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Resumo

Nesta tese, apresentamos resultados em processos estocásticos, mais precisamente,
em sistemas de part́ıculas interagentes e em modelos de percolação anisotrópica.

O primeiro tópico de nossa análise é o processo de contato sob renovações, uma
recente generalização do clássico processo de contato; analisamos o caso em que
a distribuição dos intervalos, entre as renovações, tem cauda pesada, onde o de-
caimento é polinomial com expoente entre 0 e 1. Mostramos que neste caso, um
fenômeno incomum é observado, há possibilidade de sobrevivência mesmo em gra-
fos finitos: para cada expoente, há transição de fase de acordo com o tamanho do
grafo, isto é, temos extinção quase certa se a quantidade de indiv́ıduos é menor que
o tamanho cŕıtico e temos possibilidade de sobrevivência caso contrário. E, além
disso, exibimos cotas inferior e superior bastante satisfatórias para o tamanho
cŕıtico.

O segundo tópico consiste em um sistema unidimensional e infinito de part́ıculas,
onde há uma part́ıcula carregada que está sob a ação de uma força constante, que
lhe provoca movimento e consequentemente interações com as demais part́ıculas
presentes no sistema. Como resultado, teoremas centrais do limite são estabeleci-
dos, para a posição e velocidade da part́ıcula carregada.

Por fim, analisamos o diagrama de fase do modelo de percolação anisotrópica
de elos de Bernoulli independentes na rede hipercúbica d-dimensional, onde a
probabilidade de um elo estar aberto, varia de acordo com sua direção. Dois
resultados são obtidos: primeiro, estabelecemos que, na rede orientada, de certa
forma, o diagrama de fase é similar ao do modelo na árvore d-regular; e segundo,
estabelecemos que, se d é maior que 10, é válida uma conjectura envolvendo o
expoente cŕıtico de transição dimensional, que fora proposta por f́ısicos.

Palavras-chave: Processo de contato. Percolação anisotrópica. Sistema de
part́ıculas. Transição de fase.
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Abstract

This thesis consists of a presentation of four works, independent among them-
selves, developed during my doctoral period. The first two are about interacting
particle systems, while the others two are about anisotropic percolation models.

The first one is a joint work with L.R. Fontes and R. Sanchis concerning the
renewal contact process. We study an infection propagation on a finite population.
We consider a finite graph where an individual is attached to each vertex. The
population starts with a single infected individual and the infection propagates
through neighbors according to marks of independent Poisson processes with rate
λ > 0, each one associated to an edge. Given α ∈ (0, 1), for each individual,
recovery occurs according to marks of a renewal process with heavy-tailed α-
stable law, associated to its vertex. All processes are assumed to be independent.
We explicitly give V−(α) and V+(α) such that V+(α) − V−(α) < 1, and for every
λ > 0, almost surely, the infection is extinct if the total population size is less
than V−(α) and has positive probability to survive, if it is bigger than V+(α).

In the second work, also in collaboration with L.R. Fontes and R. Sanchis, we
establish central limit theorems for the position and velocity of the charged particle
in a half-line mechanical particle system. A constant force F acts solely on the
charged particle starting at origin, while all the other particles are force neutral,
initially static and their interparticle distances are given by the family of i.i.d.
positive random variables {ξi}i∈N. Let {ηi}i∈N be a family of i.i.d. Bernoulli
random variables with parameter p, the r.v. ηi determines the i-th neutral particle
states, that can be sticky or elastic. Collisions between the charged particle and
a sticky one are totally inelastic and the sticky particle mass is incorporated by
the charged one, while collisions between an elastic particle and the charged one,
as the name suggest, are perfectly elastic. We assume that neutral particles do
not interact among themselves.

The third is a joint work with A. Pereira and R. Sanchis, we study anisotropic
oriented percolation on Zd, d ≥ 4. Independently of all others, an edge parallel to
ei is open with probability pi, i = 1, . . . , d. We show that if p1+ · · ·+pd is strictly
greater than one and each pi is not too large, then percolation occurs.

xi



xii ABSTRACT

The fourth and last, is a joint work with R. Sanchis and R.W.C. Silva. We consider
independent anisotropic bond percolation on Zd × Zs where edges parallel to Zd

are open with probability p < pc(Z
d) and edges parallel to Zs are open with

probability q, independently of all others. We prove that percolation occurs for
q ≥ 8d2(pc(Z

d) − p). This fact implies that the so-called dimensional crossover
critical exponent, if it exists, is greater than 1. In particular, using known results,
we provide a proof that, for d ≥ 11, the crossover critical exponent exists and
equals 1.

Keywords: Contact process. Anisotropic percolation. Particle systems. Phase
transition.
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Resumo Estendido

Nesta tese, apresento resultados obtidos junto a colaboradores, em pesquisas de-
senvolvidas durante meu doutorado. As pesquisas não abordam um tema principal
em comum, consistem no estudo de tópicos em processos estocásticos, buscando
solucionar questionamentos que surgiram, tanto em seminários quanto em con-
versas com colaboradoes, e que de alguma forma despertaram interesse ou se
mostraram viáveis. Estes resultados foram divulgados em quatro artigos subme-
tidos para publicação, cada caṕıtulo desta tese contém um desses trabalhos, com
modificações mı́nimas.

Os modelos estudados nos primeiros trabalhos tratam de sistemas de part́ıculas
interagentes, de natureza distintas. Já os dois últimos trabalhos são mais relacio-
nados e estudam modelos de percolação anisotrópica. Abaixo é exibida uma breve
introdução sobre os modelos envolvidos, além de uma descrição dos resultados.

Modelos de sistemas de part́ıculas interagentes têm sido de grande interesse entre
matemáticos nas últimas décadas. Para uma visão geral sobre o tema, veja os
clássicos [Lig85] e [Dur95]. Em particular, o processo de contato introduzido por
Harris em [Har74], é um destes modelos e vem sendo intensamente estudado. Se
trata de um modelo de propagação de uma infecção, onde cada indiv́ıduo é visto
como um vértice de um dado grafo, que pode estar, em cada instante, infectado
ou curado. Um indiv́ıduo infectado pode propagar a infecção para um vizinho a
uma taxa λ e pode se tornar curado com taxa 1. O processo de contato pode
também ser interpretado como a evolução de uma população ao longo do tempo,
onde um vértice pode estar “ocupado” (em correspondência com “infectado”) ou
“vazio” (em correspondência com “curado”).

De maneira mais precisa, cada elo do grafo dado possui uma linha temporal,
com ińıcio no instante 0 e que possui marcas de acordo com um processo de
Poisson independente, com taxa λ. Nos instantes correspondentes a estas marcas,
um indiv́ıduo infectado, seja ele um dos vértices do respectivo elo, propaga a
infecção para o indiv́ıduo associado ao outro vértice do elo e que se encontra
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2 RESUMO ESTENDIDO

curado, o qual se torna infectado instantaneamente; caso ambos os indiv́ıduos
estejam curados ou infectados neste instante, o estado de ambos se mantém. Há
também um mecanismo de cura similar: cada vértice possui uma linha temporal
com marcas segundo um processo de Poisson independente e com taxa 1: nos
instantes respectivos a tais marcas, o indiv́ıduo associado a este vértice se torna
curado caso esteja infectado ou, caso contrário, mantém o seu estado de curado.

Este modele exibe uma transição de fase de acordo com o parâmetro λ, precisa-
mente: existe um ponto cŕıtico λc > 0, tal que, se λ > λc, a infecção tem proba-
bilidade positiva de sobreviver por todo o tempo e se λ < λc a infecção é extinta
quase certamente. Em [FMMV19] e [FMV20], os autores propõem uma variação
deste modelo, conhecida na literatura por processo de contato sob renovações.
Nesta variante, cada um dos processos de Poisson com taxa 1 que determinam
os tempos de cura é substitúıdo por um processo de renovação não estacionário,
cujos tempos entre as renovações têm distribuição comum com cauda pesada, cujo
decaimento é do tipo polinomial com ı́ndice α. Note que neste caso, o processo
deixa de ser Markoviano. Quando α > 1, como demonstrado em [FMV20], sob
certa condição extra de monotonicidade, o modelo exibe a transição de fase usual
para o parâmetro de infecção λ, isto é, a infecção é extinta quase certamente para
valores suficientemente pequenos de λ. Entretanto, como exibido em [FMMV19],
quando α < 1, e sob algumas condições razoavelmente leves de regularidade, o
modelo não exibe esta transição de fase, a saber, é estabelecido que, em qualquer
grafo infinito e conexo, a infecção sobrevive com probabilidade estritamente posi-
tiva, qualquer que seja λ. Ter ponto cŕıtico igual a 0 não é habitual em variantes
do processo de contato, porém este fenômeno é também exibido em [Dur10] e
[CD09], por exemplo.

Em [FMMV19], os autores notam um efeito de tunelamento: a infecção permanece
em um indiv́ıduo por um longo peŕıodo de tempo, de acordo com um intervalo sem
marca de cura, até que propague para um outro vizinho ainda não analisado, o
qual possui um intervalo ainda maior, sem marcas de cura, e assim por diante. A
existência desses intervalos tunelados, sugere que não há a necessidade de infinitos
indiv́ıduos para que a infecção sobreviva. Isto nos levou a estudar o Processo de
Contato sob Renovações em grafos finitos, e a buscarmos uma nova transição de
fase a respeito deste modelo, precisamente sobre a quantidade de vértices do grafo.
O Caṕıtulo 1 exibe o trabalho [FGS19] desenvolvido nesta pesquisa.

Como resultado, temos que fixado 0 < α < 1, damos explicitamente valores
V−(α) e V+(α) tais que, para qualquer grafo conexo finito com número de vértices
menor que V−(α), a infecção é extinta quase certamente, independente da taxa
λ e caso tenha mais vértices que V+(α), a infecção tem probabilidade positiva
de sobreviver, qualquer que seja λ. É ainda interessante mencionar que V+(α) −
V−(α) < 1 e que esta diferença tende a 0, à medida que α tende a 1. Neste
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trabalho, uma regularidade maior na calda da distribuição dos tempos entre as
renovações dos processos de cura é assumida como hipótese, precisamente é da
forma µ(t,∞) = L(t)t−α, onde L(·) é uma função de variação lenta. Com essa
regularidade temos mais facilidade de lidar com ocorrências de marcas de cura, em
todos os indiv́ıduos, proximamente concentradas, isto inviabiliza a sobrevivência
da infecção e nos fornece V−(α). Entretanto, é esperado que uma regularidade
mais fraca seja suficiente para a obtenção da cota V+(α).

À primeira vista pode ser surpreendente o fato do comportamento do modelo não
depender da estrutura do grafo, mas note que, como estamos lidando com uma
distribuição com cauda pesada na determinação dos tempos entre as marcas de
cura, é esperado a ocorrência de tempos cada vez maiores. A ocorrência de tais
grandes intervalos de tempo determina a possibilidade de que todos os indiv́ıduos
sejam infectados simultaneamente, desta forma, a estrutura do grafo passa a não
desempenhar papel importante. E como veremos, tal ocorrência só depende da
quantidade de indiv́ıduos.

No Caṕıtulo 2 estudamos um sistema de part́ıculas interagentes de natureza dis-
tinta ao processo de contato, se trata de um sistema infinito, cujas part́ıculas se
movimentam de acordo com as leis da mecânica clássica (Newtoniana). Temos
uma quantidade enumerável de part́ıculas que estão inicialmente dispostas de ma-
neira estática sobre o semi-eixo real não-negativo [0,∞), sobre o qual poderão vir
a se mover ao decorrer do tempo. Sobre o sistema, atua uma força constante
F . Um part́ıcula carregada, sujeita à ação desta força, se encontra inicialmente
disposta sobre a origem. Todas as demais part́ıculas são neutras e portanto esta
força não atua sobre elas. A posição inicial destas part́ıculas neutras são definidas
de acordo com a famı́lia i.i.d. de variáveis aleatórias estritamente positivas {ξi}i∈N
com média µ, precisamente, ξi denota a distância inicial entre a i−ésima part́ıcula
neutra e sua antecessora. Cada uma das part́ıculas neutras, de maneira indepen-
dente das demais, tem probabilidade 0 < p ≤ 1 de ser declarada “grudenta”, neste
caso, colisões com a part́ıcula carregada são perfeitamente inelásticas e sua massa
é então incorporada à part́ıcula carregada, de acordo com as leis da mecânica
Newtoniana. Com probabilidade 1 − p, é declarada elástica e portanto tem in-
terações elasticamente perfeitas com a part́ıcula carregada durante a evolução do
processo. É ainda assumido que part́ıculas neutras não interagem entre si.

Este modelo foi introduzido em [FNV00], onde os autores estudam o comporta-
mento da part́ıcula carregada ao longo do tempo. As interações com as part́ıculas
neutras gera uma rede de forças opostas ao movimento provocado pela força F ,
esta situação, como mostrada pelos autores, tende ao equiĺıbrio, o que determina
uma lei dos grande números para a velocidade instantânea da part́ıcula carregada:
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quase certamente converge para
√

Fµ/(2− p).

Com respeito à literatura relacionada, modelos unidimensionais com agregação
de massa e força gravitacional em sistemas finitos de part́ıculas, foram estuda-
dos em [BMPZ98], [MP94] e [MP95]. Além disto, propriedades ergódicas de
sistemas unidimensionais e semi-infinitos de natureza similar, porém com ape-
nas interações elásticas (p = 0), foram estudadas anteriormente em [BMPZ98],
[BPSS85], [PSS85], [PSV99] e [STV01], onde o comportamento limite da part́ıcula
carregada é determinado pela relação entre a pressão das part́ıculas neutras e a
força atuante no sistema ou pela posição inicial das part́ıculas.

Nas observações finais do trabalho [FNV00], os autores sugerem que uma interes-
sante continuidade deste trabalho seria obter um teorema central limite para a
velocidade instantânea da part́ıcula carregada. Exploramos esta sugestão e estabe-
lecemos no trabalho [FGS20], teoremas centrais limites com flutuações gaussianas,
para a posição e para a velocidade da part́ıcula carregada.

Como mencionado anteriormente, os dois últimos trabalhos abrangem modelos
de percolação anisotrópica. Percolação é um modelo simples, fácil de ser defi-
nido, porém, apresenta uma grande variedade de fenômenos interessantes, além
de levantar questões extremamente duras de serem respondidas e com alto grau
complexidade matemática. É ainda muito comum encontramos soluções elegantes
e engenhosas através do uso de matemática elementar, o que faz deste modelo, ao
meu ver, muito agradável de se trabalhar e apreciar.

O estudo matemático do modelo de percolação, foi introduzido por Broadbent e
Hammersley [BH57], com o objetivo de modelar o fluxo de um fluido em um meio
poroso cujos canais apresentam bloqueios aleatórios que impedem a passagem.
Dado um grafo, esta modelagem, falando de maneira simplificada, busca estudar
a estrutura de componentes conexas de subgrafos gerados de maneira aleatória.
Comumente, este dado grafo é do tipo grade, podendo ser orientado ou não, e
o subgrafo é obtido por seleção de elos ou vértices (os quais nomeamos abertos)
de maneira independente. Nesta tese, os estudos presentes nos Caṕıtulos 3 e 4,
consideram modelos de percolação sobre elos independentes.

Algumas das principais questões da teoria de percolação recaem sobre a existência
de um “aglomerado infinito”, isto é, sobre a existência de uma componente conexa
infinita no subgrafo resultante e também sobre a existência e determinação de
expoentes cŕıticos. Sugerimos ao leitor as obras clássicas [Gri99] e [BR06], as
quais apresentam e abordam as principais questões e resultados da área.

Quando o grafo em questão tem como conjunto de vértices o conjunto Zd e, como
conjunto de elos (orientados ou não), pares entre primeiros vizinhos, o denotamos
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com certo abuso de notação, simplesmente por Zd e até mesmo o mencionamos
por rede Zd. Considerando Zd, se cada elo tem a mesma probabilidade p de estar
aberto, o modelo exibe um ponto cŕıtico pc(Z

d): quase certamente, há um único
aglomerado infinito se p > pc e, quase certamente, não existe nenhum aglomerado
infinito quando p < pc. Quando o grafo é a árvore (d + 1)-regular, o modelo se
trata de um processo de ramificação, o ponto cŕıtico é facilmente calculado e é
1/d. Um comportamento comum em percolação sobre grafos do tipo grade é que,
à medida em que a dimensão cresce, de certa forma tendem a ter o comportamento
de campo-médio, isto é, o ponto cŕıtico é assintótico a 1/d em casos orientados e
1/2d nos casos não orientados. Este fato é constatado para a rede Zd, por Cox
e Durrett [CD83] no caso orientado e de maneira independente nos trabalhos de
Kesten [Kes90] e Gordon [Gor91], no caso sem orientação.

Uma grande quantidade de variações do modelo de percolação foram propostas
ao longo do tempo, a maioria delas oriundas de análises de fenômenos f́ısicos. Um
dos principais ingredientes que acompanham estes fenômenos é a anisotropia do
sistema. Em modelos de percolação anisotrópica, os elos são agrupados em classes
e elos em classes distintas têm probabilidades distintas de estarem abertos. Um
dos primeiros resultados em percolação anisotrópica aparece em 1964 no trabalho
de Essam e Sykes [ES64]. Kesten em [Kes82], fornece o diagrama de fase completo
para o modelo de percolação anisotrópica não orientada na rede quadrada (Z2),
onde elos verticais estão abertos de maneira independente com probabilidade p,
enquanto que horizontais com probabilidade q. Precisamente, há aglomerado
infinito se p + q > 1 e não há se p + q ≤ 1. Para d ≥ 3, pouco é conhecido
a respeito de diagramas de fase em modelos com anisotropia.

No Caṕıtulo 3, buscamos constatar este efeito de campo-médio acima mencionado,
em modelos com anisotropia. Note que, quando consideramos percolação indepen-
dente sobre a árvore (d+1)-regular, onde os elos têm probabilidades p1, . . . , pd de
estarem abertos (segundo uma ordenação dos elos pré-fixada), não há aglomerado
infinito se p1 + · · ·+ pd < 1 e há se p1 + · · ·+ pd > 1. Em [GPS19] consideramos
o modelo de percolação orientada em Zd, d ≥ 4, onde cada elo com direção ei,
é aberto com probabilidade pi, independente dos demais, para i = 1, . . . , d. Ob-
temos como resultado que, para todo d ≥ 4, se p1 + · · · + pd ≥ 1 + ε e cada pi
não é maior que Cε, então quase certamente existe um aglomerado infinito. É
interessante ressaltar que essa constante pode ser tomada próxima de 1 a medida
que consideramos apenas dimensões suficientemente grandes ao invés de d ≥ 4.
Na demonstração deste resultado, transformamos nosso problema em uma análise
de interseção de passeios aleatórios e esta análise é feita com métodos elementares
em combinatória.

Uma condição que limita cada pi se faz necessária, mas não sabemos o quão boa
é a condição na ordem de ε, de fato, afirmamos a necessidade olhando para o caso



6 RESUMO ESTENDIDO

isotrópico: como veremos, a cota inferior para pc(Z
d) demonstrada em [CD83] nos

diz que a ordem dessa condição é de pelo menos
√
ε.

Outro tópico de estudo envolvendo anisotropia aparece na literatura da F́ısica
como dimensional crossover, o qual traduzimos por transição dimensional. Sobre
a rede Zd+s = Zd × Zs com elos não orientados, consideramos percolação com a
seguinte anisotropia: elos paralelos a Zd são declarados abertos com probabilidade
p < pc(Z

d), enquanto elos paralelos a Zs estão abertos com probabilidade q,
de maneira independente dos demais. Este tópico de transição dimensional visa
estudar efeitos provocados no sistema, quando p se aproxima de pc(Z

d) e q se
aproxima de 0.

