

Learning Representations for Classification

Problems in Reproducing Kernel Hilbert Spaces

Murilo Vale Ferreira Menezes

Graduate Program in Electrical Engineering

Federal University of Minas Gerais

Supervisor: Prof. Antônio de Pádua Braga

Co-Supervisor: Prof. Luiz Carlos Bambirra Torres

Dissertation

Master of Science

10/2020

Aprendendo Representações para Problemas de

Classificação em Espaços de Hilbert do Kernel

Reprodutivo

Murilo Vale Ferreira Menezes

Programa de Pós-Graduação em Engenharia Elétrica

Universidade Federal de Minas Gerais

Orientador: Prof. Antônio de Pádua Braga

Coorientador: Prof. Luiz Carlos Bambirra Torres

Dissertação de

Mestrado

10/2020

Universidade Federal de Minas Gerais

Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

LEARNING REPRESENTATIONS FOR CLASSIFICATION
PROBLEMS IN REPRODUCING KERNEL HILBERT SPACES

Murilo Vale Ferreira Menezes

Dissertação de Mestrado submetida à Banca
Examinadora designada pelo Colegiado do Programa
de Pós-Graduação em Engenharia Elétrica da Escola
de Engenharia da Universidade Federal de Minas
Gerais, como requisito para obtenção do Título de
Mestre em Engenharia Elétrica.

Orientador: Prof. Antônio de Pádua Braga

Belo Horizonte - MG

Outubro de 2020

Powered by TCPDF (www.tcpdf.org)

Coorientador: Prof. Luiz Carlos Bambirra Torres

 Ficha catalográfica elaborada pelo bibliotecário Reginaldo Cesar Vital dos Santos CRB/6 2165
 Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG

Menezes, Murilo Vale Ferreira.
M543l Learning representations for classification problems in reproducing

Kernel hilbert spaces [recurso eletrônico] / Murilo Vale Ferreira Menezes. -
2020.

 1 recurso online (xii, 67 f. : il., color.) : pdf.

 Orientador: Antônio de Pádua Braga.
 Coorientador: Luiz Carlos Bambirra Torres.

 Dissertação (mestrado) - Universidade Federal de Minas Gerais,
 Escola de Engenharia.

 Bibliografia: f. 62-67.
 Exigências do sistema: Adobe Acrobat Reader.

 1. Engenharia elétrica - Teses. 2. Classificação - Teses. 3. Kernel,
Funções de - Teses. I. Braga, Antônio de Pádua. II. Torres, Luiz Carlos
Bambirra. III. Universidade Federal de Minas Gerais. Escola de
Engenharia. IV. Título.

 CDU: 621.3(043)

Acknowledgements

First of all, i want to thank my parents, Magda and Tarciso, my broth-

ers, Marcelo and Guilherme, and sisters-in-law Mayesse and Renata,

for all the support and for always believing in me. I would not be

where I am if not for you.

Thank you to my nephews, Felipe, Pedro, and Joaquim, for bringing

joy and love to the simple side of life. I learn more from you than you

can imagine.

To Laura for all the love and support during all these years, in both

calm and stressful moments. Thank you for helping me be the best

version of myself.

To my advisor, Prof. Antônio de Pádua Braga, for all the guidance

and teachings in the last four years. I am very grateful for having

the opportunity of working with you. To my co-advisor, Prof. Luiz

Carlos Bambirra Torres, for the friendship and advices during all the

lunches in bandejão.

Thank you to all my friends from LITC, Hekima, and iFood, for the

discussions and partnership in the everyday routine, and to my friends

from Electrical Engineering. Your friendship is very important to me.

It’s time we start smiling

What else should we do?

George Harrison

Abstract

The performance of a machine learning method, regardless of the task

it is trying to solve, is dependent on the quality of the representations

it receives. Not surprisingly, there is a wide class of methods that

aim to leverage statistical properties of a dataset, either with raw

or handcrafted features, to build more useful representations, from

Principal Component Analysis to recent deep learning techniques.

Kernel methods are a very powerful family of models, which have the

ability to map the input data into a space where otherwise hard tasks

become easier to solve, such as linear classification. These methods

have the ability to express their learning process only in terms of

kernels, which are similarity functions between samples and can be

interpreted as inner products in this mapped space, dismissing the

need to explicitly map the data. However, these kernel functions

often have a set of parameters that have to be chosen according to

each task and have a great influence on the mapping, and, therefore,

on the final task.

This work proposes two objective functions which can be used to learn

these kernel parameters and achieve good classification results. Exper-

iments with Gaussian, Laplacian, and sigmoid kernels are conducted.

An interpretation of neural networks inside the kernel framework is

also proposed, enabling these networks to be trained to learn repre-

sentations using the proposed functions.

Based on empirical results and the analysis of each kernel function

used in the experiments, properties of the proposed functions are dis-

cussed, along with how they can successfully be used in practice.

Keywords: Kernel methods; Representation learning; Classification.

Resumo

O desempenho de um modelo de aprendizado de máquina, indepen-

dentemente da tarefa, depende da qualidade das representações que

o fornecemos. Há uma ampla classe de métodos que utilizam pro-

priedades estat́ısticas de um conjunto de dados para aprender repre-

sentações, da Análise de Componentes Principais (PCA) a técnicas

de aprendizado profundo.

Métodos de kernel são uma famı́lia poderosa de modelos que têm a

habilidade de mapear os dados para um espaço onde tarefas como

classificação linear se tornam mais fáceis de serem resolvidas. Estes

métodos têm a habilidade de expressar seu processo de aprendizado

apenas em termos de funções de kernel, que são medidas de sim-

ilaridade entre amostras e podem ser interpretadas como produtos

internos neste espaço mapeado, não havendo necessidade do mapea-

mento expĺıcito. Contudo, estas funções de kernel tipicamente têm

um conjunto de parâmetros que devem ser ajustados de acordo com

cada tarefa e têm grande influência no mapeamento, e, portanto, na

tarefa final.

Este trabalho propõe duas funções objetivo com as quais podemos

aprender estes parâmetros e atingir bons resultados em problemas

de classificação. Conduzimos experimentos com kernels Gaussianos,

Laplacianos e sigmoidais. Além disso, uma interpretação de redes

neurais dentro do arcabouço de kernels é proposta, mostrando que es-

tas redes podem ser treinadas para aprender representações de acordo

com as funções propostas.

Com base em resultados emṕıricos e na análise das funções de kernel

usadas, discutimos as propriedades das funções propostas e como usá-

las na prática.

Palavras-chave: Métodos de kernel; Aprendizado de representações;

Classificação.

Contents

List of Symbols . ix

List of Abbreviations . x

List of Figures . xi

List of Tables . xii

1 Introduction 1

1.1 Publications . 3

1.2 Outline . 4

2 Statistical Learning, Representations, and Kernel Methods 6

2.1 Statistical Learning Theory Basics 6

2.2 Representation Learning . 10

2.3 Kernel Methods . 12

2.3.1 Positive Semidefinite Kernels 13

2.3.2 Reproducing Kernel Hilbert Spaces 14

2.3.3 Kernel Density Estimation 15

2.3.3.1 Bayesian Classification and the Likelihood Space 17

2.3.4 Maximum Mean Discrepancy 19

2.3.5 Support Vector Classification 20

2.4 Kernel Interpretation of Neural Networks 23

3 Learning Kernel Parameters 26

3.1 Basic Definitions . 26

3.2 The Kernel Distributional Discrepancy Loss 27

3.3 The Kernel Similarity Variance Loss 33

3.4 Continuity and Boundedness . 35

vi

CONTENTS

3.4.1 KDD Loss . 35

3.4.2 KSV Loss . 37

3.5 Analysis in Specific Kernels . 39

3.5.1 Gaussian and Laplacian 39

3.5.2 Sigmoidal . 42

3.5.3 Neural Networks . 45

3.5.3.1 Output Normalization 46

4 Experimental Results 47

4.1 Comparing Kernels in SVMs . 47

4.2 Comparison with regularly-trained MLPs 53

4.3 Visual experiments with MNIST dataset 54

4.4 Result Analysis and Discussions 56

4.4.1 Supervised KDD Function 56

4.5 Unsupervised KSV Function . 56

5 Conclusions and Future Work 59

5.1 Future Work . 60

References 62

vii

List of Symbols

X Set of vectors
X Vector space
x Vector
x Scalar
F Function space
f Function
P Probability measure
X Random variable
Θ Parameter space
θ Parameter vector
L Loss function
k Kernel function
N Sample size
w Weight vector
W Weight matrix
Σ Covariance matrix
K Gram matrix
I Identity matrix
H Representation space
C Soft-margin SVM trade-off parameter
σ Radial basis function width
γ Sigmoidal scaling parameter
φ Function mapping to representation space
〈·, ·〉 Inner product
ψ Kernel similarity

ψ̂ Empirical kernel similarity
ξ Kernel similarity of distributions

ξ̂ Empirical kernel similarity of distributions
D Kernel distributional discrepancy

D̂ Empirical kernel distributional discrepancy

viii

List of Abbreviations

AUC Area Under the Curve
CAE Contractive Autoencoder
ERM Empirical Risk Minimization
GAN Generative Adversarial Network
IPM Integral Probability Metric
KDD Kernel Distributional Discrepancy
KDE Kernel Density Estimation
KSD Kernel Similarity of Distributions
KSV Kernel Similarity Variance
MLP Multilayer Perceptron
MMD Maximum Mean Discrepancy
PSD Positive Semidefinite
RBF Radial Basis Function
RKHS Reproducing Kernel Hilbert Space
ROC Receiver Operating Characteristic
SGD Stochastic Gradient Descent
SRM Structural Risk Minimization
SVM Support Vector Machine
t-SNE t-distributed Stochastic Neighbor Embedding
VC Vapnik-Chervonenkis

ix

List of Figures

2.1 An example of two functions to fit a set of 11 points. 9

2.2 An illustration of the structural risk minimization principle. . . . 10

2.3 An example of a learned representation. 11

2.4 Estimation of densities in a synthetic problem using KDE. 18

2.5 Example of similarity mapping using a Gaussian kernel. 19

3.1 Example of similarity mapping using a Gaussian kernel. 28

3.2 Similarity mapping along with the class vectors. 30

3.3 The unidimensional similarity map using a Gaussian kernel. . . . 34

3.4 Negative KSV loss function behavior for the Gaussian kernel. . . . 41

3.5 Negative KSV loss function behavior for the Laplacian kernel. . . 42

3.6 Negative KDD loss function behavior for the Gaussian kernel. . . 43

3.7 Negative KDD loss function behavior for the Laplacian kernel. . . 43

3.8 Negative KDD loss function surface for γ and b in the sigmoidal

kernel. 44

3.9 Negative KSV loss function surface for γ and b in the sigmoidal

kernel. 45

4.1 MNIST representations learned with KDD maximization. 55

4.2 MNIST representations learned with KSV maximization. 55

4.3 Examples of images from the MNIST dataset. 57

x

List of Tables

4.1 Hyperparameter ranges for grid search 48

4.2 Accuracy using the Gaussian kernel 49

4.3 Accuracy using the Laplacian kernel 49

4.4 Accuracy using the sigmoidal kernel 50

4.5 Accuracy using an MLP kernel 50

4.6 AUC using the Gaussian kernel 51

4.7 AUC using the Laplacian kernel 51

4.8 AUC using the sigmoidal kernel 52

4.9 AUC using an MLP kernel . 52

4.10 Accuracy in comparison with an end-to-end trained MLP 53

4.11 AUC in comparison with an end-to-end trained MLP 54

xi

Chapter 1

Introduction

Machine learning relies heavily on representations. Every time one is confronted

with a learning task, data with some predefined structure is given, which deter-

mines not only the kind of algorithms to use, but also their performance. Con-

sequently, great effort is made in extracting and processing these representations

before the final learning task.

In order to reach relevant representations, one option is to handcraft features

according to prior knowledge of the problem, which can be time-consuming and

does not guarantee useful features for the task at hand. Representation learn-

ing methods aim to automatically find useful representations from input data,

whether to make classification or regression problems easier to solve, for visualiza-

tion, or just to capture the dynamics of our input data into a more representative

space.

On top of the given input representations, one can, for instance, select features

from input according to some criteria (Guyon & Elisseeff, 2003), which can help

to rule out noisy and redundant features. Feature selection can be simple to

execute and interpret. However, a broader class of algorithms consist of learning

a representation that does not necessarily preserve the input features.

A myriad of representation learning methods are described in the literature,

many of which are covered by Bengio et al. (2013). These methods can be proba-

bilistic, such as Boltzmann machines (Hinton et al., 1984; Salakhutdinov & Hin-

ton, 2009), that try to find latent random variables that are able to explain our

observed data. There are also methods that are set as learning a parametric map

1

from an input space X to a representation space H, such as autoencoders (Hinton

& Zemel, 1994), which aim to find a transformation that allows the reconstruc-

tion of the inputs with maximum accuracy. This distinction, nevertheless, is not

disjoint, and some algorithms can be interpreted in both groups.

Kernel methods also take advantage of mapping the input instances into a

feature space (Scholkopf & Smola, 2001). Here, the representations are defined

according to kernel functions, which are similarity measures in the input space.

By defining algorithms in terms of these functions, problems can be solved im-

plicitly in the feature space, allowing very high-dimensional spaces to be used

without having to store all the features. An example of such methods is the sup-

port vector machine (Boser et al., 1992). SVMs are originally linear classifiers,

and, using kernel functions, are capable of solving nonlinear problems with very

high performance.

Using kernels, one can even solve problems using methods that would not be

able to solve them in the original space. For instance, an SVM can be used to

solve a classification problem in the space of unstructured text documents by only

defining a kernel function that measures the similarity between two documents.

Although general-purpose kernels, such as the Gaussian, are widely used, there

is also the possibility of handcrafting them using prior knowledge.

Kernel functions usually have parameters to be set beforehand, for example

the width σ in Gaussian and the degree d in polynomial kernels. These parameters

have to be chosen carefully according to the task, since they directly determine the

feature map, and consequently have great impact on the final performance. These

parameters are typically chosen using grid-search and cross-validation (Friedman

et al., 2001), which can be resource-consuming.

There are, in the literature, methods that aim to optimize kernel parameters

based on training data. Kim et al. (2008) formulates a convex optimization

problem to learn the kernel in a classification task. Torres et al. (2014) use a

graph structure in the input space in order to choose the width of a Gaussian for

an RBF network. Wanderley et al. (2014) also focuses in RBF kernels, proposing

methods to choose the width parameter for density estimation problems.

This work proposes two methods to optimize kernel parameters. The methods

are proposed for general kernels and can be used to learn parameters of any

2

1.1 Publications

kernel with continuous parameters, as long as the norms of the representations are

bounded. As a particular case, these methods can be used to learn representations

using not only classic continuous kernels, but also parameters of neural networks.

