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Resumo

Nos modelos de degradação elástica, a trinca é considerada de maneira distribúıda, e a
energia liberada devido ao seu crescimento é controlada pela energia de fratura e outros
parâmetros do material, como os limites de resistência. Tal abordagem não é capaz de
representar a geometria da região onde ocorre a trinca. Além disso, apresenta algumas
limitações bem conhecidas, como forte dependência da malha, ińıcio prematuro da fra-
tura e fratura perfeitamente frágil instantânea. O grupo de pesquisa onde surgiu esse
trabalho possui uma vasta e diversificada experiência na formulação e implementação de
modelos de representação de fissuras. Vários estudos deste grupo de pesquisa referem-se
a tentativas de mitigar as limitações mencionadas. Atualmente, modelos de campo de
fase têm sido usados como uma abordagem alternativa para lidar com fraturas. Esses
modelos consideram uma trinca difusiva e suave pertencente a uma determinada região
de volume no qual uma função que descreve a densidade de trincas é prescrita. Esses mo-
delos podem detectar a nucleação de trincas e, como sua principal vantagem, conseguem
descrever uma trinca discreta sem se preocupar com a geometria da trinca em si. Desta
forma, o modelo de campo de fase consiste em incorporar uma equação adicional no mo-
delo para controlar uma variável de campo cont́ınuo que representa uma transição suave
entre o material intacto e o completamente danificado. Este trabalho é uma consequência
natural dos estudos anteriores do grupo de pesquisa sendo, neste grupo, um estudo pio-
neiro sobre modelos de campo de fase visando compreender as principais caracteŕısticas,
vantagens e desvantagens destes modelos. Todas as implementações computacionais fo-
ram feitas no programa INSANE (INteractive Structural ANalysis Environment), um
programa gratuito desenvolvido pelo próprio grupo de pesquisa.
Palavras-chave: Modelos de fratura baseado em campo de fase; Modelo de degradação
elástica; Método dos Elementos Finitos baseado em modelos de campo de fase.
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Abstract

While the Griffith approach is based on a discrete description of a crack, in the so-called
elastic degrading models, cracks are considered in a continuous way, and the energy re-
leased due to crack growth is controlled by the fracture energy and other material param-
eters, like the strength limits. Such an approach is not capable to represent the geometry
of the region where the crack takes place. Also, it presents some well known limita-
tions such as strong mesh-dependency, premature fracture initiation and instantaneous
perfectly-brittle fracture. The research group where the present work takes place has a
large and diverse experience concerning the formulation and implementation of models
for cracking representation. A number of studies of the research group focused on the
mitigation of the aforementioned limitations. Nowadays, Phase-field models have been
used as an alternative approach to deal with fracture. These models consider a diffusive
and smooth crack that belongs to a certain volume region where a function that describes
the crack density is prescribed. Such models can detect cracks nucleation and, as their
main advantage, can describe a sharp crack without worrying about the sharp crack itself.
In this way, the phase-field model consists in incorporating an additional equation in the
model to controls a continuous field variable that represents a smooth transition between
the completely broken and unbroken material. This work is a natural consequence of
the previous studies of the research group. It is a pioneer study of the group concern-
ing phase-field models that aims to understand the main characteristics, advantages and
drawbacks of phase-field models. All the computational implementations were done in
the software INSANE (INteractive Structural ANalysis Environment), an open source
software developed by the own research group.
Key-words: Phase field models of Fracture; Elastic degrading models; Finite Element
Method based Phase-field models.
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Chapter 1

Introduction

Fracture is an important failure mechanism for engineering materials and it has been
extensively studied to prevent catastrophic collapse of engineering structures (Wu, 2017).

One of the first approaches to the modelling of fracture is the Griffith criterion, that
is based on a pre-existing crack that propagates when the energy release rate matches the
fracture toughness (Broek, 1984). This method, however, presents a number of limitations,
like the need for a pre-existing crack and the impossibility to describe curvilinear crack
paths (Miehe et al., 2010b).

While the Griffith approach is based on a discrete description of a crack, in the so-
called elastic degrading models, e.g. classic smeared crack models (Borst and Gutiérrez,
1999, de Borst, 2002) and damage models (Mazars, 1984, Simo and Ju, 1987, Lemaitre
and Chaboche, 1990), cracks are considered in a continuous way, and the energy released
due to crack growth is controlled by the fracture energy and other material parameters,
like the strength limits. Even so extensively used, such an approach is not capable to rep-
resent the geometry of the region where the crack takes place. Another well known limi-
tation of elastic degrading models is that numerical analyses where localisation occurs are
characterised by a number of pathological behaviours, such as strong mesh-dependency,
premature fracture initiation and instantaneous perfectly-brittle fracture. These patho-
logical effects are due to the fact that, when strain-softening material models are adopted,
at a certain load level the continuum boundary value problem may become ill-posed (loss
of ellipticity of the equilibrium equations, corresponding to a singular strain rate). The
ill-posedness of the problem corresponds to an infinite set of solutions (discontinuous bi-
furcation), from which the numerical method selects the one corresponding to the smallest
energy dissipation. This approximated solution strongly depends on the mesh; at mesh
refinement it tends to a failure with zero energy dissipation, and then to a non-physical
behaviour (Borst, de et al., 1993, Peerlings et al., 2002).

The research group where the present work takes place has a large and diverse ex-
perience concerning the formulation and implementation of models for cracking repre-
sentation, as it can be seen by a number of papers on the topic (da Silva et al., 2017,
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Malekan et al., 2018, Wolenski et al., 2020, Campos et al., 2020, Wolff et al., 2020, Fon-
seca et al., 2020)1. A number of studies of the research group focused on the mitigation
of the aforementioned mesh dependency issue, by: (1) adopting different formulations for
inelastic/damage regions (Monteiro, 2013, Oliveira et al., 2020); (2) changing the numeri-
cal method, e.g. Generalized Finite Element Method (Monteiro et al., 2020, Novelli et al.,
2020), Boundary Element Method (Peixoto et al., 2018, Mendonça et al., 2020), Meshfree
Methods (Gori, 2018, Gori et al., 2019b) and Coupling Methods (Saliba et al., 2021); (3)
modelling damage variable using a nonlocal approach (Peixoto et al., 2019); (4) repre-
senting the continuum medium with higher order theories, e.g. micropolar (Gori et al.,
2017, 2019a), microstretch (Fuina, 2009) or micromorphic (Silva, 2019, Nogueira, 2021);
(5) introducing heterogeneity modelling (Monteiro, 2021), and so on. Therefore, even
with a large experience in modeling cracks, there is still room for another study. Thus,
this work presents a new approach to deal with the fracture, the phase-field approach.

Nowadays, the so-called phase-field models have been used as an alternative approach
to deal with fracture. Phase-field models (PFM) can detect cracks nucleation and, as
their main advantage, can describe a sharp crack without worrying about the sharp crack
itself. In this way, the phase-field model consists in incorporating an additional equation
in the model to control a continuous field variable that represents a smooth transition
between the completely broken and unbroken material. This variable is 1 for fully broken
state and 0 for unbroken state. Another variable of phase-field models is the length scale
parameter that relates the diffusive approximation of the sharp crack. When the length
parameter tends to zero, the model tends to the Griffith theory, i.e. to a sharp crack.
Insofar as the parameter becomes larger, the broken region also becomes larger. Then,
such parameter introduces a smooth transition between the broken and unbroken states.
This work is a natural consequence of the previous studies of the research group. It is
a pioneer study of the group concerning phase-field models. Such a starting study aims
to understand the main characteristics, advantages and drawbacks of phase-field models.
All the computational implementations were done in the software INSANE (INteractive
Structural ANalysis Environment), an open source software based on the Object-Oriented
Programing paradigm and developed by the research group since 2002. To generate the
mesh and as post-processor, the Gmsh2 and Paraview3 softwares were used.

1.1 Major Objective

Taking into account the above discussion, the major objective of this work is to study
the theoretical basis of phase-field models of fracture and implement some finite element

1See also the web-page of the group, http://insane.dees.ufmg.br.
2Gmesh software can be download at https://gmsh.info/
3Paraview software can be download at https://www.paraview.org/

http://insane.dees.ufmg.br
https://gmsh.info/
https://www.paraview.org/
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method based models, in order to understand the main characteristics, advantages and
drawbacks of such approach.

1.2 Specific Objectives

To reach the major objective it will be done:
• To choose a Finite Element Model for phase-field approach;
• To implement the FEM model chosen at INSANE, by using its OOP project with

minor modifications, in such way that introduces new java classes for a phase-field
constitutive model and for a new version of Newton-Raphson method;

• To validate the implementation by comparing the obtained results with that one’s
already existing in literature;

• To compare some phase-field constitutive models;
• To analyse the material and structural behaviour of the model;
• To study the size effect with phase-field approach.

1.3 Outline

This work is organized in 10 chapters and 6 appendices. After this first chapter, Chap-
ter 2 presents the theoretical foundation of PFM. Beginning by the variational approach
to Griffith’s theory that is adapted to introduce the phase-field diffuse crack, all discussion
is made until reach at the FEM discretization and the phase-field tangent constitutive
tensors. Chapter 3 presents the INSANE code modifications that is validated in Chap-
ter 4. Comparisons among the implemented models are presented in Chapter 5. Chapter 6
presents a comparative study on the behaviour of the phase-field strategy at the material
and structural levels. Chapter 7 presents a phase-field modelling of size effect on strength
and structural brittleness. The phase-field models ability to detect crack nucleation is
illustrated by some examples in Chapter 8. Miscellaneous simulations are presented in
Chapter 9 in order to try reproducing some examples available in the literature. Finally,
Chapter 10 closes the manuscript, summing up the main contributions of this work and
discussing future developments. The Appendices A to F brings the demonstrations of
equations used throughout this work.



Chapter 2

Theoretical foundation

In this chapter, the theoretical foundation of PFMs will be discussed,
starting from the variational approach to Griffith’s theory and then pre-
senting the phase-field itself.

2.1 The variational approach to Griffith’s theory

Griffith’s problem is depicted in Fig. 2.1, where Ω is the problem domain with external
boundary ∂Ω and a crack surface Γ. The external boundary can be splitted in two disjoint
parts: ∂Ωu, representing the region where the displacement is prescribed, and ∂Ωt, where
the loading is prescribed.

Figure 2.1: A solid body with a crack.

The variational form of the problem consists on the first order optimization of the

4
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total energy functional, that is given by:

Et(ū,Γ) = Ψs + Ψc − Pext (2.1)

with Ψs, Ψc, and Pext being respectively the strain energy, the surface energy and the
external load potential energy functionals, that are defined as:

Ψs =
∫

Ω
ψ0(ε(ū)) dV (2.2a)

Ψc =
∫

Γ
Gc dA (2.2b)

Pext =
∫

Ω
b̄ · ū dV +

∫
∂Ω
t̄ · ū dA (2.2c)

where ψ0 is the elastic strain energy density, ε is the strain tensor, Gc is the critical
energy release rate and b̄, t̄ and ū represent, respectively, the body forces, surface forces
and displacements. For more details about those functionals see Bourdin et al. (2008).

For a sharp crack, as illustrated in Fig. 2.1, the functions that represent the energy
depend on the crack surface and are defined as

Ψs(ū) =
∫

Ω\Γ
ψ(ε(ū),Γ) dV (2.3a)

Ψc(Γ) =
∫

Γ
Gc dA (2.3b)

where ψ is the strain energy density.
The variational problem is based on the three following conditions:

1. Irreversibility condition: The crack only grows as time goes on, that is, once the
crack had opened, it does not heal:

Γ̇(t) ≥ 0 (2.4)

2. Unilateral stationary condition: It is assumed that the processes always con-
sumes energy, so the pair (ū(t),Γ(t)) is a stationary point of the energy functional
(Et(ū,Γ)):

δEt(ū,Γ) ≥ 0 (2.5)

3. Energy conservation condition: The energy functional Et has to satisfy the
energy balance when the crack grows in time (the proof of Eq. (2.6) can be found
in Appendix A.1):

Ėt =
∫
∂Ωu

(σ · n̄) · ˙̄u dA−
∫

Ω

˙̄b · ū dV −
∫
∂Ωt

˙̄t · ū dA (2.6)

Applying the unilateral stationary condition, given by Eq. (2.5), to Eq. (2.1), using
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Eq. (2.2), results (as demonstrated on Appendix A.2) in

δEt =
∫

Γ
(σ · n̄) ·δū dA+

∫
∂Ωt

(σ · n̄− t̄) ·δū dA−
∫

Ω\Γ
(∇σ+ b̄) ·δū dV+

(
∂Ψs

∂Γ +Gc

)
δΓ ≥ 0

(2.7)
that, due to the arbitrariness of δū, the following expressions must hold:

∇σ + b̄ = 0̄ in Ω\Γ (2.8a)
σ · n̄− t̄ = 0̄ on ∂Ωt (2.8b)

σ · n̄ = 0̄ on Γ (2.8c)

It should be noted that Eq. (2.8a) is the already known pointwise equilibrium equation
of a continuum body, Eq. (2.8b) is the natural condition, and Eq. (2.8c) is a stress-free
condition for the crack surface. From Eq. (2.8), Eq. (2.7) can be recasted as:

δEt = (−G +Gc)δΓ ≥ 0, where G = −∂Ψs

∂Γ (2.9)

Since the crack always grows, the therm δΓ in Eq. (2.9) is positive. Because of that,
to maintain the inequality valid, the following must hold:

− G +Gc ≥ 0⇒ G −Gc ≤ 0 (2.10)

which corresponds to the Griffith’s criterion, which states that the variable G will always
be less then or equal to the fracture energy. In other words, it means that the variation
of the strain energy with respect to the crack size will always be less then or equal to the
fracture energy, a material parameter.

Finally, from Eq. (2.6), it can be shown that (Appendix A.3):

(G −Gc)Γ̇ = 0 (2.11)

that is, the crack starts growing when G = Gc.
Then, Eqs. (2.4), (2.10) and (2.11) give, in optimization theory, the three conditions

of Griffith’s criterion, also known as Karush-Kuhn-Tucker conditions:

∂Γ
∂t

= Γ̇ ≥ 0 (The crack never heals) (2.12a)

G −Gc ≤ 0 (Gc is a limit) (2.12b)
(G −Gc)Γ̇ = 0 (The crack starts growing when G = Gc) (2.12c)
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2.2 Introduction of a diffuse crack

In this section, divided in four subsections the phase-field diffuse crack concept will be
introduced. In the first subsection the ideas that are behind the phase-field modelling
(PFM) will be introduced. In the second subsection, the Griffith theory will be adapted
to arrive at the strong form of the phase-field equations. Then, some key functions
for PFM, like the energetic degradation function and the generic crack surface density
function, will be presented. Finally, the splitting of the strain energy density in active
and inactive parts will be introduced, in an attempt to prevent crack propagation under
compression.

2.2.1 A brief introduction to phase-field modelling

The general idea of PFM can be illustrated with the model depicted in Fig. 2.2, an infinite
bar of cross-section Γ, under axial traction, with a crack at the position x = 0. This figure
illustrates the function of the phase-field (φ) variable versus the axial position, comparing
it with the sharp crack. When the parameter l0 tends to zero, the model approximates

Figure 2.2: Sharp and diffusive crack modeling (Adapted from Miehe et al. (2010b)). (a) Sharp
crack at x = 0 and (b) diffusive crack at x = 0 modeled with the length scale l0.

to Griffith theory, with a sharp crack. Insofar as the parameter l0 becomes larger, the
broken region of the bar also becomes larger. Then, such parameter introduces a smooth
transition between the broken and unbroken state.
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From Miehe et al. (2010a), the following equations are given:

φ(x) = e−|x|/l0 (2.13a)

I(φ, φ′) = 1
2

∫
Ω
φ2 + l20(φ′)2 dV (2.13b)

where Eq. (2.13a) gives the phase-field value as a function of the axial position x, in such
a way that, in the center of the bar the section is fully broken and at x→∞ the section
is fully unbroken. Eq. (2.13b) gives a functional whose minimization gives a differential
equation which solution is given by Eq. (2.13a).

It can also be shown that solving Eq. (2.13b) for Eq. (2.13a), it give us (see Ap-
pendix A.4):

I(φ, φ′) = Γl0 (2.14)

So, it can say that, the crack surface area of the corresponding sharp crack can be given
by:

Γl = 1
l0
I(φ, φ′) =

∫
Ω
γ(φ, φ′) dV with γ(φ, φ′) = 1

2l0
φ2 + l0

2 (φ′)2 (2.15)

where γ is called crack surface density.
Without loss of generality, for a 3D case, Eq. (2.15) can be given by:

Γl = 1
l0
I(φ,∇φ) =

∫
Ω
γ(φ,∇φ) dV (2.16)

where:
γ(φ,∇φ) = 1

2l0
φ2 + l0

2 |∇φ|
2 (2.17)

Within this approach that considers γ as a distribution of crack surfaces in a certain
volume, the smeared form of crack surface functional, defined in Eq. (2.2b), becomes

Ψc =
∫

Ω
Gcγ(φ,∇φ) dA (2.18)

2.2.2 Strong form of PFM

The development of the strong form of PFM presented in this subsection is based on Wu
et al. (2020) which should be consulted for more details. In that it is considered a domain
Ω with a damaged part B ⊂ Ω that corresponds to the crack smoothing region. The
boundary of the solid and its damaged surface are, respectively, ∂Ω and ∂B (Fig. 2.3).

Considering the smooth crack representation, the surface (Eq. (2.2b)) and strain
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Figure 2.3: A solid body with a phase-field crack.