Uma das questões acerca do tema, recai sobre a existência e cálculo de um expo-
ente cŕıtico ψ, conhecido na literatura como expoente cŕıtico de transição dimen-
sional. O expoente cŕıtico ψ para percolação de elos em Zd+s foi introduzido em
[RS79], ele pode ser descrito da seguinte maneira: para cada parâmetro p ≤ pc(Z

d),
seja qc(p) o ponto cŕıtico tal que, quase certamente, não existe aglomerado infinito
para valores de q menores que qc e existe para valores maiores. É esperado que
exista ψ(d) > 0, independente de s, tal que, qc(p) tenda a zero, à medida que
p ↑ pc, assintoticamente como |pc − p|ψ.
Como mencionado anteriormente, o estudo de expoentes cŕıticos é um dos tópicos
de grande interesse da teoria de percolação, veja Caṕıtulo 9 em [Gri99] para mais
detalhes. Um dos principais expoentes em questão, é o expoente γ, o qual des-
creveremos brevemente abaixo. Considerando o modelo de percolação isotrópica
com parâmetro p < pc sobre a rede Zd, o valor esperado para o tamanho da com-
ponente conexa aberta contendo a origem é denotada por χ(p). Acredita-se que
existe γ(d) > 0, tal que χ(p) seja assintótico a |pc − p|−γ, quando p ↑ pc.
Conjectura-se que ambos expoentes ψ e γ existam e sejam iguais. Alguns artigos
na literatura da F́ısica, buscaram investigar esta conjectura através de simulações,
como por exemplo [GCGR81, RS79, RC80], entretanto algumas dessas simulações
se mostraram divergentes entre si. De maneira matematicamente rigorosa, o tra-
balho [SS17, SSc] estabelece que esta conjectura é verdadeira para d = 1 e também
conclui que, caso ambos existam, então ψ ≤ γ. Com a finalidade de dar continui-
dade a este trabalho, em [GSS19] mostramos que a conjectura é verdadeira para
d ≥ 11.

Na demonstração, utilizamos o resultado de que, para d ≥ 11, o expoente cŕıtico
γ existe e é igual a 1, como pode ser visto em [FH17]. Utilizando a técnica de
acoplamento dinâmico, obtemos uma cota inferior para qc(p), a partir da qual,
juntamente com resultados acima mencionados, conclúımos que ψ = γ = 1.
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Chapter 1

Contact Process under
Heavy-tailed Renewals on Finite
Graphs

The contact process introduced by Harris in [Har74] is a model for the spread of an
infection, where individuals, that can be infected or healthy, are identified with the
vertices of a given graph. In this model every infected individual can propagate
the infection to some neighbor at rate λ > 0 and it becomes healthy at rate 1.
In each edge of the graph we place an independent Poisson point process with
rate λ, the marks of such process determine instants when, if we have an infected
and a healthy vertex in the corresponding edge, the infection propagates from
the infected to the healthy vertex, at this instant both two vertices are declared
infected. Also, to each vertex, we associate a Poisson point process with rate 1,
this points determine instants when, if infected, the vertex change its status to
healthy.

This model exhibits a phase transition according to parameter λ, namely: there
exists a critical value λc > 0 such that, if λ is larger than λc the infection has
positive probability to survive, and is almost surely extinct if λ < λc.

In [FMMV19] and [FMV20], the authors propose a variation of this model, namely
the renewal contact process, where the Poisson point processes of rate 1 of the
cure mechanism are replaced by renewal processes, with common heavy-tailed
distribution µ of waiting times. As result, in [FMMV19], the authors conclude
that, on any infinite connected graph, if µ(t,∞) < tα, for some α < 1, under
certain fairly mild regularity conditions, then λc = 0, that is, we have survival of
the infection with positive probability for any λ > 0.

Since, under this circumstances, the renewal contact process does not exhibit

9
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phase transition on the infection parameter λ, we investigate the existence of a
new kind of phase transition. We study the renewal contact process on finite
connected graphs. Let α ∈ (0, 1) and assume that the common distribution for
the waiting times is of the form µ(t,∞) = L(·)t−α, where L(·) is a slowly varying
function. As result, we explicitly give V−(α) such that, the process almost surely
dies out for every λ if the graph size is less than V−(α) and we also give V+(α),
such that, if the graph size is large than it, we have positive probability to survive
for any λ. This bounds are quite sharp, in fact, V+(α) − V−(α) < 1, for every
α ∈ (0, 1).

Therefore, we conclude the existence of a finite critical value kc(α) ∈ N; The in-
fection survive with positive probability on any connected graph with size greater
than or equal to kc, for any λ. And we also have that, when [V−, V+] ∩ N = ∅,
kc = dV+e, otherwise we have that kc can be either bV+c or bV+c+ 1 .

1.1 The Model and Result

We consider versions of a renewal process R = {Sn = T1 + . . .+ Tn; n ∈ N}, with
waiting times {Ti}i∈N given as usual by i.i.d. non-negative random variables. Let U
denote the associated renewal measure, given, we recall, by U(B) =

∑

n≥1 P (Sn ∈
B) for every Borel set B ∈ B(R), we will use the shorthand U(t) for U([0, t]).
For t > 0, let N(t) = sup{n ∈ N;Sn ≤ t} denote the number of renewals of R
up to time t. We also consider the current time and excess time at t of R, given
respectively by

C(t) = t− SN(t) and E(t) = SN(t)+1 − t.

In this chapter, we will take the common probability distribution µ of the waiting
times in the basin of attraction of an α-stable law, that is,

µ(t,∞) = L(t)t−α, t > 0, (1.1)

where L(·) is a slowly varying function, and α is a parameter, in principle, in
(0, 1], which in our context will be called cure index.

Let us recall two known results concerning renewal processes with such distribu-
tion, to be used below.

Theorem 1.1 (Theorem 1 in [Eri70]). Let µ be as above with 1/2 < α ≤ 1 and
non-arithmetic. Then, for every h > 0, as t −→ ∞,

U(t+ h)− U(t) ∼ Cαh

m(t)
, (1.2)

where Cα = [Γ(α)Γ(2− α)]−1 and m(t) =
∫ t

0
µ(x,∞)dx.
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Remark 1.1. When the probability distribution µ is arithmetic, then (1.2) holds
provided h is the arithmetic span of µ. See Theorem 1.1 of [GL62].

Remark 1.2. The Relation (1.2) holds for 0 < α ≤ 1/2 for both the arithmetic
and the non-arithmetic cases (again, in the former case, provided h is the arith-
metic span of µ) under extra conditions on µ. See Theorem 1.4 of [CD19].

The second result is contained in the celebrated Dynkin-Lamperti Theorem, for
which we refer again to [Eri70] (paragraph right below (9.1), Section 9), or to
[Fel71], Chapter XIV.3.

Theorem 1.2. Let µ be as above with 0 < α < 1. Then

lim
t→∞

P

(
E(t)

t
≤ x

)

=

∫ x

0

C ′
α

yα(y + 1)
dy, ∀x > 0,

where C ′
α = [Γ(α)Γ(1− α)]−1.

We now define the Renewal Contact Process (RCP), denoted by (ζt)t≥0. Given a
connected graph G = (V,E), a cure index α as above, and an infection rate λ > 0,
we construct the RCP on G graphically, à la Harris, as follows:

Let {T xn}x∈V,n∈N be i.i.d. random variables with distribution µ as in (1.1), and let
{Xe

n}e∈E,n∈N be i.i.d. random variables with rate λ exponential distribution, inde-
pendently of {T xn}x∈V,n∈N. It will be convenient later on to construct the under-
lying probability space (Ω,F , P ) as the product space (Ω1,F1, P1)× (Ω2,F2, P2),
with {T xn}x∈V,n∈N ∈ (Ω1,F1, P1) and {Xe

n}e∈E,n∈N ∈ (Ω2,F2, P2).

For x ∈ V , let Rx denote the renewal process with marks given by {Sxn = T x1 +
· · · + T xn ; n ∈ N}. In the rest of this chapter, R denotes any renewal process
with the same distribution as Rx. Furthermore, for e ∈ E, Re denotes the rate
λ Poisson process given by {Sen = Xe

1 + · · · + Xe
n; n ∈ N}. We will refer to Rx

and Re as the cure and infection processes and their arrivals as cure marks and
infection arrows respectively. Throughout the text Ex(·), Cx(·), Ee(·) and Ce(·),
denotes the excess time and current time of the process Rx, x ∈ V , and Re, e ∈ E,
respectively.

Given these processes, the RCP is constructed according to the usual recipe: if
s < t and x, y ∈ V , a path from (x, s) to (y, t) is a càdlàg function on [s, t] for
which there exist times t0 = s < t1 < · · · < tn = t and x0 = x, x1, . . . , xn−1 = y in
V such that it assumes xi in [ti, ti+1), and

• 〈xi, xi+1〉 ∈ E, i = 0, . . . , n− 2;

• E〈xi,xi+1〉(ti) = ti+1 − ti, i = 0, . . . , n− 2;



12 CHAPTER 1. CONTACT PROCESS ON FINITE GRAPHS

• Exi(ti) > ti+1 − ti, i = 0, . . . , n− 1.

Informally, the first point ensures that the infection is transmitted only between
neighboring vertices, the second that there is an infection arrow at every ti and
the third that there is no cure mark till the next transmission along the path.
Figure 1.1 depicts a realization of the model.

time

0 v0
G

Cure marks

Infection arrows

Infection time periods

Edges of G

Figure 1.1: An illustration of the contact process

We define now, for each t ≥ 0, the function of the state of the individuals, ζt :
V −→ {0, 1}. The model starts with a single infected individual, i.e., for some
v0 ∈ V , ζ0(x) = 1 iff x = v0, and for t > 0, ζt(x) = 1 iff there exists a path
from (v0, 0) to (x, t). We say that the individual x ∈ V is infected at time t, if
ζt(x) = 1, and healthy otherwise. We will abuse notation and denote the set of
infected individuals at time t by ζt = {x ∈ V ; ζt(x) = 1}.
The main result of this chapter is the following theorem.

Theorem 1.3. Given 1/2 < α < 1, and any finite connected graph G = (V,E),
the RCP (ζt)t≥0 on G with cure index α is such that

1. P (ζt 6= ∅, ∀t > 0) = 0, if |V | < 2 + 2α−1
(1−α)(2−α) , ∀λ > 0;

2. P (ζt 6= ∅, ∀t > 0) > 0, if |V | > 1
1−α , ∀λ > 0.

Remark 1.3. The two statements of Theorem 1.3 also hold when 0 < α ≤ 1/2,
except that in this case the first one is trivial, amounting to the claim that if V
consists of a single point, then the process dies out for any λ (but, of course, there
is no infection transmission in this case); and the second statement requires extra
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conditions on µ in order to allow us the use of the Strong Renewal Theorem, which
is a key ingredient of our approach. See Remark 1.2 above. The second statement
reads in this case: we have survival for 0 < α < 1/2 if |V | ≥ 2, and for α = 1/2
if |V | ≥ 3.

Remark 1.4.

1. Note that the bounds in our theorem are quite sharp; indeed, writing V+(α) =
1/(1−α) and V−(α) = 2+(2α−1)/[(1−α)(2−α)], we have that V+−V− < 1.
Thus, if [V−, V+]∩N = ∅, then the model is well understood for every possible
graph size |V |; otherwise, there is a single indeterminate case.

2. In terms of the notation introduced in the description of the chapter and in
the above item, the bounds in Theorem 1.3 can be written as V−(α) ≤ kc(α)
and kc(α) ∈ {bV+(α)c, bV+(α)c+ 1}.

1.2 Extinction

In this section we prove the first item of the Theorem 1.3. The idea consists
in creating a sequence of disjoint random time intervals which, for the infection
to survive, would be required to contain at least one mark of any of the cure
processes. We then resort to a domination argument to show that we may find a
subsequence of those intervals with bounded lengths, and the result readily follows
from that.

Given G = (V,E) and T as in Theorem 1.3, we start defining time intervals
(Sn, Sn+1]. For this, recalling that v0 ∈ V is the single one initially infected
individual, for each individual x ∈ V , let

X1,x =

{
T v01 , if x = v0,
0, if x 6= v0.

Set S1 = X1 = max{X1,x ; x ∈ V }. Again, for each individual x ∈ V , let
W1,x = X1 −X1,x. And define, x1 = argmax{X1,x ; x ∈ V }.
Let us fix t∗ > 0 as in Proposition 1.2 below. For a given n ∈ N, we assume
defined Xm,x, Wm,x, Xm, Sm, xm, m = 1, . . . n, x ∈ V , and set

Xn+1,x =







0, if x = xn,

Ex(Sn), if x 6= xn and Wn,x ≥ t∗,

Ex(Sn + t∗) + t∗, if x 6= xn and Wn,x < t∗.

Analogously, we define Xn+1 = max{Xn+1,x ; x ∈ V }, Sn+1 = Sn + Xn+1,
for each individual x ∈ V , Wn+1,x = Xn+1 − Xn+1,x, and also set xn+1 =
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argmax{Xn+1,x ; x ∈ V }. Figure 1.2 below illustrates some of this random
variables.

time

0 S1 S2 − t∗ S2 S2 + t∗ S3

x3

x2

x

v0

Cure marks

W2,x3 + t∗

X2,x3 X3,x3 = X3

X2,x2 = X2

W2,x X3,v0X1,v0 = X1

Figure 1.2: An illustration of the random variables Sn, Xn, Xn,x and Wn,x.

The conditional distribution of Xn+1,x on the past is given by

Xn+1,x | Xm,y, 1 ≤ m ≤ n, y ∈ V

∼







0, if x = xn,

E(Wn,x), if x 6= xn and Wn,x ≥ t∗,

E(Wn,x + t∗) + t∗, if x 6= xn and Wn,x < t∗,

(1.3)

where, we recall, E(·) denotes the excess time of a renewal process R.

Observe that, by definition, in each interval [Sn, Sn+1], every x ∈ V has a cure
mark, and thus, a necessary condition for the infection to survive is that in each
one of these time intervals, there is at least one mark of some infection process
Re, e ∈ E. It readily follows that

P

(

ζt 6= ∅, ∀t > 0

∣
∣
∣
∣

{

lim
n→∞

Xn = ∞
}c
)

= 0. (1.4)

We will show below that P (limn→∞Xn = ∞) = 0 by resorting to a domination
argument.
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1.2.1 Domination

We will control the behavior of the random variables (Xn)n∈N through Theorem
1.2 and two technical propositions, as follows.

Proposition 1.1. Given 0 < η < 1, there exists tη > 0 such that

P

(
E(t)

t
> en

)

<

(
1 + η

eα

)n

, ∀n ∈ N, ∀t > tη.

Proof. We claim that there exists tη > 0 such that

(1− η)n < L(2nt)/L(t) < (1 + η)n, ∀n ∈ N, ∀t > tη.

Indeed, since L is slowly-varying, we have that limt→∞ L(2t)/L(t) = 1; thus, there
exists tη where the claim is true for n = 1 and t > tη. Let s = 2nt, and write

L(2n+1t)

L(t)
=
L(2n+1t)

L(2nt)

L(2nt)

L(t)
=
L(2s)

L(s)

L(2nt)

L(t)
.

Since s > t > tη, and supposing the claim is true for t > tη and a given n ∈ N,
then we have that the same is true for n+ 1, and the claim follows by induction.

Fixing t > 0, and conditioning on the variable C(t) = t−SN(t), whose distribution
function we denote by Ft, we have that

P (E(t) > 2nt) =

∫ t

0

P (E(t) > 2nt | C(t) = s) dFt(s)

=

∫ t

0

P (T > 2nt+ s | T > s) dFt(s)

=

∫ t

0

P (T > 2nt+ s)

P (T > s)
dFt(s)

≤
∫ t

0

P (T > 2nt)

P (T > t)
dFt(s)

=
L(2nt)

(2nt)α
÷ L(t)

tα

∫ t

0

dFt(s)

=
L(2nt)

L(t)

1

2αn
.

Hence, with the same tη, the result follows directly from the claim above.

Recalling the constant C ′
α in the Theorem 1.2, let M = |V | − 1 and consider

Y1, . . . , YM , independent random variables with common density

f(y) =

{

0, if y ≤ 0,
C′

α

yα(1+y)
, if y > 0.

(1.5)
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And let Y be the random variable

Y ≡ max{Yi ; i = 1, . . . ,M}. (1.6)

For technical reasons, that will be clear in the sequence, we claim that E[log(Y )]
< 0. This is the content of the following lemma.

Lemma 1.1. Let 1/2 < α < 1 and let Y be defined as in (1.6), if M ∈ N is such
that

M < 1 +
2α− 1

(1− α)(2− α)
,

then E[log(Y )] < 0.

Proof. Given x > 0, we have P (Y ≤ x) = P (Y1 ≤ x)M . Taking derivatives with
respect to x, we get that Y has densityMC ′M−1

α g(x)M−1f(x), where f(x) is given
by (1.5) and

g(x) =

{

0, if x ≤ 0,
∫ x

0
1

tα(1+t)
dt, if x > 0.

Hence, we have that

E[log(Y )] =MC ′M
α

∫ ∞

0

log(x)
g(x)M−1

xα(x+ 1)
dx.

Making the change of variables u = 1/x, we get

∫ 1

0

log(x)
g(x)M−1

xα(x+ 1)
dx = −

∫ ∞

1

log(x)
g(1/x)M−1

x1−α(x+ 1)
dx.

It readily follows that

E[log(Y )] =MC ′M
α

∫ ∞

1

log(x)

x+ 1

[
g(x)M−1

xα
− g(1/x)M−1

x1−α

]

dx.

It is sufficient to show that the term in brackets is negative whenever x > 1. Note
that if M = 1, this is equivalent to the obvious inequality xα > x1−α, ∀x > 1;
otherwise, is equivalent to

g(x)

g(1/x)
< x

2α−1
M−1 , ∀x > 1.

For simplicity, let β = 1− α. It follows from the hypothesis that, for x > 1,

x
2α−1
M−1 ≥ x(1−α)(2−α) = xβ(β+1).
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We define the auxiliary function G : R → R, given by G(x) = g(x)−xβ(β+1)g(1/x).
Thus, we have that G(1) = 0 and its derivative is

G′(x) =
1 + xα+β

2 − β(β + 1)g(1/x)xβ
2
(1 + x)

xα(1 + x)
. (1.7)

Observe that, since for 0 < t ≤ 1 we have 1/(1 + t) > 1− t, then, for all x ≥ 1,

g(1/x) =

∫ 1/x

0

1

tα(1 + t)
dt >

1

βxβ
− 1

(β + 1)xβ+1

=
x(β + 1)− β

xβ+1β(β + 1)
.

Hence β(β + 1)g(1/x) > [x(β + 1)− β]/xβ+1. To conclude that G′(x) < 0 for all
x > 1, as stated in (1.7), it is enough to show that

x(β + 1)− β

xβ+1
>

1 + xα+β
2

xβ2(1 + x)
, ∀x > 1.

Or equivalently,

xβ
2

(1 + x)x(β + 1)− xβ
2

(1 + x)β − xβ+1(1 + xα+β
2

)

= xβ
2

[(1 + β)(x2 + x)− β(1 + x)− (x2 + x1+β−β
2

)]

= xβ
2

[x2 + x+ β(1 + x)(x− 1)− (x2 + x1+αβ)]

= xβ
2

[x+ β(x+ 1)(x− 1)− x1+αβ] > 0, ∀x > 1,

Since the last inequality is true, we have G′(x) < 0 for all x > 1, and since
G(1) = 0, we conclude that G(x) < 0, for all x > 1. The proof is finished.

Note that, E[Y t] <∞ ⇔ E[Y t
1 ] <∞ ⇔ t ∈ (−(1−α), α). Let Φ : (−(1−α), α) →

R be defined by
Φ(t) = E[et log(Y )] = E[Y t].

We observe that Φ is differentiable at 0, with Φ′(0) = E[log(Y )] < 0 and Φ(0) = 1.
Hence, there exists 0 < θ < α, with Φ(θ) < 1, that is E[Y θ] < 1.

