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Resumo

Caracterizar interações dinâmicas é uma questão importante ao analisar redes sociais
complexas. Com base na autonomia estrutural que informa quando as pessoas estão
estreitamente conectadas umas às outras com extensos laços que atuam como pontes além
delas, reforçamos a importância de conceitos sociais como fundamental para a compreensão
da complexidade que envolve os atores e suas relações. Nesse sentido, discutimos como
modelar múltiplas interações em redes dinâmicas com atributos e propomos um método
para classificar nós e arestas dinâmicas com base em relações nó-atributos. Como resultado,
o método captura a força das interações sociais e como o conhecimento é transferido pela
rede social. Em seguida, discutimos e ilustramos as diferenças de interações sociais em
diferentes redes sociais acadêmicas e comunidades de perguntas e respostas. Com base no
posicionamento estratégico de um determinado ator em uma estrutura social, validamos
estatisticamente nossa estratégia proposta por meio de propriedades de rede. Além disso,
realizamos uma análise de sensibilidade destacando-a em termos de sua robustez para lidar
com aspectos de tempo, poder discriminativo dos atributos e cenários aleatórios. Por fim,
propomos estratégias não-supervisionadas e supervisionadas que aplicam nosso método
para identificar nós influentes em uma estrutura social, os quais superam as métricas de rede
tradicionais e outros algoritmos baseados em conceitos sociais.

Palavras-chave: Redes sociais, Redes Diâmicas com Atributos, Computação Social.
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Abstract

Characterizing dynamic interactions is currently an important issue when analyzing com-
plex social networks. Based on the structural autonomy that informs when people are
tightly connected to one another with extensive bridge ties beyond them, we reinforce
the importance of the network theory paradigm as fundamental for understanding the
complexity that involves actors and their relationships. In this regard, we discuss how to
model multiple interactions in dynamic attributed networks and propose a classification
method that classifies nodes and dynamic edges based on node-attribute relationships. As a
result, it captures the strength of social interactions and how knowledge is transferred across
the network. Then, we unveil and illustrate the differences of social interactions in different
academic social networks and Q&A communities. Based on the strategic positioning of
a particular actor in a social structure, we statistically validate our proposed strategy by
means of network properties. Moreover, we perform a sensitivity analysis by stressing it in
terms of its robustness to deal with aspects of time, discriminative power of attributes and
random scenarios. Finally, we propose unsupervised and supervised strategies that apply
our method to identify influential nodes in a social structure, which outperform traditional
network metrics and other social-based algorithms.

Keywords: Social Networks, Dynamic Attributed Networks, Social Computing.
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Chapter 1

Introduction

Characterizing multiple social interactions involving actors in social networks has become
increasingly popular in recent years because of their importance to better understand the
behavior and evolution of a social structure. Social networks capture the interactions among
people, which represent the social network structure of the system. There are cases where
the network is not explicitly defined, being inferred from the history of interactions among a
set of actors, for instance, in situations such as mobile user encounters [Vaz de Melo et al.,
2015], e-mails [Paruma-Pabón et al., 2016] and strategic alliances [Inkpen and Tsang, 2005].
However, when the interactions are not properly mapped (e.g., every interaction is simply
represented as a link), the underlying social structure is not accurately represented in such
networks [Vaz de Melo et al., 2015], i.e., the mapping function must choose the relevant
features from a set of interactions that make a relationship exist or not in a network.

Graphs can be constructed from explicit relationships such as Facebook friend-
ships [Adamic and Adar, 2003] and character relationships from novel sum-
maries [Chaturvedi et al., 2017]. Graphs can also be constructed from implicit relation-
ships, which are inferred from interactions among the actors. This is a more challenging
task, because of random interactions or strong relationships that, for some reasons, were not
represented in the data. Additionally, interactions may be of several types, which can or
cannot be described in the data. When additional information is available about the inter-
actions, one can use this information to construct the so called attributed networks, where
nodes and edges have attributes, or features, associated with them. Attributes can be directly
associated with nodes (e.g., age, gender, hometown, etc.) and with edges (e.g., parent-child,
adviser-advisee, follower-followee, etc.). The idea is that these attributes can provide more
information about the system and help to accurately characterize the actors and their rela-
tionships.

Furthermore, we also have the case where the attributes associated with actors and

1



2 CHAPTER 1. INTRODUCTION

edges change over time (i.e., the so called dynamic attributed networks), whether in terms
of location (a new job or country), relationships with other people (childhood friends who
no longer participate in their network) or new skills acquired. Although such networks pro-
vide more information about the social motivation involving each interaction [Orman et al.,
2014; Rezaei et al., 2017; Yo and Sasahara, 2017], this adds an extra layer of complexity
to the problem of characterizing actors and relationships from sets of interactions and their
attributes [Aggarwal et al., 2016, 2017]. In this case, a single graph constructed from the
interactions might not be enough to represent the social system, and a temporal graph might
be necessary. To overcome this situation, we can explore the duration of the relationships
among the nodes over time, as well as consider the persistence of attributes involved in each
interaction.

Once there are models that incorporate all specificities of a particular social network,
a challenge is to extract knowledge from the analysis of the history of interactions among
a set of actors. Moreover, Barabási [2009] reinforces the importance of the network theory
paradigm as fundamental for understanding the complexity that involves actors and their re-
lationships. Traditionally, several works have investigated topological properties and patterns
of social networks in order to define the behavior of their actors and measure the strength
of their relationships [Huang et al., 2018; Leão et al., 2018; Levchuk et al., 2012; Newman,
2004]. Exploring the behavior and the dynamics of the actors in a social network is essential
for a better understanding of its social structure, which is usually characterized by graphs
that capture the social aspects involved [Medo et al., 2016; Silva et al., 2015a; Yang and Xie,
2016]. For instance, Newman [2004] measures the influence of the nodes in a network based
on their proximity and the number of shortest paths between them. In fact, network science
is so valuable because it only relies on the relationships among the actors, which means that
it can be applied to practically any system.

Regarding social perspectives, some studies have explored the notion of social capital

given by the strategic positioning of a particular actor in a social structure [Burt, 2005; Cole-
man, 1988, 1994; Granovetter, 1973; Silva et al., 2014; Valverde-Rebaza et al., 2018]. Based
on the premise that actors can make a network stronger by integrating different parts, Gra-
novetter [1973] defines the concept of weak ties as being those important relationships that
make a network more cohesive by means of the creation of bridges between communities.
In addition, Coleman [1988] emphasizes that a social structure is formed with high degree of
trustworthiness among members of a group. In another seminal work, Burt [2005] describes
a structural hole as the gap formed by individuals who have complementary knowledge, and
then defines as brokers those individuals that hold certain positional advantages due to their
good location in the social structure. Indeed, as discussed by Aral [2016], the most influen-
tial sociological theories of networks explore bridging ties (e.g., connecting different parts
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(a) Closure (b) Brokerage

Figure 1.1: Example of closure and brokerage in a graph.

of a network) and cohesive ones (e.g., building a trust circle), which provide more advantage
when accessing information passing through a network.

This thesis contributes to the aforementioned discussion related to relationships in dy-
namic attributed networks in terms of the social tie of individuals and their associated at-
tributes. We also consider the benefit derived from individuals who occupy specific places
in a social structure, particularly assuming closure and bridging as forms of social capi-
tal [Burt, 2005; Coleman, 1994]. In other words, this powerful analysis determines how
different nodes can play structural distinct roles in a social network, such as joining in a
tightly-knit group or connecting such groups [Easley and Kleinberg, 2010]. For achieving
this, we rely on Burt’s definition of two social concepts, closure and brokerage [Burt, 2005]:

• Closure. It occurs when there are several strong connections between individuals,
which can be interpreted as a dense network. Thus, this social structure can be under-
stood as the ability of aggregating individuals with similar social patterns.

• Brokerage. It captures the behaviour of individuals when acting as an intermediaries
between two or more closed groups to connect different parts of a network. Thus, this
social structure can be understood as the ability of creating bridges with diversified
social patterns.

Figure 1.1 illustrates both concepts. A closure occurs when individuals have dense ties
involving members of a same group. As discussed by Coleman [1988], a closure creates
trustworthiness in a social structure, since it proliferates with obligations and expectations
within of a closed group. Indeed, individuals are more likely to transfer knowledge with
someone they trust, therefore improving the network cohesion [Levin and Cross, 2004]. On
the other hand, a brokerage occurs when individuals act as a broker or as a hub. As dis-
cussed by Granovetter [1973], it is more likely that people get jobs by accessing information
from acquaintances (weak ties, i.e., bridges that represent distant and infrequent interactions)
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than from groups of closest friends (strong ties). Indeed, individuals already have access to
information propagated within their social circle. In this way, new information tends to be
acquired from other social groups, thus improving the network strength.

As discussed by Easley and Kleinberg [2010], studies on the connectedness of modern
society have become a growing public fascination. Indeed, new perspectives and techniques
from different areas (e.g., applied mathematics and economy) have contributed to understand
how highly connected complex networks work, ranging from graph theory to property rights.
Thus, based on how actors play structural roles in networks, the relevance of our study is to
contribute with a social perspective in order to better analyze the complexity involving these
individuals. For example, we would like to bring more information for decision making by
highlighting what are the long-term links, what are the most profitable paths, which actors
can have more influence, at what moment there is maturity in a community, etc. For this,
as previously discussed, we aim to associate the social concepts of brokerage and closure to
nodes and edges in order to inform how they are positioned in a social structure.

Next, we present our problem statement. Then, we list our research goals and describe
the thesis organization.

1.1 Problem Statement

In this thesis, we address the problem of characterizing actors and their relationships in
dynamic social networks based on social concepts. As an additional complexity factor, its
scenario encompasses multiple interactions over time, as well as attributes associated with
each interaction. With such an information, we indent to provide a novel characterization
about how real world complex systems work.