These methods are used to learn representations for a classification task.

The first method, the kernel distributional distance, is based on a measure

of discrepancy between probability distributions. This measure is defined using

a kernel function, and can be computed using only similarities between patterns.

It can also be visualized in a similarity space of classes. By maximizing the

pairwise distances between conditional distributions on the input space, we are

able to learn representations that segregate different classes from each other,

yielding good results with a linear classifier. This discrepancy function is similar

to the maximum mean discrepancy (Gretton et al., 2012) when defined on

reproducing kernel Hilbert spaces.

The second method, called kernel similarity variance, is unsupervised. It

was proposed with the goal of capturing density information on the input using

only pairwise similarities between patterns. The parameters are maximized while

searching for a descriptive representation space. This method yields good results

for translation-invariant kernels that capture local structure, but not so much for

other kernels. Possible explanations on why this happens are discussed.

Experiments using accuracy and AUC are executed in 19 real-world datasets,

using Gaussian, Laplacian, and sigmoidal kernels, as well as multilayer percep-

trons. Visualizations of the learned representations in a computer vision task

are also provided. The results show that these methods can be used to learn

class-dependent structure effectively.

1.1 Publications

• Menezes, M., Torres, L. C., & Braga, A. P. (2017). Otimização da Largura

de Kernels RBF para Máquinas de Vetores de Suporte: Uma Abordagem

Baseada em Estimativa de Densidades. In XIII Congresso Brasileiro de

Inteligência Computacional.

3

1.2 Outline

• Menezes, M., Torres, L. C., & Braga, A. P. (2019, September). Learning

Regularization Parameters of Radial Basis Functions in Embedded Likeli-

hoods Space. In EPIA Conference on Artificial Intelligence (pp. 281-292).

Springer, Cham.

• Menezes, M., Torres, L. C., & Braga, A. P. (2019). Width optimization of

RBF kernels for binary classification of support vector machines: A density

estimation-based approach. Pattern Recognition Letters, 128, 1-7.

• Menezes, M., Torres, L. C., & Braga, A. P. A Survey of Representation

Learning Methods in Reproducing Kernel Hilbert Spaces. (In preparation)

• Menezes, M., Torres, L. C., & Braga, A. P. Learning Representations With

Neural Networks Using Kernel-Based Functions. (In preparation)

• Menezes, M., Torres, L. C., & Braga, A. P. Unsupervised Learning of Kernel

Parameters Using Global Similarity Measures. (In preparation)

1.2 Outline

This work is organized as follows.

Chapter 2 covers the theoretical background needed for this work. The general

setting of statistical learning theory and inductive principles are defined, as well

as representation learning basics. Kernel theory is also covered, with definitions

of positive semidefinite kernels and the reproducing kernel map. Relevant kernel

methods are also described, and the Chapter ends with the kernel interpretation

of a neural network.

In Chapter 3 the main methods proposed in this work are described. Impor-

tant definitions such as the kernel similarity and the similarity space are given,

and the functions to be optimized are defined afterwards. This Chapter also dis-

cusses which properties of kernels are necessary for our functions to be optimized

using continuous methods, with a subsequent analysis of the specific kernels used

in this work under these requirements.

Chapter 4 contains the numerical and visual experiments, where it can be seen

how our proposed functions perform under each type of kernel. The results are

4

1.2 Outline

also discussed, along with a possible reason why it works well on some settings

but not so well on others.

Finally, Chapter 5 concludes the work and addresses possible sequels to further

deepen the understanding of our framework.

5

Chapter 2

Statistical Learning,

Representations, and Kernel

Methods

This chapter overviews the core of the learning problem, presenting the setting of

function estimation over samples generated by an unknown distribution. Then,

the representation learning problem is covered, discussing how one can learn a

useful vector space. Then, kernel methods are covered, giving the main framework

on top of which this work is developed.

2.1 Statistical Learning Theory Basics

A system endowed with the property of learning can be described as a system

that adapts its behavior with respect to some task based on former experience.

In fact, Mitchell (1997) defines that “a computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E”.

In most cases, E consists of data collected in the past.

The problem of learning from data, as introduced by Vapnik (1995), can be

seen as estimating a function using observations coming from unknown distribu-

tions. In this framework, the data belongs to an input vector space X. Each

element x ∈ X is called a data point, an instance, or a sample.

6

2.1 Statistical Learning Theory Basics

A training set X = {x1, · · · ,xN} is sampled from a well-defined but unknown

probability distribution P (x). When the problem is supervised, one also have

access to a supervision vector y, defined on output space Y. For each input vector

x, a supervision vector y is sampled according to another unknown distribution

P (y|x) defined over Y. Y depends on the problem one is trying to solve. In a

classification problem, the vectors y are discrete values representing the classes,

and Y is the set of integers. For regression problems, Y is the real field R.

Given samples from these distributions, the main goal is to find a function

f mapping the input space X to an output space, typically Y for supervised

problems. f is chosen from a set of functions F, e.g. deep neural networks.

In order to guide the search, a loss function L is defined, which measures the

quality of a function f . Conventionally, it is called a loss function because the goal

is to find functions that achieve low values of L1. Common losses for classification

problems include the Cross Entropy (Goodfellow et al., 2016), used when the

output is a probability value, and the hinge loss (Rosasco et al., 2004), used in

Support Vector Machines.

The optimal function for a problem is defined as f ∗ ∈ F that minimizes the

following risk functional:

R(f) =

∫

Z

L(z, f)dP (z) (2.1)

where Z is a general input space, which may consist of X × Y for supervised

problems or X for unsupervised ones, and P is a probability measure defined over

Z.

The difficulty of finding f ∗ lies on the fact that one does not have access to the

true distribution P , but only to a finite sample from it. In order to try to find

the function that minimizes the risk functional of Equation 2.1, an inductive

principle is needed2.

1When the problem is to maximize a function, it can always be turned into a minimization problem by
multiplying the function by -1.

2In inductive logic problems such as learning from data, one wants to reach global conclusions (the gen-
erating distribution, the input-output relation) from empirical observations (the samples). The conclusions are
many times probabilistic and not provably true, in contrast to deductive reasoning, in which certainly true
conclusions are reached when given true premises. Further discussions on inductive reasoning and how it applies
to the learning problem is beyond the scope of this work.

7

2.1 Statistical Learning Theory Basics

One straightforward way to approximate the optimal solution is the Empirical

Risk Minimization (ERM) principle. Given a finite sample Z = {z1, · · · , zN} from
Z, ERM consists on minimizing the following empirical estimate of the risk:

Remp(f) =
1

N

N
∑

i=1

L(zi, f) (2.2)

This principle is reasonable, especially because of the law of large numbers:

when the sample size N grows, the empirical risk Remp converges to the true risk

R. However, with a finite sample and a broad class of functions F, the ERM can

lead to a common situation known as overfitting, in which one finds a function

with low error in the training set but generalizes poorly outside of the observed

points.

An extreme example from Scholkopf & Smola (2001) is reproduced here. In

a classification problem with loss function 0-1, if F is allowed to be all the pos-

sible functions mapping a continuous input space X to Y, one can minimize the

empirical risk by choosing the following function:

f(x) =

{

yi, if x = xi for i ∈ {1, · · · , N}
1, otherwise.

(2.3)

As X is continuous, the probability of a test point be exactly equal to one of

the training points is zero (as the training set has measure zero). Thus, f would

predict 1 to almost all of the test samples, and the true risk could be very high

despite a very low empirical risk.

In fact, Vapnik (1995) derives a confidence interval for the risk functional. It

is stated that R(f) is bounded by above by a term that involves the empirical

risk Remp(f) and a quantity that measures the capacity of f . For instance, when

the loss function L(z, f) is bounded A ≤ L(z, f) ≤ B, the following inequality

holds with probability 1− η:

R(f) ≤ Remp(f) +
B − A

2

√

4
h
(

ln(2N
h
) + 1

)

− ln(η
4
)

N
(2.4)

where N is the sample size and h is called the Vapnik-Chervonenkis (VC) dimen-

sion of f , which is a measure of capacity.

8

2.1 Statistical Learning Theory Basics

Equality holds when N → ∞ and that, for finite N , uncertainty rises for high-

capacity functions. This happens because, when f has a very high VC dimension,

one can not be sure if a low empirical risk happens because f lowers the true risk

functional of if the learning machine is overfitting the training set. Figure 2.1

shows an example with two candidate functions in a regression setting.

0

4

8

0.00 0.25 0.50 0.75 1.00
x

y f1
f2

Figure 2.1: An example of two functions to fit a set of points. f1 is a simple linear
function found using least-squares, while f2 is a polynomial of degree 10. f2 fits all
of the points exactly, and its empirical risk is zero. However, the test error may be
higher than f1’s, as the function reaches more extreme values outside the training
points. Empirical risk minimization alone would choose f2 over f1 unequivocally;
structural risk minimization would take into account their complexities.

When dealing with limited data, an alternative to ERM is the Structural Risk

Minimization (SRM). This inductive principle takes into account the capacity of

the family of functions F by considering a sequence of sets of functions (the

structure) Si (i = 1, 2, 3, · · ·), S1 ⊂ S2 ⊂ S3 ⊂ · · · , with increasing capacity.

This method tries to minimize the sum of the empirical risk and a function

capacity term, minimizing the bound on the true risk functional. The function

structure is illustrated in Figure 2.2.

9

2.2 Representation Learning

· · · Si−1 Si Si+1 · · ·

Figure 2.2: An illustration of the structural risk minimization principle. This
inductive principle biases the learning machine towards simple functions that are
able to explain the data sufficiently well.

One way of implementing SRM is by minimizing the regularized risk func-

tional, which consists of the empirical risk added by a term that measures the

complexity of f :

Rreg(f) = Remp(f) + λΩ(f) (2.5)

where Ω is an increasing function on the complexity of f and λ > 0 is a parameter

to control the trade-off between the performance (the empirical risk) and the

simplicity of f .

The regularization term usually penalizes the magnitude of f , enforcing smooth-

ness. In neural networks, for instance, L2 regularization (Goodfellow et al., 2016;

Tikhonov, 1963) is a very popular method, penalizing the sum of the L2 norm of

the weights.

2.2 Representation Learning

In a problem such as classification, a sample of inputs from space X is given, which

may not be a relevant representation for the specific task. Patterns may come

with lots of noise, or X may even be a space where classic pattern recognition

algorithms are not defined.

The performance of any machine learning task, in fact, depends on the repre-

sentation. This is why a range of methods, from kernel-based SVMs (Boser et al.,

1992) to deep neural networks (LeCun et al., 2015), rely on a mapping from X to

10

2.2 Representation Learning

a representation space (also called feature space) H, where the problem becomes

easier to solve. Figure 2.3 depicts an example of a representation mapping.

Figure 2.3: An example of a learned representation. Here, images from the
MNIST handwritten digits dataset (LeCun et al., 2010) are mapped into an Eu-
clidean space, using t-SNE (Maaten & Hinton, 2008) to visualize them in a two-
dimensional space.

Representation learning algorithms try to find a function φ that maps the

points in X into useful representations in H. The concept of usefulness is not self-

evident, and is dependent on the task. For a classification problem, for instance,

representations in which the classes are linearly separable are preferable.

However, when learning representations, one usually does not aim to approx-

imate a given supervision vector, such as classification and regression problems.

Even though representations can also be learned using information from super-

vision variables, there are general properties that make a representation helpful,

which can be used as guidelines to conduct the learning process. Bengio et al.

(2013) lists some of the desirable properties of a representation, which include:

• Disentanglement of latent factors: the observed variables are caused by

many latent factors, and it is desirable that the representation disentangles

them. For example, in speech data it may be possible to disentangle the

frequency, loudness, and speaker emotion from one utterance to another.

11

2.3 Kernel Methods

Methods such as InfoGAN (Chen et al., 2016) aim at learning disentangled

features.

• Robustness: it is desirable that the features are robust with respect to

small, noisy variations on the input data. One of the main concerns is to

build representations that are robust to adversarial examples (Goodfellow

et al., 2015), in which the neural networks give entirely different outputs to

very similar inputs. Contractive (Rifai et al., 2011a) and denoising (Vincent

et al., 2008) autoencoders are built to learn robust encodings of the input

data.

• Abstraction: causal factors of an observation are often linked to more ab-

stract features. For instance, the presence or absence of a given object in

an image tends to be more useful than the exact values of the pixels. This

is one of the factors that explain the performance of deep learning methods:

by learning hierarchical representations, one can reach very abstract final

features, built on top of simpler ones.

When designing representation learning algorithms, there are also assump-

tions one may rely on. One of them is the manifold hypothesis Goodfellow

et al. (2016), which assumes that data in high-dimensional spaces usually lie close

to lower-dimensional manifolds embedded in that space. Another prior is assum-

ing natural clustering (Bengio et al., 2013), which means assuming that data

with different categorical features, such as classes, lie on disconnected manifolds.

2.3 Kernel Methods

Kernels are, simply put, similarity functions between points in a given input

space. This tool, albeit simple, is very powerful. Using kernels, one is able to

solve many linear and nonlinear learning problems and take advantage of very

high-dimensional representation spaces. This section present the basics of kernel

theory, shedding light on the key concepts this work is based on.

12

2.3 Kernel Methods

2.3.1 Positive Semidefinite Kernels

The first thing to point here is that, in this work, only real-valued kernels are

used, that is, functions that map to a real-valued scalar R. Although kernels

are defined in a more general form having also complex values, hereafter only

real-valued kind is treated.

A real kernel is a function k : X × X → R that represents an inner product

〈φ(x), φ(x′)〉, where φ : X → H is a mapping function from an input space X to

a feature space H (Scholkopf & Smola, 2001). This work is focused on learning

this feature space from adjusting the kernel parameters.

To build the reproducing kernel feature map framework, some definitions

are necessary. All the definitions, although maybe not identical, are based on

Scholkopf & Smola (2001).

Definition 1. A positive semidefinite (PSD) kernel in an input space X is a

function k : X × X → R such that, for any set of points x1, · · · ,xN ∈ X and

scalars c1, · · · , cN ∈ R, the following inequality holds:

N
∑

i=1

N
∑

j=1

cicjk(xi,xj) ≥ 0 (2.6)

Many of the most popular kernels are PSD, such as the Gaussian, the linear

and the polynomial kernels. Now, the Gram matrix of k with respect to a set

of input points is defined:

Definition 2. Given a set of points X = {x1, · · · ,xN} in X and a kernel k, the

Gram matrix is an N ×N matrix K with elements

Kij = k(xi,xj) (2.7)

If k is a positive semidefinite kernel, the Gram matrix K induced by k in a

given set of N points is a positive semidefinite matrix, meaning that:

cTKc ≥ 0 (2.8)

where c ∈ R
N . This is a matrix notation equivalent to Equation 2.6.