Let N ∈ N be such that log2(N) ∈ N, and consider aj = j/N , if j = 0, . . . , N2,
and aj = N2(j−N

2), if j > N2. For each j ∈ N, let Ij = (aj−1, aj], and consider
the following truncation of Y :

Y N =
N2
∑

j=1

aj1{Y ∈Ij}.
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For given µ such that E[Y θ] < µ < 1, it follows by dominated convergence that,
for N sufficiently large,

E[(Y N)
θ] < µ < 1. (1.8)

Let a = (1+ η)/2α. From now on, we fix 0 < η < 1 so that a2θ < 1. Given ρ > 0,
for each j ∈ N, we define

pN,ρ,j =

{
P (Y ∈ Ij) + ρ, if j ≤ N2,

Malog2(N)+j−N2−2, if j > N2.
(1.9)

We also define CN,ρ =
∑

j≥1 pN,ρ,j. Recalling that (1.8) holds for N sufficiently

large, and since a2θ < 1, then N and ρ can be chosen in such way that the
following inequality is true

1

CN,ρ





N2
∑

j=1

[
aθj (P (Y ∈ Ij) + ρ)

]
+
∑

j>N2

aθjMalog2(N)+j−N2−2





=
1

CN,ρ



E
[
(Y N)

θ
]
+ ρ

N2
∑

j=1

aθj +M
∑

n≥log2(N)−1

2θ(n+2)an





≤ µ

CN,ρ
. (1.10)

In the following, N and ρ are fixed and satisfy Inequality (1.10). In this case, we
denote CN,ρ simply by C.

We define an auxiliary probability space, ([0,∞),F ,P), where F = σ(Ij ; j ∈ N)
and for each j ∈ N, P(Ij) = pj, where

pj =
pN,ρ,j
C

. (1.11)

Let Ỹ : [0,∞) −→ (0,∞), be a random variable in this space given by

Ỹ =
∑

j≥1

aj1Ij . (1.12)

It follows directly from (1.9), (1.10) and (1.11), that Ỹ satisfies E[Ỹ θ] < µ/C.

We now apply Theorem 1.2 and Proposition 1.1 to establish our second technical
proposition.

Proposition 1.2. There exist t∗ > 0 and 1/2 > δ > 0 such that, for each
t1, . . . , tM > t∗, whenever V1, . . . , VM are independent random variables with
marginal distributions such that for i = 1, . . . ,M

either Vi ∼
E(ti)

ti
or Vi ∼

E(ti)

ti
+ δ,

and V ≡ max{Vi ; i = 1, . . . ,M}, then P (V ∈ Ij) < Cpj, ∀j ∈ N.
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Proof. Let {Ri}1≤i≤M be independent renewal processes with the same distribu-
tion as R and let {Ei(·)}1≤i≤M denote their respective excess time.

If 1 ≤ j ≤ N2, then we use Theorem 1.2 to obtain

lim
t1,...tM→∞

P

(

max
1≤i≤M

Ei(ti)

ti
∈ Ij

)

= P (Y ∈ Ij) < P (Y ∈ Ij) + ρ = Cpj.

Using the continuity of the limiting distribution of E(t)/t as t → ∞, it follows
that, for t1, . . . , tM large enough and δ small enough, P (V ∈ Ij) < Cpj, ∀j ≤ N2.

Recalling that aj = 2log2(N)+j−N2
for all j ≥ N2 and that a = (1+η)/2α, it follows

from Proposition 1.1 that if t > tη, then for all j > N2 we have that

P

(
E(t)

t
> aj−2

)

< alog2(N)+j−N2−2.

Observe that for all j > N2 and δ small enough, we have for all possible cases of
the marginal distributions of Vi, i = 1, . . . ,M that

P (V ∈ Ij) ≤ P (Vi > aj−1 for some i = 1, . . . ,M)

≤ P

(
Ei(ti)

ti
> aj−2 for some i = 1, . . . ,M

)

≤ Malog2(N)+j−N2−2 = Cpj.

In the next proposition, we finally obtain the above mentioned domination. For
this, let {Ỹm}m∈N be i.i.d. random variables with the same distribution as Ỹ in
(1.12).

Proposition 1.3. Let t̃ = t∗/δ. Then, for every n0,m ∈ N,

P
(
Xn0 > t̃, Xn0+1 ≥ Xn0 , . . . , Xn0+m ≥ Xn0

)
≤ CmP

(
m∏

l=1

Ỹl ≥ 1

)

.

Proof. For each n ∈ N and x ∈ V , we define

Zn+1,x =







Xn+1,x

Wn,x

, if Wn,x ≥ t∗,

Xn+1,x − t∗

Wn,x + t∗
+
t∗

t̃
, if Wn,x < t∗.

(1.13)
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We set Zn+1 = max{Zn+1,x ; x ∈ V }. Since δ < 1/2 — see Proposition 1.2 —,
we have 2t∗ < t̃. Notice also that for each x ∈ V , we have Wn,x ≤ Xn. Therefore,
if Xn > t̃ then

Zn+1,x =







Xn+1,x

Wn,x

≥ Xn+1,x

Xn

, if Wn,x ≥ t∗,

Xn+1,x − t∗

Wn,x + t∗
+
t∗

t̃
≥ Xn+1,x − t∗

t̃
+
t∗

t̃
≥ Xn+1,x

Xn

, if Wn,x < t∗.

Therefore, Zn+1 ≥ Xn+1/Xn whenever Xn > t̃. From whence we get that

P
(
Xn0 > t̃, Xn0+1 ≥ Xn0 , . . . , Xn0+m ≥ Xn0

)

= P

(

Xn0 > t̃,
Xn0+1

Xn0

≥ 1, . . . ,
m∏

l=1

Xn0+l

Xn0+l−1

≥ 1

)

≤ P

(

Xn0 > t̃, Zn0+1 ≥ 1, . . . ,
m∏

l=1

Zn0+l ≥ 1

)

. (1.14)

Consider now the set Λ =
{

γ := (j1, . . . , jm) ;
∏l

i=1 aji ≥ 1, ∀1 ≤ l ≤ m
}

. We

have that the last expression in (1.14) satisfies

P

(

Xn0 > t̃, Zn0+1 ≥ 1, . . . ,
m∏

l=1

Zn0+m ≥ 1

)

≤
∑

γ∈Λ
P
(
Xn0 > t̃, Zn0+1 ∈ Ij1 , . . . , Zn0+m ∈ Ijm

)

=
∑

γ∈Λ

[
m∏

l=1

P
(
Zn0+l ∈ Ijl

∣
∣ Al

)

]

, (1.15)

where Al = {Xn0 > t̃, Zn0+1 ∈ Ij1 , . . . , Zn0+l−1 ∈ Ijl−1
}.

To simplify the notation, we define the random vector ξ : Ω → R(n0+l−1)|V |,
denoted by, ξ = (ξk,x){1≤k≤n0+l−1, x∈V }, where ξk,x(ω) = Xk,x(ω). Notice that Al
is measurable in the σ-algebra generated by ξ. Let ψ denote the deterministic
function associating ξ to (Xn0 , Zn0+1, . . . , Zn0+l−1), and make Rl = (t̃,∞) ×
Ij1 × . . .× Ijl−1

. Let F̃ denote the distribution function of ξ. Thus,

P ({Zn0+l ∈ Ijl} ∩ Al) =

∫

ψ−1(Rl)

P (Zn0+l ∈ Ijl | ξ = y) dF̃ (y)

=

∫

ψ−1(Rl)

P

(

max
x∈V

Zn0+l,x ∈ Ijl

∣
∣
∣
∣
ξ = y

)

dF̃ (y).(1.16)
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Using the Markov Property described in (1.3) and the definition of Zn+1 given in
(1.13), we obtain

P

(

max
x∈V

Zn0+l,x ∈ Ijl

∣
∣
∣
∣
ξ = y

)

= P
(

max
{
Vx(y) ; x ∈ V, x 6= xn0+l−1

}
∈ Ijl

)

,

(1.17)
where Vx(y) are random variables with distribution

Vx(y)
D
=







E
(
Wn0+l−1,x(y)

)

Wn0+l−1,x(y)
, if Wn0+l−1,x(y) ≥ t∗,

E
(
Wn0+l−1,x(y) + t∗

)

Wn0+l−1,x(y) + t∗
+
t∗

t̃
, if Wn0+l−1,x(y) < t∗.

where E(t) denotes the excess time of renewal process with distribution µ. Re-
calling that δ = t∗/t̃, note that the variables Vx(y), x ∈ V \ {xn0+l−1}, satisfy the
conditions of Proposition 1.2 with M = |V | − 1. Hence, for all y ∈ ψ−1(Rl), we
have

P
(

max
{
Vx(y) ; x ∈ V, x 6= xn0+l−1

}
∈ Ijl

)

< Cpjl .

Replacing this in (1.16) and (1.17), we get

P ({Zn0+l ∈ Ijl} ∩ Al) ≤
∫

ψ−1(Rl)

CpjldF̃ (y) = CpjlP (ξ ∈ ψ−1(Rl)) = CpjlP (Al).

Thus, (1.14) and (1.15) yield

P
(
Xn0 > t̃, Xn0+1 ≥ Xn0 , . . . , Xn0+m ≥ Xn0

)

≤
∑

γ∈Λ

[
m∏

l=1

P
(
Zn0+l ∈ Ijl

∣
∣ Al

)

]

≤
∑

γ∈Λ

(
m∏

l=1

Cpjl

)

= Cm
∑

γ∈Λ

(
m∏

l=1

pjl

)

. (1.18)

Recalling the definition of Ỹ in (1.12), since {Ỹi}i∈N are i.i.d. with same distribu-
tion as Ỹ , we have that

∑

γ∈Λ

(
m∏

l=1

pjl

)

=
∑

γ∈Λ
P

(

Ỹ1 = aj1 , . . . , Ỹm = ajm

)

≤ P

(
m∏

l=1

Ỹl ≥ 1

)

, (1.19)

and (1.18) and (1.19) yield the proof.
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1.2.2 Proof of Item (1) of Theorem 1.3

Since E[Ỹ θ] ≤ µ/C — see paragraph of (1.12) — , we have

P

(
m∏

l=1

Ỹl ≥ 1

)

= P

(
m∏

l=1

Ỹl
θ ≥ 1

)

≤ E

[

Ỹ θ
]m

≤
( µ

C

)m

.

Therefore, recalling that µ < 1, it follows from the Proposition 1.3 that

P
(
Xn0 > t̃, Xn0+l ≥ Xn0 , ∀l ∈ N

)

= lim
m→∞

P
(
Xn0 > t̃, Xn0+1 ≥ Xn0 , . . . , Xn0+m ≥ Xn0

)

≤ lim
m→∞

µm = 0.

Hence,

P
(

lim
n→∞

Xn = ∞
)

≤ P

(
⋃

n0≥1

{
Xn0 > t̃, Xn0+l ≥ Xn0 , ∀l ∈ N

}

)

= 0.

It follows, as noted above — see paragraph of (1.4) —, that P (ζt 6= ∅, ∀t > 0) = 0
for every λ > 0.

1.3 Survival

In this section we prove the second item of the Theorem 1.3. The idea of the proof
is to show that there exists a sequence of polynomially increasing time intervals,
such that, with positive probability the following events take place: in each such
interval, there exists an individual free of cure marks; each interval intersects the
next, and in this intersection there exists a sub-polynomially sized interval where
all individuals get infected. So if there exists a single infected individual at the
beginning of the sequence, and the above events occur, then the infection survives
forever.

Given the graph G = (V,E) and a fixed α, let T denote a random variable with
distribution µ. Once we have fixed the infection rate λ > 0, we start by choosing
two constants as functions of λ and G that will be used in this section. Since
|V | > 1/(1 − α) we can choose ε > 0 in such way that β := |V |(1 − α − 3ε) > 1
and since the graph G = (V,E) is connected, there exists a spanning cycle τ =
(e1, e2, · · · , el), whose size l, by Euler’s Theorem, is such that l ≤ 2|V | and then
choose γ > max{1, l/λ}. From now on, ε and γ are fixed.

With the objective to estimate the probability of existence of intervals without
marks of the renewal process R, we derive the following corollary of Theorem 1.1.
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Proposition 1.4. There exists t̂1 > 0 such that for all t > t̂1

P (E(t) ≤ 1) ≤ 1

t1−α−ε
.

Proof. First consider µ non-arithmetic. Note that, given t > 0, U(t+1)−U(t) =
∑

n≥1 P (Sn ∈ (t, t+1]), and let Mt = |{n ≥ 1 ; Sn ∈ (t, t+1]}| be the number of
renewal marks of R in the interval (t, t+1]; then we have U(t+1)−U(t) = E(Mt).
So, P (E(t) ≤ 1) = P (Mt ≥ 1) ≤ E(Mt) = U(t + 1) − U(t). Since L(·) is slowly
varying, we find t0 such that L(t) ≥ t−ε/2 for all t > t0. Thus, making h = 1 in
Theorem 1.1, we get that

U(t+ 1)− U(t) ∼ Cα
∫ t

0
L(x)x−αdx

≤ Cα
∫ t0
0
L(x)x−αdx+

∫ t

t0
1/xα+

ε
2dx

,

and thus may conclude that the left hand side is bounded above by 1/t1−α−ε for
all t sufficiently large.

If µ is arithmetic, we can assume, without loss of generality that its arithmetic
span is equal to 1; in this case, Theorem 1.1 of [GL62] implies that, as t goes to
infinity, P (E(t) ≤ 1) is also bounded above by 1/t1−α−ε, and the result follows.

Noticing that if E(t) ∈ (s, s + 1], then necessarily E(t + s) ≤ 1, we have the
following corollary to the above proposition.

Corollary 1.1. For all m ∈ N and for all t > t̂1, we have P (E(t) ≤ m) ≤
m/t1−α−ε.

Proof. It is enough to observe that

P (E(t) ≤ m) =
m−1∑

i=0

P (i < E(t) ≤ i+ 1)

≤
m−1∑

i=0

P (E(t+ i) ≤ 1)

≤
m−1∑

i=0

1

(t+ i)1−α−ε
≤ m

t1−α−ε
.

We will use Corollary 1.1 to show that, with high probability, certain intervals
with polynomially growing sizes are free of cure marks. For each n ∈ N, let

bn = γ log(n) and cn = db|V |(α+ε)+1
n e.



24 CHAPTER 1. CONTACT PROCESS ON FINITE GRAPHS

It follows that there exists n0, such that cnbn < nε/2, ∀n ≥ n0. Then, for each
n ≥ n0, we define

tn = t̂1 +
n∑

j=n0

[jε − cjbj].

It follows that tn ≥∑n
j=n0

jε/2, hence, for all n large enough we have tn > n.

Consider now the event

An = {∃x ∈ V ; Ex(tn) > (n+ 1)ε}. (1.20)

Note that the interval (tn, tn + (n + 1)ε) intersects the interval (tn+1, tn+1 + (n +
2)ε) and the length of this intersection is cn+1bn+1. In the proof, the intervals
(tn, tn+(n+1)ε) will be the intervals in which there is at least one vertex without
cure mark, and in one of the cn+1 intervals of length bn+1 in the intersection all
individuals will get infected.

The next proposition gives a lower bound for the probability of occurrence of the
event An.

Proposition 1.5. There exists n1 ∈ N, such that, for n > n1, we have P (Acn) ≤
1/nβ, where β = |V |(1− α− 3ε) > 1.

Proof. Let us take n large enough so that tn > max{n, t̂1}. Then we can apply
Corollary 1.1 to get

P (Acn) = P (Ex(tn) ≤ (n+ 1)ε, ∀x ∈ V ) ≤
(d(n+ 1)εe

t1−α−εn

)|V |

≤
(

n2ε

n(1−α−ε)

)|V |

=
1

n|V |(1−α−3ε)

=
1

nβ
.

The next step is to show that, with high probability, at least one of the following
cn intervals with size bn, is free of all cure marks Rx, x ∈ V . We begin with the
following lemma:

Lemma 1.2. There exists t̂2 > 0, such that, if t > t̂2, then, for all s > 0, we have
P (T > s+ t|T > s) ≥ 1/tα+ε.
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Proof. We start with the case s ≤ t, where there exists t∗ such that

P (T > t+ s|T > s) ≥ P (T > t+ s) ≥ P (T > 2t) =
L(2t)

(2t)α
≥ 1

tα+ε
,

for all t > t∗. For the other case, namely s > t, we have that

P (T > t+ s|T > s) =
P (T > t+ s)

P (T > s)
≥ P (T > 2s)

P (T > s)
=
L(2s)

L(s)

(
1

2

)α

.

Since L(·) is slowly varying, L(2s)/L(s) → 1 as s → ∞. It follows that there
exists s∗ such that, if s > t > s∗, then

P (T > t+ s|T > s) ≥ L(2s)

L(s)

(
1

2

)α

≥ 1

(s∗)α+ε
>

1

tα+ε
.

To conclude the proof, take t̂2 = max{t∗, s∗}.

Let t0 > 0 be fixed, and consider the sub-σ algebra Ft0 of the underlying σ algebra
of the model consisting of renewal events taking place up to time t0. We have the
following lemma.

Lemma 1.3. Given t0 > 0, then, for all t > t̂2 and all x ∈ V , almost surely

P
(

Ex(t0) > t
∣
∣
∣ Ft0

)

≥ 1

tα+ε
.

Proof. Almost surely

P
(

Ex(t0) > t
∣
∣
∣ Ft0

)

(ω) = P
(

T > t+
(
t0 − SxN(t0)

(ω)
)
∣
∣
∣ T > t0 − SxN(t0)

(ω)
)

≥ 1

tα+ε
,

where we used Lemma 1.2 in the last passage.

For n > n0, we define Bn = {∃j ∈ [0, cn)∩Z; Ex(tn+jbn) > bn, ∀x ∈ V }. Observe
that, on the occurrence of Bn it is assured that at least one of the cn intervals of
size bn has no cure marks. Using the lemma above, we get an upper bound for
the probability of Bn.

Proposition 1.6. Let n2 = inf{n > n0; bn > t̂2}. If n > n2, then P (B
c
n) ≤ 1/nγ.
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Proof. Let Cn,j = {∃x ∈ V ; Ex(tn + jbn) ≤ bn}. Then we have

P (Bc
n) = P (Cn,j occurs ∀j = 0, . . . , cn − 1)

=
cn−1∏

j=0

P

(

Cn,j

∣
∣
∣
∣
∣

j−1
⋂

i=0

Cn,i

)

=
cn−1∏

j=0

[

1− P

(

Ex(tn + jbn) > bn, ∀x ∈ V

∣
∣
∣
∣
∣

j−1
⋂

i=0

Cn,i

)]

.

Since the events Cn,i, where 0 ≤ i < j, occur before tn + jbn, using the Lemma
1.3, we have P (E(tn + jbn) > bn| ∩j−1

i=0 Cn,i) ≥ 1/bα+εn . Hence,

P (Bc
n) =

cn−1∏

j=0



1− P

(

E(tn + jbn) > bn

∣
∣
∣
∣
∣

j−1
⋂

i=0

Cn,i

)|V |



≤
cn−1∏

j=0

(

1− 1

b
|V |(α+ε)
n

)

=

(

1− 1

b
|V |(α+ε)
n

)cn

≤ e−cn/b
|V |(α+ε)
n ≤ e−bn =

1

nγ
.

Recall the definition of a spanning cycle τ = (e1, . . . , el). Given t > 0, an infection
stairway at time t is a sequence of random variables defined as:

Y t
i =

{

t, if i = 0

Y t
i−1 + Eei(Y

t
i−1), if 1 ≤ i ≤ l.

Observe that, since Eei corresponds to infection arrows along edge ei and since for
every pair (x, y) ∈ V 2, τ has a sub-path starting at x and ending at y, if at time
t there is at least one infected individual in V , then, whenever Ex(t) > Y t

l − t for
all x ∈ V , we will have that all individuals are infected at time Y t

l .

We use the memoryless property of the exponential distribution to show that,
with positive probability, in each one of the cn intervals, we have the occurrence
of an infection stairway.

Proposition 1.7. Given m > n2 ∈ N, the event

Cm :=
⋂

n≥m

cn−1⋂

j=0

{

Y tn+jbn
l − (tn + jbn) ≤ bn

}

(1.21)

is such that P (Cm) > 0.



