(t)− n∑
i=1

B̄iz(t− τi(t))− (U ⊗B)Θ(g(t))


= 2Λ(t)

ż(t)− Āz(t)− n∑
i=1

B̄iz(t− τ ) +
n∑
i=1

B̄i

∫ −τ
−τi(t)

ż(t+ ε)dε− (U ⊗B)Θ(g(t))


= 2Λ(t)

[
ż(t)− Āz(t)− B̄z(t− τ )− (U ⊗B)Θ(g(t))

]
+ v(t), (2.27)

where,

Λ(t) = −z(t)′F−1 − %ż(t)′F−1, (2.28)

Ā = In−1 ⊗A, (2.29)

B̄i = −(ULiW )⊗BK, (2.30)

B̄ = −(ULW )⊗BK, (2.31)

v(t) =
n∑
i=1

∫ −τ
−τi(t)

2Λ(t)B̄iż(t+ ε)dε, (2.32)

and % is a free constant for adjustment. Moreover, assuming Z > 0 we have that1

v(t) ≤
n∑
i=1

∫ −τ
−τi(t)

(
Λ(t)B̄i

)
nZ̄−1

(
Λ(t)B̄i

)′
dε+

n∑
i=1

∫ −τ
−τi(t)

ż(t+ ε)′
Z̄

n
ż(t+ ε)dε

≤
n∑
i=1

µm
(

Λ(t)B̄i
)
nZ̄−1

(
Λ(t)B̄i

)′
+
∫ t−τ+µm

t−τ−µm

ż(ε)′Z̄ż(ε)dε. (2.33)

Therefore, defining F̂ = F−1 to alleviate notation, then combining (2.27) and (2.33) it yields

0 ≤− 2%ż(t)′F̂ ż(t) + 2z(t)′F̂ Āz(t) + 2%ż(t)′F̂ Āz(t)− 2z(t)′F̂ ż(t) + 2z(t)′F̂ B̄z(t− τ )

+ 2%ż(t)′F̂ B̄z(t− τ ) + 2%ż(t)′F̂ (U ⊗B)Θ(g(t)) + 2z(t)′F̂ (U ⊗B)Θ(g(t))

+
n∑
i=1

µm
(

Λ(t)B̄i
)
nZ−1

(
Λ(t)B̄i

)′
+
∫ t−τ+µm

t−τ−µm

ż(ε)′Zż(ε)dε. (2.34)

1We used the inequality 2a′b ≤ a′Xa+ b′X−1b where a, b ∈ Rm(n−1) and X > 0 ∈ Rm(n−1)×m(n−1).
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The functional candidate (2.21) time-derivative is given by

V̇ (ϕ(t)) =χ(t)′P̄ χ̇(t) + χ̇(t)′P̄χ(t) + τ ż(t)′R̄ż(t)−
∫ t

t−τ
ż(ε)′R̄ż(ε)dε+

τ2

2 ż(t)
′S̄ż(t)

−
∫ 0

−τ

∫ t

t+s
ż(ε)′S̄ż(ε)dεds+ 2µmż(t)′Z̄ż(t)−

∫ t−τ+µm

t−τ−µm

ż(ε)′Z̄ż(ε)dε

+ n(τ + µm)
2ż(t)′M̄ ż(t)− (τ + µm)

n∑
i=1

∫ t

t−τ−µm

ż(ε)′M̄ ż(ε)dε,

then, adding in it with (2.34) we have

V̇ (ϕ(t)) ≤χ(t)′P̄ χ̇(t) + χ̇(t)′P̄χ(t) + τ ż(t)′R̄ż(t)−
∫ t

t−τ
ż(ε)′R̄ż(ε)dε+

τ2

2 ż(t)
′S̄ż(t)

−
∫ 0

−τ

∫ t

t+s
ż(ε)′S̄ż(ε)dεds+ 2µmż(t)′Z̄ż(t) + n(τ + µm)

2ż(t)′M̄ ż(t)

− (τ + µm)
n∑
i=1

∫ t

t−τi(t)
ż(ε)′M̄ ż(ε)dε− 2%ż(t)′F̂ ż(t) + 2z(t)′F̂ Āz(t)

+ 2%ż(t)′F̂ Āz(t)− 2z(t)′F̂ ż(t) + 2z(t)′F̂ B̄z(t− τ ) + 2%ż(t)′F̂ B̄z(t− τ )

+ 2%ż(t)′F̂ (U ⊗B)Θ(g(t)) + 2z(t)′F̂ (U ⊗B)Θ(g(t))

+
n∑
i=1

µm
(

Λ(t)B̄i
)
nZ̄−1

(
Λ(t)B̄i

)′
.

Finally, applying Lemma A.1 on the integral with S̄, Lemma A.2 on the integral with term R̄,
and Lemma A.3 on each integral term with M̄ , assuming that g(t) ∈ S(ω(t),umax) and applying
the inequality −2Θ

(
g(t)

)′
T
[
Θ
(
g(t)

)
+ ω(t)

]
≥ 0 from Lemma 2.3, with ω(t) = Ḡẑ(t− τ (t))′ in

which Ḡ ∈ Rnp×m(n−1) is a matrix variable and

ẑ(t− τ (t))′ =
[
z(t− τ1(t))′ z(t− τ2(t))′ · · · z(t− τn(t))′

]
,

yields:

V̇ (ϕ(t)) ≤χ(t)′P̄ χ̇(t) + χ̇(t)′P̄χ(t) + τ ż(t)′R̄ż(t)− 1
τ

∫ t

t−τ
ż(ε)′dεR̄

∫ t

t−τ
ż(ε)dε− 3

τ
Ω′R̄Ω

+
τ2

2 ż(t)
′S̄ż(t) + 2µmż(t)′Z̄ż(t)−

2
τ2

∫ 0

−τ

∫ t

t+s
ż(ε)′dεdsS̄

∫ 0

−τ

∫ t

t+s
ż(ε)dεds

+ n(τ + µm)
2ż(t)′M̄ ż(t)−

n∑
i=1

∫ t

t−τi(t)
ż(ε)′dεM̄

∫ t

t−τi(t)
ż(ε)dε− 2%ż(t)′F̂ ż(t)

+ 2z(t)′F̂ Āz(t) + 2%ż(t)′F̂ Āz(t)− 2z(t)′F̂ ż(t) + 2z(t)′F̂ B̄z(t− τ )

+ 2%ż(t)′F̂ B̄z(t− τ ) + 2%ż(t)′F̂ (U ⊗B)Θ(g(t)) + 2z(t)′F̂ (U ⊗B)Θ(g(t))

− 2Θ
(
g(t)

)′
T
[
Θ
(
g(t)

)
+ω(t)

]
+

n∑
i=1

µm
(

Λ(t)B̄i
)
nZ̄−1

(
Λ(t)B̄i

)′
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≤χ(t)′P̄ χ̇(t) + χ̇(t)′P̄χ(t) + τ ż(t)′R̄ż(t)− 1
τ

(
z(t)− z(t− τ )

)′
R̄
(
z(t)− z(t− τ )

)
− 3
τ

Ω′R̄Ω +
τ2

2 ż(t)
′S̄ż(t)− 2z(t)′S̄z(t) + 4

τ
z(t)′S̄

∫ t

t−τ
z(ε)dε

− 2
τ2

∫ t

t−τ
z(ε)′dεS̄

∫ t

t−τ
z(ε)dε+ n(τ + µm)

2ż(t)′M̄ ż(t)

−
n∑
i=1

(
z(t)− z(t− τi(t))

)′
M̄
(
z(t)− z(t− τi(t))

)
+ 2µmż(t)′Z̄ż(t)− 2%ż(t)′F̂ ż(t)

+ 2z(t)′F̂ Āz(t) + 2%ż(t)′F̂ Āz(t)− 2z(t)′F̂ ż(t) + 2%ż(t)′F̂ (U ⊗B)Θ(g(t))

+ 2z(t)′F̂ (U ⊗B)Θ(g(t)) + 2z(t)′F̂ B̄z(t− τ ) + 2%ż(t)′F̂ B̄z(t− τ )

− 2Θ
(
g(t)

)′
T
[
Θ
(
g(t)

)
+ω(t)

]
+

n∑
i=1

µm
(

Λ(t)B̄i
)
nZ̄−1

(
Λ(t)B̄i

)′
≤Υ(t)′Φ̂Υ(t) +

n∑
i=1

µmΥ(t)′ΓinZ̄−1Γ′iΥ(t)

=Υ(t)′
 n∑
i=1

(
1
n

Φ̂ + µmΓinZ̄−1Γ′i

)Υ(t), (2.35)

with

Υ(t)′ =
[
z(t)′ ż(t)′ z(t− τ )′ ẑ(t− τ (t))′

∫ t
t−τ z(ε)

′dε Θ(g(t))′
]

,

ẑ(t− τ (t))′=
[
z(t− τ1(t))′ z(t− τ2(t))′ · · · z(t− τn(t))′

]
Γ′i =

[
(F̂ B̄i)′ %(F̂ B̄i)′ 0 0 0 0

]
,

Φ̂ defined with similar structure as (2.26), however with matrices P̄ , S̄, Z̄, R̄, M̄ and

Φ̂sat =



0 0 0 0 0 0
∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 −Ḡ′T ′

∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ −2T


,

instead of P , S, Z, R, M , and Φsat.
Finally, V̇ (ϕ(t)) ≤ −w(‖z(t)‖) = −α‖z(t)‖2< 0 for any Υ(t) 6= 0, for some α > 0 suffi-

ciently small, is achieved whenever the term inside parenthesis in equation (2.35) is negative
definite, which from Schur complement is equivalent to

n∑
i=1

[ 1
n Φ̂ µmΓi
∗ −µm

n Z

]
=

[
Φ̂ µmΓ
∗ −µmZ̄

]
< 0. (2.36)

The inequality (2.36) becomes identical to condition (2.23) after pre- and post-multiplying it
with

diag(F ,F , · · · ,F ,T−1,F )
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and its transpose respectively, and making the change of variables H = T−1, G = ḠF ′.
Therefore, if conditions (2.23) and (2.24) of Theorem 2.1, and g(t) ∈ S(ω(t),umax) hold we

have V (ϕ(t)) > 0 and V̇ (ϕ(t)) < 0, which implies that the multi-agent system reaches consensus
asymptotically.

Henceforth, we show that if inequality (2.25) is satisfied then g(t) ∈ S(ω(t),umax), and from
the generalized sector condition in Lemma 2.3, −2Θ(g(t))′T [Θ(g(t)) + ω(t)] ≥ 0 holds. In
addition, it is demonstrated that all trajectories ϕ(t) starting from LV remains within LV and
go to the origin.

The inequality (2.25) implies that whenever the trajectories of the multi-agent system ϕ(t)

belong to LV , the inputs belong to the generalised sector condition S(ω(t),umax), in which LV
represents a level set of the Lyapunov-Krasovskii functional. That is∣∣∣((L̄− Ḡ)ẑ(t− τ (t)))

(r)

∣∣∣ ≤ umax, ∀ϕ(t) ∈ LV ,

for r = 1, . . . ,np, where in Lemma 2.3, u(t) = L̄ẑ(t− τ (t)) and ω(t) = Ḡẑ(t− τ (t)). The
previous inequality holds whenever(
(L̄− Ḡ)ẑ(t− τ (t))

)′
(r)
u−2

max

(
(L̄− Ḡ)ẑ(t− τ (t))

)
(r)

≤ (ẑ(t)− ẑ(t− τ (t)))′(In ⊗ M̄)(ẑ(t)− ẑ(t− τ (t))) ≤ 1

which, by Schur complement and pre- and post-multiplying the result by diag((In⊗F ), 1) and its
transpose, respectively, becomes the inequality (2.25). Furthermore, we have for all trajectories
originating from ϕ0 ∈ LV ,

(ẑ(t)− ẑ(t− τ (t)))′(In ⊗ M̄)(ẑ(t)− ẑ(t− τ (t))) ≤ V (ϕ0) ≤ 1,

where the left-hand side inequality is obtained by applying Lemma A.1 in the integral terms
with M̄ of the Lyapunov-Krasovskii functional candidate and noticing that

∫ t
t−τi(t)

ż(ε)d(ε) =

z(t)− z(t− τi(t)). Hence, with condition (2.25), we ensure that g(t) belongs to S(ω(t),umax),
consequently the condition in Lemma 2.3 is satisfied. Therefore, because LV is a level set of
V (ϕ(t)) and the inequalities V (ϕ(t)) > 0 and V̇ (ϕ(t)) < 0 hold, the set LV is positively
invariant, which concludes the proof.

Theorem 2.1 presents sufficient conditions to guarantee consensus of multi-agent system with
agents described by (2.5), particularly it characterizes the multi-agent system stability described
as equation (2.20), which results in consensus. Additionally it gives a procedure to compute a
region from which the consensus is always attainable.

It is important to notice that part of the development of the demonstration of Theorem
2.1 is based on (Savino, Souza, and Pimenta, 2014; Savino et al., 2016) and (Souza, 2013). In
particular, the Lyapunov-Krasovskii functional candidate, the null-term to take into account the
dynamics of the system, and the bounds of time-delays are similar to the ones in those studies.

Remark 2.1. The adjustment parameter % is an attempt to add a degree of freedom to the
conditions, which is added by means of the structure in Λ(t) in (2.28). However, no systematic
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procedure to tune it was developed. In all examples its value is explicitly given, and, in general,
they were found by searching the best result in a given bounded region.

2.2.2 Stabilization

In the next theorem, we present conditions to design stabilizing state feedback matrices for
the agents in the continuous-time domain, along with a region of ensured convergence. The
results are extensions of the previous one based on the Lyapunov-Krasovskii methodology and
are derived by selecting a particular structure for a matrix variable.

Theorem 2.2. Let the scalars τ , µm, and % be given. The multi-agent system (2.5) with
consensus protocol (2.3) subject to saturating inputs and time-varying delays τi(t) ∈ [τ −µm, τ +
µm] with τ > 0, 0 ≤ µm ≤ τ , reaches consensus with state feedback matrix K=K̄(F−1

m )′, if there
exist symmetric positive definite matrices P1, P3, R, S, M , and Z ∈ Rm(n−1)×m(n−1), matrices
P2 ∈ Rm(n−1)×m(n−1), G ∈ Rnp×nm(n−1), K̄ ∈ Rp×m, a diagonal positive definite matrix H ∈
Rnp×np, and a non-singular matrix F̄ = In−1 ⊗ Fm ∈ Rm(n−1)×m(n−1) with Fm ∈ Rm×m, such
that the following conditions are satisfied:[

Φ µmΓ
∗ −µmZ

]
< 0, (2.37)[

P1 P2

∗ P3

]
> 0, (2.38)

and 
M̂ −M̂ 0
∗ M̂ (L̂−G)′(r)
∗ ∗ u2

max

 ≥ 0, ∀r ∈ {1, . . . ,np}, (2.39)

where

Φ = ΦP + ΦZ + ΦR + ΦS + Φsat + ΦM + ΦF̄ , (2.40)

Γ =



B̂

%B̂

0
0
0
0


, ΦZ =



0 0 0 0 0 0
∗ 2µmZ 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


,

ΦP =



P2 + P ′2 P1 −P2 0 P3 0
∗ 0 0 0 P2 0
∗ ∗ 0 0 −P3 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


, ΦR =



− 4
τR 0 − 2

τR 0 6
τ2R 0

∗ τR 0 0 0 0
∗ ∗ − 4

τR 0 6
τ2R 0

∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ −12

τ3 R 0
∗ ∗ ∗ ∗ ∗ 0


,
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ΦS =



−2S 0 0 0 2
τ S 0

∗ τ2

2 S 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ − 2

τ2S 0
∗ ∗ ∗ ∗ ∗ 0


, Φsat =



0 0 0 0 0 0
∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 −G′

∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ −2H


,

ΦM =



−nM 0 0 IM̂ 0 0
∗ n(τ + µm)2M 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ −M̂ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


,

ΦF̄ =



ĀF̄ ′ + F̄ Ā′ %F̄ Ā′ − F̄ ′ B̂ 0 0 (U ⊗B)H

∗ −%(F̄ + F̄ ′) %B̂ 0 0 %(U ⊗B)H

∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


,

and

Ā =In−1 ⊗A,

B̂ =−ULW ⊗BK̄,

L̂ =
[
L1W ⊗ K̄ L2W ⊗ K̄ · · · LnW ⊗ K̄

]
,

I =1′n ⊗ Im(n−1) ∈ Rm(n−1)×nm(n−1),

M̂=In ⊗M ∈ Rnm(n−1)×nm(n−1).

Furthermore, a region from which the consensus is always attainable is given by LV = {ϕ(t0) ∈
Cnmt0,τ+µm

: V (ϕ0) ≤ 1}.

Proof. The proof follows directly from the results of Theorem 2.1 as an extension of those
conditions. Replacing F by the structured variable F̄ = In−1 ⊗ Fm, Fm ∈ Rm×m allows us to
benefit from products L̄(In⊗ F̄ ′) and B̄F̄ ′. Specifically, those products appear in Γ on inequality
(2.23) and in ΦF on equation (2.26), which is replaced by ΦF̄ in (2.40). Observe that, because
of the chosen structure, the products result in:

B̄F̄ ′ = (ULW ⊗BK)(In−1 ⊗ Fm) = ULW ⊗BKF ′m,

L̄(In⊗F̄ ′) =
[
L1W ⊗KF ′m L2W ⊗KF ′m · · · LnW ⊗KF ′m

]
.

Finally, substituting the product KF ′m, by the variable K̄ yields to conditions (2.37) and
(2.39), and the state feedback for each agent can be retrieved from K = K̄(F−1

m )′, which
concludes the proof.
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Theorems 2.1 and 2.2 provide sufficient conditions to guarantee the convergence in the form
of feasibility problems, consequently, the region provided by those conditions might not be the
largest one. In this regard, we propose next a procedure to assist the maximization of such
regions.

2.2.3 Characterization of the Set of Initial Conditions

Because the Lyapunov-Krasovskii candidate in (2.21) depends on the derivative of current and
delayed states, and these values might not affect the safe initialization of the network, it is
presented here a characterization of the region of guaranteed convergence for the multi-agent
system. The motivation for distinguishing initial regions is to jointly compute distinct regions
for the current states, delayed states, and derivative of state variables. Specifically, the estimate
of the set of admissible initial conditions is such that:

ϕ(t0) =
{
ϕ ∈ Cnmt0,τ+µm

: ϕ ∈ Y, ϕ̇ ∈ B(r1)
}

,

where Y is an ellipsoidal set and B(r1) is a ball that contains current and delayed first deriva-
tive of the state variables, respectively. These sets, which allow to characterize the region of
convergence, are defined in the next proposition.

Proposition 2.1. If (2.21) is a Lyapunov-Krasovskii functional of the closed-loop multi-agent
system (2.20), then initial states ϕ0 verifying

ϕ(t0) =
{
ϕ ∈ Cnmt0,τ+µm

: ϕ ∈ Y, ϕ̇ ∈ B(r1)
}

, (2.41)

with

Y =
{
ϕ ∈ Cnmt0,τ+µm

: χ′Pχ ≤ 1− γ
}

(2.42)

B(r1)=

{
ϕ̇ ∈ Cnmt0,τ+µm

: sup
η∈[−τ−µm]

‖ż(η)‖≤ r1

}
(2.43)

where

γ = ρ sup
η∈[−τ−µm]

‖ż(η)‖2,

ρ =
τ2

2 λmax(R̄) + 2µmτλmax(Z̄) +
τ2

6 λmax(S̄) +
n(τ + µm)2

2 λmax(M̄) (2.44)

with

sup
η∈[−τ−µm]

‖ż(η)‖≤ r1, and 0 ≤ ρr2
1 < 1, (2.45)

do not leave the estimate of the domain of consensus LV and converge asymptotically.
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Proof. The demonstration is based on the ideas proposed in Lemma 3 in Castro et al. (2020).
Provided that (2.21) is a Lyapunov-Krasovskii functional, we can define a level set given by

LV = {ϕ ∈ Cnmt0,τ+µm
: χ′Pχ ≤ 1− γ},

by using the terms on S̄, Z̄, R̄, and M̄ of (2.21) we get∫ 0

−τ

∫ 0

θ

∫ t

t+s
ż(ε)′S̄ż(ε)dεdsdθ+

∫ µm

−µm

∫ t

t+s−τ
ż(ε)′Z̄ż(ε)dεds

+
∫ 0

−τ

∫ t

t+s
ż(ε)′R̄ż(ε)dεds+

n∑
i=1

∫ 0

−τ−µm

∫ t

t+s
ż(ε)′M̄ ż(ε)dεds ≤ ρ sup

η∈[−τ−µm]
‖ż(η)‖2,

with ρ given in (2.44). To ensure that 0 ≤ γ < 1 the inequalities (2.45) are required to be sat-
isfied. Since (2.21) is a Lyapunov-Krasovskii functional, with the conditions in this proposition
LV is a level set of the functional, satisfying LV = {ϕ(t0) ∈ Cnmt0,τ+µm

: V (ϕ(t0)) ≤ 1}, thus all
trajectories starting from LV remains in LV and attain consensus asymptotically.