(Eq. (2.2a)) energies can be recast as

Ψc =
∫

Γ
Gc dΓ ≈

∫
B
Gcγ(φ,∇φ) dV (2.19a)

Ψs(ū, φ) =
∫

Ω
ψ(ε(ū), φ) dV (2.19b)

and the total energy functional Et becomes

Et =
∫

Ω
ψ(ε(ū), φ) dV +

∫
B
Gcγ(φ,∇φ) dV −

∫
Ω
b̄ · ū dV −

∫
∂Ω
t̄ · ū dA (2.20)

According to the unilateral stationary condition (Eq. (2.5)), the displacement and
the phase-field (ū, φ) are found by minimizing Eq. (2.20), whose first variation is (see
Appendix A.5)

δEt = −
∫

Ω
(∇σ + b̄) · δū dV +

∫
∂Ωt

(σ · n̄− t̄) · δū dA+

+
∫
B

[
∂ψ

∂φ
+Gcδφγ

]
δφ dV +

∫
∂B
Gc

(
∂γ

∂∇φ
· n̄
)
δφ dA ≥ 0

(2.21)

where:
δφγ =

(
∂γ

∂φ
−∇ · ∂γ

∂∇φ

)
(2.22)

In analogy to what was discussed on Eq. (2.8), from Eq. (2.21) the following conditions
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can be obtained:

∇σ + b̄ = 0̄ in Ω (2.23a)
σ · n̄− t̄ = 0̄ on ∂Ωt (2.23b)

and defining Y = −∂ψ
∂φ

(crack driving force), it can be shown that (Appendix A.6):

Y −Gcδφγ = 0, for φ̇ > 0

Y −Gcδφγ < 0, for φ̇ = 0
(2.24)

∂γ

∂∇φ
· n̄ = 0 in ∂B (2.25)

Observe that the crack driving force is the energetic conjugate of the phase-field just
like the stress is from the strains. It is also worth noticing that, Eq. (2.25) is a boundary
condition since the γ doesn’t varies on the boundary ∂B.

Assuming that ψ depends on a degradation function1 g(φ) as presented in Eq. (2.26b)
and, using the chain rule, the crack driving force can be rewritten as in Eq. (2.26c).
Eq. (2.26d) is obtained from Eq. (2.26c) after introduced the definition of the effective
crack driving force Ȳ (Eq. (2.26a)).

Ȳ = ∂ψ

∂g
(2.26a)

ψ(ε, φ) = ψ(ε, g(φ)) (2.26b)

Y = −∂ψ
∂φ

= −∂ψ
∂g

∂g

∂φ
(2.26c)

Y = −g′(φ)Ȳ (2.26d)

From all this developed theory it can be observed:
1. Irreversibility condition

As it has already been discussed, the crack opening is irreversible. In terms of the
functional Γl, discussed on Section 2.2.1, this results in:

Γ̇l =
∫
B
γ̇(φ,∇φ) dV ≥ 0 (2.27)

with:
γ̇ = ∂γ

∂φ
φ̇+ ∂γ

∂∇φ
∇φ̇ (2.28)

After some manipulations, and applying the divergence theorem and the boundary
1The energetic degradation function g(φ) and its properties will be discussed in Section 2.2.3.
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conditions, Eq. (2.27) becomes:

Γ̇l =
∫
B
φ̇δφγ dV ≥ 0 (2.29)

with δφγ defined in Eq. (2.22).
Since φ̇ ≥ 0, it is necessary that δφγ ≥ 0. These are the irreversibility conditions.

2. Phase-field evolution equation
Introducing f(Y, φ) = Y −Gcδφγ, the Karush-Kuhn-Tucker conditions become:

φ̇ ≥ 0, f(Y, φ) ≤ 0, φ̇f(Y, φ) = 0 (2.30)

with Gcδφγ being the limit in which the crack will grow. In analogy to a sharp
crack, this therm is the critical energy release rate (Gc). The crack driving force
(Y ) can be compared to G.
Considering φ̇ > 0, from Eq. (2.24), and considering Ȳ as defined on Eq. (2.26d),
the following can be obtained:

− g′(φ)Ȳ −Gcδφγ = 0 −→ δφγ = −g
′(φ)Ȳ
Gc

(2.31)

In other words, the density of cracks will be smaller the larger Gc. Then, a high
value of Gc can be adopted as a strategy to prevent crack formation in certain
regions.

2.2.3 Energetic Degradation Function

The energetic degradation function g(φ), that appears in Eq. (2.26), represents the degra-
dation of the initially-elastic material and, according to Wu et al. (2020), it has to satisfy
the following conditions:

• g(0) = 1: there is no degradation in the intact material;
• g(1) = 0: the energy is completely degraded in fully broken material;
• g′(φ) = dg

dφ
≤ 0: the function g(φ) has to be monotonically decreasing;

• g′(1) = 0: there isn’t a sudden variation at the interface where the material is fully
broken.

Some of the functions already proposed in the literature are illustrated in Table 2.1
and its graphs are plotted on Fig. 2.4. It can be observed that the cubic and quartic
functions have g′(0) = 0. These functions represent materials whose initial behaviour is
linear elastic. On the other hand the quadratic function have g′(0) < 0, meaning that
material degradation begins as soon as the loading starts.
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Table 2.1: Energetic degradation functions

g(φ) authors
(1− φ)2 Bourdin et al. (2000)

3(1− φ)2 − 2(1− φ)3 Karma et al. (2001)
4(1− φ)3 − 3(1− φ)4 Kuhn et al. (2015)
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Bourdin et al. (2000)
Karma et al. (2001)
Kuhn et al. (2015)

(a)
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g′(φ)

(b)

Figure 2.4: (a) Energetic degradation function (g(φ)), and (b) Derivative of energetic degrada-
tion function (g′(φ)).

2.2.4 Generic crack surface density function

The crack surface density function used by Miehe et al. (2010a) has been presented in
Eq. (2.17). This is only one of the several forms to describe the distribution of crack
surfaces in a certain volume. Wu (2017) proposed a general equation to describe the
crack surface distribution:

γ(φ,∇φ) = 1
C0

[ 1
l0
α(φ) + l0|∇φ|2

]
(2.32a)

δφγ = 1
C0

[ 1
l0
α′(φ)− 2l0∆φ

]
(2.32b)

where α(φ) is the geometrical crack function and the parameter C0 = 4
∫ 1
0 α

1/2(φ)dφ.
The function α(φ) has to satisfy the properties of Eq. (2.33) and it determines how the

phase-field will be distributed. Table 2.2 and Fig. 2.5 relates the phase-field distribution
in function of the chosen α for a bar under traction with length L. The crack is localized
in x = 0, where x represents the bar axis.

α(0) = 0 and α(1) = 1 (2.33)



§2.2 Theoretical foundation 13

Table 2.2: Geometric crack functions and its corresponding phase-field distribution (Wu et al.,
2020).

α(φ) φ(x)

φ2 e−|x|/l0

φ

(
1− |x|2l0

)2

2φ− φ2 1− sin
(
|x|
l0

)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x/L

φ
(x
)

φ2

φ

2φ− φ2

Figure 2.5: Phase-field distribution in function of α

2.2.5 The strain energy density

Whereas in Griffith’s approach the strain energy density (ψ) depends on the crack length
(Eq. (2.3b)), in phase-field that depends on the energy degradation function (g(φ)). To
describe ψ it is used the initial strain energy density function ψ0(ε) that, assuming the
material to be linear elastic, is given by:

ψ0(ε) = 1
2σ : ε = 1

2ε : Ê0 : ε = 1
2λ0(tr(ε))2 + µ0ε : ε (2.34)

where λ0 and µ0 are the Lamé constants.
In order to prevent crack formation in compressed regions, it was proposed an anisotropic

formulation based on the following additive decomposition of the elastic strain energy:

ψ0(ε) = ψ+
0 (ε) + ψ−0 (ε) (2.35)
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where ψ+
0 (ε) is the part that comes from tensile strains (active strain energy density) and

ψ−0 (ε) is the part of compression strains (inactive strain energy density). The degradation
is then assumed to affect just the tensile part:

ψ(ε) = g(φ)ψ+
0 (ε) + ψ−0 (ε) (2.36)

where the therms ψ+
0 and ψ−0 depend on the adopted constitutive model which will be

discussed later in Section 2.5.
From Eq. (2.36), the stress field, the constitutive tensor Ĉ and the evolution phase-field

law becomes:

σ = ∂ψ

∂ε
= g(φ)∂ψ

+
0 (ε)
∂ε

+ ∂ψ−0 (ε)
∂ε

(2.37a)

Ĉ = ∂σ

∂ε
= g(φ)∂

2ψ+
0 (ε)
∂ε2 + ∂2ψ−0 (ε)

∂ε2 (2.37b)

Y = Gcδφγ = −g′(φ)Ȳ , Ȳ = ∂ψ

∂g
= ψ+

0 (ε) (2.37c)

2.3 Equations of PFM in weak form

From the strong form of PFM presented in Section 2.2.2, the following weak form can be
obtained: 

∫
Ω
σ : δε dV = δPext∫

B

[
g′(φ)Ȳ δφ+Gcδγ

]
dV ≥ 0

(2.38a)

(2.38b)

with:
δγ = 1

C0

[ 1
l0
α′(φ)δφ+ 2l0∇φ · ∇δφ

]
(2.39)

where Eq. (2.38a) is the standard weak form of classical elasticity and the proof of
Eqs. (2.38b) and (2.39) can be found in Appendix A.7.

Eq. (2.38) allow to solve a diffuse crack problem in terms of the displacement u and of
the phase-field φ, under given natural and essential boundary conditions. While essential
boundary conditions on the displacement are the same as in a classic elasticity problem,
essential boundary conditions on the phase-field can be used to induce a certain cracking
behaviour. For example, setting φ = 1 allows to introduce a pre-defined crack in the
model, as an alternative to a discrete representation of such crack with the mesh. On
the other hand a prescribed zero value of the phase field indicates a region where the
formation of a crack is prevented (i.e. where the material remains elastic); to the same
purpose, a high value of the fracture energy Gc can be adopted.

While solving Eq. (2.38b), it’s important to guarantee the irreversibility condition of
the phase-field, δφ ≥ 0, and the bounds to the phase-field values, φ ∈ [0, 1]. Among
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the possible approaches, Miehe et al. (2010b) introduced a historical variable H in the
formulation, that represents the maximum value of ψ+

0 attained by the material, i.e. the
maximum value of the effective driving force Ȳ defined in Eq. (2.37c). With that consid-
eration and using α(φ) = φ2, Eq. (2.38b) can be solved as an equality, with the guarantee
that the irreversibility and the phase-field bounds are automatically satisfied. The major
disadvantage of this approach is that the model is limited to the above geometrical crack
function (α(φ) = φ2). Another way to deal with that is to use a bounded constrained
solver to verify, at each iteration, the problem conditions. This kind of solver is more
general and it is able to solve phase-field equations for any functions adopted.

In this work, Miehe et al. (2010b) historical variable method was adopted.

2.4 FEM Discretization

In the Finite Element Method (FEM) formulation, the displacement field and the strain
field are written in terms of nodal displacements:

ū(x̄) = [N]uI d̄I (2.40a)
ε̄(x̄) = [B]uI d̄I (2.40b)

where d̄I is the nodal displacement vector and, for each node I it has, for 2D case:

[N]uI =
Nu

I 0
0 Nu

I

 , [B]uI =


Nu
I,x 0
0 Nu

I,y

Nu
I,y Nu

I,x

 (2.41)

In a similar way, the phase-field is interpolated from its nodal values:

φ(x̄) = [N]φI āI (2.42a)
∇φ(x̄) = [B]φI āI (2.42b)

where āI is the nodal phase-field vector and, for each node I:

[N]φI =
[
Nφ
I

]
(2.43)

[B]φI =
Nφ

I,x

Nφ
I,y

 (2.44)

From those definitions, it can be shown (Appendix C) that the FEM discretization of
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Eq. (2.38) can be written as


∫

Ω
[B]u,TI σ̄ dV = f̄I∫

B
g′Ȳ [N]φ,TI dV +

∫
B

Gc

C0

( 1
l0
α′ [N]φ,TI + 2l0 [B]φ,TI ∇φ

)
dV ≥ 0̄I

(2.45a)

(2.45b)

and from that, it can be obtained the residual form

r̄uI =
∫

Ω
[B]u,TI σ̄ dV − f̄I = 0̄I (2.46a)

r̄φI = −
∫
B

[N]φ,TI
(
g′Ȳ + 1

C0l0
α′Gc

)
dV −

∫
B

2l0
C0
Gc [B]φ,TI ∇φ dV ≤ 0̄I (2.46b)

that allow to obtain the following tangent stiffness matrix

[K] =
 [Kuu]

[
Kuφ

][
Kφu

] [
Kφφ

] (2.47)

where:

[Kuu]IJ =
∫

Ω
[B]u,TI

∂σ̄

∂ε̄
[B]uJ dV (2.48a)[

Kuφ
]
IJ

=
∫

Ω
[B]u,TI

∂σ̄

∂φ
[N]φJ dV (2.48b)

[
Kφu

]
IJ

=
∫
B

[N]φ,TI g′
∂Ȳ

∂ε̄
[B]uJ dV (2.48c)[

Kφφ
]
IJ

=
∫
B

[N]φ,TI
(
g′′Ȳ + 1

C0l0
α′′Gc

)
[N]φJ dV +

∫
B

2l0
C0
Gc [B]φ,TI [B]φJ dV (2.48d)

As already discussed above in Section 2.3, to ensure the crack irreversibility (φ̇ ≥ 0)
and the boundedness conditions (φ ∈ [0, 1]) this work has adopted the historical variable
of Miehe et al. (2010b), in which Ȳ of Eqs. (2.46) and (2.47) assumes the maximum value
reached by the active strain energy density (ψ+

0 ) along the solver process.

2.5 Phase-field constitutive models

The phase-field models implemented as part of this work will be presented in this section.
They are the isotropic constitutive model and the anisotropic constitutive models of Lan-
cioni and Royer-Carfagni (2009), Amor et al. (2009) and Miehe et al. (2010b). It’s very
important to emphasize that, when dealing with phase-field models, the therms isotropic
and anisotropic is not related to material proprieties, but to the separation of regions
under tension and compression.

In the implemented constitutive models, the following functions will be used:
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• Ramp function:

〈x〉+ = |x|+ x

2 , 〈x〉− = |x| − x2 (2.49)

In the first equation, the ramp function returns the value of x, if x is positive, or
zero for other values. The second expression in Eq. (2.49) returns the modulus of
x, if x is negative, or zero for other values.

• Sign function:

sgn(x) =


−1 , if x < 0

0 , if x = 0

1 , if x > 0

(2.50)

• Heaviside Function:
H(x) = 1 + sgn(x)

2 (2.51)

The Heaviside function returns 0 if x < 0, 0.5 if x = 0 and 1 if x > 0.
• R±n functions: Applied to verify the signal of the strain tensor trace and are defined

as:

R+
n = H(tr(ε)) (2.52a)

R−n = H(− tr(ε)) (2.52b)

From Eq. (2.52) it is observed that:

〈tr(ε)〉+ = R+
n tr(ε) (2.53a)

〈tr(ε)〉− = R−n tr(ε) (2.53b)

Those definitions will help to demonstrate the constitutive and stress tensors of the
Amor et al. (2009) and Miehe et al. (2010b) models.

2.5.1 Isotropic constitutive model

In this model, adopted by Bourdin et al. (2000), there is no separation between active and
inactive strain energy density. In this way, to become coherent with the theory discussed
in Section 2.2.5 it is defined:

ψ+
0 (ε) = ψ0(ε), ψ−0 (ε) = 0 (2.54a)

σ = ∂ψ

∂ε
= g(φ)σ̄, where σ̄ = ∂ψ0

∂ε
= Ê0 : ε (2.54b)
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and with these considerations, the energy density function, and the effective crack driving
force become:

ψ(ε, φ) = g(φ)ψ0(ε) (2.55a)
Ȳ = ψ0(ε) (2.55b)

It is important to point out that the applicability of this constitutive model is limited,
since it considers crack propagation in the compressed region.

2.5.2 Lancioni and Royer-Carfagni (2009) constitutive model

This model, used to analyse a structural failure of the Panthéon, considers that the crack
occurs because of shear forces, and it takes into account the decomposition of the strain
tensor into its spherical (εV ) and deviatoric (εD) parts:

ψ+
0 (ε) = µ0εD : εD (2.56a)

ψ−0 (ε) = 1
2K0(tr(ε))2 (2.56b)

ε = εV + εD (2.56c)

εV = 1
3tr(ε)I (2.56d)

εD = ε− 1
3tr(ε)I (2.56e)

where I is the identity matrix and K0 = λ0 + 2
3µ0. Hence, the constitutive tensor Ĉ and

the stress field σ become (Appendix D.1):

σ = g(φ) 2µ0εD +K0tr(ε)I (2.57a)
Ĉ = 2g(φ)µ0εV +K0I ⊗ I (2.57b)

2.5.3 Amor et al. (2009) constitutive model

The model of Amor et al. (2009) is an evolution of Lancioni and Royer-Carfagni (2009)
and considers the volumetric part as active if the trace of strain tensor is positive:

ψ+
0 = 1

2K0R
+
n (tr(ε))2 + µ0εD : εD (2.58a)

ψ−0 = 1
2K0R

−
n (tr(ε))2 (2.58b)

Ĉ = g(φ)
[
K0R

+
n I ⊗ I + 2µ0

(
Î− 1

3I ⊗ I
)]

+K0R
−
n I ⊗ I (2.58c)

σ = g(φ)
[
K0R

+
n ε : I ⊗ I + 2µ0

(
ε− 1

3ε : I ⊗ I
)]

+K0R
−
n ε : I ⊗ I (2.58d)
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where K0 is defined in Section 2.5.2 and the proof of the expressions of the constitutive
and stress tensors can be found in Appendix D.2. According to Wu et al. (2020) this
models limit but doesn’t prevents crack in compressed regions.

2.5.4 Miehe et al. (2010b) constitutive model

The model proposed by Miehe et al. (2010b) is capable to completely suppress crack
growth in compressed regions. This property is obtained by using the following spectral
decomposition of the strain tensor:

ε =
3∑

n=1
εnp̄n ⊗ p̄n = ε+ + ε− (2.59)

where ε+ and ε− are, respectively, the active and inactive strain tensors, defined by:

ε+ =
3∑

n=1
〈εn〉+ p̄n ⊗ p̄n (2.60a)

ε− =
3∑

n=1
〈εn〉− p̄n ⊗ p̄n (2.60b)

where εn and p̄n represent, respectively, the eigenvalues and eigenvectors of the strain
tensor. Using this decomposition, the strain energy density can be recasted as

ψ+
0 = 1

2λ0R
+
n (tr(ε))2 + µ0ε

+ : ε+ (2.61a)

ψ−0 = 1
2λ0R

−
n (tr(ε))2 + µ0ε

− : ε− (2.61b)

In order to obtain the expressions of the stress and constitutive tensors, it is first
necessary to introduce the fourth-order tensors P̂+ and P̂− (see Section D.3.1), that
allow to express the active and inactive parts of the strain tensor in terms of the strain
tensor itself as

ε+ = P̂+ : ε, ε− = P̂− : ε (2.62a)

P̂+ =
3∑

n=1
H(εn)p̄n ⊗ p̄n ⊗ p̄n ⊗ p̄n, P̂− = Î− P̂+ (2.62b)

From these definitions it can be shown that (Section D.3.2) the constitutive and stress
tensors are given by:

Ĉ = g(φ)
[
λ0R

+
n I ⊗ I + 2µ0P̂+

]
+ λ0R

−
n I ⊗ I + 2µ0P̂− (2.63a)

σ = g(φ)
[
λ0R

+
n tr(ε)I + 2µ0P̂+ : ε

]
+ λ0R

−
n tr(ε)I + 2µ0P̂− : ε (2.63b)
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2.5.5 Plane case

As it is already known, in plane case, the third component of stress (in case of plane
stress) or strain (in case of plane strain) is zero and the strain energy density has to be
particularized to those cases. Table 2.3 shows the particularized form of active and inactive
strain energy for the presented constitutive models (Demonstrations in Appendix E).