1.3. SURVIVAL 27

Proof. Observe that, for all t, the random variables Y t
i − Y t

i−1, i = 1, 2, . . . , l, are
i.i.d. exponentially distributed with rate λ. Hence,

P
(
Y t
l − t ≤ bn

)
= P

(
l∑

i=1

(Y t
i − Y t

i−1) ≤ bn

)

≥ P

(

max
1≤i≤l

(Y t
i − Y t

i−1) ≤
bn
l

)

=
(

1− e
−λbn

l

)l

.

It readily follows that

P

(
⋂

n≥m

cn−1⋂

j=0

{

Y tn+jbn
l − (tn + jbn) ≤ bn

}
)

≥
∏

n≥m

(

1− e
−λbn

l

)lcn
,

and since bn = γ log(n), taking logarithms, we obtain that, for some constant
c > 0,

log

(
∏

n≥m

(

1− e
−λbn

l

)lcn

)

> −cl
∑

n≥m
cne

−λbn
l

= −cl
∑

n≥m
cnn

− γλ
l .

Finally, since γ was chosen in such way that γλ > l, and cn = d(bn)|V |(α+ε)+1e, the
latter sum in convergent and thus, the product above is positive.

1.3.1 Proof of Item (2) of Theorem 1.3

Using the propositions above we can conclude the proof of Theorem 1.3 (2). Let
us start with some definitions. For each t > 0, we say that a configuration ω ∈ Ω
is t − bad, if there exist s ≥ t and {nx ∈ N, x ∈ V }, such that Sxnx

= s, for all
x ∈ V . This means that there is an instant in [t,∞) when every cure process Rx

simultaneously has an arrival. We say that ω is bad if it is 0 − bad, and is good
otherwise.

Let n3 = n1 ∨ n2, where n1 and n2 are given in Proposition 1.5 and Proposition
1.6, respectively. Recall the event An defined in (1.20); given m > n3 ∈ N,
we define Ãm = ∩n≥mAn; in words, Ãm is the event that there is at least one
vertex without a cure mark in each of the intervals (tn; tn + (n+ 1)ε), n ≥ m. As
∪n≥m(tn, tn+(n+1)ε) = (tm;∞), we have that {ω is t-bad ∀t > 0}∩Ãm = ∅. Now,
since ε > 0 was chosen in such way that β = |V |(1− α − 3ε) > 1, it follows from
Proposition 1.5 and the union bound that P (Ãcm) → 0 as m goes to infinity. Let T
be a random time such that Sxnx

= T for all x. Since {ω is t-bad, ∀t > 0}∩Ãm = ∅,
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if we suppose that P (ω is bad) = 1, then by the strong Markov property applied
when the RCP hits T , we have that P (ω is t-bad, ∀t > 0) = 1, which in turn
implies that P (Ãm) = 0, in contradiction with what we just argued. Thus, we
have that P (ω is good) = p > 0.

Recalling the event Cn,j defined in the proof of Proposition 1.6, we have that
P (Cn,0) goes to 0 as n goes to infinity. Now, we define B̃m = Cc

m,0 ∩ (∩n>mBn);

in words, B̃m is the event where there are no cure marks in (tm, tm + bm] for any
x ∈ V , and also for each n ≥ m + 1 we may find j ∈ [0, cn) ∩ Z such that there
are no cure marks in (tn + jbn, tm + (j + 1)bm] for any x ∈ V . Remembering that
γ > 1, applying again the union bound and Propositions 1.5 and 1.6, we obtain

1− P ({ω is good} ∩ Ãm ∩ B̃m) ≤
P ({ω is bad}) +

∑

n≥m
P (Acn) + P (Cm,0) +

∑

n>m

P (Bc
n) ≤

(1− p) +
∑

n≥m

1

nβ
+ P (Cm,0) +

∑

n>m

1

nγ
< 1, (1.22)

for m large. We fix now m > n3 ∈ N satisfying (1.22).

If at time tm there exists an infected individual, and the events Ãm, B̃m and
Cm occur simultaneously, then the infection survives forever (Cm was defined
in (1.21)). That is,

{ζt 6= ∅, ∀t > 0} ⊃ {ζtm 6= ∅} ∩ Ãm ∩ B̃m ∩ Cm.

Since the event {ω is good} ∩ Ãm ∩ B̃m depends solely on the cure process, it
may be written as Λ × Ω2, where Λ ∈ F1 (recall the product construction of
our underlying probability space, described below the statement of Theorem 1.2).
Thus, from (1.22),

P ({ω is good} ∩ Ãm ∩ B̃m) = P1(Λ) > 0.

Given the independence between the cure and infection processes, it is enough to
argue that in the event {ω is good}, we have that ζs 6= ∅ with positive probability
for any s; but this follows from the fact that for every fixed s there is a strictly
positive probability for the occurrence of an infection stairway up to time s and
no cure mark for any of the vertices of V during that time.

Wrapping up, we may write

P ({ζt 6= ∅, ∀t > 0}) ≥ P ({ζtm 6= ∅} ∩ Ãm ∩ B̃m ∩ Cm ∩ {ω is good}) =
P ({ζtm 6= ∅} ∩ Ãm ∩ B̃m ∩ {ω is good})P (Cm) =

∫

Λ

P2(ζtm(ω1, ·) 6= ∅)dP1(ω1)P (Cm) > 0.
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We note that by the lack of memory of the exponential distribution and indepen-
dence of the cure and infection processes, we have that Cm is independent from
ζtm , Ãm, B̃m and {ω is good}.

1.4 Discussion

As a continuation of this work, some interesting questions can be further analysed.

Noticing that V+(α) = 1/(1 − α) goes to ∞ as α goes to 1, we can investigate
the existence of a sequence αn ↑ 1 such that, the renewal contact process on the
graph Z, where the distribution between the renewals on the vertices {−n, n}
have cure index αn, almost surely is extinct for every λ. We can also investigate
the existence of αn ↑ 1, such that, the renewal contact process on Z as described
above, does not survive on any finite subgraph, but can survive on the entire Z.

We also draw the reader’s attention to the fact that, on [FMMV19], the regularity
conditions assumed on the distribution is weaker than the one at this chapter. We
believe that, due to the similar nature of the proofs, to obtain Item 2 on Theorem
1.3, our regularity can be relaxed as in [FMMV19]. However, to prove the first
item, we strongly use our regularity assumptions, and it appears harder to be
relaxed, since we need a good control on the occurrence of close cure marks in
each individual.
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Chapter 2

Central Limit Theorems for a
Driven Particle in a Random
Medium with Mass Aggregation

In this chapter, we study an infinite mechanical particle system with mass ag-
gregation, according to the usual Newtonian mechanics laws. In this model the
tracer particle, initially at origin, is subject to a positive constant force F , and
interacts with the field-neutral random media made of initially standing particles
of two possible types. Each neutral particle, with probability 0 < p ≤ 1 and inde-
pendently of all other particles, is declared to be perfectly inelastic; after the first
interaction with the tracer particle it is “incorporated” into the tracer particle
according to the usual Newtonian mechanics laws. With probability 1 − p each
particle is declared to be perfectly elastic, it interacts elastically with the tracer
particle during the evolution. Neutral particles do not interact among themselves.

This model was introduced in [FNV00] where the authors study the long-time
behavior of the tracer particle. The interaction with neutral particles creates a
net force opposite to the direction of the flow which therefore competes with the
external force F , this situation, as stated by the authors, tends to an equilibrium,
which provides a law of large numbers for its instantaneous velocity.

We establish central limit theorems for the position and velocity of the tracer
particle. Our approach is similar to that of [FNV00], namely, we first prove
CLT’s for the corresponding objects of a modified process, where there are no
recollisions. The results for the original process are established by showing that
the differences between the actual and modified quantities are negligible in the
relevant scales.

31
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2.1 The Model and Results

We consider a system of infinitely many point like particles in the non-negative
real semi-axis [0,∞). At time 0 the system is static, every particle has velocity
0. There is a distinguished particle of mass 2 initially at the origin; we will
call it the tracer particle (t.p.) (referred to before as the charged particle). The
remaining particles (referred to before as neutral particles) have mass 1.1 Let
{ξi}i∈N denote a family of i.i.d. positive random variables, with an absolutely
continuous distribution, and finite mean Eξ1 = µ < ∞, representing the initial
interparticle distances. In this way, Si = ξ1 + · · ·+ ξi denotes the position of the
i-th particle initially in front of the t.p. at time 0. Moreover, given a parameter
p ∈ (0, 1], and a family {ηi}i∈N of i.i.d. Bernoulli random variables with success
probability p, we say that the i-th particle is sticky if ηi = 1 and is elastic if ηi = 0.
We assume {ξi}i∈N and {ηi}i∈N to be independent of one another.

A constant positive force F is turned on at time 0, and kept on. It acts solely on
the tracer particle, producing in it an accelerated motion to the right. Collisions
will thus take place in the system; we assume they occur only when involving the
t.p., and suppose that all other particles do not interact among themselves. If at
an instant t > 0, the t.p. collides with a sticky particle, then this is a perfectly
inelastic collision, meaning that, upon collision, momentum is conserved and the
energy of the two particle system is minimum, which in turn means that the
t.p. incorporates the sticky particle, along with its mass, and the new velocity of
the t.p. becomes (immediately after time t)

V (t+) =
Mt

Mt + 1
Vt, (2.1)

where Vt andMt are respectively the velocity and mass of t.p. at time t. However,
if the t.p. collides with an elastic particle which is moving at velocity v at the time
of the collision, say t, then we have a perfectly elastic collision, where energy and
momentum are preserved, and in this case, immediately after time t, the t.p. and
the elastic particle velocities become, respectively,

V (t+) =
Mt − 1

Mt + 1
Vt +

2

Mt + 1
v and

v′ =
2Mt

Mt + 1
Vt −

Mt − 1

Mt + 1
v, (2.2)

where Vt and Mt are as above.

1The distinction of the initial mass of the t.p. with respect to the other particles, absent
in [FNV00], is for convenience only; any positive initial mass for the t.p. would not change our
results, but values 1 or below would require unimportant complications in our arguments.



2.2. CENTRAL LIMIT THEOREMS IN A MODIFIED PROCESS 33

For t ≥ 0, let Vt and Qt denote the velocity and position of the t.p. at time
t, respectively. As argued in [FNV00], the stochastic process (Vt, Qt)t≥0 is well
defined — see the discussion at the end of Section 2 of [FNV00]; in particular there
a.s. are no multiple collisions or infinitely many recollisions in finite time intervals
—, and is determined by {ξi, ηi ; i ∈ N}. Therefore we consider the product
sample space Ω = {(0,∞)× {0, 1}}N, and the usual product Borel σ-algebra, and
the product probability measure P :=

∏

i≥1[Pξi ⊗ Pηi ], where for i ≥ 1, Pξi and
Pηi denote the probability measures of ξi and ηi. We will make repeatedly make
use of the notation

ξ̄i = ξi − µ, η̄i = ηi − p.

From [FNV00], we know that P-almost surely, the velocity of the t.p. converges
to a(n explicit) limit. More precisely, we have the following result.

Theorem 2.1. The stochastic process (Vt, Qt)t≥0 is such that

lim
t→∞

Vt =

√

Fµ

2− p
P− a.s.

From now on we denote the limit velocity
√

Fµ/(2− p) by VL. The purpose of
this chapter is to show that the velocity Vt and position Qt of the tracer particle
satisfy central limit theorems. Our main results are as follows (where ”=⇒”
denotes convergence in distribution).

Theorem 2.2. Let Var(ξ1) = σ2 <∞. Then, as t→ ∞,

Qt − tVL√
t

=⇒ N (0, σ2
q ),

where σq > 0.

Theorem 2.3. Let Var(ξ1) = σ2 <∞. Then, as t→ ∞,
√
t(Vt − VL) =⇒ N (0, σ2

v),

where σv > 0.

2.2 Central Limit Theorems in a Modified Pro-

cess

As mentioned in the Introduction, we first prove central limit theorem analogues
of Theorems 2.2 and 2.3 for a modified process in which, when an elastic particle
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collides with the t.p., the elastic particle is annihilated and disappears from the
system, and the velocity of the t.p. changes according to the formula (2.2), while
collisions between the t.p. and sticky particles remain as in the original model. We
denote the modified stochastic process by (V̄ (t), Q̄(t))t≥0, where V̄ (t) and Q̄(t)
are respectively the velocity and position of the t.p. in the modified system at
time t.

In the modified model, for i ≥ 1, the t.p. collides with the i-th particle only in
the initial position of the latter particle, given by Si; let us denote the instant
when that collision occurs by t̄i, i.e., Q̄(t̄i) = Si. In this way, we can compute
the i−th collision incoming and outgoing velocities V̄ (t̄i) and V̄ (t̄+i ), respectively,
as follows. First note that, according the formulas (2.1) and (2.2), we have the
following relations

(a) V̄ 2(t̄i ) = V̄ 2(t̄+i−1) +
2Fξi
M(t̄i)

;

(b) V̄ 2(t̄+i ) = V̄ 2(t̄i)

[
M(t̄i) + (ηi − 1)

M(t̄i) + 1

]2

,

where M(t̄i) = 2 +
∑i−1

l=1 ηl.

Iterating this relations, we get for i = 1, 2, . . ., that

V̄ 2(t̄+i ) =
i∑

j=1

[

2Fξj
M(t̄j)

i∏

k=j

(
M(t̄k) + (ηk − 1)

M(t̄k) + 1

)2
]

. (2.3)

In [1], it is proved that, almost surely,

lim
t→∞

V̄ (t) = VL.

Let us at this point set some notation. Given two random sequences {Xn}n∈N and
{Yn}n∈N, we write Xn = O(Yn) if there almost surely exists C > 0, which may
be a (proper) random variable, but does not depend on n, such that |Xn| ≤ CYn
for every n ∈ N. And we say Xn = o(Yn) if Xn/Yn almost surely converges to 0
as n → ∞. For simplicity, along the rest of the chapter we denote M(t̄i) by Mi.
Notice that M1 = 2 and Mi = 2 +

∑i−1
k=1 ηk, i ≥ 2.

To obtain the central limit theorems for the modified process, we start with an
estimate for the random term

Xi,j :=
1

Mj

i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2

, 1 ≤ j ≤ i and i ∈ N. (2.4)
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Given ε > 0, for each m ∈ N we define the event

Am,ε =

{

Xi,j ∈
(

(1− ε)
jζ−1

piζ
, (1 + ε)

jζ−1

piζ

)

, ∀ m ≤ j ≤ i

}

, (2.5)

where ζ := 2(2− p)/p.

Lemma 2.1. Let Xi,j be as in (2.4), and Am,ε as in (2.5), where ε > 0 is otherwise
arbitrary. Then we have that

lim
m→∞

P (Am,ε) = 1.

Proof. We first Taylor-expand the logarithm to write

i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2

= exp

{

2
i∑

k=j

log

(

1− 2− ηk
Mk + 1

)}

=

exp

{

−2
i∑

k=j

[
2− p

Mk + 1
− η̄k
Mk + 1

]

+O

(
i∑

k=j

(
2− ηk
Mk + 1

)2
)}

. (2.6)

Given δ > 0, m ∈ N, let Bδ
m = {Mj ∈ ((1− δ)pj, (1 + δ)pj) , ∀j ≥ m}. It follows

from the Law of Large Numbers that P (Bδ
m) → 1 a.s. as m→ ∞. In Bδ

m, we have

∞∑

k=1

(
2− ηk
Mk + 1

)2

≤
m−1∑

k=1

(
2− ηk
Mk + 1

)2

+
4

p2(1− δ)2

∞∑

k=m

1

k2
<∞. (2.7)

Note also that

i∑

k=j

1

Mk + 1
=

i∑

k=j

(
1

Mk + 1
− 1

pk

)

+
1

p

[
i∑

k=j

1

k
−
∫ i

j

1

x
dx

]

+
1

p

∫ i

j

1

x
dx. (2.8)

Clearly the second term at the right-hand side of (2.8) goes to 0 as j and i goes
to infinity. Let now Cm =

{
|Mj + 1− jp| ≤ j2/3, ∀j ≥ m

}
. It follows from Law

of the Iterated Logarithm that limm→∞ P(Cm) = 1. In Bδ
m ∩ Cm we have

∣
∣
∣
∣
∣

∞∑

k=1

(
1

Mk + 1
− 1

pk

)
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

m−1∑

k=1

(
1

Mk + 1
− 1

pk

)
∣
∣
∣
∣
∣
+

1

p(1− δ)

∞∑

k=m

|Mk + 1− kp|
k2

≤
∣
∣
∣
∣
∣

m−1∑

k=1

(
1

Mk + 1
− 1

pk

)
∣
∣
∣
∣
∣
+

∞∑

k=m

1

k4/3
<∞. (2.9)
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We also write
∞∑

k=1

η̄k
Mk + 1

=
∞∑

k=1

[

η̄k

(
1

Mk + 1
− 1

pk

)]

+
∞∑

k=1

η̄k
pk
. (2.10)

We may apply Kolmogorov’s Two-series Theorem to obtain that
∑∞

k=1 η̄k/k con-
verges a.s., and proceeding as in the estimation leading to (2.9), we may conclude
that the first term in the right-hand side of (2.10) is also convergent in the event
Bδ
m ∩ Cm.

To conclude, due to (2.6), (2.7), (2.8), (2.9) and (2.10), taking δ > 0 sufficient
small and m sufficient large, we have that, in the event Bδ

m ∩ Cm,
i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2

∈ (1± ε) exp

{

−ζ
∫ i

j

1

x
dx

}

. (2.11)

Recalling now the definition of Xi,j and Am,ε in (2.4) and (2.5), respectively, we
have that (2.11) implies that Bδ

m ∩ Cm ⊂ Am,ε, and the result follows.

We now turn our attention to Sn − t̄nVL, for which we will prove a central limit
theorem, as a step to establish Theorem 2.2, as follows.

Proposition 2.1. Let Var(ξ1) = σ2 <∞. Then, as n→ ∞,

Sn − t̄nVL√
n

=⇒ N (0, σ̂2
q ), (2.12)

where σ̂q > 0.

The proof of this result consists of a number of steps which take most of this
section.

From elementary physics relations, the time taken for the t.p. to go from Si−1 to
Si is given by

t̄i − t̄i−1 =
V̄ (t̄i)− V̄ (t̄+i−1)

F/Mi

=
2ξi
(
V̄ (t̄i)− V̄ (t̄+i−1)

)

2ξiF/Mi

=
2ξi

V̄ (t̄i) + V̄ (t̄+i−1)
.