The characterization in Proposition 2.1 gives flexibility when estimating the region of con-
vergence when compared, for example, with the method proposed in Silva (2019). Thus, it is
possible to explicitly choose which of the sets Y and B(r1) are more significant, allowing to
possibly compute less conservative estimates for the required region. For example, it is possible
to cast a region in which all current and delayed variables states are inside a ball, as well as the
initial time-derivative of the states. It is also possible to ignore their time-derivatives and choose
the best solution for current and delayed state variables. Moreover, the structure of χ′Pχ can
be explored to compute a region for current states only, by letting delayed states equals zero the
ellipsoid Y is reduced to Y = {ϕ : z(t)′P1z(t) ≤ 1}.

Maximization of the allowed initial conditions

With the conditions proposed in Theorems 2.1 and 2.2, we are interested in finding a set of
initial conditions as large as possible included in the domain of consensus. To this end, inspired
by the development in Castro et al. (2020), we propose a maximization of an ellipsoid within
the region LV , which can be obtained by solving the following optimization problem:

min trace

 5∑
j=1

αjWj



s.t.



a) LMIs (2.23), (2.24) and (2.25) from Theorem 2.1,
or (2.37), (2.38) and (2.39) from Theorem 2.2.

b)

[
Wj I

I Y + Y ′ −Xj

]
≥ 0,

(2.46)

where αj are scalar weights, Wj are variable matrices with appropriated dimensions, Y = F

for Theorem 2.1 or Y = F̄ for Theorem 2.2, and Xj corresponds to the jth matrix in the set
{P ,R,S,M ,Z}.
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Remark 2.2. In order to handle the nonlinear matrix inequalities on the estimation for the do-
main of consensus, the inequality FX−1

j F ′ ≥ F + F ′ −Xj was used multiple times. That was
done because, from the Lyapunov-Krasovskii candidate (2.21), it was chosen X̄j = (F−1)′XjF

−1.
Although this can insert some conservatism, it leads to a linear optimization problem for syn-
thesizing the gains of the agents and determine a region from which the consensus is always
attainable.

2.2.4 Numerical Examples

This section shows examples to illustrate the use of Theorems 2.1 and 2.2. The methodology is
compared with the works in You et al. (2016), Ding, Zheng, and Guo (2018), and Silva (2019),
in which similar conditions are assumed on the consensus problem. In addition, it is discussed
the numerical complexity of the approach.

Example 2.1. In this example, the analysis conditions of You et al. (2016) and Silva (2019)
are contrasted with the result proposed here, because of this, a similar structure in the example is
examined. Consider a multi-agent system composed of five agents with directed communication
topology, as shown in Figure 2.3, with Laplacian matrix given by

v4

v5 v3

v2

v1

Figure 2.3: Example 2.1–Graph representation of agents interaction.

L =



0 0 0 0 0
−1 3 0 −1 −1
−1 0 3 −1 −1
0 −1 −1 3 −1
0 −1 −1 −1 3


.

This is a leader-following problem–all followers have to synchronize their states with the states
of the leader (v1). It is assumed that the followers are modeled by,

ẋ1
i (t)

ẋ2
i (t)

ẋ3
i (t)

 =


−1 2 0
0 0.3 0
0 0 −20



x1
i (t)

x2
i (t)

x3
i (t)

+


1 0 0
0 1 0
0 0 1

 sat
(
ui(t)

)
,

numbered i = 2, . . . , 5, where xli(t) denote the lth element of xi(t), and the model of the leader
is given by, 

ẋ1
1(t)

ẋ2
1(t)

ẋ3
1(t)

 =


−1 2 0
0 0.3 0
0 0 −20



x1

1(t)

x2
1(t)

x3
1(t)

 .
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The matrix gain K in the consensus protocol (2.2), is

K =


0.7 0 0
0 0.7 0
0 0 0.7

 ,

and the limit of actuators umax = 2.5.
In the studies in You et al. (2016) and Silva (2019), it is assumed synchronous time-varying

delays τi(t), satisfying 0 ≤ τi(t) ≤ τ with τ̇i(t) ≤ µm < 1, where τ and µm are positive constants.
Table 2.1 shows the maximum allowed constant part for the delays representation (τi) obtained
by Theorem 4.1 in Silva (2019) with % = 0.4, Theorem 1 in You et al. (2016), and Theorem 2.1
with % = 0.7, considering different values for the bound of delays time-varying part.

Table 2.1: Example 2.1–Comparison of maximum input delay τmax for various
time-varying parts µm.

µm = 0.01 µm = 0.05 µm = 0.10
You et al. (2016) 0.35 0.34 0.34

Theorem 4.1 in Silva (2019) 0.43 0.34 0.23
Theorem 2.1 0.45 0.35 0.24

It is shown that as the time-varying part of the delay (µm) increases the approach of You
et al. (2016) guarantees biggest values for the constant part (τ) in comparison to the values
obtained by Silva (2019) and Theorem 2.1, while the approach proposed here appears to have
slightly less conservatism as the one in Silva (2019). However, note that the conditions in Silva
(2019) and in Theorem 2.1 guarantee consensus for non-uniform and non-differentiable delays
within the set [τ − µm, τ + µm], while You et al. (2016) consider synchronous and differentiable
delays. The conditions presented here are more general and might be applied to a larger number
of systems. Besides, unlike You et al. (2016), the approaches in Silva (2019) and in Theorem
2.1 give a region from which the consensus is guaranteed. Furthermore, the conditions in You
et al. (2016) are nonlinear, which in general are hard to solve.

Example 2.2. In this example, the numerical complexity of the proposed conditions is inves-
tigated. The computational algorithms to solve LMIs have polynomial time in the worst-case
scenario with the number of decision variables2 (Boyd et al., 1994). Some methods have ob-
tained a computational complexity of O(NL) (Potra and Wright, 2000; Monteiro and Zhang,
1998), while some older ones O(N1.5L) (Monteiro and Zhang, 1998; Boyd et al., 1994), where
N is the number of decision variables and L the number of constraints. Theorems 2.1 and 2.2
have symmetric and full matrices variables, in symmetric matrix variables the number of vari-
ables is given by N = k(k + 1)/2, in which k is the number of lines of the matrix, and in full

2In general, a solution of a semidefinite programming problem cannot be obtained in a finite number of
interactions. Hence, an interior-point method for a semidefinite programming is said to be “polynomial” with
complexity O(nωL), if there is a constant ω such that the distance to the optimum is reduced by a factor of
2−O(L) in at most O(nωL) interactions, where L is the size of the problem data. Sometimes, in the context of
Control Theory, L is accounted as the number of Lyapunov equations with same variables (i.e., number of linear
constraints), e.g., A′iP + PAi < 0, i = 1, . . . ,L, where Ai are given matrices and P is a symmetric positive
definite matrix variable (Boyd et al., 1994; Potra and Wright, 2000).
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Table 2.2: Example 2.2–Contrast of the number of variables in the problem of
Example 2.1.

Number of Variables
You et al. (2016) 13

Theorem 4.1 in Silva (2019) 759
Theorem 2.1 1056

matrices they are given by N = k2. Hence, we have the following equations for the number of
variables in each theorem:

NTheorem 2.1 = 5m2(n− 1)2 + 3m(n− 1) + 1
2 ((np)

2 + np) + npm(n− 1), (2.47)

NTheorem 2.2 = 4m2(n− 1)2 + 3m(n− 1) + 1
2m(m+ 1) + 1

2 ((np)
2 + np) + npm(n− 1). (2.48)

Therefore, the number of variables of the problems grows quadratically with the number of agents
in networks with agents with constant dimensions. Hence, if we increase the number of vertices
n in our multi-agent system by a factor of 10 the running time can be expected to increase at least
by a hundred if a method with O(NL) is considered. Thus, our approach might be restricted to
networks with a relatively small number of agents (when compared to studies on swarms of robots
in which the interest hinges in networks with hundreds or even thousand vertices). Nevertheless,
some authors consider algorithms with complexity equal or lower than O(N3) to be scalable in
general, see for example Newman (2010). In Table 2.2 it is shown the number of variables of the
method proposed here, in You et al. (2016), and in Silva (2019) for the multi-agent system of
Example 2.1. It is worth to also mention that in practice, to simply attest the running time based
on the complexity of the approach may not give an accurate view. For instance, it is necessary
that the entire problem fits in the fast access computer memory. If, for any reason, the computer
starts to store the problem variable in a slow access memory (e.g., a hard disk), the performance
will be substantially reduced.

Example 2.3. In this example the gain design conditions are contrasted with the methods pro-
posed by Ding, Zheng, and Guo (2018) and by Silva (2019). Because the study in Ding, Zheng,
and Guo (2018) is concerned only with the leader-following problem, this task will be considered.
Consider a multi-agent system consisting of four agents with directed communication topology,
represented in Figure 2.4, with Laplacian matrix given by

v2

v3 v4

v1

Figure 2.4: Example 2.3–Communication topology of multi-agent system.
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L =


0 0 0 0
−1 1 0 0
0 −1 1 0
−1 −1 0 2

 .

All agents are subject to input saturation and time-varying delays, the saturation limit is
umax=10 and the ith agent dynamics is[

ẋ1
i (t)

ẋ2
i (t)

]
=

[
−0.5 1

0 0.1

] [
x1
i (t)

x2
i (t)

]
+

[
1
1

]
sat

(
ui(t)

)
,

note that the open-loop dynamics is unstable.
The optimization problem (2.46), with % = 5.7 and αj = 0 for j = 2, . . . , 5, Theorem 4.1 in

Silva (2019), and Theorem 2 in Ding, Zheng, and Guo (2018) were used to compute the guar-
anteed domain of consensus for increasing values of the upper bound of the delay interval. Table

Table 2.3: Example 2.3– Radius of the ball inscribed in the domain of consensus
for different delay intervals.

[τ − µm, τ + µm] [0.02, 0.1] [0.02, 0.2] [0.02, 0.3] [0.02, 0.4]
Theorem 2 (Ding, Zheng, and Guo, 2018) 9.20 9.13 5.24 –

Theorem 4.1 (Silva, 2019) 17.80 17.23 16.62 16.00
Theorem 2.2 60.14 35.41 20.31 17.95

2.3 shows that Theorem 2.2 and Theorem 4.1 in Silva (2019) guarantee consensus for intervals
of delay for which the method of Ding, Zheng, and Guo (2018) was not able to ensure stability.
In addition, Theorem 2.2 achieves a larger domain of consensus than both other approaches for
all analyzed sets. Besides, the methods proposed here and in Silva (2019) are appropriated for
consensus analysis with or without a leader and non-uniform delays, while Ding, Zheng, and
Guo (2018) considered only the problem of leader-following with uniform delays.

Another interesting highlight is that the studies made by Silva (2019) and Ding, Zheng, and
Guo (2018) compute the region of guaranteed convergence provided by the biggest ball inscribed
into the intersection of all the invariant sets calculated directly by the Lyapunov-Krasovskii
functional. As shown in Proposition 2.1, this might take into account regions that might not
be of interest for starting the systems. Also, to search for ellipsoidal sets seems to be much
less conservative, as shown in Figure 2.5a where the ball computed with the approach in Silva
(2019) and an ellipsoidal set calculated using the optimization problem (2.46) are contrasted,
with delays τi(t) ∈ [0.02, 0.2].

To illustrate the evolution of the network, Figure 2.5b shows the trajectories of the multi-
agent system with initial conditions belonging to the computed region of convergence, using the
consensus protocol matrix gain K =

[
0.0 0.258

]
, designed with optimization problem (2.46),

with % = 5.7 and αj = 0 for j = 2, . . . , 5.



2.3. Consensus of Discrete-Time Systems: Lyapunov-Krasovskii Approach 35

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

z1

-100

-50

0

50

100

z
2

(a)

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-150

-100

-50

0

50

100

150

z1

z
2

(b)

Figure 2.5: Example 2.3– The domain of consensus for τi(t) ∈ [0.02, 0.2]: (A)
calculated using Theorem 4.1 (Silva, 2019) (in red), and using Theorem 2.2 (in
blue); (B) relative trajectories of the agents for starting outside (in red) and inside

(in black) of the domain of consensus calculated with Theorem 2.2.

2.3 Consensus of Discrete-Time Systems: Lyapunov-Krasovskii
Approach

This and the next sections investigate the consensus problem subject to time-delays and satu-
rating inputs in the discrete-time domain. Two approaches are provided to tackle this problem:
In the first approach, presented in this section, the Lyapunov-Krasovskii framework is applied
in the same spirit as in the continuous-time domain proposed in Section 2.2. The second one,
presented in Section 2.4, is based on the switching scheme: by converting the delayed multi-
agent system into an augmented system with the delay modeled as a switching function. The
main results are presented in form of theorems, providing sufficient conditions for the network
asymptotic convergence and design gains that drive the network towards consensus. As in Sec-
tion 2.2, there are also proposed optimization procedures in the form of LMIs to estimate the
domain of consensus as large as possible.

Let us first present the result based on the Lyapunov-Krasovskii framework. The next
Lemma, borrowed from Castro et al. (2020), is instrumental in the formulation of this result. It
provides an inequality that can be used to insert information about delayed states of each agent
in the Lyapunov-Krasovskii analysis, in such a way that the new delayed terms are negative.
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Lemma 2.4. (Castro et al., 2020). For any constant matrixM =M ′ > 0 and integer c ∈ [
¯
τ , τ̄ ],

with τ̄ ≥
¯
τ ≥ 0, the inequality

(τ̄ −
¯
τ )
−

¯
τ−1∑

j=−τ̄
y′jMyj ≥ Ω′cMΩc

holds, where yj = xj − xj−1 for all j ∈ [−τ̄ + 1, 0], and Ωc = x−
¯
τ − 2x−c + x−τ̄ for all

c ∈ [
¯
τ , τ̄ ].

In this section, we address the stability analysis and stabilization of the discrete-time version
of (2.20) by employing the following Lyapunov-Krasovskii functional candidate:

V (ϕ(k)) =
4∑
v=1

Vv(ϕ(k)) (2.49)

with

V1(ϕ(k)) = z′kP̄zk,

V2(ϕ(k)) =
k−1∑
j=k−τ̄

z′kQ̄zk,

V3(ϕ(k)) =
0∑

`=1−τ̄

k∑
j=k+`

y′jZ̄1yj ,

V4(ϕ(k)) = τ̄
n∑
i=1

0∑
`=1−τ̄

k∑
j=k+`

y′jZ̄2yj ,

and ϕ(k) ∈ Cnmk,τ̄ . The term V4(ϕ(k)) is added to take into account information of delayed
states of each agent employing Lemma 2.4. This accomplishes two things, it allows to model the
saturation as a Lur’e problem and it helps to decrease the conservatism of the estimate of the
region of convergence. Besides, if (2.49) is a Lyapunov-Krasovskii functional of the multi-agent
system (2.20), then an estimate of S can be computed as the level set

LV = {ϕ(t0) ∈ Cnmk0,τ̄ : V (ϕ(t0)) ≤ 1}, (2.50)

such that LV ⊂ S.

2.3.1 Stability Analysis

The following theorem presents sufficient conditions to certify consensus of the multi-agent
system (2.10) on the discrete-time domain.

Theorem 2.3. Let the feedback gain matrix K and the scalars τ̄ , %, and umax be given. The
multi-agent system (2.5) with consensus protocol (2.3) subject to saturating inputs and time-
varying delays reaches consensus if there exist nonsingular matrix S ∈ Rm(n−1)×m(n−1), a ma-
trix G =

[
G1 G2 G3

]
∈ Rnp×(2n+1)m(n−1), symmetric positive definite matrices P , Q, Z1,

and Z2 ∈ Rm(n−1)×m(n−1), and a diagonal positive definite matrix Y ∈ Rnp×np, such that the
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following inequalities are satisfied: [
Π τ̄Γ
∗ −τ̄Z1

]
< 0, (2.51)

and 


Ẑ2 −Ẑ2 0
∗ Ẑ2 0
∗ ∗ Z1

 ([
0 L̄(In ⊗ S′) 0

]
−G

)′
(r)

∗ u2
max

≥0, (2.52)

for all r ∈ {1, . . . ,np}, where

Π = ΠPQ + ΠQ + ΠZ1 + ΠZ2 + ΠS + Πsat, (2.53)

Γ =



%B̄S′

B̄S′

0
0
0


, ΠZ1 =



τ̄Z1 −τ̄Z1 0 0 0
∗ τ̄Z1 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0


,

ΠZ2 =



nτ̄2Z2 −nτ̄2Z2 0 0 0
∗ nτ̄2Z2 − nZ2 2IẐ2 −nZ2 0
∗ ∗ −4Ẑ2 2Ẑ2I ′ 0
∗ ∗ ∗ −nZ2 0
∗ ∗ ∗ ∗ 0


,

ΠPQ =



P 0 0 0 0
∗ Q− P 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ 0


, Πsat =



0 0 0 0 0
∗ 0 0 0 −G′1
∗ ∗ 0 0 −G′2
∗ ∗ ∗ 0 −G′3
∗ ∗ ∗ ∗ −2Y


,

ΠS =



−%(S + S′) −S′ + %(Ā− B̄)S′ 0 0 %(U ⊗B)S′

∗ (Ā− B̄)S′ + S(Ā− B̄)′ 0 0 (U ⊗B)S′

∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0


(2.54)

and,

Ā=In−1 ⊗A,

B̄=ULW ⊗BK,

L̄=
[
L1W ⊗K L2W ⊗K · · · LnW ⊗K

]
,

I =1′n ⊗ Im(n−1) ∈ Rm(n−1)×nm(n−1),

Ẑ2=In ⊗Z2 ∈ Rnm(n−1)×nm(n−1).
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Furthermore, a region from which the consensus is always attainable is given by LV given in
(2.50).

Proof. The demonstration follows some of the ideas of the proof of Theorem 2.1. Consider the
Lyapunov-Krasovskii functional candidate in (2.49) with P = F−1P̄ (F−1)′, Q = F−1Q̄(F−1)′,
Z1 = F−1Z̄1(F−1)′, and Z2 = F−1Z̄2(F−1)′. Therefore, with P > 0, Q > 0, Z1 > 0, and
Z2 > 0, the positivity of the Lyapunov-Krasovskii functional above is guaranteed with functions
u(‖z(k)‖) = λmin(P )‖z(k)‖2 and

v(‖ϕ(k)‖) = λmax(P )‖z(k)‖2+ρ̄1 sup
η∈[k−τ̄ ,k−1]

‖zη‖2+ρ̄2 sup
η∈[k+1−τ̄ ,k]

‖yη‖2

in Lemma 2.1, with

ρ̄1 = τ̄λmax(Q),

ρ̄2 = 0.5τ̄ (τ̄ + 1)(λmax(Z1) + nτ̄λmax(Z2)).

Next we show that the negativity of the functional forward difference is guaranteed if the
conditions in the theorem hold. Using the discrete counterpart of the Newton-Leibniz formula
and (2.20), we have the following null-term

0 = 2Λ(k)

z(k+ 1)− Āz(k) +
n∑
i=1

B̄iz(k− τi(k))− (U ⊗B)Θ(g(k))


= 2Λ(k)

z(k+ 1)− Āz(k) +
n∑
i=1

B̄iz(k)− (U ⊗B)Θ(g(k))−
n∑
i=1

B̄i

k∑
`=k−τi(k)+1

y`


= 2Λ(k)

[
z(k+ 1)− Āz(k) + B̄z(k)− (U ⊗B)Θ(g(k))

]
+ v(k), (2.55)

where, y` = z` − z`−1,

Λ(k) = −z(k)′F − z(k+ 1)′%F , (2.56)

B̄i = (ULiW )⊗BK, (2.57)

B̄ = (ULW )⊗BK, (2.58)

v(k) = −
n∑
i=1

k∑
`=k−τi(k)+1

2Λ(k)B̄iy`. (2.59)

Moreover, assuming Z̄1 > 0 we have that3

v(k) ≤
n∑
i=1

k∑
`=k−τi(k)+1

(
Λ(k)B̄i

)
nZ̄−1

1

(
Λ(k)B̄i

)′
+

n∑
i=1

k∑
`=k−τi(k)+1

y′`
Z̄1
n
y`

≤
n∑
i=1

τ̄
(

Λ(k)B̄i
)
nZ̄−1

1

(
Λ(k)B̄i

)′
+

k∑
`=k+1−τ̄

y′`Z̄1y`. (2.60)

3We used the inequality −2a′b ≤ a′Xa+ b′X−1b where a, b ∈ Rm(n−1) and X > 0 ∈ Rm(n−1)×m(n−1).
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Combining (2.55) and (2.60) it yields

0 ≤− 2z(k+ 1)′%Fz(k+ 1) + 2z(k)′FĀz(k) + 2z(k+ 1)′%FĀz(k)− 2z(k)′Fz(k+ 1)

− 2z(k)′FB̄z(k)− 2z(k+ 1)′%FB̄z(k) + 2z(k+ 1)′%F (U ⊗B)Θ(g(k))

+ 2z(k)′F (U ⊗B)Θ(g(k)) +
n∑
i=1

τ̄
(

Λ(k)B̄i
)
nZ̄−1

(
Λ(k)B̄i

)′
+

k∑
`=k+1−τ̄

y′`Z̄1y`. (2.61)

To calculate the functional candidate (2.49) forward difference consider,

∆V1(z(k))=z(k+ 1)′P̄z(k+ 1)− z′P̄z, (2.62)

∆V2(z(k))=
k∑

j=k+1−τ̄
z′jQ̄zj −

k−1∑
j=k−τ̄

z′jQ̄zj

=z(k)′Q̄z(k)− z(k− τ̄ )′Q̄z(k− τ̄ ), (2.63)

∆V3(z(k))=
0∑

`=1−τ̄

 k+1∑
j=k+1+`

y′jZ̄1yj −
k∑

j=k+`

y′jZ̄1yj


=

0∑
`=1−τ̄

y(k+ 1)′Z̄1y(k+ 1)− y(k+ `)′Z̄1y(k+ `)

+
k∑

j=k+1+`
y′jZ̄1yj −

k∑
j=k+`+1

y′jZ̄1yj


=τ̄y(k+ 1)′Z̄1y(k+ 1)−

k∑
`=k+1−τ̄

y′`Z̄1y`, (2.64)

and lastly

∆V4(z(k))=τ̄
n∑
i=1

0∑
`=1−τ̄

 k+1∑
j=k+1+`

y′jZ̄2yj −
k∑

j=k+`

y′jZ̄2yj


=τ̄2ny(k+ 1)′Z̄2y(k+ 1)− τ̄

n∑
i=1

k∑
`=k+1−τ̄

y′`Z̄2y`. (2.65)

Then, by applying Lemma 2.4 in the ith term of the sum in (2.65), with c = τi(k), we get

−τ̄
k∑

`=k+1−τ̄
y′`Z̄2y` ≤−(z(k)− 2z(k− τi(k)) + z(k− τ̄ ))′Z̄2(z(k)− 2z(k− τi(k)) + z(k− τ̄ )).