Table 2.3: Active and inactive strain energy density

Const. Model ψ±0

Isotropic ψ+
0 = 1

2λ0tr(εij)(ε11 + ε22) + µ(ε2
11 + ε2

22 + 2ε2
12)

ψ−0 = 0
(2.64)

Lancioni and
Royer-

Carfagni
(2009)

ψ+
0 = µ0ε

D
pl : εDpl

ψ−0 = 1
2λtr(ε)(ε11 + ε22)+

+µ0

(2
3tr(ε)(ε11 + ε22)− 2

9(tr(ε))2
) (2.65)

Amor et al.
(2009)

ψ+
0 = µ0ε

D
pl : εDpl + 1

2λ0R
+
n tr(ε)(ε11 + ε22)+

+µ0R
+
n

(2
3tr(ε)(ε11 + ε22)− 2

9(tr(ε))2
)

ψ−0 = 1
2λ0R

−
n tr(ε)(ε11 + ε22)+

+µ0R
−
n

(2
3tr(ε)(ε11 + ε22)− 2

9(tr(ε))2
)

(2.66)

Miehe et al.
(2010b)

ψ+
0 = 1

2λ0R
+
n tr(ε)(ε11 + ε22) + µ0ε

+
pl : ε+

pl

ψ−0 = 1
2λ0R

−
n tr(ε)(ε11 + ε22) + µ0ε

−
pl : ε−pl

(2.67)

where εDpl, ε+
pl and ε−pl contain just the plane case components of the respective tensors.

2.6 Solvers

There are two solution strategies that allow to solve the PFM problem illustrated in
Section 2.3: monolitic solvers and staggered solvers. Both of them are implemented in
this work.

Monolithic solvers are based on the Newton-Raphson method, and aim to solve each
iteration in both the displacement field and phase-field. The solution process relies on
the tangent stiffness matrix of Eq. (2.47). As pointed out by Wu et al. (2020), monolithic
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solvers present some issues due to the fact that the energy functional of Eq. (2.20) is not
convex with respect to both displacement and phase-field variables (Bourdin et al., 2008,
Wu et al., 2020). For the models analysed during this work, using monolithic solvers, it
was observed that the analysis stop converging when the structure starts to be non linear.

Staggered solvers aim to overcome some of the issues of monolithic solvers, by uncou-
pling the problem and solving the displacement and the phase-field one at a time resulting
in a more robust process. This kind of solver calculates the displacements (d̄) for phase-
field (ā) given by the last iteration, and then, the updated displacements are used to
calculate the phase-field over again. Therefore just the [Kuu

I ] and
[
Kφφ

I

]
parts of the

tangent stiffness matrix of Eq. (2.47) are used. The process goes on until a convergence
criterion is reached. Fig. 2.6 illustrates that process. Starting from point A, and solving
Eq. (2.46a) for a fixed phase-field value, it goes to point B. Now, fixing the displacements
values and solving Eq. (2.46b), it will reach at point C. The process will be iterated until
reaches at the convergent point.

Figure 2.6: Iterative procedure for staggered solver (Adapted from Zang et al. (2018)).

Different solvers have already been proposed in the literature, each one optimized for
a specific problem. More informations on the solvers can be found in Chapter 3.



Chapter 3

Implementation

In this chapter the INSANE system will be presented together with
all the changes that was necessary to implement each kind of solver:
monolithic and staggered.

3.1 A brief introduction to INSANE

The INSANE System (INteractive Structural ANalysis Environment) is an open-source
software developed at the Structural Engineering Department of UFMG. Almost all the
code is developed in Java and the full potential of object-oriented programming (OOP)
is used.

Classe não modificada Classe modificada Classe nova

<<interface>>
Persistence

<<abstract class>>
Solution

<<interface>>
Assembler

java.util.Observer

<<interface>>
Observable

<<interface>>
Observable

<<interface>>
Model

Figure 3.1: INSANE core organization (Penna, 2011)

As pointed out in Fig. 3.1, INSANE core is composed by the interfaces Model, Solution
and Assembler that are responsible to abstract and to solve the model. The Persistence

22
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collects and writes the input and output data in files and Model stores the lists of nodes,
elements, loadings, etc. Assembler is responsible to mount the system of equations and
Solution has the necessary methods to solve the problem.

Some classes and interfaces are of fundamental importance for the development of this
work. They are:

• Material: Stores the material parameters;
• ConstitutiveModel: Responsible to calculate the constitutive material relations

and the stress;
• AnalysisModel: Has the necessary methods to return all information inherent to

the analysis model, for example, the degrees of freedom and the internal variables
operator;

• Degeneration: Represents the degeneration of the geometry. In 2D case, it repre-
sents the degeneration of the thickness, represented by the integration points. It is
responsible to ask the constitutive model for the constitutive matrix;

• ProblemDriver: Defines the type of problem to be solved (Physically non linear,
frame, meshfree, etc) and it is responsible to mount the element incremental stiffness
matrix;

• Assembler: Mounts all vectors and matrices that are necessary to solve system of
equations;

• Step: Implements the necessary methods to solve each step of a non linear analysis,
for example, the Standard Newton Raphson.

More information of INSANE working and its organization is very well described in
Penna (2011).

3.2 Modifications in INSANE structure

To implement the phase-field models, the entire process was designed in order to reduce
the intervention in the code. In the UML diagrams presented throughout this section, the
modified classes will be depicted in yellow, the new classes in green and the non modified
classes in white (Fig. 3.2).

Class Diagram0 2021/06/13

1 / 1

 pkg 

Modified class New class Non modified class

Figure 3.2: Classes representation in UML diagram.

To implement the monolithic solver, the already implemented Standard Newton Raph-
son method was sufficient, requiring no changes. For that, the AnalysisModel and the
ConstitutiveModel was thought in order to obtain the tangent stiffness matrix defined
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in Eq. (2.47) by
[K] =

∫
Ω

[B]T [C] [B] dV (3.1)

where [B] is the internal variables operator matrix and [C] is the constitutive matrix.
The implementation of the staggered solver is more complex and needed more inter-

vention in the code, due to the decoupling of the problem. It was necessary to implement
different ConstitutiveModel, AnalysisModel, ProblemDriver, Assembler and Step.

The intervention in the INSANE code are described in details along the following
items of this section.

3.2.1 Phase-field functions

To bring the phase-field functions together, a package was created to store the energy
degradation functions (g(φ)) and the geometric crack functions (α(φ)). Abstract classes
PhaseFieldFunctions 2020/12/17

1 / 1

phasefieldlawspkg 

+ getC0() : double
+ getSecondDerivative(phi : double) : double
+ getFirstDerivative(phi : double) : double
+ getFunctionValue(phi : double) : double

GeometricCrackFunction

AlessiQuadraticCrackFunction BourdinQuadraticCrackFunction KarmaQuarticCrackFunction PhamLinearCrackFunction

+ getSecondDerivative(phi : double) : double
+ getFirstDerivative(phi : double) : double
+ getFunctionValue(phi : double) : double

EnergeticDegradationFunction

BourdinQuadraticEnergeticFunction KarmaCubicEnergeticFunction KuhnQuarticEnergeticFunction

Figure 3.3: Package with crack geometric functions and energetic degradation functions.

were implemented in order to generalize those functions and the inheritance ensures the
necessary methods will be implemented for each specific one (See Fig. 3.3). The energetic
degradation functions are presented in Table 2.1 and the crack surface functions are in
Table 3.1.

Table 3.1: Implemented crack geometric functions

α(φ) C0 authors
φ2 2.0 Bourdin et al. (2000)

16φ2(1− φ2) 8/3 Karma et al. (2001)
φ 8/3 Pham et al. (2011)

1− (1− φ)2 π Alessi et al. (2015)
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Although only one function of each has been used in this work, the implementation of
some of them has already been done for future use.

3.2.2 Material

Inside of package phasefieldmaterial, the class PhaseFieldMaterial extends Material
and is responsible to store the parameters previously defined, including functions α(φ) and
g(φ) (See Fig. 3.4). Thinking in a future attempt to use the phase-field analysis with exis-
PhaseFieldMaterial 2020/12/07

1 / 1

phasefieldmaterialpkg 

+ setAlpha(alpha : GeometricCrackFunction) : void
+ getAlpha() : GeometricCrackFunction
+ setG(g : EnergeticDegradationFunction) : void
+ getG() : EnergeticDegradationFunction

<<interface>>
PhaseFieldGeneralMaterial

+ getPs(e : IMatrix) : IMatrix
+ getPt(e : IMatrix) : IMatrix

+ FRACTURE_ENERGY : string
+ LENGTH_SCALE : string
- alpha : GeometricCrackFunction
- g : EnergeticDegradationFunction

PhaseFieldMaterial

Material

DeVreeMaterialMazarsMaterial

LemaitreChabocheMaterial 

SimoJuMaterial

VolumetricMaterialJuMaterial

MazarsLemaitreMaterial

LinearMaterial 

FractureMechanicsBasedMaterials

ElastoPlasticMaterial

Concrete

Steel

Figure 3.4: Package with phase-field material.

tent materials already implemented in INSANE, the interface PhaseFieldGeneralMaterial
was also created.

3.2.3 Constitutive model

Only the isotropic constitutive model was implemented for the monolithic solver. For
the staggered, in addition to the isotropic, it has the anisotropic models of Lancioni and
Royer-Carfagni (2009), Amor et al. (2009) and Miehe et al. (2010a). The organization
of classes and inheritances is illustrated in Fig. 3.5 and, as it can been seen, the stag-
gered constitutive models count with the interface PhaseFieldConstitutiveModel that
is responsible to implement the staggered solver additional methods.

To be the superclass of any phase-field staggered constitutive model, the abstract class
PhaseFieldStaggeredConstitutiveModel counts with the methods that calculates the
stress and update all necessary variables in analysis, including the historical variable (H)
that ensures the crack irreversibility1.

1This historical variable is presented in Section 2.3
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ConstitutiveModel 2020/12/14

1 / 1

contitutivemodelpkg 

ConstitutiveModel

LinearElasticConstModel ElastoPlasticConstModel CrackingConstModel

MicroplaneConstModelPolarVonMisesConstModel

UnifiedConstitutiveModel

SmearedCrackingConstitutiveModel OnePointConstModel

ScalarDamageConstitutiveModel

MonPfIsotropicConstModel

PhaseFieldStaggeredConstitutiveModel <<interface>>
PhaseFieldConstitutiveModel

StgPfIsotropicConstModel StgPfLancioniConstModel StgPfAmorConstModel StgPfMieheConstModel

Figure 3.5: Diagram with phase-field constitutive models.

Some particularities of each type of constitutive model are:
• Phase-field monolithic constitutive model: As this model doesn’t decouple

the problem, it has only one constitutive matrix. For the implemented plane case
it is given by

[C]mon =



[
∂σ̄

∂ε̄

]
3×3

[
∂σ̄

∂φ

]
3×1

[0]3×2[
g′
∂Ȳ

∂ε̄

]
1×3

[
g′′Ȳ + 1

C0l0
α′′Gc

]
1×1

[0]1×2

[0]2×3 [0]2×1 2 l0
C0
Gc [I]2×2


(3.2)

and the dual internal variable vector (stress vector) must have the form (Ap-
pendix F.1):

σ̄mon =
{
σx σy τxy g′Ȳ + Gc

C0l0
α′ 2Gcl0

C0
φ,x 2Gcl0

C0
φ,y

}T
(3.3)

• Phase-field staggered constitutive model: Due to decoupling the problem, it
was implemented two different tangent constitutive matrices: one for displacements
([C]u, given by method mountCt) and another one for phase-field ([C]φ, given by
method mountPfCt):

[C]ustg = ∂σ̄

∂ε̄
, [C]φstg =


g′′Ȳ + 1

C0l0
α′′Gc 0 0

0 2Gcl0
C0

0

0 0 2Gcl0
C0

 (3.4)
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Observe that the constitutive matrix of the staggered solver are parts of the mono-
lithic one. Similarly, the dual internal variable operator becomes:

σ̄ustg =
{
σx σy τxy

}T
, σ̄φstg =

{
g′Ȳ + Gc

C0l0
α′ 2Gcl0

C0
φ,x 2Gcl0

C0
φ,y

}T
(3.5)

3.2.4 Analysis model

The organization of the analysis model classes is depicted in Fig. 3.6 and the details for
them are listed:
AnalysisModel 2020/12/23

1 / 1

analysismodelpkg 

AnalysisModel

Solid Plane Line

Axisymmetric PlaneStrain PlaneStress Line_1D Line_2D Line_3D

PlaneStressPhaseFieldMonolithicSolver

<<interface>>
PhaseFieldStaggeredAnalysisModel

PlaneStressPhaseFieldStaggeredSolverPlaneStrainPhaseFieldStaggeredSolver

PlaneStrainPhaseFieldMonolithicSolver

Figure 3.6: Diagram with phase-field analysis model.

• PlaneStressPhaseFieldMonolithicSolver and PlaneStrainPhaseFieldMonoli
thicSolver: As the phase-field is a nodal variable, the state variable operator
([N]mon) was thought in order to get the nodal variables vector by the multiplication:

ūmon = [N]mon d̄mon (3.6)

with:

ūmon =


u

v

φ

 , [N]Imon
=


NI 0 0
0 NI 0
0 0 NI

 , d̄mon =


dx

dy

a

 (3.7)

where dx, dy and a are the nodal values of displacement and phase-field, and u, v and
φ is the interpolated horizontal displacement, vertical displacement and phase-field,
respectively.
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For the reason already mentioned in Section 3.2, the internal variables operator
([B]mon) was defined by:

[B]Imon
=



NI,x 0 0
0 NI,y 0

NI,x NI,y 0
0 0 NI

0 0 NI,x

0 0 NI,y


(3.8)

• PhaseFieldStaggeredAnalysisModel: This interface implements the additional
methods for the staggered analysis model as, for example, the responsible to get the
internal variables operator:

[B]uIstg
=


NI,x 0

0 NI,y

NI,y NI,x

 , [B]φIstg
=


NI

NI,x

NI,y

 (3.9)

This interface also has a method called reduceToVoigtMatrix that transforms the
constitutive tensor in the constitutive matrix (in Voigth notation).

• PlaneStressPhaseFieldStaggeredSolver: This class implements the interface
PhaseFieldStaggeredAnalysisModel and its reduceToVoigtMatrix method mounts
the constitutive displacement matrix according to Eq. (3.10) (Demonstration in Ap-
pendix F.2):

[C]ustg =



(
c1111 −

c1133c3311

c3333

) (
c1122 −

c1133c3322

c3333

)
0(

c2211 −
c2233c3311

c3333

) (
c2222 −

c2233c3322

c3333

)
0

0 0 1
2(c1212 + c1221)

 (3.10)

where cijkl are the components of the constitutive tensor (Ĉ).
• PlaneStrainPhaseFieldStaggeredSolver: As there isn’t deformation in the third

plane, the reduceToVoigtMatrix method of this class returns:

[C]ustg =


c1111 c1122 0
c2211 c2222 0

0 0 1
2(c1212 + c1221)

 (3.11)
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3.2.5 Degeneration

The degeneration is responsible to ask the constitutive model for the constitutive matrix.
Due to decoupling promoted by the staggered solver, a new class needed to be created
(PhaseFieldPrescribedDegeneration) to get the matrix regarding to the phase-field
calculation process (method mountPfCt, in PhaseFieldConstitutiveModel). The class
diagram is depicted in Fig. 3.7.
Class Diagram2 2020/12/14

1 / 1

degenerationpkg 

Degeneration

PrescribedDegeneration ThicknessSolid CrossSectionMicroplaneDegeneration

XFEMPrescribedDegeneration PhaseFieldPrescribedDegeneration

Figure 3.7: Diagram with PhaseFieldPrescribedDegeneration

3.2.6 Problem driver

A new problem driver that extends PhysicallyNonLinear was created in order to calcu-
late, for each element, the incremental phase-field stiffness matrix (getPfIncrementalC)
and the vector with the phase-field internal variables (calculatesPfGradients). See the
implementation diagram in Fig. 3.8.

3.2.7 Assembler

The implemented class PhaseFieldFemAssembler extends FemAssembler and it has a
method called initAditionalKeys that is responsible for initializing the additional vari-
ables necessary of phase-field. The said assembler has methods to get the reduced phase-
field state variable vector (getXufi), the reduced residual vector (getPfFp) and to number
the equations for phase-field and displacements (numberEquations). The implemented
class among the already existent ones is depicted in Fig. 3.9.
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ProblemDriver 2020/12/16

1 / 1

problemdriverpkg 

ProblemDriver

FieldProblem FluidFlow SolidMech NonLinearHeatTransfer

Frame FlatShell KirchhoffThinPlate MfreeParametric Parametric GFemParametric

GeometricallyNonLinearTL Membrane PhysicallyNonLinear HeatTransferPD

PhaseFieldPhysicallyNonLinear

Figure 3.8: Diagram with PhaseFieldPhysicallyNonLinear

Class Diagram1 2020/12/16

1 / 1

assemblerpkg 

<<interface>>
Assembler

FemAssembler

NonLocalFemAssembler MfreeAssembler

XFemAssemblerGFemAssembler

<<interface>>
NonLocalApproach

PhaseFieldFemAssembler

Figure 3.9: Diagram with PhaseFieldFemAssembler
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3.2.8 Step

The class PhaseFieldStandardNewtonRaphsonStaggeredSolver was implemented to be
a new Standard Newton Raphson method that solves displacements and phase-field in
alternating iterations (See Fig. 3.10). The activities diagrams of the algorithm used is
Class Diagram0 2020/12/17

1 / 1

steppkg 

<<interface>>
Step

ModifiedNewtonRaphson StandardNewtonRaphson

OrthogonalResidueStandardNewtonRaphson PhaseFieldStandardNewtonRaphsonStaggeredSolver

StepIncrementSignControl DisplacementControlGeneralizedDisplacementControl

WorkControl

OrthogonalResidueControl

ArcLengthControl

StaticEquilibriumPath

Figure 3.10: Diagram with PhaseFieldStandardNewtonRaphsonStaggeredSolver

shown in Fig. 3.11 and Fig. 3.12.
As it can been seen, the predictor is calculated as soon as the step starts (displacements

and residual forces vector). This part is calculated only once, at the beginning of the step.
After that, the solver enters in an iterative procedure to converge the displacements with
the phase-field values of the last iteration and then, another iterative process is triggered
to converge the phase-field variables with displacements just obtained.