Thus, we may write

Sn − t̄nVL =
n∑

i=1

[

ξi

(

1− 2VL
V̄ (t̄i) + V̄ (t̄+i−1)

)]

=
n∑

i=1

[

ξi

(
V̄ (t̄i) + V̄ (t̄+i−1)− 2VL

V̄ (t̄i) + V̄ (t̄+i−1)

)]

=
n∑

i=1

[

2ξi
(
V̄ (t̄+i−1)− VL

)

V̄ (t̄i) + V̄ (t̄+i−1)

]

+
n∑

i=1

[

ξi

(
V̄ (t̄i)− V̄ (t̄+i−1)

V̄ (t̄i) + V̄ (t̄+i−1)

)]

.(2.13)
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Note that
V̄ (t̄i)− V̄ (t̄+i−1)

V̄ (t̄i) + V̄ (t̄+i−1)
=

2Fξi

Mi

(
V̄ (t̄i) + V̄ (t̄+i−1)

)2 . (2.14)

Since V̄ (t̄i) + V̄ (t̄+i−1) converges to the constant 2VL, the Law of Large Numbers
and (2.14) imply that

n∑

i=1

[

ξi

(
V̄ (t̄i)− V̄ (t̄+i−1)

V̄ (t̄i) + V̄ (t̄+i−1)

)]

= O

(
n∑

i=1

ξ2i
i

)

. (2.15)

Let S̃0 = 0 and S̃k =
∑k

i=1 ξ
2
i , k ≥ 1. Assuming Eξ21 <∞, we have that

1√
n

n∑

i=1

ξ2i
i
=

1√
n

n∑

i=1

S̃i − S̃i−1

i
=

1√
n

n−1∑

i=1

S̃i
i(i+ 1)

+
S̃n
n3/2

= o(1). (2.16)

Noticing that V̄ (t̄i) = V̄ (t̄+i−1) + 2Fξi/
[
Mi

(
V̄ (t̄i) + V̄ (t̄+i−1)

)]
, we find that

V̄ (t̄+i−1)− VL

V̄ (t̄+i−1) + V̄ (t̄i)
=
V̄ (t̄+i−1)− VL

2VL
+ (VL − V̄ (t̄+i−1))

[
1

2VL
− 1

V̄ (t̄+i−1) + V̄ (t̄i)

]

,

and the last parcel of the above sum is equal to

= (VL − V̄ (t̄+i−1))

[
V̄ (t̄+i−1) + V̄ (t̄i)− 2VL

2VL(V̄ (t̄+i−1) + V̄ (t̄i))

]

= (VL − V̄ (t̄+i−1))

[
2V̄ (t̄+i−1)− 2VL

2VL(V̄ (t̄+i−1) + V̄ (t̄i))
+

V̄ (t̄i)− V̄ (t̄+i−1)

2VL(V̄ (t̄+i−1) + V̄ (t̄i))

]

= − (V̄ (t̄+i−1)− VL)
2

VL(V̄ (t̄+i−1) + V̄ (t̄i))
+

(VL − V̄ (t̄+i−1))(V̄ (t̄i)
2 − V̄ (t̄+i−1)

2)

2VL(V̄ (t̄+i−1) + V̄ (t̄i))2

= − (V̄ (t̄+i−1)− VL)
2

VL(V̄ (t̄+i−1) + V̄ (t̄i))
+

2Fξi
Mi

· VL − V̄ (t̄+i−1)

2VL(V̄ (t̄+i−1) + V̄ (t̄i))2
.

In particular, since V̄ (t̄+i−1) and V̄ (t̄i) goes to VL as i goes to infinity,

n∑

i=1

[

2ξi
(
V̄ (t̄+i−1)− VL

)

V̄ (t̄i) + V̄ (t̄+i−1)

]

=

n∑

i=1

[

ξi
(
V̄ (t̄+i−1)− VL

)

VL

]

+O

(
n∑

i=1

[

ξi
(
V̄ (t̄+i−1)− VL

)2
]
)

+O

(
n∑

i=1

ξ2i
i

)

.
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Proceeding in an analogous way, we obtain that

n∑

i=1

[

ξi
(
V̄ (t̄+i−1)− VL

)

VL

]

=

n∑

i=1

[

ξi
(
V̄ (t̄+i−1)

2 − V 2
L

)

2V 2
L

]

+O

(
n∑

i=1

[

ξi
(
V̄ (t̄+i−1)− VL

)2
]
)

. (2.17)

To simplify notation, for each i ∈ N, we henceforth denote V̄ (t̄+i ) simply by V̄i.
The following lemma will be useful now; we postpone its proof till the end of this
section.

Lemma 2.2. Let Var(ξ1) = σ2 < ∞ and let ε > 0. The velocities {V̄i}i∈N are
such that V̄i − VL = o(1/i1/2−ε). In particular,

1√
n

n∑

i=1

[

ξi
(
V̄i−1 − VL

)2
]

= o(1).

By (2.13) to (2.17) and Lemma 2.2, in order to establish Proposition 2.1 it is
enough to show that as n→ ∞

1√
n

n∑

i=1

ξi(V̄
2
i−1 − V 2

L ) =⇒ N (0, σ̃2
q ), (2.18)

for some σ̃q > 0; we then of course have σ̂q = σ̃q/(2V
2
L ). For that, the strategy we

will follow is to expand the expression on the left of (2.18) into several terms, one of
which depends only on the interparticle distances {ξi}i∈N, another one depending
only on the stickiness indicator random variables {ηk}k∈N; for each of those terms
we can apply Lindeberg-Feller’s Central Limit Theorem; upon showing that the
remaining terms are negligible, the result follows.

Recalling that ζ = 2(2− p)/p, (2.3) and (2.4), we start with

1√
n

n∑

i=1

[
ξi+1(V̄

2
i − V 2

L )
]
=

2F√
n

n∑

i=1

[

ξi+1

i∑

j=1

(

ξjXi,j − µ
jζ−1

piζ

)]

+

2Fµ

p
√
n

n∑

i=1

[

ξi+1

(

1

i

i∑

j=1

(
j

i

)ζ−1

−
∫ 1

0

xζ−1dx

)]

. (2.19)

The term on the left of expression within parentheses in the second term on the
right hand side of (2.19) is a Riemann sum for the term to its right; we conclude
that the full expression within parenthesis on the right hand side of (2.19) is an
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O(1/i), and we may thus conclude that the second term on the right-hand side
of (2.19) is an o(1), and proceed by dropping that term and focusing on the first
term, which we write as follows.

2F√
n

n∑

i=1

[

ξi+1

i∑

j=1

(

ξjXi,j − µ
jζ−1

piζ

)]

=

2F√
n

n∑

i=1

[

ξ̄i+1

i∑

j=1

(

ξjXi,j − µ
jζ−1

piζ

)]

+
2Fµ√
n

n∑

i=1

i∑

j=1

(

ξjXi,j − µ
jζ−1

piζ

)

:= Vn +Wn. (2.20)

Now writing

i∑

j=1

(

ξjXi,j − µ
jζ−1

piζ

)

=
i∑

j=1

ξ̄jXi,j + µ

i∑

j=1

(

Xi,j −
jζ−1

piζ

)

,

Vn given in (2.20) becomes

Vn =
2F√
n

n∑

i=1

[

ξ̄i+1

i∑

j=1

(

ξjXi,j − µ
jζ−1

piζ

)]

=

2F√
n

n∑

i=1

i∑

j=1

ξ̄i+1ξ̄jXi,j +
2Fµ√
n

n∑

i=1

[

ξ̄i+1

i∑

j=1

(

Xi,j −
jζ−1

piζ

)]

=: V1,n + V2,n. (2.21)

We will show in Lemmas 2.6 and 2.7 below that V1,n and V2,n are negligible.

Analogously, Wn given in (2.20) becomes

Wn =
2Fµ√
n

n∑

i=1

i∑

j=1

(

ξjXi,j − µ
jζ−1

piζ

)

=

2Fµ√
n

n∑

i=1

i∑

j=1

ξ̄jXi,j +
2Fµ2

√
n

n∑

i=1

i∑

j=1

(

Xi,j −
jζ−1

piζ

)

=: W1,n +W2,n, (2.22)

and W1,n is further broken down into

W1,n =
2Fµ√
n

n∑

i=1

i∑

j=1

ξ̄jXi,j

=
2Fµ

p
√
n

n∑

i=1

i∑

j=1

jζ−1

iζ
ξ̄j +

2Fµ√
n

n∑

i=1

i∑

j=1

ξ̄j

(

Xi,j −
jζ−1

piζ

)

=: W3,n +W4,n. (2.23)
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One may readily verify the conditions of Lindeberg-Feller’s CLT to obtain

Lemma 2.3. Let Var(ξ1) = σ2 < ∞. For 1 ≤ j ≤ n, set aj,n = jζ−1
∑n

i=j
1
iζ
.

Then, as n→ ∞,

W3,n =
2Fµ

p
√
n

n∑

j=1

aj,nξ̄j =⇒ N (0, σ2
w),

where σw = 2Fµ
p
√
ζ
σ.

In Lemma 2.8 below we show that W4,n is negligible.

Let us now focus on W2,n. To alleviate notation, for each 1 ≤ j ≤ i, set

Yi,j = log

[
i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
]

= 2
i∑

k=j

log

(

1− 2− ηk
Mk + 1

)

, (2.24)

thus Xi,j = eYi,j/Mj, and therefore,

W2,n =
2Fµ2

√
n

n∑

i=1

i∑

j=1

(

Xi,j −
jζ−1

piζ

)

=

2Fµ2

√
n

n∑

i=1

i∑

j=1

[(
1

Mj

− 1

pj

)
jζ

iζ

]

+
2Fµ2

√
n

n∑

i=1

i∑

j=1

[(
1

Mj

− 1

pj

)(

eYi,j − jζ

iζ

)]

+

2Fµ2

√
n

n∑

i=1

i∑

j=1

[
1

pj

(

eYi,j − jζ

iζ

)]

=: Z1,n + Z2,n + Z3,n. (2.25)

Lemma 2.4. Z2,n, as defined in (2.25), is an o(1).

Proof. Note that, as defined in (2.24) and (2.25),

|Z2,n| =

∣
∣
∣
∣
∣

2Fµ2

√
n

n∑

i=1

i∑

j=1

[(
1

Mj

− 1

pj

)(

eYi,j − jζ

iζ

)]
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

2Fµ2

√
n

n∑

i=1

i∑

j=1

[
jζ

iζ

(
1

Mj

− 1

pj

)(

exp

{

Yi,j + ζ

∫ i

j

1

x
dx

}

− 1

)]
∣
∣
∣
∣
∣

≤ 2Fµ2

√
n

n∑

i=1

i∑

j=1

[
jζ

iζ

∣
∣
∣
∣

1

Mj

− 1

pj

∣
∣
∣
∣

∣
∣
∣
∣
Yi,j + ζ

∫ i

j

1

x
dx

∣
∣
∣
∣

]

. (2.26)

For each i ≥ j ≥ 1, we define

Ri,j = Yi,j + ζ

∫ i

j

x−1dx. (2.27)
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It follows from (2.26) that

|Z2,n| = O

(

1√
n

n∑

i=1

i∑

j=1

[
jζ

iζ

∣
∣
∣
∣

1

Mj

− 1

pj

∣
∣
∣
∣
|Ri,j|

])

. (2.28)

As we see in (2.6) and (2.24), Ri,j can be written as

Ri,j = ζ

∫ i

j

x−1dx− 2
i∑

k=j

2− p

Mk + 1
+ 2

i∑

k=j

η̄k
Mk + 1

+O

(
i∑

k=j

(
2− ηk
Mk + 1

)2
)

=

ζ

[
∫ i

j

1

x
dx−

i∑

k=j

1

k

]

+
i∑

k=j

(
ζ

k
− 2(2− p)

Mk + 1

)

+ 2
i∑

k=j

[
η̄k

Mk + 1
− η̄k
p(k − 1) + 3

]

+

2
i∑

k=j

η̄k
p(k − 1) + 3

+O

(
i∑

k=j

(
2− ηk
Mk + 1

)2
)

:= R
(1)
i,j + · · ·+R

(5)
i,j . (2.29)

One readily checks by elementary deterministic estimation that for all i ≥ j ≥ 1,
|R(1)

i,j | can be bounded above by 1/j.

Let now 0 < δ < 1/4 be fixed. The Law of Large Numbers and the Law of the

Iterated Logarithm, there a.s. exists j0 ∈ N such that |R(2)
i,j |, |R(3)

i,j | and |R(5)
i,j | are

bounded above by 1/j1/2−δ, for every i ≥ j ≥ j0.

To study |R(4)
i,j |, we apply Hoeffding’s Inequality to obtain, for every i ≥ j ≥ 1,

P

(∣
∣
∣
∣
∣

i∑

k=j

η̄k
p(k − 1) + 3

∣
∣
∣
∣
∣
≥ 1

j1/2−δ

)

≤ exp

{

−2

/(

j1−2δ

i∑

k=j

1

(p(k − 1) + 3)2

)}

.

(2.30)
We next apply a variation of Lévy’s Maximal Inequality, namely Proposition 1.1.2
in [DG99], combined with (2.30), to get that

P

(

max
i≥j

∣
∣
∣
∣
∣

i∑

k=j

η̄k
p(k − 1) + 3

∣
∣
∣
∣
∣
≥ 3

j1/2−δ

)

=

lim
n→∞

P

(

max
j≤i≤n

∣
∣
∣
∣
∣

i∑

k=j

η̄k
p(k − 1) + 3

∣
∣
∣
∣
∣
≥ 3

j1/2−δ

)

≤

3 lim
n→∞

max
j≤i≤n

P

(∣
∣
∣
∣
∣

i∑

k=j

η̄k
p(k − 1) + 3

∣
∣
∣
∣
∣
≥ 1

j1/2−δ

)

≤

3 exp

{

−2

/(

j1−2δ

∞∑

k=j

1

(p(k − 1) + 3)2

)}

. (2.31)
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Since the latter term is summable, we conclude that almost surely exists j0 ∈ N

such that |R(4)
i,j | ≤ 3/j1/2−δ, for every i ≥ j ≥ j0. Collecting all the bounds, we

find that a.s.

|Ri,j| ≤ |R(1)
i,j |+ · · ·+ |R(5)

i,j | < 3/j1/2−δ (2.32)

for every i ≥ j sufficiently large. Recalling that Mj = 2 +
∑j−1

l=1 ηl, we have, as
consequence of the Law of the Iterated Logarithm and the Law of Large Numbers,
that |1/Mj − 1/(pj)| = o(1/j3/2−δ), and the result follows from (2.28).

It follows from (2.31) that Ri,j is uniformly bounded in i, j by a proper random
variable. We may thus write

Z3,n =
2Fµ2

√
n

n∑

i=1

i∑

j=1

[
1

pj

(

eYi,j − jζ

iζ

)]

=
2Fµ2

p
√
n

n∑

i=1

i∑

j=1

[
jζ−1

iζ
(
eRi,j − 1

)
]

=
2Fµ2

p
√
n

n∑

i=1

i∑

j=1

jζ−1

iζ
Ri,j +O

(

2Fµ2

p
√
n

n∑

i=1

i∑

j=1

jζ−1

iζ
R2
i,j

)

=: Z ′
3,n + Z̃3,n. (2.33)

Since, almost surely, for every i ≥ j sufficiently large, we have the bound |R(1)
i,j |+

|R(5)
i,j | ≤ 1/j2/3, it follows that

2Fµ2

p
√
n

n∑

i=1

i∑

j=1

[
jζ−1

iζ

(

R
(1)
i,j +R

(5)
i,j

)]

= o(1).

Considering only the term R
(2)
i,j of Ri,j in (2.29), its contribution to Z ′

3,n in (2.33)
is

2(2− p)
2Fµ2

p
√
n

n∑

i=1

i∑

j=1

[

jζ−1

iζ

i∑

k=j

(
1

pk
− 1

Mk + 1

)]

=

ζ
2Fµ2

√
n

n∑

i=1

i∑

k=1

[(
1

pk
− 1

Mk + 1

) k∑

j=1

jζ−1

iζ

]

=

2Fµ2

√
n

n∑

i=1

i∑

k=1

[(
1

pk
− 1

Mk

)
kζ

iζ

]

+ o(1) = −Z1,n + o(1), (2.34)

where Z1,n is defined in (2.25). We may remark at this point that combining
(2.34) and (2.25) drops Z1,n out of the overall computation.
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Let us now estimate the contribution of R
(4)
i,j to Z ′

3,n in (2.33), recalling that

Mk = 2 +
∑k−1

l=1 ηl and setting M̄k = −∑k
l=1 η̄l:

4Fµ2

p
√
n

n∑

i=1

i∑

j=1

[

jζ−1

iζ

i∑

k=j

(
η̄k

Mk + 1
− η̄k
p(k − 1) + 3

)]

=

4Fµ2

p
√
n

n∑

i=1

i∑

j=1

[

jζ−1

iζ

i∑

k=j

η̄kM̄k−1

(Mk + 1)(p(k − 1) + 3)

]

=

4Fµ2

p
√
n

n∑

i=1

i∑

j=1

[

jζ−1

iζ

i∑

k=j

η̄kM̄k−1

(p(k − 1) + 3)2

]

+

4Fµ2

p
√
n

n∑

i=1

i∑

j=1

[

jζ−1

iζ

i∑

k=j

(
η̄kM̄k−1

p(k − 1) + 3

(
1

Mk + 1
− 1

p(k − 1) + 3

))]

=: Z5,n + Z6,n. (2.35)

Let us fix 0 < α < 1/2; the Law of the Iterated Logarithm and the Law of Large
Numbers give us that

∣
∣
∣
∣

η̄kM̄k−1

p(k − 1) + 3

(
1

Mk + 1
− 1

p(k − 1) + 3

)∣
∣
∣
∣
= o

(
1

k2−α

)

.

Since 0 < α < 1/2, it follows that Z6,n = o(1).

We will study the asymptotic behavior of Z5,n in Lemma 2.9.

We now estimate the contribution of R
(3)
i,j to Z ′

3,n in (2.33):

4Fµ2

p
√
n

n∑

i=1

i−1∑

j=1

[

jζ−1

iζ

i−1∑

k=j

η̄k
k

]

=
4Fµ2

p
√
n

n∑

i=1

i−1∑

k=1

[

η̄k
k

k∑

j=1

jζ−1

iζ

]

=
4Fµ2

ζp
√
n

n∑

i=1

i−1∑

k=1

kζ−1

iζ
η̄k + o(1) =: Z4,n + o(1). (2.36)

By a routine verification of the conditions of the Lindeberg-Feller CLT we get the
following result.

Lemma 2.5. As n→ ∞

Z4,n =
4Fµ2

ζp
√
n

n∑

i=1

i−1∑

k=1

kζ−1

iζ
η̄k =⇒ N (0, σ2

z),

where σz = 4Fµ2
√

1−p
pζ3

.
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Let us now estimate Z̃3,n in (2.33). From (2.32) it readily follows that

2Fµ2

p
√
n

n∑

i=1

i∑

j=1

jζ−1

iζ
R2
i,j = o(1),

and thus Z̃3,n = o(1).

So far we have argued that

1√
n

n∑

i=1

[
ξi+1(V̄

2
i − V 2

L )
]

=
(
W3,n + Z4,n

)
+
(
V1,n + V2,n +W4,n + Z5,n

)
+ o(1)

=: Gn +Hn + o(1), (2.37)

whereW3,n,W4,n, Z4,n, V1,n, V2,n and Z5,n are defined, respectively, in (2.23), (2.36),
(2.21) and (2.35). By the independence of W3,n and Z4,n, we have by Lemmas 2.3
and 2.5 that Gn =⇒ N (0, σ̃2

q ), where σ̃
2
q = σ2

w + σ2
z . To establish (2.18), it is then

enough to show that Hn = o(1), which we do in the following lemmas, one for
each of the constituents of Hn.

Lemma 2.6. Assume Var(ξ1) = σ2 <∞. Then V1,n = o(1).

Proof. First fix δ > 0. Given ε > 0, Lemma 2.1 states that exists m ∈ N such that
P(Acm,ε) < ε/2. Recall the definition of Xi,j in (2.4), and that {Xi,j, i ≥ j ≥ 1}
and {ξn}n∈N are independent.

P

(∣
∣
∣
∣
∣

1√
n

n∑

i=1

i∑

j=1

ξ̄i+1ξ̄jXi,j

∣
∣
∣
∣
∣
> δ

)

≤ P

(∣
∣
∣
∣
∣

1√
n

n∑

i=1

i∑

j=1

ξ̄i+1ξ̄jXi,j1Am,ε

∣
∣
∣
∣
∣
> δ

)

+
ε

2

(2.38)
It follows from definition of Am,ε in (2.5) that Xi,j1Am,ε

≤ (1 + ε)[jζ−1/(piζ)] for
all i ≥ j ≥ m. Using this and by Markov’s Inequality, we get that the first term
on the right of (2.38) is bounded above by

1

δ2n

n∑

i=1

i∑

j=1

E(ξ̄i+1)
2E(ξ̄j)

2 E(X2
i,j1Am,ε

) =
(1 + ε)2σ4

p2δ2n

n∑

i=1

i∑

j=m

j2ζ−2

i2ζ
+ o(1) = o(1).

Since δ > 0 and ε > 0 are arbitrary, the combination of this inequality and (2.38)
yields the result.