(2.66)

Finally, as in the demonstration of Theorem 2.1, we first assume that u(k) ∈ S(ω(k),umax)

and show afterward that condition (2.52) ensures this inclusion. Additionally, adding the re-
sult of Lemma 2.3, the null term (2.34), with equations (2.62), (2.63), (2.64), and (2.66) the
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Lyapunov-Krasovskii candidate forward difference becomes

∆V (z(k)) ≤Υ(k)′Π̂Υ(k) +
n∑
i=1

τ̄Υ(k)′ΓinZ̄−1
1 Γ′iΥ(k)

=Υ(k)′
 n∑
i=1

(
1
n

Π̂ + τ̄ΓinZ̄−1
1 Γ′i

)Υ(k), (2.67)

with
Υ(k)′=

[
z(k+1)′ z(k)′ ẑ(k− τ (k))′ z(k− τ̄ )′ Θ′

]
,

ẑ(k− τ (k))′=
[
z(k−τ1(k))′ z(k−τ2(k))′ · · · z(k−τn(k))′

]
,

Γi =



%FB̄i

FB̄i

0
0
0


,

and Π̂ defined as in (2.26), however with the matrices P̄ , Q̄, Z̄1, Z̄2, and

Π̂sat =



0 0 0 0 0
∗ 0 0 0 −Ḡ′1T ′

∗ ∗ 0 0 −Ḡ′2T ′

∗ ∗ ∗ 0 −Ḡ′3T ′

∗ ∗ ∗ ∗ −2T


,

instead of P , Q, Z1, Z2, and Πsat, respectively.
Finally, ∆V (ϕ(k)) ≤ −w(‖z(k)‖) = −α‖z(k)‖2< 0 for any Υ(k) 6= 0, and for some suffi-

ciently small α < 0, is achieved whenever the parenthesis term in equation (2.67) is negative
definite, which from Schur complement is equivalent to

n∑
i=1

[ 1
nΠ̂ τ̄Γi
∗ −τ̄

n Z̄1

]
=

[
Π̂ τ̄Γ
∗ −τ̄ Z̄1

]
< 0. (2.68)

The inequality (2.68) becomes identical to condition (2.51) after pre- and post-multiplying with

diag(F−1,F−1,F−1, · · · ,F−1,T−1,F−1)

and its transpose respectively, and making the change of variables S = F−1, Y = T−1, G1 =

Ḡ1(F−1)′, G2 = Ḡ2(F−1)′, G3 = Ḡ3(F−1).
Therefore, if condition (2.51) of Theorem 2.3 and u(k) ∈ S(ω(k),umax) hold we have

V (ϕ(k)) > 0 and ∆V (ϕ(k)) < 0, which ensures that the multi-agent system reaches consensus
asymptotically.

Next, it is shown that if inequality (2.52) is satisfied then u(k) ∈ S(ω(k),umax), and from
the generalized sector condition in Lemma 2.3, −2Θ

(
u(k)

)′
T
[
Θ
(
u(k)) +ω(k)

]
≥ 0 holds. In

addition, all trajectories of ϕ(k) starting from LV remains within LV .
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Inequality (2.52) implies that whenever the trajectories of the multi-agent system ϕ0(k) be-
long to LV , the inputs of the agents will belong to the set S(ω(k),umax), in which LV represents
a level set of the Lyapunov-Krasovskii functional. That is∣∣∣∣ ({[0 L̄ 0

]
−G

}
χ
)
(r)

∣∣∣∣ ≤ umax, ∀z(k) ∈ LV ,

for r = 1, . . . ,np, where u(k) = L̄ẑ(k− τ (k)), ω(k) = Gχ, with

χ =
[
ẑ(k)′ ẑ(k− τ (k))′ y(k+ 1− τ̄ )′

]′
.

The previous inequality holds whenever

0 ≤
({[

0 L̄ 0
]
−G

}
χ
)′
(r)
u−2

max

({[
0 L̄ 0

]
−G

}
χ
)
(r)
≤ χ′


ˆ̄Z2 − ˆ̄Z2 0
∗ ˆ̄Z2 0
∗ ∗ Z̄1

χ

which, by Schur complement and pre- and post-multiplying the result by diag
(
F−1, (In ⊗

F−1),F−1, 1
)
and its transpose, respectively, becomes similar to inequality (2.52). Further-

more, we have that all trajectories ϕ0(k) originating from ϕ0 ∈ LV verifies:

χ′


ˆ̄Z2 − ˆ̄Z2 0
∗ ˆ̄Z2 0
∗ ∗ Z̄1

χ =(ẑ(k)− ẑ(k− τ (k)))′ ˆ̄Z2(ẑ(k)− ẑ(k− τ (k)))

+y(k+ 1− τ̄ )′Z̄1y(k+ 1− τ̄ )

≤V (ϕ0) ≤ 1.

Hence, with condition (2.52), we ensure that u(k) belongs to S(ω(k),umax), consequently the
condition of Lemma 2.3 is satisfied. Because LV is a level set of V and the inequalities V (z(k)) >

0 and ∆V (z(k)) < 0 hold, the multi-agent systems converges asymptotically.

2.3.2 Stabilization

In the next theorem, we present conditions to design stabilizing state feedback matrices for
the agents along with a region of ensured convergence. The results in the next theorem are
extensions of the previous one.

Theorem 2.4. Let the scalars τ̄ , % and umax be given. The multi-agent system (2.5) with
consensus protocol (2.3) subject to input saturation and time-varying delays reaches consensus
with state feedback matrix K = K̄(F−1

m )′, if there exist symmetric positive definite matrices
P , Q, Z1, and Z2 ∈ Rm(n−1)×m(n−1), matrices F̄ = In−1 ⊗ Fm ∈ Rm(n−1)×m(n−1) with Fm ∈
Rm×m, G =

[
G1 G2 G3

]
∈ Rnp×(2n+1)m(n−1), K̄ ∈ Rp×m, a diagonal positive definite matrix
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H ∈ Rnp×np, such that the following inequalities are satisfied:[
Π̄ τ̄ Γ̄
∗ −τ̄Z1

]
< 0, (2.69)

and 


Ẑ2 −Ẑ2 0
∗ Ẑ2 0
∗ ∗ Z1

 ([
0 L̂ 0

]
−G

)′
(r)

∗ u2
max

≥0, ∀r ∈ {1, . . . ,np}, (2.70)

where

Π̄ = ΠP + ΠQ + ΠZ1 + ΠZ2 + ΠF̄ + Πsat, (2.71)

Γ̄ =



%B̄

B̄

0
0
0


, ΠZ1 =



τ̄Z1 −τ̄Z1 0 0 0
∗ τ̄Z1 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0


,

ΠZ2 =



nτ̄2Z2 −nτ̄2Z2 0 0 0
∗ nτ̄2Z2 − nZ2 2IẐ2 −nZ2 0
∗ ∗ −4Ẑ2 2Ẑ2I ′ 0
∗ ∗ ∗ −nZ2 0
∗ ∗ ∗ ∗ 0


,

ΠPQ =



P 0 0 0 0
∗ Q− P 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ 0


, Πsat =



0 0 0 0 0
∗ 0 0 0 −G1

∗ ∗ 0 0 −G2

∗ ∗ ∗ 0 −G3

∗ ∗ ∗ ∗ −2H


,

ΠF̄ =



−%(F̄ + F̄ ′) −F̄ ′ + %(ĀF̄ ′ − B̄) 0 0 %(U ⊗B)F̄ ′

∗ ĀF̄ ′ − B̄ + F̄ Ā′ − B̄′ 0 0 (U ⊗B)F̄ ′

∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0


(2.72)

and,

Ā=In−1 ⊗A,

B̄=ULW ⊗BK̄,

L̂=
[
L1W ⊗ K̄ L2W ⊗ K̄ · · · LnW ⊗ K̄

]
,

I =1′n ⊗ Im(n−1) ∈ Rm(n−1)×nm(n−1),

Ẑ2=In ⊗Z2 ∈ Rnm(n−1)×nm(n−1).
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Furthermore, a region from which the consensus is always attainable is given by LV given in
(2.50).

Proof. In the same spirit of Theorem 2.2, the demonstration of Theorem 2.4 follows from in-
equalities (2.51) and (2.52). Replacing S by the structured variable F̄ = In−1⊗Fm, Fm ∈ Rm×m

allows us to benefit from products L̄(In ⊗ F̄ ′) and B̄F̄ ′. Observe that, because of the chosen
structure, the products result respectively in:

B̄F̄ ′ = (ULW ⊗BK)(In−1 ⊗ Fm) = ULW ⊗BKF ′m,

L̄(In⊗F̄ ′) =
[
L1W ⊗ K̄F ′m L2W ⊗ K̄F ′m · · ·LnW ⊗ K̄F ′m

]
.

Finally, replacing the product KF ′m, by the variable K̄ yields to conditions (2.69) and (2.70),
and the state feedback for each agent can be retrieved from K = K̄(F−1)′, which concludes the
proof.

As the results in continuous-time, Theorems 2.3 and 2.4 provide sufficient conditions to
guarantee the convergence in the form of feasibility problems, hence, the region provided might
not be the largest one. Following the same strategy as in Section 2.2.3, we propose next a
procedure to assist in the maximization of such regions and to represent them more precisely.

2.3.3 Characterization of the Set of Initial Conditions

Inspired by the approaches in Castro et al. (2020), we present next a characterization of the
region of guaranteed convergence for the multi-agent system. This procedure permits to jointly
compute distinct regions for the current states, the couplings between current and previous
states, and delayed states. Specifically, the estimate of set of admissible initial conditions is
such that:

ϕ(k0) = {ϕ ∈ Cnmτ̄ : z0 ∈ C,y0 ∈ Y, ϕ̄0 ∈ B(r1, r2)}, (2.73)

where C and Y are ellipsoidal sets confining allowed values of z(k0) and y(k0), and the set
B(r1, r2) contains the delayed states ϕ̄0 ∈ Cnmτ̄ ,1 , which Cnmτ̄ ,1 representes sequences of states on
the interval [k0− τ̄ , k0− 1]. The sets C, Y, and B(r1, r2), which characterize the set of admissible
initial conditions, are defined in the next proposition considering the multi-agent system (2.5).

Proposition 2.2. If the functional (2.49) is a Lyapunov-Krasovskii functional of the multi-agent
system (2.20), then initial sequences ϕ0 verifying (2.73) with

C ={z0 ∈ Rm(n−1)×m(n−1) : V1(z0) ≤ 1− γ},

Y ={y0 ∈ Rm(n−1)×m(n−1) : y′0Jy0},

B(r1, r2) ={ϕ̄0 ∈ Cnmτ̄ ,1 : ‖ϕ̄0‖≤ r1, ‖∆ϕ̄0‖≤ r2},

γ =ρ1‖ϕ̄0‖2+ρ2‖∆ϕ̄0‖2+y′0Jy0,

where ∆ϕ̄0 = {z(k0 + i)− z(k0 + i− 1) : i = −τ̄ , . . . ,−1} is the sequence variation and ‖ϕ̄0‖=
maxi∈[−τ ,−1]‖z(k0 + i)− z(k0 + i− 1)‖, and r1 and r2 are such that 0 ≤ ρ1r

2
1 + ρ2r

2
2 + y

′
0Jy0 <
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1, with

J =τ̄Z1 + nτ̄2Z2, (2.74)

ρ1 =τ̄λmax(Q), (2.75)

ρ2 =0.5(τ̄ − 1)
(
τ̄λmax(Z1) + nτ̄2λmax(Z2)

)
, (2.76)

are such that the trajectories of the multi-agent system do not leave the region of attraction and
converges asymptotically.

Proof. In the same lines of demonstration of Proposition 2.1, where the sets of interest are
defined by employing an upper-bound of the Lyapunov-Krasovskii functional, we can define the
following upper-bound

V (ϕ(k0)) =
4∑
v=1

Vv(ϕ(k0)) ≤ V1(z(0)) + ρ1‖ϕ̄0‖2+ρ2‖∆ϕ̄0‖2+y′0Jy0 < 1,

on the Lyapunov-Krasovskii functional give in (2.21). In which J , ρ1, and ρ2 are given in (2.74),
(2.75), and (2.76). To guarantee 0 ≤ γ < 1 the inequality 0 ≤ ρ1r

2
1 + ρ2r

2
2 + y

′
0Jy0 < 1 is

required to be satisfied.

As pointed out in the works by Castro et al. (2020), Silva et al. (2020), and Silva et al.
(2018b), the main advantage of employing characterizations such as the one in Proposition 2.2
is the flexibility it gives when estimating specific regions for states in different time-instants,
allowing to possibly compute less conservative sets. For example, it is possible to cast the region
of convergence inside a ball, to compute the largest possible set for transition states y0, or even
to calculate a region of convergence considering only current states, with all previous states
being zero.

An important observation is that unlike the result presented in Castro et al. (2020), Proposi-
tion 2.2 is based on a distinct augmented Lyapunov-Krasovskii function which takes into account
the difference between states of agents in multi-agent systems interconnected through a directed
graph. Hence, the characterization we propose not only is incommensurable with the one by
Castro et al. (2020) but it is applied to a different problem.

Maximization of the allowed initial conditions

In possession of the conditions presented in Theorems 2.3 and 2.4, we consider the maximization
of an ellipsoid within the region LV to find a set of initial conditions as large as possible, which



2.4. Consensus of Discrete-Time Systems: Augmented System Approach 45

can be obtained by solving the following optimization problem based on Castro et al. (2020).

min trace

 4∑
j=1

αjHj



s.t.



a) LMIs (2.51) and (2.52) from Theorem 2.3,
or (2.69) and (2.70) from Theorem 2.4.

b)

[
Hj I

I Z + Z ′ −Xj

]
≥ 0,

(2.77)

where αj are scalar weights, Hj ∈ Rm(n−1)×m(n−1) are variable matrices, Z = S for Theorem
2.3 or Z = F̄ for Theorem 2.4, and Xj corresponds to the jth matrix in the set {P ,Q,Z1, Z2}.

2.4 Consensus of Discrete-Time Systems: Augmented System
Approach

This section explores the consensus problem subject to time delays and saturating inputs in the
discrete-time domain by converting the delayed multi-agent system in (2.20) into an augmented
switching system with the delay modeled as a switching function. As in Sections 2.2 and 2.3,
it is also proposed an optimization procedure in the form of LMIs to compute estimates of the
domain of consensus as large as possible.

The procedure presented is based on the framework proposed in Silva et al. (2018a) to take
into account possible bounded time delay variations. This method allows us to introduce more
information about the delay, and as such, it might reduce the computational burden by reducing
the number of variables of the problem. To further reduce the computational burden, in this
section we also assume homogeneous varying delays in the network (i.e., τi(k) = τ (k) for all
i ∈ V).

A bound on the time-delay variation is such that,

|τ (k+ 1)− τ (k)|≤ ∆τmax ≤ τ̄ ,

where ∆τmax represents the biggest transition between two successive instants, this allows us to
define the set of all possible values of the next delay as

C(τ ) = {τ+ : τ+ ∈ {max(0, τ − ∆τmax),max(0, τ − ∆τmax) + 1, ...,min(τ̄ , τ + ∆τmax)}},

where τ+ is a shorthand for τ (k+ 1).
Inspired by the studies in Hetel, Daafouz, and Iung (2008), Silva et al. (2018a), and in

Souza et al. (2019) for single agent systems, the delayed multi-agent system is represented by
an augmented switching system with the delay acting as the switching function. In our context,
the discrete-time version of the multi-agent system (2.20) is represented by

z̄(k+ 1) = Az̄(k) + BΘ
(

Γz̄(k)
)
, (2.78)
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where z̄(k) =
[
z(k)′ z(k− 1)′ · · · z(k− τ̄ )′

]′
is the augmented vector taking into account

delayed states, B =
[
(U ⊗B)′ 0′

]′
and the matrices A and Γ switches according to the current

delay as follow,

A =

[
(In−1⊗A)− (U ⊗B)Γ0,τk

−(U ⊗B)Γ1,τk
· · · −(U ⊗B)Γτ̄−1,τk

−(U ⊗B)Γτ̄ ,τk

Iτ̄m(n−1) 0

]
Γ =

[
Γ0,τk

Γ1,τk
· · · Γτ̄ ,τk

]
,

where

Γj,τk
=

{
(LW ⊗K), if j = τk,

0, otherwise.
(2.79)

Observe that the system (2.78) is equivalent to (2.20), with augmented states z(k− 1), z(k− 2),
..., z(k− τ̄ ), and the delay as the switching function. Moreover, to write (2.79) we take advantage
of homogeneous delays, i.e., in this case it is possible to carry out the sum∑n

i=1(LiW ⊗K)z(k−
τ (k)) = (LW ⊗K)z(k− τ (k)).

2.4.1 Stability Analysis

The following theorem presents sufficient conditions to verify the consensus of the discrete-time
multi-agent system (2.5) represented as the augmented system (2.78).

Theorem 2.5. Let the feedback matrix K ∈ Rp×m and scalars umax and τ̄ be given. The multi-
agent system (2.5) with consensus protocol (2.3) subject to input saturation and time-varying
delay reaches consensus if there exist a diagonal positive definite matrix S ∈ Rnp×np, symmetric
positive definite matrices Rτ ∈ Rm(n−1)(τ̄+1)×m(n−1)(τ̄+1), matrices Z ∈ Rnp×m(n−1)(τ̄+1), and
Qτ ∈ Rm(n−1)(τ̄+1)×m(n−1)(τ̄+1), τ = 0, 1, . . . , τ̄ , such that the following conditions are satisfied:

−Rτ+ AτQτ BS

∗ Rτ −Qτ −Q′τ −Z ′

∗ ∗ −2S

 < 0, (2.80)

and Qτ +Q′τ −Rτ QτΓ′(`) −Z
′
(`)

∗ u2
max

 ≥ 0, (2.81)

for τ = 0, . . . , τ̄ ; τ+ ∈ C(τ ); ` = 1, . . . ,np, where

Aτ=

[
(In−1⊗A)− (U ⊗B)Γ0,τk

−(U ⊗B)Γ1,τk
· · · −(U ⊗B)Γτ̄−1,τk

−(U ⊗B)Γτ̄ ,τk

Iτ̄m(n−1) 0

]
,

B =
[
(U ⊗B)′ 0′

]′
,
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and for k = 0, . . . , τ̄ , if k = τ , then Γk,τ = (LW ⊗ K). Otherwise we have Γk,τ = 0.
Furthermore, a region from which the consensus is always attainable is given by the level set
LV = {z̄(k) : z̄(k)′P (τ (k))z̄(k) ≤ 1}.

Proof. The proof follows the same lines of the proof of Theorem 1 (Hetel, Daafouz, and Iung,
2008) and Theorem 6 in Silva et al. (2018a) for single agent systems. In the following we show
that if the conditions in the theorem hold, then the system in (2.20) is asymptotically stable
which implies, from Definition 2.2, that the multi-agent system (2.5) reaches consensus. To this
end we choose the following augmented Lyapunov functional candidate:

V (z̄(k)) =z̄(k)′P (τk)z̄(k).

Therefore, with P (τ (k)) > 0, and functions in Lemma 2.1 u(‖z̄(k)‖) = λmin(P (τk))‖z̄(k)‖2

and v(‖z̄(k)‖) = λmax(P (τk))‖z̄(k)‖2, the positivity of the Lyapunov functional candidate
above is guaranteed. Next we show that the negativity of ∆V (z̄(k)) along the trajectories of
(2.78) is guaranteed if the conditions in the theorem hold. Indeed, we have that

∆V (z̄(k))=z̄(k+ 1)′P (τ (k+ 1))z̄(k+ 1)− z̄(k)′P (τ (k))z̄(k)

=

[
Az̄(k)+BΘ

(
Γz̄(k)

)]′
P (τ (k+ 1))

[
Az̄(k)+BΘ

(
Γz̄(k)

)]
− z̄(k)′P (τ (k))z̄(k).