More formally, given a set of actors and a sequence of interactions with them
along the time, consider a temporal multigraph G = (V,E), where V = {V1, ...,Vn} and
E = {E1, ...,En} represent the set of nodes and edges, respectively. Thus, the multigraph
Gk = (Vk,Ek) denotes a set of nodes and edges created at a discrete interval k. In addition,
each edge (u,v) ∈ �n

i=1 Ei may be associated with a set of attributes. As a result, it ensures
a social concept for all nodes and edges at all-time intervals, thus capturing how they are
positioned in a social structure. That is, it associates them with a social class such as closure

or brokerage. We reinforce that our proposal is an unsupervised method to classify the social
roles of nodes and measure the importance of their relationships, since there are no social
labels established in advance.

To approach this characterization problem, we consider the following steps, as depicted
in Figure 1.2:
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Figure 1.2: Overview of the steps for characterizing nodes and edges.

• Step 1: Graph Modeling. This step consists in constructing a temporal attributed graph
from the actors and their interactions, considering two model perspectives:

(i) Dynamic Attributed Model. This model enables us to explore the interaction
history of the actors and unveil the persistence of their relationships along the
time;

(ii) Knowledge Transfer Model. This model enables us to analyze the dynamics
involving the actors in terms of how their knowledge is transferred across the
network.

• Step 2: Feature Extraction. This step consists in identifying social features and net-
work properties associated with the actors. For this, we explore network metrics in
order to establish both the strength and the meaning of the social ties. Moreover, from
a social perspective, such as the advantage created by a good location in the social
structure (i.e., the notion of social capital), we analyze real entities that act as bridges
with well-defined closed groups [Burt, 2005].

• Step 3: Classification. This step consists in assigning social values to the nodes and
edges in order to better understand the behavior and evolution of a social structure.
For this, we use features based on network properties and attributes in order to propose
functions to characterize nodes and their relationships as follows:

(i) Social Role of the Nodes. From a social perspective, the social role of a node
is defined according to its position in a specific group (e.g., father/mother/child,
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advisor/advisee, and predator/prey). Thus, our goal is to identify the social role
of the nodes.

EXAMPLE 1. In coauthorship networks, we want to know the social behavior of

researchers. In this way, we can construct an attributed coauthorship network in

which nodes represent researchers, edges represent that two researchers have at

least one coauthorship together and node attributes represent their specific com-

petence (databases, networks, etc.). In this context, we can infer that a researcher

that has a long-lasting association with attributes like “relational model”, “data

definition” and “query language” is likely to have an authority over them. Thus,

we can classify this researcher as a “hub”, since it has the potential to spread

knowledge from the databases domain.

(ii) Social Meaning of the Edges. As interactions between nodes are far from arbi-
trary in social networks [Bhagat et al., 2011], we consider that edges carry some
information. Thus, we aim to understand the social meaning of the edges in order
to measure the strength of the interactions.

EXAMPLE 2. In a friendship social network, we want to know the strength of the

relationships between people. For this, we construct a network in which nodes

represent people, edges represent relationships between them (e.g., a partnership

or an acquaintance) and attributes represent the persistence of these relationship

along the time (e.g., the period during which each kind of relationship lasts).

Then, we can classify the strengths of the edges as “strong”, indicating a social

tie between relatives, whereas a “weak” one could represent a social tie with a

co-worker.

(iii) Knowledge Transfer through the Edges. In order to characterize how knowl-
edge is transferred across the network, we need to observe how the flow of at-
tributes occur, as well as to identify its origins and terminations.

EXAMPLE 3. Consider a Questions and Answers social network in which nodes

represent users and edges link who posted a question to be answered/commented

by whom. In this context, let a question posted by a lay user (i.e., non-expert

or novice). Thus, an edge can be considered with high potential of knowledge

transfer when it is answered by a user with expertise in the area of that specific

question.

• Step 4: Application. This final step consists in applying our model and classification
methods to different social scenarios (i.e., showing that our approach is general and
can be applied to any system) in order to provide a novel understanding about real
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world complex systems, for instance, in situations such as measuring influential indi-
viduals and groups, detecting communities, and identifying information dissemination
strategies.

1.2 Research Goals

Given the problem of characterizing nodes and edges, our overall goal is to provide a novel
understanding about how real world complex systems work, thus building models and strate-
gies for processing dynamic interactions with attributes. As a result, we expect to create an
environment that promotes a new characterization perspective based on social concepts. To
achieve this goal, we state our associated research goals (RGs) as follows:

RG1 - Modeling Dynamic Attributed Interactions. Our first research goal focuses on char-
acterizing and modeling dynamic interactions in attributed social networks. Specifi-
cally, we deal with social scenarios that have multiple social facets. For this, a feasible
approach is to model several aspects by associating attributes to each interaction over
time. To address this goal, we discuss how to model social interactions over time based
on their associated attributes. Assuming that a node that has a long-lasting association
with specific attributes tends to consider them important, we abstract such attributes by
representing them as new nodes in order to investigate the strength of node-attribute
relationships. We also explore the roles of the nodes in a social structure, thus rep-
resenting different social concepts to explain the evolution of a social network (e.g.,
explaining how networks become stronger by the concepts of brokers [Burt, 2005],
weak ties [Granovetter, 1973] and newcomers on the networks [Guimera et al., 2005]).
Although characterizing the behavior of actors is very broad and depends on the con-
text of the social network to be modeled, an additional issue consists in proposing a
general model that can be applied to any system.

RG2 - Classifying nodes and edges. As our second goal, we aim to classify the dynamic
interactions in attributed social networks by exploring social concepts involving actors
and their associated attributes. To achieve this goal, we consider the persistence of
the attributes in the nodes’ interaction history. Then, we classify the social role of
the nodes and measure the strength of the relationships among them. In addition, by
analyzing the dynamics involving the actors, we also discuss how knowledge transfers
between them. In this regard, we explore the dynamics involving individuals in terms
of how their attributes are transferred across the network. Then, we classify the edges
and determine its direction by considering the flow of attributes across the network.
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As a result, we expect to characterize different scenarios and comparing with other
algorithms, thus portraying how good the proposed method succeeds in extracting the
peculiarities underlying such social contexts.

RG3 - Application: Besides providing a new perspective to discover knowledge from the
node-attribute relationships, another issue involved is the applicability of our proposed
method. We focus on this matter by mapping the importance of nodes and their re-
lationships according to the classes assigned to them, thus revealing how better they
are positioned in a social structure. In this way, we can unveil new social facets to be
combined in order to improve other studies.

1.3 Contributions

Based on the aforementioned research goals, the main contributions of this thesis are:

1. A node-attribute graph model that captures the social tie of individuals and their associ-
ated attributes. This dynamic attributed model enables us to mine multiple interactions
over time. As a result, we can better define the social roles of individuals in a social
structure, as well as to determine the strength of their relationships.

2. A new method to classify nodes and their relationships based on temporal node-
attributes that considers:

a) the social role of the nodes;

b) the social meaning of the edges;

c) how knowledge is transferred across the network.

3. A social-based method that relies on the proposed model and classifiers that measures
the importance of researchers in social academic networks.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 discusses related work on so-
cial network analysis, focusing on how to model dynamic interactions and how to explore
social concepts. Chapter 3 introduces the graph model proposed to mine multiple interac-
tions over time, whereas Chapter 4 proposes strategies to classify nodes and edges based
on social concepts. Chapter 5 presents the experimental methodology underlying the social
networks considered and how to evaluate the proposed characterization. Chapter 6 analyzes
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and discusses the results of applying our classification method in different social contexts.
Chapter 7 summarizes the results of our experimental validation and Chapter 8 demonstrates
the applicability of our method for ranking nodes. Finally, Chapter 9 concludes this thesis
by summarizing our findings and discussing some directions for further investigation.



Chapter 2

Basic Definitions and Related Work

In this chapter, we present some basic definitions and discuss related work covering three
specific topics: (i) analysis of dynamic attributed networks, (ii) node and edge classification
tasks, and (iii) social concepts.

2.1 Dynamic Attributed Networks

First, let us define social network features to better describe the complexity of the interac-
tions that involves the actors in a social structure. As a result, such feature-rich networks
provide more information and help us to accurately characterize the actors and their relation-
ships. Next, we define dynamic attributed networks and show/discuss how to represent their
dynamics over time.

2.1.1 Attributed Networks

Graphs are constructed considering a set of entities (nodes) and their relationships (edges).
As these relationships evolve to other kinds of interactions (e.g., encounters, phone calls,
messages exchanged, etc.), they become more complex, thus capturing different social mean-
ings. In this way, a more general approach is required to model these specificities by using
edge or node attributes [Aggarwal et al., 2016, 2017; Rezaei et al., 2017; Shah et al., 2016].
Thus, let be a graph G = (V,E), where V denotes the set of nodes and E denotes the set of
edges. We also represent by Anodes and Aedges the sets of all possible attributes associated
with nodes and edges, respectively. Then, we associate a subset of attributes to each node or
edge.

• Node attributes. Let Γ: n ∈ V → A be a function that performs the mapping of each
node n to a subset of attributes A contained in the set Anodes.

10
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• Edge attributes. Let Φ: e ∈ E → A be a function that performs the mapping of each
edge e to a subset of attributes A contained in the set Aedges.

Such attributed networks promote rich information about connections between nodes,
in which the presence of attributes associated with nodes and edges indicates the social value
associated with each interaction. This allows us to know the characteristics of the nodes as
well as the types of relations between them. For example, let be a network constructed from
the characters and their interactions in a novel. Their characteristics could be drawn by the
attributes of the nodes to designate age, gender, hometown, profession, etc. In a similar way,
we can inform the kinship between two entities by means of attributes from the edge that
binds them, thus characterizing the relationships as brother-sister, grandchild-grandparent,
etc.

In this regard, some previous works have used attributes to better understand the so-
cial motivation involving each interaction [Orman et al., 2014; Rezaei et al., 2017; Yo and
Sasahara, 2017]. For instance, Rezaei et al. [2017] characterize political subgroups based
on the differences of their associated attributes (e.g., health and taxation), thus contrasting
Democrats and Republicans in the US Congress by means of their national political inter-
ests. By considering online reviews on Amazon as textual attributes of edges, Jindal and
Liu [2008] analyze linguistic indicators in order to detect spam activities. Yet, Yo and Sasa-
hara [2017] studied personal attributes based on social data for the attribute prediction task,
whereas Orman et al. [2014] proposed a method for characterizing communities in dynamic
attributed networks by exploring topological properties and nodal features (e.g., publication
venues as attributes).