Lemma 2.7. Assume Var(ξ1) = σ2 <∞. Then V2,n = o(1).
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Proof. Arguing similarly as in the proof of Lemma 2.6, given δ > 0 and ε > 0, we
have that m large enough

P

(∣
∣
∣
∣
∣

1√
n

n∑

i=1

[

ξ̄i+1

i∑

j=1

(

Xi,j −
jζ−1

piζ

)]
∣
∣
∣
∣
∣
> δ

)

≤

P

(∣
∣
∣
∣
∣

1√
n

n∑

i=1

[

ξ̄i+1

i∑

j=1

(

Xi,j −
jζ−1

piζ

)

1Am,ε

]∣
∣
∣
∣
∣
> δ

)

+
ε

2
(2.39)

and since |Xi,j(ω)−jζ−1/(piζ)|1Am,ε
≤ (εjζ−1)/(piζ) for all i ≥ j ≥ m, we get that

the first term on the right of (2.39) is bounded above by

1

δ2n

n∑

i=1



E(ξ̄i+1)
2 E

(
i∑

j=1

(

Xi,j(ω)−
jζ−1

piζ

)

1Am,ε

)2


 ≤

σ2

δ2n

n∑

i=1

E

[
i∑

j=1

∣
∣
∣
∣
Xi,j(ω)−

jζ−1

piζ

∣
∣
∣
∣
1Am,ε

]2

≤ ε2
σ2

δ2n

n∑

i=1

(
i∑

j=m

jζ−1

iζ

)2

+ o(1) ≤ ε

2
,

as soon as n is large enough, and the result follows upon substitution in (2.39),
since δ and ε are arbitrary.

Lemma 2.8. Assume Var(ξ1) = σ2 <∞. Then W4,n = o(1).

Proof. Similar to the proof of Lemma 2.7.

Lemma 2.9. Assume Var(ξ1) = σ2 <∞. Then Z5,n = o(1).

Proof. Changing the order of summation, we find that Z5,n is bounded by constant
times

1√
n

n∑

k=1

Lk,nη̄kM̄k−1,

where Lk,n = 1
k2

(
∑k

j=1 j
ζ−1
) (∑n

i=k
1
iζ

)
, which is bounded above by constant

times 1
k
uniformly in j and n. Now by Markov:

P (|Z5,n| ≥ δ) ≤ const

δ2n

n∑

k=1

1

k2
E(M̄2

k−1) ≤
const

δ2
1

n

n∑

k=1

1

k
= o(1), (2.40)

and we are done.

We still owe a proof for Lemma 2.2.
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Proof of Lemma 2.2. Since V̄ 2
i − V 2

L = (V̄i − VL)(V̄i + VL) and almost surely V̄i
converges to VL, to prove the first claim is enough to show that (V̄ 2

i − V 2
L ) =

o(1/i1/2−ε). We write

V̄ 2
i − V 2

L = 2F
i∑

j=1

[ξjXi,j]−
2Fµ

p

∫ 1

0

xζ−1dx.

= 2F
i∑

j=1

[

ξjXi,j − µ
jζ−1

piζ

]

+
2Fµ

p

[

1

i

i∑

j=1

(
j

i

)ζ−1

−
∫ 1

0

xζ−1dx

]

.

The second term on the right-hand side of this equation is an O(1/i). We break
down the first term as follows

2F
i∑

j=1

ξ̄j
jζ−1

piζ
+ 2F

i∑

j=1

ξ̄j

(

Xi,j −
jζ−1

piζ

)

+ 2Fµ
i∑

j=1

(

Xi,j −
jζ

piζ

)

. (2.41)

Setting S̄0 = 0 and S̄k :=
∑k

l=1 ξ̄k, k ∈ N, we write the first term on the right
of (2.41) as

i∑

j=1

[

(S̄j − S̄j−1)
jζ−1

piζ

]

=
i−1∑

j=1

[

S̄j

(
jζ−1

piζ
− (j + 1)ζ−1

piζ

)]

+
S̄i
pi

= o(1/i1/2−ε),

where the last equality follows by the Law of the Iterated Logarithm.

Analogously, we write the second term on the right of (2.41) as

i−1∑

j=1

[
S̄j (Xi,j −Xi,j+1)

]
+

i−1∑

j=1

[

S̄j

(
(j + 1)ζ−1

piζ
− jζ−1

piζ

)]

+S̄i

(

Xi,i −
1

ip

)

. (2.42)

Recalling (2.4), one readily checks that that |Xi,j−Xi,j+1| = O (|Xi,j+1|/(Mj + 1)).
Given ε > 0, by Lemma 2.1 we a.s. find an m ∈ N such that |Xi,j+1| ≤ (1+ c)(j+
1)ζ−1/(piζ) for every i ≥ j ≥ m. Therefore, again by the Law of Large Numbers
and the Law of the Iterated Logarithm, the three terms on (2.42) are o(1/i1/2−ε).

To deal with the third and last term on the right of (2.41), we may proceed
similarly as in the analysis ofW2,n above — recall (2.22), (2.25), (2.27) and (2.33).
We write

i∑

j=1

[

Xi,j −
jζ

piζ

]

=
i∑

j=1

[
jζ

iζ

(
1

Mj

− 1

pj

)]

+
i∑

j=1

[
jζ

iζ

(
1

Mj

− 1

pj

)
(
Ri,j +O(R2

i,j)
)
]

+
i∑

j=1

[
jζ−1

piζ
(
Ri,j +O(R2

i,j)
)
]

. (2.43)
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In the proof of Lemma 2.4, we have shown that almost surely, for i ≥ j sufficiently
large, |Ri,j| ≤ 1/j1/2−ε, and we also argued that (1/Mj − 1/(pj)) = o(1/j3/2−ε).
Using this estimates, we readly get that each of the terms on the right hand side
of (2.43) is an o(1/i1/2−ε), for 0 < ε < 1/4, and thus, so is the left hand side of
(2.43), and we are done with the first claim of the lemma.

To argue the last claim of the lemma, note that

1√
n

n∑

i=1

[

ξi
(
V̄i−1 − VL

)2
]

= o

(

1√
n

n∑

i=1

ξi
i1−2ε

)

= o

(

1√
n

n∑

i=1

µ

i1−2ε

)

+ o

(

1√
n

n∑

i=1

ξ̄i
i1−2ε

)

= o(1/n1/2−2ε),

where the last equality holds by the hypothesis that ξ1 has finite second moment
and the Two Series Theorem, and we are done.

Proceeding analogously as in the proof of Proposition 2.1, similarly breaking down
the relevant quantities, we may also obtain a central limit theorem for the velocity
of the t.p. on the modified process (at collision times), namely

Proposition 2.2. Let Var(ξ1) = σ2 <∞. Then, as n→ ∞,

√
n
(
V̄n − VL

)
=⇒ N (0, σ̂2

v),

where σ̂v > 0.

2.3 Central Limit Theorem for the Original Pro-

cess

In this section, we prove our main results.

2.3.1 Proof of Theorem 2.2

For each, i ∈ N, let ti be the instant when the t.p. collides for the first time with
the initial i−th particle in the line; more precisely, ti is such that Q(ti) = Si.
It is enough to show a CLT along (ti), and for that it suffices to establish a
version of Proposition 2.1 with barred quantities replaced by respective unbarred
quantities, which ammounts to replacing t̄n by tn in (2.12), namely showing that
(Sn − tnVL)/

√
n =⇒ N (0, σ̂2

q ). Theorem 2.2 readily follows with σ2
q =

VL
µ
σ̂2
q .
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We use Proposition 2.1 and a comparison between t̄i and ti to conclude our proof.
Due to Proposition 2.1, it is enough to argue that

tn − t̄n√
n

= o(1). (2.44)

Let s1, s2, . . . be the instants when the t.p. recollides with a moving elastic particle,
whose velocities will be, respectively, denoted by v1, v2, . . .. As follows from the
remarks in the Introduction on the fact that the dynamics is a.s. well defined — see
paragraph right below (2.2) — these sequences are well defined, and s1, s2, . . . has
no limit points. We also recall that, for each l ∈ N, V (sl) and V (s+l ) denote the
velocities of the t.p. immediately before and at the l-th recollision, respectively.

For each j ∈ N we define

∆(j) :=
∑

sl∈[tj−1,tj ]

[
V 2(sl)− V 2(s+l )

]
and δ(j) :=

∑

sl∈[tj−1,tj ]

[V (sl)− vl] . (2.45)

As follows from what has been pointed out in the above paragraph, these sums
are a.s. well defined and consist of finitely many terms.

Let v : [0,∞) −→ R denote the function that associates the position x to the
velocity of the t.p. at x, that is, v(x) = V (Q−1(x)). We analogously define
v̄ : [0,∞) −→ R for the modified process. We have that

tn =

∫ Sn

0

1

v(x)
dx and t̄n =

∫ Sn

0

1

v̄(x)
dx.

In this way, (2.44) becomes

∫ Sn

0

(
1

v(x)
− 1

v̄(x)

)

dx = o(n1/2),

and due to convergence of v(x) and v̄(x), it is enough to argue that

∫ Sn

0

(
v̄2(x)− v2(x)

)
dx = o(n1/2).

Torricelli’s equation, (2.1), (2.2) and (2.45), give us that, for each i ∈ N, at
position x ∈ [Si−1, Si),

v̄2(x)− v2(x) =
i−1∑

j=1

[

∆(j)
i−1∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
]

+
∑

sl∈[Si−1,x)

(
V 2(sl)− V 2(s+l )

)
.

(2.46)
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Therefore, we have the following upper bound

∫ Sn

0

(
v̄2(x)−v2(x)

)
dx ≤

n∑

i=1

[

ξi

i−1∑

j=1

(

∆(j)
i−1∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
)]

+
n∑

i=1

ξi∆(i).

Turning back to (2.2), we have that,

V (sj)− V (s+j ) = V (sj)−
(
M(sj)− 1

M(sj) + 1
V (sj) +

2

M(sj) + 1
vj

)

=
2(V (sj)− vj)

M(sj) + 1
.

And therefore, again by the fact that V (·) is convergent, recalling (2.45), we have
that

∆(j) = O

(
δ(j)

Mj + 1

)

;

moreover, recalling (2.4), we have that

n∑

i=1

[

ξi+1

i∑

j=1

(

∆(j)
i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
)]

+
n∑

i=1

ξi+1∆(i+ 1) =

O

(
n∑

i=1

[

ξi+1

i∑

j=1

δ(j)Xi,j

]

+
n∑

i=1

ξi+1δ(i+ 1)

i+ 1

)

. (2.47)

By Lemma 2.1,

n∑

i=1

[

ξi+1

i∑

j=1

δ(j)Xi,j

]

=
n∑

j=1

[

δ(j)
n∑

i=j

ξi+1Xi,j

]

= O

(
n∑

j=1

[

δ(j)jζ−1

n∑

i=j

ξi+1

iζ

])

.

Since Eξ2 < ∞, Borel-Cantelli lemma readily implies that for every ε > 0,
P(ξn+1 > ε

√
n i.o.) = 0. Thus,

n∑

j=1

[

δ(j)jζ−1

n∑

i=j

ξi+1

iζ

]

= O

(
n∑

j=1

[

δ(j)jζ−1

n∑

i=j

ε
√
i

iζ

])

=

ε
√
nO

(
n∑

j=1

[

δ(j)jζ−1

n∑

i=j

1

iζ

])

= ε
√
nO

(
n∑

j=1

δ(j)

)

,

and also
n∑

i=1

ξi+1δ(i+ 1)

i+ 1
= O

(
n∑

i=1

δ(i+ 1)

)

.

By Lemma 2.10, we are done, since ε > 0 is arbitrary.
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Lemma 2.10. Let δ(j) as defined in (2.45). Almost surely,

∞∑

j=1

δ(j) <∞. (2.48)

Proof. This result is already contained more or less explicitly in [FNV00], in the
argument to prove Theorem 2.1 — see discussion on page 803 of [FNV00]. For
completeness and simplicity, circularity notwithstanding, we present an argument
relying on Theorem 2.1 directly.

There a.s. exists a time T0 such that there are no recollisions with standing par-
ticles met by the t.p. after T0. This is because at large times, the velocity of
the t.p. is close enough to VL and its mass close enough to infinity, so that new
collisions with standing elastic particles will give them velocity roughly 2VL, and
thus they will be thence unreachable by the t.p. This means that we have only
finitely many particles that recollide with the t.p.

We may also conclude by an elementary reasoning using Theorem 2.1 that if a
particle collides infinitely often with the t.p., then its velocity may never exceed VL.
Let u1, u2, . . . denote the recollision times with such a particle, and v(u1), v(u2), . . .,
its velocity at such times, respectively. As we can deduce from (2.2), v(ui+1) >
V (ui); thus,

∞∑

i=1

[V (ui)− v(ui)] <
∞∑

i=1

[v(ui+1)− v(ui)] ≤ VL,

and (2.48) follows.

2.3.2 Proof of Theorem 2.3

By Proposition 2.2, and the convergences of both Vn and V̄n, and after similar
considerations as at the beginning of Subsection 2.3.1, we find that it is enough
to prove that √

n
(
V̄ 2
n − V 2

n

)
= o(1) (2.49)

(so that in the end we get that Theorem 2.3 holds with σ2
v =

µ
VL
σ̂2
v).

Recalling (2.46), we have that

V̄ 2
n − V 2

n = v̄2(Sn)− v2(Sn) =
n−1∑

j=1

[

∆(j)
i−1∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
]

+∆(n).

Proceeding similarly as in the proof of Theorem 2.2, we find that

√
n
(
V̄ 2
n − V 2

n

)
= O

(

√
n

n∑

j=1

[

δ(j)
jζ−1

nζ

]

+
δ(n+ 1)√

n

)

.
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By Lemma 2.10, given ε > 0, there almost surely exists j0 ∈ N such that
∑

j≥j0 δ(j) ≤ ε/2. Thus,

√
n

n∑

j=1

[

δ(j)
jζ−1

nζ

]

≤ 1

nζ−1/2

j0∑

j=1

δ(j)jζ−1 +
∑

j>j0

δ(j) ≤ ε,

for n sufficiently large. Lemma 2.10 implies that δ(n) = o(1). Since ε > 0 is
arbitrary, (2.49) follows.

2.4 Discussion

A fact that, if known, would simplify comparisons between the auxiliary and
original process, is the occurrence of only a finite number of recollisions between
the tracer particle and each elastic particle. Note that in [FNV00], the authors
observe that, the number of elastic particles for which this does not happen, is
finite — see also the proof of Lemma 2.10. It would be very interesting to obtain
a proof for this fact.

When we replace the common finite mean distribution of the interparticle dis-
tances by an one having infinity mean, it is expected that tracer particle velocity
converges to infinity. This is not difficulty verify on the auxiliary process, but it
seems hard to compare both process, since we will have infinitely many recollisions
with each elastic particle.



52 CHAPTER 2. CLT’S FOR A DRIVEN PARTICLE



Chapter 3

Anisotropic Oriented Percolation

A common feature of percolation models defined on lattices is that they exhibit,
in some sense, a mean-field behavior as the dimension of the lattice grows. In
the particular case of oriented percolation, the seminal paper by Cox and Durrett
[CD83] shows that the asymptotic behavior of the critical point is 1/d. A little
earlier, Holley and Liggett [HL81] proved the occurrence of an analogous behavior
for the high dimensional contact process critical rate and, recently, a similar re-
sult was proved for the contact process with random rates on a high dimensional
percolation open cluster, see [Xue16]. For the non-oriented case, Kesten [Kes90]
and Gordon [Gor91] independently showed that the critical point is asymptoti-
cally 1/2d and, in the last three decades, a rather complete mean-field picture of
high dimensional non-oriented percolation has emerged; see [HH17] and references
therein.

Several variants of percolation models have been proposed over time, many of
which arose from the analysis of physical phenomena, and in this case, an in-
gredient that accompanies various phenomena is anisotropy of the system. On
anisotropic percolation, edges on distinct classes have different probability to be
open. One of the first results on anisotropic percolation appears in 1964 with the
Essam and Sykes work [ES64]. Kesten in [Kes82] gives the complete phase dia-
gram of non-oriented anisotropic percolation on the square lattice, where vertical
edges are open with probability p while horizontal edges are open with probability
q. For d ≥ 3, little is understood about the phase diagram of anisotropic perco-
lation. The results of [CD83, Kes90, Gor91] are statements about one point in
the parameter domain, the isotropic point, whereas in [CLS14] the authors show
that the critical surface is everywhere continuous for a particular setup in the
non-oriented case.

At this chapter, we investigate the phase diagram of oriented anisotropic perco-
lation on Zd, d ≥ 4, where edges oriented along the i − th direction are open

53
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independently of all others with probability pi. We analyze the interior of the
domain in a region containing the isotropic point, showing that the critical sur-
face behaves nicely around this point and that the anisotropy introduced in the
system does not create any unexpected behavior. More precisely, we show that
if p1 + · · · + pd is strictly greater than one and each pi is not too large, then an
infinity open cluster occurs.

3.1 The Model and Result

We consider the anisotropic oriented edge percolation model in Zd. Let
{e1, . . . , ed} be the set of canonical unit vectors of Zd. Given 0 < p1, . . . , pd < 1,
we declare each edge 〈x, x + ei〉 to be open independently of each other with
probability pi for i = 1, . . . , d. We denote the corresponding probability measure
simply by P.

An oriented path of length n starting at the origin in Zd is a path (x0, x1, . . . , xn)
such that x0 = 0 and xi− xi−1 ∈ {e1, . . . , ed} for i = 1, . . . , n. Let C0 be the open
cluster of the origin, that is, the set of vertices x ∈ Zd such that there is an open
path from 0 to x; we let |C0| denote the size of C0.

We are now ready to state our main theorem.

Theorem 3.1. Let ε > 0 be of the form ε = 10/n, for some n ∈ N. Let d ≥ 4,
and let p1, . . . , pd be non-negative numbers such that

1. p1 + · · ·+ pd ≥ 1 + ε,

2. max
1≤i≤d

{
pi

p1 + · · ·+ pd

}

<
ε

10
,

then
P
{
|C0| = ∞

}
> 0.

Remark: Note that if p1+ · · ·+ pd < 1 then a straightforward branching process
argument shows that P

{
|C0| = ∞

}
= 0. Note also that, although the result is

non-asymptotic, it only makes sense for d of order 1/ε. We will see in the course
of the proof of Theorem 3.1 that the constant 1/10 in Condition 2 could be made
as close to 1 as we wish, as long as the dimension is taken big enough. We mention
that, for the isotropic case, Theorem 3.1 gives the bound pc(Z

d) ≤ 1/d+ 10/d2.

The strategy of the proof is similar to the one in Cox-Durret [CD83]: we build
a martingale and prove the convergence to a positive limit showing that it has
bounded second moment. The main difficulty here is to estimate the second
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moments of the martingale. We do this by converting the martingale problem into
a random walk problem and comparing the asymmetric case with the symmetric
one.

3.1.1 Proof of Main Result

In this section we prove the main result modulo a lemma which is stated in the
course of the proof.

Proof of Theorem 3.1. We want to prove that the open cluster of the origin is
infinite, which happens if and only if there exists an infinite open path starting at
the origin. Thus our problem can be naturally converted into a counting of the
number of open paths of length n starting on 0, as long as we have a good control
of the second moment of this random variable.

For each n ∈ N let Vn be the set of the vertices in the n-th level , i.e.,

Vn = {x ∈ Zd : x1 + · · ·+ xd = n, xi ≥ 0}, (3.1)

and Cn to be the set of all possible oriented paths from the origin to Vn, i.e.,

Cn = {γ = (0 = v0, v1, v2, . . . , vn) : vj ∈ Vj and vj − vj−1 ∈ V1, j = 1, . . . , n}.
(3.2)

We define Xn to be the random variable which counts the open paths from the
origin up to level n, i.e.,

Xn :=
∑

γ∈Cn

1{γ is open}, (3.3)

and write µ := E[X1] = p1+ · · ·+pd. A simple calculation shows that E[Xn] = µn.
Now, define

Wn :=
Xn

µn
. (3.4)

We observe that {Wn}n∈N is a positive martingale. For this, consider x ∈ Vn and
let Cx = {γ ∈ Cn : f(γ) = x}, where f(γ) denotes the final vertex of γ. Define
also the random variables

Yx =
d∑

i=1

1{〈x,x+ei〉 is open} and Nx =
∑

γ∈Cx

1{γ is open},

where Yx counts the number of oriented open edges leaving x and Nx counts the
number of oriented open paths from 0 to x, respectively. Observe that

Xn =
∑

x∈Vn

Nx and Xn+1 =
∑

x∈Vn

Nx · Yx. (3.5)
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Let Fn = σ(X1, . . . , Xn); observe that Yx is independent of Fn for each x ∈ Vn
and that Nx is Fn-measurable. We also have E[Yx] = µ for all x, so

E[Xn+1|Fn] =
∑

x∈Vn

E[Nx · Yx|Fn] = µXn.