13

2.3 Kernel Methods

Many of these functions, such as the Gaussian kernel, are defined depending

on some parameters θ from a parameter space Θ. As the parameters of a given

kernel are the main object of this work, sometimes a kernel is mentioned with its

explicit parameters, kθ.

2.3.2 Reproducing Kernel Hilbert Spaces

One way to interpret the feature space a kernel induces is via the reproducing

kernel map. Here, each input point x is mapped to a function in a Hilbert space

of functions defined by k.

Simply stated, a Hilbert space is an inner product space, that is, a vector space

H endowed with an inner product 〈·, ·〉, which is a function mapping H×H → R.

However, the converse is not true: for an inner product space to be considered a

Hilbert space, it also needs to be complete, which means that it contains all the

limits of all its Cauchy sequences (MacCluer, 2008).

Now, a reproducing kernel Hilbert space (RKHS) can be defined.

Definition 3. Given an input vector space X and a Hilbert space H, H is called

a reproducing kernel Hilbert space if there exists a kernel function k : X×X → R

such that:

1. k has the reproducing property:

〈f, k(x, ·)〉H = f(x) ∀f ∈ H (2.9)

where 〈·, ·〉H represents the inner product in H.

2. k spans H:

H = span{k(x, ·)|x ∈ X} (2.10)

where X denotes the completion of the set X, that is, the set X added to

all the limit points of its Cauchy sequences.

In fact, the mapping of a point x ∈ X to a space H that defines a kernel k is

simply the kernel k with one of its arguments fixed in x: φ(x) = k(x, ·) (Scholkopf
& Smola, 2001).

14

2.3 Kernel Methods

The first condition of the definition means that, for every function in the

RKHS, one can evaluate it in any point of X by simply taking the inner product

of the function with the mapping of x using the kernel k. This makes possible the

kernel trick: usingH as a feature space in which other tasks such as classification

can be performed. A function f in this space can be, for instance, a hyperplane

which separates the mappings of the patterns φ(x), and can then be evaluated

for any point in X to obtain a separation surface in the input space.

This is where the kernel trick comes handy in methods such as SVMs. By

using a nonlinear kernel function, it is still possible to use linear methods in H

in order to obtain a nonlinear outcome in X.

The second condition means that the span of all the possible mappings of X

into H is dense in H.

If k is a kernel defined by a RKHS H, the reproducing property assures that:

k(x,x′) = 〈k(x, ·), k(x′, ·)〉 = 〈k(x′, ·), k(x, ·)〉 = k(x′,x) (2.11)

for x ∈ X. It also follows that k is positive semidefinite (Scholkopf & Smola,

2001).

2.3.3 Kernel Density Estimation

One of the many applications kernel functions can be used is in density estimation,

where, given a finite sample, one wants to estimate the density of their generating

function. This section describes the Kernel Density Estimation, or KDE, a very

important method on the conception of this work. KDE is a non-parametric

method, meaning that it does not assume the function belongs to some closed

family, and its complexity can grow as more data is sampled.

In KDE, translation-invariant kernels, such as Gaussians, are typically used.

Given a positive definite kernel k, the normalized kernel is a function with the

form:

k̂(x,x′) =
1

Z
k(x,x′) (2.12)

where

15

2.3 Kernel Methods

Z =

∫

X

k(x,x′)dx′ (2.13)

is a normalizing value that guarantees that the normalized kernel integrates to 1

and can then be considered a probability density in X. It is important to note

that the normalized kernel is only defined when k is Lebesgue integrable with

respect to x′ (and also with respect to x, since k is symmetric):

∫

X

|k(x,x′)|dx′ <∞ (2.14)

Given a sample X = {x1, · · · ,xN}, one normalized kernel function is defined

centered in each point. With N density functions, the final function can be

estimated as their mixtures:

f̂(x) =
1

N

N
∑

i=1

k̂(xi,x) (2.15)

Density estimation using Gaussian kernels were extensively studied by Silver-

man (1986). In this case, the normalized kernel is equivalent to a multivariate

Gaussian with a diagonal covariance matrix Σ = σI:

k̂(x,x′) =
1

√
2π

d
det(Σ)

exp

(

−1

2
(x− x′)TΣ−1(x− x′)

)

=
1

(
√
2πσ)d

exp

(

−1

2

‖x− x′‖2
σ2

) (2.16)

where d is the dimensionality of the input space X = R
d.

f̂ is then estimated as:

f̂(x) =
1

N

N
∑

i=1

1

(
√
2πσ)d

exp

(

−1

2

‖x− x′‖2
σ2

)

(2.17)

which can be written in terms of the original Gaussian kernel function:

16

2.3 Kernel Methods

f̂(x) =
1

N(
√
2πσ)d

N
∑

i=1

exp

(

−1

2

‖x− xi‖2
σ2

)

=
1

N(
√
2πσ)d

N
∑

i=1

kσ(x,xi) (2.18)

where kσ denotes the kernel function with parameter σ.

The choice of σ is crucial to the performance of the estimator. If it is chosen

to be too large, the KDE fails to capture the peculiarities of the original function,

such as its peaks and valleys. However, a very small σ can also be bad, since

one can end up with a function that fails to be smooth even where it should.

Figure 2.4 shows four different values of σ in a one-dimensional synthetic dataset

which consists of two normal distributions with means 3 and -3 and unitary

variance.

To choose σ for univariate problems, Silverman (1986) suggests the following

procedure as a general rule:

σ∗ =

(

4

3

) 1

5

sN− 1

5 (2.19)

where s is the sample standard deviation and N is the number of points. However,

there is no standard rule for general multidimensional problems, and the choice

of σ is highly dependent on the problem.

2.3.3.1 Bayesian Classification and the Likelihood Space

One application in which the KDE can be used is in Bayesian classifiers (Duda

et al., 1973). These methods are generative models, relying on estimations of the

probabilities P (x, y) to correctly classify the patterns.

The class y is treated as a latent variable. In order to estimate the probability

of having a specific class y given an observation x, P (y|x), one can factor it using

Bayes’ theorem:

P (y|x) = P (x, y)

P (x)
=
P (x|y)P (y)

P (x)
(2.20)

The probabilities P (x) and P (x|y) can be estimated using KDE. To estimate

the former, KDE is executed directly on the whole input data. To the latter,

17

2.3 Kernel Methods

ll ll l l ll l l l l l l l ll l l l0

1

2

3

−5.0 −2.5 0.0 2.5 5.0

x

P KDE

True

σ = 0.01

(a)

ll ll l l ll l l l l l l l ll l l l0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

x

P KDE

True

σ = 0.1

(b)

ll ll l l ll l l l l l l l ll l l l0.00

0.05

0.10

0.15

0.20

−5.0 −2.5 0.0 2.5 5.0

x

P KDE

True

σ = 0.5

(c)

ll ll l l ll l l l l l l l ll l l l0.00

0.05

0.10

0.15

0.20

−5.0 −2.5 0.0 2.5 5.0

x

P KDE

True

σ = 5

(d)

Figure 2.4: Estimation of densities in a synthetic problem using KDE. In 2.4a, σ is
very small, and KDE not able to capture nothing from the generating distribution.
In 2.4b, the KDE learns the two regions in some sense, but the estimate is still
very rough. 2.4c shows an intermediary value of σ that is able to approach the
original density, and 2.4d shows the effect of a very large σ, where the estimate
is smoother than it should.

one has to estimate one model per class. Nevertheless, the estimation of P (x) is

usually not needed, since it is a normalization term shared between all classes.

P (y) can be estimated of a given class by simply taking the proportion of that

class in the training set.

After P (x|y) is estimated for each class y, a very useful tool is the likelihood

space, in which patterns can be mapped. In this space, each axis is the estimated

probability of the pattern to a given class. This space can be visualized for a

simple two-class problem in Figure 2.5.

With the likelihood space, one can visualize what is happening with the prob-

ability estimations and how they affect the classification ability. In this work, this

18

2.3 Kernel Methods

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

−2

−1

0

1

2

−2 −1 0 1 2

X1

X
2

y

l

l

1

2

(a)

l

l

llll ll l l l

l

l l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll l l

l

l

l

l

ll l

l

l ll

l

l

l

l

l

l ll

l

l l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l ll lll

l

l

ll l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l ll l

l

l

l

l

ll l ll l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll l l

l

l

l l

l

l

l

l ll

l

l

l

l

l

ll ll ll

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l l

l

ll

l

l l

l

l

ll

l

l l

l

ll

l

l

l

l

l l

l

l

ll

l

l

l

l

l

l

ll l

l

l

ll

l

l

l l

l

ll ll

l

l

l

l

l

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3

P(x|y=1)

P
(x

|y
=

2
)

y

l

l

1

2

(b) .

Figure 2.5: Example of similarity mapping using a Gaussian kernel.

same concept is used to define a similar space, in which separability measures in

the feature space are computed.

2.3.4 Maximum Mean Discrepancy

In methods that rely on probability functions, such as generative modelling, it is

useful to define divergence measures between distributions. Using a divergence,

one can, for instance, train a model to maximize or minimize the difference be-

tween samples or detect distributional shift (Gama et al., 2014).

A widely used family of divergences is the φ-divergence (Sriperumbudur

et al., 2009). Given two probability measures P and Q defined on a space X,

such that P is absolutely continuous with respect to Q, the φ-divergence between

P and Q is defined as:

Dφ(P,Q) =

∫

X

φ

(

dP

dQ

)

dQ (2.21)

where φ : (0,∞) → (−∞,∞] is a convex function. A widely used instance

of this family is the Kullback-Leibler divergence, which is defined with φ(x) =

x log x (Sriperumbudur et al., 2009).

Another family of divergences between distributions is defined given not only

a function, but a set of functions. The integral probability metric (IPM)

between two probability measures P and Q is defined, in a general form, as:

19

2.3 Kernel Methods

γF(P,Q) = sup
f∈F

∣

∣

∣

∣

∫

X

fdP −
∫

X

fdQ

∣

∣

∣

∣

(2.22)

where F is a space of real-valued, bounded, and measurable functions (Sriperum-

budur et al., 2009).

One instance of the IPM family is themaximum mean discrepancy (MMD)

(Gretton et al., 2012). In the MMD, the distance is defined using expected values

of functions over the distributions:

MMD[F, P,Q] = sup
f∈F

(Ex∼P [f(x)]− Ey∼Q[f(y)]) . (2.23)

As a special case, when F is the unit ball in a reproducing kernel Hilbert

space H, the MMD can be rewritten in terms of the kernel k associated to H.

Specifically, the squared MMD can be defined as:

MMD2[F, P,Q] = Ex,x′∼P [k(x,x′)]+Ey,y′∼Q [k(y,y′)]−2Ex∼P
y∼Q

[k(x,y)] . (2.24)

Applications include a significance test, with which kernel functions can be

used to compare two samples (Gretton et al., 2012). Based on that, the MMD

can also be used in generative adversarial networks, in which the generator has

as an objective to minimize the MMD between the real and synthetic data (Li

et al., 2017, 2015).

In this work, a similar kernel-based discrepancy measure between two distribu-

tions is presented, which is then used to maximize the distributional discrepancy

between different classes.

2.3.5 Support Vector Classification

The support vector machine (SVM) (Cortes & Vapnik, 1995) is possibly the

most prominent kernel method. It implements, by design, the structural risk

minimization principle. Originally proposed as a form to learn optimal linear

classifiers, the SVM uses nonlinear kernel functions in order to implicitly map

the points into a reproducing kernel Hilbert space. By solving the linear problem

20

2.3 Kernel Methods

in the RKHS using a nonlinear map, the SVM is able to learn nonlinear decision

functions in the original space. The whole formalization in this section is based

on Scholkopf & Smola (2001).

In the primal problem defined in an Euclidean space, the goal is to learn a

hyperplane f(x) = 〈x,w〉 + b that separates the input patterns with the largest

possible margin. Given a training set with input patterns X = {x1, · · · ,xN},
xi ∈ X, and classes Y = {y1, · · · , yN}, yi ∈ {−1, 1}, i = 1, · · · , N , the hyperplane

to be learned is defined to have distance 1
‖w‖

to its closest point.

Since the resulting hyperplane does not change if both w and b are multiplied

by the same constant, this function, called the canonical hyperplane, is defined

in order to rule out the possibility of representing the same linear function with

many different sets of parameters. Furthermore, by this definition, the large

margin hyperplane can be learned by minimizing ‖w‖, since this maximizes the

distance of the hyperplane to the closest pattern.

The primal optimization problem is defined as follows:

min
w∈X

1

2
‖w‖2 , (2.25)

subject to yi (〈xi,w〉+ b) ≥ 1 for all i = 1, · · · , N. (2.26)

The constraints assure that a hyperplane that separates the two classes is

achieved, with sign (〈xi,w〉+ b) = yi for all i.

To turn the problem into an unconstrained optimization problem, Lagrange

multipliers α, αi ≥ 0 for i = 1, · · · , N , are introduced. The objective function

turns into the following:

L(w, b, α) =
1

2
‖w‖2 −

N
∑

i=1

αi (yi (〈xi,w〉+ b)− 1) . (2.27)

which is minimized with respect to w and b and maximized with respect to α.

By differentiating the Lagrangian with respect to w and b and setting the

derivatives to zero, one reaches the dual formulation of the optimization problem.

Training the SVM is equivalent to solving the following problem:

21

2.3 Kernel Methods

max
α∈RN

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj〈xi,xj〉 (2.28)

subject to

αi ≥ 0 for all i = 1, · · · , N, (2.29)

and
N
∑

i=1

αiyi = 0. (2.30)

Using the dual formulation, it is no longer necessary to have explicit hy-

perplane parameters to solve the maximum margin problem. Furthermore, the

input variables are only needed inside the inner product. This formulation of the

SVM makes it straightforward to solve also nonlinear problems: by substituting

〈xi,xj〉 for a nonlinear kernel k(xi,xj), the patterns are implicitly mapped into

a reproducing kernel Hilbert space H, where a linear classification problem can

still be solved in the same manner. However, due to the nonlinear map, the linear

problem in H becomes nonlinear in X.

This classification problem, however, is only defined if the patterns are sep-

arable. In problems with overlapping classes, the hyperplane that solves the

optimization problem does not exist. To use the SVM in such situations, some

patterns have to violate the margin. Then, slack variables ξi ≥ 0, i = 1, · · · , N ,

are used to relax the constraint from Equation 2.26. The primal formulation of

the flexible-margin SVM is as follows:

min
w∈X,
ξ∈RN

1

2
‖w‖2 + C

N

N
∑

i=1

ξi, (2.31)

subject to

yi (〈xi,w〉+ b) ≥ 1− ξi for all i = 1, · · · , N, (2.32)

and

ξi ≥ 0 for all i = 1, · · · , N (2.33)

where C is a predefined parameter which controls the trade-off between maximiz-

ing the margin and minimizing the training error.