In the process, the convergence is verified locally, when the displacement or the phase-
field is being calculated, and globally, when the step convergence is checked. The local
convergence is reached when the error calculated by

Error =

∥∥∥δX̄∥∥∥∥∥∥X̄∥∥∥ (3.12)

is smaller then a defined tolerance, where δX̄ and X̄ can be the residual load and the
forces vector, or the incremental displacements and the displacements vector, depending
on the convergence type. After the phase-field is calculated, the residual forces and the
incremental displacements vector are updated, and then Eq. (3.12) is used to check the
global convergence by testing if the obtained error is less then an specified tolerance.
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Assembly of reference loads vector: {P}

Loop over increments (i = i+ 1)

Initialize variables

Displacement stifness matrix: [Kuu]i

Incremental displacements associated
to reference load vector: {δU}Pi

Load factor increment: δλi
(Predictor)

Update load factor and displacements

Residual force vector: {Q}i

Loop over staggered iterations (j = j + 1)

Converge displacements (Iterative procedure)

Converge phase-�eld (Iterative procedure)

Updates residual force vector: {Q}i,j

Incremental displacements associated to reference load vector,
and residual loads: {δU}Pi,j and {δU}Qi,j

Updates displacements

Converges globally?

Yes

No

Figure 3.11: Global activity diagram
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Loop over displacements iterations (k = k + 1)

Break prodedure and
go converge phase �eld

Displacement stifness matrix: [Kuu]i,j,k

Incremental displacements associated
to reference load vector: {δU}Pi
Load factor increment: δλi,j,k

(Corrector)

Incremental displacements associated to reference load vector,
and residual loads: {δU}Pi,j,k−1 and {δU}Qi,j,k

Updates displacements

Residual force vector: {Q}i,j,k

Converges locally?
Yes

No

Loop over phase-�eld iterations (k = k + 1)

Phase-Field stifness matrix: [Kφφ]i,j,k−1

Phase-Field residue: {Rφ}i,j,k−1

Incremental phase-�eld: {δa}i,j,k = ([Kφφ]i,j,k−1)
−1 · {Rφ}i,j,k−1

Update phase-�eld: {a}i,j,k = {a}i,j,k−1 + {δa}i,j,k

Break procedure and return

Converges locally?

Yes

No

(a) Activity diagram to converge displacements.

(b) Activity diagram to converge displacements.

Figure 3.12: Iterative procedure activities diagram of the phase-field and displacement conver-
gence.



Chapter 4

Implementation validation

In this chapter, divided in three sections, the implementation in INSANE
code will be verified. In the first section, a comparison is made between
the monolithic and staggered solver. Then, analytical and numerical
solutions will be confronted and, in the last section, tests for each im-
plemented constitutive model are presented. In all examples were used
α(φ) = φ2 and g(φ) = (1− φ)2.

4.1 Monolithic versus staggered solver

The setting depicted in Fig. 4.1 is used to compare the monolithic and staggered solver.
The model is subject to a plane strain state with the bottom edge fixed and the other

(a) (b)

Figure 4.1: Shear test. (a) Problem setting, (b) Q4 mesh.

edges fixed in vertical direction. A constant horizontal displacement is imposed in all

34
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nodes of the top edge. The mesh is composed by quadrilateral elements (Q4) with size of
0.01 mm.

In the analysis the horizontal displacement of the top left node was controlled with
increments of 1.0 × 10−4 mm and the convergence was verified in residual force with
tolerance of 1.0×10−3. The isotropic constitutive model was considered with the following
material proprieties: E0 = 210 kN/mm2, ν = 0.2, Gc = 0.0027 kN/mm and l0 = 0.02 mm.

Fig. 4.2 shows the load versus displacement curve for the controlled node. It can be
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Figure 4.2: Comparison between monolithic and staggered solver for shear test of Fig. 4.1

observed that the monolithic solver stops converging when the crack starts to propagate.
On the other hand, the staggered solver is able to continue the analysis until it reaches
the defined step limit.

4.2 Comparisson between numerical and analytical
solution

In this section the analytical solution presented in Appendix B will be compared with the
numerical results obtained from INSANE. The homogeneous and the localized solution
will be analysed.

4.2.1 Homogeneous solution

To verify the homogeneous solution the material test depicted in Fig. 4.3 was consid-
ered. The model consists in only one Q4 element, subject to plane stress with thickness
of 1 mm. The analysis was performed with the isotropic constitutive model, and the
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Figure 4.3: Material test setting. Thickness of 1 mm.

following material parameters: E0 = 25850 N/mm2, ν = 0.18, Gc = 0.065 N/mm and
l0 = 24.31 mm.

The numerical solution was obtained by controlling the horizontal displacement of the
right top node with increments of 1.0× 10−6, and the analytical one was obtained using
Eq. (4.1) below, whose demonstration is in Appendix B.1. Fig. 4.4 shows the stress-strain
plot for each case.

σ =

√√√√A0
α′(φ)
ω′(φ) , ε = 1

E0

√√√√−A0
α′(φ)
g′(φ) , u = εL = L

E0

√√√√−A0
α′(φ)
g′(φ) (4.1)
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Figure 4.4: Comparison between monolithic and staggered solver for shear test of Fig. 4.1
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4.2.2 Localized solution

The setting depicted in Fig. 4.5 is used to simulate the localized solution. The bar has
dimensions of 100× 1× 1 mm3 and is subjected to a uniform traction force. Due to the

(a) (b)

Figure 4.5: Shear test. Thickness of 1 mm. (a) Problem setting, (b) Modelling, take advantage
of symmetry.

symmetry, only half of the bar was modelled. The mesh was composed by quadrilateral
elements (Q4) with size of 0.5 mm. The specimen was subject to plane stress with
E0 = 25850 N/mm2, ν = 0.18, Gc = 0.065 N/mm and l0 = 24.31 mm. In order to ensure
that the localization will start in the center of the bar, the first elements on the left in
the modelling were defined with Gc = 0.064 N/mm.

Fig. 4.6 shows the phase-field evolution along the bar axis and it is noted that the dam-
aged region extends across the entire domain, that is, there isn’t a damaged region whose
size is much smaller than the bar length as defined in demonstration (See Appendix B.2).
In fact, that was already expected since the geometric crack function (α(φ) = φ2) used
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Figure 4.6: Phase-field value along the axis of the bar, for various displacement values of the
bar end.

induces the exponential behaviour of φ along the axis1. Therefore, for the numerical
1See Eq. (2.13a)
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solution to present results consistent with the analytical solution it is necessary to use
α functions that allow a well-defined degraded region. With the historical based solver
implemented in this work it is impossible to use them.

4.3 Validation of implemented constitutive models

As previously said, the constitutive models implemented in this work are: the isotropic
constitutive model and the anisotropic constitutive models of Lancioni and Royer-Carfagni
(2009), Amor et al. (2009) and Miehe et al. (2010b). In this section, the results obtained
with INSANE will be compared with the already existent in literature.

It is important to make some observations:
• Phase-field models are very dependent on the mesh size (h). Therefore the finite

element mesh requires a minimum element size to be able to solve the model. Miehe
et al. (2010a) says that for elements inside the crack band the size h ≤ l0/2. For
cohesive fracture Wu (2017) suggests h ≤ 5l0.

• Due to the hardware limitation, some analysis were made with a less refined mesh
than that of the reference articles. In this way, the similarity of the results was
verified.

4.3.1 Isotropic constitutive model

To validate the isotropic constitutive model the setting and parameters of Section 4.2.1
were used. Fig. 4.7 shows the phase-field evolution when the horizontal displacement is

Figure 4.7: Phase-field profile for shear test.

0.02 mm. It can be observed that, the crack path is similar to that obtained by Wu et al.
(2020).
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4.3.2 Lancioni and Royer-Carfagni (2009) constitutive model

To validate the constitutive model of Lancioni and Royer-Carfagni (2009) the setting
depicted in Fig. 4.8 was used.

(a) (b)

Figure 4.8: French Panthéon Fracture. (a) Problem setting, (b) T3 mesh.

As it can be seen in Fig. 4.8, the edge AH is subject to a horizontal and constant
displacement; edges GH, AB and EF are fixed in vertical direction; and the nodes of
edges BC, CD and DE are fixed.
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Figure 4.9: Load-displacement curve for french Panthéon fracture test.

The mesh has mean nodal distance of 50 mm, refined in the crack region with size
of 2 mm. The analysis was subject to a plane strain state with the following material
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parameters: E0 = 10000 N/mm2, ν = 0.1, Gc = 25.0 × 10−3 N/mm and l0 = 5.0 mm.
It was considered displacement control with load-factor of 1 × 10−4 mm, convergence in

(a) (b) (c)

Figure 4.10: Phase-field evolution in french Panthéon fracture test. (a) ∆ = 0.070 mm, (b)
∆ = 0.085 mm, (c) ∆ = 0.090 mm.

displacement with local tolerance of 1× 10−4 and global tolerance2 of 1× 10−3.
The phase-field evolution shown in Fig. 4.10 are the same as those presented by Lan-

cioni and Royer-Carfagni (2009), and the obtained load-displacement curve is depicted in
Fig. 4.9.

It is important to emphasize that, in the tests performed in this work, this constitutive
model has presented good results only in this test.

4.3.3 Amor et al. (2009) constitutive model

The implementation test of the constitutive model of Amor et al. (2009) had used the
setting of Fig. 4.11. The nodes of the bottom edge are fixed in the vertical direction and
the top edge is subjected to a vertical displacement, constant in all nodes. The plane
strain state was considered with E0 = 1 kN/mm2, ν = 0.3, Gc = 1.0× 10−3 kN/mm and
l0 = 0.02 mm. The mesh has h = 0.005 mm in the refined region and h = 0.04 mm in
unrefined region, where h is the mean nodal distance. The convergence was verified in
displacement considering increments of 5 × 10−4 mm with local and global tolerance of
1× 10−4 and 1× 10−3, respectively.

Fig. 4.12.a shows the crack path that is the same as that presented by Wu et al. (2020)
and Fig. 4.12.b is the load-displacement curve of the top edge.

4.3.4 Miehe et al. (2010b) constitutive model

The problem setting and mesh are depicted in Fig. 4.13 in which a beam with size of
8 × 2 × 1 mm3 subjected to a plane stress state and constitutive model of Miehe et al.

2See Section 3.2.8
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(a) (b)

Figure 4.11: Asymmetric traction test. (a) Problem setting (Wu et al., 2020), (b) T3 mesh.
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Figure 4.12: Results of asymmetric traction test. (a) Phase-field profile for ∆ = 0.35 mm, (b)
Load-displacement curve of the top edge.

(2010b), was considered.
The mesh size is 0.0008 mm in the crack path (refined region) and 2.0 mm distant

from that. The material parameters are: E0 = 20.8 kN/mm2, ν = 0.3, Gc = 0.5 N/mm
and l0 = 0.06 mm.

In the analysis the horizontal displacement of the right crack mouth node was con-
trolled with incremental displacements of 1 × 10−4 mm and tolerance of 1 × 10−4 in
displacement. The results for phase-field profile and load-displacements curves are in
Fig. 4.14. The obtained results are similar to those of Miehe et al. (2010a) with the ex-
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(a) (b)

Figure 4.13: Miehe three bending test. Thickness of 1 mm (a) Problem setting (Miehe et al.,
2010b), (b) T3 mesh.
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(a)

Figure 4.14: Results of Miehe et al. (2010b) bending test. (a) Phase-field profile in 1000th
step, (b) Load-displacement curve of the horizontal displacement of the controlled node; (c)
Load-displacement curve of the vertical displacement of the loading application node.

ception that Miehe et al. (2010a) is unable to obtain the snap back due to the adopted
control node.



Chapter 5

Comparison between constitutive
models

This chapter brings a comparison between the implemented constitutive
models using a shear test and a tension test. In all examples were used
α(φ) = φ2 and g(φ) = (1− φ)2.

5.1 Shear test

The setting and mesh of Fig. 4.1 was used to compare the implemented constitutive
models. The analyses resulted in the crack paths shown in Fig. 5.1 that are different from

(a) (b) (c)

Figure 5.1: Phase-field profile for shear test. The mesh is depicted in Fig. 4.1.b and the con-
stitutive models used are: (a) Lancioni and Royer-Carfagni (2009), (b) Amor et al. (2009), (c)
Miehe et al. (2010b).

the already existent in the literature. Thus, a new mesh was generated (Fig. 5.2) and the
analysis was done again.

The results obtained for Lancioni and Royer-Carfagni (2009) constitutive model indi-
cates a horizontal crack growth. Therefore, another mesh was generated and the model

43
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Figure 5.2: Refined mesh used in shear test. h = 0.1 mm in the unrefined region and h =
0.002 mm in the refined region.

(a) (b) (c)

Figure 5.3: Phase-field profile for shear test. The mesh is depicted in Fig. 5.2 and the constitutive
models used are: (a) Lancioni and Royer-Carfagni (2009), (b) Amor et al. (2009), (c) Miehe
et al. (2010b).

was analysed over again. The mesh generated and results are presented in Fig. 5.4.
It can be noted that Lancioni and Royer-Carfagni (2009) constitutive model is very

unstable and dependent on the mesh. It would be good to repeat the analysis considering
the constitutive model of Lancioni and Royer-Carfagni (2009) and a refined mesh in all
domain, but that is computationally expensive in such way that is impossible with the
hardware utilized in this work.

The constitutive model of Amor et al. (2009) has presented a little instability but, after
the refinement, the results agree with already existent in literature, and the constitutive
model of Miehe et al. (2010b) was the most stable for this test.

The load-displacement curves obtained for each case are presented in Fig. 5.5.
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(a) (b)

Figure 5.4: Phase-field profile for shear test and Lancioni and Royer-Carfagni (2009) constitutive
model. (a) T3 mesh (h = 0.1 mm in the unrefined region and h = 0.002 mm in the refined
region), (b) Phase-field evolution
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Figure 5.5: Load-displacement curves for shear test. (a) Q4 mesh, (b) Mesh of Fig. 5.2, (c)
Mesh of Fig. 5.4.
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5.2 Traction test

The setting and mesh utilized in this analysis are depicted in Fig. 5.6. The bottom edge

(a) (b)

Figure 5.6: Traction test. (a) Problem setting, (b) T3 mesh (h = 0.05 mm in the unrefined
region and h = 0.001 mm in the refined region).

is clamped in vertical direction and a vertical displacement increment of 1.0 × 10−4 mm
is applied in all nodes of the top edge. The specimen is subjected to a plane strain
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Figure 5.7: Load-displacement curves of the top edge for tension test.

state with E0 = 210 kN/mm2, ν = 0.3, Gc = 0.0027 kN/mm and l0 = 0.015 mm. The
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(a) (b) (c)

(d)

Figure 5.8: Phase-field profile for tension test. (a) Isotropic constitutive model, (b) Lancioni
and Royer-Carfagni (2009) constitutive model, (c) Amor et al. (2009) constitutive model, (d)
Miehe et al. (2010b) constitutive model.

convergence was verified in displacements with local tolerance of 1 × 10−4 and global
tolerance of 1× 10−3.

The results obtained for load-displacement curve is presented in Fig. 5.7 and the crack
path in Fig. 5.8.

It can be noted that, for this tension test, all constitutive models behaved the same way,
except for the constitutive model of Lancioni and Royer-Carfagni (2009) that presented
a much higher critical load and a different crack path.



Chapter 6

Material law and structural
behaviour

The numerical study developed in this chapter aims to compare the be-
haviour of the phase-field strategy at the material and structural levels.
To this purpose, an uniaxial analysis was first performed, with different
values of the phase-field material parameters. Then, these parameters
were used in a structural analysis. For the sake of comparison, the same
analyses were also performed with an elastic degrading model, the clas-
sic smeared crack model (Borst and Gutiérrez, 1999, de Borst, 2002). It
were used the constitutive model of Miehe et al. (2010a), α(φ) = φ2 and
g(φ) = (1− φ)2 in phase-field analysis.

6.1 Material behaviour

Starting from a bar under axial traction, Wu et al. (2020) obtained the analytical equations
for the stress-strain curve of a generic phase-field model (See Appendix B). Considering
the peculiarities of the model adopted in this paper, these equations can be expressed as:

σ =
√
E0Gc

l0
φ(1− φ)3, ε =

√
Gc

E0l0

φ

1− φ (6.1)

As it can be observed, by fixing the elastic modulus (E0), different materials exhibit the
same stress-strain curve as long as the following ratio doesn’t change.

gc = Gc/(2l0) (6.2)

This feature has been confirmed by performing a finite elements analysis of an uniax-
ial problem using the material parameters of Table 6.1, whose results are illustrated in
Fig. 6.1.
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Table 6.1: Parameters of phase-field materials.

E0 (N/mm2) ν Gc (N/mm) l0 (mm)
Material 1 25850 0.18 0.089 33.28
Material 2 25850 0.18 0.065 24.31
Material 3 25850 0.18 0.049 18.33
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Figure 6.1: Stress-strain curves for materials presented in Table 6.1

Calculating the area below the phase-field material curve by the trapezoid rule the
value 1.296 × 10−3 N/mm2 is obtained. This value is close to gc = 1.337 × 10−3 N/mm2

obtained with Eq. (6.2), with a difference of 3.08%. It’s worth to note that the definition of
gc given in Eq. (6.2) is similar to the ratio Gc/h, that in smeared crack models represents
the area below the curve. Both h and 2l0 are closely related to the size of the degraded
region.

Because of these similarities, the same uniaxial test were repeated with a smeared
crack model, adopting the stress-strain curve proposed by Carreira and Chu (1985, 1986),
hereinafter called Carreira material, presented below.