Thus E[Wn+1|Fn] = Wn, as wanted.

Since Wn is a positive martingale, it converges to a non-negative random variable
W . Assume for the moment the following lemma.

Lemma 3.1. Let {Wn}n be as defined in (3.4). Then, under the conditions of
Theorem 3.1 we have

sup
n

E[W 2
n ] <∞.

From this lemma it follows that Wn converges to W in L1 and since E(Wn) = 1
we have P(W > 0) > 0. Noticing that Xn > 0 for all n in the event {W > 0}, the
theorem follows.

The proof of Lemma 3.1 in the anisotropic case requires more than a direct adap-
tation of Cox-Durret results. The next sections are dedicated to this work.

The structure of the remainder of the chapter is the following: in Section 3.2 we
convert the martingale problem of Lemma 3.1 into a random walk problem, in
Section 3.3 we compare asymmetric random walks with the symmetric case to
finish the proof of Lemma 3.1 and in Section 3.4 we make some final remarks.

3.2 Preliminary Lemmas

In this section we state and prove four lemmas with the goal of converting the
martingale problem of Lemma 3.1 into a random walk problem.

3.2.1 Open Paths Equivalencies

In the first lemma we give a criterion for bounding supm E[W 2
m]. To do that, we

introduce the following notation. Given a path γ = (0, v1, . . . , vn) ∈ Cn, we define,
for each i ∈ {1, . . . , n},

i(γ) := vi and f(γ) := vn. (3.6)

Lemma 3.2. Let

an :=
1

µ2n

∑

(γ1,γ2)∈C2
n,f(γ1)=f(γ2)

P(γ1, γ2 open). (3.7)
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Then

sup
m

E[W 2
m] <∞ iff

∞∑

n=1

an <∞.

Proof. By (3.5) we have

E[X2
n+1|Fn] = E




∑

(x,y)∈V 2
n

NxYxNyYy

∣
∣
∣
∣
∣
∣

Fn



 = µ2X2
n + (VarY0)

∑

x∈Vn

N2
x .

Therefore

E[W 2
n+1] =

µ2E[X2
n]

µ2n+2
+

(VarY0)

µ2

E
[∑

x∈Vn N
2
x

]

µ2n
.

Using the definition of Nx we can see that E[N2
x ] =

∑

(γ1,γ2)∈C2
x

P(γ1, γ2 open) so

E
[∑

x∈Vn N
2
x

]

µ2n
=

∑

x∈Vn
∑

(γ1,γ2)∈C2
x
P(γ1, γ2 open)

µ2n

=
1

µ2n

∑

(γ1,γ2)∈C2
n,f(γ1)=f(γ2)

P(γ1, γ2 open),

which is exactly the definition of an. Hence

E[W 2
n+1] = E[W 2

n ] +
(VarY0)

µ2
an.

Iterating the recursion above, we have

E[W 2
n+1] = E[W 2

1 ] +
(VarY0)

µ2

n∑

j=1

aj,

and the result follows.

Given m ∈ N, let

Am := {(γ1, γ2) ∈ C2
m : i(γ1) 6= i(γ2) for all i 6= m and f(γ1) = f(γ2)} (3.8)

be the set of the pair of paths of size m which meet on the their final vertices and
define

bm :=
∑

(γ1,γ2)∈Am

P(γ1, γ2 open)

µ2m
. (3.9)
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Lemma 3.3. Let an as defined in (3.7) and bm as defined in (3.9). Then

∞∑

n=1

an =
∞∑

j=1

( ∞∑

m=1

bm

)j

. (3.10)

Proof. Recall that

an :=
1

µ2n

∑

(γ1,γ2)∈C2
n,f(γ1)=f(γ2)

P(γ1, γ2 open). (3.11)

We will show that the set {(γ1, γ2) ∈ C2
n : f(γ1) = f(γ2)} can be partitioned by

the number of vertices in the intersection of γ1 and γ2. Let

I(γ1, γ2) = {i : i(γ1) = i(γ2)}

and writing M = m1 + · · ·+mj,

C(m1, . . . ,mj) :=
{
(γ1, γ2) ∈ C2

M : I(γ1, γ2) = {m1,m1+m2, . . . ,m1+ · · ·+mj}
}
,

we have

{(γ1, γ2) ∈ C2
M : f(γ1) = f(γ2)} =

n⊔

j=1

⊔

(m1,...,mj)∈Nj

m1+···+mj=M

C(m1, . . . ,mj). (3.12)

Given two paths γ1 = (0, v1, . . . , vn) and γ2 = (0, w1, . . . , wm) we define the con-
catenation of γ1 and γ2 by γ1 ◦ γ2 := (0, v1, . . . , vn, vn+w1, . . . , vn+wm). Observe
that, given a sequence of positive integers (m1, . . . ,mj) ∈ Nj, and recalling (3.8),
we have

C(m1, . . . ,mj) = {(γ1, γ2) ∈ C2
M : γ1 = γ1,1 ◦ · · · ◦ γ1,j, γ2 = γ2,1 ◦ · · · ◦ γ2,j,

(γ1,k, γ2,k) ∈ Amk
, ∀k = 1, . . . , j}.

Using (3.12) we can rewrite (3.11) as

∞∑

n=1

an =
∞∑

j=1

∑

(m1,...,mj)∈Nj

∑

(γ1,γ2)∈C(m1,...,mj)

P(γ1, γ2 open)

µ2M
. (3.13)
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From the definitions of C(m1, . . . ,mj) and bm mentioned earlier, it follows that

∑

(γ1,γ2)∈C(m1,...,mj)

P(γ1, γ2 open)

µ2M
=

∑

(γ1,1◦···◦γ1,j ,γ2,1◦···◦γ2,j)
(γ1,k,γ2,k)∈Amk

,k=1,...,j

j
∏

k=1

P(γ1,k, γ2,k open)

µ2mk

=

j
∏

k=1




∑

(γ1,γ2)∈Amk

P(γ1, γ2 open)

µ2mk





=

j
∏

k=1

bmk
.

Substituting the expression above in (3.13) we obtain

∞∑

n=1

an =
∞∑

j=1

∑

(m1,··· ,mj)∈Nj

[
j
∏

k=1

bmk

]

=
∞∑

j=1

( ∞∑

m=1

bm

)j

,

and the result follows.

3.2.2 Converting the Problem to a Random Walk

Using the lemmas in the previous section, we have, so far,

sup
m

E[W 2
m] <∞ iff

∞∑

m=1

bm < 1;

we will now use random walks to compute bn. In the remainder of the text,
we will consider several independent random walks and we use Q to denote the
probability on a space where they all live in harmony.

We say that q = (q1, . . . , qd) is a (d-dimensional) positive vector if 0 ≤ q1, . . . , qd
and q1 + · · ·+ qd > 0, and we say that q is a (d-dimensional) probability vector if
it is a positive vector with q1+ · · ·+ qd = 1. Given a positive vector q we say that
{Sn}n is the oriented random walk associated to q if

Sn = ξ1 + · · ·+ ξn, (3.14)

where ξ1, . . . , ξn are i.i.d. random variables with

Q(ξ1 = ei) =
qi

q1 + · · ·+ qd
, for all i = 1, . . . , d.

Given two independent random walks associated to q, {S1
n}n and {S2

n}n we define

τ = τ({S1
n}n, {S2

n}n) := inf{n ≥ 1 : S1
n = S2

n}. (3.15)
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Lemma 3.4. Let bm be as defined in (3.9), Am be as in (3.8) and {S1
n}n, {S2

n}n
be two independent random walks associated to p = (p1, . . . , pd). Then

∞∑

m=1

bm < 1 iff
∞∑

m=2

Q(τ = m) < 1− 1

µ
.

Proof. Observe that

b1 =
∑

(γ1,γ2)∈A1

P(γ1, γ2 open)

µ2
=

d∑

i=1

P(〈0, ei〉, 〈0, ei〉 open)

µ2
=

d∑

i=1

pi
µ2

=
1

µ
.

Also, for m ≥ 2, we have

bm =
∑

(γ1,γ2)∈Am

P(γ1, γ2 open)

µ2m

=
∑

(γ1,γ2)∈Am

Q
(
(0, S1

1 , · · · , S1
m

)
= γ1) ·Q

(
(0, S2

1 , · · · , S2
m) = γ2

)

= Q(τ = m),

thus ∞∑

m=1

bm =
1

µ
+

∞∑

m=2

Q(τ = m),

and the result follows.

Lemma 3.5. Let {S1
n}n and {S2

n}n be two independent random walks associated
to a positive vector q and let τ be as defined in (3.15). Then

∞∑

m=1

Q(τ = m) ≤ 1− 1

µ
iff

∞∑

k=1

Q(S1
k = S2

k) ≤ µ− 1.

Proof. Observe that

Q(S1
m = S2

m) =
∑

n≤m
Q(τ = n)Q(S1

m−n = S2
m−n), (3.16)

so
∞∑

m=1

Q(S1
m = S2

m) =
∞∑

m=1

∑

n≤m
Q(τ = n)Q(S1

m−n = S2
m−n)

=
∞∑

n=1

[

Q(τ = n)
∑

m≥0

Q(S1
m = S2

m)

]

=

( ∞∑

n=1

Q(τ = n)

)(

1 +
∞∑

m=1

Q(S1
m = S2

m)

)

,
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and therefore

∞∑

n=1

Q(τ = n) =

∑∞
m=1 Q(S1

m = S2
m)

1 +
∑∞

m=1 Q(S1
m = S2

m)
= 1− 1

1 +
∑∞

m=1 Q(S1
m = S2

m)
. (3.17)

Finally, we have

1− 1

1 +
∑∞

m=1 Q(S1
m = S2

m)
≤ 1− 1

µ
iff

∞∑

m=1

Q(S1
m = S2

m) ≤ µ− 1,

and this finishes the proof.

3.3 Analysis of the Random Walks

In this section, we will estimate the maximal probability of two i.i.d random walks
meeting in a fixed time as a function of their parameters.

Given a probability vector q = (q1, . . . , qd), let {S1
n}n and {S2

n} be two independent
random walks associated to q and define

λ(q) :=
∞∑

n=1

Q(S1
n = S2

n). (3.18)

Combining the results of the previous sections, and observing that Q(τ = 1) > 0,
we have

If λ(q) ≤ µ− 1, then sup
n

E[W 2
n ] <∞. (3.19)

In this section, we investigate the behavior of λ(q).

Theorem 3.2. Let d ≥ 4 and 4 ≤ m ≤ d be integers. Consider the d-dimensional
probability vector q∗ = q∗d(m) = (1/m, 1/m, . . . , 1/m, 0, . . . , 0), and let λ(q) be as
in (3.18). Then

(a) λ(q∗) ≤ 10

m

(b) for all d-dimensional probability vectors q such that maxi qi ≤
1

m
we have

λ(q) ≤ λ(q∗).

We will prove Theorem 3.2 in the next sections, but before that we use it to prove
Lemma 3.1.
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Proof of Lemma 3.1. Let qi =
pi∑
pi
. Under the hypothesis of the Theorem 3.1,

we have qi ≤ ε/10 for 1 ≤ i ≤ d; taking m = 10/ε = n we obtain qi ≤ 1/m.
And taking q = (q1, . . . , qd), it follows from Theorem 3.2 that λ(q) ≤ 10/m = ε.
Finally, by (3.19) we have supn E[W

2
n ] <∞ and the lemma follows.

3.3.1 Bounding the Probability of Meeting

In this subsection we prove Item (a) in Theorem 3.2. Observe that for all d ≥ m
we have

λ(1/m, 1/m, . . . , 1/m
︸ ︷︷ ︸

m

, 0, . . . , 0
︸ ︷︷ ︸

d−m

) = λ(1/m, 1/m, . . . , 1/m
︸ ︷︷ ︸

m

).

For m ≤ 3, we have that λ(q∗) = ∞, so we let m ≥ 4. Then

λ(1/m, 1/m, . . . , 1/m) =
∞∑

n=1

∑

(l1,...,lm)∈Nm

l1+···+lm=n

(
n

l1, . . . , lm

)2
1

m2n

≤
∞∑

n=1



 max
(l1,...,lm)∈Nm

l1+···+lm=n

{(
n

l1, . . . , lm

)}
1

mn



 .

We will split the first sum in two parts, the first for n ≤ m and the second for
n > m, and bound each one separately.

Observe that for n = 1, . . . ,m the maximum inside the brackets is bounded by
n!, so the sum for n ≤ m is bounded by

m∑

n=1

n!

mn
≤ 1

m
+

2

m2
+

m∑

n=3

3!

m3
<

1

m
+

8

m2
. (3.20)

Now, for each j ≥ 1 and 0 ≤ ` ≤ m− 1, we use Stirling’s bounds,

√
2πn

(n

e

)n

≤ n! ≤
√
2πn

(n

e

)n

e
1

12n ,

to obtain, for n = jm+ `,
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max
(l1,...,lm)∈Nn

l1+···+lm=n

{(
n

l1, . . . , lm

)}

=
(jm+ `)!

[(j + 1)!]`(j!)m−`

≤

√

2π(jm+ `)

(
jm+ `

e

)jm+`

e
1

12(jm+`)

[

√

2π(j + 1)

(
j + 1

e

)j+1
]`

×
[

√
2πj

(
j

e

)j
]m−`

≤ e
1

12n
√
m ·mjm+`

[√
2πj
]m−1

(
j + `

m

)jm+`

(j + 1)j`+` × jjm−j`
.

Now, observe that

(
j + `

m

)jm+`

(j + 1)j`+` × jjm−j`
=

(

1− m− `

m(j + 1)

)(j+1)`(

1 +
`

mj

)j(m−`)

≤ exp

(

−(m− `)

m
`

)

× exp

(
`

m
(m− `)

)

= 1,

thus

max
(l1,...,lm)∈Nn

l1+···+lm=n

{(
n

l1, . . . , lm

)}

≤ e
1

12m · √m ·mmj+`

(
√
2π)m−1(

√
j)m−1

. (3.21)

Using the bound above we obtain

λ(q∗) ≤ 1

m
+

8

m2
+
e

1
12m ·m · √m
(
√
2π)m−1

∞∑

j=1

1

j
m−1

2

≤ 1

m
+

8

m2
+
e

1
12m ·m · √m
(
√
2π)m−1

(

1 +
2

m− 3

)

.

For m ≥ 4 we then have

8

m2
≤ 2

m
and

e
1

12m ·m · √m
(
√
2π)m−1

(

1 +
2

m− 3

)

≤ 7

m
, (3.22)

and the result follows.
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3.3.2 Projecting the Random Walks

We now want to understand the behavior of a random walk in Zd. To do that we
will split the random walk in Zd in two ”normalized” projections in Z2 and Zd−2

and consider the behavior of the two parts to determine the behavior of the main
random walk.

Given two independent oriented d-dimensional random walks {S1
n(q)}n, {S2

n(q)}n
associated with the probability vector q = (q1, . . . , qd), for i = 1, 2, let {Ri

n(q)}n
be two independent bi-dimensional oriented random walks associated with (q1, q2)
and let {U i

n(q)}n be two independent (d− 2)-dimensional oriented random walks
associated with (q3, . . . , qd). Writing, for i = 1, 2, Sin(q) = (Sin(q)1, . . . , S

i
n(q)d), we

define two complementary bi-dimensional oriented new random walks, {S̃1
n(q)}n

and {S̃2
n(q)}n coupled with {S1

n(q)}n and {S2
n(q)}n respectively, where

S̃in(q) =
(
Sin(q)1 + Sin(q)2, S

i
n(q)3 + · · ·+ Sin(q)d

)
.

Clearly {S̃1
n(q)}n and {S̃2

n(q)}n are independents and have the same distribution
of a random walk associated with the probability vector q̃ := (q1+q2, q3+ · · ·+qd).
We will omit the dependency on q until the proof of Theorem 3.2.

One can think of the those newly defined random walks defined above as psudo-
projections of the original random walks and the next lemma will express the
meeting probability of the first in term of the latter.

Lemma 3.6. Let {S1
n}n and {S2

n}n be two independent random walks associated
with the probability vector q = (q1, . . . , qd). Then

Q(S1
n = S2

n) =
∑

(j,k)∈N2

j+k=n

Q(S̃1
n = S̃2

n = (j, k))Q(R1
j = R2

j )Q(U1
k = U2

k ). (3.23)

Proof. In fact

Q(S1
n = S2

n) =
∑

(j,k)∈N2

j+k=n

Q(S1
n = S2

n, S̃
1
n = S̃2

n = (j, k)). (3.24)
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Now, observe that fixed (j, k) ∈ N2 such that j + k = n, we have

Q(S1
n = S2

n, S̃
1
n = S̃2

n = (j, k)) =
[(

j + k

j

)2

(q1 + q2)
2j · (q3 + · · ·+ qd)

2k

]

·
[

j
∑

l=0

(
j

l

)2(
q1

q1 + q2

)2l(
q2

q1 + q2

)2(j−l)
]

·
[

∑

l3+···+ld=k

(
k

l3, . . . , ld

)2(
q3

q3 + · · ·+ qd

)2l3

· · ·
(

qd
q3 + · · ·+ qd

)2ld
]

=

Q(S̃1
n = S̃2

n = (j, k)) ·Q(R1
j = R2

j ) ·Q(U1
k = U2

k ).

Next, we state and prove an elementary lemma which will be useful to bound the
second term in (3.23).

Lemma 3.7. For each x ∈ [0, 1] let {Zn(x)}n be a random walk over the set of
the integers

Zn(x) = ζ1(x) + · · ·+ ζn(x),

where {ζi}i∈N are i.i.d. random variables with

Q(ζi(x) = 0) = x

and

Q(ζi(x) = −1) = Q(ζi(x) = 1) =
1− x

2
.

Then, for each n ∈ N fixed, the function Fn : [1/2, 1] → [0, 1] given by

Fn(x) = Q(Zn(x) = 0). (3.25)

is increasing .

Proof. We want to prove that for 1/2 ≤ x ≤ y ≤ 1 we have Fn(y) − Fn(x) ≥ 0.
To do that we will write F as a sum and analyze the terms of the sum separately.
Define

Yn(x) := #{i ∈ [n] : ζi(x) = 0}, (3.26)

so we can write

Fn(x) =
n∑

j=0

Q(Zn(x) = 0|Yn(x) = j)Q(Yn(x) = j).
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Let us now analyze each part of the sum. We first observe that

an−j := Q(Zn(x) = 0|Yn(x) = j) =

{
0 if n− j ≡ 1 mod 2
(

n−j
(n−j)/2

)
× 1

2n−j
if n− j ≡ 0 mod 2

.

Observe also that an−j is well defined because it does not depend on n or j, but
only on n− j. Tt is also easy to see that for any 0 ≤ k ≤ n/2 we have a2k > a2k+2

and thus a2k ≥ a2` for all 0 ≤ k ≤ ` ≤ n/2.

Now, let us analyze the behavior of the function gj given by

gj(x) := Q(Yn(x) = j) =

(
n

j

)

xj(1− x)n−j. (3.27)

Taking the derivative, we have

g′j(x) =

(
n

j

)

xj(1− x)n−j
(
j

x
− n− j

1− x

)

,

so that, for |y − x| sufficiently small and y > x > 1/2, we have

gj(y)− gj(x) < 0, if j ≤ nx, (3.28)

gj(y)− gj(x) > 0, if j > nx. (3.29)

Let N = {0 ≤ j ≤ n : j ≡ n mod 2}; then

Fn(y)− Fn(x) =
∑

j∈N
[gj(y)− gj(x)]an−j,

and using the fact that {a2`}0≤`≤n/2 is decreasing, and (3.28) and (3.29) we have

Fn(y)− Fn(x) =
∑

j≤nx,j∈N
[gj(y)− gj(x)]an−j +

∑

j>nx,j∈N
[gj(y)− gj(x)]an−j

≥
[
∑

j≤nx,j∈N
[gj(y)− gj(x)] +

∑

j>nx,j∈N
[gj(y)− gj(x)]

]

an−bnxc

≥
[
∑

j∈N
gj(y)−

∑

j∈N
gj(x)

]

an−bnxc.