Assuming that u(k) ∈ S(ω(k),umax) and applying the generalized sector condition in Lemma
2.3, with ω(k) = Gz̄(k) yields

∆V (z̄(k))≤
[
Az̄(k)+BΘ

(
Γz̄(k)

)]′
P (τ (k+ 1))

[
Az̄(k)+BΘ

(
Γz̄(k)

)]
−z̄(k)′P (τ (k))z̄(k)− 2Θ(Γz̄(k))′T

(
Θ(Γz̄(k) +Gz̄(k)

)
≤ξ′kΠξk, (2.82)

with ξ′k =
[
z̄(k)′ Θ

(
Γz̄(k)

)′]
and

Π =

[
A′P (τ (k+ 1))A− P (τ (k)) A′P (τ (k+ 1))B−G′T ′

∗ −2T + B′P (τ (k+ 1))B

]
.

By applying Schur’s complement, left- and right-multiplying the resulting matrix by diag(I,Qτ ,T−1),
the negativity of (2.82) is guaranteed by requiring

−P−1
τ+ AτQτ BT−1

∗ −QτPτQτ −QτG′

∗ ∗ −2T−1

 < 0.

Finally, by applying the upper bound −QτPτQτ ≤ P−1
τ −Q′τ −Qτ , and the change of variables

Rτ = P−1
τ , S = T−1, and Z ′τ = QτG

′, one obtains the inequality (2.80).
Therefore, if u(k) ∈ S(ω(k),umax) and the condition (2.80) of Theorem 2.5 hold, we have 0 <

u(‖z̄(k)‖) ≤ V (z̄(k)) ≤ v(‖z̄(k)‖) and ∆V (z̄(k)) ≤ −w(‖z̄(k)‖) = −α‖z̄(k)‖2< 0 for some
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sufficient small α, which implies that the multi-agent system reaches consensus asymptotically.
Henceforth, we show that if inequality (2.81) is satisfied then u(k) ∈ S(ω(k),umax), and the

inequality in Lemma 2.3 is always satisfied. The inequality (2.81) implies that whenever the
trajectories of the multi-agent system belong to LV , u(k) ∈ S(ω(k),umax) is satisfied, where
LV represents a level set of the Lyapunov function given by

LV = {z̄(k) : z̄(k)′P (τ (k))z̄(k) ≤ 1}.

This is equivalent to
|(Γ(`) −G(`))z̄(k)|≤ umax, ∀z̄(k) ∈ LV ,

for ` = 1, . . . ,np. The previous inequality holds whenever(
z̄(k)′(Γ′(`) −G

′
(`))

)(
(Γ(`) −G(`))z̄(k)

)
≤ u2

maxz̄(k)
′P (τ (k))z̄(k),

z̄(k)′
(
P (τ (k))−

(
Γ′(`) −G

′
(`)

)
u−2

max

(
Γ(`) −G(`)

))
z̄(k) ≥ 0,

which, by Schur’s complement, left- and right-multiplying the resulting matrix by diag(Qτ , 1),
and applying the inequality QτPτQτ ≥ −P−1

τ +Q′ +Q, have the positivity guaranteed by−P−1
τ +Q′τ +Qτ QτΓ′(`) −QτG

′
(`)

∗ u2
max

 ≥ 0, for ` = 1, . . . ,np; τ = 0, . . . , τ̄ . (2.83)

Finally, the inequality (2.83) becames equal to (2.81) with the change of variables Rτ = P−1
τ ,

and Z ′τ = QτG
′. Hence, if (2.81) is satisfied the condition of Lemma 2.3 is also satisfied, and

whenever (2.80) is jointly satisfied, LV is a level set of the Lyapunov functional and we have
V (z̄(k)) > 0 and ∆V (z̄(k)) < 0. Thus all the trajectories of z̄(k) starting from LV remains
within LV and go to origin.

2.4.2 Stabilization

In the following theorem, we extend the previous result and present new conditions to synthe-
size stabilizing feedback controls for the agents. The asymptotic convergence and gain design
conditions are given separately because a particular structure is chosen in the matrices vari-
ables of the latter. This choice would introduce some conservatism in the stability conditions
if the same structure of the design conditions were considered. In fact, as it is shown in the
numerical examples, this particular choice makes the design conditions using the augmented
approach more conservative than the conditions derived through the Lyapunov-Krasovskii ap-
proach, even though in the former no sum inequalities is used. We provide design conditions
based on Theorem 2.5 as follows.

Theorem 2.6. Let the scalars τ̄ and umax be given. The multi-agent system (2.5) with con-
sensus protocol (2.3) subject to input saturation and time-varying delay reaches consensus with
state feedback matrix K=K̄Q−1

m , if there exist a diagonal positive definite matrix S ∈ Rnp×np,
symmetric positive definite matrices Rτ ∈ Rm(n−1)(τ̄+1)×m(n−1)(τ̄+1), for τ = 0, 1, . . . , τ̄ , and
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matrices Q̄ = I(τ̄+1)(n−1) ⊗Qm ∈ Rm(n−1)(τ̄+1)×m(n−1)(τ̄+1) with Qm ∈ Rm×m, K̄ ∈ Rp×m, and
Z ∈ Rnp×m(n−1)(τ̄+1), such that the following conditions are satisfied:

−Rτ+ ÂQ̄−BΓ̂τ BS

∗ Rτ − Q̄− Q̄′ −Z ′

∗ ∗ −2S

 < 0, (2.84)

and Q̄+ Q̄′ −Rτ Γ̂′(`) −Z
′
(`)

∗ u2
max

 ≥ 0, (2.85)

for τ = 0, . . . , τ̄ ; τ+ ∈ C(τ ); ` = 1, . . . ,np, where

Â=

[
(In−1⊗A) 0 · · · 0

Iτ̄m(n−1) · · · 0

]
,

B =
[
(U ⊗B)′ 0′

]′
,

Γ̂τ=
[
Γ̂0,τ Γ̂1,τ · · · Γ̂τ̄ ,τ

]
,

and for k = 0, . . . , τ̄ , if k = τ , then Γ̂k,τ = (LW ⊗ K̄). Otherwise we have Γ̂k,τ = 0.
Furthermore, a region from which the consensus is always attainable is given by the level set
LV = {z̄(k) : z̄(k)′P (τ (k))z̄(k) ≤ 1}.

Proof. The conditions (2.84) and (2.85) of Theorem 2.6 are derived directly from the inequalities
(2.80) and (2.81), by replacing the variables Qτ , for all τ ∈ {1, . . . , τ̄}, with the structured
variable Q̄ = I(τ̄+1)(n−1) ⊗Qm, with Qm > 0 ∈ Rm×m. The product ΓQ̄ in (2.84) and in (2.85)
leads to

ΓQ̄ =
[
Γ0
(
In−1 ⊗Qm

)
Γ1
(
In−1 ⊗Qm

)
· · · Γτ̄

(
In−1 ⊗Qm

)]
,

where the jth element is given by,

Γj
(
In−1 ⊗Qm

)
= −

(
LW ⊗K

)(
In−1 ⊗Qm

)
= −LWIn−1 ⊗KQm.

Defining K̄ = KQm and Γ̂k,τ = LW ⊗ K̄, the state feedback matrices for the agents can be
computed by K = K̄Q−1

m , which completes the demonstration.

Theorems 2.5 and 2.6 present sufficient conditions to guarantee consensus in the multi-agent
systems with agents described by (2.78), and additionally, they give a procedure to compute a
region from which the consensus is always attainable. We propose next a simple procedure to
maximize the domain of consensus along with the given conditions.
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Maximization of the allowed initial conditions

With the conditions presented in Theorems 2.5 and 2.6, as in the previous approaches, we
consider the maximization of an ellipsoid included in the level set LV , which is obtained by
solving the following optimization problem.

min trace(H)

s.t.


a) LMIs (2.80) and (2.81) from Theorem 2.5,

or (2.84) and (2.85) from Theorem 2.6.

b)

[
H I

I Rτ

]
≥ 0, for τ = 0, ..., τ̄ ,

(2.86)

where H ∈ Rm(n−1)(τ̄+1)×m(n−1)(τ̄+1).
An interesting aspect of this method is that the computation of the region included in the

domain of consensus readily gives an estimate for current and delayed states. Hence, with
the region in the augmented space z̄(k) it is possible to define the essential states for a given
problem, and specific characterization of separate regions is not necessary.

2.4.3 Numerical Examples

In this section, we contrast the conservatism associated with the time-delay between our results
and recent ones found in the literature. We also present two simulated experiments illustrating
the findings in Sections 2.3 and 2.4. In the first example, we address a multi-agent system with
scalar agents to facilitate the comprehension of the computed region of attraction in the method
offered in Section 2.4. In the second simulation, the focus is to exemplify the conservatism of
the region of convergence using the method proposed in Section 2.3.

Example 2.4. Consider a multi-agent system in the discrete-time domain with two agents that
communicate with each other, and have dynamics given by (2.5), with input bound umax = 0.5
and

A =

[
0.866 −0.5
0.5

√
3

2

]
and B =

[
0
1

]
(2.87)

Firstly, to compare the proposed conditions with the result in Zhang, Saberi, and Stoorvogel
(2020) we consider the design approaches, Theorems 2.4 and 2.6. The solutions are presented
in Table 2.4, in which Theorem 2.4 was considered with % = 5.

Method τ̄max
Theorem 1 in Zhang, Saberi, and Stoorvogel (2020) 4

Theorem 2.6 8
Theorem 2.4 10

Table 2.4: Example 2.4–Comparison of maximum delay for design conditions of
the multi-agent system given in (2.87).
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One can see that Theorems 2.6 and 2.4 achieve less conservative results in this example.
However, contrary to what was expected, Theorem 2.6 showed to be more conservative than
Theorem 2.4. The tests suggest that this might be due to the structure variable necessary to
derive the synthesis conditions, the specific structures have shown to be more taxing in Theorem
2.6 than in 2.4. As evidence, Table 2.5 presents solutions for the stability conditions, which
employ more variables. In both, Theorems 2.3 and 2.5, it was considered K =

[
0.5 0.02

]
.

Method τ̄max
Theorem 2.3 15
Theorem 2.5 18

Table 2.5: Example 2.4–Comparison of maximum delay for synthesis conditions
of the multi-agent system given in (2.87).

As shown, the approach used in Theorem 2.5 indeed leads to less conservatism. However,
this advantage might be lost in the extension to design conditions.

Example 2.5. Consider a multi-agent system composed of four agents with directed communi-
cation topology illustrated in Figure 2.6, which has the following Laplacian matrix:

L =


1 0 −1 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 .

x1

x2 x3

x4

Figure 2.6: Example 2.5–Communication topology of multi-agent system.

In this scenario, it is considered the following dynamics for the agents:

xi(k+ 1) = 1.2xi(k) + 0.5 sat(u(k)),

for i = 1, . . . , 4, subjected to a maximum input delay of τ̄ = 1, with biggest allowed transition
∆τmax = 1, and input saturation umax = 1.

Designing the controller gains by solving the optimization problem (2.86) gives the gain
K = 0.476. Note that in this case, the domain of consensus has order six. To facilitate the
understanding of such a region it is performed the projection into the planes zi(k)× zi(k − 1),
i = 1, . . . , 3, and an ellipsoid is inflated in the intersection of these projections (shown in blue
line in Figure 2.7). Because the proposed approach readily takes into account the region of
convergence for current and delayed states, the order of the domain of consensus increase with
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the upper bound of delay. For instance, if in this scenario the agents were subject to τ̄ = 3, the
domain of consensus would have order 12 and it might be harder to visualize such a region.

The ellipsoidal region for the domain of consensus is presented in Figure 2.7. To illustrate
the evolution of the network and demonstrate the low conservatism of our approach, Figure 2.7
shows trajectories of the multi-agent system with initial conditions inside (in black line) and
outside (in red line) of the computed domain of consensus. Note that the trajectories starting
outside the domain of consensus do not achieve consensus.

-4 -3 -2 -1 0 1 2 3 4

z(k)

-3

-2

-1

0

1

2

3

z(
k
−
1)

Figure 2.7: Example 2.5–The domain of consensus calculated using Theorem
2.6 (in blue), and relative trajectories of the agents starting outside (in red) and

inside (in black) of the calculated domain of consensus.

Example 2.6. In this example, consider that the matrices of the agents in (2.5) are given by

A =

[
1.01 0.2
0.0 −0.5

]
and B =

[
1

0.1

]
, (2.88)

with input saturation umax = 0.5, and that the multi-agent system is composed of ten agents,
with communication topology represented by the following Laplacian matrix:

L =



3 0 −1 0 −1 0 0 −1 0 0
−1 3 0 0 0 −1 0 0 −1 0
−1 −1 6 −1 −1 0 0 −1 0 −1
−1 −1 −1 6 −1 −1 0 −1 0 0
0 −1 0 −1 6 −1 0 −1 −1 −1
0 −1 −1 0 −1 5 −1 −1 0 0
−1 −1 −1 −1 −1 −1 9 −1 −1 −1
0 0 0 −1 −1 −1 −1 5 0 −1
−1 −1 0 −1 0 −1 −1 −1 7 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 9



.

For this network, we exemplify the characterization of the region of guaranteed convergence
by using the synthesis conditions of Theorem 2.4, with parameter % = 5, through the optimization
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problem given in Section 2.2. We design three regions: (1) the biggest set for transition states
y0; (2) the region in which Y and B(r1, r2) define a ball with radius r = r1 = r2 = ‖y0‖; and
(3) the biggest set for current states z0.

To define a region for (1), we set r1 = r2 = 0, and α2 = 0, which gives us ‖y0‖<
1/
√
(τ̄λmax(Z1) + nτ̄2λmax(Z2)). The regions C(1) and Y(1) in this scenario are represented

in Figure 2.8 with solid blue line. For the region of convergence (2), we obtain the condition
r < 1/

√
(ρ1 + ρ2 + ρ3), where ρ3 = (τ̄λmax(Z1) + nτ̄2λmax(Z2)). Computing the sets with

αj = 1, for j = 1, . . . , 4, give us the regions C(2),Y(2), and B(2), represented in Figure 2.8 in
dashed red line. Finally, to compute the region (3) we set αj = 0, for j = 2, . . . , 4, α1 = 1, and
r1 = r2 = 0, which give us the region C(3), depicted in Figure 2.8 in solid black line.

-1000 -500 0 500 1000

z1

-400

-200

0

200

400

z
2

Figure 2.8: Example 2.6–Geometrical characterization of the domain of consen-
sus computed using Lemma 2.2. The sets C(1) and Y(1) in solid blue line, C(2),

Y(2), and B(2) in dashed red line, and C(3) in solid black line.

It is possible to see through the three different representations of the region of convergence
that there is a trade-off between the sets associated with each initializing state. Consequently,
this representation gives flexibility in structuring a specific set of initial conditions for a given
problem, which might lead to less conservative estimate.

Example 2.7. A numerical complexity analysis of the two proposed approaches of discrete-time
systems is provided. The theoretical advantage of the augmented approach is that, because an
equivalent form of general quadratic Lyapunov-Krasovskii functional is used, and no conservative
inequalities were employed to derive linear conditions, e.g., Jensen’s inequality (Kim, 2016),
those conditions should lead to nonconservative conditions. In fact, for single-agent systems
with time varying delays, the switching augmented system approach is equivalent to employ the
most general form of a Lyapunov-Krasovskii functional candidate that involves sums of quadratic
terms (Hetel, Daafouz, and Iung, 2008). The drawback of the method is that the dimension of
the problem increases with the delay upper-bound. Thus, the Lyapunov-Krasovskii methodology
offered in Theorems 2.3 and 2.4, although possibly more conservative, might suit better multi-
agent systems. To better understand this growth, it is analyzed the number of variables of the
LMI problem, as in Example 2.2, and the two methods in the discrete-time domain are contrasted.
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The number of variables in each theorem is given by:

NTheorem 2.3 =3m2(n− 1)2 + 2m(n− 1) + np(n+ 2)m(n− 1) + np,

NTheorem 2.4 =2m2(n− 1)2 + 2m(n− 1) +m2 + 2m(m+ 1) + np(n+ 2)m(n− 1)

+np+ pm,

NTheorem 2.5 =(1 + τ̄ )3m2(n− 1)2 + (1 + τ̄ )2m(n− 1) + (1 + τ̄ )npm(n− 1) + np,

NTheorem 2.6 =
1
2
(
(1 + τ̄ )3m2(n− 1)2 + (1 + τ̄ )2m(n− 1)

)
+m2

+mp+ (1 + τ̄ )npm(n− 1) + np.

As it can be seen, the number of variables grows roughly the same way in both methods regarding
the number of agents in the network and their dimension. However, the conditions in Theorems
2.5 and 2.6 grow cubically as the upper-bound delay increases. This can be highly restrictive
depending on the network to be studied and expected delays. Besides, it should be highlighted
again that, because the structure on the variable matrices, Theorem 2.6 shows no improvement
regarding the conservatism reduction. To give a glimpse of the effect caused by dependence on
the time-delay, Figure 2.9 depicts the number of variables in different scenarios.

2.5 Chapter Conclusions

In this chapter, it was proposed new conditions to analyze and design consensus protocols for
multi-agent systems under communication topology described by directed graphs, and inputs
subject to saturation and time-delays. The obtained results were investigated in the continuous-
and discrete-time domains. The analysis and design of the distributed protocols were formulated
in such a way that the region in which the consensus is ensured is maximized.

In all presented approaches, the saturation was modeled with the use of a dead-zone function.
With this, it was possible to employ a sector condition that permits the inclusion of more
variables in the problem, which led to less conservative estimates of the region of convergence
when compared with other saturation representations, for example, the polytopic model in Silva
(2019). In addition, the dead-zone function eases the manipulation of the equations of the system
because the sector feature of the non-linearity is explored, allowing the use of tools developed
for the analysis of uncertain linear systems.

In the continuous-time domain, the time-varying delays were assumed to be specified by
intervals and it was not assumed the existence of the delays derivative. This reduces the conser-
vatism of the conditions, in the sense that it allows the methodology to be applicable to scenarios
where the variation of the delays is not known and might even be random. Another key feature
is that the used representation for delays fits well in the context of multi-agent systems, once
it allows representing arbitrary delays for each agent within the same set and, consequently, to
represent the whole networked system in a compact form.

In the discrete-time domain, two approaches were given. As a first result, it was proposed a
technique based on the Lyapunov-Krasovskii framework for discrete-time multi-agent systems.
With this method, we were able to derive conditions in which the computational burden does
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Figure 2.9: Example 2.7– Growth of the number of variables in Theorems 2.3,
2.4, 2.5, and 2.6 for different values of delays (Figures 2.9a and 2.9a) and agents
in the network (Figures 2.9c and 2.9d), with second-order agents and single input

(m = 2, and p = 1).
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not increase with delays, while still managed to obtain less conservative conditions than previous
studies from the literature for the numerical problems considered.

With the goal of reducing the conservatism of the first approach, we rewrote the problem as
the study of convergence of an augmented switching system subject to input saturation. This
transformation allowed the use a Lyapunov functional that depends on the modes of the switched
system, which is equivalent to use a general delay-dependent Lyapunov-Krasovskii functional
(Hetel, Daafouz, and Iung, 2008). As pointed by Hetel, Daafouz, and Iung (2008), this functional
might represent the most general form that can be obtained using a sum of quadratic terms. The
main drawback of the proposed approach is that the computational complexity of the conditions
might increase rapidly as the delay upper bound increases, despite this value be considered known
a priori. This is a trade-off between conservatism and computational burden. An interesting
finding is that despite the trade-off between the two methods, the conservatism of the synthesis
conditions of the augmented system approach seems to be higher than the conditions from the
Lyapunov-Krasovskii approach.

In the development process of the stability conditions some possibly conservative approaches
were made–and, naturally, they propagated to the synthesis conditions. These decisions may
have led to conservative results, in the sense that there may exist conditions that ensure the
convergence with larger region for consensus with tighter input saturation, and with larger
time-delays. This is the price to be paid for the use of LMIs, if in one hand they concede
the possibility to formulate sufficient conditions for convergence that can be easily solved using
efficient well known methods, in another hand, more often than not, it is necessary to insert
some conservatism on the conditions.

Finally, the numerical examples showed that our approach is less conservative and/or more
general than recent similar approaches found in the literature for the considered examples. More
specifically, our results can deal with the problem of consensus with and without leader, with
directed communication topology, non-differentiable input time-delays, and provide a region in
which the consensus is guaranteed.
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Chapter 3

Formation-Containment of Euler-Lagrange
Systems

This chapter addresses the formation-containment on interconnected systems modeled by using
the Euler-Lagrange formalism, which are subject to input saturation and time-varying delays in
the communication channels. The main results are the design of distributed control algorithms
and sufficient conditions to ensure the multi-agent system convergence. The design and conver-
gence analysis of leaders and followers are addressed separately. This is possible because the
problem can be seen as a composition of two other sub-problems. First, the design of distributed
protocols for leaders is presented and, in the sequence, the design for followers. Lastly, a the-
orem addressing the complete formation-containment problem is proposed. Finally, the use of
the approach is illustrated using numerical examples in different scenarios.

3.1 Introduction and Preliminaries

The main objective in this chapter on the cooperative control of nonlinear systems subject to
communication delays and input saturation is to generalize the approach that has usually been
made in the literature, by providing a framework to handle both problems simultaneously. Given
that delays and input saturation are part of the nature of networked systems, we aim to derive
convergence guarantees by taking into account these characteristics.