6.1.1 Carreira and Chu (1985, 1986) material

The behaviour of Carreira material can be described by:

σi = fi

k
(
ε

εi

)
k − 1 +

(
ε

εi

)k , with : k = 1

1−
(

fi
εiE0

) (6.3)
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where i = t, c, σi is the tensile or compression stress, fi is the tensile or compression
strength, εi is the strain corresponding to the maximum stress (fi), with i = t for traction
and i = c for compression.

After a few attempts, the following values were reached in order to make Carreira
material to approach the adopted phase-field material: εt = 1.69×10−4, ft = 2.7 N/mm2,
E0 = 25850N/mm2, ν = 0.18, εc = 20.0, fc = 300000.0 N/mm2. The very high values
of εc and fc are necessary to make the material behave linearly in compression like in
phase-field model. The stress-strain curve of this material is also depicted in Fig. 6.1.
The area below this curve is 1.475 × 10−3 N/mm2, which is similar to the one of the
phase-field material, with a difference of 13.8%.

6.2 Structural behaviour

The structural analysis used to test the material parameters illustrated in the previous
section was based on the L-panel (Fig. 6.2.a) investigated by Winkler et al. (2004). It’s
worth to emphasize that here the objective is not to make a comparison with the experi-
mental results provided by the aforementioned paper, but point out the differences of the
phase-field approach when applied to material and structural analyses.

(a) (b) (c)

Figure 6.2: L-panel. Thickness of 100 mm. (a) Problem setting (Penna, 2011), (b) Mesh for
smeared crack model (c) Mesh for phase-field model.

The panel was discretised with finite elements in a plane-stress state, with a thickness
of 100 mm. Three-nodes triangular elements with a mesh size of 25 mm was considered
in smeared crack model analysis. The phase-field analyses were instead performed with a
mesh made of three-nodes triangular elements, with a mean nodal spacing of 10 mm in the
unrefined region and 4 mm in the refined one. The nodal spacing in the phase-field model
has been choosen according to the criteria usually adopted in the literature, that suggest
a ratio between l0 and the element size greater than 2 (Miehe et al., 2010a). This refined
mesh can’t be used in the smeared crack model analysis once it would cause localization
effect (Borst, de et al., 1993, Peerlings et al., 2002, Gori, 2018).
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The loading process was driven by the displacement control method with a reference
load q = 28 N/mm, and adopting the reentrant corner node as the control node, where the
vertical displacement was incremented of 5 × 10−4 mm. The convergence was measured
in relative displacements, using 1 × 10−3 as a tolerance for the global convergence and
1× 10−4 for the local convergence.

The load factor-displacement curves obtained for the structural analysis are depicted
in Fig. 6.3. It can be observed that, even with similar material behaviour, the analyses
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Figure 6.3: Load-displacement curve of L-Panel. (a) Vertical displacement of the reentrant
corner node; (b) Vertical displacement of the lower node of the load application line.

lead to different structural responses presenting a higher load limit for materials with
higher Gc and l0 because, although l0 is linked to the size of the degraded region, it is Gc

that indicates the amount of energy that will be consumed to start the crack propagation,
which will be later the greater the Gc. In order to illustrate the structural brittleness,
Fig. 6.4 shows the normalized load-displacement curves, that were obtained by dividing
the original values of load factors and displacements (Fig. 6.3) by the values concerning the
limit load points. Fig. 6.4 shows that the phase-field analyses are similar to each other and
more brittle than the smeared crack model once Miehe et al. (2010a) model are indicated
to represent brittle fracture. One of the main factors that induce this behaviour is the
adopted g(φ) function that depends only on φ and doesn’t have any material strength
limit on its formulation (Wu et al., 2020). Despite this limitation, it is still possible to
study the size effect in phase-field models for a fixed material, as presented in Chapter 7.
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Figure 6.4: Normalized load-displacement curve of L-Panel. (a) Vertical displacement of the
reentrant corner node; (b) Vertical displacement of the lower node of the load application line.
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6.3 Influence of length scale (l0) in degraded band

In this section the influence of the length scale in the degraded band will be anal-
ysed. For that the setting with the triangular mesh of Fig. 6.2.c will be used with
E0 = 20000 N/mm2, ν = 0.18 and Gc = 0.130 N/mm.

(a) (b)

(c) (d)

Figure 6.5: Phase-field profile in 1000th step. (a) l0 = 8 mm, (b) l0 = 10 mm, (c) l0 = 20 mm,
(d) l0 = 30 mm.

The phase-field profiles obtained for various length scale parameters (l0) depicted in
Fig. 6.5 illustrates that the increase of the length scale increases the size of the degraded
band, directly affecting the structural behaviour.



Chapter 7

Size effect

This chapter presents the size effect on failure load and brittleness ob-
tained with the implemented phase-field model for the Brazilian splitting
test and for a three-point bending test. It were used the constitutive
model of Miehe et al. (2010b), α(φ) = φ2 and g(φ) = (1− φ)2.

7.1 Brazilian splitting test

The Brazilian splitting test of Fig. 7.1.a, with 26 mm of radius and 1 mm of thickness,
was modelled as a plane stress state problem with E0 = 31500 N/mm2, ν = 0.25, Gc =
0.1 N/mm and l0 = 1 mm, as suggested by Zhou et al. (2018). At the top and bottom

(a) (b)

Figure 7.1: Diametrical compression setting. (a) Full setting (Zhou et al., 2018), (b) Triangular
(T3) mesh with mean nodal distance of 0.5 mm across the domain.
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of the cylinder is applied a symmetric line load (q = 1 N/mm, the reference value) in a
short strip1 of 18◦.

Initially, to better demonstrate the phase-field evolution, the entire cylinder with no
initial crack and the triangular mesh depicted in Fig. 7.1.b was considered. The nonlinear
analysis was driven by controlling the horizontal displacement of the first node to the
right of the center with increments of 1 × 10−5 mm. The convergence was verified in
residual force with global and local tolerance of 1× 10−3 and 1× 10−4, respectively. The
evolution of the phase-field profile is illustrated in Fig. 7.2.

(a) (b)

(c) (d)

Figure 7.2: Phase-field profile for various analysis step. (a) Step 100, (b) Step 400, (c) Step 700,
(d) Step 1000.

Now, in order to investigate just the size effect, taking advantage of the problem sym-
metry, just a quarter of the cylinder was modelled as depicted in Fig. 7.3. The controlled
node and the parameters of the nonlinear analysis were the same for the complete cylinder.
The load factor-displacement curves of the rightmost node, obtained for various initial
crack size (c) are presented in Fig. 7.4.

The nominal resistance of the cylinder (σr) in the Brazilian test can be calculated by
1The dimension of the load strip has large influence in the crack evolution, as pointed out by Bahaad-

dini et al. (2019).
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(a) (b)

Figure 7.3: Diametrical compression setting, taking advantage of symmetry. (a) Problem setting.
Parameter c is the initial crack size, (b) T3 mesh (h = 0.5 mm).
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Figure 7.4: Load factor-displacement curve of the rightmost node, for various initial crack size.

the formula (Planas et al., 1999):
σr = 2Pmax

πDefL
(7.1)

where Pmax is the maximum load, Def if the effective diameter and L is the length of the
cylinder. From Eq. (7.1), Fig. 7.5 was plotted to relate the nominal resistance with the
effective diameter, and as it can been seen, the nominal strength decreases with increasing
effective diameter at first, and then that behaviour is reversed, a qualitative behaviour
that has been observed in experimental tests (Bazant et al., 1991, Hasegawa and Okada,
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1985).
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Figure 7.5: Relation between the nominal resistance with the effective diameter in diametrical
compression.
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Figure 7.6: Descending branches of the normalized load factor-displacement curve of the right-
most node, for various initial crack sizes.

In order to discuss the size effect on the brittleness of the cylinder, the same afore-
mentioned normalized curves have been used. Fig. 7.6 shows the curves concerning the
descending branches only, and as it can be seen the brittleness increases with increasing
effective diameter, a qualitative behaviour that has been observed in experimental tests
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(Santos, 2015).

7.2 Bending Test

To verify the size effect on failure load and brittleness of a beam under bending, the setting
of Fig. 7.7 is considered, where c is the initial crack length. The beam has thickness of

(a) (b)

Figure 7.7: Size effect in 3-point bending. P = 1 N, the reference value. (a) Problem setting
(Penna, 2011), (b) Modelling, taking advantage of symmetry.

36 mm and it was modelled as a plane stress state problem. Due to the symmetry, just
half of the beam was modelled for different values of H (360, 480, 600, 720 and 840 mm)
and c = 60 mm, taken constant.

The meshes were composed by quadrilateral elements (Q4) with size of 20 × 20 mm
and the following material parameters: E0 = 44000 N/mm2, ν = 0.25, Gc = 0.164 N/mm,
l0 = 50 mm. In order to prevent crack propagation near the left support, a Gc value ten
times larger was adopted in the element with restraints.

The nonlinear analysis was driven by controlling the horizontal displacement of the
node on the left side of the crack mouth, with increments of 1×10−3 mm. The convergence
was verified in relative displacements with global and local tolerance of 1 × 10−3 and
1× 10−4, respectively.

The obtained load-displacement curves for the vertical displacement of the point where
the load is applied are depicted in Fig. 7.8 and, as it can been seen, the bigger beam has
a higher maximum load value and presents a less brittle behaviour.

To better verify the size on structural strength, a nominal value (σr) can be calculated
by (Planas et al., 1999):

σr = 3PmaxL
2th2

ef

(7.2)

where Pmax is the maximum load, L is the beam length, t is the thickness and hef is the
effective height. From Eq. (7.2), Fig. 7.9 was plotted to relate the nominal strength with
the effective height, and it was verified that the increasing of the effective height decreases
the beam strength, a qualitative behaviour that has been observed in experimental studies
Bazant and Pfeiffer (1987), Perdikaris and Romeo (1995).



§7.2 Size effect 59

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

1

2

2

3

3
·104

V. disp. (mm)

L
oa
d
(N

)
H = 360
H = 480
H = 600
H = 720
H = 840

Figure 7.8: Load-displacement curves for the loading application node.
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Figure 7.9: Relation between the nominal resistance with the effective height in 3 point bending
test.

In order to discuss the size effect on the brittleness of the beam, normalized curves
has been used. Fig. 7.10 shows the curves concerning the descending branches only, and
as it can be seen the brittleness increases with increasing effective height, a qualitative
behaviour that has been observed in experimental tests (Gettu et al., 1990, Santos, 2015).
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Figure 7.10: Descending branches of the normalized load-displacement curves for the vertical
displacement where the load is applied.



Chapter 8

Ability to detect crack nucleation

This chapter presents some examples that verify the ability of the phase-
field modelling to detect crack nucleation. Even though the problem is
symmetric, it was decided to model it completely to better visualize the
evolution of the phase-field. The mesh size was also considered constant
in all domain. It was used α(φ) = φ2, g(φ) = (1− φ)2 and Miehe et al.
(2010b) constitutive model.

8.1 3 point bending

In this example it was used the setting, mesh and material defined in Section 7.2 for the
beam with size 1440× 360× 36mm3 without the initial crack.

In the analysis it was controlled the horizontal displacement of the bottom edge right
node with increments of 0.001 mm. It was considered convergence in displacements with
tolerance of 1× 10−3.

The phase-field evolution is presented in Fig. 8.1.

8.2 4 point bending test

This example consists in a beam with size of 600 × 150 × 120mm3 (Fig. 8.2). In the
analysis it is considered a plane stress state, P = 1 N, E0 = 31400 N/mm2, ν = 0.20,
Gc = 0.275 N/mm and l0 = 47.5 mm. The mesh is composed by triangular elements with
size of 3 mm. It was controlled the vertical displacement of the top edge central node with
increments of 0.001 mm. The convergence was verified in displacements with tolerance of
1× 10−3.

The phase-field evolution is depicted in Fig. 8.3.
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(a)

(b)

(c)

Figure 8.1: Phase-field evolution for 3 point bending test without initial crack. (a) ∆ = 0.20 mm,
(b) ∆ = 0.25 mm, (c)∆ = 0.50 mm.

Figure 8.2: Four point bending without initial crack. Thickness of 120 mm.
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(a)

(b)

(c)

Figure 8.3: Phase-field evolution for 4 point bending test without initial crack. (a) ∆ = 0.15 mm,
(b) ∆ = 0.20 mm, (c)∆ = 0.50 mm.
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8.3 Two failure modes of a beam

In the problem depicted in Fig. 8.4, adapted from Simão (2003), two different tests were
considered. For each of them the value of x and the material parameters are related in
Table 8.1. The structure was subjected to a plane stress state and it was discretized in

Figure 8.4: Two failure modes of a beam without initial crack. Thickness of 120 mm.

triangular (T3) elements with mean nodal distance of 15 mm across the domain. The
reference load was defined as q = 1 kN/m.

In the Test 1 the problem was driven by controlling the vertical displacement of the
bottom edge central node with increments of 0.005 mm and, in the Test 2, the vertical
displacement of the rightmost bottom node was controlled with increments of 0.001 mm.
The convergence was verified in relative displacements with global and local tolerance of
1× 10−3.

Table 8.1: Considered values for each test.

E0(kN/mm2) Gc(kN/mm) l0(mm) x (mm)
Test 1 25 35× 10−6 67.6 928.60
Test 2 18 41× 10−6 67.6 859.50

Figs. 8.5 and 8.6 presents the phase-field evolution. The difference in the failure
mode observed in both cases is because the changing of the support position also changes
the location where the highest tensile stress, responsible for crack growing, occurs. It also
important to emphasize that in Test 2 the solution had localized and the crack just grows
in the right side, but that could occur in the left side, or both, depending on the mesh.
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(a)

(b)

(c)

Figure 8.5: Phase-field evolution for Test 1. (a) ∆ = 0.50 mm, (b) ∆ = 0.75 mm, (c)∆ =
1.50 mm.

(a)

(b)

(c)

Figure 8.6: Phase-field evolution for Test 2. (a) ∆ = 0.50 mm, (b) ∆ = 0.60 mm, (c)∆ = 1.0 mm.



Chapter 9

Miscellaneous examples

During the present study, it was noticed that, even with a different
load-displacement curve, the model of Miehe et al. (2010b) was able to
correctly describe the crack path. Therefore, the purpose of this chapter
is to perform some examples already existent in literature by the Miehe
et al. (2010b) constitutive model to obtain the load-displacement curves
for that model. α(φ) = φ2 and g(φ) = (1− φ)2 was considered.

9.1 Three point bending

The 3-point beam test according to RILEM1 predictions for experimental measurement
of fracture energy, as presented in Khalilpour et al. (2019), (Fig. 9.1) was performed using
the phase-field constitutive model with E0 = 25850 N/mm2, ν = 0.18, Gc = 0.089 N/mm
and l0 = 33.28 mm.

The mesh is composed by triangular elements (T3) with mean nodal distance of 1 mm
in the refined region and 10 mm elsewhere. The horizontal displacement of the right
mouth crack node was controlled with increments of 0.001 mm and the convergence was
verified in displacements with global and local tolerance of 1× 10−3. The obtained load-
displacement curves and the phase-field profile are in Figs. 9.2 and 9.3.

According to Khalilpour et al. (2019) the fracture energy (Gc) can be obtained from
load-vertical displacement curve (Fig. 9.2) by

Gc = Area above the curve
b(d− a) (9.1)

where b is the beam thickness, d is its height and a the initial crack size. Integrating
Fig. 9.2.b by the trapezoid rule, and applying that equation it obtains Gc = 0.106 N/mm.

1RILEM (Réunion Internationale des Laboratoires et Experts des Matériaux, systémes de construc-
tion et ouvrages) is an association created to promote scientific cooperation in the area of construction
materials and structures. In RILEM (1985), it has proposed dimensions and relation to determine the
fracture energy in a bending test.
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(a)

(b)

Figure 9.1: Three point bending test. Thickness of 150 mm. (a) Problem setting (Khalilpour
et al., 2019), (b) T3 mesh.
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Figure 9.2: Load-displacement curve for three point bending test. (a) Horizontal displacement
of the controlled node; (b) Vertical displacement of the load application point.

Observe that the output value is much less than the input one. This difference may
have been caused by the functions α(φ) and g(φ) which may not correctly represent the
behaviour for this material. This issue can be highlighted by the snap-back behaviour
observed in Fig. 9.2.b, that characterizes a very brittle material. As for the phase-field
profile, it is observed that the result obtained is similar when pre-existing crack is not
considered (See Section 8.1).
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Figure 9.3: Phase-field profile for three point bending test.

9.2 Four point bending

In the four point bending test proposed by Khalilpour et al. (2019), a beam with 600 ×
150 × 120 mm3, with an initial crack of 45 mm, subject to a plane stress state was
considered. The mesh is composed by triangular elements (T3) with size of 2 mm in the
region of crack propagation and 20 mm faraway. The problem setting and the mesh are
depicted in Fig. 9.4.

(a)

(b)

Figure 9.4: Four point bending test. Thickness of 120 mm. (a) Problem setting (Khalilpour
et al., 2019), (b) T3 mesh.

The following material parameters were considered: E0 = 31400 N/mm2, ν = 0.2,
Gc = 0.275 N/mm and l0 = 47.5 mm. The analysis has controlled the horizontal displace-
ment of the right crack mouth node with increments of 1× 10−3 mm and the convergence
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was verified in displacement with global and local tolerance of 1 × 10−3. The obtained
load-displacement curves and the phase-field profile are presented in Figs. 9.5 and 9.6,
respectively.
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Figure 9.5: Load-displacement curve for four point bending test. (a) Horizontal displacement
of the controlled node; (b) Vertical displacement of the load application load.

Figure 9.6: Phase-field profile for four point bending test.

Due to the snap back observed in Fig. 9.5.b, the fragile behaviour presented by the
model used is also verified in the four point bending test and the obtained phase-field is
similar to that observed when the initial crack is not considered (See Section 8.2).

9.3 Antisymmetric sample with two holes

In the antisymmetric sample adapted from Egger et al. (2019) a state of plane strain was
considered. The bottom edge of specimen is fixed and the top edge is fixed in horizontal
direction and subjected to a vertical displacement with increments of 1 × 10−4 mm (See
Fig. 9.7).