Now note that
∑

j∈N
gj(y) can be obtained as the sum of the expansion of two

binomials

∑

j∈N
gj(y) =

1

2
[(y − (1− y))n + (y + (1− y))n] =

1 + (2y − 1)n

2
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and hence
∑

j∈N
gj(x) is an increasing function in [1/2, 1]. It follows that Fn(y) −

Fn(x) ≥ 0.

Proof of Theorem 3.2. We want to show that, the value of λ is maximal when the
positive entries of the vector are packed in m coordinates. Let

A :=

{

q = (q1, . . . , qd) : 0 ≤ qi ≤
1

m
, ∀i = 1, . . . , d and

∑

qi = 1

}

,

and given q ∈ A let

B(q) := #
{

i ∈ [d] : qi /∈ {0, 1/m}
}

.

With that in mind we will define a packing algorithm A : A → A which increases
the value of λ in each step.

Let q ∈ A. If B(q) = 0, then define A(q) = q∗. If B(q) > 0, then necessarily
B(q) ≥ 2, and suppose without loss of generality that neither q1 nor q2 belongs to
{0, 1/m}, so we define A(q) = (q′1, . . . , q

′
d) where q

′
i = qi for all i ≥ 3, and

for q1 + q2 ≤ 1/m, we let q′1 = q1 + q2 and q′2 = 0,

for q1 + q2 > 1/m, we let q′1 = q1 + q2 − 1/m and q′2 = 1/m, .

We claim that the this algorithm has the following properties

1. if B(q) = 0 then B(A(q)) = 0;

2. if B(q) > 0 then B(A(q)) < B(q);

3. λ(A(q)) ≥ λ(q).

Properties 1 and 2 follow from the definition and we proceed with the proof that
Property 3 holds.

We now compare the probabilities of the random walks associated with q and
A(q). By Lemma 3.6 we have

Q(S1
n(q) = S2

n(q)) =
∑

(j,k)∈N2

j+k=n

Q(S̃1
n(q) = S̃2

n(q) = (j, k))Q(R1
j (q) = R2

j (q))Q(U1
k (q) = U2

k (q)).
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Observe that Q(U1
k (q) = U2

k (q)) depends only on the last d − 2 coordinates of q,
so that

Q

(

U1
k (q) = U2

k (q)
)

= Q

(

U1
k (A(q)) = U2

k (A(q))
)

.

Analogously, Q(S̃1
n(q) = S̃2

n(q) = (j, k)) depends only on q1 + q2 and since this
sum is invariant by A we have

Q

(

S̃1
n(q) = S̃2

n(q) = (j, k)
)

= Q

(

S̃1
n(A(q)) = S̃2

n(A(q)) = (j, k)
)

.

We will now prove that

Q

(

R1
j (q) = R2

j (q)
)

≤ Q

(

R1
j (A(q)) = R2

j (A(q))
)

, (3.30)

and it will follow that

λ(q) =
∞∑

n=1

Q

(

S1
n(q) = S2

n(q)
)

≤
∞∑

n=1

Q

(

S1
n(A(q)) = S2

n(A(q))
)

= λ(A(q)).

To prove (3.30) we observe that for each q ∈ A, R1
n(q)−R2

n(q) has the distribution

of a lazy random walk {Zn(x)}n as defined in Lemma 3.7 with x =
q21+q

2
2

(q1+q2)2
≥ 1/2.

Analogously R1
n(A(q)) − R2

n(A(q)) has the same distribution as {Zn(x′)}n, with
x′ =

(q′1)
2+(q′2)

2

(q′1+q
′
2)

2 ≥ x. Now, (3.30) follows from Lemma 3.7.

Finally, we observe that for all q ∈ A we have Ad(q) = q∗, where Ad is the d-th
iterated of A. Hence, by Property 3, we get λ(q∗) = λ(Ad(q)) ≥ λ(q) and this
finishes the proof.

3.4 Discussion

We do not know whether Condition 2 of Theorem 3.1, the upper bound on the
probabilities pi, is only a technical limitation or whether a large discrepancy on
the anisotropy prevents the system to have a mean-field behavior even in arbitrary
large dimensions. In any case, the isotropic case shows that some bound on the
probabilities pi must be required as we explain now.

One of the results in [CD83], states that the isotropic critical point satisfies pc(d) ≥
1/d + 1/(2d3) + o(1/d3). Let now each pi = 1/d0 + 1/(3d30), and take d0 so that
pi < pc(d0). In this case ε = 1/(3d20) and pi =

√
3ε(1 + ε).
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A natural related question is whether anisotropic non-oriented percolation has
the same limiting critical surface behavior, i.e., under which conditions can we
guarantee that critical surfaces stay close to the isotropic critical points in high
dimensions.
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Chapter 4

On the Dimensional Crossover
Critical Exponent

Another subject on the study of the anisotropy arises in the physics literature
as the dimensional crossover problem. The term crossover relates to the study
of percolative systems on (d + s)-dimensional lattices, where the d-dimensional
parameter p is close to pc(d) from below and the s-dimensional parameter q is
small. Similar anisotropic ferromagnetic models have also been considered in the
mathematical physics literature, see the works [FMMPV14], [FMMPV15] and
[MPS02].

On this subject, the so-called dimensional crossover critical exponent ψ, for bond
percolation on Zd+s is introduced in [RS79], and it is expected to coincide with
another critical exponent γ. They are briefly described as follow. Consider
anisotropic bond percolation on Zd × Zs where edges parallel to Zd are open
with probability p < pc(Z

d) and edges parallel to Zs are open with probability
q, independently of all others. For each parameter p < pc(Z

d), let qc(p) be the
critical point such that percolation occurs for values of q above qc(p) but does not
occurs for any value below. Independent of the dimension s, it is believed that
qc(p) goes to 0 as p ↑ pc in the manner |p − pc|ψ. For isotropic percolation with
parameter p < pc on Zd, the mean size of the open cluster containing the origin
χ(p), is believed to diverges as |p− pc|−γ as p ↑ pc.
In the work [SS17, SSc], the authors proven that, if γ and ψ exists, then ψ ≤ γ.
In this chapter, we give the upper bound qc(p) ≤ 8d2(pc(Z

d) − p). In particular,
combining this to known results concerning the critical exponent γ (see [FH17]
for details), we conclude that for d ≥ 11, ψ exists and is equal to γ, as expected.

71
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4.1 The Model and Results

We consider non-oriented anisotropic bond percolation on the graph
(Zd+s, E(Zd+s)), where E(Zd+s) is the set of edges between nearest neighbors of
Zd+s. We simplify notation and denote this graph by Zd+s = Zd×Zs. An edge of
Zd+s is called a Zd-edge (respectively a Zs-edge) if it joins two vertices which differ
only in their Zd (respectively Zs) component. Probability is introduced as follows:
given two parameters p, q ∈ [0, 1], we declare each Zd-edge open with probability p
and each Zs-edge open with probability q, independently of all others. This model
is described by the probability space (Ω,F ,Pp,q) where Ω = {0, 1}E(Zd+s), F is the
σ-algebra generated by the cylinder sets in Ω and Pp,q =

∏

e∈E µ(e), where µ(e) is
Bernoulli measure with parameter p or q according to e been a Zd- edge or a Zs-
edge respectively.

Given two vertices u, v ∈ Zd+s, we say that u and v are connected in the con-
figuration ω if there exists an open path in Zd+s starting in u and ending in v.
The event where v and u are connected is denoted by {ω ∈ Ω : v ↔ u in ω} and
we write C(ω) = {u ∈ Zd+s : u ↔ 0 in ω} for the open cluster containing the
origin. We denote by θ(p, q) = Pp,q(ω ∈ Ω : |C(ω)| = ∞) the main macroscopic
function in percolation theory and denote the mean size of the open cluster by
χ(p, q) = Ep,q(|C(ω))|). Whenever necessary we shall write χp(d) and pc(d) for
the expected cluster size and critical threshold on Zd with a single parameter
p ∈ (0, 1), respectively.

It is easy to see, by a standard coupling argument, that θ(p, q) is a monotone
non-decreasing function of the parameters p and q. This enable us to define the
function qc : [0, 1] → [0, 1], where

qc(p) = sup{q : θ(p, q) = 0}. (4.1)

The function qc(p) is continuous and strictly decreasing (see [CLS14]) and we are
interested in understanding its behavior as p ↑ pc(d).
A major problem in percolation theory is the existence and determination of
critical exponents. For instance, quantities such as χp(d) are believed to diverge
as p ↑ pc(d) in the manner of a power law in |p− pc(d)|, whose exponent is called
a critical exponent (see Chapter 9 in [Gri99] for details). More precisely, it is
believed that there exists a γ = γ(d) > 0 such that

χp(d) ≈ |p− pc(d)|−γ,

when p ↑ pc(d). Here the relation a(p) ≈ b(p) means log equivalence, i.e., log a(p)
log b(p)

→
1 when p ↑ pc(d).
In [LS72] the authors introduce another critical exponent, the so-called dimen-
sional crossover critical exponent for the Ising Model, which is related to the
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function in Equation (4.1). The same exponent is introduced in [RS79] for bond
percolation and it is expected that:

Conjecture 4.1. There exists a critical exponent ψ = ψ(d) > 0, depending only
on d, such that

qc(p) ≈ |p− pc(d)|ψ.
Moreover, if γ(d) exists, then ψ(d) = γ(d).

We highlight a few papers that investigate this matter. In [GCGR81] the authors
examine bond percolation on Z3 = Z2 × Z . Here Z2-edges are open with proba-
bility p and Z-edges are open with probability q = Rp, where R is the anisotropy
parameter. By means of a simulation, the authors estimate ψ(2) by 2.3 ± 0.1,
which is compatible with the critical exponent γ(2), which is expected to be 43

18

(see [Sta81] for example). In [RS79] the authors study a percolation process on
Zd = Zd−1×Z where Zd−1-edges are open with probability p and Z-edges are open
with probability q = Rp. Simulated data then indicate that in the limit 1/R → 0,
the crossover exponent ψ is equal to 1 for all d. In the opposite limit R → 0, their
analysis suggests that ψ(d− 1) 6= γ(d− 1). This result was later contradicted by
Redner and Coniglio [RC80], where the authors argue the opposite relation, that
is, ψ(d− 1) = γ(d− 1).

In [SS17, SSc] the authors proved that, if γ(d) and ψ(d) exist, then ψ(d) ≤ γ(d). In
this chapter we are concerned with the reversed inequality. The following theorem
gives an upper bound for the critical curve qc(p) when p is sufficiently close to
pc(d), providing a partial answer in that direction.

Theorem 4.1. Consider an anisotropic bond percolation process on Zd × Zs,
d, s ≥ 1, with parameters (p, q) and pc(d) − p > 0, sufficiently small. If the pair
(p, q) satisfies

q ≥ 8d2(pc(d)− p),

then there is a.s. an infinite open cluster in Zd+s.

Theorem 4.1 gives an upper bound for qc(p), i.e., qc(p) ≤ 8d2(pc(d) − p). This in
turn gives

log(qc(p))

log(pc(d)− p)
≥ log(8d2)

log(pc(d)− p)
+ 1.

Taking limits when p ↑ pc(Zd) we obtain

lim inf
p↑pc(d)

log(qc(p))

log |p− pc(d)|
≥ 1. (4.2)

In [SS17, SSc] it is shown that

lim sup
p↑pc(d)

log(qc(p))

log |p− pc(d)|
≤ γ(d),
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whenever γ(d) exists. The results in [FH17] imply that, for the nearest-neighbor
percolation model in dimensions d ≥ 11, the exponent γ(d) exists and is equal to
1. This immediately implies that ψ(d) exists and is equal to γ(d) for all d ≥ 11.
We have just proved the following result.

Theorem 4.2. Consider an anisotropic bond percolation process on Zd × Zs,
d ≥ 11, s ≥ 1, with parameters (p, q). Then the critical exponent ψ(d) exists and
is equal to γ(d) = 1. Hence Conjecture 4.1 is true in case d ≥ 11.

4.2 Proof of Theorem 1

It is sufficient to prove the theorem for the case s = 1. Let U be the set of unit
vectors in Zd, so that |U | = 2d. We will denote the vertices of Zd+1 by (u, t) where
u and t are the Zd and Z component respectively. We also introduce the notation
[e, t] ∈ E(Zd+1) for the edge 〈(u1, t), (u2, t)〉 whenever e = 〈u1,u2〉 ∈ E(Zd).

Consider now the multigraph obtained from the vertices of Zd+1 = Zd × Z where
every Z-edge is replaced by 2d other edges indexed by U . We denote this graph by
Zd+1
U and introduce percolation on it as follows: as before, every Zd-edge is open

with probability p and every Z-edge is open with probability q̄ independently of
all others, with q̄ satisfying

(1− q) = (1− q̄)2d. (4.3)

It is clear that with these parameters, the distribution of the cluster of the origin
in Zd+1 with law Pp,q is the same as that in Zd+1

U with law Pp,q̄.

The proof consists of a dynamical coupling between two percolation processes.
That is, for every configuration ω ∈ {0, 1}E(Zd+1

U
) with law Pp,q̄, we shall obtain

a configuration ω′ ∈ {0, 1}E(Zd) with law Pr on Zd where r = p + q̄p(1 − p). To
accomplish this we construct a sequence {η(e)}e∈E(Zd) of independent 0-1 valued
random variables with parameter r, a sequence Ei = (Ai, Bi) of ordered pairs of
subsets of E(Zd), a sequence Si of subsets of Z

d+1 and a sequence Sπi of subsets
of Zd, with i ∈ N. We proceed as follows.

Given (u, t) ∈ Zd+1
U , we use the notation 〈(u, t), (u, t+1)〉v for the Z-edge between

(u, t) and (u, t + 1) indexed by v ∈ U . We say there is a v-hook at vertex
(u, t) ∈ Zd+1 if the edges 〈(u, t), (u, t+1)〉v and 〈(u, t+1), (u+v, t+1)〉 are open.
We consider an arbitrary, but fixed, ordering of E(Zd) and let (0, 0) be the origin
of Zd+1. We set E0 = (∅, ∅), S0 = {(0, 0)} and Sπ0 = {0}. Let f1 = 〈0,0 + v〉,
v ∈ U , be the first Zd-edge, in the fixed ordering, incident to Sπ0 . We set η(f1) = 1
if exactly one of the following two conditions hold:
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(a) [f1, 0] is open;

(b) [f1, 0] is closed and there is a v-hook at vertex (0, 0).

We set

E1 =

{
(f1, ∅) if η(f1) = 1,
(∅, f1) if η(f1) = 0,

If η(f1) = 1, we set

S1 =

{
S0 ∪ {(v, 0)} if condition (a) holds,
S0 ∪ {(v, 1)} if condition (b) holds,

and
Sπ1 = Sπ0 ∪ {v}.

Whenever η(f1) = 0, we set S1 = S0 and Sπ1 = Sπ0 .

Suppose the sequences {Ei}, {Si} and {Sπi } are defined up to the index i = n− 1.
We then define En, Sn and Sπn as follows. At first, let π : Zd × Z → Z be the
projection of Zd × Z onto Z, that is, π((u, t)) = t, and consider the bijection
between Sn−1 and Sπn−1 given by

θ : Sn−1 −→ Sπn−1,

(u, t) 7−−−−→ u.

Let fn be the earliest Zd-edge in the fixed ordering with the property that fn ∩
Sπn−1 6= ∅, fn ∩ (Sπn−1)

c 6= ∅ and fn /∈ An−1 ∪ Bn−1. Assume, with no loss of
generality, that fn = 〈un−1,un〉, where un = un−1 + v for some v ∈ U , with
un−1 ∈ Sπn−1 and un−1 + v ∈ (Sπn−1)

c.

We set η(fn) = 1 if exactly one of the following two conditions hold:

(a) [fn, π(θ
−1(un−1))] is open,

(b) [fn, π(θ
−1(un−1))] is closed and there is a v-hook at vertex (un−1, π(θ

−1(un−1))).

We then set

En =

{
(An−1 ∪ fn, Bn−1) if η(fn) = 1,
(An−1, Bn−1 ∪ fn) if η(fn) = 0,

If η(fn) = 1, we set

Sn =

{
Sn−1 ∪ {(un, π(θ−1(un−1)))} if condition (a) holds,
Sn−1 ∪ {(un, π(θ−1(un−1)) + 1)} if condition (b) holds,
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and

Sπn = Sπn−1 ∪ {un}.

In case η(fn) = 0, we set Sn = Sn−1 and Sπn = Sπn−1.

Now that the dynamical coupling is well defined, we make some observations. By
construction, there is a bijection between the sets An and Sn\{(0, 0)} and the sets
An, Bn and Sn are non-decreasing. So we can define A∞ := limAn, B∞ := limBn

and S∞ := limSn. We also observe that all edges in A∞ form a connected set
containing the origin of Zd and also that S∞ is a subset of the cluster of the origin
of Zd+1 in the process with law Pp,q.

To complete the description of the law on {0, 1}E(Zd), we dispose of a collection
of i.i.d. Bernoulli random variables {η(e)}, for all e ∈ E(Zd)\(A∞ ∪ B∞), with
parameter r = p + q̄p(1 − p), independent from all other random variables used
previously.

Now, since the random variables {η(e)}e∈E(Zd) are independent, the probability
measure generated by them is exactly the same as that of an independent bond
percolation process on Zd with parameter r = p + q̄p(1 − p). This means that
Pp,q(|A∞| = ∞) = θ(r).

Taking q ≥ 8d2(pc(d) − p), observing that 1 − p > 1/2 and taking (pc(d) − p)
sufficiently small, say p ∈ ( 1

2d
, pc(d)), we estimate

r = p+ q̄p(1− p) = p+
[
1− (1− q)1/2d

]
p(1− p) > p+

q

2d

1

4d
≥ pc(d).

To conclude, we observe that, for these values of q, we have

θ(p, q) ≥ Pp,q(|S∞| = ∞) = Pp,q(|A∞| = ∞) = θ(r) > 0.

4.3 Discussion

Under the hypothesis that ψ(d) exists, the expression in (4.2) already shows that
ψ(d) ≥ 1. This bound should saturate when the dimension is above the so-called
critical dimension for percolation (dc = 6), but is not expected to be sharp for
2 ≤ d ≤ 5.

An interesting feature of this dynamical coupling is that, with a minor modifica-
tion, the same result holds for the bilayered graph Zd×{0, 1} rather than the full
graph Zd+1. One wonders if the bound obtained here is sharp for those bilayered
graphs, even in low dimensions.
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We also observe that the bound obtained in Theorem 1 is not directly related to
χp(d) and we expect that the following result should be true, with a direct proof.

Conjecture 4.2. Consider an anisotropic bond percolation process on Zd × Zs,
d, s ≥ 1, with parameters (p, q) and pc(d)− p > 0, sufficiently small. There exists
a constant β such that if the pair (p, q) satisfies

q >
β

χp(d)
,

then there is a.s. an infinite open cluster in Zd+s.

In mean-field, that is, when a d-regular tree is considered instead of Zd, is not
difficult to prove that the conjecture above holds. To see this, let χ̄p(d) =
E |{x ∈ C(ω)\{0} ; deg(x) = 1}|, i.e., the expected number of leaves of the open
cluster containing the origin. Clearly χ̄p(d) = (1 − p)dχp(d), and therefore, for
β = 1/(1 − 1/d)d, by a simple branching process comparison argument, we have
that, if q > β/χp(d), thenq > 1/χ̄p(d) and thus, almost sure there is an infinite
open cluster.
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