In this chapter, an approach for the problem of formation-containment of networked Euler-
Lagrange systems is proposed, which has started to be studied recently in the literature. For
example, in Xu et al. (2020a) the time-varying formation is studied using finite-time estimators
for velocity and states of leaders, and neural networks are used to handle uncertainties. In
Xu et al. (2020b) the transient and steady-state performance of the formation-containment
convergence is investigated along with unknown control directions. In the same lines, Hua et al.
(2021) propose the fixed-time convergence by employing slide-mode strategy, which is also able to
deal with parametric uncertainties and input disturbances. Zhou and Chen (2020) proposed an
approach based on adaptive obervers to solve the formation-containment, but modeling leaders
using linear dynamics and only followers using the Euler-Lagrange formalism. In addition,
considering similar conditions as the ones in this chapter can be found in the work of Yang,
Shi, and Constantinescu (2019) and Hernández-Guzmán and Orrante-Sakanassi (2019) on the
consensus problem. In Yang, Shi, and Constantinescu (2019) it is studied the connectivity-
preserving problem for consensus, and their approach have significant distinctions from ours.
Particularly, they are mainly concerned with the connectivity-preserving consensus, which is an
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interesting problem per se and present some challenges associated with the implementation on
real-world systems. For this reason, for example, they assume that each agent of the network
is initially at rest. Our proposed framework is appropriated for a more general problem than
the consensus and, since we are not concerned with the problem of connectivity-preserving,
no assumptions related with the behavior of the agents are necessary. Hernández-Guzmán
and Orrante-Sakanassi (2019) are also concerned with the consensus problem, they proposed
an integration action in the controllers of Euler-Lagrange systems considering communication
delays, but input saturation was not analyzed. Moreover, the approach used by Yang, Shi, and
Constantinescu (2019) and Hernández-Guzmán and Orrante-Sakanassi (2019) to deal with the
delays among agents corresponds to the one proposed by Nuño and collaborators on previous
years (Nuño et al., 2011; Nuño et al., 2012; Nuño, Sarras, and Basanez, 2013; Nuño and Ortega,
2018).

Here, the communication delays are handled in a different way leading to an LMI test that
relates the delays upper bounds with some parameters of the controllers. As a result, it is
shown via numerical examples that the proposed conditions are less conservative in ensuring
convergence on multi-agent systems subject to communication delays. More precisely, the main
contributions in this chapter can be highlighted as:

i) The dynamics of all agents in the multi-agent system are nonlinear and modeled by Euler-
Lagrange equations which, as it is well known, can be used to represent numerous me-
chanical and electrical systems. Most of the literature on formation-containment control
is focused on linear dynamics, with some recent exceptions, (Mei, Ren, and Ma, 2012;
Chen et al., 2017b; Li et al., 2018; Chen et al., 2019a; Chen et al., 2019b).

ii) The actuators limits are considered along with the nonlinear dynamics. This consideration
is pertinent because it eases the implementation of the control strategy on real systems.
Moreover, in addition to the control performance degradation caused by saturation, there is
also the risk of thermal and mechanical failure when the actuators constraints are neglected.
This premise was previously studied in a related context by Li et al. (2018) and Ren
(2009), but with some important distinctions from our approach, namely: i) the formation-
containment problem is more general than the consensus problem, ii) we propose a strategy
to deal with input saturation and communication delays simultaneously, iii) different from
Li et al. (2018) our dynamic controller does not rely on the inertia and Coriolis matrices
and, iv) in contrast with both approaches, the control strategy proposed here does not
depend on relative velocity measurements.

iii) The delay in the communication among agents is explicitly considered. Communication is a
necessary condition for distributed control, and delays in the communication of networked
systems are almost an inherent feature that might prevent the system from achieving the
desired formation, thus it is desirable to consider its effects on the analysis. It is worth
mentioning that the majority of works that approach this problem consider the self and
neighbors states subject to the same delay, but it is easy to note that this consideration does
not represent a realistic case. In fact, the results of Nuño and collaborators (Nuño et al.,
2011; Nuño et al., 2012; Nuño, Sarras, and Basanez, 2013; Nuño and Ortega, 2018) seem
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to contribute with the least conservative conditions in communication delays in networked
Euler-Lagrange systems. On the numerical examples we show that, even though we also
consider the input saturation, the proposed conditions are less conservative than the ones
in their approach.

iv) The proposed distributed control strategy does not depend on the knowledge of the agent’s
inertia matrix or the Coriolis forces, and it does not rely on the neighbors velocity infor-
mation, which reduces the communication burden on the network.

3.1.1 Nonlinear Dynamics

The majority of real-world systems are intrinsically nonlinear, and the linearization often does
not provide a desirable representation when the systems do not operate in the vicinity of the
linearization point (Slotine and Li, 1991). Even though in the previous section we provided a
rigorous definition of the region in which the convergence is ensured, we had assumed that the
agents’ models are well represented by the linear dynamics. We acknowledge that this might be
a strong assumption, and in order to draw a methodology closer to realistic systems, it is now
assumed nonlinear dynamics for the networked nodes.

From an engineering perspective it is of great interest to model mechanical and electrical
systems, and if we look from the cooperative control point of view the set of systems of interest
is even more specific–it essentially encompasses the control and coordination of groups of robots,
unnamed aerial vehicles, and sensors. We, thereby, draw upon the large body of interest of the
field, by addressing nonlinear Euler-Lagrange systems with input saturation, represented by

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + gi(qi) = sat(ui), ∀i ∈ {1, . . . ,M}, (3.1)

where the vectors qi ∈ Rm are the generalized coordinates, the inertia matrix Mi(qi) ∈ Rm×m

is symmetric and positive-definite, the Coriolis and centripetal effects are represented with the
matrix Ci(qi, q̇i) ∈ Rm×m, and the vector gi(qi) ∈ Rm maps the gravitational effects. The
input signal produced by the actuators are represented by ui ∈ Rm and the element-wise
function sat(·) maps the bound on the input, that is ||sat(ui)||∞≤ umax i where the scalar
umax i represents the actuator limit and the saturation function is defined as

sat (ui) = [sat(ui(1)) . . . sat(ui(m))]
′, with

sat (ui(r)) = sign(ui(r))min(umax i, |ui(r)|), ∀r ∈ {1, . . . ,m}, (3.2)

in which the subscript inside the parenthesis represents the rth element of the vector ui. Here,
for simplicity, we slightly abuse notation using the same notation for vector saturation function
and scalar function. The agents dynamics are assumed to be possible distinct and to have the
following properties of Euler-Lagrange systems (Spong, Hutchinson, and Vidyasagar, 2005):

Property 1. The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric, that is

z′
(
Ṁi(qi)− 2Ci(qi, q̇i)

)
z = 0, for any vector z ∈ Rm.
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Property 2. There are positive constants ai, bi such that

0 < Imai ≤Mi(qi) ≤ Imbi, ∀qi ∈ Rm.

Property 3. There exist positive constants ci, such that

||Ci(x,y)z||≤ ci||z||||y||, ∀x,y, z ∈ Rm.

In addition to considering nonlinear dynamics for the nodes, we take a step further in relation
to the consensus problem and approach a more general problem. We address the problem of
formation-containment (Mei, Ren, and Ma, 2012; Chen et al., 2019b), which is a composition
of the formation problem, where a group of agents are required to maintain a given formation,
and the containment problem, where the purpose is to guarantee that the agents move into a
given region. To achieve the so-called formation-containment, the agents of the network are
split into two groups, one is required to achieve a relative formation and the other is required
to move into the region formed by the first one. With this strategy, it is possible to generalize
some other approaches of cooperative control, in the sense that some problems can be solved as
a particular case of the formation-containment. To make this more clear, consider for example
the case where all agents are required to perform a formation described by a single point and
no agent is required to move “into” this region. In this scenario, the behavior of the multi-agent
system is analogous to the leaderless consensus. Now consider the case in which the group that
is required to achieve a relative formation is reduced to a single agent, that is just one leader,
and there are agents in the group of followers. The relative formation would be “completed”
from the beginning (as it is made by only one leader), and, as the followers are required to move
into the given formation, they will synchronize with the leader. This gives an identical behavior
as the leader following problem.

Henceforth, the group of agents required to achieve the relative formation will be called
leaders, and will be indexed in the set VL = {1, . . . ,N}, and the agents required to move
into this formation will be called followers, indexed in VF = {N + 1, . . . ,M}. Because the
overall network behavior can be seen as a composition of two other behaviors, even though they
happen simultaneously, we will address each one separately. The formal definition of the leaders
convergence is given as,

Definition 3.1. The leaders formation with a desired constant configuration is achieved if the
leaders states converge asymptotically to a constant relative configuration, that is,

lim
t→∞
||qi(t)− qj(t)− δij ||= 0, (3.3)

lim
t→∞
||q̇i(t)||= 0, ∀i, j ∈ VL, (3.4)

in which the variable qi(t) ∈ Rm represents the generalized coordinates of the ith Euler-Lagrange
system, the constant vector δij ∈ Rm denotes the desired relative configuration on the generalized
coordinates, and VL represents the leaders set.

It is assumed that the formation-containment is achieved if the followers states converge to
the convex hull spanned by the leaders states. Specifically, a convex hull is defined as,
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Definition 3.2. The convex hull of a finite set of points X = {x1, . . . ,xn} is denoted by,

Co(X) =

{
n∑
i=1

αixi : xi ∈ X, ∀αi ≥ 0,
n∑
i=1

αi = 1
}

,

where αi ∈ R.

With this characterization, the formal definition of the followers convergence is stated as,

Definition 3.3. The followers containment into the leaders formation is achieved if the followers
states converge asymptotically into the convex hull spanned by the leaders, that is, there exist
constant values αij such that

lim
t→∞

∥∥∥∥∥∥qi(t)−
N∑
j=1

αijqj(t)

∥∥∥∥∥∥ = 0, αij ≥ 0,
N∑
j=1

αij = 1 ∀i ∈ VF , ∀j ∈ VL, (3.5)

in which the variable qi(t) ∈ Rm represents the generalized coordinates of the ith Euler-Lagrange
system, VF represents the followers set and VL represents the leaders set.

Therefore, the problem of formation-containment is said to be solved when the convergence
of leaders and followers occur simultaneously, that is,

Definition 3.4. The distributed saturated input control, sat (ui) for all i ∈ {1, · · · ,M}, is said
to solve the formation-containment problem of the networked Euler-Lagrange system (3.1), if all
leaders converge asymptotically to the desired formation and, simultaneously, all followers move
into the convex hull spanned by the configuration of leaders, that is, the limits (3.3), (3.4), and
(3.5) hold simultaneously.

Next, it is shown explicitly how the interactions among leaders and followers is assumed to
happen.

3.1.2 Communication Topology on the Formation-Containment

The network communication topology on the formation-containment problem is represented by
a graph G = (V, E). According to the sets of leaders and followers, the adjacency matrix of the
multi-agent system can be partitioned into the block lower triangular form

A =

[
AL 0
ALF AF

]
,

in which AL ∈ RN×N denotes the communication topology among leaders, AF ∈ RM−N×M−N

denotes the communication topology among followers, and ALF ∈ RM−N×N denotes the topol-
ogy of information flow from leaders to followers. Recall, from the definition of the degree matrix
in Section 2.1.4 that the elements of the degree matrix are given by dii =

∑n
j=1 aij . Hence, as a

result of the structure of A above, the information flow from leaders to followers is reflected into
the degree matrix of the followers, and consequently, into the Laplacian matrix of the followers
LF . Moreover, it is assumed that the Laplacian matrix associated to the leaders communication
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topology LL and to the followers LF , are both symmetric. This means, accordingly to the defi-
nition of the Laplacian matrix on Section 2.1.4, that the communication topology among agents
of the same group (leaders or followers) is undirected. Besides, because leaders do not receive
any information from followers and only some followers receive information from leaders, the
matrix LLF is non-symmetric.

To ensure the convergence the following assumptions are necessary:

Assumption 3.1. The graphs G and the subgraph GL associated with the communication topol-
ogy of the network and of the leaders, respectively, have a directed spanning tree.

Assumption 3.2. There exists a path from at least one leader to each follower.

The following lemma is used to derive the main results on the containment of followers:

Lemma 3.1 (Mei, Ren, and Ma (2012)). Under the Assumptions 3.1 and 3.2, the matrix L−1
F is

positive definite and, additionally, each entry of the matrix −L−1
F LLF is non-negative and each

row of −L−1
F LLF has sum equal to one.

In fact, Assumption 3.2 is a consequence of Assumption 3.1–if Assumption 3.2 is not met,
then G will have no spanning tree. Also, the result in Lemma 3.1 follows from the fact that a
spanning tree in G is equivalent to the Laplacian matrix L having a single zero eigenvalue and
all other eigenvalues with positive real part (Ren and Beard, 2008). Because the communication
among leaders happens only among them and GL is required to have a spanning tree, the single
zero eigenvalue is related to LL.

3.1.3 Communication Channels Subject to Delay

On the study of nonlinear cooperative control, one of the problems that we are concerned with
is how a delayed information exchanged by the nodes affects the network convergence, different
from the problem of input delay which was studied in Chapter 2. The objective is to represent
time-delays in the network itself. More specifically, the time spent between sending and receiving
information might prevent a multi-agent system to behave in a desired way. We aim to be able
to assert for which delays values the convergence is guaranteed. When analysing this aspect we
assume that each agent access its own states instantaneously, without input delay. Thus, the
study is carried under the following assumption:

Assumption 3.3. Each agent has access to its neighbors states subject to communication delay,
but it access its own states instantaneously. Moreover, the time-delay derivative τ̇ji(t) is bounded
for all i, j ∈ VL ∪ VF , that is, there exists some unknown positive scalar τ̂ such that |τ̇ji(t)|≤ τ̂ .

3.1.4 Saturation on the Formation-Containment

When considering saturation limits on Euler-Lagrange systems it is imperative to assume a
compatibility between the saturation limits, umax i, and the steady-state generalized forces. This
assumption has been made in works on similar scenarios (Morabito, Teel, and Zaccarian, 2004;
Hashemzadeh, Hassanzadeh, and Tavakoli, 2013), and is formalized on the following assumption:
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Assumption 3.4. Given the gravitational vector g(qi) of the Euler-Lagrange agents (3.1) and
the saturation limits umax i, for i = 1, . . . ,M , the following inequality always holds:

sup
qi∈Rm

‖g(qi)‖∞< umax i, ∀i ∈ {1, . . . ,M}.

Note that Assumption 3.4 is necessary for the systems to be stabilized under saturated inputs
in some configurations. To make this clear, note from equation (3.1) that for q̈i = q̇i = 0 the
input is required to fully compensate the gravitational effects. Hence, Assumption 3.4 requires
that the saturation limit is large enough so the input can stabilize the agents at any configuration.

3.2 Leaders Distributed Formation Control

The role of leaders on the formation control is, in a precise description, to establish the region in
which the followers are required to stay. This kind of task can be employed, for example, when
some systems have more sensing capabilities and could assist a subset of systems, the followers,
to move in the environment. In this work, this region is characterized by the convex hull defined
by the leaders’ configuration, and the relative configuration among leaders can be adjusted by
changing a control parameter.

In order to the leaders modeled by the Euler-Lagrange equation subject to input saturation,

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + gi(qi) = sat(ui),

to attain the desired constant formation in a distributed fashion, inspired by Li et al. (2018) we
propose the following distributed dynamic controller, constituted by the dynamic part

Diη̈i(t) = k1iσ(β1iq̃i)− k2i

N∑
j=1

aij
(
ηi(t)− ηj(t− τji(t))− δij

)
− k3iη̇i(t), ∀i ∈ VL, (3.6)

and algebraic portion, that provides the ith leader input as

ui = −k1iσ(β1iq̃i(t))− k4iσ(β2iq̇i(t)) + gi(qi), ∀i ∈ VL, (3.7)

where VL = {1, . . . ,N} is the index set of leaders, q̃i = qi(t)− ηi(t) is the coupling between
the ith agent and its dynamic controller, the desired relative configuration is represented by the
constant δij ∈ Rm, the state of the ith dynamic controller is represented by ηi(t) ∈ Rm, the
matrix Di ∈ Rm×m is constant and positive definite, k1i, k2i, k3i, k4i,β1i, and β2i are positive
constants. To account for the input saturation the control is designed based on a continuous
function σ(·) : R→ (−1, 1) which is applied element-wise and satisfies the following properties:

- limx→−∞ σ(x) = −1;

- limx→∞ σ(x) = 1;

- σ(0) = 0;

- σ(·) is a strictly increasing function,
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Figure 3.1: Representation of the proposed dynamic controller in (3.6) as proxies
for communication among agents.

- its time-derivative with respect to its argument is bounded.

An example of such a function is the hyperbolic tangent. Note that the input (3.7) is bounded
by k1i + k4i + ||g(qi)||∞, and the gains can be adjusted in order to fulfill the actuators limit,
i.e., satisfying the saturation constraint. Moreover, the input (3.7) is chosen in such a way to
synchronize the agent and its controller, while adding a damping on the agent’s dynamics.

With this approach, the networked system is coupled by the dynamic controllers of each
agent, such that the controllers of neighbors exchange information with each other. The dynamic
controller can be seen as a proxy for the interaction among agents, Figure 3.1 illustrates a scheme
with four agents, in which the dynamic controllers in the boxes are given in (3.6), and the time
dependency of delays τji(t) is not shown. Thus, the communication delay of the network is
represented in (3.6) by the delayed neighbor state of the controller ηj(t− τji(t)), where the
variable τji(t) represents a time-varying delay which is assumed to be bounded by a known
positive constant |τji(t)|≤ τ̄j , and have the first derivative τ̇ji bounded by an unkown value.

Remark 3.1. Note that the local dynamic controller (3.6) can be seen as a second-order linear
system with an aggregated input uci(t), as

Diη̈i(t) + k3iη̇i(t) = uci(t). (3.8)

It is a well known result from the literature that the above system is input to state stable (Khalil,
2002) for appropriate choices of Di and k3i. That is, the system has a globally asymptotically
stable equilibrium point in absence of external input, uci(t) = 0, and for bounded inputs the
states of the system remain bounded.
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In the next lemma, it is proposed a sufficient condition for the leaders to reach the desired
static formation, with undirect communication topology between leaders.

Lemma 3.2. The N leaders modeled by Euler-Lagrange equation (3.1), with dynamic controller
(3.6), bounded input (3.7), and time-varying communication delays with bounded first derivative,
reach asymptotically the static relative configuration,

lim
t→∞
||qi(t)− qj(t)− δij || = 0, lim

t→∞
||q̇i(t)||= 0,

for all i, j ∈ VL, if for given positive constants τ̄i, k2i, and k3i, there exist positive definite
matrices Pi ∈ Rm×m for i = 1, · · · ,N , such that the following linear matrix inequality holds,[

Ξ1 Ξ2

∗ Ξ3

]
< 0, (3.9)

with

Ξ1 = diag
{
−2k31I + l11τ̄1P1, −2k32I + l22τ̄2P2, · · · , −2k3NI + lNN τ̄NPN

}
, (3.10)

Ξ2 = diag
{

Ξ21, Ξ22, · · · , Ξ2N
}

, (3.11)

Ξ2k =
[
−k2kI −k2kI · · · −k2kI︸ ︷︷ ︸

lkk times

]
,

Ξ3 = diag
{

Ξ31, Ξ32, · · · , Ξ3N
}

, (3.12)

the terms Ξ3k are arranged considering the network topology, according to the following algo-
rithm,

Structure of Ξ3k

Ξ3k ← []

for j = 1, . . . ,N :

if akj 6= 0 :

Ξ3k ← diag
(

Ξ3k,
[
−Pj/τ̄j

])
end

The term τ̄i denotes the upper bound on the time-varying delays associated with the ith agent,
[] is an empty matrix (i.e., the only linear map is [] : {0} → {0}), and lii is the ith diagonal
element of the degree matrix.

Proof. The proof consists of two main parts, firstly it is shown conditions that guarantee bounds
on the states of the dynamic controllers and Euler-Lagrange systems. Secondly, it is shown
that if these conditions are satisfied, then the states of each dynamic controller asymptotically
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synchronizes over the network and the states of each system also synchronize with its associated
dynamic controller, leading to the desired convergence on the target formation.

Consider the following Lyapunov-Krasovskii functional candidate,

VL = V1 + V2 + V3,

with

V1 =
N∑
i=1

{
η̇′iDiη̇i + q̇

′
iMi(qi)q̇i

}
,

V2 =
1
2

N∑
i=1

N∑
j=1

aijk2i(ηi − ηj − δij)′(ηi − ηj − δij) + 2
N∑
i=1

∫ q̃i

0
k1iσ(β1iε)dε,

V3 =
N∑
i=1

lii
∫ 0

−τ̄i

∫ t

t+θ
η̇i(ε)

′Piη̇i(ε)dεdθ

.