2.1.2 Static and Temporal Networks

A static network is one that consists of a single instance of a graph that represents a complex
system. For example, we can represent molecular structures by a static network, where
atoms and chemical bonds are represented by nodes and edges, respectively. However, static
representations do not properly show how such chemical compounds are formed, i.e., there
is a lack of information on how they are held together by a variety of forces and reactions.
For a more robust analysis to understand the overall evolution of such complex networks, we
can dissect them in several temporal instances. Hence, a time-varying graph is represented
by adding a time denotation, where it can indicate a time interval or determine the beginning
and the end of each interaction. According to Holme and Saramäki [2012], there are three
basic representations of such so-called temporal networks:
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1. Contact sequences.: In this case, the network can be represented as a set of triples
(i, j, t), where i and j ∈ V are the nodes, and t ∈ T = {t1, t2, ..., tn} denotes when an
interaction occurred. This type of representation is indicated when there is a strong
tendency that interactions occur at different discrete intervals and, if aggregated, we
would miss many of the unique relationships.

2. Interval graphs. Likewise the previous representation, there is also a triple,
but now it defines the beginning and end of an interaction, i.e., t ∈ T =

{(t1, t �1),(t2, t �2), ...,(tn, t �n)}. For example, we can map phone calls between individuals
indicating that it started at t and ended at t �, thus lasting t � − t +1. This representation
considers a set of intervals over which each edge is active, thus we can use it when the
duration of the interactions is non-negligible.

3. Snapshots. The final case is when the networks are represented as a series of static
networks, one for each time interval. Thus, the sets of nodes and edges become, re-
spectively, (V1,V2, ...,Vn) and (E1,E2, ...,En). This case is used when it is possible to
aggregate sufficient information in each one of the subgraphs (Vk,Ek) without loss of
generality or in order to simplify an analysis.

Although there are temporal representations that may describe best very specific com-
plex networks, many analyses consider aggregating temporal graphs, either for convenience,
lack of data or to reduce the complexity of the study [Barrat et al., 2013]. This is nothing
more than to dismiss the temporal issues, thus joining all the nodes and edges in a final static
graph comprising all the information from the beginning until a final time t. That is, the sets
of nodes and edges become, respectively, V =

�t
i=1 Vi and E =

�t
i=1 Ei.

On the other hand, distinct studies focus on analyzing the temporal evolution of the
interactions and, for this, they inspect each subgraph step by step at specific time intervals.
In other words, the interest is to unravel particular changes, as well as to examine precisely
the overall dynamics of a specific complex system [Braha and Bar-Yam, 2009]. In this case,
an alternative consists in analyzing social networks by means of snapshots as previously de-
fined. For instance, Silva et al. [2015a] characterize the moving properties and the behavioral
profile of how researchers move around publication venues stratified in terms of their quality,
whereas Brandão et al. [2017] address how social roles change over time. Yet, Beutel et al.
[2013] find fraudulent behavior by analyzing the social interaction between users and pages
on the Facebook with temporal edge attributes (i.e., stating the times when likes occurred).
In another context, Medo et al. [2016] statistically model the importance of those individu-
als that have effectively discovered items on e-commerce networks that later become quite
popular, thus emphasizing a deeper understanding of their behavior and roles.



2.2. NODE AND EDGE CLASSIFICATION 13

In this thesis, we focus not only on dynamic networks, but we also consider node-
attribute associations. Thus, we expand the above considerations by defining attribute map-
ping functions for all time intervals, as well as allowing multiple edges at the same instant.
Moreover, we abstract the attributes as entities (i.e., artificial nodes) in order to explore the
dynamics between them over time. This enables us to understand the evolution of social
structures, in which the persistence of attributes over time indicates the social value associ-
ated with each interaction. For instance, by using this approach, an academic social network
can be studied by means of the dynamics of the attributes associated with its members in
order to identify research trends (e.g., new research subjects or hot topics).

2.2 Node and Edge Classification

Classification of edges and nodes can be seen as an association of labels with each of its
instances. For example, in a friendship network, we can classify nodes by labeling them as
either adult or child. Similarly, we can classify the social bond between them by labeling
their edges as being acquaintant or relative. This classification process can be seen as to
predict a label or class for unlabeled entities. Then, we can perform it by a supervised
approach that requires a set of properly labeled entities (i.e., a training set) to automatically
indicate the labels, but also by an unsupervised method when the definition of the classes
(and perhaps the number of them) are not known in advance [Zaki et al., 2014]. Formally,
based on the model presented by Aggarwal et al. [2016], we can define the edge and node
classification tasks as follows:

• Edge Classification. Given a graph G= (V,E) and a set El ⊆ E of labeled edges. Let X

be the set of possible labels, and Xl = {x1,x2, ...,xl} be the associated labels on edges
in the set El . The classification task is to infer labels X on all edges of the graph.

• Node Classification. Given a graph G = (V,E) and a set Vl ⊆V of labeled nodes. Let
Y be the set of possible labels, and Yl = {y1,y2, ...,yl} be the associated labels on nodes
in the set Vl . The classification task is to infer labels Y on all nodes of the graph.

In addition, we can denote the subsets of unlabeled edges and nodes, respectively, as Eu =

E \El and Vu =V \Vl .

In general, node and edge classifications learn similar features from annotated enti-
ties based on network topology (i.e., the sets El and Vl) [Aggarwal et al., 2017; Dai et al.,
2016; Henderson et al., 2012; Gilpin et al., 2013; Henderson et al., 2011]. For instance, in
attributed networks built from Enron (keywords in e-mails as attributes) and Twitter (tags in
the messages as attributes) datasets, Aggarwal et al. [2017] classified the edges by learning
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the structure and content of labeled ones. The identification of such characteristics provides
insights to supervised-learning methods infer the labels of the edges and nodes in the respec-
tive sets Eu and Vu.

As discussed by Bhagat et al. [2011] in their book, the node classification problem
brings a new understanding to social network analysis by exploring the specificities of the
nodes such as their activities, connections, opinions, thoughts, etc. For instance, we can
classify the nodes in order to suggest new connections to individuals based on similar inter-
ests [Kajdanowicz et al., 2010], to recommend products from the interests of other individu-
als with overlapping characteristics [Asiri and Miri, 2016], and to identify spammers based
on the social aspects of the community structure [Bhat and Abulaish, 2013]. By character-
izing expert behavior of users in Questions & Answers communities, Yang et al. [2014] as-
signed two labels to them: (i) sparrows, as being those who answered alone the vast majority
of the questions, and (ii) owls, as being those experts in the discussed topic. They concluded
that such behaviors improve the knowledge creation and the community participation, thus
guaranteeing responsive and useful answers.

Regarding the task of characterizing relationships, Trevithick and Clippinger [2008]
filed a patent of a method to characterize edges based on the pattern and purposes of commu-
nications between members of social networks. For this, their model explores the structure of
the messages, group performance, communication patterns and message-routing processes.
In another context, Leskovec et al. [2010] combined signed networks properties (e.g., social
balance) with machine-learning techniques to perform a prediction task of assigning positive
(e.g., friendship) or negative (e.g., antagonism) to the relationships in different online social
networks.

On the other hand, our proposal is a self-organization method to classify the social
roles of nodes and measure the importance of their relationships, since there are no social
labels established in advance (i.e., Vl = /0 and El = /0). Besides exploring network properties,
our method allows attributes associated with each interaction to become artificial nodes, thus
providing a new characterization perspective. In addition, the sets of possible labels are
based entirely on structural roles that they represent in the social structure.

2.3 Social Concepts

As pointed out by Aral [2016] and Easley and Kleinberg [2010], social concepts promote
powerful analyses of how different nodes can play structurally different roles in a social
network. For example, the basic principle of triadic closure [Easley and Kleinberg, 2010]
establishes that in the case of a strong tie between a node A with B and C, then there is
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a great likelihood that B and C will become connected (i.e., B and C will close the third
side of the triangle). Based on this, we can observe, for instance, how integrated a so-
cial structure is in terms of its proportion of existing triangular structures (e.g., clustering

coefficient) [Newman, 2003; Watts and Strogatz, 1998]. This kind of analysis brings new
perspectives to understand the complexity that involves the actors and their relationships,
as well as the evolution of the structures underlying these social networks [Barabási, 2009;
Easley and Kleinberg, 2010; Kossinets and Watts, 2006; Newman et al., 2006; Sun et al.,
2013]. For instance, Barabási et al. [2002] captured the social tie importance by observing
the topology and the internal behavior of the nodes in coauthorship networks, whereas Sun
et al. [2013] proposed a model based on social interactions among individuals to analyze the
social dynamics of science in terms of scientific disciplines. By analyzing a dynamic social
network formed by students, faculty and staff considering their affiliations and shared activ-
ities, Kossinets and Watts [2006] describe the evolution of such a network as a combined
effect of its topology and organizational structure.

Indeed, social perspectives can capture the benefits deriving from a good location in
a social structure, which can be formally specified by the notion of social capital [Burt,
2005, 2009; Coleman, 1994; Granovetter, 1973; Silva et al., 2017]. Based on the premise
that actors can make a network stronger by integrating different parts, Granovetter [1973]
defines the concept of weak ties as being those important relationships that make a network
more cohesive by means of the creation of bridges. Yet, Coleman [1988, 1994] defines the
concept of network closure, in which the number of relationships of each individual is close
to the maximal number of individuals (i.e., a dense network), as a form of social capital
because it ensures early access to information and facilitates people to trust one another. In
other words, it emphasizes that without high degree of trustworthiness among members of
a group a social structure does not exist. In another seminal work, Burt [2009] describes a
structural hole as the gap formed by individuals who have complementary knowledge. Then,
he defines as brokers those nodes that hold certain positional advantages due to their good
location in the social structure. Moreover, he defined social capital as a tension between
closure and brokerage, where the former corresponds to the Coleman’s definition of social
capital and the latter refers to the ability of acting between different groups across structural
holes. Therefore, a good social strategy is to position where people are tightly connected
to one another (i.e., building a trust circle) with extensive bridge ties beyond them (i.e.,
connecting different parts of a network).