22

2.4 Kernel Interpretation of Neural Networks

The dual problem of the flexible-margin SVM, given a kernel k, is finally

defined as:

max
α∈RN

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjk(xi,xj) (2.34)

subject to

0 ≤ αi ≤
C

N
for all i = 1, · · · , N, (2.35)

and
N
∑

i=1

αiyi = 0. (2.36)

2.4 Kernel Interpretation of Neural Networks

Neural networks, especially multilayer perceptrons, are basically compositional

functions that can be used to learn a function from an input space Rn to an output

R
m. An MLP with l layers, for instance, combines linear transformations and

pointwise nonlinearities in a hierarchical manner, and has the following general

form:

φ(x) = g (Wlg (· · ·W2g (W1x+ b1) + b2) + bl) (2.37)

where Wi is the weight matrix of the i-th layer, bi is its bias vector, and g(·) a

pointwise nonlinear function.

Part of their usefulness comes from their expressive power: a multilayer per-

ceptron with only one hidden layer can approximate any given continuous function

arbitrarily well, given enough neurons (Cybenko, 1989). Even so, one can benefit

from networks with more than one hidden layer, as they can learn some kinds of

data equally well, but with a less complex model (Mhaskar et al., 2016).

In the literature, a number of works combine kernel theory and neural net-

works. Jacot et al. (2018), for instance, presents the Neural Tangent Kernel,

which helps shed light on the training dynamics of deep neural networks using

stochastic gradient descent. Montavon et al. (2011) uses RBF kernels to analyze

a deep neural network on each layer. Other works, such as Lee et al. (2017)

23

2.4 Kernel Interpretation of Neural Networks

and Garriga-Alonso et al. (2018), show equivalence between deep networks and

Gaussian processes, a prominent kernel method.

Here, the neural network is interpreted as part of a kernel. Using the networks

to map data into an Euclidean space, the linear inner product in that space is a

kernel in input space.

Definition 4. Let φθ : X → R
m be a neural network with parameters θ ∈ Θ. The

neural kernel induced by φθ is a function kθ : X× X → R, defined as:

kθ(x,x
′) = 〈φθ(x), φθ(x

′)〉 (2.38)

One important result to show for this work is that the neural kernel is positive

semidefinite. In order to conclude this, it is important to show that the linear

kernel is positive semidefinite.

Lemma 1. Let the input space be a d-dimensional Euclidean space, X = R
d.

Given x,x′ ∈ R
d, the linear kernel k(x,x′) = 〈x,x′〉 is positive semidefinite.

Proof. Recalling the definition of a positive semidefinite kernel (Definition 1), one

needs to show that

N
∑

i=1

N
∑

j=1

cicjk(xi,xj) ≥ 0 (2.39)

for all ci ∈ R and xi ∈ R
d, i = 1, · · · , N . Regarding the linear kernel, the

positive-semidefiniteness specifically implies that

N
∑

i=1

N
∑

j=1

cicj〈xi,xj〉 ≥ 0. (2.40)

In an Euclidean space of dimensionality d, the inner product can be obtained

using Equation 2.41:

〈xi,xj〉 =
d
∑

k=1

xki x
k
j (2.41)

where xk is the k-th element of x. Then, the following is true:

24

2.4 Kernel Interpretation of Neural Networks

N
∑

i=1

N
∑

j=1

cicj〈xi,xj〉 =
N
∑

i=1

N
∑

j=1

cicj

d
∑

k=1

xki x
k
j (2.42)

and the sums can be rearranged as:

N
∑

i=1

N
∑

j=1

cicj

d
∑

k=1

xki x
k
j =

d
∑

k=1

N
∑

i=1

N
∑

j=1

cicjx
k
i x

k
j =

d
∑

k=1

N
∑

i=1

cix
k
i

N
∑

j=1

cjx
k
j . (2.43)

∑N

j=1 cjx
k
j =

∑N

i=1 cix
k
i , as i and j are just conventions. Finally:

N
∑

i=1

N
∑

j=1

cicj〈xi,xj〉 =
d
∑

k=1

N
∑

i=1

cix
k
i

N
∑

j=1

cjx
k
j =

d
∑

k=1

(

N
∑

i=1

cix
k
i

)2

≥ 0 (2.44)

Theorem 1. Given a neural network φθ : X → R
m, the neural kernel induced by

φθ, kθ : X× X → R, is positive semidefinite.

Proof. The first point to note is that φθ necessarily maps input points to an

Euclidean space Rm. Lemma 1 stated that the linear kernel is positive semidefinite

for any set of points in an Euclidean space. Thus, it follows that the neural kernel

is positive semidefinite.

Using this tool, one can define kernels in any input space which can be used

as input by a neural network: X can be a space where the inner product is not

straightforward to compute or even does not exist, such as images, text, and

speech.

25

Chapter 3

Learning Kernel Parameters

In this chapter, two loss functions for learning representations are proposed. As

they are entirely based on inner products in the feature space to be learned, they

can be seen as acting upon kernel functions.

The first function requires supervision which separates data points into dis-

crete groups, making it suitable for classification problems. The second one is

unsupervised and was first proposed as an alternative to the first after an exten-

sive analysis of the Gaussian kernel while varying its parameter σ.

The chapter is organized as follows: first of all, both functions are defined,

along with a discussion about they measure. Section 3.4 shows a couple of prop-

erties of these functions, which allow them to be optimized by well-known contin-

uous optimization methods. Finally, Section 3.5, analyzes the behavior of both

functions regarding the specific kernels used in this work.

3.1 Basic Definitions

Chapter 2.3.3 introduced the visualization of samples using likelihood values es-

timated by the KDE method. Inspired by this, an analogous mapping to a

similarity space can be defined, which helps us interpret what the proposed

functions learn.

Both kernel-optimizing functions are based on similarity values on the feature

space H. These values are obtained, naturally, using the inner product given by

the kernel, 〈φ(x), φ(x′)〉H = k(x,x′). These functions were first defined and tested

26

3.2 The Kernel Distributional Discrepancy Loss

using Gaussian kernels. Because of this, the main examples and interpretations

are given using these kernels.

First of all, a similarity measure from a point to a probability distribution in

input space is defined.

Definition 5. The kernel similarity ψk,θ(x, P) of a point x ∈ X to a probability

distribution P over X, given a kernel k with parameters θ, is given by:

ψk,θ(x, P) = Ex′∼P [k(x,x′)] (3.1)

Given a training set X = {x1, · · · ,xN} sampled from P , it can be empirically

estimated as:

ψ̂k,θ(x,X) =

1
N−1

∑N
i=1
xi 6=x

k(x,xi) if x ∈ X

1
N

∑N

i=1
k(x,xi) otherwise

(3.2)

Using this kernel similarity, one can compute similarities from points to spe-

cific sets, such as all of the samples belonging to a class, or even to the whole

training set. Using this measure, it is possible to define more complex similarities

and dissimilarities. It is used in definitions of both functions.

3.2 The Kernel Distributional Discrepancy Loss

Using the kernel similarity (Equation 3.1), one can compute how similar is a

sample to a specific class, just as the likelihood values obtained using KDE1 and

expressed in Figure 2.4. For a classification problem with d classes, a point x

in input space can be mapped into a similarity space R
d, where each component

would be its similarity to each one of the classes Ck, k = {1, · · · , d}:

x → [ψk,θ(x, P1), ψk,θ(x, P2) · · · , ψk,θ(x, Pd)]
T (3.3)

where Pi = P (X|Y = Ci).

To illustrate, Figure 3.1a shows a two-dimensional space, generated synthet-

ically. This is a space related to a two-class classification setting. Each point is

1This similarity, however, does not need to be a probability value.

27

3.2 The Kernel Distributional Discrepancy Loss

ξ̂k,θ(X,Z) =

1
N(N−1)

∑N

i=1

∑N
j=1
j 6=i

k(xi, zj) if X = Z

1
NM

∑N

i=1

∑M

j=1 k(xi, zj) otherwise
(3.5)

The similarity between two classes C1 and C2 can be defined by simply com-

puting the KDS of P (X|Y = C1) and P (X|Y = C2). With two distributions P

and Q, each of them can be defined as a vector in similarity space as follows:

VP = [ξk,θ(P, P), ξk,θ(P,Q)]
T (3.6)

VQ = [ξk,θ(Q,P), ξk,θ(Q,Q)]
T (3.7)

It is important to note that these vectors lie in the same similarity space as

the point maps depicted in Figure 3.1b. Each component of this vector is nothing

more than the expectation of the points belonging to a specific class with respect

to each axis. Thus, in practice, only the midpoints of each class are computed in

this space. Figure 3.2 shows the representations of both classes in the similarity

space.

The last needed definition before presenting the supervised loss itself is the

kernel distributional discrepancy between two distributions.

Definition 7. Given two distributions P and Q defined over an input space X

and a PSD kernel k : X × X → R with parameters θ, the kernel distributional

discrepancy (KDD) between them is given by:

Dk,θ(P,Q) =
(

(ξk,θ(P, P)− ξk,θ(P,Q))
2 +

(ξk,θ(Q,Q)− ξk,θ(Q,P))
2)

1

2

(3.8)

Substituting the KSD values for its definitions:

Dk,θ(P,Q) =

(

(

Ex∼P
x
′∼P

[k(x,x′)]− Ex∼P
z∼Q

[k(x, z)]

)2

+

(

E z∼Q
z
′∼Q

[k(z, z′)]− Ez∼Q
x∼P

[k(z,x)]

)2
) 1

2

(3.9)

29

3.2 The Kernel Distributional Discrepancy Loss

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

V2

V1

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15

ψ(x,X1)

ψ
(x

,X
2
) Class

l

l

1

2

Figure 3.2: Similarity mapping along with the class vectors. The kernel distribu-
tional discrepancy is defined as the Euclidean distance between them, ‖V1 − V2‖2.

An empirical version of the distance can be obtained by using the sample

means. If X = {x1, · · · ,xN} and Z = {z1, · · · , zM} are two i.i.d. finite samples

from P and Q respectively, the empirical kernel distributional discrepancy is given

by:

D̂k,θ(X,Z) =

1

N(N − 1)

N
∑

i=1

N
∑

j=1
j 6=i

k(xi,xj)

−
[

1

NM

N
∑

i=1

M
∑

j=1

k(xi, zj)

]

2

+

1

M(M − 1)

M
∑

i=1

M
∑

j=1
j 6=i

k(zi, zj)

−
[

1

NM

M
∑

i=1

N
∑

j=1

k(zi,xj)

]

2

1

2

(3.10)

30

3.2 The Kernel Distributional Discrepancy Loss

When the probability distributions define classes over the input space, it be-

comes clear that Equation 3.8 is the Euclidean distance between the vectors given

by Equations 3.6 and 3.7.

One interesting result arises when the Euclidean distance is substituted for

the Manhattan distance. The distance between P and Q becomes:

D1
k,θ(P,Q) = |ξk,θ(P, P)− ξk,θ(P,Q)|+ |ξk,θ(Q,Q)− ξk,θ(Q,P)| (3.11)

where the superscript 1 denotes the distance taken with relation to the L1 norm.

If the kernel k is chosen such that it makes the KSD between a distribution to

itself greater than or equal to the KSD between this distribution to another, the

absolute values can be dropped, and Equation 3.11 is equivalent to the one-sided

discrepancy:

D1
k,θ(P,Q) = ξk,θ(P, P)− 2ξk,θ(P,Q) + ξk,θ(Q,Q) =

Ex∼P
x
′∼P

[k(x,x′)]− 2Ex∼P
z∼Q

[k(x, z)] + E z∼Q
z
′∼Q

[k(z, z′)] .
(3.12)

where the squared MMD (Gretton et al., 2012) in unit-norm reproducing kernel

Hilbert spaces is retrieved.

In practice, it was usually the case that the KSD between two distinct dis-

tributions was lower than the KSD from a distribution to itself, although there

exists exceptions in highly imbalanced datasets. In such cases, optimizing 3.11 is

the same as optimizing the maximum mean discrepancy between P and Q.

Finally, the first loss function can be defined.

Definition 8. The Kernel Distributional Discrepancy (KDD) loss function LKDD(C, k, θ)

for a problem with d classes, C = {C1, · · · , Cd}, is given by:

LKDD(C, k, θ) = −
d
∏

i=1

d
∏

j=1
j 6=i

Dk,θ(Pi, Pj) (3.13)

31

3.2 The Kernel Distributional Discrepancy Loss

where Pi = P (X|Y = Ci).

In practice, the function can be estimated using the empirical kernel discrep-

ancies between classes, pairwise. Given a training set X = {x1, · · · ,xN} and a

class set Y = {y1, · · · , yN}:

L̂KDD(X,Y, k, θ) = −
d
∏

i=1

d
∏

j=1
j 6=i

D̂k,θ(Xi,Xj) (3.14)

where Xi are the elements of X belonging to class Ci.

The product of distances is used in order to give a naturally higher weight

for lower distances: it is better to increase the distance between classes that are

close to each other than increasing, by the same amount, the distance between

classes that are further apart.

When using this function in real-world problems, the distance values can get

very small if two classes are very close. The optimization procedure, then, be-

comes prone to numerical issues when optimizing the product between all the

pairwise distances. To mitigate this effect, the assumption that no distance be-

tween different classes is exactly zero is made. As long as this happens, the loss

can be optimized by minimizing the negative of the logarithm of the product

instead:

min
θ
L̂KDD(X,Y, k, θ) = min

θ
− log

d
∏

i=1

d
∏

j=1
j 6=i

D̂k,θ(Xi,Xj) =

min
θ

−
d
∑

i=1

d
∑

j=1
j 6=i

log D̂k,θ(Xi,Xj)

(3.15)

When kernel parameters are optimized by minimizing LKDD, the assumption

that a class will be more similar to itself than to the others is presumed. Equa-

tion 3.8 shows that the situation where the cross-similarities are maximized and

32

3.3 The Kernel Similarity Variance Loss

the self-similarities are minimized would still minimize the loss. However, this

case is neither expected nor observed.

3.3 The Kernel Similarity Variance Loss

This section describes the unsupervised loss function, which also relies on the

kernel similarity described in Definition 5.

With a fixed training set X, each point x ∈ X can be mapped into a scalar

representing its similarity to the whole data-generating distribution P : ψk,θ(x, P).

Just as points were mapped into a two-dimensional similarity space, this can be

seen as a map to the real line R, a one-dimensional space.