The positivity of the Lyapunov-Krasovskii functional is immediate. Next we derive the con-
ditions for the negativity of the functional derivative. The time-derivative of V1 along the
trajectory of the system (3.1) and its controller (3.6) is given by,

V̇1 =
N∑
i=1

2q̇′iMi(qi)q̈i + q̇
′
iṀi(qi)q̇i + 2η̇′iDiη̈i


=2

N∑
i=1
q̇′iMi(qi)

Mi(qi)
−1
(
−C(qi, q̇i)q̇i − k1iσ(β1iq̃i)− k4iσ(β2iq̇i)

)
+2

N∑
i=1
η̇′iDi

D−1
i

(
k1iσ(β1iq̃i)− k2i

N∑
j=1

aij
(
ηi(t)− ηj(t− τji(t))− δij

)

−k3iη̇i

)+
N∑
i=1
q̇′iṀi(qi)q̇i

=2
N∑
i=1

− k1iq̇
′
iσ(β1iq̃i)− k4iq̇

′
iσ(β2iq̇i) + k1iη̇

′
iσ(β1iq̃i)− k3iη̇

′
iη̇i

−k2i

N∑
j=1

aijη̇
′
i

(
ηi(t)− ηj(t− τji(t))− δij

)
=2

N∑
i=1

− k1i ˙̃q′iσ(β1iq̃i)− k4iq̇
′
iσ(β2iq̇i)− k3iη̇

′
iη̇i

−k2i

N∑
j=1

aijη̇
′
i

(
ηi(t)− ηj(t)− δij

)
− k2i

N∑
j=1

aijη̇
′
i

∫ t

t−τji(t)
η̇j(ε)dε

), (3.13)

where we have used the Property 1 in Section 3.1.1 (i.e., the matrix Ṁi(qi) − 2Ci(qi, q̇i) is
skew-symmetric), the fact that the inertia matrices are positive-definite, and the fact that the
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delayed term can be written as,

ηj(t− τji(t)) = ηj(t)−
∫ t

t−τji(t)
η̇j(ε)dε. (3.14)

Taking the time-derivative of V2 gives us,

V̇2 =
N∑
i=1

N∑
j=1

aijk2i(η̇i − η̇j)′(ηi − ηj − δij) + 2
N∑
i=1

k1i ˙̃q′iσ(β1iq̃i).

Recall that the communication among leaders is considered undirected, which imply symmetry
on the block Laplacian matrix LL. Hence, if there exists η̇′iηj with aij 6= 0, then there also
exists η̇′jηi with aij 6= 0. Thus, we can write

V̇2 =2
N∑
i=1

N∑
j=1

aijk2iη̇
′
i(ηi − ηj − δij) + 2

N∑
i=1

k1i ˙̃q′iσ(β1iq̃i). (3.15)

The derivative of V3 is given by,

V̇3 =
N∑
i=1

liiτ̄iη̇′iPiη̇i − lii
∫ t

t−τ̄i

η̇i(ε)
′Piη̇i(ε)dε


≤

N∑
i=1

liiτ̄iη̇′iPiη̇i −
N∑
j=1

aij

∫ t

t−τij(t)
η̇′i(ε)Piη̇i(ε)dε

,

and using the symmetry of undirected graphs and applying Lemma A.3 on the integral term
yields

V̇3 ≤
N∑
i=1

liiτ̄iη̇′iPiη̇i −
N∑
j=1

aij
1
τ̄j

∫ t

t−τji(t)
η̇j(ε)

′dεPj

∫ t

t−τji(t)
η̇j(ε)dε

. (3.16)

Thus, the time-derivative of the Lyapunov-Krasovskii candidate is given by,

V̇L ≤−2
N∑
i=1

k4iq̇
′
iσ(β2iq̇i) +

N∑
i=1

− 2k3iη̇
′
iη̇i + liiτ̄iη̇

′
iPiη̇i

−
N∑
j=1

aij
1
τ̄j

∫ t

t−τji(t)
η̇j(ε)

′dεPj

∫ t

t−τji(t)
η̇j(ε)dε− 2k2i

N∑
j=1

aijη̇
′
i

∫ t

t−τji(t)
η̇j(ε)dε


=−2

N∑
i=1

k4iq̇
′
iσ(β2iq̇i) + Υ(t)′ΞΥ(t),

where the vector Υ(t) is arranged according the following algorithm:

Algorithm 1 Structure of Υ(t) (3.17)
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Υ(t)←
[
η̇′1 · · · η̇′N

]′
for i = 1, . . . ,N :

for j = 1, . . . ,N :

if aij 6= 0 :

Υ(t)←
(

Υ(t)|
[∫ t
t−τji(t)

η̇j(ε)dε
]′ )

end

In which the operation (a|b), with vectors a, b ∈ Rn, denotes the row-wise concatenation[
a′ b′

]′
∈ R2n.

Hence,

Υ(t)′ =
[
η̇′1 · · · η̇′N

∫ t
t−τ21(t)

η̇2(ε)
′dε · · ·

∫ t
t−τji(t)

η̇j(ε)
′dε · · ·

∫ t
t−τ(N−1)N (t) η̇(N−1)(ε)

′dε
]

,

where the terms on
∫ t
t−τji(t)

η̇j(ε)
′dε are defined only if (vi, vj) ∈ E , and

Ξ =

[
Ξ1 Ξ2

∗ Ξ3

]
,

where Ξ1, Ξ2, and Ξ3 are defined in (3.10), (3.11), and (3.12).
Therefore, if the conditions in our statement hold we have VL > 0 and V̇L < 0 for non-zero

variables η̇i,
∫ t
t−τji(t)

η̇j(ε)dε, and q̇i. However, the function V̇L might be zero for non-zero
variables ηi and q̃i, in which VL is defined, thus the Lyapunov’s direct method is applied to
attest asymptotic convergence. Nevertheless, it follows that VL is bounded and consequently
q̇i, η̇i,

∫ t
t−τji(t)

η̇i(ε)dε are also bounded. According to leaders and controllers dynamics, (3.1)
and (3.6), Properties 2, 3, and Assumption 3.4, we have that q̈i and η̈i are also bounded,
with the assumption of boundedness of τ̇ji, we get that V̈L is bounded. Thus, V̇L is uniformly
continuous and, invoking Barbalat’s lemma, we conclude that limt→∞ V̇L = 0, limt→∞ η̇i(t) = 0,
limt→∞

∫ t
t−τji(t)

η̇i(ε)dε = 0, and limt→∞ q̇i(t) = 0.
Henceforth, we want to show the synchronization of the controllers over the network and

the convergence of the leaders to constant relative configurations. To this end we show that: i)
the leaders acceleration q̈i goes to zero, which implies that limt→∞ q̃i = 0, and ii) the controller
acceleration η̈i also goes to zero. Therefore, from (3.6) we have limt→∞

(
ηi(t)−ηj(t− τji(t))−

δij
)
= 0.

In order to show that the acceleration q̈i asymptotically converges to zero, note that its
time-derivative is given by

...
qi =−M−1

i (qi)
[
Ċi(qi, q̇i)q̇i +Ci(qi, q̇i)q̈i − u̇i

]
− Ṁ−1

i (qi)
[
Ci(qi, q̇i)q̈i −ui

]
,

and recalling Properties 1-3, the boundedness of q̇i and q̈i, the previous equation suggests that
...
qi is bounded for bounded Ṁ−1

i and Ċi(qi, q̇i)q̇i, which is a realistic assumption for Euler-
Lagrange systems with prismatic and revolute joints (Ghorbel, Srinivasan, and Spong, 1998;
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Mulero-Martínez, 2007; Nuño, Basañez, and Ortega, 2009). Hence, the Barbalat’s lemma is
used once again to show that that limt→∞ q̈i(t) = 0, and finally, from the leaders dynamics we
conclude that limt→∞ q̃i(t) = 0.

We have that limt→∞ q̃i(t) = 0 and limt→∞ η̇i(t) = 0. Therefore, with similar arguments
used to show the convergence of q̈i(t), we also get that limt→∞ η̈i(t) = 0. Thus, from the
controller (3.6), we obtain that limt→∞

(
ηi(t)− ηj(t− τji(t))− δij

)
= 0. Hence,

lim
t→∞
||qi(t)− qj(t)− δij || = 0,

which completes the proof.

The previous result presents an LMI test for the convergence of multiple Euler-Lagrange
systems into a constant relative configuration. The proposed condition is designed taking into
account bounded inputs and communication delays on the multi-agent system and it establishes
a relationship between some controller parameters and the upper bounds of the communication
delays. Specifically, from the controller parameters k1i, k2i, k3i, k4i,β1i,β2i, only k2i and k3i have
to be adjusted in such a way that the conditions in Lemma 3.2 are satisfied and they are not
directly associated with the input bounds. That is to say, the remainder parameters have no
influence on the given convergence conditions as long as they are positive and k1i and k4i are
chosen such that the actuators limits are satisfied. Furthermore, the proposed LMI condition
is independent of the model of each agent in the sense that it does not depend on the inertia
nor Coriolis matrices of the agents, it depends only on the number of degrees of freedom of each
system, which can be used for analysis of heterogeneous multi-agent systems.

3.2.1 Numerical Examples

This section shows an example to illustrate the use of Lemma 3.2, which is a particular case of
the problem under analysis. The motivation is to compare the proposed result with the specific
research line that study this case, particularly the result is compared with a partial result in
Nuño and Ortega (2018).

Example 3.1. For comparison of the conditions on the communication delay we consider the
problem studied by Nuño and Ortega (2018), which is a particular case of the results presented
here, namely, the leaderless consensus without input-saturation, that is, the set of followers is
empty and the leaders must converge to the same point. We consider a team of four manipulators
with two degrees of freedom, in which the inertia and Coriolis matrices are given by

Mi(qi) =

[
h1i + 2h2ic2i h3i + h2ic2i

h3i + h2ic2i h3i

]
, Ci(qi, q̇i) = h2i

[
−s2iq̇2i −s2i(q̇1i + q̇2i)

s2iq̇1i 0

]
,

and the gravity vector,

g(qi) =

[
g
l2i
h3ic12i +

g
l1i
(h1i − h3i)c1i

g
l2i
h3ic12i

]
,
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where h1i = l22im2i + l21i(m1i +m2i), h2i = l1il2im2i, and h3i = l22im2i. We used the short
notation, c2i, s2i, and c12i, for cos(q2i), sin(q2i), and cos(q1i + q2i), respectively. The joint
position of the kth link of the manipulator i is represented by qki. The variables lki, and mki

are the respective length and mass of each link. The communication topology of the network is
represented on Figure 3.2, which results in the following Laplacian matrix,

v1

v4 v3

v2

Figure 3.2: Example 3.1–Graph representation of the agents interaction.

L =


2 −1 0 −1
−1 3 −1 −1
0 −1 2 −1
−1 −1 −1 3

 .

We compute the maximum upper bound for delays with parameters k2i = 5, k3i = 12 and for
k2i = 1.5, k3i = 6.5 for all agents. Note from the conditions in Lemma 3.2 that only elements
of the Laplacian matrix, the gains k2i, k3i, and the bounds of delays are necessary to attest the
convergence. No physical information related to the dynamics of the agents is needed, besides
the fact that they are Euler-Lagrange systems and their degrees of freedom. Thus, using the
conditions in Lemma 3.2 and the Proposition 1 of Nuño and Ortega (2018) we find the values
shown on Table 3.1.

Table 3.1: Example 3.1–Maximum bounds for the communication delays.

(k2i, k3i) (5, 12) (1.5, 6.5)
(Nuño and Ortega, 2018)

τ̄1 1.00 1.71
τ̄2 0.59 0.90
τ̄3 1.00 1.71
τ̄4 0.59 0.90

Lemma 3.2
τ̄1 1.19 2.16
τ̄2 0.79 1.44
τ̄3 1.19 2.16
τ̄4 0.79 1.44

It is shown that Lemma 3.2 guarantees convergence for biggest delays bounds in the com-
munication. Moreover, the conditions proposed here are appropriated for multi-agent systems
with input-saturation and can be used in formation-containment problems. In this sense, the
results presented here are more general and might be applied to a larger class of systems.
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3.3 The Followers Distributed Containment Control

In this section it is proposed a dynamic controller that ensures the convergence of all followers
into the convex hull spanned by the leaders.

The distributed dynamic controller for the followers is designed as,

Diη̈i= k1iσ(β1iq̃i)− k2i

M∑
j=1

aij
(
ηi(t)− ηj(t− τji(t))

)
− k3iη̇i, ∀i ∈ VF , (3.18)

ui = −k1iσ(β1iq̃i)− k4iσ(β2iq̇i) + gi(qi), ∀i ∈ VF , (3.19)

where VF = {N + 1, . . . ,M} is the index set of followers, q̃i = qi(t)− ηi(t) for all i ∈ VF . Note
that the main difference between the dynamic controller for leaders and followers is the presence
of the relative desired configuration δij and that some leaders belong to the neighborhood of
followers, which is represented in (3.18) by the sum over the leaders and followers set, VL and VF .
It is important to stress that this feature leads to a directed communication topology, since it is
assumed that no leader receives information from followers. On the next lemma we show that
the chosen input for the controllers is bounded and, therefore, under Remark 3.1 (input-state
stability) the states of the dynamic controller are bounded.

Lemma 3.3. The states of distributed dynamic controller (3.8) with input

uci(t) = k1iσ(β1iq̃i)− k2i

M∑
j=1

aij
(
ηi(t)− ηj(t− τji(t))

)
, ∀i ∈ VF , (3.20)

are bounded, and in addition limt→∞ η̇i = 0 and limt→∞
∫ t
t−τji(t)

η̇j(ε)dε = 0 for all i, j ∈ VF ,
if there are matrices Pi ∈ Rm×m and constants τ̄i, k2i, and k3i for i ∈ {N + 1, · · · ,M}, such
that the following linear matrix inequality holds,[

Ξ̂1 Ξ̂2

∗ Ξ̂3

]
< 0,

with

Ξ̂1 = diag
{
− 2k3N+1I + lFN+1,N+1τ̄N+1PN+1, −2k3N+2I + lFN+2,N+2τ̄N+2PN+2, · · ·
· · · ,−2k3MI + lFM ,M τ̄MPM

}
,

(3.21)

Ξ̂2 = diag
{

Ξ̂2N+1, Ξ̂2N+2, · · · , Ξ̂2M
}

, (3.22)

Ξ̂2k =
[
−k2kI −k2kI · · · −k2kI︸ ︷︷ ︸

lF
kk

times

]
,

Ξ̂3 = diag
{

Ξ̂3(N+1), Ξ̂3(N+2), · · · , Ξ̂3M
}

, (3.23)
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the terms Ξ̂3k are arranged considering the network topology, according the following algorithm,

Structure of Ξ̂3k

Ξ̂3k ← []

for j = N + 1, . . . ,M :

if akj 6= 0 :

Ξ̂3k ← diag
(

Ξ̂3k,
[
−Pj/τ̄j

])
end

The variable τ̄i denotes the upper bound on the time-varying delays associated with the ith agent,
[] is an empty matrix (i.e., the only linear map is [] : {0} → {0}), and lFii =

∑M
j=N+1 aij is the

number of neighbors of the ith follower that are also followers.

Proof. Let the input of the dynamic controller (3.8) be given by (3.20), setting apart the sum
over the followers and leaders the input can be written as,

uci(t) =k1iσ(β1iq̃i)− k2i

M∑
j=N+1

aij
(
ηi(t)− ηj(t− τji(t))

)

−k2i

N∑
j=1

aij
(
ηi(t)− ηj(t− τji(t))

)

=k1iσ(β1iq̃i)− k2i

M∑
j=N+1

aij
(
ηi(t)− ηj(t− τji(t))

)
− k2i

N∑
j=1

aijηi(t)

+k2i

N∑
j=1

aijηj(t− τji(t)).

We have that k1iσ(β1iq̃1) is bounded and from Lemma 3.2 we get that ηj , for all j ∈ VL, is also
bounded. Thus, given that the dynamic controller is input to state stable (Remark 3.1) and the
sum of bounded functions is bounded, we now show that the controller’s states remain bounded
for

ūci(t) =−k2i

M∑
j=N+1

aij
(
ηi(t)− ηj(t− τji(t))

)
− k2i

N∑
j=1

aijηi(t). (3.24)

Consider the following Lyapunov functional candidate,

W = W1 +W2,
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with

W1 =
M∑

i=N+1

η̇′iDiη̇i + k2i

N∑
j=1

aijη
′
iηi +

k2i
2

M∑
j=N+1

aij(ηi − ηj)′(ηi − ηj)

,

W2 =
M∑

i=N+1

M∑
j=N+1

aij


∫ 0

−τ̄i

∫ t

t+θ
η̇i(ε)

′Piη̇i(ε)dεdθ

.

The time-derivative of W1 along the trajectories of the controller (3.8) with input (3.24) is given
by

Ẇ1 =
M∑

i=N+1

2η̇′i

− k2i

M∑
j=N+1

aij
(
ηi(t)− ηj(t− τji(t))

)
− k2i

N∑
j=1

aijηi(t)− k3iη̇i(t)


+2k2i

N∑
j=1

aijη̇
′
iηi + 2k2i

M∑
j=N+1

aijη̇
′
i(ηi − ηj)

,

rewriting the delayed term as in (3.14), and using the symmetry of the Laplacian matrix provided
by the undirect communication topology among agents of the same group yields,

Ẇ1 =
M∑

i=N+1

− 2k2iη̇
′
i

M∑
j=N+1

aij

∫ t

t−τji(t)
η̇j(ε)dε− 2η̇′ik3iη̇i(t)

.

Taking the time-derivative of W2 and using the same arguments used on the development of
equation (3.16),

Ẇ2 ≤
M∑

i=N+1

M∑
j=N+1

aij

τ̄iη̇i′Piη̇i −
∫ t

t−τji(t)
η̇j(ε)

′Pjη̇j(ε)dε

,

then applying Lemma A.3 give us,

Ẇ2 ≤
M∑

i=N+1

M∑
j=N+1

aij

τ̄iη̇i′Piη̇i − 1
τ̄j

∫ t

t−τji(t)
η̇j(ε)

′dεPj

∫ t

t−τji(t)
η̇j(ε)dε

.

Finally, adding Ẇ1 and Ẇ2,

Ẇ ≤
M∑

i=N+1

− 2η̇′ik3iη̇i(t) + lFii τ̄iη̇i
′Piη̇i − 2k2iη̇

′
i

M∑
j=N+1

aij

∫ t

t−τji(t)
η̇j(ε)dε

−
M∑

j=N+1
aij

1
τ̄j

∫ t

t−τji(t)
η̇j(ε)

′dεPj

∫ t

t−τji(t)
η̇j(ε)dε


=Υ̂(t)′Ξ̂Υ̂(t),
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where the vector Υ̂(t) is built following the Algorithm 3.17, for i = N + 1, . . . ,M and j =

N + 1, . . . ,M . Hence,

Υ̂(t)′ =

η̇′N+1 · · · η̇′M
∫ t

t−τ(N+2)(N+1)(t)
η̇N+2(ε)

′dε · · ·
∫ t

t−τji(t)
η̇j(ε)

′dε · · ·

· · ·
∫ t

t−τ(M−1)M (t)
η̇(M−1)(ε)

′dε

,

where the terms on
∫ t
t−τji(t)

η̇j(ε)
′dε are defined only if (vi, vj) ∈ E , and

Ξ̂ =

[
Ξ̂1 Ξ̂2

∗ Ξ̂3

]
,

where Ξ̂1, Ξ̂2, and Ξ̂3 are defined in (3.21), (3.22), and (3.23). Therefore, with appropriated
choices of k2i, k3i, and Di, the proposed condition is satisfied and the time derivative of W is
negative, and consequently W is bounded and, from its definition, we have that ηi, η̇i, and∫ t
t−τji(t)

η̇j(ε)
′dε are bounded for all i, j ∈ VF . In addition, note that the time-derivative of

Ẇ also depend on η̈i and τ̇i, thus from the controller dynamics (3.18) and the assumption of
bounded τ̇i we have that Ẇ is uniformly continuous. Finally, by invoking Barbalat’s lemma we
conclude that limt→∞ Ẇ = 0, and as a result limt→∞ η̇i = 0, and limt→∞

∫ t
t−τji(t)

η̇j(ε)
′dε = 0

for all i, j ∈ VF .

The following lemma presents sufficient conditions that ensures the convergence of the fol-
lowers into the convex hull formed by the leaders.

Lemma 3.4. Each of the M−N followers modeled by the Euler-Lagrange equation (3.1), with
dynamic controller (3.18), bounded input (3.19), and time-varying communication delays with
bounded first derivative, converges to the convex hull spanned by the leaders asymptotically, that
is

lim
t→∞

∣∣∣∣∣∣
∣∣∣∣∣∣qi(t)−

N∑
j=1

αijqj(t)

∣∣∣∣∣∣
∣∣∣∣∣∣=0, αij ≥ 0,

N∑
j=1

αij = 1, ∀i ∈ VF , ∀j ∈ VL,

if for given constants τ̄i, k2i, and k3i, there exist positive definite matrices Pi ∈ Rm×m for
i = N + 1, · · · ,M , such that the following linear matrix inequality holds,[

Ξ̄1 Ξ̄2

∗ Ξ̄3

]
< 0, (3.25)

with

Ξ̄1 = diag
{
− 2k3N+1I + lFN+1,N+1τ̄N+1PN+1, −2k3N+2I + lFN+2,N+2τ̄N+2PN+2, · · ·
· · · − 2k3MI + lFMM τ̄MPM

}
,

(3.26)
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Ξ̄2 = diag
{

Ξ̄2N+1, Ξ̄2N+2, · · · , Ξ̄2M
}

, (3.27)

Ξ̄2k =
[
−k2kI −k2kI · · · −k2kI︸ ︷︷ ︸

lF
kk

times

]
,

Ξ̄3 = diag
{

Ξ̄3(N+1), Ξ̄3(N+2), · · · , Ξ̄3M
}

, (3.28)

the terms Ξ̄3k are arranged considering the network topology, according the following algorithm,

Structure of Ξ̄3k

Ξ̄3k ← []

for j = N + 1, . . . ,M :

if akj 6= 0 :

Ξ̄3k ← diag
(

Ξ̄3k,
[
−Pj/τ̄j

])
end

The term τ̄i denotes the upper bound on the time-varying delays associated with the ith agent,
[] is an empty matrix (i.e., the only linear map is [] : {0} → {0}), lFii =

∑M
N+1 aij is the number

of neighbors of the ith follower that are also followers, and k2i, k3i are positive constants.