The analysis was performed with E0 = 210000 N/mm2, ν = 0.3, Gc = 1 N/mm,
l0 = 2.0 mm and considering the sample with, and without, a protected damage region
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(a) (b)

Figure 9.7: Antisymmetric sample with two holes. (a) Problem setting (Egger et al., 2019), (b)
T3 mesh. h = 0.1 mm in the refined region and h = 0.5 mm in the unrefined.

around the hole with dimension of 0.6 mm. The load-displacement curves and the phase-
field profiles are presented in Figs. 9.8 and 9.9, respectively.
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Figure 9.8: Load-displacement curve of top edge for antisymmetric sample with two holes.

The phase-field profile presented by the sample Fig. 9.9 is similar to that described
by Egger et al. (2019) and Wu et al. (2020). When the damage around the hole is
prevented by imposing a very high Gc value in the surrounding region, the initial crack
propagates in the direction of the hole and later diverts its trajectory. Already when there
is no protection around the hole the existing cracks don’t propagate and new cracks are
initiated at the hole perimeters and grow from there. The load-displacement curves show
that the load drops down immediately when the crack starts to propagate.
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(a) (b)

Figure 9.9: Phase-field profile for ∆ = 0.022 mm. (a) With protection around the hole, (b)
Without protection around the hole.

9.4 Asymmetrically notched beam

The asymmetrically notched beam of Miehe et al. (2010b) with 20 × 8 × 0.5 mm3 of
size, under three point bending, plane stress state and an initial crack of 1 mm was
considered in this test. The material parameters are: E0 = 20.8 kN/mm2, ν = 0.3,

(a)

(b)

Figure 9.10: Asymmetric notched beam. The hole has 1 mm of radius and the beam has 0.5 mm
of thickness. (a) Problem setting (Miehe et al., 2010b), (b) T3 mesh.

Gc = 1.0× 10−3 kN/mm and l0 = 0.05 mm.
The mesh is composed by triangular (T3) elements with mean nodal distance of
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0.025 mm in the refined region, 0.5 mm around the top and bottom holes and 2 mm
elsewhere. The problem setting and mesh are depicted in Fig. 9.10.

It was controlled the crack opening by incrementing the horizontal displacement of the
right crack mouth node with 0.001 mm. The convergence was verified in displacements
with global and local tolerance of 1×10−3. The obtained results are depicted in Figs. 9.11
and 9.12.
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Figure 9.11: Load-displacement curve for the asymmetrically notched beam. (a) Horizontal
displacement of the controlled node; (b) Vertical displacement of the load application node.

Figure 9.12: Phase-field profile for asymmetrically notched beam in 120th step.

The load-displacement curve shows that a very sharp snap back is observed and the
crack grows in direction to the middle hole as already observed by Miehe et al. (2010b).

9.5 Mixed model failure test

The mixed model failure test, adapted from Wu et al. (2020), considers a beam with
675×150×50 mm3, subjected to a plane stress was considered. The tests were performed
with, and without, the presence of the red support (See Fig. 9.13.a). The mesh has size of
1.25 mm in the refined region and 10 mm elsewhere (Fig. 9.13.b and 9.13.c). The material
parameters are: E0 = 38000 N/mm2, ν = 0.2, Gc = 0.069 N/mm and l0 = 2.5 mm.
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(a)

(b)

(c)

Figure 9.13: Mixed model failure test. Thickness of 50 mm. (a) Problem setting (Wu et al.,
2020), (b) T3 mesh with the red support, (c) T3 mesh without the red support.

In the case of the test without the red support, an incremental horizontal displacement
of 0.001 mm was imposed in the node to the left of the crack mouth towards opening the
crack and, in the test with the red support, the vertical downward displacement of the
node to the right of the crack mouth was controlled with same increments value. In both
cases, the convergence was verified in displacements with 1 × 10−3 of global and local
tolerance. Figs. 9.14 and 9.15 present the load-displacement curves and the phase-field
profile.

The load-displacement curve shows that a more brittle behaviour is observed with the
presence of the red support, and, as already shown by Wu et al. (2020), the additional
support makes the crack propagate more inclined towards the load direction.
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Figure 9.14: Load-displacement curve for mixed model failure test. (a) Displacement of the
controlled degree of freedom; (b) Vertical displacement of the load application point.

(a)

(b)

Figure 9.15: Phase-field profile for mixed model failure test. (a) Without red support (400th
step), (b) With red support(250th step).

9.6 Semi circular bending test

The semicircle from Aliha et al. (2017) with 75 mm of radius, 32 mm of thickness and
a initial crack of 20 mm was considered in this test. The sample was subjected to a
plane stress state with the following materials parameters: E0 = 31400 N/mm2, ν = 0.2,
Gc = 0.275 N/mm and l0 = 2.0 mm.

The failure modes I and II were tested by varying the position of the right support
and initial crack, as depicted in problem setting (Fig. 9.16.a and 9.16.b). The meshes
were composed by triangular (T3) elements with size of 0.5 mm in the refined region and
10 mm elsewhere (Fig. 9.16.c and 9.16.d).

In case of failure mode I (Fig. 9.16.a), the analysis has controlled the horizontal dis-
placement of the node to the right of the crack mouth with increments of 1.5× 10−3 mm
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(a) (b)

(c) (d)

Figure 9.16: Semi circular bending test. The mesh has size of 0.5 mm in the refined region and
10 mm elsewhere. (a) Problem setting for mode I of failure (Aliha et al., 2017), (b) Problem
setting for mode II of failure (Aliha et al., 2017), (c) T3 mesh for mode I of failure, (d) T3 mesh
for mode II of failure.

and in case of failure mode II (Fig. 9.16.b) the vertical downward displacement of the
node to the left of the crack mouth was controlled with increments of 1 × 10−3 mm. In
both analyses the convergence was verified in displacements with local and global toler-
ance of 1× 10−3. The load-displacement plots and the obtained phase-field profile are in
Figs. 9.17 and 9.18, respectively.

As experimentally shown by Aliha et al. (2017), in both cases the crack propagates
towards the load direction and observing the load-displacements curves it is evident that
the failure mode II happens in a more brittle way then the failure mode I.
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Figure 9.17: Load-displacement curve for the semi circular bending test. (a) Displacement of
the controlled degree of freedom; (b) Vertical displacement of the load application point.

(a) (b)

Figure 9.18: Phase-field profile for semi circular bending test in 400th step. (a) Mode I of failure,
(b) Mode II of failure.



Chapter 10

Conclusions and future research
topics

The main aim of this work was to study phase-field models of fracture, relying on the
legacy of the research group regarding cracking modelling. Such a starting study aimed
to understand the main characteristics, advantages and drawbacks of these models.

The theoretical background of the phase-field approach, based on variational formu-
lation of Griffth’s criterion, was studied producing an exhaustive demonstration of all
equations and an increase on the research group expertness on this specific field. The
task was accomplished through the implementation of four models based on the Finite
Element Method: the isotropic constitutive model, which does not distinguish between
compressed and stretched regions of the body, and the anisotropic models proposed by
Lancioni and Royer-Carfagni (2009), Amor et al. (2009), Miehe et al. (2010b) that split
the strain energy in an attempt to avoid cracks in compressed regions, making the models
physically more realistic.

In order to solve the resultant nonlinear equations, a monolithic solver was initially
used; however, it presented convergence issues, stopping the incremental-iterative process
when the external loads starts to decrease. Aiming to overcome some of the issues of the
monolithic solver, a staggered solver was implemented. This kind of solver uncouples the
model and solves the displacement and the phase-field one at a time, resulting in a more
robust process.

Regarding the computational implementation, it was very clear that INSANE is a very
robust software with a great potential to include all kinds of models, due to its Object-
Oriented Programming design. Also, the legacy of the INSANE source code was crucial
to make easy all the implementation tasks required by this work, mainly the existent
resources for constitutive modelling and for solution of the nonlinear equations.

The comparative study of the constitutive models implemented showed that the model
proposed by Lancioni and Royer-Carfagni (2009) is very unstable and dependent on the
mesh, presenting, among the tests illustrated in this manuscript, good results only for
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the Panthéon fracture test. The study also showed that, although the model proposed by
Amor et al. (2009) showed a great advance when compared to that proposed by Lancioni
and Royer-Carfagni (2009), it was the model proposed by Miehe et al. (2010b) that
exhibited the best results, in terms of stability and mesh dependency. So, this model was
used in the remaining simulations.

The study on the behaviour of the phase-field strategy at the material and structural
levels showed that, for a given energetic degradation function (g(φ) = (1 − φ)2) and
geometric crack function (α(φ) = φ2), the material stress-strain curve is the same if
the parameter gc = Gc/(2l0) doesn’t vary. Taking that into account, a stress-strain curve
based on Carreira and Chu (1985, 1986) proposal, was adjusted in order to find a material
with similar behaviour. Then, three phase-field models and one elastic degrading model,
all of them presenting the same stress-strain curve were used in order to compare the
structural behaviour. In all performed tests, the result was different even for materials
whose stress-strain curve was the same, presenting a maximum load that varied according
to the fracture parameter Gc. This controversial result seems to be due to the absence of
any strength limit in the formulation of the used phase-field model. So, it seems to be
mandatory the use of phase-field models that take into account some material strength
limits, like the model proposed by Wu (2017). The use of such models, however, demands
for appropriate solvers, like the bounded constrained solver (Farrell and Maurini, 2017,
Benson and Munson, 2006, Heister et al., 2015).

The size effect on strength and brittleness for the Brazilian splitting test and for a
tree point bending test was also evaluated. The results showed that the nominal strength
decreases with increasing effective structural size and the structural brittleness increases
with increasing effective size, a qualitative behaviour that has been observed in experi-
mental tests (Bazant et al., 1991, Hasegawa and Okada, 1985, Santos, 2015, Bazant and
Pfeiffer, 1987, Perdikaris and Romeo, 1995, Gettu et al., 1990). These good qualitative
results seem to be due to the fact that the size effect phenomenon is mainly due to the
ratio between the size of the region where the phase-field is active (the damaged zone)
and the structure size.

The ability of phase-field to detect crack nucleation was also tested. In the four tests
performed, the analysis was able to start the crack and continue its path, without any
previous indication where the nucleation should have taken place.

The aforementioned statements point out the main characteristics, advantages and
drawbacks of the phase-field modelling of fracture, as planned for this master’s thesis.
This first study of the research group in this field of investigation will give support for
future research trends that could expand the achievements of this work. Some possible
future research topics are exposed in the following:

• Implementation of other energetic degradation and geometric crack functions;
• Implementation of a bound-constrained solver, capable to deal with different ener-
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getic degradation and geometric crack functions;
• Comparative study on structural behaviour using phase-field and equivalent elastic

degrading models;
• Systematic study on phase-field models mesh dependence;
• Use of other numerical methods instead FEM, like Generalized Finite Element

Method, Boundary Element Method and Meshfree Methods;
• Adoption of adaptive refinement in order to change the mesh and to add the phase-

field degrees of freedoms only in the regions where phase-field has been activated;
• Implement the phase-field modelling for the 3D case.
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Appendix A

Demonstration of theoretical
foundation equations

Equations used in theoretical foundation of phase-field will be demonstrated in this chap-
ter using index notation, for facility.

A.1 Eq. (2.6)

The energy functional that gives the energy balance is given by:

Et =
∫

Ω
ψ0(εij) dV −

∫
Ω
biui dV −

∫
∂Ωt

tiui dA (A.1)

Deriving in relation to time it gets:

Ėt =
∫

Ω

∂ψ0

∂εij
˙εij dV −

∫
Ω

(ḃiui + biu̇i) dV −
∫
∂Ωt

(ṫiui + tiu̇i) dA (A.2)

The first integral in Eq. (A.2) can be rewritten as:

∫
Ω

∂ψ0

∂εij
˙εij dV =

∫
Ω
σij ˙εij dV =

∫
Ω
σij

(
u̇i,j + u̇j,i

2

)
dV

∫
Ω
σij ˙εij dV = 1

2

∫
Ω
σiju̇i,j dV + 1

2

∫
Ω
σiju̇j,i dV (A.3)

Interchanging the dummy index on the last term of Eq. (A.3), it gets:
∫

Ω
σij ˙εij dV = 1

2

∫
Ω
σiju̇i,jdV + 1

2

∫
Ω
σjiu̇i,jdV

But σij is symmetric, so σij = σji, and the equation becomes:
∫

Ω
σij ˙εij dV =

∫
Ω
σiju̇i,jdV (A.4)
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For applying the divergence theorem to simplify Eq. (A.4), consider:

(σiju̇i),j = σij,ju̇i + σiju̇i,j

σiju̇i,j = (σiju̇i),j − σij,ju̇i (A.5)

Substituting Eq. (A.5) in Eq. (A.4), and applying the divergence theorem it gets:
∫

Ω
σij ˙εij dV =

∫
∂Ω
σiju̇inj dA−

∫
Ω
σij,ju̇i dV (A.6)

Now, substituting Eq. (A.6) in Eq. (A.2), after some algebraic manipulations, it ob-
tains:

Ėt =
∫
∂Ωt

(σijnj−ti)u̇i dA+
∫
∂Ωu

σijnju̇i dA−
∫

Ω
(σij,j+bi)u̇i dV−

∫
Ω
ḃiui dV−

∫
∂Ωt

ṫiui dA
(A.7)

But σijnj − ti = 0 and σij,j + bi = 0, so the Eq. (A.7) becomes:

Ėt =
∫
∂Ωu

σijnju̇i dA−
∫

Ω
ḃiui dV −

∫
∂Ωt

ṫiui dA (A.8)

In a symbolic form:

Ėt =
∫
∂Ωu

(σ · n̄) · ˙̄u dA−
∫

Ω

˙̄b · ū dV −
∫
∂Ωt

˙̄t · ū dA (A.9)

A.2 Eq. (2.7)

The first variation of energy functional Et, given by Eq. (2.7) can be written as:

δEt = δΨs + δΨc − δPext (A.10)

By unilateral stationary condition, it can say that Eq. (A.10) is bigger than zero. In
this time, it’s going to be demonstrated each part of this equation.

Before perturbation, the strain energy can be expressed as follows:

Ψsε =
∫

Ω\Γ
ψ(εij(uεij

),Γε) dV (A.11)

In this way, it gets:

δΨs = ∂Ψsε

∂ε

∣∣∣∣∣
ε=0

=
∫

Ω\Γ

(
∂ψ

∂εε

∂εε
∂ε

)∣∣∣∣∣
ε=0

dV +
(
∂Ψsε

∂Γε
∂Γε
∂ε

)∣∣∣∣∣
ε=0

δΨs =
∫

Ω\Γ
σijδεij dV + ∂Ψs

∂Γ δΓ (A.12)
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Using the divergence theorem, in analogy to what was done in Appendix A.1, Eq. (A.12)
can be written as:

δΨs =
∫
∂Ωt

(σijnj)δui dA+
∫

Γ
(σijnj)δui dA−

∫
Ω\Γ

(σij,jui dV + ∂Ψs

∂Γ δΓ (A.13)

The surface energy, used in crack growth, is expressed:

δΨc = ∂Ψcε

∂ε

∣∣∣∣∣
ε=0

= ∂

∂ε

(∫
Γ
GcdΓ + εGcδΓ

)

δΨc = ∂Ψcε

∂ε

∣∣∣∣∣
ε=0

= ∂

∂ε

(∫
Γ
GcdΓ + εGcδΓ

)
δΨc = GcδΓ (A.14)

For work of the external loads, it’s already know, by FEM:

δPext =
∫

Ω\Γ
biδui dV +

∫
∂Ωt

tiδui dA (A.15)

Substituting Eq. (A.13), Eq. (A.14) and Eq. (A.15) in Eq. (A.10), it arrives at Eq. (A.16),
as it wanted to demonstrated.

δEt =
∫

Γ
σijnjδui dA+

∫
∂Ωt

(σijnj − ti)δui dA−
∫

Ω\Γ
(σij,j + bi)δui dV +

(
∂Ψs

∂Γ +Gc

)
δΓ

(A.16)
In symbolic form:

δEt =
∫

Γ
(σ·n̄)δu dA+

∫
∂Ωt

(σ·n̄−t̄)·δū dA−
∫

Ω\Γ
(∇σ+b)·δu dV+

(
∂Ψs

∂Γ +Gc

)
δΓ (A.17)

A.3 Eq. (2.11)

The derivative of Eq. (2.1) with respect to time is:

Ėt = Ψ̇s + Ψ̇c − Ṗext (A.18)

Each part of Eq. (A.18) will be calculated separately.
The derivative of Ψs becomes:

Ψ̇s = ∂

∂t

∫
Ω\Γ

ψ(εij(ui),Γ) dV

Ψ̇s =
∫

Ω\Γ

∂ψ

∂εij
˙εij dV + ∂ψs

∂Γ Γ̇
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But ∂ψ

∂εij
= σij, so it gets:

Ψ̇s =
∫

Ω\Γ
σij ˙εij dV + ∂ψs

∂Γ Γ̇ (A.19)

Before a few algebraic manipulations and, applying the divergence theorem like it was
done on Appendix A.1, it gets from Eq. (A.19):

Ψ̇s =
∫

Ω\Γ
biu̇i dV +

∫
∂Ωt

tiu̇i dA+
∫
∂Ωu

σijnju̇i dA+ ∂Ψs

∂Γ Γ̇ (A.20)

Deriving Ψc, it gets:
Ψ̇c = ∂

∂t

∫
Γ
Gc dΓ = GcΓ̇ (A.21)

The derivative of the potential energy of external forces Pext becomes:

Ṗext =
∫

Ω\Γ
(ḃiui + biu̇i) dV +

∫
∂Ωt

(ṫiui + tiu̇i) dA (A.22)

Substituting Eq. (A.20), Eq. (A.21) and Eq. (A.22) in Eq. (A.18) it obtains:

Ėt =
∫
∂Ωu

σijnju̇j dA−
∫

Ω\Γ
ḃiui dV −

∫
Ωt

ṫiui dA+
(
∂Ψs

∂Γ +Gc

)
Γ̇ (A.23)

In symbolic form:

Ėt =
∫
∂Ωu

(σ · n̄) · ˙̄u dA−
∫

Ω\Γ

˙̄b · ū dV −
∫

Ωt

˙̄t · ū dA+
(
∂Ψs

∂Γ +Gc

)
Γ̇ (A.24)

Comparing Eq. (A.24) with Eq. (2.6), it concluded as it wanted to be demonstrated:
(
∂Ψs

∂Γ +Gc

)
Γ̇ = 0⇒ (G −Gc)Γ̇ = 0 (A.25)

A.4 Eq. (2.14)

The demonstration of Miehe et al. (2010a) phase-field model equations will begun from
Eq. (2.13b). From that, it is defined the functional F :

F = 1
2(φ2 + l20(φ′)2) (A.26)

For minimize the functional given by Eq. (A.26), it will be used the following Euler’s
Rule:

∂F

∂φ
−
(
∂F

∂φ′

)′
= 0 (A.27)



§A.5 Demonstration of theoretical foundation equations 92

In this way, it has:

∂F

∂φ
= φ (A.28a)

∂F

∂φ′
= l20φ

′ (A.28b)

Substituting Eq. (A.28) in Eq. (A.27), it gets in the Eq. (A.29):

φ− l20φ′′ = 0 (A.29)

It can be proved that Eq. (2.13a) is the solution of Eq. (A.29). It’s easy to demonstrate
that. Just replace Eq. (A.30) in Eq. (A.29).