Based on such social concepts, Feng et al. [2018] used structural holes to identify the
most central and bridging group of individuals in a network. Likewise, Zhang et al. [2019]
explore the roles of key nodes as bridges that promote knowledge transfer (e.g., patent cita-
tions), thus ranking the importance of them according to their collaborative relationships. In
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another context, Inkpen and Tsang [2005] studied how social aspects can facilitate knowl-
edge transfer between individuals. They identified structural, cognitive and relational di-
mensions on three types of network (corporate networks, strategic alliances and industrial
districts), concluding that strategies for facilitating knowledge transfer varies across net-
works, since the effectiveness and efficiency of this process depends on how individuals
build social capital. Yet, Sanz-Cruzado and Castells [2018] explore strong ties (links within
communities) and weak ties (links between communities), thus showing that bridges work
as enhancers of the structural diversity in the Twitter social network. By exploring specific
indicators (e.g., centrality metrics and publication count) from coauthorship networks com-
prising 137 information systems scholars, Li et al. [2013] investigated several strategies for
leveraging social capital. As a result, they concluded that by improving the betweenness
centrality of a scholar can significantly increase her research impact (e.g., citation count).
More recently, Chen and Liu [2019] investigated how a group of actors takes advantage in
a social structure by acting as brokers to cover an entire network. They showed that groups
formed by actors with different influencing power tend to achieve an advantageous position.

Several other studies analyze social networks based on particular social concepts such
as tie strengths [Brandão and Moro, 2015; Brandão et al., 2017; Lü et al., 2016; Vaz de
Melo et al., 2015], homophily [Liao et al., 2018; Silva et al., 2014], friendship granular-
ities [Adamic and Adar, 2003; Shi et al., 2007; Valverde-Rebaza et al., 2018] and social
influence [Gupte et al., 2011; Jiang et al., 2017; Tang, 2017], as well as on structures such
as triadic closure and social balance [Easley and Kleinberg, 2010; Huang et al., 2018]. For
instance, Silva et al. [2015b] explore the concept of building bridge to reveal the social ties
of individuals with their communities in order to measure their degree of social influence.
To do so, they apply social capital concepts to measure the potential of knowledge acquired
and the strength of sharing information. Yet, Levchuk et al. [2012] propose an approach to
learn and detect network patterns such as repetitive groups of people involved in coordinated
activities. Based on the information shared between nodes, Adamic and Adar [2003] mea-
sure the strength of relationships by analyzing the similarity between messages exchanged
between individuals, whereas Leão et al. [2018] analyze the role of random interactions in
the structure of communities.

With respect to the characterization of nodes and edges, traditional network metrics
have been employed to identify the most important nodes within a graph [Newman, 2004,
2010]. For instance, Newman [2004] uses centrality metrics based on shortest paths (e.g.,
closeness and betweenness [Easley and Kleinberg, 2010]) for determining the best positioned
nodes in academic social networks. Considering a random walk-based model, Lü et al.
[2011] propose a new approach, called LeaderRank, to identify the most influential nodes,
which outperforms the well-known PageRank algorithm [Page et al., 1999]. Likewise, by
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emphasizing the social roles of the nodes, Xu et al. [2017] perform node classification by
learning multiple social roles, whereas Liao et al. [2018] address the problem by learning
their structural properties and the similarity of their attributes.

Characterization studies also consider the strength of relationships, for example, by ex-
ploring dynamic relationships in order to classify social ties as strong or weak [Brandão and
Moro, 2017; Brandão et al., 2017; Leão et al., 2018; Vaz de Melo et al., 2015]. Additionally,
one can characterize dynamic relationships by considering historical interactions [Brandão
et al., 2017, 2018; Vaz de Melo et al., 2015]. For instance, Vaz de Melo et al. [2015] pro-
posed the RECAST (Random rElationship ClASsifier sTrategy) algorithm to identify random
and social interactions based on network properties. RECAST explores topological and tem-
poral aspects to measure the strength of the nodes’ relations, where such strength is derived
from the neighborhood overlap and the persistence of interactions. As a result, it classifies
the edges of a network by assigning them to one of the following social classes: friend, ac-

quaintant, bridge and random. Then, Brandão et al. [2018] extended RECAST by adding
co-authorship count as a feature related to the tie strength. They concluded that strong ties
and bridges tend to persist over the years more than random ties. By exploring social as-
pects, Gilbert and Karahalios [2009] modeled tie strength as a linear combination of seven
dimensions: intensity (e.g., words exchanged), intimacy (e.g., relationship status), duration

(days), reciprocal services (e.g., links shared), structural (e.g., common groups), emotional

support (e.g., positive words) and social distance (e.g., political differences). In another
context, Srivastava et al. [2016] exploited narrative regularities with text-based features (lin-
guistic, semantic and discourse) for characterizing relationships between people in movie
summaries (e.g., denoting familial ties between characters).

2.4 Summary

In this chapter, we presented some approaches to analyze dynamic attributed networks and
how to characterize node and edges from a social perspective. We also exemplify some rep-
resentations of temporal networks. Finally, we discussed the importance of social concepts
for bringing new viewpoints for a better understanding of complex networks.

In this thesis, we take all aforementioned topics one step forward. Specifically, we
propose to put everything together: actors, interactions, time, attributes and social concepts.
Our strategy consists in modeling nodes by associating them with their attributes in order to
extract persistent features over time. Then, based on social concepts, we classify nodes and
their relationships dynamically.

As we shall see next in the following chapters, our approach provides a new char-
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acterization perspective to better understanding the participation of actors and the dynamic
interactions between them in terms of their positions in the social network structure.



Chapter 3

Modeling Dynamic Interactions

In this chapter, we discuss how to model actors and their relationships in dynamic social
networks along the time, thus providing a novel understanding for characterizing complex
systems. Specifically, we address our first research goal, which regards the graph model to
mine multiple interactions over time. For this, we explore dynamic multigraph representa-
tions in order to extract knowledge from the associations between nodes and their attributes.
In addition, we inspect the dynamics of the nodes to reflect the degree of cooperation be-
tween the actors in terms of the flow of attributes across the network.

3.1 Modeling Dynamic Interactions with Attributes

We can model a set of actors as nodes and their relationships as edges (a link between a
pair of nodes), thus structuring their social interactions by means of a graph. In order to
provide more information about this graph, such social interactions can be enriched with
additional information associated with their nodes (e.g., age, gender, hometown, etc.) and
edges (e.g., parent-child, adviser-advisee, follower-followee, etc.). Furthermore, this so-
called attributed graphs can change over time in terms of their attributes (e.g., new skills
acquired) or structurally (e.g., no more interactions with specific actors). Therefore, it needs
to be modelled as a temporal graph that can change over time.

In this way, we model dynamic interactions as a graph G by considering a set of entities
(nodes) and their relationships (edges), where the dynamics can be shown as a series of
subgraphs by adding a time denotation. As discussed in Chapter 2, we examined three
representations of such so-called temporal networks (contact sequences, interval graphs and
snapshots) [Holme and Saramäki, 2012], which provide some features such as observing
interactions at different discrete intervals or using one of them when the interaction is not
negligible. As we are interested in identifying structural changes at each specific moment or
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even aggregating graphs from a given time interval, we opted to model the entire network
for each observation of the social structure over time (i.e., snapshots).

Formally, given a set of actors and a sequence of interactions involving them at a
discrete time k, we defined a temporal multigraph Gk = (Vk,Ek), where Vk and Ek represent,
respectively, the set of nodes (actors) and the set of edges (relationships). In other words,
this graph allows the existence of multiple edges between two nodes at the same time k,
thus providing a view of the entire social structure at each moment. We can also join such
subgraphs within a specific time interval, in such a way that G =

�t
i=0 Gi represents the

temporal aggregated graph that comprises the set of all nodes and their interactions within a
time interval [0, t].

Additionally, our scenario encompasses attributes that are associated values belonging
to nodes (e.g., age, gender and hometown) or edges (e.g., parent-child, adviser-advisee and
follower-followee). Given the sets Anodes and Aedges, which represent all possible attributes
for nodes and edges, respectively, we associate a subset of attributes to each node and edge
as follows:

• Node attributes. Let Γ: n ∈ V → A be a function that performs the mapping of each
node n to a specific subset of attributes A contained in the set Anodes.

• Edge attributes. Let Φ: e ∈ E → A be a function that performs the mapping of each
edge e to a specific subset of attributes A contained in the set Aedges.

As we are dealing with time-varying graphs, we can denote the set of attributes for a
node or an edge by adding a time notation t. For example, Γk(u) returns the set of attributes
associated with node u at time k, while

�8
i=6 Φi(e) returns all attributes associated with the

edge e during the time interval [6,8].
In addition, we are interested in quantifying how strong the bond of the nodes is with

their associated attributes, as well as what information is exchanged between them (also
described as attributes). A trivial strategy is to weight the attributes as, for example, calcu-
lating their frequency. Instead, we can obtain more information if we model them as entities
that participate in the interactions between individuals. In this way, likewise in relationships
between nodes, we can also extract knowledge from social structures linked to attributes.
Hence, we define the attribute graph as H to model the node-attribute dynamics. The idea
is to consider dynamic temporal attributes, thus defining a heterogeneous graph formed by
two types of node: actors (e.g., researchers) and attributes (e.g., expertise). Likewise the
graph G, we can also describe the graph H as a multi-edge temporal graph and denote it
as H = (H0, ...,Ht). We construct each subgraph Hk = (V �

k ,E
�
k) from the mapping func-

tion Φ, i.e., we create an edge to link each node n ∈ Vk for each one of its attributes a



3.1. MODELING DYNAMIC INTERACTIONS WITH ATTRIBUTES 21

in Φk(u). Formally, the sets of nodes and edges are, respectively, {Vk ∪
�

u∈Vk
Φ(u)} and

{(u,a)|u ∈Vk ∧a ∈ Φ(u)}. In other words, this strategy is an abstraction that transforms the
attributes of each edge into additional nodes, allowing an original actor node to be directly
connected to these new attribute nodes.

In order to illustrate this, we recall the compartmental models SIR and SIS [Hethcote,
2000], since they bring an interesting problem related to dynamic interactions. Then, we
exemplify how to apply the aforementioned modeling to this network structure.