Proof. The proof follows a similar procedure as the proof of Lemma 3.2. Hence, for the sake of
brevity some steps are not explicitly shown.

Consider the following Lyapunov-Krasovskii functional candidate,

VF = V4 + V5 + V6,

with

V4 =
M∑

i=N+1

{
η̇′iDiη̇i + q̇

′
iMi(qi)q̇i

}
,

V5 =
1
2

M∑
i=N+1

M∑
j=N+1

aijk2i(ηi − ηj)′(ηi − ηj) + 2
M∑

i=N+1

∫ q̃i

0
k1iσ(β1iε)

′dε,

V6 =
M∑

i=N+1

M∑
j=N+1

aij


∫ 0

−τ̄j

∫ t

t+θ
η̇j(ε)

′Pjη̇j(ε)dεdθ

.
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Following the same ideas in the proof of Lemma 3.2 to obtain (3.13), we have the time-
derivative of V4 given by,

V̇4 =
M∑

i=N+1

{
2q̇′iMi(qi)q̈i + q̇

′
iṀi(qi)q̇i + 2η̇′iDiη̈i

}

=2
M∑

i=N+1

− k1i ˙̃q′iσ(β1iq̃i)− k4iq̇
′
iσ(β2iq̇i)− k3iη̇

′
iη̇i

−k2i

M∑
j=1

aijη̇
′
i

(
ηi(t)− ηj(t)

)
− k2i

M∑
j=1

aijη̇
′
i

∫ t

t−τji(t)
η̇j(ε)dε

),

where we have used the Property 1 and written the delayed term as (3.14). It is possible to
isolate the communication from leaders and write,

V̇4 =2
M∑

i=N+1

− k1i ˙̃q′iσ(β1iq̃i)− k4iq̇
′
iσ(β2iq̇i)− k3iη̇

′
iη̇i

−k2i

N∑
j=1

aijη̇
′
i

∫ t

t−τji(t)
η̇j(ε)dε− k2i

M∑
j=N+1

aijη̇
′
i

∫ t

t−τji(t)
η̇j(ε)dε

−
N∑
j=1

aijk2iη̇
′
i

(
ηi(t)− ηj(t)

)
−

M∑
j=N+1

aijk2iη̇
′
i

(
ηi(t)− ηj(t)

).

Through the same reasoning used to obtain (3.15), the time-derivative of V5 is given by,

V̇5 =
M∑

i=N+1


M∑

j=N+1
aij2k2iη̇

′
i(ηi(t)− ηj(t)) + 2k1i ˙̃q′iσ(β1iq̃i)

,

and similar to the manipulation in (3.16), the derivative of V6 is given by applying Lemma A.3
and using the symmetry of the communication topology among followers,

V̇6 ≤
M∑

i=N+1

M∑
j=N+1

aij

{
τ̄iη̇
′
iPiη̇i −

1
τ̄j

∫ t

t−τji(t)
η̇j(ε)

′dεPj

∫ t

t−τji(t)
η̇j(ε)dε

}
.

Therefore, the time-derivative of the Lyapunov-Krasovskii candidate is as the follow,

V̇F ≤
M∑

i=N+1

{
− 2k4iq̇

′
iσ(β2iq̇i)− 2

N∑
j=1

aij

(
k2iη̇

′
i

∫ t

t−τji(t)
η̇j(ε)dε+ k2iη̇

′
i

(
ηi(t)− ηj(t)

))}

+
M∑

i=N+1

{
− 2k3iη̇

′
iη̇i + lFii τ̄iη̇

′
iPiη̇i −

M∑
j=N+1

aij

(
2k2iη̇

′
i

∫ t

t−τji(t)
η̇j(ε)dε

+
1
τ̄j

∫ t

t−τji(t)
η̇j(ε)

′dεPj

∫ t

t−τji(t)
η̇j(ε)dε

)}

≤
M∑

i=N+1

{
− 2k4iq̇

′
iσ(β2iq̇i)− 2

N∑
j=1

aij

(
k2iη̇

′
i

∫ t

t−τji(t)
η̇j(ε)dε+ k2iη̇

′
i

(
ηi(t)− ηj(t)

))}
+Ῡ(t)′Ξ̄Ῡ(t),
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where the vector Υ̂(t) is built following the Algorithm 3.17, for i = N + 1, . . . ,M and j =

N + 1, . . . ,M . Hence,

Ῡ(t)′ =

[
η̇′N+1 · · · η̇′M

∫ t

t−τ(N+2)(N+1)(t)
η̇′N+2(ε)dε · · ·

· · ·
∫ t

t−τji(t)
η̇j(ε)

′dε · · ·
∫ t

t−τ(M−1)M (t)
η̇M−1(ε)

′dε

]
,

where the terms on
∫ t
t−τji(t)

η̇j(ε)
′dε are defined only if (vi, vj) ∈ E , and

Ξ̄ =

[
Ξ̄1 Ξ̄2

∗ Ξ̄3

]
,

where Ξ̄1, Ξ̄2, and Ξ̄3 are defined in equations (3.26), (3.27), and (3.28).
Therefore, if the conditions of Lemma 3.4 hold we have1

V̇F ≤−2
M∑

i=N+1

N∑
j=1

aij

(
k2iη̇

′
i

∫ t

t−τji(t)
η̇j(ε)dε+ k2iη̇

′
i

(
ηi(t)− ηj(t)

))

≤
M∑

i=N+1

N∑
j=1

aijk2i

(
2η̇′iη̇i +

∫ t

t−τji(t)
η̇j(ε)

′dε

∫ t

t−τji(t)
η̇j(ε)dε

+
(
ηi(t)− ηj(t)

)′(
ηi(t)− ηj(t)

))
,

and integrating both sides yields

VF (t)− VF (0) ≤
M∑

i=N+1

N∑
j=1

aijk2i

∫ t

0

2η̇i(θ)′η̇i(θ) +
∫ θ

θ−τji(θ)
η̇j(ε)

′dε

∫ θ

θ−τji(θ)
η̇j(ε)dε

+
(
ηi(θ)− ηj(θ)

)′(
ηi(θ)− ηj(θ)

)dθ.
From Lemma 3.2 we have that, ηj , and

∫ t
t−τji(t)

η̇j(ε)dε are bounded for all j ∈ VL, and from
Lemma 3.3 (noticing that the conditions of the Lemma 3.4 encompass those from Lemma 3.3,)
we have that ηi, η̇i, and

∫ t
t−τij(t)

η̇i(ε)dε are bounded for all i ∈ VF . Thus, VF (t) is bounded
and from its definition we obtain that q̇i and q̃i are also bounded for all i ∈ VF . In order to
show the boundedness of qi note that

||q̃i(t)||= ||qi(t)− ηi(t)||≤ C,

for some constant C ∈ R. As ηi(t) is bounded, the above inequality implies that qi(t) is also
bounded for all i ∈ VF .

Therefore, from the followers and their controller dynamics (3.1) and (3.18), Properties 2
and 3, and Assumptions 3.4 and 3.3, we get that q̈i and η̈i are also bounded. Thus, we have
that q̇i and η̇i are uniformly continuous for all followers. Then, by invoking Barbalat’s lemma

1We used the inequality −2a′b ≤ a′Xa+ b′X−1b where a, b ∈ Rm and X > 0 ∈ Rm×m.
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and the result in Lemma 3.3, we conclude that limt→∞ η̇i(t) = 0, limt→∞
∫ t
t−τji(t)

η̇j(ε)dε = 0,
and limt→∞ q̇i(t) = 0 for all i, j ∈ VF .

Through the same reasoning of the proof of Lemma 3.2 we have that limt→∞ η̈i(t) = 0,
limt→∞ q̈i(t) = 0, limt→∞ q̃i(t) = 0. Lastly, considering that limt→∞

∫ t
t−τij(t)

η̇i(ε)dε = 0, the
terms that take into account the interaction among agents can be rewritten in the following way,

M∑
i=N+1

M∑
j=1

aijk2i
(
ηi(t)−ηj(t−τji(t))

)
=

M∑
i=N+1

M∑
j=1

aijk2i

ηi(t)−ηj(t) + ∫ t

t−τji

η̇j(ε)dε


=

M∑
i=N+1

M∑
j=1

aijk2i
(
ηi(t)− ηj(t)

)
=
(
(K2LF )⊗ Im

)
ηF +

(
(K2LLF )⊗ Im

)
ηL,

with ηF =
[
η′N+1 · · · η′M

]′
, ηL =

[
η′1 · · · η′N

]′
and K2 = diag{k2N+1, · · · , k2M}. Note from

Assumption 3.2 that LF is positive definite, then we can pre-multiply the previous equation to
obtain(

(K2LF )⊗Im
)−1(

((K2LF )⊗Im)ηF+((K2LLF )⊗Im)ηL
)
=ηF +

(
(L−1

F LLF )⊗ Im
)
ηL, (3.29)

which can be seen as an error between the followers’ dynamics and the linear combination
of the leaders’ dynamics. Finally, from the controller dynamics (3.18), limt→∞ q̃i(t) = 0,
limt→∞ η̈i(t) = 0, and limt→∞ η̇i(t) = 0, we have that

lim
t→∞

[
ηF +

(
(L−1

F LLF )⊗ Im
)
ηL

]
= 0.

Recall from Lemma 3.1 that each entry of the matrix −L−1
F LLF is non-negative and each of its

rows has sum equal to one, thus each row of (3.29) is analogous to the argument of the limit
(3.5) that is,

lim
t→∞

∣∣∣∣∣∣
∣∣∣∣∣∣qi(t)−

N∑
j=1

αijqj(t)

∣∣∣∣∣∣
∣∣∣∣∣∣ = 0, αij ≥ 0,

N∑
j=1

αij = 1, ∀i ∈ VF , ∀j ∈ VL,

which completes the proof.

The LMI condition proposed in Lemma 3.4 provides a sufficient test for the convergence
analysis of agents modeled as Euler-Lagrange systems into a convex hull spanned by a set of
Euler-Lagrange systems. Similarly to the Lemma 3.2, this condition is also designed taking into
account bounded inputs and communication delays. It also establishes a relationship between
some controller parameters and the upper bound of the communication delays, leaving some
other parameters free for adjustment. Namely, only the controller parameters k2i and k3i have
to be adjusted in such a way that the condition in Lemma 3.4 is satisfied. Furthermore, as pointed
out in Section 3.2, the independence of the model makes the proposed condition appropriated
for the convergence analysis of heterogeneous multi-agent systems.



3.4. Formation-Containment Control 79

3.4 Formation-Containment Control

In Sections 3.2 and 3.3 there were established sufficient conditions for stabilization of leaders into
a desired formation and the convergence of followers into the convex hull spanned by the leaders,
both modeled by Euler-Lagrange equations subject to input saturation and with communication
delays. With these results we now enunciate the main result of this chapter, stated in the next
theorem.

Theorem 3.1. Consider a multi-agent system composed of N leaders and M −N followers,
subject to time-varying delays on the communication among agents τij(t), with τ̇ij(t) bounded
for all i, j ∈ VL ∪ VF , in which all agents are modeled by the Euler-Lagrange equation (3.1)
subject to input-saturation. The distributed dynamic controller

Diη̈i(t)= k1iσ(β1iq̃i)− k2i

N∑
j=1

aij
(
ηi(t)− ηj(t− τji(t))− δij

)
− k3iη̇i(t), ∀i ∈ VL,

ui = −k1iσ(β1iq̃i(t))− k4iσ(β2iq̇i(t)) + gi(qi), ∀i ∈ VL,

for leaders, and the distributed dynamic controller for followers,

Diη̈i= k1iσ(β1iq̃i)− k2i

M∑
j=1

aij
(
ηi(t)− ηj(t− τji(t))

)
− k3iη̇i, ∀i ∈ VF ,

ui = −k1iσ(β1iq̃i)− k4iσ(β2iq̇i) + gi(qi), ∀i ∈ VF ,

lead the network asymptotically to the formation-containment with maximum inputs given by
k1i + k4i + ||g(qi)||∞ for all i ∈ VL ∪ VF , if for given constants τ̄i, k2i, and k3i, there exist
positive definite matrices Pi ∈ Rm×m for i = 1, · · · ,M , such that the following linear matrix
inequality holds, [

Φ1 Φ2

∗ Φ3

]
< 0,

with

Φ1 = diag
{
−2k31I + l11τ̄1P1, −2k32I + l22τ̄2P2, · · · , −2k3MI + lMM τ̄MPM

}
,

Φ2 = diag
{

Φ21, Φ22, · · · , Φ2M
}

,

Φ2k =
[
−k2kI −k2kI · · · −k2kI︸ ︷︷ ︸

lkk times

]
,

Φ3 = diag
{

Φ31, Φ32, · · · , Φ3M
}

,

the terms Φ3k are arranged considering the network topology, according the following algorithm,
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Structure of Φ3k

Φ3k ← []

for j = 1, . . . ,M :

if akj 6= 0 :

Φ3k ← diag
(

Φ3k,
[
−Pj/τ̄j

])
end

The variable τ̄i denotes the upper bound on the time-varying delays associated with the ith agent,
q̃i = qi − ηi, aij is the (i, j) entry of the adjacency matrix, σ(·) : R → (−1, 1) is a strictly
increasing continuous function, [] is an empty matrix (i.e., the only linear map is [] : {0} → {0}),
lii =

∑N
j=1 aij for i ∈ VL, and lii =

∑M
j=N+1 aij for i ∈ VF , and k1i, k2i, k3i, k4i, β1i, and β2i

are positive constants.

Proof. The result of the theorem follows directly from the stabilization of leaders into a desired
constant formation, demonstrated on Lemma 3.2, and the convergence of followers into the
convex hull spanned by the leaders, established on Lemma 3.4. The conditions of the theorem
follows from the composition of the conditions in Lemmas 3.2 and 3.4. Finally, the bound of
the input signal is ensured by the boundedness of the gravitational vector ‖g(q)‖∞ and the
inequality ‖σ(·)‖∞≤ 1.

The above theorem presents conditions to achieve the formation-containment of multiple
Euler-Lagrange systems in a distributed fashion by combining the behavior of leaders and fol-
lowers subject to input saturation and communication delays under the proposed control strat-
egy. It is noteworthy that in the convergence proof of Lemma 3.4 it is shown that the states
of followers and their dynamic controllers are bounded during the process of convergence of
leaders, which ensures that the followers cannot go to infinity in finite time. Moreover, because
the theorem is a composition of Lemmas 3.2 and 3.4, the observations made previously are still
valid.

3.4.1 Numerical Examples

In this section it is shown examples to illustrate the use of the proposed method in the formation-
containment in multi-agent systems with non-identical agents. One of the examples provided
is used in others works on the formation-containment problem, but because the premises and
conditions are rather unlike to the proposed ones, they are not directly contrasted.

Example 3.2. In order to illustrate the effectiveness of the proposed strategy on the formation-
containment problem we consider the same example studied by Chen et al. (2019b),Chen et
al. (2016) and Li et al. (2018). It is considered a group of ten satellites with six leaders,
VL = {1, · · · , 6}, and four followers VF = {7, · · · , 10}. The dynamics of each system is described
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as,

ẍi − 2ω0ẏi − ω2
0xi − ω̇0yi +

µe(R0 + xi)

R3
i

− µe
R2

0
=
uoix
mi

,

ÿi + 2ω0ẋi − ω2
0yi + ω̇0xi +

µeyi
R3
i

=
uoiy
mi

,

z̈i +
µezi
R3
i

=
uoiz
mi

,

in which xi, yi, and zi are the coordinates of the center of mass on the global frame, R0 is the
orbit radius, mi is the mass of the satellite, µe is the gravitation constant, ω0 =

√
µe/R3

0 is
the orbit angular velocity, Ri is the distance between the satellite and the geocenter, and the
control input is given by the variables uoix,uoiy, and uoiz. Note that this model is equivalent to
the Euler-Lagrange equation, with qi = [xi, yi, zi]′, ui = [uoix,uoiy,uoiz ]′,

Ci = 2mi


0 −ω0 0
ω0 0 0
0 0 0

 , and gi = mi


−ω0xi − ω̇0yi + µe(R0 + xi)/R3

i − µe/R2
0

−ω0yi + µeyi/R3
i + ω̇0xi

µezi/R3
i

 .

In this numerical example, the networked system follows the same initial orbit elements given
in Chen et al. (2019b). We also consider distinct mass for the systems, for the systems i ∈
{1, 2, 3, 7, 8, 9}, we consider mi = 35kg and for i ∈ {4, 5, 6, 10}, mi = 40kg and assume that
all input limits are given by umax = 10N . The communication topology is represented in Figure
3.3, and it gives us the following Laplacian matrix,

v3

v9 v10

v4 v5 v6v1 v2

v7 v8

Figure 3.3: Example 3.2–Graph representation of the agents interaction.

L =

[
LL 0
LLF LF

]
,
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where,

LLF =


−1 0 0 0 0 0
0 −1 −1 0 0 0
0 0 −1 0 −1 0
0 0 0 −1 0 −1

 , LF =


2 −1 0 0
0 3 −1 0
0 0 3 −1
0 −1 0 3

 ,

LL =



2 −1 0 0 −1 0
−1 3 −1 0 0 −1
0 −1 2 0 0 −1
0 0 0 1 −1 0
−1 0 0 −1 3 −1
0 −1 −1 0 −1 3


.

The desired relative configuration for the leaders is given by,

δ15 = [50, 150, 0]′, δ21 =[−50, 50, 0]′, δ23 =[−50, 150, 0]′,

δ36 =[100,−100, 0]′, δ54 =[50,−50, 0]′, δ56 =[50,−150, 0]′,

and the initial conditions are given by,

q1(0) = [150, 100, 300]′, q2(0) = [150,−100, 300]′,

q3(0) = [−200,−200,−300]′, q4(0) = [−150,−100, 300]′,

q5(0) = [150,−100,−300]′, q6(0) = [−150, 100,−300]′,

q7(0) = [−200,−20, 100]′, q8(0) = [−15, 100, 200]′,

q9(0) = [150,−10,−200]′, q10(0) = [15,−100, 200]′,

q̇i(0) = [0, 0, 0]′, ∀i = 1, . . . , 10.

We use the Lemmas 3.2 and 3.4 with gains k2i = 3 and k3i = 5, for all i ∈ VL ∪ VF to
obtain the maximum delay with guaranteed convergence. We obtain τ̄8 = 0.83, τ̄i = 0.64 for
i ∈ {9, 10}, τ̄i = 0.58 for i ∈ {2, 5, 6}, τ̄i = 0.51 for i ∈ {1, 3, 7}, τ̄4 = 0.50. The time-
delays was set to τi(t) = τ̄i(1 + sin(t))/2, and the remain parameters used in the simulation
was (Di, k1i, k4i,β1i,β2i) = (diag(50, 50, 50), 8.0, 2.0, 1.0, 20.0) with function σ(·) = tanh(·) for
all i ∈ VL ∪ VF . Figure 3.4 shows the trajectories of the network, the agents positions are
represented by symbols, where × represents the followers and the other symbols represent the
leaders positions, and the final desired convex hull spanned by the leaders is highlighted in black
solid line (a video of the simulation can be seen at https: // youtu. be/ lJvKzvM_ 5SE ). Figure
3.5 shows the control inputs of the systems and Figure 3.6 depicts the revolute of the joint
coordinates.

https://youtu.be/lJvKzvM_5SE
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Figure 3.4: Example 3.2–Snapshots of the networked system trajectories: (A)
at t = 0s; (B) at t = 75s; (C) at t = 150s; and (D) at t = 300s. The symbol ×
represents the followers, while the others symbols represent the leaders positions

and the black line links the leaders that shape the final convex hull.

According to Figure 3.4, we can see that the multi-agent system subject to input saturation
and communication delays achieves the formation-containment. That is, the leaders move to the
desired relative positions and the followers move into the convex hull spanned by the leaders. It
can be viewed in Figure 3.5 that the agents control inputs do not exceed 10N , which is the input
bound. This illustrate the effectiveness of the proposed approach.
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Figure 3.5: Example 3.2–Input signal of each agents’ generalized coordinate.
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Figure 3.6: Example 3.2–Position of each coordinate of the agents.

Example 3.3. The purpose of this example is to discuss the tuning of the control parameters.
One should note that the proposed conditions certify the asymptotic convergence of the network
into the formation-containment. However, because no performance is required to be met, the
tuning of some parameters remains open.

The parameters to be tuned in the proposed strategy are k1i, k2i, k3i, k4i,β1i, and β2i. While
the gains k2i and k3i have fixed values for a given problem, since the conditions are needed to be
satisfied according to the relation between their values and the time delays, the sum of k1i and
k4i is required to be set according to the input saturation. Hence, there is a degree of freedom
in the selection of k1i and k4i. Observe that the gains k1i and k4i adjust the signal associated
to the states of the agents and their dynamic controllers q̃i, and the local damping in the agent
dynamics. The gains β1i and β2i appear as arguments of the bounded function σ(·), along with
the signals q̃i and q̇i, respectively. Naturally, the adjustment of their values affects directly the
time the controllers spend saturated. Since the signal q̃i is related with the synchronization of
the states of the agents with their controllers, and q̇i is associated with a local damping, the
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closed-loop systems are rather sensitive to the selection of high values for β1i, and β2i, as it is
exemplified next.