φ = e−|x|/l0 (A.30a)

φ′′ = 1
l20
e−|x|/l0 (A.30b)

Now, it’s going to be solved the Eq. (2.13b) for Eq. (2.13a):

I = 1
2

∫ L

0
2e−2x/l0Γdx+ 1

2

∫ 0

−L
2e2x/l0Γdx

I = Γ
− l02 e−2x/l0

∣∣∣∣∣
L

0
+ l0

2 e
2x/l0

∣∣∣∣∣
0

−L

 = Γl0 (A.31)

As it can be seen, the Eq. (A.31) give the sharp crack surface multiplied by the length
parameter l0. To get a function that obtains the own crack sharp surface it is defined the
functional:

Γl = 1
l0
I(φ, φ′) (A.32)

A.5 Eq. (2.21)

In order to demonstrate the final equation of total energy function, it was calculated the
first variation of Eq. (2.20). From that, it haves:

δEt =
∫

Ω
σijδεij dV +

∫
B

∂ψ

∂φ
δφ dV −

∫
Ω
biδui dV −

∫
∂Ωt

tiδui dA+

+
∫
B
Gc

(
∂γ

∂φ
δφ+ ∂γ

∂φ,i
δφ,i

)
dV

(A.33)

In analogy in witch was demonstrated on Appendix A.1:
∫

Ω
σijδεij dV =

∫
∂Ω

(σijnj)δui dA−
∫

Ω
σij,jδui dV (A.34)
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Substituting Eq. (A.34) in Eq. (A.33) it gets:

δEt = −
∫

Ω
(σij,j + bi)ui dV +

∫
Ωt

(σijnj − ti)δui dA+

+
∫
B

[
Gc

(
∂γ

∂φ
δφ+ ∂γ

∂φ,i
· δφ,i

)
+ ∂ψ

∂φ
δφ

]
dV

(A.35)

The last integrate in domain B of Eq. (A.35), defined here as A, can be re-written as:

A =
∫
B

∂ψ

∂φ
δφ dV +

∫
B
Gc
∂γ

∂φ
δφ dV +

∫
B
Gc

∂γ

∂φ,i
φ,i dV (A.36)

Consider what follows:(
∂γ

∂φ,i
δφ

)
,i

=
(
∂γ

∂φ,i

)
,i

δφ+ ∂γ

∂φ,i
δφ,i

∂γ

∂φ,i
δφ,i =

(
∂γ

∂φ,i
δφ

)
,i

−
(
∂γ

∂φ,i

)
,i

δφ (A.37)

Substituting Eq. (A.37) in Eq. (A.36), before applying the Divergence Theorem comes:

A =
∫
B

[
∂ψ

∂φ
+Gcδφγ

]
δφ dV +

∫
∂B
Gc

∂γ

∂φi
niδφ dA (A.38)

Where:
δφγ = ∂γ

∂φ
−
(
∂γ

∂φ,i

)
,i

(A.39)

Substituting Eq. (A.38) in A.35 we arrives in Eq. (2.21) as it would want to demon-
strated:

δEt = −
∫

Ω
(σij,j + bi)δui dV +

∫
∂Ωt

(σijnj − ti)δui dA+
∫
B

[
∂ψ

∂φ
+Gcδφγ

]
δφ dV+

+
∫
∇B

Gc

(
∂γ

∂φ,i
ni

)
δφ dA

(A.40)

In symbolic notation:

δEt = −
∫

Ω
(∇σ + b̄) · δū dV +

∫
∂Ωt

(σ · n̄− t̄) · δū dA+
∫
B

[
∂ψ

∂φ
+Gcδφγ

]
δφ dV+

+
∫
∇B

Gc

(
∂γ

∂∇φ
· n̄
)
δφ dA

(A.41)
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A.6 Eq. (2.24)

To demonstrate Equations 2.24, the energy functional (Eq. (2.1)) will be derived with
respect to time:

Ėt = Ψ̇s + Ψ̇c − Ṗext (A.42)

In that way, each part of Eq. (A.42) have to be calculated. For Ψs it gets:

Ψ̇s = ∂

∂t

[∫
Ω
ψ(ε(ū), φ) dV

]
=
∫

Ω
σijεij dV +

∫
B

∂ψ

∂φ
φ̇ dV (A.43)

Making the same that was done on Appendix A.1, Eq. (A.43) becomes:

Ψ̇s =
∫
∂Ω
σijnju̇i dA−

∫
Ω
σij,ju̇i dV +

∫
B

∂ψ

∂φ
φ̇ dV (A.44)

For surface energy, comes:

Ψ̇c =
∫
B
Gcγ(φ, φ,i) dV =

∫
B
Gc

[
∂γ

∂φ
φ̇+ ∂γ

∂φ,i
φ̇,i

]
dV (A.45)

Applying the divergence theorem, before some mathematical manipulations it arrives
at:

Ψ̇c =
∫
B
Gc

∂γ
∂φ
−
(
∂γ

∂φ,i

)
,i

 φ̇ dV +
∫
∂B
Gc

∂γ

∂φ,i
niφ̇ dA (A.46)

But the second instalment of Eq. (A.46) is zero by boundary conditions. In that way:

Ψ̇c =
∫
B
Gcδφγφ̇ dV (A.47)

where:
δφγ = ∂γ

∂φ
−
(
∂γ

∂φ,i

)
,i

(A.48)

In symbolic notation, Eq. (A.48) is written as:

δφγ = ∂γ

∂φ
−∇ · ∂γ

∂∇φ
(A.49)

The derivative of external forces potential can be easy verified that:

Ṗext =
∫

Ω
(ḃiui + biu̇i) dV +

∫
∂Ωt

(ṫiui + tiu̇i) dA (A.50)
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Substituting Eq. (A.46), Eq. (A.47) and Eq. (A.50) in Eq. (A.42) gets:

Ėt =
∫
∂Ωu

σijnju̇i dA+
∫
∂Ωt

(σijnj − ti)u̇i dA−
∫
∂Ωt

ṫiui dA−
∫

Ω
(σij,j + bi)u̇i dV+

−
∫

Ω
ḃiui dV +

∫
B

∂ψ

∂φ
φ̇ dV +

∫
B
Gcδφγφ̇ dV

(A.51)

It’s known that σijnj − ti = 0 and σij,j + bi = 0, and comparing Eq. (A.51) with
Eq. (2.6), it noted that the three first therms of A.51 are equal to Ėt. From this, consid-
ering Y = ∂ψ

∂φ
, it arrives at the following:

∫
B

[Y −Gcδφγ] φ̇ dV = 0 (A.52)

Observe that the therm in bracket of Eq. (A.52) is similar to Eq. (2.11). With that in
mind, from Eq. (A.52) comes:

• For φ̇ > 0 (it can’t be smaller than zero by irreversibility condition):

Y −Gcδφγ = 0 (A.53)

• For φ̇ = 0, to obey Eq. (2.11):

Y −Gcδφγ < 0 (A.54)

A.7 Eq. (2.38)

From Eq. (2.21), applying the conditions obtained on Eq. (2.23) and Eq. (2.25), and
considering the Unilateral Stationary Condition, it gets:

δEt =
∫
B

[−Y +Gcδφγ] δφ dV ≥ 0 (A.55)

Substituting Eq. (2.26d) and Eq. (2.32b) in Eq. (A.55):

δEt =
∫
B
g′(φ)Ȳ δφ dV +

∫
B

Gc

C0

1
l0
α′(φ)δφ dV −

∫
B

2Gc

C0
l0φ,iiδφ dV ≥ 0 (A.56)

Considering (φ,iδφ),i = φ,iiδφ+ φ,iδφ,i it can be said that:

φ,iiδφ = (φ,iδφ),i − φ,iδφ,i (A.57)

Substituting what was obtained in Eq. (A.57) in the last integral of Eq. (A.56), and
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applying the divergence theorem, it comes to:
∫
B

2Gc

C0
l0φ,iiδφ dV = 2Gcl0

C0

[∫
∂B
φ,iδφnidA−

∫
B
φ,iδφ,i dV

]
(A.58)

But, the first integral on brackets of Eq. (A.58) is zero because the variable φ don’t varies
on boundary ∂B, that is, δφ = 0. With this consideration, substituting Eq. (A.58) in
Eq. (A.56) it obtains:

δEt =
∫
B

[
g′(φ)Ȳ δφ+ Gc

C0

( 1
l0
α′(φ)δφ+ 2l0φ,iiδφ

)]
dV ≥ 0 (A.59)

Calling δγ = 1
C0

[ 1
l0
α′(φ)δφ+ 2l0φ,iiδφ

]
it arrives on Eq. (A.60) as it would wanted

to be demonstrated: ∫
B

[
g′(φ)Ȳ δφ+Gcδγ

]
dV ≥ 0 (A.60)

In symbolic form, δγ can be written as:

δγ = 1
C0

[ 1
l0
α′(φ)δφ+ 2l0∇φ · ∇δφ

]
(A.61)



Appendix B

Numerical solution

In this chapter it will be demonstrated the analytical solution for a bar subject to a
tension test. The demonstrations shown here can also be found in Wu et al. (2020) but
the author of this manuscript wanted to put here too in order to facilitate future researches
of phase-field modelling in Structures Department of UFMG.

To start the demonstrations, imagine a bar x ∈ [−L,L], centred in the origin, loaded in
both extremities in such way that the boundary conditions will not affect the phase-field
evolution. When phase-field values becomes bigger, as it is demonstrated in Section 2.2.2,
Eq. (B.1) is satisfied:

Y −Gcδφγ = 0 (B.1)

It also have the following definitions in phase-field theory:

Y = −g′(φ)Ȳ (B.2a)

Ȳ = 1
2σε (B.2b)

σ = g(φ)E0ε (B.2c)

δφγ = 1
C0

[ 1
l0
α′(φ)− 2l0∆φ

]
(B.2d)

Substituting Eq. (B.2) in Eq. (B.1), it arrives to:

1
2g
′(φ)g(φ)E0ε

2 + Gc

C0

[ 1
l0
α′(φ)− 2l0φ,xx

]
= 0 (B.3)

Now, let be introduced a monotonically increase function ω(φ) defined as:

ω(φ) = 1
g(φ) − 1 =⇒ g(φ) = 1

1 + ω(φ) (B.4)

The derivative of g(φ) becomes:

g′(φ) = −g2(φ)ω′(φ) < 0 (B.5)
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Substituting Eq. (B.5) in Eq. (B.3) it gets:

1
2
[
−g2(φ)ω′(φ)

]
g(φ)E0ε

2 + Gc

C0

[ 1
l0
α′(φ)− 2l0φ,xx

]
= 0 (B.6)

Re-writing:
− 1

2
g(φ)E0ε

E0
ω′(φ)g(φ)E0ε+ Gc

C0

[ 1
l0
α′(φ)− 2l0φ,xx

]
= 0 (B.7)

Substituting B.2c in B.7:

σ2ω′(φ)− A0
[
α′(φ)− 2l20φ,xx

]
= 0, A0 = 2GcE0

C0l0
(B.8)

The displacement (u) in the end of the bar can be calculated by the elasticity formula:

u =
∫ L

0
εdx, with ε = σ

E0
[1 + ω(φ)] (B.9)

where the definition of ε was obtained from equations Eq. (B.2c) and Eq. (B.4).

B.1 Homogeneous solution

In this section the homogeneous solution will be considered, that is, the stress, strains
and phase-field values are homogeneous along the bar domain. In this way φ,xx = 0 and
Eq. (B.8) becomes:

σ2ω′(φ)− A0α
′(φ) = 0 (B.10)

Organizing Eq. (B.10) and using Eq. (B.9), the following can be written:

σ =

√√√√A0
α′(φ)
ω′(φ) , ε = 1

E0

√√√√−A0
α′(φ)
g′(φ) , u = εL = L

E0

√√√√−A0
α′(φ)
g′(φ) (B.11)

To obtain the maximum value of traction that the material supports, the analysis will
be based in the generic geometric crack function proposed by Wu (2017):

α(φ) = ξφ+ (1− ξ)φ2, ξ ∈ [0; 2] (B.12)

• When it is adopted ξ = 0 it arrives in α(φ) = φ2, and according to Wu et al. (2020)
the failure criterion is activated since the loading is applied. Deriving σ with relation
to φ the critical point is obtained:

∂σ

∂φ
= 0 =⇒ ∂σ

∂φ
= 1

2 ∗
A0
α′′(φ)ω′(φ)− α′(φ)ω′′(φ)

(ω′(φ))2√
A0
α′(φ)
ω′(φ)

= 0 (B.13)
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Considering what was described in B.14 and with a few algebraic manipulations
B.13 arrives to B.15:

α′(φ) = 2φ (B.14a)
α′′(φ) = 2 (B.14b)

ω′(φ) = − g
′(φ)
g2(φ) (B.14c)

ω′′(φ) = −g
′′(φ)g(φ)− 2(g′(φ))2

g3(φ) (B.14d)

[
g(φc)g′′(φc)− 2(g′(φc))2

]
φc = g′(φc)g(φc) (B.15)

And the maximum value of traction is obtained by putting the value of critical point
(φc) in Eq. (B.11).
In this work, in all examples analysed, it was used g(φ) = (1 − φ)2. With that,
substituting in equation Eq. (B.15) it arrives to:

φc = 1
4 , σc = 3

16

√
3E0Gc

l0
, εc =

√
Gc

3E0l0
(B.16)

• When it is adopted ξ > 0 the derivative of the geometric crack function in zero
becomes α′(φ) = ξ. In this case, according to Wu et al. (2020) there is a initial state
in which the material remains with φ = 0. In this case, the peak stress occurs in
the instant of damage initiation and for ω(0) > 0 it can be written:

σc = lim
φ→0

√√√√A0
α′(φ)
ω′(φ) , εc = lim

φ→0

1
E0

√√√√−A0
α′(φ)
g′(φ) (B.17)

For ω′(0) = 0, Wu et al. (2020) defines:

σc = lim
φ→0

√√√√A0
α′′(φ)
ω′′(φ) , εc = lim

φ→0

1
E0

√√√√A0
α′′(φ)
ω′′(φ) (B.18)

B.2 Localised solution

The localised solution assumes that phase-field evolution will start in a certain point, and
it will grow. In this demonstration, assume that the localized band is centred in x = 0 and
extends for the domain [−D,D] where D is a half bandwidth, not necessarily constant,
in such way that D << L. Multiplying Eq. (B.8) by φ,x and integrating with respect to x
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goes to:
σ2ω(φ)− A0

[
α(φ)− (l0φ,x)2

]
= 0 (B.19)

In boundary condition of the localization band, it is considered that

φ(x = ±D) = 0, φ,x(x = ±D) = 0, ω(φ(x = ±D)) = 0. (B.20)

For a given displacement u∗, because of symmetry, the maximum value of phase-field
(φ∗) will occurs in x = 0 where φ,x = 0. In this case, Eq. (B.19) becomes:

σ2ω(φ∗)− A0α(φ∗) = 0 =⇒ σ =

√√√√A0
α(φ∗)
ω(φ∗) (B.21)

The failure strength is determined upon the instant of damage initiation, so applying
L’Hôpital to calculate the indeterminate limit, it gets:

ft = lim
φ∗→0

σ =

√√√√A0
α′(0)
ω′(0) =

√√√√2GcE0

C0l0

α′(0)
ω′(0) , A0 = f 2

t

ω′(0)
α′(0) = 2GcE0

C0l0
(B.22)

Considering that, Eq. (B.21) can be re-written as:

σ = ft

√√√√ω′(0)
α′(0)

α(φ∗)
ω(φ∗) (B.23)

From Eq. (B.19), φ,x is:

φ,x = 1
l0

√
α(φ)− σ2

A0
ω(φ) (B.24)

Substituting Eq. (B.21) in Eq. (B.24), becomes:

φ,x = dφ

dx
= − 1

l0
F , F =

√√√√α(φ)− α(φ∗)
ω(φ∗)ω(φ) (B.25)

The negative signal is explained due the fact that φ is monotonically decreasing in the
interval x ∈ [0;L].