Definition 9. For a probability distribution P defined over X and a kernel k :

X×X → R with parameters θ, the Kernel Similarity Variance (KSV) loss function

LKSV (k, θ) is the negative variance of the kernel similarities of P to itself:

LKSV (P, k, θ) = −V arx∼P [ψk,θ(x, P)] = −V arx∼P [Ex′∼P [k(x,x′)]] (3.16)

Given a training set X = {x1, · · · ,xN}, the empirical version of the unsuper-

vised inner product loss can be defined as follows:

L̂KSV (X, k, θ) = − 1

N − 1

N
∑

i=1

1

N − 1

N
∑

j=1
j 6=i

k(xi,xj)− µ

2

(3.17)

where µ is the sample mean for the empirical kernel similarities:

µ =
1

N(N − 1)

N
∑

i′=1

N
∑

j′=1
j′ 6=i′

k(xi′ ,xj′) (3.18)

This function was first proposed for the Gaussian kernel after the observation

that, when σ gets very close to zero, the Gram matrix for that kernel gets closer

to an identity matrix (provided that no two points in the training set are equal),

in which the kernel value of a point to itself will be 1 and zero to all of the

33

3.3 The Kernel Similarity Variance Loss

other points. As the kernel values of points to themselves are ignored in order

to have an unbiased estimator, the kernel similarities in this situation would be

zero regardless of the input, and the variance is zero.

On the other hand, when the value of σ goes to infinity, the kernel value

between any two samples gets closer and closer to 1. Then, in this limit, the

average kernel value will be 1 for all samples, which also yields zero variance.

Figure 3.3 shows what happens with the scalar projections of samples from the

dataset shown in Figure 3.1a with four values of σ.

ll
l

l

ll
llll

ll
l
l
l
ll
l
ll

l
ll
l
l
lll
l

lll
l
ll
l
l
ll
ll

l

ll
l
l

l

l

lllllll
lll
l
l
l

l
llll
ll
l

ll
l
ll
l
l
l

l

llll
l
ll
lll
llll
l

lll
l
l
lll

l

l
l
lll

l

l
l

l
lll
lll
l
lll
lllll
l
lllllll
lllllllll
l
l

l

ll
llllll

l

ll
l

lllll

ll
l

lllllll
l
l
l

l
l

l

l
l
ll

l
l
l

llll

ll

ll
l
ll
l

l
l

ll
l

l

lllll
l

l
l

l
l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

lll

l

l
l

l

l

l

l

ll

l

ll

l

l

l

l

ll
l
ll
l
l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l
l

l

l
l
l
l
ll

l

ll
l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l
l

l

l
l

l

l

l

l

l
l

l

l

lll

l

l

l

l
l
l

l

lll

l

l

l

l

l

l

l
l

l

l

l
l
l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l
l

l
l

l

l

l

l

l

l

ll
l

l

l
l
l
lll

ll

l
l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

ll
l
ll
l
l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l
l
l
l
ll

l

l
ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l
l

l

l

l

l

l

l

l

l
l

l

l

lll

l

l

l

l
l
l

l

lll

l

l

l

l

l

l

ll

l

l

l
l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

lll
l
lllllllllllllllll
llllllll

llllllll
lllll
lll
l
l

l

llllllllll
l
l
l
l
llllll
l
lllll
ll
l
l
llll
l
ll
lllllll
l
lll
l
l
lllllll
llll
l
l
lll
lll
llll
lllll
l
lllllll
lllllll
l
lll
l
llllllll
l
ll
l
lllll
lll
lllllll
l
l
l
l
ll
l
l
ll
lll
llll
ll
ll
l
ll
l
ll

0.00

0.25

0.50

0.75

1.00

0.1 0.5 0.75 5
σ

ψ
(x

,X
)

Figure 3.3: The unidimensional similarity map using a Gaussian kernel. The
variance is maximized in intermediate values of σ.

The variance is maximized in intermediate σ values, which gives a minimum

for the loss function. The intuition behind the use of the variance on the projec-

tions is to search for a more descriptive Hilbert space, where some samples are

more similar to the whole data, while some are less. Using the kernel similarity

using Gaussian kernels as a way to approximate local density, the representation

is expected to capture the peaks and valleys of the generator distribution.

34

3.4 Continuity and Boundedness

In the next chapter, it is shown that this yields satisfactory results when using

some specific types of kernel, possible reasons are discussed.

3.4 Continuity and Boundedness

For classic optimization algorithms to be used on the proposed functions, some

guarantees are needed. Here two of them are considered: continuity and bound-

edness. The first one tells whether one can safely search the parameter space

using continuous methods. The second tells whether one can reach, or at least

approximate, a point where this function reaches a minimum. This is important

to be sure that, for instance, the function can not be minimized indefinitely to

−∞.

These properties are discussed separately for both functions and required char-

acteristics for the kernel function are given.

3.4.1 KDD Loss

First of all, these characteristics are discussed regarding the supervised function.

Under certain circumstances that are not hard to obtain, said function could be

expected to reach, or at lest approximate, a minimum value in parameter space.

Theorem 2. Given a kernel k with parameters θ ∈ Θ, the KDD loss LKDD(C, k, θ)

is continuous with respect to parameters θ if k is also continuous in parameter

space Θ.

Proof. The first point to note is that the operations involved in both kernel

similarity (Equation 3.1) and kernel similarity for distributions (Equation 3.4) are

purely continuous, which means that these values are continuous on the kernel

values.

The KDD (Equation 3.8) is continuous on the KSD values. Then, the super-

vised loss is also continuous on them. If the kernel is continuous on its parameters,

it can be seen that the supervised loss consists of a series of continuous operations

from parameter space. Then, LKDD is continuous in Θ.

35

3.4 Continuity and Boundedness

Furthermore, all the operations done after the kernel are differentiable. Then,

if the kernel is itself differentiable on its parameters, first-order methods such as

gradient descent (Goodfellow et al., 2016) can be used to search for minima.

Now the boundedness of the function is addressed.

Theorem 3. For a d-class classification problem, if a kernel kθ defines a feature

map φθ : X → H that has its image inside the closed r-ball, i.e. ‖φθ(x)‖ ≤ r

∀x ∈ X, θ ∈ Θ, the values of the KDD loss function LKDD lie inside the interval

[−
(

2
√
2r2
)d(d−1)

, 0].

Proof. A Hilbert space with inner product 〈x,x′〉H induces a norm ‖x‖
H

=

〈x,x〉
1

2

H
. For any reproducing kernel Hilbert space, the norm of φθ(x) can be

computed by Equation 3.19:

‖φθ(x)‖ = k(x,x)
1

2 (3.19)

If the norm of any vector in the RKHS induced by k is bounded, the inner

product between any pair of vectors in that space will be bounded as well. The

Cauchy-Schwarz inequality for kernels is needed. It can be stated as (Scholkopf

& Smola, 2001):

kθ(x,x
′)2 ≤ kθ(x,x)kθ(x

′,x′). (3.20)

Substituting Equation 3.19 into the inequality:

kθ(x,x
′)2 ≤ ‖φθ(x)‖2 ‖φθ(x

′)‖2 . (3.21)

If the norm is at most r, the squared inner product is bounded:

kθ(x,x
′)2 ≤ r2r2 → |kθ(x,x′)| ≤ r2 (3.22)

If the inner product between any two vectors is bounded between r2 and

−r2, both Equations 3.1 and 3.4 yield a value between −r2 and r2 for any inputs,

since they are simple averages. Then, the vector describing a class (Equations 3.6

and 3.7) has components ranging between these two extrema and lies inside the

closed square centered in the origin and with side length 2r2.

36

3.4 Continuity and Boundedness

Any two vectors inside this square can have a distance of at most its diagonal,

which is the Euclidean distance between the two extreme vectors [r2, r2]T and

[−r2,−r2]T :

d([r2, r2]T , [−r2,−r2]T) =
√

2(r2 − (−r2))2 = 2
√
2r2 (3.23)

Then, Dk,θ(P,Q) ≤ 2
√
2r2 regardless of P and Q.

The KKD loss is the product of all pairwise discrepancies between all of the d

class-conditional distributions, excluding discrepancies from classes to themselves:

LKDD(C, k, θ) = −
d
∏

i=1

d
∏

j=1
j 6=i

Dk,θ(Pi, Pj) ≥ −
d
∏

i=1

d
∏

j=1
j 6=i

2
√
2r2 = −

(

2
√
2r2
)d(d−1)

(3.24)

which proves the lower bound.

The upper bound is trivial: by definition, the lowest possible value of the ker-

nel distributional discrepancy between two distributions is 0. Then, the highest

possible value for the KDD loss is zero, as it is the negative of the product of

multiple kernel discrepancies.

Under some types of kernels, the function can never be minimized nor maxi-

mized to infinity. This does not mean, however, that a single point of minimum

can be always found, since the parameter space may not be (and it usually is not)

compact: it may be the case that the minima values can be arbitrarily approxi-

mated as the parameters go to infinity, but no specific finite parameter value will

achieve it.

3.4.2 KSV Loss

The unsupervised loss is now analyzed. The analysis is very similar to the one

done with the supervised variation, as are the conclusions.

Theorem 4. Given a kernel k with parameters θ ∈ Θ, the unsupervised inner

product loss LKSV (P, k, θ) is continuous with respect to parameters θ if k is also

continuous in Θ.

37

3.4 Continuity and Boundedness

Proof. This proof is as straightforward as the proof of Theorem 2. As noted, the

kernel similarity (Equation 3.1) is a continuous operation in the kernel values.

Once taken the kernel similarity values of all the training points, one can

see that the loss function consists simply in taking the variance over these values,

which is itself a continuous operator. Then, if k is continuous on Θ, LKSV consists

of a series of continuous operators on Θ and the loss is continuous on it as well.

Theorem 5. If a kernel kθ is defines a feature map φθ : X → H that has its

image inside the closed r-ball, i.e. ‖φθ(x)‖ ≤ r ∀x ∈ X, θ ∈ Θ, the values of the

KSV loss function LKSV lie inside the interval [−1
2
r2, 0].

Proof. This proof follows a similar path than the one for Theorem 3. As already

shown, if ‖φθ(x)‖ ≤ r, the kernel values necessarily lie between −r2 and r2. The

kernel similarity of any sample to the whole training set would necessarily lie in

this same interval.

Once the values ψk,θ are obtained for each point, the only operation performed

is the variance of these values. Popoviciu’s inequality on variances (Popoviciu,

1935) states that, if a random variable X has its support inside the bounded

interval [m,M], its variance is bounded by above:

V ar[X] ≤ 1

4
(M −m) (3.25)

In Equation 3.16, the kernel similarity is a random variable, since the input

vector is itself a random variable X:

ψk,θ(X,P) = EX′∼P [k(X,X ′)] (3.26)

Then, Equation 3.25 can be used to derive a lower bound on the loss function

value. Substituting its limits:

LKSV (P, k, θ) = −V ar[ψk,θ] ≥ −1

4
(r2 − (−r2)) = −1

2
r2 (3.27)

Once again, the upper bound is trivial, since the variance is non-negative by

definition.

38

3.5 Analysis in Specific Kernels

3.5 Analysis in Specific Kernels

Here an analysis of the behavior of the functions on the specific kernels used in

this work is conducted. These kernels were chosen because all their parameters

are continuous.

3.5.1 Gaussian and Laplacian

Gaussian and Laplacian kernels are translation invariant. This means that

the value of the kernel between two vectors k(x,x′) will not be changed if these

vectors are translated by the same quantity: k(x,x′) = k(x+ δ,x′ + δ) ∀δ ∈ X.

Equations 3.28 and 3.29 give the expressions for Gaussian and Laplacian ker-

nels, respectively.

kσ(x,x
′) = exp

(

−1

2

‖x− x′‖2
σ2

)

(3.28)

kσ(x,x
′) = exp

(

−‖x− x′‖
σ

)

(3.29)

In the case of these two functions, this happens because the kernels are merely

functions of the distance between patterns and do not take into account the

absolute value of the vectors. k(x,x′) can be seen as a function centered in x′,

and all x located in the sphere of radius r will have the same function value. That

is why these two kernels can be specifically called radial basis function (RBF)

kernels. Hereafter, this work refers to both Gaussian and Laplacian kernels as

RBF.

Since close patterns will have a higher similarity value than further away

patterns, these functions tend to capture local information.

Both the kernels take the same parameter σ, which can range inside the open

interval (0,∞), and the functions are optimized accordingly inside it. The kernels

are undefined for σ = 0.

Both functions are continuous on σ. Furthermore, it is clear to see that

the reproducing kernel Hilbert space induced by them lies inside the unit ball:

39

3.5 Analysis in Specific Kernels

‖φσ(x)‖ = kσ(x,x)
1

2 = 1 for every x ∈ X. This means that Theorems 2, 3, 4

and 5 hold.

Another important remark is that these functions converge to specific values

in the limits of the parameter space:

lim
σ→0

kσ(x,x
′) =

{

1, if x = x′

0, otherwise
(3.30)

lim
σ→∞

kσ(x,x
′) = 1 (3.31)

This means that the limits of the similarity measures proposed here are very

well defined. First, this is shown regarding the empirical kernel similarity.

It is assumed that no two elements are the same in the training set. This

means that, given a point x and a training set X, x appears at most once in X.

If X has size N , it is clear to see that Equation 3.32 holds.

lim
σ→0

ψ̂k,σ(x,X) = 0 (3.32)

Regarding the infinite-width limit, any two samples have similarity 1, such

that:

lim
σ→∞

ψ̂k,σ(x,X) = 1 (3.33)

for any pattern x and set X.

It is possible now to analyze what happens with the empirical KSV loss,

L̂KSV , in the same limits in RBF kernels. As the similarity of every pattern to

the training set, excluding to themselves, the similarity of any point to the whole

set will converge to 0 when σ approaches 0. Then, it becomes clear that:

lim
σ→0

L̂KSV (X, k, σ) = − 1

N

N
∑

i=1

(0− 0)2 = 0 (3.34)

for any training set X.

Something similar happens in the opposite limit. As σ → ∞, the similarity

of any pattern to the training set tends to 1. Thus:

40

3.5 Analysis in Specific Kernels

3.5.3.1 Output Normalization

The output space of the network is an Euclidean vector space: H = R
d. In this

space, one can compute the distance between two points using their norms and

inner product, shown in Equation 3.37 below.

d(x,x′) = (‖x‖+ ‖x′‖ − 2〈x,x′〉)
1

2 . (3.37)

In output space H, it becomes:

d(φθ(x), φθ(x
′)) = (‖φθ(x)‖+ ‖φθ(x

′)‖ − 2〈φθ(x), φθ(x
′)〉)

1

2 . (3.38)

The Euclidean distance is increasing with respect to the norms and decreasing

with respect to the inner product. The kernel function is expected to indicate

distance information: the closer they are in output space, the higher the kernel

value kθ(x,x
′) = 〈φθ(x), φθ(x

′)〉. The output vectors are then normalized to have

unit norm:

h = φθ(x) =
ĥ
∥

∥

∥
ĥ

∥

∥

∥

(3.39)

where ĥ is the network’s output right before normalization.