Firstly, consider a multi-agent system with 20 agents, in which 10 are leaders and the other
10 are followers interconnected according to the Laplacian matrix in (3.30), and they are required
to converge to attain the consensus, i.e., δij = 0 for all i, j. The dynamics of each agent is given
by two-link manipulators as presented in Example 3.1 with actuators limit of umax = 2, with
physical parameters given in Table 3.2. Theorem 3.1 was used with k2i = 5 and k3i = 12 for all
i ∈ VL ∪ VF . The minimum upper-bound for the communication delays computed was τ̄ = 0.19,
and this value was used fixed in all communication links.

L =

[
LL 0
LLF LF

]
, (3.30)

where,

LLF =



−1 −1 0 −1 0 0 −1 −1 0 0
0 −1 0 −1 0 −1 −1 −1 0 −1
−1 0 −1 0 −1 0 −1 0 −1 0
0 −1 0 −1 0 −1 0 −1 0 −1
−1 −1 −1 0 −1 0 −1 0 −1 0
−1 0 −1 −1 0 −1 0 −1 0 −1
−1 −1 −1 −1 0 0 −1 −1 0 −1
−1 0 −1 0 −1 −1 −1 −1 0 −1
−1 −1 −1 0 −1 0 0 −1 −1 −1
0 −1 0 −1 0 −1 −1 −1 0 −1


,

LL =



5 −1 0 0 −1 −1 −1 −1 0 0
−1 6 0 −1 −1 −1 −1 −1 0 0
0 0 7 −1 −1 −1 −1 −1 −1 −1
0 −1 −1 5 0 −1 0 −1 0 −1
−1 −1 −1 0 6 −1 −1 0 −1 0
−1 −1 −1 −1 −1 7 −1 −1 0 0
−1 −1 −1 0 −1 −1 8 −1 −1 −1
−1 −1 −1 −1 0 −1 −1 7 0 −1
0 0 −1 0 −1 0 −1 0 3 0
0 0 −1 −1 0 0 −1 −1 0 4


,

LF =



10 −1 0 −1 −1 0 −1 0 −1 0
−1 11 0 −1 0 −1 0 −1 0 −1
0 0 8 0 −1 0 −1 0 −1 0
−1 −1 0 11 −1 −1 −1 0 0 −1
−1 0 −1 −1 10 0 0 0 0 −1
0 −1 0 −1 0 9 0 −1 0 0
−1 0 0 −1 0 0 12 −1 −1 −1
0 −1 −1 0 0 −1 −1 12 0 −1
−1 0 −1 0 0 0 −1 0 10 0
0 −1 −1 −1 −1 0 −1 −1 0 12


.

Table 3.2: Example 3.3–Physical parameters of the agents. mk and lk, for
k ∈ {1, 2}, are the mass and the length of each link.

i ∈ {1, 2, 3, 7, 8, 9, 16, 17, 18, 19} i ∈ {4, 5, 6, 10, 11, 12, 13, 14, 15, 20}
(m1,m2) (2, 0.32) (3.95, 0.62)
(l1, l2) (0.38, 0.38) (0.38, 0.38)
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This setting is studied with several values for the parameters of the controllers, which are
presented in Table 3.3 and displayed in Figure 3.7, in which the simulations were performed with
Di = 50 and the function σ(·) = tanh(·) for all agents.

Table 3.3: Example 3.3–Distinct parameters satisfying conditions in Theorem
3.1 with k2i = 5 and k3i = 12.

Values Figure
(k1i, k4i,β1i,β2i) (1.0, 1.0, 1.0, 1.0) Figure 3.7a
(k1i, k4i,β1i,β2i) (1.7, 0.3, 0.1, 0.1) Figure 3.7b
(k1i, k4i,β1i,β2i) (0.3, 1.7, 0.1, 0.1) Figure 3.7c
(k1i, k4i,β1i,β2i) (1.0, 1.0, 30.0, 0.1) Figure 3.7d
(k1i, k4i,β1i,β2i) (1.0, 1.0, 0.1, 30) Figure 3.7e
(k1i, k4i,β1i,β2i) (1.7, 0.3, 0.1, 30) Figure 3.7f

In a second setting, consider the same configuration given in Example 3.2, with parameters
of the controllers represented in Table 3.4. The simulations are displayed in Figures 3.8 and 3.9,
all of them were done considering τ̄ = 0.5 in every communication link and again with Di = 50
and the function σ(·) = tanh(·) for all agents.

Table 3.4: Example 3.3–Distinct parameters satisfying conditions in Theorem
3.1 with k2i = 3 and k3i = 5.

Values Figure
(k1i, k4i,β1i,β2i) (5.0, 5.0, 1.0, 1.0) Figure 3.8a
(k1i, k4i,β1i,β2i) (8.0, 2.0, 0.1, 0.1) Figure 3.8b
(k1i, k4i,β1i,β2i) (2.0, 8.0, 0.1, 0.1) Figure 3.8c
(k1i, k4i,β1i,β2i) (5.0, 5.0, 20.0, 0.1) Figure 3.8d
(k1i, k4i,β1i,β2i) (5.0, 5.0, 0.1, 20.0) Figure 3.9a
(k1i, k4i,β1i,β2i) (8.0, 2.0, 0.1, 20.0) Figure 3.9b

The simulations corroborate with the asymptotic convergence of the network once the con-
ditions of the proposed approach are satisfied. However, the rate of convergence varies as a
function of the control parameters. In both examples, the natural choice of 50% of the input
limit for each gain, k1i, and k4i, together with β1i = β2i = 1 leads to a reasonable rate of con-
vergence (depict in Figures 3.7a, and 3.8a), when compared with other more polarized choices,
even though this might not conduct to the fastest stabilization. From the simulations, it is also
possible to realize that the gains β1i, β2i are highly associated with the actuator activity (Figures
3.7d, 3.7e, 3.7f, 3.8d, 3.9a, and 3.9b), and that for fast stabilization it seems to be best to
select a high value for β2i (Figures 3.7d, and 3.8d).
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Figure 3.7: Example 3.3–Several simulations with distinct control parameters in
the proposed approach in a network with 20 agents.
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Figure 3.8: Example 3.3–Several simulations with distinct control parameters in
the proposed approach in the network of Example 3.2.



90 Chapter 3. Formation-Containment of Euler-Lagrange Systems

−200

0
q 1
i

(m
)

−200

0

q 2
i

(m
)

−250

0

250

q 3
i

(m
)

0 100 200 300 400
time (s)

−5

0

5

u
1
i

(N
)

0 100 200 300 400
time (s)

−10

0

10

u
2
i

(N
)

0 100 200 300 400
time (s)

−2.5

0.0

2.5

u
3
i

(N
)

(a) (k1i, k4i,β1i,β2i)=(5.0, 5.0, 0.1, 20.0).

−200

0

200

q 1
i

(m
)

−200

0

200

q 2
i

(m
)

−250

0

250

q 3
i

(m
)

0 100 200 300 400
time (s)

−10

0

10

u
1i

(N
)

0 100 200 300 400
time (s)

−10

0

10

u
2i

(N
)

0 100 200 300 400
time (s)

−10

0

10

u
3i

(N
)

(b) (k1i, k4i,β1i,β2i)=(8.0, 2.0, 0.1, 20.0).

Figure 3.9: Example 3.3–Several simulations with distinct control parameters in
the proposed approach in the network of Example 3.2.

Example 3.4. This example provides some simulations to illustrate the robustness of the control
strategy against uncertainties. Note that no theoretical robustness analysis was made, this exam-
ple aims to set an expectation of the network behavior under certain types of uncertainties. To
examine the robustness, three types of additive uncertainties are considered, namely, i) locally in
the actuator of the agents, ii) in the inertia and Coriolis matrices, and iii) in the communication
channels, e.g., together with the information from neighbors. To study those configurations, the
communication topology represented by the Laplacian matrix in (3.30) is considered, with nodes
as two-link manipulators dynamics as the ones given in Example 3.3, with parameters given in
Table 3.2 and gains of the controllers (k1i, k2i, k3i, k4i,β1i,β2i) = (1.0, 5.0, 12.0, 1.0, 0.1, 0.1). In
all three scenarios, the noise is considered to be a random value within a set [−ε, ε], in which
ε ∈ R2 is a constant bound for the disturbance. The three scenarios are depicted in Figure 3.10.
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(b) Scenario ii) additive uncertainties in the systems matrices with
ε = 1.0.
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(c) Scenario iii) additive uncertainties in the communication chan-
nels with ε = 2.0.

Figure 3.10: Example 3.4–Several simulations with uncertainties in (A) the in-
put, (B) the systems matrices, and in (C) the communication channels considering

the network of two-link manipulators in Example 3.3.

From these simulations, we can see that the network attains the desired formation in scenario
i) and ii), and in iii) the network keeps oscilating. Interestingly, the multi-agent system worked
better with matrices uncertainties than the other two types considered. A likely explanation is that
the control strategy does not need information about those matrices, thus an unknown behavior
in their dynamics would not disturb the stabilization too much. Even though, it is considered
that the strategy exactly compensates the gravitational forces. From the simulations, the strategy
seems to be more sensitive to uncertainties in the actuators, even though it handled well values
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of ε with 10% of the actuators limits. Contrary to what Figure 3.10c might suggest, the multi-
agent system attained convergence to a neighborhood of the desired formation for values of the
elements of the vector ε less than 1.5 (as it is shown in Figure 3.11), the purpose of showing the
oscillation is to display an interesting behavior. The other two scenarios have not shown this
type of trajectory.
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Figure 3.11: Example 3.4–Simulations with uncertainties in the communication
channels considering the network of two-link manipulators in Example 3.3 with

ε = 1.5.

3.5 Chapter Conclusions

In this chapter we investigated the formation-containment problem of heterogeneous Euler-
Lagrange systems with directed communication topology (from leaders to followers). The com-
munication channels of the network are subject to nonuniform time-varying delays, and the
agents are subject to input saturation. With the use of a dynamic controller, which does not
rely on relative velocity measurements neither on the inertia and Coriolis matrices, conditions
for the convergence analysis are derived. The conditions are appropriated for agents with dis-
tinct dynamics, with the same number of degrees of freedom. Despite the fact the distributed
controllers do not depend on relative measurements of velocity, they do rely on active communi-
cation among agents, since they depend on the information exchange of controllers states, which
can not be directly measured by neighbors.

The communication time-varying delays were assumed to have an upper bound associated
with each agent of the network. Moreover, it was not assumed the knowledge of the delays
derivative, only its existence, a desirable feature since it might be hard to evaluate the variation
of multiple delays on multi-agent systems. The input saturation was dealt with by using a
strictly increasing function σ(·) : R→ (−1, 1) in such a way the input upper and lower bounds
can be adjusted by choosing appropriated parameters on the controller. It is noteworthy that the
parameters associated with the controller bounds are not necessary in the proposed conditions
for the convergence analysis, which gives flexibility on the control tuning.

Finally, it was shown in the numerical examples that the proposed strategy outperforms
recent works on guaranteeing the consensus with time-delays, even though the presented strategy
solves a more general problem than the classical consensus and simultaneously considers input
saturation and communication delays.
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Chapter 4

Final Discussion

This work has presented new sufficient conditions for the convergence analysis and design of
distributed protocols for multi-agent systems with linear and nonlinear agents. Two different
problems were addressed, the consensus and the formation-containment, both subject to time-
delay and saturating inputs. The investigation was carried mainly utilizing the Lyapunov-
Krasovskii and Barbalat’s frameworks, deriving less conservative LMIs conditions than those
from the literature that approach similar problems.

The contributions to the consensus problem were introduced in Chapter 2. In this context,
it was considered linear saturated agents with input time-delay. Input saturation was handled
as a Lur’e problem, by considering a dead-zone function along with a sector condition. This
representation allowed the use of tools developed for the analysis of linear systems. Firstly, it
was demonstrated a technique to translate the consensus into a stability problem of saturated
linear systems subject to time-delay. The appealing aspect of this transformation is that it
allows the consensus to be studied by using different methods. With the equivalent system, it
was derived results in the study of consensus in the continuous- and discrete-time domains.

In the continuous-time domain, the time-delay was such that its values belong to an interval
with a possible non-zero lower-bound. Moreover, it was considered non-differentiable time-
varying delays, a desirable feature since it is hard to measure the variation of delays and it
might even be random. This feature also fits well in the context of multi-agent systems, because
it allows representing arbitrary delays for each agent within the same set and, consequently,
to represent the whole networked system in a compact form. This is evident in the upper-
bound choice of inequality (2.33). Numerical experiments have shown that our method is less
conservative and provides better estimates for the region of guaranteed convergence, but at the
expense of an increase in the number of decision variables.

In the discrete-time domain, the study was carried employing two different approaches, by
rewriting the multi-agent system as an augmented switching system and by using the Lyapunov-
Krasovskii approach. As discussed in Chapter 2, the motivation to model the delayed network as
an augmented switching system comes from an attempt to provide nonconservative conditions,
as for single-agent systems without saturation this method is equivalent to using a general, delay
dependent, Lyapunov-Krasovskii functional candidate. The numerical tests corroborate with the
expectation in the stability study, and suggest a decrease in the conservatism when compared
with the Lyapunov-Krasovskii approach. However, the procedure to obtain synthesis conditions
introduced too much conservatism, to the point that the conditions derived using the Lyapunov-
Krasovskii methodology became less conservative. Another drawback of the augmented approach
is that the computational complexity grows with the delay upper-bound. To try to cope with
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this problem, it was considered homogeneous delays in the network and possible bounds on the
delay variation. Nevertheless, even with those considerations, the computational complexity
may be an obstacle in using this method in high-dimensional systems subject to large values of
delays.

In all approaches, in the continuous- and discrete-time domain, the consensus analysis, and
gain design were developed in such a way the convergence is locally ensured, and the search for
the largest estimate of the domain of consensus is posed as a convex optimization problem. The
numerical examples suggest that the offered approaches outperform those few works that have
studied similar premises in the considered examples.

In Chapter 3 the approach taken in Chapter 2 for continuous-time multi-agent systems was
expanded in two main ways: the general problem of formation-containment was studied and
the agents were modeled by nonlinear Euler-Lagrange equations. Moreover, in this context, the
delays are considered on the communication channels of the network, instead of input delays,
which together with the input saturation it might represent more realistic scenarios. The com-
munication delays are handled in a similar fashion as the input delays on the consensus problem.
To handle the input limits the control signals were bounded using a continuous strictly increas-
ing function such that σ(·) : R → (−1, 1). Thereby, the input limits could be adjusted with
appropriate parameters. The main improvements offered in Chapter 3 in relation to similar
works from the literature can be highlighted as: the possibility to handle input saturation and
communication time-varying delays simultaneously, the use of dynamic controllers which does
not rely on relative velocity measurements, nor on the system matrices, and a procedure to
perform offline convergence analysis that does not depend on the parameters of the models of
the agents . In addition to that, the proposed strategy surpasses recent works on guaranteeing
the consensus with time-delays, even though a more general problem is being considered.

It should be stressed that in order to derive LMIs conditions, some possible conservative
inequalities were used during the development of the results in this text, but despite this trade-
off, it was shown that the proposed methods outperform recent works found in the literature
in the considered examples. This suggests that there is potential room for improvements in the
sense of diminishing the conservatism of the proposed conditions.

4.1 Future Research

Possible lines to further investigate the problem of time-delay and saturation in multi-agent
systems are:

- To design an anti-windup structure to mitigate the performance degradation due to satura-
tion (Tarbouriech et al., 2011). The objective of this strategy is to avoid the growth of the
integral action of the controller by compensating saturated input signals. This structure
could enlarge the linear region of operation of the agents. Thus, it would guarantee per-
formance requirements for larger sets and improve the overall behavior of the multi-agent
system.
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- To guarantee the operation of the linear multi-agent system inside a safety region by
employing Control Barrier Functions (Ames et al., 2019). This approach could lead to less
conservatism in the estimate of the domain of consensus, since the required constraints
alleviate, for example, the necessity of a positive definite function. An interesting aspect
of this strategy is that the safety region can be cast into an invariant set without rendering
its sublevel sets invariant, which could be less restrictive than the proposed methodology.

- To formulate the formation-containment problem for varying formations. This formu-
lation will allow to address formations on multi-agent systems that are able to track a
trajectory, maintaining the followers states within a region established by a set of leaders.
Similar problems were recently studied considering networked Euler-Lagrange systems (Ge
et al., 2016), but employing computed-torque control strategy, which makes the systems
dynamics similar to double-integrators. Hence, the strategy is highly dependent on the
knowledge of system parameters. Santiaguillo-Salinas and Aranda-Bricaire (2017) studied
the time-varying formation with networked differential-drive mobile robots. Deng et al.
(2020) have also tackled a related problem, taking into consideration general linear agents
and using event-triggered control strategy to guarantee the tracking. The main idea is to
try to extend the results presented in Chapter 3, from static formations to time-varying
ones.

- To combine two stabilizing controllers to mitigate the performance degradation due to
saturation and impose a local convergence criterion. The idea is to address the global
asymptotic convergence while satisfactorily meeting local performance requirements. The
approach could initially be similar to the anti-windup on linear systems (Oliveira et al.,
2013; Tarbouriech et al., 2011), where the main idea is to mitigate the saturation effects.
At first, the method could be to combine a local controller based on the computed-torque
(Feedback linearization) with an exponential rate convergence, and the controller proposed
in Chapter 3, which does not depend on the inertia nor Coriolis matrices and has global
convergence guarantees.

- To consider uncertain agent dynamics subject to external disturbances. Consequently, in-
vestigate more realistic scenarios on multi-agent systems. This might enlarge and facilitates
the real-world applications. The main motivation for this approach is to develop completely
model-independent controllers, which could be achieved with the controller proposed on
Chapter 3 if the gravitational compensation was considered a bounded uncertainty. There
are some promising alternatives to be tried: the first one to be considered is to combine the
integral action proposed by Hernández-Guzmán and Orrante-Sakanassi (2019) along with
the control strategy proposed in Chapter 3. Another interesting approach to perform the
robustification is to use sliding mode control, which has low sensitivity to plant parameter
variations and disturbances (Chen et al., 2019a; Karimi, 2012).

4.2 List of Publications

The publications related to the contributions of this thesis are listed below:
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T. C. Silva et al. (2021). “Regional consensus in discrete-time multi-agent systems subject to
time-varying delays and saturating actuators”. In: Submited to International Journal of
Control

T. C. Silva, F. O. Souza, and L. C. A. Pimenta (2021). “Consensus in multi-agent systems
subject to input saturation and time-varying delays”. In: International Journal of Systems
Science 52.7, pp. 1479–1498. doi: 10.1080/00207721.2020.1860267

T. C. Silva, F. O. Souza, and L. C. A. Pimenta (2020). “Distributed formation-containment
control with Euler-Lagrange systems subject to input saturation and communication de-
lays”. In: International Journal of Robust and Nonlinear Control 30.7, pp. 2999–3022.
issn: 1049-8923. doi: 10.1002/rnc.4919

https://doi.org/10.1080/00207721.2020.1860267
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Appendix A

Mathematical Tools

In this section some results are presented on the stability analysis and on linearization of the
stability conditions. The following results are used to derive the main conclusions drawn in this
manuscript.

A.1 Auxiliary Lemmas

In many problems, the relation between variables may appear non-linearly throughout the devel-
opment of the stability conditions. Fortunately, many of them can be linearized using algebraic
techniques. Here, we highlight some important techniques used in this manuscript:

Lemma A.1. (Sun, Liu, and Chen, 2009). For any constant matrix M =MT > 0 and scalars
t > t− τ ≥ 0 such that the following integrations are well defined, then∫ 0

−τ

∫ t

t+s
zT (ε)Mz(ε)dεds ≥ 2

τ2

∫ 0

−τ

∫ t

t+s
zT (ε)dεdsM

∫ 0

−τ

∫ t

t+s
z(ε)dεds.

Lemma A.2. (Seuret and Gouaisbaut, 2013). For any constant matrix M = MT > 0 and
scalars t > t− τ ≥ 0 such that the following integrations are well defined, then∫ t

t−τ
żT (ε)Mż(ε)dε ≥ 1

τ

∫ t

t−τ
żT (ε)dεM

∫ t

t−τ
ż(ε)dε+

3
τ

ΩTMΩ,

with

Ω = z(t− τ ) + z(t)− 2
τ

∫ t

t−τ
z(ε)dε.

Lemma A.3. (Gu, Kharitonov, and Chen, 2003). For any constant matrix M =MT > 0 and
scalars t > t− τ̄ ≥ 0 such that the following integrations are well defined, then∫ t

t−τ̄
żT (ε)Mż(ε)dε ≥ 1

τ̄

∫ t

t−τ̄
żT (ε)dεM

∫ t

t−τ̄
ż(ε)dε.

Lemma A.4 (Schur Complement (Gu, Kharitonov, and Chen, 2003)). For any constant sym-
metric matrix

S =

[
S11 S12

ST12 S22

]
,

the following statements are equivalent:
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1) S < 0,

2) S11 < 0, S22 − ST12S
−1
11 S12 < 0,

3) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.
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