The SIR Epidemic Model. It models how a disease spreads in a population. For this, an
individual can be in one of three stages during the course of the epidemic, namely:

• Susceptible (S). The individual can be infected by an infected one.

• Infectious (I). The individual is infected and has some probability of infecting suscep-
tible individuals.

• Removed (R). The individual is recovered and no longer poses a threat of future in-
fection.

The SIS Epidemic Model. Based on the SIR model, it establishes that an individual can
be reinfected multiple times. In other words, an individual alternates between the stages
susceptible (S) and infectious (I).

As the mechanisms of these two models are quite similar, we exemplify the dynamics
of the SIS model as follows. This epidemic structure can be seen as a contact network, where
we have an initial setup and its changes at each step of transmission. In this way, we have as
input the set of all individuals and the set of relationships (contacts) between them, as well
as the indication of all those individuals who were initially infected. We can then model this
scenario by defining a temporal graph G = (G0, ...,Gt), where each Gk informs the step k of
the epidemic spreads. In our perspective, the nodes in the infectious state are those have the
attribute infectious assigned to them.

Figure 3.1 (a) shows three individuals, where initially (i.e., time k = 0) V0 = {A,B,C}
and E0 = {(A,B),(A,C),(B,C)}. Note that the individual B is the only one initially infected
(shaded), i.e., Γ(B) = {in f ectious}. The SIS model establishes that an infected individual
has a probability p of passing the disease to each of its susceptible neighbors. In this way,
the node B can infect the nodes A and C, which happened, as observed at the next time
instance (k = 1). Note that B recovered at k = 1 and became infected again at k = 3. The
node C, which was infected at k = 1, recovered shortly and remained in the susceptible state.
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Figure 3.1: Different strategies to model an SIS epidemic. In (a), a contact network for each
time step, where the nodes in the infected state are shaded. In (b), an attributed network
as the nodes and edges in boldface depicting an association with the infectious attribute,
respectively, those who are in the infected state and the potential transmission paths. In (c),
a time-expanded network from (a) in order to designate the transmission sources.

In the last observation, the disease was controlled (i.e., there is no longer any infectious

individuals).

In the previous example, we can clearly see how the epidemic spread, but in com-
plex systems there are several ways for entities to interact with each other. For instance,
specifically in epidemics, there are diseases that spread through droplets and others that are
sexually transmitted. In this regard, two SIS models are reacquired to analyze such scenar-
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ios separately, since the types of social contact (by air and by sex) are not incorporated in
these epidemiological model. However, we can map together the type of contact between
individuals, thus informing by means of an edge attribute whether the interaction between
them was, for example, respiratory or sexual. For example, we can describe that the contact
between A and B at time k = 5 has associated attributes, such as the risk of spreading the
disease, i.e., Φ5((A,B)) = {respiratory infection, sexual infection}.

In this regard, Figure 3.1 (b) shows the same aforementioned dynamics in Fig-
ure 3.1 (a), but now with the use of attributes at the edges. Note that this model brings
more information that allows us to better visualize the potential paths (in bold) by means of
which the disease can spread. Furthermore, from an informative point of view, the dotted
edges illustrate that there is no relevant information being exchanged between them (e.g., B

and C at k = 2).

Finally, in addition to incorporating information in the network structure, we can ob-
serve the origins of the spread of diseases (i.e., who transferred each attribute and when).
We can model such propagation as a directed graph by observing the transition between the
stages k = t and k = t +1. Figure 3.1 (c) depicts the flow of the disease along the time. We
can see that B is the origin of the disease that was transmitted to A and C. Then, A infected
B again, which recovered in the next period.

As mentioned earlier, what determines the contagion between two individuals in the
SIR and SIS models are the associated probabilities in each contact. In these more basic
versions, a node is equally contagious with a probability p. However, more elaborate exten-
sions of the modeling process can be done by representing it in several states of infection
(e.g., higher viral load in early or late periods of infection) or according to the predisposition
of the individual (e.g., COVID-19 is more severe with those who have comorbidities).

From our perspective that observes the relationship of entities with attributes over time,
we need to determine how to measure the strength of such associations (i.e., the probability
of acquiring an attribute), as well as to understand how attributes flow (transmit) across the
network. Next, we present how to deal with these two issues.

3.2 Extracting Relevant Attributes

The next step in our approach is to determine the set of relevant attributes for each node at
each time interval. We define as relevant attributes those that are closely connected to the
nodes, i.e., persistent in their histories. The idea is to identify, for each actor, all attributes and
evaluate them according to their stability along the time (i.e., to identify the set of attributes
most strongly statistically associated with the actor nodes).



24 CHAPTER 3. MODELING DYNAMIC INTERACTIONS

For this, we analyze the nodes’ interaction history in order to extract knowledge from
the node-attribute relationships. We apply the concept of persistence of an edge along the
time, which provides the notion of the importance of the relationship between two nodes
in terms of their associated attributes. The persistence metric of an edge is defined as
perst(u,a) = 1

t ∑t
k=11E

�
k
((u,a)), where the indicator function is defined as

1
E
�
k
((u,a)) =





1, if (u,a) ∈ E
�
k ,

0,otherwise.
(3.1)

Note that this operation is performed on each attributed graph at discrete intervals and not on
the aggregated graph. In other words, it captures the dynamics by observing the persistence
in each temporal subgraph within the time interval [1, t].

More precisely, Algorithm 1 details the process of extracting relevant attributes. It
receives as input the aggregated graph H = {H1, ...,Ht} and the final time interval t. In
summary, the algorithm inspects, for each actor, all attributes and evaluates them according
to their persistence along the time by means of percentiles (function percentile on lines 9
and 11), thus identifying the set of attributes most strongly statistically associated with the
actor’s nodes. The idea is to filter such attributes that are exaggeratedly linked to a node
in a specific period in comparison to the others, i.e., identifying the abnormal presence of
certain attributes at each time point. In order to choose the appropriate statistical method
to select the most significant attributes, we first check whether the values of the edge per-
sistence metric follows a normal distribution. Then, we extract the relevant attributes based
on the definition of an outlier given by the interquartile range (IQR). Another approach is
to use the modified z-score for the same purpose [Iglewicz and Hoaglin, 1993]. Since the
experimental results were similar for IQR and for the modified z-score, we chose IQR due to
the possibility of applying different percentages by means of percentiles (i.e., adapting the
constraints according to specifics problems).

As a result, this strategy builds a set comprising all attributes statistically relevant for
each node u ∈ G at a time interval k (i.e., for each subgraph), referenced as Γk(u). Note that
the sets (Γ1(u),Γ2(u), ...,Γt(u)) are dynamically built according to the degree of persistence,
i.e., different instants k may contain completely distinct sets of attributes. In the worst case,
when all edges exist at all intervals with all attributes, the time complexity of Algorithm 1
is O(t|V |(|E|+ |Anodes|)). In practice, since this process is performed without taking into
account the nodes’ neighborhood (i.e., attributes are defined by the node itself), the relevant
attributes for each node are computed in parallel.

In order to illustrate this strategy, we extracted statistically relevant attributes from the
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Algorithm 1 Extracting Relevant Attributes
Require: H, t
Ensure: Γk(u), ∀u ∈�t

k=0Vk
1: for all u ∈Vt do
2: Atemp ← {}
3: for all k ∈ [1, t] do
4: Γk(u)← {}
5: Atemp ← Atemp ∪{a|(u,a) ∈ E

�
k}

6: vector ← {}
7: for all a ∈ Atemp do
8: vector.add(persk(u,a))
9: IQR ← percentile(vector,75)− percentile(vector,25)

10: for all a ∈ Atemp do
11: if persk(u,a)> percentile(vector,75)+ IQR∗1.5 then
12: Γk(u)← Γk(u)∪{a}

(a) 1985 (b) 1990 (c) 1995 (d) 2000

(e) 2005 (f) 2010 (g) 2015 (h) 2020

Figure 3.2: Attribute clouds that represent statistically relevant associations between Alberto
H. F. Laender and its publication venues.

(a) 1985 (b) 1990 (c) 1995 (d) 2000

(e) 2005 (f) 2010 (g) 2015 (h) 2020

Figure 3.3: Attribute clouds that represent statistically relevant associations between Alberto
H. F. Laender and terms extracted from the titles of his articles.
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researcher Alberto H. F. Laender’s articles between the period 1984 to 20201. Specifically,
we analyzed his strong bond with publication venues (Figure 3.2) and with terms extracted
from the titles of his publications (Figure 3.3). For example, Figure 3.2(a) informs that no
publication venue is statistically relevant for him in 1985 (Γ1985(‘Alberto H. F. Laender’) =
{}), while in Figure 3.3(b) it indicates that the terms design and schema are relevant in 1990
(Γ1990(‘Alberto H. F. Laender’) = { design, schema }).

Considering his publication venues (Figure 3.2), the first community to stand out as rel-
evant is ER in 1995, i.e., at the beginning of his career the trend was not to focus on specific
targets. Along the time, there are relevant attributes in and out, but there is clearly a central
set that remains. Indeed, the dynamics of his research targets is moderated, emphasizing a
well-defined and perennial research pattern with the ER, CIKM, Data & Knowledge Engi-
neering, JCDL and SBBD communities. Regarding terms extracted from his publications
(Figure 3.3), initially we observe a pattern of very specific research terms (design, schema

and entiti) that expands from 2000. In 2005, there are the presence of new terms (e.g., web,
extract, structur, digit and librari), while in other periods the pattern tends to be maintained.
Analyzing the two attribute clouds, we can see a conservative pattern of the researcher, where
the subjects covered and the targets maintain a well-defined core over time.

3.3 Modeling Knowledge-Transfer

Finally, considering that attribute nodes carry information that can spread throughout the
graph, we model their dynamics by defining a directed graph D in which each edge reflects
the degree of cooperation between the actor nodes in terms of their attributes. We can define
such a graph as D = (Vd,Ed), where Vd ⊆V is a set that contains only those actor nodes that
have transferred knowledge along the time and Ed represents the set of such directed edges.
Note that we can create such a graph from the aggregated graph G = (V,E) or observing
its dynamics over time through each instance Gk = (Vk,Ek). For the first case, as a result, it
models only the final state of the interaction among the nodes (single-edge) and, therefore,
it does not regard multiple interactions over time.