One effect of the normalization layer would be to introduce a discontinuity

when ‖h‖ = 0, as the function would become undefined. This possibility is

eliminated by using the logistic activation function before the normalization step,

as the values of the components of h would never be zero. Then, the continuity

on the parameters is assured, since no output vector would ever be mapped to

the zero vector.

46

Chapter 4

Experimental Results

This chapter presents the experiments and results with the two proposed func-

tions. Two main experiments were conducted, both in classification problems.

In the experiment described in Section 4.1, Support Vector Machines were

used to compare the performance of all the four types of kernels used in this work:

Gaussian, Laplacian, sigmoidal, and the Multi-Layer Perceptron. Section 4.2

focuses solely on the MLP kernels, comparing them to ordinarily-trained MLPs.

Section 4.4 discusses the results.

The experiments were made using Python’s Scikit-Learn package (Pedregosa

et al., 2011), which is based on the LIBSVM implementation of support vector

machines (Chang & Lin, 2011). The neural networks were implemented using

PyTorch (Paszke et al., 2017).

4.1 Comparing Kernels in SVMs

The first experiment uses Support Vector Machines to assess the classification

performances of the four kernel families trained with each function proposed here.

Test were performed using 18 real-world datasets consisting of binary classi-

fication settings, most of which were obtained from the UCI Machine Learning

Repository (Lichman, 2013). The exceptions are: “Appendicitis” was obtained

from the KEEL datasets repository (Alcalá-Fdez et al., 2011); “Breast Cancer

Hess Probes” (breastHess) was obtained from Hess et al. (2006); and the dataset

47

4.1 Comparing Kernels in SVMs

“Gene expression dataset” (golub) was obtained from Golub et al. (1999). Origi-

nally, the dataset “Glass Identification” (glass) has seven distinct classes. It was

treated as a one-versus-all problem, as done in Castro & Braga (2013).

All the datasets went through the same preprocessing steps: remotion of

rows with missing data and normalization of the columns to zero mean and unit

variance.

All four kernels had their parameters chosen using as criteria the KDD and

the KSV losses. It’s worth reminding that the KDD for binary problems boils

down to kernel distance (Equation 3.8) maximization between the two classes.

MMD maximization was also used as a criterion to compare the results. For

the Gaussian, Laplacian, and sigmoidal kernels, tests were made choosing their

parameters using grid-search with five-fold cross-validation to estimate scores.

The search spaces are defined in Table 4.1.

Table 4.1: Hyperparameter ranges for grid search

Kernel Parameters Search Space

Gaussian σ σ = {2−15, · · · , 24}
Laplacian σ σ = {2−15, · · · , 24}

Sigmoidal γ, b
γ = {2−15, · · · , 24}
b = {2−15, · · · , 24}

The capacity control parameter C has to be defined as well. For the grid search

setting, the grid consisted of the Cartesian product between the kernel parameters

search spaces and the C search space. For the experiments where the kernel-

specific parameters were chosen using the proposed functions or MMD, C was

chosen using grid-search, once the kernel parameters were already determined.

For all cases, C was searched between {2−5, · · · , 216}.
Only one neural network architecture is used on all tests, regardless of the

dataset. It is a multilayer perceptron with two layers: the hidden one with 20

units and the output with 50. A linear SVM was then executed in this output

space. As it is completely infeasible to choose the dozens of weights of a neural

network using grid search and cross-validation, the next section is dedicated to

comparing with a regularly-trained neural network.

48

4.1 Comparing Kernels in SVMs

Accuracy results, separated by kernel type, are presented on Tables 4.2 to 4.5.

The area below the ROC curve, commonly known as AUC (Area Under Curve),

was also used as a comparison metric. These results are on Tables 4.6 to 4.9.

Each experiment was executed 10 times for each dataset using cross-validation.

The confidence intervals are for a significance of 0.05.

Table 4.2: Accuracy using the Gaussian kernel

Basename Gaussian-Grid Search Gaussian-MMD Gaussian-KDD Gaussian-KSV
fertility 0.870 ± 0.035 0.880 ± 0.030 0.880 ± 0.030 0.880 ± 0.030
appendicitis 0.885 ± 0.077 0.876 ± 0.079 0.876 ± 0.079 0.876 ± 0.079
australian 0.867 ± 0.037 0.861 ± 0.038 0.861 ± 0.033 0.859 ± 0.032
german 0.762 ± 0.031 0.766 ± 0.030 0.760 ± 0.028 0.766 ± 0.031
golub 0.821 ± 0.042 0.809 ± 0.060 0.795 ± 0.062 0.723 ± 0.158
banknote 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
glass 0.972 ± 0.017 0.963 ± 0.014 0.963 ± 0.014 0.972 ± 0.017
ILPD 0.701 ± 0.032 0.712 ± 0.008 0.715 ± 0.006 0.715 ± 0.006
haberman 0.729 ± 0.043 0.735 ± 0.048 0.725 ± 0.048 0.722 ± 0.041
sonar 0.855 ± 0.057 0.870 ± 0.064 0.870 ± 0.044 0.879 ± 0.047
breastHess 0.805 ± 0.063 0.835 ± 0.066 0.827 ± 0.062 0.812 ± 0.058
breastcancer 0.968 ± 0.014 0.963 ± 0.016 0.962 ± 0.015 0.966 ± 0.017
parkinsons 0.933 ± 0.054 0.908 ± 0.037 0.902 ± 0.040 0.887 ± 0.042
heart 0.826 ± 0.042 0.844 ± 0.035 0.844 ± 0.035 0.848 ± 0.038
climate 0.954 ± 0.013 0.950 ± 0.013 0.950 ± 0.013 0.957 ± 0.011
diabetes 0.769 ± 0.025 0.772 ± 0.022 0.773 ± 0.020 0.775 ± 0.020
ionosphere 0.934 ± 0.031 0.952 ± 0.024 0.946 ± 0.020 0.937 ± 0.029
bupa 0.715 ± 0.045 0.684 ± 0.057 0.698 ± 0.047 0.707 ± 0.046
average 0.854 ± 0.016 0.854 ± 0.016 0.853 ± 0.015 0.849 ± 0.017

Table 4.3: Accuracy using the Laplacian kernel

Basename Laplacian-Grid Search Laplacian-MMD Laplacian-KDD Laplacian-KSV
fertility 0.880 ± 0.030 0.880 ± 0.030 0.880 ± 0.030 0.880 ± 0.030
appendicitis 0.838 ± 0.065 0.876 ± 0.072 0.876 ± 0.072 0.876 ± 0.072
australian 0.854 ± 0.044 0.864 ± 0.042 0.865 ± 0.044 0.867 ± 0.041
german 0.719 ± 0.011 0.768 ± 0.021 0.768 ± 0.021 0.766 ± 0.021
golub 0.654 ± 0.048 0.795 ± 0.062 0.795 ± 0.062 0.795 ± 0.062
banknote 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002 1.000 ± 0.000
glass 0.963 ± 0.014 0.967 ± 0.016 0.967 ± 0.016 0.963 ± 0.014
ILPD 0.712 ± 0.011 0.706 ± 0.017 0.706 ± 0.022 0.710 ± 0.017
haberman 0.719 ± 0.036 0.725 ± 0.031 0.725 ± 0.031 0.725 ± 0.033
sonar 0.620 ± 0.032 0.822 ± 0.067 0.817 ± 0.072 0.817 ± 0.072
breastHess 0.746 ± 0.048 0.812 ± 0.069 0.812 ± 0.069 0.812 ± 0.069
breastcancer 0.963 ± 0.016 0.963 ± 0.015 0.963 ± 0.017 0.963 ± 0.017
parkinsons 0.907 ± 0.039 0.943 ± 0.047 0.943 ± 0.047 0.943 ± 0.047
heart 0.837 ± 0.047 0.833 ± 0.034 0.833 ± 0.034 0.837 ± 0.036
climate 0.915 ± 0.007 0.944 ± 0.009 0.944 ± 0.009 0.944 ± 0.009
diabetes 0.751 ± 0.027 0.769 ± 0.029 0.775 ± 0.022 0.772 ± 0.023
ionosphere 0.929 ± 0.022 0.946 ± 0.020 0.943 ± 0.019 0.943 ± 0.019
bupa 0.675 ± 0.048 0.698 ± 0.040 0.696 ± 0.035 0.698 ± 0.048
average 0.816 ± 0.018 0.851 ± 0.016 0.851 ± 0.016 0.851 ± 0.016

49

4.1 Comparing Kernels in SVMs

Table 4.4: Accuracy using the sigmoidal kernel

Basename Sigmoidal-Grid Search Sigmoidal-MMD Sigmoidal-KDD Sigmoidal-KSV
fertility 0.870 ± 0.035 0.880 ± 0.030 0.870 ± 0.035 0.880 ± 0.030
appendicitis 0.905 ± 0.065 0.781 ± 0.077 0.772 ± 0.071 0.820 ± 0.049
australian 0.865 ± 0.043 0.848 ± 0.036 0.846 ± 0.030 0.772 ± 0.041
german 0.760 ± 0.031 0.709 ± 0.026 0.708 ± 0.021 0.666 ± 0.014
golub 0.780 ± 0.079 0.762 ± 0.070 0.762 ± 0.070 0.734 ± 0.077
banknote 0.991 ± 0.005 0.704 ± 0.047 0.706 ± 0.049 0.622 ± 0.027
glass 0.958 ± 0.030 0.865 ± 0.010 0.865 ± 0.010 0.865 ± 0.010
ILPD 0.696 ± 0.029 0.706 ± 0.028 0.719 ± 0.015 0.720 ± 0.015
haberman 0.738 ± 0.063 0.729 ± 0.029 0.722 ± 0.031 0.729 ± 0.013
sonar 0.635 ± 0.091 0.645 ± 0.062 0.639 ± 0.053 0.576 ± 0.081
breastHess 0.732 ± 0.065 0.797 ± 0.072 0.797 ± 0.080 0.721 ± 0.057
breastcancer 0.963 ± 0.014 0.965 ± 0.015 0.969 ± 0.015 0.902 ± 0.035
parkinsons 0.850 ± 0.057 0.754 ± 0.014 0.754 ± 0.014 0.753 ± 0.041
heart 0.822 ± 0.043 0.819 ± 0.047 0.830 ± 0.036 0.811 ± 0.054
climate 0.954 ± 0.014 0.909 ± 0.013 0.911 ± 0.010 0.915 ± 0.007
diabetes 0.759 ± 0.032 0.737 ± 0.026 0.742 ± 0.026 0.637 ± 0.032
ionosphere 0.880 ± 0.019 0.695 ± 0.036 0.695 ± 0.036 0.556 ± 0.049
bupa 0.692 ± 0.060 0.583 ± 0.055 0.548 ± 0.038 0.562 ± 0.025
average 0.825 ± 0.018 0.771 ± 0.016 0.770 ± 0.017 0.736 ± 0.019

Table 4.5: Accuracy using an MLP kernel

Basename MLP-MMD MLP-KDD MLP-KSV
fertility 0.880 ± 0.030 0.870 ± 0.035 0.880 ± 0.030
appendicitis 0.800 ± 0.091 0.821 ± 0.076 0.839 ± 0.055
australian 0.861 ± 0.037 0.861 ± 0.037 0.662 ± 0.045
german 0.723 ± 0.047 0.722 ± 0.034 0.693 ± 0.008
golub 0.764 ± 0.096 0.762 ± 0.109 0.725 ± 0.137
banknote 1.000 ± 0.000 1.000 ± 0.000 0.687 ± 0.062
glass 0.967 ± 0.032 0.967 ± 0.032 0.976 ± 0.024
ILPD 0.701 ± 0.022 0.712 ± 0.011 0.715 ± 0.006
haberman 0.722 ± 0.045 0.722 ± 0.039 0.680 ± 0.124
sonar 0.836 ± 0.084 0.831 ± 0.069 0.552 ± 0.105
breastHess 0.834 ± 0.062 0.804 ± 0.058 0.700 ± 0.071
breastcancer 0.971 ± 0.012 0.971 ± 0.012 0.889 ± 0.042
parkinsons 0.887 ± 0.047 0.872 ± 0.072 0.749 ± 0.021
heart 0.837 ± 0.040 0.841 ± 0.035 0.674 ± 0.048
climate 0.956 ± 0.017 0.948 ± 0.014 0.915 ± 0.007
diabetes 0.745 ± 0.020 0.729 ± 0.033 0.686 ± 0.021
ionosphere 0.877 ± 0.039 0.889 ± 0.034 0.701 ± 0.091
bupa 0.672 ± 0.041 0.643 ± 0.050 0.574 ± 0.016
average 0.835 ± 0.017 0.831 ± 0.018 0.739 ± 0.021

50

4.1 Comparing Kernels in SVMs

Table 4.6: AUC using the Gaussian kernel

Basename Gaussian-Grid Search Gaussian-MMD Gaussian-KDD Gaussian-KSV
fertility 0.570 ± 0.156 0.674 ± 0.222 0.663 ± 0.214 0.708 ± 0.156
appendicitis 0.847 ± 0.119 0.819 ± 0.134 0.819 ± 0.134 0.824 ± 0.129
australian 0.929 ± 0.022 0.928 ± 0.021 0.929 ± 0.021 0.932 ± 0.020
german 0.789 ± 0.035 0.782 ± 0.034 0.783 ± 0.034 0.785 ± 0.034
golub 0.803 ± 0.122 0.788 ± 0.144 0.770 ± 0.135 0.740 ± 0.147
banknote 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
glass 0.970 ± 0.063 0.976 ± 0.050 0.976 ± 0.050 0.976 ± 0.050
ILPD 0.609 ± 0.063 0.663 ± 0.034 0.665 ± 0.037 0.668 ± 0.036
haberman 0.668 ± 0.089 0.728 ± 0.061 0.685 ± 0.088 0.604 ± 0.114
sonar 0.948 ± 0.025 0.954 ± 0.023 0.946 ± 0.023 0.951 ± 0.024
breastHess 0.889 ± 0.073 0.894 ± 0.079 0.888 ± 0.081 0.887 ± 0.078
breastcancer 0.995 ± 0.005 0.992 ± 0.007 0.991 ± 0.009 0.990 ± 0.011
parkinsons 0.980 ± 0.019 0.918 ± 0.041 0.931 ± 0.040 0.931 ± 0.033
heart 0.925 ± 0.027 0.921 ± 0.026 0.921 ± 0.026 0.922 ± 0.025
climate 0.955 ± 0.040 0.947 ± 0.045 0.948 ± 0.045 0.952 ± 0.045
diabetes 0.832 ± 0.035 0.832 ± 0.030 0.834 ± 0.029 0.833 ± 0.031
ionosphere 0.979 ± 0.017 0.984 ± 0.016 0.983 ± 0.015 0.983 ± 0.014
bupa 0.744 ± 0.052 0.726 ± 0.070 0.746 ± 0.061 0.739 ± 0.054
average 0.857 ± 0.024 0.863 ± 0.022 0.860 ± 0.023 0.857 ± 0.023