With this is mind, to calculate the position of a given phase-field it can be done:

x(φ, φ∗) = l0

∫ φ∗

φ
F−1(φ̄, φ∗)dφ̄ (B.26)

And the size of half damaged part of the bar:

D(φ∗) = l0

∫ φ∗

0
F−1(φ̄, φ∗)dφ̄ (B.27)
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And the displacement imposed at the free end of the bar (x = L):

u(φ∗) = σ

E0
L+ 1

2w(φ∗)dx (B.28)

where w(φ∗) is defined:
w(φ∗) = 2σ

E0

∫ D

0
ω(φ)dx (B.29)

Using Eq. (B.22), Eq. (B.23) and Eq. (B.24), it gets to:

w(φ∗) = 4Gf

C0ft

√√√√α′(0)
ω′(0)

∫ φ∗

0

√√√√ α(φ∗)
α(φ̄)ω(φ∗)− α(φ∗)ω(φ̄)

ω(φ̄)dφ̄ (B.30)



Appendix C

Demonstration of FEM equations

The demonstration of FEM discretization will strat from Eq. (2.38a), that in Voight’s
notation can be written as: ∫

Ω
δε̄T σ̄ dV = δd̄T f̄I

Substituting δε̄ = [B]uI δd̄, it arrives to:

δd̄T
∫

Ω
[B]u,TI σ̄ dV = δd̄T f̄I (C.1)

As δd̄ is arbitrary, Eq. (C.1) comes to the already known Eq. (C.2):
∫

Ω
[B]u,TI σ̄ dV = f̄I (C.2)

Substituting the the definitions of Eq. (2.42) in Eq. (2.38b):
∫
B
g′Ȳ δāT [N]φ,TI + 1

C0

( 1
l0
α′δāT [N]φ,TI + 2l0δāT [B]φ,TI ∇φ

)
dV ≥ 0̄I (C.3)

But δā is arbitrary, so Eq. (C.3) can be re-written as:
∫
B
g′Ȳ [N]φ,TI + 1

C0

( 1
l0
α′ [N]φ,TI + 2l0 [B]φ,TI ∇φ

)
dV ≥ 0̄I (C.4)

As it would wanted to be demonstrated Eq. (C.2) and Eq. (C.4) are the discrete form
of the phase-field governing equations and the residual form of then can be written as:

r̄uI =
∫

Ω
[B]u,TI σ̄ dV − f̄ext = 0̄I (C.5a)

r̄φI = −
∫
B

[N]φ,TI
(
g′Ȳ + 1

C0l0
α′Gc

)
dV −

∫
B

2l0
C0
Gc [B]φ,TI ∇φ dV ≤ 0̄I (C.5b)

To obtain the tangent stiffness matrix it is necessary to derive the left part of Eq. (C.2)
and Eq. (C.4) with respect to the nodal displacements vector (d̄) and the nodal phase-field
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vector (ā). In this way, starting from Eq. (C.2) and applying the chain rule, it gets:

[Kuu]IJ =
∫

Ω
[B]u,TI

∂σ̄

∂ε̄

∂ε̄

∂d̄J
dV (C.6)

But, from Eq. (2.40b):

[Kuu]IJ =
∫

Ω
[B]u,TI

∂σ̄

∂ε̄
[B]uJ dV (C.7)

Now, deriving Eq. (C.2) with respect to nodal phase-field ā it arrives to:

[
Kuφ

]
IJ

=
∫

Ω
[B]u,TI

∂σ̄

∂φ

∂φ

∂āJ
dV (C.8)

Using the definition 2.42a, Eq. (C.8) can be rewritten as:

[
Kuφ

]
IJ

=
∫

Ω
[B]u,TI

∂σ̄

∂φ
[N]φJ dV (C.9)

In analogy in what was done above, deriving the left part of Eq. (C.4) with respect to
displacements (d) gets:

[
Kφu

]
IJ

=
∫
B

[N]φ,TI g′
∂Ȳ

∂ε̄
[B]uJ dV (C.10)

Now, with respect to phase-field vector (ā), obtains:

[
Kφφ

]
IJ

=
∫
B

[N]φ,TI
(
g′′Ȳ + 1

C0l0
α′′Gc

)
[N]φJ dV +

∫
B

2l0
C0
Gc [B]φ,TI [B]φJ dV (C.11)

So, the tangent stiffness matrix becomes:

[K] =
 [Kuu]

[
Kuφ

][
Kφu

] [
Kφφ

] (C.12)

with its therms defined on Eq. (C.7), Eq. (C.9), Eq. (C.10) and Eq. (C.11).



Appendix D

Constitutive and stress tensors

It is already known that the strain tensor and the tangent constitutive tensor is obtained,
respectively, by deriving once and twice the strain energy density with respect to the
strain tensor. So, from Eq. (2.36):

σij = ∂ψ

∂εij
= g(φ)∂ψ

+
0

∂εij
+ ∂ψ−0
∂εij

(D.1a)

Cijkl = ∂2ψ

∂εij∂εkl
= g(φ) ∂ψ+

0
∂εij∂εkl

+ ∂ψ−0
∂εij∂εkl

(D.1b)

From Eq. (D.1), it is demonstrated in this appendix stress and the constitutive tensor
for the constitutive models presented in this work.

D.1 Eq. (2.57): Lancioni and Royer-Carfagni (2009)

Rewriting strain energy density proposed by Lancioni and Royer-Carfagni (2009) in index
notation it gets:

ψ+
0 = µ0

(
εijεij −

1
3(εijδij)2

)
(D.2a)

ψ−0 = 1
2K0(εijδij)2 (D.2b)
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Deriving Eq. (D.2) with respect to strain tensor once and twice it obtains:

∂ψ+
0

∂εkl
= 2µ0

(
εkl −

1
3εijδijδkl

)
(D.3a)

∂ψ−0
∂εkl

= K0εijδijδkl (D.3b)

∂ψ+
0

∂εkl∂εmn
= 2µ0

(
δmnkl −

1
3δmnδkl

)
(D.3c)

∂ψ−0
∂εkl∂εmn

= K0δijδmn (D.3d)

Substituting Eq. (D.3) in Eq. (D.1) it gets, in symbolic form:

σ = g(φ) 2µ0

(
ε− 1

3tr(ε)I
)

+K0tr(ε)I (D.4a)

Ĉ = 2g(φ)µ0

(1
3tr(ε)I

)
+K0I ⊗ I (D.4b)

D.2 Eq. (2.58c) and Eq. (2.58d): Amor et al. (2009)

Writing Eq. (2.58a) and Eq. (2.58b) in index notation:

ψ+
0 = 1

2K0R
+
n (εijδij)2 + µ0

[
εijεij −

1
3(εijδij)2

]
(D.5a)

ψ−0 = 1
2K0R

−
n (εijδij)2 (D.5b)

Derivating Eq. (D.5) with respect to the strain tensor, it gets:

∂ψ+
0

∂εkl
= K0R

+
n εijδijδkl + 2µ0

(
εkl −

1
3εijδijδkl

)
(D.6a)

∂ψ−0
∂εkl

= K0R
−
n εijδijδkl (D.6b)

∂ψ+
0

∂εkl∂εmn
= K0R

+
n δmnδkl + 2µ0

(
δmnkl −

1
3δmnδkl

)
(D.6c)

∂ψ−0
∂εkl∂εmn

= K0R
−
n δmnδkl (D.6d)

From Eq. (D.6), the stress and the constitutive tensor can be written, in symbolic
form, as:

σ = g(φ)
[
K0R

+
n ε : I ⊗ I + 2µ0

(
ε− 1

3ε : I ⊗ I
)]

+K0R
−
n ε : I ⊗ I (D.7a)

Ĉ = g(φ)
[
K0R

+
n I ⊗ I + 2µ0

(
Î− 1

3I ⊗ I
)]

+K0R
−
n I ⊗ I (D.7b)
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D.3 Eq. (2.63): Miehe et al. (2010b)

In this section will be demonstrated the form of constitutive and stress tensor proposed
by Miehe et al. (2010b). For that, it is firstly necessary to demonstrate the construction
of the fourth order tensor P̂±. Due that, this section is splitted in two subsections: the
first, in which in demonstrated the P̂± tensor, and the second, with the demonstrations
of constitutive and stress tensor itself.

D.3.1 The fourth order P̂± tensor

The value of 〈εn〉+ defined in Eq. (2.60), using the definitions given in Eq. (2.49), can be
rewritten as:

〈εn〉+ = εn
1 + sgn(εn)

2 = εnH(εn) (D.8)

Rewriting Eq. (2.60a):

ε+
ij =

3∑
n=1

εnH(εn)pni
pnj

(D.9)

It is wanted a fourth order tensor P+
ijkl in such way that:

ε+
ij = P+

ijklεkl = P+
ijkl

3∑
n=1

εnpnk
pnl

(D.10)

Matching Eq. (D.9) and Eq. (D.10), it gets to:

P+
ijkl

3∑
n=1

pnk
pnl

=
3∑

n=1
H(εn)pni

pnj
(D.11)

If P+
ijkl is a fourth order tensor, it can be defined by:

P+
ijkl = αaibjckdl (D.12)

where α is a constant value.
Substituting Eq. (D.12) in Eq. (D.11):

αaibjckdl
3∑

n=1
pnk

pnl
=

3∑
n=1

H(εn)pni
pnj

(D.13)
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Both sides of equations needs to be equal. For that is is necessary:

α = H(εn) (D.14a)
ai = pni

(D.14b)
bj = pnj

(D.14c)
ckpnk

= 1 (D.14d)
dlpnl

= 1 (D.14e)

To satisfy Eq. (D.14d) and Eq. (D.14e), it needs that:

ck ≡ pnk
, ‖ck‖ = ‖pnk

‖ = 1 (D.15a)
dl ≡ pnl

, ‖dl‖ = ‖pnl
‖ = 1 (D.15b)

So:
P+
ijkl =

3∑
n=1

H(εn)pni
pnj

pnk
pnl

(D.16)

In symbolic notation:

P̂+ =
3∑

n=1
H(εn)p̄n ⊗ p̄n ⊗ p̄n ⊗ p̄n (D.17)

D.3.2 The constitutive and stress tensor

The strain energy density, in index notation becomes:

ψ+
0 = 1

2λ0R
+
n (δijεij)2 + µ0ε

+
ijε

+
ij (D.18a)

ψ−0 = 1
2λ0R

−
n (δijεij)2 + µ0ε

−
ijε
−
ij (D.18b)

The stress tensor is calculated, in this case, by:

σij = g(φ)∂ψ
+
0

∂εij
+ ∂ψ−0
∂εij

= g(φ)∂ψ
+
0

∂ε+
ij

∂ε+
ij

∂εij
+ ∂ψ−0
∂ε−ij

∂ε−ij
∂εij

(D.19)

From Eq. (2.59):
∂ε−ij
∂εij

=
∂ε+

ij

∂εij
= 1 (D.20)

So, with definitions of Eq. (D.19) and Eq. (D.20), the derivatives of Eq. (D.18a)
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becomes:

∂ψ+
0

∂εkl
= λ0R

+
n δijεijδkl + 2µ0P

+
klmnεmn (D.21a)

∂ψ−0
∂εkl

= λ0R
−
n δijεijδkl + 2µ0P

−
klmnεmn (D.21b)

∂ψ+
0

∂εkl∂εmn
= λ0R

+
n δmnδop + 2µ0P

+
opmn (D.21c)

∂ψ−0
∂εkl∂εmn

= λ0R
−
n δmnδop + 2µ0P

−
opmn (D.21d)

Now, in symbolic form, the constitutive and stress tensor can be written:

σ = g(φ)
(
λ0R

+
n tr(ε)I + 2µ0P̂+ : ε

)
+ λ0R

−
n tr(ε)I + 2µ0P̂− : ε (D.22a)

Ĉ = g(φ)
(
λ0R

+
n I ⊗ I + 2µ0P̂+

)
+ λ0R

−
n I ⊗ I + 2µ0P̂− (D.22b)



Appendix E

Strain energy density particularized
for 2-D case

In this appendix is demonstrated the form of the strain energy density, particularized for
a 2-D case, for the energy phase-field models presented in this work.

E.1 Eq. (2.64): Isotropic model

Is is already known that the strain energy density for a 2-D case, and the general stress
tensor can be calculated by:

ψ0 = 1
2σijεij = 1

2(σ11ε11 + 2σ12ε12 + σ22ε22) (E.1a)

σij = λ0δijtr(εij) + 2µ0εij (E.1b)

Substituting Eq. (E.1b) in Eq. (E.1a) it gets:

ψ0 = 1
2 [(λ0tr(εij) + 2µ0ε11)ε11 + 2(2µ0ε12)ε12 + (λ0tr(εij) + 2µ0ε22)ε22] (E.2)

Before some algebraic manipulations Eq. (E.2) becomes to Eq. (E.3), as it would
wanted to be demonstrated:

ψ0 = 1
2λ0tr(εij)(ε11 + ε22) + µ(ε2

11 + ε2
22 + 2ε2

12) (E.3)

E.2 Eq. (2.65): Lancioni and Royer-Carfagni (2009)

To obtain the energy split made by Lancioni, for a 2-D case, this demonstration will start
from Eq. (E.3) writing its second part in therms of volumetric and deviatoric tensor:

ψ0 = 1
2λ0tr(εij)(ε11 + ε22) + µ0

[
(εD11 + εV11)2 + (εD22 + εV22)2 + 2(εD12 + εV12)2

]
(E.4)
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The therm in square brackets, before developed becomes:

[· · · ] = (εD11)2 +(εD22)2 +2(εD12)2 +(εV11)2 +(εV22)2 +2(εV12)2 +2εD11ε
V
22 +2εD22ε

V
22 +4εD12ε

V
12 (E.5)

Observe that, the first three therms of Eq. (E.5) correspond to the internal product
of the active deviatoric strain tensor. In this way:

[· · · ] = εDacij
εDacij

+ 1
9(tr(εij))2 + 1

9(tr(εij))2 + 2
3tr(εij)εD11 + 2

3tr(εij)εD22 (E.6)

[· · · ] = εDacij
εDacij

+ 2
9(tr(εij))2 + 2

3tr(εij)(εD11 + εD22) (E.7)

Rewriting the terms in parentheses in function of volumetric and total strains, be-
comes:

[· · · ] = εDacij
εDacij

+ 2
9(tr(εij))2 + 2

3tr(εij)
(
ε11 −

1
3tr(εij) + ε22 −

1
3tr(εij)

)
(E.8)

[· · · ] = εDacij
εDacij

+ 2
9(tr(εij))2 + 2

3tr(εij)(ε11 + ε22)− 4
9(tr(εij))2 (E.9)

[· · · ] = εDacij
εDacij
− 2

9(tr(εij))2 + 2
3tr(εij)(ε11 + ε22) (E.10)

Substituting Eq. (E.10) in Eq. (E.4), it arrives in Eq. (E.11):

ψ0 =
{
µ0ε

D
acij

εDacij

}
+
{1

2λ0tr(εij)(ε11 + ε22) + µ0

(2
3tr(εij)(ε11 + ε22)− 2

9(tr(εij))2
)}

(E.11)
In symbolic form, it arrives at Eq. (2.65), as it would wanted to be demonstrated:

ψ0 =
{
µ0ε

D
ac : εDac

}
+
{1

2λ0tr(ε)(ε11 + ε22) + µ0

(2
3tr(ε)(ε11 + ε22)− 2

9(tr(ε))2
)}

(E.12)

where the first therm in cases corresponds to ψ+
0 and the second therm to ψ−0 .

E.3 Eq. (2.66): Amor et al. (2009)

Observe that, the model proposed by Amor et al. (2009) is very similar to Lancioni and
Royer-Carfagni (2009). The difference is that in Amor et al. (2009) the second therm in
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cases of Eq. (E.13) is also considered as part as the active strain energy. In this way:

ψ0 =
{
µ0ε

D
ac : εDac +R+

n

[1
2λ0tr(ε)(ε11 + ε22) + µ0

(2
3tr(ε)(ε11 + ε22)− 2

9(tr(ε))2
)]}

+{
R−n

[1
2λ0tr(ε) + (ε11 + ε22) + µ0

(2
3tr(ε)(ε11 + ε22)− 2

9(tr(ε))2
)]}
(E.13)

where the first therm in cases corresponds to ψ+
0 and the second therm to ψ−0 .

E.4 Eq. (2.67): Miehe et al. (2010b)

Comparing Eq. (2.54a) to Eq. (2.61a) it can be said that the strain energy density proposed
by Miehe et al. (2010b) is very similar to isotropic constitutive model. Due that fact, in
analogy to what was done in Appendix E.1 we can particularize Miehe et al. (2010b)
strain energy density to 2-D case by:

ψ0 =
{1

2λ0R
+
n tr(ε)(ε11 + ε22) + µ0ε

+
ac : ε+

ac

}
+
{1

2λ0R
−
n tr(ε)(ε11 + ε22) + µ0ε

−
ac : ε−ac

}
(E.14)

where the first therm in cases corresponds to ψ+
0 , the second therm to ψ−0 and ε+

ac and ε−ac
corresponds to the active part of ε+ and ε−.



Appendix F

Demonstration of implementation
equations

In this section will be demonstrated the necessary equation for implementation section.

F.1 Eq. (3.3): Dual internal variable operator in mono-
lithic solver

The dual internal variables vector is calculated by deriving the internal energy functional
with respect to the internal variables. In this way, for a plane case, the first three therms
of this vector is the already known stress vector in Voigth notation.

Defining the internal energy functional by ψ∗, shown in Eq. (F.1a), the remaining
therms is obtained by Eq. (F.1b) and Eq. (F.1c):

ψ∗ = ψ +Gcγ (F.1a)
∂ψ∗

∂φ
= ∂ψ

∂φ
+ ∂

∂φ
(Gcγ) (F.1b)

∂ψ∗

∂φ,i
= ∂

∂φ,i
(Gcγ) (F.1c)

By doing the chain rule in Eq. (F.1b) it becomes:

∂ψ∗

∂φ
= ∂ψ

∂g

∂g

∂φ
+ Gc

C0

∂

∂φ

[
α(φ)
l0

+ l0φ,iφ,i

]
= g′(φ)Ȳ + Gc

C0l0
α′′(φ) (F.2)

And from Eq. (F.1c), it gets:

∂ψ∗

∂φ,i
= Gc

C0l0

∂

∂φ,i
[φ,iφ,i] = 2 Gc

C0l0
φ,i (F.3)

From all that discussed, the dual internal variables vector in given by Eq. (F.4), as it
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would wanted to be demonstrated:

σ̄ =
{
σx σy τxy g′Ȳ + Gc

C0l0
α′ 2Gcl0

C0
φ,x 2Gcl0

C0
φ,y

}T
(F.4)

F.2 Eq. (3.10): Constitutive tensor for plane stress
in Voigt notation

In plane stress, σ33 = 0. From Generalized Hooke’s law, it gets:

σij = cijklεkl (F.5a)
σ33 = c3311ε11 + c3322ε22 + c3333ε33 = 0 (F.5b)

From Eq. (F.5b):
ε33 = − 1

c3333
(c3311ε11 + c3322ε22) (F.6)

Substituting Eq. (F.6) in Eq. (F.5a) it can be obtained that:

σ11 =
[
c1111 −

c1133c3311

c3333

]
ε11 +

[
c1122 −

c1133c3322

c3333

]
ε22 (F.7a)

σ22 =
[
c2211 −

c2233c3311

c3333

]
ε11 +

[
c2222 −

c2233c3322

c3333

]
ε22 (F.7b)

σ12 = 1
2(c1212 + c1221)γ12 (F.7c)

As it would wanted to be demonstrated, using Eq. (F.7) the constitutive matrix can
be written as:

[C]ustg =



(
c1111 −

c1133c3311

c3333

) (
c1122 −

c1133c3322

c3333

)
0(

c2211 −
c2233c3311

c3333

) (
c2222 −

c2233c3322

c3333

)
0

0 0 1
2(c1212 + c1221)

 (F.8)
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