Regarding the distinct dynamics behind the knowledge transfer involving the nodes,
we can redefine this graph as a directed multigraph D = (Vd,(F1, F1+k, ...,Ft)) to map
knowledge transfer dynamically over time, where Fk is similar to Ek in comprising multi-
edges in time k. More specifically, there will be an edge in Fk originating from a node u to
a node v whenever there is a knowledge transfer from u to v at k.

1Data extracted from his DBLP page in November 2020.
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Algorithm 2 Directed Knowledge-Transfer Graph
Require: G, t and Γ
Ensure: D = (Vd,(F1,F2, ...,Ft))

1: Vd = {}
2: for all k ∈ [1, t] do
3: Fk = {}
4: for all (u,v) ∈ Ek do
5: if ∃a ∈ Γk(u)|a /∈ Γk(v) then
6: Fk = Fk ∪{(u,v)}
7: Vd = Vd ∪{u,v}
8: if ∃a ∈ Γk(v)|a /∈ Γk(u) then
9: Fk = Fk ∪{(v,u)}

10: Vd = Vd ∪{u,v}

Algorithm 2 describes how to build the knowledge-transfer graph D by inspecting all
edges from the graph G. For each edge (u,v), it verifies the existence of some knowledge
transferred between u and v in terms of their attributes (lines 5-10). If at a time instant k a
node u has at least one relevant attribute that does not belong to node v, then a directed edge
from node u to node v is created in Fk. Note that not all nodes and multiedges in G will be
in D, but only those that represent some knowledge transfer.

3.4 Summary

In this chapter, we introduced the graph model proposed to deal with dynamic interactions
over time, thus addressing our first research goal. Specifically, this chapter presented how to
model social interactions over time based on their associated attributes. For this, we defined
three graph representations to deal with dynamic interactions, their associated attributes and
how the knowledge-transfer flows across the network. We also exemplify how to apply our
strategy to an epidemiological problem and illustrate the statistically relevant attributes of a
researcher.

As we shall see next in Chapter 4, our general-purpose model provides a framework
for exploring the social role of nodes, extracting the meaning of their interactions and under-
standing their dynamics in terms of attributes associated with them over time.



Chapter 4

Social-based Classification

In this chapter, we emphasize the social behavior of nodes and the meaning of their rela-
tionships. Here, we address our second research goal, which regards the social-based clas-
sification of the dynamic interactions. Specifically, our classification scheme reinforces the
importance of social concepts as a relevant factor for better understanding the complexity
that involves actors and their relationships in dynamic attributed networks. In summary, we
classify nodes and edges based on the following two social perspectives:

• Strength of the Social Structure. This classification captures the nodes’ social be-
havior, as well as it assigns a social meaning to edges in order to measure the strength
of the interactions. For example, in an academic social network, a node that has a
long-lasting association with attributes like relational model, data definition and query

language is likely to have an authority over them. Then, this node can be seen as a
hub, since it has the potential to spread knowledge from the databases domain. In this
context, a strong edge may indicate a social tie between an advisor and an advisee,
whereas a weak one may represent a multidisciplinary social tie with researchers from
other scientific disciplines.

• Knowledge Transfer Dynamics. This classification captures the ability of the nodes
to transfer and spread knowledge across a network, as well as to characterize the trans-
fer potentials involved in their relationships. For example, collaborations between
researchers from different fields of study may result in the sharing of new information
across the edges. Likewise, a node that acts as both a receiver and as a transmitter play
a more crucial role when spreading knowledge on a social structure.

Next, we present the algorithms proposed to classify nodes and edges based on social
concepts.

28
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4.1 The Strength of the Social Structure

Based on the social structure that models the dynamic interactions along the time, we might
measure the structural strength of social ties by means of relevance degree of the attributes
associated with each node by considering its past interactions. For this, our strategy deter-
mines the dynamic state of a node at each time interval as representing a strong, weak or
non-relevant association with a specific attribute (i.e., knowledge). In this context, a strong

state represents the importance of a node in terms of its expertise within a closed group,
whereas a weak one captures its potential for connecting different parts of a network.

The next step consists in mapping these dynamic states in order to determine the so-
cial classes of the edges. In a preliminary version of our work [Silva et al., 2018], we de-
fined a comprehensive classification scheme by quantifying levels of specific social concepts,
namely: very strong, strong, strong bridge, regular bridge, weak bridge, ordinary and spo-

radic. However, our experiments showed that the properties of such classes were not very
discriminatory. In particular, the edges classified as weak and regular bridges were not sta-
tistically different in terms of the betweenness centrality metric.

Thus, in order to provide more representative results, here we define the edge classes
following Burt’s social theory that considers closure and brokerage as forms of social cap-
ital [Burt, 2005]. Thus, we define three social classes for edges: closure, brokerage and
innocuous. Such classes capture the benefits derived from individuals that occupy specific
places in a social structure. More specifically, they emphasize the strength of relationships
as strong ties (closure), weak ties (brokerage) and non-relevant information passing through
the edge (innocuous).

Formally, Algorithm 3 describes our process for classifying multiple edges. Note that
the nodes’ dynamic states are assigned independently at each iteration of the algorithm and
considering each instant k in which an edge is inspected. A node is assigned a state strong

when there is a strong temporal link with its attributes at the exact moment of the interaction
(lines 4 and 5, and 9 and 10). However, if these attributes do not apply to the inspected edge,
then the state weak is assigned to it (lines 6 and 11). If there are no relevant attributes and
the node is active in more than one time interval, then the state non-relevant is assigned to it
(lines 7 and 12). Once the dynamic states have been assigned to nodes u and v, the class of
the corresponding edge e is assigned according to them (lines 13-17). More specifically, the
brokerage class can be seen as a social tie of nodes from distinct domains (lines 13 and 14),
whereas the closure one establishes a social role by demonstrating a high tightness between
a node and its attributes (line 15 and 16). Finally, an innocuous class means that there is
no knowledge being disseminated through the inspected relationship (line 17). In the worst
case, when all edges exist at all time intervals, the time complexity of Algorithm 3 is O(t|E|).
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Algorithm 3 Classifying Edges
Require: G, t, Φ e Γ
Ensure: Δ((u,v)),∀(u,v) ∈�t

k=1 Ek
1: for all k ∈ [1, t] do
2: for all (u,v) ∈ Ek do
3: if |Γk(u)| �= 0 then
4: if |Γk(u)∩Φ((u,v))| �= 0
5: then ustate ← strong
6: else ustate ← weak
7: else ustate ← non-relevant
8: if |Γk(v)| �= 0 then
9: if |Γk(v)∩Φ((u,v))| �= 0 then

10: vstate ← strong
11: else vstate ← weak
12: else vstate ← non-relevant
13: if ustate = strong or vstate = strong then
14: Δ((u,v))← closure
15: else if ustate = weak or vstate = weak then
16: Δ((u,v))← brokerage
17: else Δ((u,v))← innocuous

For classifying the nodes, the same classes are assigned to them, in which case we
mean by closure a node that has authority on certain attributes, by brokerage a node that
has a weak association with its attributes and by innocuous a node that has an occasional
presence in the network. The function Ω for this node classification is given by

Ω(u) =





closure, if |Γt(u)| �= 0
brokerage, else if ∑t

k=11Vk(u)> 1
innocuous, otherwise,

(4.1)

where the indicator function is defined as

1Vk(u) =





1, if u ∈ Vk,

0,otherwise.
(4.2)

This function can be implemented by simply adding flags to Algorithm 3.

In summary, the aforementioned social classes reinforce a sociological perspective
based on their positioning in a social structure [Burt, 2005; Granovetter, 1973; Guimera
et al., 2005], i.e., by applying social concepts to better understand the strength of the node-

attribute associations. More precisely, based on Burt’s definition of social capital [Burt,
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2005], a closure edge means a high tightness between nodes by means of their relevant
attributes, whereas a brokerage edge can be seen as a social tie of nodes from distinct relevant
attributes. Likewise, when classifying a node, the closure class is assigned to it when there
is a strong tie with some knowledge under its set of relevant attributes and the brokerage

class when it represents a potential to acquire knowledge from attributes outside its own set
of relevant attributes. Indeed, strong ties with certain attributes show an authority on them,
whereas weak ties express a great potential to diffuse knowledge from its domain. Finally,
the innocuous class assigned to a node or edge represents no skill acquired by an individual
or non-relevant information passing through a relationship, respectively.

4.2 Knowledge Transfer Dynamics

Now, we discuss knowledge transfer dynamics in a scenario composed by actors and a set of
historical interactions among them. Each actor has a set of attributes associated with them,
which can change over time. We also assume that all attributes are related to a skill (or
knowledge), which can be transferred from (or taught by) an actor, who has this skill, to
another one, who does not have it.

Thus, let us consider the directed multigraph D (Section 3.3) that models how knowl-
edge is dynamically transferred between two actors over time. Then, considering D, we
characterize the dynamics behind the knowledge transfer among nodes by using four classes
of relationship:

(i) Closure. A closure relationship occurs when two nodes are teaching to and learning
from each other. In other words, there is a closure relationship between A and B if
there is at least one relevant attribute in A that is not in B and also at least one relevant
attribute in B that is not relevant to A. Thus, this relationship represents new knowledge
being disseminated by both sides.

(ii) Brokerage. A brokerage relationship characterizes an one directional knowledge trans-
fer of an attribute between an expert on that attribute and an inexpert on it. That is,
there is a brokerage relationship between A and B if there is at least one relevant at-
tribute in A that is not in B, and there is no relevant attribute in B that is new to A.
Thus, in this case the knowledge transfer occurs in only one direction.