Table 4.7: AUC using the Laplacian kernel

Basename Laplacian-Grid Search Laplacian-MMD Laplacian-KDD Laplacian-KSV
fertility 0.651 ± 0.212 0.646 ± 0.224 0.635 ± 0.234 0.679 ± 0.229
appendicitis 0.864 ± 0.115 0.899 ± 0.097 0.899 ± 0.097 0.910 ± 0.085
australian 0.914 ± 0.024 0.929 ± 0.021 0.929 ± 0.021 0.930 ± 0.022
german 0.775 ± 0.034 0.795 ± 0.033 0.795 ± 0.033 0.795 ± 0.034
golub 0.790 ± 0.153 0.862 ± 0.115 0.862 ± 0.115 0.862 ± 0.115
banknote 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
glass 0.985 ± 0.029 0.978 ± 0.046 0.978 ± 0.046 0.978 ± 0.046
ILPD 0.680 ± 0.051 0.683 ± 0.041 0.685 ± 0.041 0.686 ± 0.040
haberman 0.653 ± 0.065 0.667 ± 0.067 0.671 ± 0.067 0.661 ± 0.061
sonar 0.934 ± 0.034 0.917 ± 0.073 0.917 ± 0.073 0.916 ± 0.075
breastHess 0.886 ± 0.070 0.902 ± 0.079 0.900 ± 0.079 0.902 ± 0.079
breastcancer 0.992 ± 0.008 0.993 ± 0.006 0.993 ± 0.007 0.993 ± 0.007
parkinsons 0.982 ± 0.019 0.988 ± 0.019 0.988 ± 0.019 0.989 ± 0.017
heart 0.910 ± 0.037 0.921 ± 0.027 0.921 ± 0.027 0.921 ± 0.027
climate 0.939 ± 0.039 0.954 ± 0.041 0.953 ± 0.040 0.954 ± 0.040
diabetes 0.819 ± 0.026 0.832 ± 0.031 0.834 ± 0.029 0.832 ± 0.031
ionosphere 0.982 ± 0.015 0.987 ± 0.014 0.986 ± 0.013 0.986 ± 0.014
bupa 0.745 ± 0.047 0.759 ± 0.051 0.760 ± 0.051 0.769 ± 0.050
average 0.861 ± 0.023 0.873 ± 0.022 0.872 ± 0.023 0.876 ± 0.022

51

4.1 Comparing Kernels in SVMs

Table 4.8: AUC using the sigmoidal kernel

Basename Sigmoidal-Grid Search Sigmoidal-MMD Sigmoidal-KDD Sigmoidal-KSV
fertility 0.490 ± 0.276 0.515 ± 0.209 0.442 ± 0.230 0.550 ± 0.267
appendicitis 0.837 ± 0.149 0.584 ± 0.184 0.523 ± 0.107 0.698 ± 0.141
australian 0.923 ± 0.028 0.900 ± 0.025 0.900 ± 0.023 0.869 ± 0.037
german 0.785 ± 0.040 0.735 ± 0.043 0.729 ± 0.045 0.673 ± 0.037
golub 0.842 ± 0.105 0.773 ± 0.119 0.775 ± 0.122 0.748 ± 0.094
banknote 1.000 ± 0.000 0.813 ± 0.039 0.815 ± 0.038 0.711 ± 0.031
glass 0.924 ± 0.095 0.838 ± 0.067 0.848 ± 0.072 0.792 ± 0.077
ILPD 0.682 ± 0.051 0.621 ± 0.066 0.630 ± 0.072 0.628 ± 0.053
haberman 0.626 ± 0.072 0.620 ± 0.084 0.608 ± 0.077 0.499 ± 0.044
sonar 0.716 ± 0.074 0.706 ± 0.050 0.687 ± 0.057 0.602 ± 0.100
breastHess 0.830 ± 0.065 0.833 ± 0.087 0.852 ± 0.065 0.713 ± 0.094
breastcancer 0.991 ± 0.006 0.990 ± 0.007 0.990 ± 0.007 0.960 ± 0.022
parkinsons 0.885 ± 0.056 0.667 ± 0.072 0.681 ± 0.084 0.772 ± 0.079
heart 0.900 ± 0.023 0.895 ± 0.027 0.899 ± 0.026 0.901 ± 0.027
climate 0.955 ± 0.038 0.816 ± 0.054 0.817 ± 0.071 0.739 ± 0.096
diabetes 0.821 ± 0.038 0.787 ± 0.035 0.792 ± 0.032 0.667 ± 0.058
ionosphere 0.887 ± 0.049 0.772 ± 0.050 0.770 ± 0.051 0.427 ± 0.081
bupa 0.701 ± 0.061 0.618 ± 0.052 0.530 ± 0.064 0.493 ± 0.063
average 0.822 ± 0.026 0.749 ± 0.025 0.738 ± 0.027 0.691 ± 0.028

Table 4.9: AUC using an MLP kernel

Basename MLP-MMD MLP-KDD MLP-KSV
fertility 0.558 ± 0.258 0.542 ± 0.259 0.573 ± 0.205
appendicitis 0.720 ± 0.207 0.794 ± 0.128 0.740 ± 0.152
australian 0.929 ± 0.020 0.923 ± 0.021 0.699 ± 0.055
german 0.740 ± 0.066 0.742 ± 0.034 0.560 ± 0.067
golub 0.765 ± 0.130 0.797 ± 0.110 0.718 ± 0.163
banknote 1.000 ± 0.000 1.000 ± 0.000 0.819 ± 0.062
glass 0.980 ± 0.042 0.978 ± 0.046 0.974 ± 0.050
ILPD 0.734 ± 0.057 0.731 ± 0.045 0.644 ± 0.061
haberman 0.679 ± 0.089 0.656 ± 0.086 0.618 ± 0.102
sonar 0.878 ± 0.069 0.891 ± 0.063 0.579 ± 0.143
breastHess 0.875 ± 0.083 0.870 ± 0.074 0.792 ± 0.085
breastcancer 0.991 ± 0.007 0.991 ± 0.007 0.946 ± 0.030
parkinsons 0.937 ± 0.060 0.933 ± 0.050 0.604 ± 0.076
heart 0.883 ± 0.042 0.904 ± 0.050 0.696 ± 0.079
climate 0.946 ± 0.055 0.941 ± 0.047 0.525 ± 0.124
diabetes 0.805 ± 0.040 0.806 ± 0.046 0.648 ± 0.058
ionosphere 0.949 ± 0.033 0.937 ± 0.038 0.707 ± 0.076
bupa 0.687 ± 0.047 0.695 ± 0.077 0.568 ± 0.098
average 0.836 ± 0.026 0.841 ± 0.025 0.690 ± 0.027

52

4.2 Comparison with regularly-trained MLPs

4.2 Comparison with regularly-trained MLPs

As said in the last section, only one architecture of MLP was used during the

tests. However, this topology may not be ideal for the problems used here. Then,

experiments were made to see how this neural network would perform on the

same datasets when trained regularly, using cross-entropy loss (Goodfellow et al.,

2016).

For this, a linear classification layer was added to the network, making then

a three-layer neural network.

Besides the end-to-end training with cross-entropy classification loss, the net-

work was trained using each criterion (KDD, KSV, and MMD), excluding the

last layer’s linear classifier, which was trained afterwards, separately, using the

cross-entropy loss. In this situation, the hidden layer representations were de-

fined beforehand, and the linear classification layer was tuned while the rest of

the network remained static.

Accuracy and AUC results are shown in Tables 4.10 and 4.11, respectively.

Each experiment was executed 10 times for each dataset using cross-validation.

The confidence intervals are for a significance of 0.05.

Table 4.10: Accuracy in comparison with an end-to-end trained MLP

Basename MLP-CE MLP-MMD MLP-KDD MLP-KSV
fertility 0.800 ± 0.048 0.880 ± 0.030 0.880 ± 0.030 0.880 ± 0.030
appendicitis 0.838 ± 0.081 0.838 ± 0.082 0.819 ± 0.085 0.857 ± 0.074
australian 0.852 ± 0.033 0.859 ± 0.038 0.862 ± 0.035 0.633 ± 0.031
german 0.728 ± 0.029 0.719 ± 0.051 0.718 ± 0.038 0.701 ± 0.006
golub 0.750 ± 0.080 0.748 ± 0.117 0.764 ± 0.096 0.752 ± 0.101
banknote 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.686 ± 0.022
glass 0.962 ± 0.035 0.958 ± 0.033 0.958 ± 0.030 0.957 ± 0.044
ILPD 0.718 ± 0.024 0.700 ± 0.025 0.715 ± 0.006 0.715 ± 0.006
haberman 0.712 ± 0.042 0.732 ± 0.040 0.738 ± 0.050 0.738 ± 0.041
sonar 0.807 ± 0.033 0.826 ± 0.073 0.841 ± 0.067 0.500 ± 0.085
breastHess 0.797 ± 0.071 0.849 ± 0.063 0.826 ± 0.063 0.745 ± 0.023
breastcancer 0.969 ± 0.014 0.972 ± 0.014 0.972 ± 0.014 0.836 ± 0.031
parkinsons 0.918 ± 0.031 0.913 ± 0.039 0.892 ± 0.062 0.749 ± 0.011
heart 0.811 ± 0.063 0.833 ± 0.047 0.841 ± 0.043 0.700 ± 0.056
climate 0.957 ± 0.011 0.952 ± 0.022 0.939 ± 0.021 0.913 ± 0.009
diabetes 0.766 ± 0.030 0.741 ± 0.019 0.729 ± 0.025 0.698 ± 0.026
ionosphere 0.900 ± 0.024 0.880 ± 0.021 0.894 ± 0.032 0.661 ± 0.025
bupa 0.715 ± 0.042 0.672 ± 0.057 0.611 ± 0.051 0.563 ± 0.027
average 0.833 ± 0.016 0.837 ± 0.017 0.833 ± 0.018 0.738 ± 0.019

53

4.3 Visual experiments with MNIST dataset

Table 4.11: AUC in comparison with an end-to-end trained MLP

Basename MLP-CE MLP-MMD MLP-KDD MLP-KSV
fertility 0.620 ± 0.235 0.591 ± 0.238 0.644 ± 0.221 0.647 ± 0.151
appendicitis 0.753 ± 0.144 0.784 ± 0.136 0.828 ± 0.117 0.759 ± 0.140
australian 0.924 ± 0.022 0.918 ± 0.029 0.919 ± 0.025 0.705 ± 0.062
german 0.758 ± 0.049 0.768 ± 0.045 0.758 ± 0.037 0.560 ± 0.054
golub 0.733 ± 0.120 0.752 ± 0.114 0.775 ± 0.135 0.693 ± 0.176
banknote 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.818 ± 0.065
glass 0.984 ± 0.022 0.987 ± 0.025 0.988 ± 0.023 0.983 ± 0.019
ILPD 0.749 ± 0.031 0.739 ± 0.062 0.744 ± 0.044 0.625 ± 0.058
haberman 0.690 ± 0.069 0.696 ± 0.091 0.648 ± 0.139 0.633 ± 0.095
sonar 0.896 ± 0.044 0.905 ± 0.059 0.910 ± 0.048 0.522 ± 0.125
breastHess 0.844 ± 0.072 0.877 ± 0.088 0.872 ± 0.092 0.748 ± 0.123
breastcancer 0.991 ± 0.008 0.986 ± 0.010 0.987 ± 0.011 0.897 ± 0.040
parkinsons 0.962 ± 0.039 0.958 ± 0.029 0.945 ± 0.049 0.543 ± 0.098
heart 0.905 ± 0.027 0.910 ± 0.045 0.903 ± 0.045 0.739 ± 0.041
climate 0.937 ± 0.042 0.932 ± 0.051 0.939 ± 0.040 0.499 ± 0.109
diabetes 0.826 ± 0.029 0.815 ± 0.030 0.812 ± 0.034 0.669 ± 0.040
ionosphere 0.958 ± 0.017 0.935 ± 0.037 0.935 ± 0.044 0.504 ± 0.093
bupa 0.721 ± 0.059 0.707 ± 0.068 0.692 ± 0.082 0.511 ± 0.042
average 0.847 ± 0.023 0.848 ± 0.024 0.850 ± 0.024 0.670 ± 0.027

4.3 Visual experiments with MNIST dataset

Visual experiments were also conducted to explore the final aspect of the rep-

resentations. A simple convolutional neural network (LeCun et al., 1995) was

trained in the MNIST handwritten digits dataset (LeCun et al., 2010). The

model used had two convolutional layers and one fully connected, mapping to

an output space with 128 dimensions. A logistic function is applied pointwise in

the elements of every output vector, and the vectors are normalized to have unit

norm. This architecture achieved an accuracy of 98.84% on the test set. Both

KDD and KSV were used.

After training, samples from both training and test sets were mapped into the

network’s output space, and, subsequently, into a two-dimensional space using t-

SNE (Maaten & Hinton, 2008) to facilitate visualization.

The mappings learned using KDD are depicted in Figure 4.1. Patterns rep-

resenting the same digits are clustered into compact groups in both training and

test sets, showing that samples from the same class tend to be more similar, while

samples from different classes tend to be more distant.

Mappings learned with the unsupervised KSV function are shown in Fig-

ure 4.2. Patterns from the same class tend to be close as well. However, the

network does not separate them into clear clusters, and most classes overlap with

54

4.3 Visual experiments with MNIST dataset

another one. The accuracy of the test set using KSV was 23.21%.

(a) Training set (b) Test set

Figure 4.1: Visualization of MNIST representations learned with KDD maximiza-
tion. Maximizing the discrepancy between classes in the training set still yields
coherent groups in the test set. t-SNE was used to facilitate visualization.

(a) Training set (b) Test set

Figure 4.2: Visualization of MNIST representations learned with KSV maxi-
mization. There is a lot of overlap between classes, which helps explain the poor
classification performances. However, points of the same class still tend to get
mapped close to each other. t-SNE was used to facilitate visualization.

55

4.4 Result Analysis and Discussions

4.4 Result Analysis and Discussions

4.4.1 Supervised KDD Function

The results unquestionably show the usefulness of the KDD function in learning

class-coherent representations. By maximizing the pairwise distances between

the class distributions, distinct classes can be distinguished, and patterns from

the same class are aggregated into cohesive clusters.

For the two RBF kernels, both accuracy and AUC results show that the

KDD function is equivalent to finding kernel parameters using exhaustive search

and cross-validation to estimate performance. This is not true for the sigmoidal

kernel: grid-search SVM performed consistently better. This kernel, however, is

not always positive semidefinite, which means that the reproducing kernel map

is not guaranteed to exist. Thus, it is no surprise that the proposed methods do

not always achieve satisfactory results using this function.

The numeric results also show that the Maximum Mean Discrepancy maxi-

mization is statistically equivalent to maximizing the kernel distance in all settings

and kernels used. Both functions can be computed with very close forms, taken

with respect to the same terms, and can even represent distances in the same

space.

4.5 Unsupervised KSV Function

On the other hand, the unsupervised function did not perform very well on av-

erage, being consistently the worst between the compared groups. However, the

Gaussian and Laplacian kernels are exceptions, in which the accuracy and AUC

results were statistically equivalent to the others, including the fully grid-search

chosen parameters.

One possible explanation for this is that the RBF kernels have the locality

prior. Since these kernels are mere functions of the distance, they capture local

information of the data. Furthermore, they are nonlinear functions, with which

the dot product in feature space H decreases exponentially when the distance

increases.

56

4.5 Unsupervised KSV Function

function (Alain & Bengio, 2014). A simple regularization term, such as the norm

of the weights, can also be useful by enforcing smoothness.

The sigmoidal kernel did not work well with the KSV function. The numeric

results using it were even worse than the KDD results. Here, the two problems

add up: the kernel is only conditionally PSD, and may not always have the

reproducing kernel map the function relies on. Moreover, the sigmoidal kernel

does not capture the local information the RBF kernels do. With that in mind,

the poor performance is no surprise.

58

Chapter 5

Conclusions and Future Work

In this work, two methods to learn representations with a given parametric map

were proposed. These methods were built over kernel theory, and criteria are

computed based entirely on inner products between points in the feature space.

Here, classification problems were the focus, aiming to reach a space where the

classes are as separable as possible.

The two methods consisted of a supervised and an unsupervised function.

The supervised one, called the kernel distributional distance function, took into

account the class information to maximize a distance measure between class-

conditional probabilities on the inputs. However, this measure is defined in a

general form and can be applied to any pair of distributions using a suitable

kernel. The second method tries to find a map that is more expressive, with

some samples in high-density regions while others stay in low-density ones.

Experiments optimizing parameters of Gaussian and Laplacian kernels show

that both methods achieve good accuracy and AUC results when used in support

vector classification. Choosing the kernel parameters via grid-search as a baseline,

the results were statistically equivalent using confidence intervals for p = 0.05.

They were also equivalent to choosing the parameters using MMD.

Using sigmoidal kernels, however, the results were not good. In fact, the grid-

search baseline was unequivocally superior. This kernel, however, is not positive

semidefinite, which does not guarantee the reproducing kernel map exists. As the

proposed functions rely on the existence of this space, it is understandable that

the performance was not as good as in the RBF kernels.

59

5.1 Future Work

Experiments were also carried using multilayer perceptrons in the kernel

framework. Using the KDD function to train the network’s representations prior

to the classification step, it can be seen that it is possible to reach spaces with

separable classes, reflecting on the numerical results. However, the KSV function

did not repeat KDD’s performance. Even though the network could minimize

the loss and find convergent regions, the learned representations had lots of class

overlap. A possible explanation for this is that the neural network, albeit a con-

tinuous function, does not enforce locality when mapping to the representation

space. In contrast, the map defined by RBF kernels is based, by design, on

information of the immediate neighborhood of the points.

5.1 Future Work

Regarding the kernel distributional distance, more fundamental work has to be

done. First of all, an exploration regarding the possibility of the kernel discrep-

ancy between two distributions is a metric in the space of distributions. For that,

one needs to check if it satisfies all the axioms for such. Another important work

regarding the KDD is to analyze and interpret it inside the broader framework

of measures of divergence between distributions, since it is not yet clear whether

the KDD can be considered an integral probability metric.

The kernel similarity variance function achieved great results with translation-

invariant kernels, but not when used in MLPs. As it is hypothesized that this

function works better with operators that preserve local information other than

global, this hypothesis could be tested by using a suitable inductive bias when

training the network. One idea for a possible extension is to use a contractive

term in the loss function, just as contractive autoencoders (CAEs) Rifai et al.

(2011b), which penalize the norm of the function’s Jacobian matrix evaluated

over the training points.

Although classification problems were the main focus, the proposed methods

can be applied to other types of problems. For instance, these functions can

be used to learn embeddings in R
N of data such as images, text, and speech.

A work where it is used to embed speech data based on speaker information is

already in progress. Another possible application is in generative models. For

60

5.1 Future Work

example, generative adversarial networks could be trained to minimize the kernel

discrepancy between original and generated data, just as Li et al. (2017) with

maximum mean discrepancy.

From a computational cost point of view, each evaluation of the functions

demands kernel values of all pairwise training points. Thus, the processing cost

can escalate quadratically with the sample size. To mitigate these effects, it may

be possible to optimize them dividing the training set in mini-batches. This brings

a trade-off: smaller-sized batches makes the function evaluations computationally

cheaper, but may affect the confidence in their estimation. This effect was not

extensively studied.

61

References

Alain, G. & Bengio, Y. (2014). What regularized auto-encoders learn from

the data-generating distribution. The Journal of Machine Learning Research,

15, 3563–3593. 58

Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S.,

Sánchez, L. & Herrera, F. (2011). Keel data-mining software tool: data

set repository, integration of algorithms and experimental analysis framework.

Journal of Multiple-Valued Logic & Soft Computing , 17. 47

Bengio, Y., Courville, A. & Vincent, P. (2013). Representation learning:

A review and new perspectives. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 35, 1798–1828. 1, 11, 12

Boser, B.E., Guyon, I.M. & Vapnik, V.N. (1992). A training algorithm

for optimal margin classifiers. In COLT ’92: Proceedings of the fifth annual

workshop on Computational learning theory , 144–152, ACM, New York, NY,

USA. 2, 10

Burges, C.J.C. (1998). Geometry and Invariance in Kernel Based Methods. 3,

54–67. 43, 44

Castro, C.L. & Braga, A.P. (2013). Novel cost-sensitive approach to improve

the multilayer perceptron performance on imbalanced data. IEEE transactions

on neural networks and learning systems , 24, 888–899. 48

Chang, C.C. & Lin, C.J. (2011). Libsvm: A library for support vector ma-

chines. ACM transactions on intelligent systems and technology (TIST), 2,

1–27. 47

62

REFERENCES

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I. &

Abbeel, P. (2016). InfoGAN: Interpretable Representation Learning. 30th

Conference on Neural Information Processing Systems (NIPS 2016), 2172–

2180. 12

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine learning ,

20, 273–297. 20

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems , 2, 303–314. 23

Duda, R.O., Hart, P.E. & Stork, D.G. (1973). Pattern classification. Wiley,

New York. 17

Friedman, J., Hastie, T. & Tibshirani, R. (2001). The elements of statis-

tical learning , vol. 1. Springer series in statistics New York. 2

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. & Bouchachia, A.

(2014). A survey on concept drift adaptation. ACM computing surveys (CSUR),

46, 1–37. 19

Garriga-Alonso, A., Rasmussen, C.E. & Aitchison, L. (2018).

Deep convolutional networks as shallow gaussian processes. arXiv preprint

arXiv:1808.05587 . 24

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M.,

Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri,

M.A. et al. (1999). Molecular classification of cancer: class discovery and class

prediction by gene expression monitoring. science, 286, 531–537. 48

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep learning . MIT

press. 7, 10, 12, 36, 53

Goodfellow, I.J., Shlens, J. & Szegedy, C. (2015). Explaining and har-

nessing adversarial examples. 3rd International Conference on Learning Rep-

resentations, ICLR 2015 - Conference Track Proceedings , 1–11. 12

63

REFERENCES

Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B. &

Smola, A. (2012). A kernel two-sample test. Journal of Machine Learning

Research, 13, 723–773. 3, 20, 31

Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature

selection. Journal of machine learning research, 3, 1157–1182. 1

Hess, K.R., Anderson, K., Symmans, W.F., Valero, V., Ibrahim, N.,

Mejia, J.A., Booser, D., Theriault, R.L., Buzdar, A.U., Dempsey,

P.J. et al. (2006). Pharmacogenomic predictor of sensitivity to preoperative

chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophos-

phamide in breast cancer. Journal of clinical oncology , 24, 4236–4244. 47

Hinton, G.E. & Zemel, R.S. (1994). Autoencoders, minimum description

length and helmholtz free energy. In Advances in neural information processing

systems , 3–10. 2

Hinton, G.E., Sejnowski, T.J. & Ackley, D.H. (1984). Boltzmann ma-

chines: Constraint satisfaction networks that learn. Carnegie-Mellon Univer-

sity, Department of Computer Science Pittsburgh, PA. 1

Jacot, A., Gabriel, F. & Hongler, C. (2018). Neural tangent kernel: Con-

vergence and generalization in neural networks. Advances in Neural Informa-

tion Processing Systems , 2018-Decem, 8571–8580. 23

Kim, S.J., Zymnis, A., Magnani, A., Koh, K. & Boyd, S. (2008). Learning

the kernel via convex optimization. In 2008 IEEE International Conference on

Acoustics, Speech and Signal Processing , 1997–2000, IEEE. 2

LeCun, Y., Bengio, Y. et al. (1995). Convolutional networks for images,

speech, and time series. The handbook of brain theory and neural networks ,

3361, 1995. 54

LeCun, Y., Cortes, C. & Burges, C. (2010). Mnist handwritten digit

database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist ,

2. 11, 54

64

REFERENCES

LeCun, Y., Bengio, Y. & Hinton, G. (2015). Deep learning. Nature, 521,

436–444. 10

Lee, J., Bahri, Y., Novak, R., Schoenholz, S.S., Pennington, J. &

Sohl-Dickstein, J. (2017). Deep neural networks as gaussian processes.

arXiv preprint arXiv:1711.00165 . 23

Li, C.L., Chang, W.C., Cheng, Y., Yang, Y. & Póczos, B. (2017). MMD

GAN: Towards deeper understanding of moment matching network. Advances

in Neural Information Processing Systems , 2017-Decem, 2204–2214. 20, 61

Li, Y., Swersky, K. & Zemel, R. (2015). Generative moment matching net-

works. In International Conference on Machine Learning , 1718–1727. 20

Lichman, M. (2013). UCI machine learning repository. 47

Maaten, L.v.d. & Hinton, G. (2008). Visualizing data using t-sne. Journal

of machine learning research, 9, 2579–2605. 11, 54

MacCluer, B. (2008). Elementary functional analysis , vol. 253. Springer Sci-

ence & Business Media. 14

Mhaskar, H., Liao, Q. & Poggio, T. (2016). Learning Functions: When Is

Deep Better Than Shallow. 1–12. 23

Mitchell, T.M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill ,

45, 870–877. 6

Montavon, G., Braun, M.L. & Müller, K.R. (2011). Kernel analysis of

deep networks. Journal of Machine Learning Research, 12, 2563–2581. 23

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,

Z., Lin, Z., Desmaison, A., Antiga, L. & Lerer, A. (2017). Automatic

differentiation in pytorch. 47

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,

Dubourg, V. et al. (2011). Scikit-learn: Machine learning in python. the

Journal of machine Learning research, 12, 2825–2830. 47

65

REFERENCES

Popoviciu, T. (1935). Sur les équations algébriques ayant toutes leurs racines

réelles. Mathematica, 9, 129–145. 38

Rifai, S., Vincent, P., Muller, X., Glorot, X. & Bengio, Y. (2011a).

Contractive auto-encoders: Explicit invariance during feature extraction. Pro-

ceedings of the 28th International Conference on Machine Learning, ICML

2011 , 833–840. 12

Rifai, S., Vincent, P., Muller, X., Glorot, X. & Bengio, Y. (2011b).

Contractive auto-encoders: Explicit invariance during feature extraction. 57,

60

Rosasco, L., De Vito, E., Caponnetto, A., Piana, M. & Verri, A.

(2004). Are Loss Functions All the Same? Neural Computation, 16, 1063–

1076. 7

Salakhutdinov, R. & Hinton, G. (2009). Deep Boltzmann machines. Journal

of Machine Learning Research, 5, 448–455. 1

Scholkopf, B. & Smola, A.J. (2001). Learning with kernels: support vector

machines, regularization, optimization, and beyond . MIT press. 2, 8, 13, 14,

15, 21, 36

Silverman, B.W. (1986). Density estimation for statistics and data analysis ,

vol. 26. CRC press. 16, 17

Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schölkopf, B. &

Lanckriet, G.R.G. (2009). On integral probability metrics, φ-divergences

and binary classification. 1–18. 19, 20

Tikhonov, A.N. (1963). Solution of incorrectly formulated problems and the

regularization method. Soviet Math., 4, 1035–1038. 10

Torres, L.C., Lemos, A.P., Castro, C.L. & Braga, A.P. (2014). A ge-

ometrical approach for parameter selection of radial basis functions networks.

In International Conference on Artificial Neural Networks , 531–538, Springer.

2

66

REFERENCES

Vapnik, V. (1995). The nature of statistical learning theory . Springer science &

business media. 6, 8, 42

Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.A. (2008). Ex-

tracting and composing robust features with denoising autoencoders. In Pro-

ceedings of the 25th international conference on Machine learning , 1096–1103.

12

Wanderley, M.F.B., Torres, L.C.B., Natowicz, R. & Braga, A.P.

(2014). A maximum margin-based kernel width estimator and its application

to the response to neoadjuvant chemotherapy. Revista Brasileira de Engenharia

Biomédica, 30, 17–26. 2

67

	List of Symbols
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Publications
	1.2 Outline

	2 Statistical Learning, Representations, and Kernel Methods
	2.1 Statistical Learning Theory Basics
	2.2 Representation Learning
	2.3 Kernel Methods
	2.3.1 Positive Semidefinite Kernels
	2.3.2 Reproducing Kernel Hilbert Spaces
	2.3.3 Kernel Density Estimation
	2.3.3.1 Bayesian Classification and the Likelihood Space

	2.3.4 Maximum Mean Discrepancy
	2.3.5 Support Vector Classification

	2.4 Kernel Interpretation of Neural Networks

	3 Learning Kernel Parameters
	3.1 Basic Definitions
	3.2 The Kernel Distributional Discrepancy Loss
	3.3 The Kernel Similarity Variance Loss
	3.4 Continuity and Boundedness
	3.4.1 KDD Loss
	3.4.2 KSV Loss

	3.5 Analysis in Specific Kernels
	3.5.1 Gaussian and Laplacian
	3.5.2 Sigmoidal
	3.5.3 Neural Networks
	3.5.3.1 Output Normalization

	4 Experimental Results
	4.1 Comparing Kernels in SVMs
	4.2 Comparison with regularly-trained MLPs
	4.3 Visual experiments with MNIST dataset
	4.4 Result Analysis and Discussions
	4.4.1 Supervised KDD Function

	4.5 Unsupervised KSV Function

	5 Conclusions and Future Work
	5.1 Future Work

	References