(iii) Dependent. A dependent relationship is similar to the brokerage one, except that the
destination node is not yet an expert in any attribute. Thus, this relationship class
establishes a total dependence relation, i.e., a situation where the destination node has
only in-edges.
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Algorithm 4 Edge Classification

Require: G = (V,(E1,E2, ...,Et)),
D = (Vd,(F1,F2, ...,Ft)) and t

Ensure: ΔKT ((u,v)),∀(u,v) ∈
�t

k=1 Ek
1: for all (u,v) ∈�t

k=1 Ek do
2: if (u,v) /∈ Fk and (v,u) /∈ Fk then
3: ΔKT ((u,v))← innocuous
4: else if (u,v) ∈ Fi and (v,u) ∈ Fk then
5: ΔKT ((u,v))← closure
6: else
7: if (u,v) ∈ Fk then
8: if ∀w ∈V |(v,w) /∈ Fk then
9: ΔKT ((u,v))← dependent

10: else
11: ΔKT ((u,v))← brokerage
12: else
13: if ∀w ∈V |(u,w) /∈ Fk then
14: ΔKT ((u,v))← dependent
15: else
16: ΔKT ((u,v))← brokerage

(iv) Innocuous. An innocuous relationship characterizes pairs of actor nodes who do not
share any relevant attributes, i.e., there is no knowledge passing through that edge.

Algorithm 4 uses D to classify the set of dynamic edges in G according to the four
classes of knowledge transfer. Following the previous definitions, in lines 2 and 3, an edge
(u,v) in G is considered innocuous when there is no directed edges (u,v) and (v,u) in the
knowledge-transfer graph D, whereas it represents a closure relationship when there is a bidi-
rectional edge between them. Otherwise, there is some knowledge transfer from one node
to the other. In this case, if the destination node is totally dependent (lines 8-9 and 13-14),
then the assigned relationship class is dependent, i.e., the destination node has no out-edges.
On the other hand, if the destination node has out-edges, then the assigned relationship class
is brokerage (lines 11 and 16), i.e., it carries some potential to transfer knowledge to its
neighbor nodes.

Finally, we expand the aforementioned social classification to also consider four
classes of nodes regarding their knowledge transfer capabilities:

(i) Closure. A closure node behaves as a knowledge transmitter and receiver in the net-
work. That is, it is capable of teaching and learning.
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(ii) Brokerage. A brokerage node works as a knowledge transmitter. In other words, this
kind of node only disseminates knowledge from its own domain and thus does not
spread content learned from others.

(iii) Dependent. Unlike a brokerage node, a dependent one is characterized by only receiv-
ing knowledge from the network.

(iv) Innocuous. An innocuous node is one that transfers or receives no knowledge.

Formally, Algorithm 5 defines the classes of nodes in G by inspecting their behaviors
as transmitters (sources) and receivers (targets) of relevant knowledge in the directed tempo-
ral graph D. Based on the previous considerations, lines 1 to 5 define the sets of transmitter
and receiver nodes in terms of, respectively, out-edges and in-edges in D. The closure class
is assigned to a node that behaves as both transmitter and receiver (lines 7 to 9), thus estab-
lishing a strong relationship with other nodes. In case of acting only as a transmitter (line
11), the brokerage class is assigned to the node, thus indicating its behavior as a knowledge
disseminator. However, if that node acts only as a receiver (line 12), then the dependent class
is assigned to it in order to indicate the behavior of accumulating knowledge from others.
Finally, the innocuous class is assigned to a node when no transmitter or receiver behavior is
identified (line 15).

Algorithm 5 Node Classification

Require: G = (V,(E1,E2, ...,Et)),
D = (Vd,(F1,F2, ...,Ft)) and t

Ensure: ΔKT (u),∀u ∈V
1: Transmitters ← /0
2: Receivers ← /0
3: for all (u�,v�) ∈�t

k=1 Fk do
4: Transmitters ← Transmitters ∪{u�}
5: Receivers ← Receivers ∪{v�}
6: for all u ∈V do
7: if u ∈ Transmitters then
8: if u ∈ Receivers then
9: ΔKT (u)← closure

10: else
11: ΔKT (u)← brokerage
12: else if u ∈ Receivers then
13: ΔKT (u)← dependent
14: else
15: ΔKT (u)← innocuous
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In summary, the proposed knowledge-transfer classification allows us to better under-
stand the diffusion of relevant information and the existence of social ties without an apparent
flow or even a dependent behavior. With such an information, we can not only assess more
accurately the social role of the nodes, but also scale the degree of influence based on the
disseminated knowledge.

4.3 Discussing Examples

To exemplify our method, we will discuss two examples. First, a broader scenario visualizing
the relationship types over time. Then, a more specific scenario considering a closed group
of researchers related to a specific scientific conference.

Example 1. Let us look at the strength of the relationships of the researcher Alberto H.
F. Laender1 with his collaborators regarding their social bonds with academic communi-
ties, here represented by his publication venues. Figures 4.1 and 4.2 depict the classifi-
cations of each instance for the time interval [1984,2020], where each plot represents the
ties of this researcher with his collaborators. At each graph instance, blue edges repre-
sent closure relationships and red edges brokerage ones, whereas gray edges correspond to
innocuous edges. Note that we omit the parallel edges and the relationships among collab-
orators in such graphs for better visualization. For example, Figure 4.1(a) consists of the
graph G1984 = (V1984,E1984), where there is only one edge (Alberto H. F. Laender, Peter M.

Stocker) classified as innocuous (in gray), thus informing that there is no strong link between
those two nodes regarding that community. On the other hand, in 1990 there is a bridge es-
tablished from Marco A. Casanova to at least one community, i.e., from that year onwards,
other parts of the network could be accessed from this strong relationship.

We clearly notice that the classification is dynamic and can have edges with different
social concepts over time. For example, relationships with Berthier A. Ribeiro-Neto are ei-
ther of type closure (e.g., 2000 and 2003) or brokerage (e.g., 1998 and 2001). Even so, the
strong bond from common communities tends to generate more cohesion (closure) between
the collaborators, thus reinforcing the formation of a group in specific research areas. Nev-
ertheless, there are cases in which a collaboration may become weaker, as in the example of
the collaboration with Thiago H. P. Silva, which in 2013 and 2020 are seen as innocuous,
although it was considered strong in 2015. In fact, in the period of [2014,2015], Silva was a
master’s student with several collaborations in areas of mutual interest (e.g., digital libraries).

Likewise, we can analyze particular cases such as that of Rodrygo L. T. Santos, in
which his relationship is innocuous in 2006, closure in 2008 and brokerage in 2010. This

1Data extracted from his DBLP page in November 2020.
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1984 1985 1986-1988
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1995 1996 1997
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2001 2002 2003

Figure 4.1: Social-based classification of Alberto H. F. Laender’s edges. Part 1: [1984,2003]
(the graphs can be best viewed by zooming their labels).



36 CHAPTER 4. SOCIAL-BASED CLASSIFICATION

2004 2005 2006
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2010 2011 2012

2013 2014 2015
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2019 2020

Figure 4.2: Social-based classification of Alberto H. F. Laender’s. Part 2: [2004,2020] (the
graphs can be best viewed by zooming their labels).

.
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example portrays that the then master’s student had a strong bond for being a member from
the same laboratory as the researcher Alberto H. F. Laender, but he became a bridge by di-
versifying his studies to other subjects during his doctorate. Also, we can look at the past
history involving other researchers such as Edward A. Fox, with whom he started a strong
link in 2002 within the CIKM community, which became a bridge to the digital library com-
munity in 2003 and 2004. In fact, the main conference in the area (JCDL) was considered
relevant to Alberto H. F. Laender in 2005, as exemplified in his cloud of relevant venues (see
Figure 3.2).

Example 2. Let be the coauthorship network of the researchers Edward A. Fox, Marcos A.

Gonçalves, Alberto H. F. Laender and Berthier A. Ribeiro-Neto, where the edges represent
a joint cooperation in a same paper. We would like to analyze their social behavior in the
ACM/IEEE Joint Conference on Digital Library (JCDL) community during the period from
2002 to 2004. In other words, we intend to discover those researchers that have a very strong
temporal relationship within this conference (closure), as well as those that act as bridges
connecting other parts of the graph (brokerage). Also, we are interested in determining the
kind of social interactions between them.

To analyze such social interactions in the period [2002,2005] for the JCDL commu-
nity2, we inspected the history of these specific researchers in the entire network from 1980
to 2001. As a result, a possible answer to this example is depicted in Figure 4.3. In summary,
this specific scenario shows the participation of a young researcher (Marcos A. Gonçalves)
and three experienced ones in the initial formation of the JCDL community (started in 2001).
We can observe both Marcos A. Gonçalves’ maturity and how he structurally acts by estab-
lishing a bridge between the other researchers, thus reinforcing the social nature of the triadic

closure (high probability that mutual friends become friends). Also, we can identify which
ones have brought contributions from outside of this community.

More specifically, in 2002, Marcos A. Gonçalves is classified as an innocuous node
(the white one) because there is no strong link between him and any publication venue from
his past interaction on that network [1998,2002). The other nodes are classified as bridges
to other parts of the graph (the red ones) since they represent researchers that have a reg-
ular presence in specific communities along the time. Notably, Edward A. Fox, Alberto

H. F. Laender and Berthier A. Ribeiro-Neto are considered bridges, since the bring knowl-
edge from the JASIST, CIKM and SIGIR communities, respectively. Note that the only two
edges (dotted lines) inform that there is no relevant information passing through them and,
therefore, are classified as (innocuous), since none of the respective researchers regarded the
JCDL community as one of their main target in 2002. Then, in 2003, Marcos A. Gonçalves

2Data extracted from their DBLP pages in November 2020.
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Figure 4.3: Social classification of nodes and edges of a coauthorship network involving four
researchers in the JCDL community at four different moments.

introduced Edward A. Fox to Alberto H. F. Laender and Berthier A. Ribeiro Neto, thus creat-
ing a closed network; however, none of the edges are regarded as important, since they still
do not have a strong bond within this community.

Surprisingly, in 2004 Marcos A. Gonçalves, who until then was classified as an in-

nocuous node, is now seen as a closure one. We can understand this strong bond with JCDL
because he obtained his PhD at that same year in the area of Digital Libraries, whose main
conference is JCDL. In fact, his presence in that community is persistent, while the other
researchers diversified their contributions to other ones. In this way, there are two types of
edge, innocuous ones between those who do not have a strong relationship within that com-
munity, and brokerage ones like those established through Marcos A. Gonçalves. Finally,
in 2005, Edward A. Fox, Marcos A. Gonçalves and Alberto H. F. Laender demonstrate a
strong bond with the JCDL community and also a strong interaction between themselves,
while Berthier A. Ribeiro-Neto does not play any specific role in that community. This
excerpt extracted from the researchers’ complete graph provides insights about social struc-
tures as facilitators for integrating individuals according to their social motivations (e.g.,
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preferences for discussing subjects related to digital libraries), resulting not only in a highly
connected network, but also in a more informative one. Accordingly, Burt [2005] argues that
the maximum advantages occur with high closure (e.g., trust) and brokerage (e.g., cooper-
ation) values, whereas minimum ones occur when these values are lower (e.g., distrust and
indifference, respectively). That is, a good social strategy is to position where people are
tightly connected to one another with extensive bridge ties beyond them.

4.4 Summary

In this chapter, we first reinforced the importance of the network theory paradigm for un-
derstanding the complexity that involves real world actors and their relationships [Barabási,
2009]. Based on the structural autonomy that informs when people are tightly connected to
one another with extensive bridge ties beyond them [Burt, 2005], we emphasize the concept
of closure as representing the importance of a node in terms of its expertise according to
their associated attributes (strong ties), whereas the the concept of brokerage captures the
potential of a node for transferring its attributes (weak ties). Then, we presented a character-
ization method in order to mine multiple interactions in dynamic attributed networks based
on such social concepts. Overall, our proposed social-based classification reveals the social
role of the nodes and the strength of the social meaning of their multiple interactions. Fi-
nally, we presented how to capture the knowledge transfer between the nodes by considering
the dynamics involving individuals in terms of how their attributes are transferred across the
network.

As we shall see, the proposed classification method reflects the social characteristics
in different social scenarios. Moreover, the classes assigned to nodes and edges are associ-
ated with their strategic positioning in a social structure given by network properties. Next,
Chapter 5 introduces the datasets considered and discusses the experimental methodology
adopted for evaluating our classification methods.



Chapter 5

Experimental Methodology

In this chapter, we present the experimental methodology we adopt in order to assess in
several social contexts the classification model that we have proposed. Indeed, classifying
social interactions in a social network is a challenging task due to the difficulty to analyze
real networks that clearly define the social role of its nodes and the meaning of its edges.
To overcome this situation and evaluate the robustness of new methods for classifying nodes
and edges in social networks, an experimental methodology should characterize the impact
of a proposed approach in different scenarios [Alves et al., 2013; Silva et al., 2012; Vaz de
Melo et al., 2015].

For this, we begin by introducing the datasets considered, which provide different
social scenarios for a more robust experimental evaluation (Section 5.1). Then, we discuss
the methodology adopted for evaluating the social characterization of nodes and edges, as
provided by our proposed classification method (Section 5.2).

5.1 Datasets

To assess our proposed classification method, we consider two different social contexts de-
rived from coauthorship networks and Questions and Answers (Q&A) communities, which
are described next.

5.1.1 Social Academic Networks

We chose to analyze academic social networks that are, undoubtedly, well known in the
Computer Science community, thus enabling us a more accurate discussion of their behav-
ioral dynamics. Specifically, we considered several networks derived from data collected

40
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from DBLP1 in June 2018. DBLP is a high-quality repository of Computer Science publica-
tions and has been widely used in several mining studies [Freire and Figueiredo, 2011; Leão
et al., 2018; Li et al., 2018; Moreira et al., 2015; Rezaei et al., 2017; Silva et al., 2012; Yang
and Leskovec, 2015; Wang et al., 2017]. In order to investigate the effects of our classifica-
tion method in different social scenarios, we built the following networks constructed from
our DBLP dataset:

• ACM SIGs: 24 coauthorship networks derived from all papers published in the pro-
ceedings of the flagship conferences of 24 ACM Special Interest Groups2;

• Full Network: An integrated coauthorship network comprising all 24 ACM SIGs;

• DBLPJ: A coauthorship network derived from all journal articles indexed by DBLP;

• DBLPC: A coauthorship network derived from all conference papers indexed by
DBLP;

• DBLP: An integrated coauthorship network comprising the union of DBLPJ and
DBLPC.

Table 5.1 presents some statistics of the aforementioned networks. Overall, the net-
works present distinct characteristics, which allow us to contrast the effect of our classifica-
tion method on different social scenarios. For instance, the networks derived from the ACM
SIGs are important because they represent well-known Computer Science communities and
have already been addressed in other works [Alves et al., 2013; Benevenuto et al., 2015; Silva
et al., 2015b], thus enabling us a more accurate discussion. We also have considered journal
and conference publications separately (DBLPJ and DBLPC), since their communities have
distinct behavioral dynamics, such as publishing more papers and collaborating with more
coauthors in conferences than in journals [Kim, 2019; Laender et al., 2008]. Moreover Kim
[2019] concluded that coauthors and paper titles of authors across conferences and journals
tend not to overlap much, therefore we aim to verify the effect of our classification method
also in these two specific scenarios. For building all aforementioned social academic net-
works, we considered only publication venues at least 10 years old and, as we are interested
in analyzing interactions between individuals, publications with more than one author.

Given the above networks, our next step was to define the relationship attributes ex-
pressed by the academic coauthorships. Considering that scientific publication titles carry
some specific meaning [Silva et al., 2012], we used tokens taken from them as such at-
tributes. For this, we removed meaningless words (stop words) and reduced inflected words

1DBLP: https://dblp.uni-trier.de/
2Association for Computing Machinery: http://www.acm.org/sigs
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Table 5.1: Statistics of the academic coauthorship networks.

Networks Period #nodes #edges #multiple
edges

SAC 1992-2017 10,804 18,066 19,712
DAC 1964-2017 10,272 27,800 31,972
CHI 1989-2017 8,959 27,587 32,154
CIKM 1993-2017 7,342 16,347 18,822
MMSys 1992-2017 7,124 18,728 22,783
SIGCSE 1986-2018 6,247 15,252 18,232
KDD 1995-2017 4,998 13,614 15,150
SIGIR 1971-2017 4,905 11,247 13,595
SIGMOD 1975-2017 4,869 16,042 18,090
CCS 1993-2016 2,854 6,851 7,612
SIGCOMM 1981-2017 2,844 8,653 9,715
ICSE 1976-2017 2,829 4,977 5,354
SIGUCCS 1975-2017 2,517 2,349 2,734
STOC 1969-2017 2,500 5,568 6,608
SIGMETRICS 1976-2016 2,440 4,500 4,906
SIGGRAPHa 1974-2003 2,439 4,568 4,935
ISCA 1973-2017 2,257 8,748 9,231
MOBICOM 1995-2017 2,074 5,056 5,732
PODC 1982-2017 1,972 3,573 4,353
POPL 1973-2017 1,858 3,129 3,495
SIGDOC 1982-2017 1,570 1,847 2,048
MICRO 1972-2017 1,321 2,907 3,108
ISSAC 1988-2017 1,253 1,705 2,154
HSCC 1998-2017 361 546 572

Average 4,025.4 9.569.2 10,961.1
Median 2,673.0 6,209.0 7,110.0

Std. Dev. 2,959.3 7,929.9 9,224.4
Full Network (24 SIGs) 1964-2018 79,684 221,541 263,067
DBLPJ 1954-2018 298,660 772,281 878,427
DBLPC 1959-2018 439,048 1,381,421 1,830,436
DBLP 1954-2018 617,833 2,022,727 2,687,403
a Proceedings discontinued after 2003 and replaced by the ACM Transactions on Graph-

ics.

to their roots. Another feature used as attribute is the relationship between the researchers
and their communities, in our case their publication venues. In our experiments we use these
two types of attribute separately.

In each network, we modeled authors as nodes and coauthorships in each paper as
edges. Each temporal multigraph takes into account the year k of each publication, such
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that all pairs of coauthors form edges (u,v) in the graph Gk. Note that our model allows the
existence of multiple edges between the nodes at the same time k, as discussed in Section 3.1.
In the case that we use a title as an attribute, each token taken from it is a member of the set
of attributes. Likewise, considering a community as an attribute, such community is seen as
a member of the set of attributes.

5.1.2 Questions and Answers Communities

As our second social network, we chose the Stack Exchange3 network that consists of 173
Q&A communities divided into six categories (Technology, Culture/Recreation, Life/Arts,
Science, Professional and Business). Due to its large number of communities, we first ran-
domly selected five communities from each category (except for the Business one that has
only three). The data was collected in September 2018.

Given these communities, we considered nodes as representing community members
and edges as representing answers to questions, comments to questions and comments to
answers as described by Paranjape et al. [2017]. In addition, we considered each time interval
as lasting one minute, and tokens taken from the questions and answers as attributes. The
data preparation process included removing stop-words and reducing inflected words to their
roots (i.e., stemming).

Table 5.2 lists all categories, their respective communities and some of their statistics.
As discussed by Posnett et al. [2012] and Vasilescu et al. [2014], the trend is to have sev-
eral users that are experts and enthusiasts on specific topics. Since that each category and
community has specific characteristics, then such networks provide different scenarios for
discussion and comparison.

5.2 Properties of the Networks

Finally, inspired by the methodology introduced by Newman [2004], which explores the
closeness and betweenness centrality metrics for determining the best positioned nodes in an
academic coauthorship network, we rely on network metrics to quantify the potential of our
social-based classification method. We evaluate our approach from the perspective of three
centrality metrics (degree, closeness and betweenness), which show those classes that tend
to have well-defined social roles in a social structure, and the clustering coefficient, which
measures the degree of cohesion of each class. Table 5.3 formally defines these network
metrics, where V represents the set of all nodes. We also use the PageRank algorithm [Page

3Stack Exchange: https://stackexchange.com/
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Table 5.2: Statistics of the Questions and Answers communities.

Category Community #instants #nodes #multiple
edges

Business
Ask Patents 3,147,891 3,511 10,630
Project Management 4,201,744 4,645 27,872
Quantitative Finance 4,181,132 5,972 28,956

Culture/Recreation

Anime & Manga 3,009,735 6,302 28,273
Board Games 4,287,591 6,321 35,687
Buddhism 2,213,628 2,249 30,917
Islam 3,261,927 5,529 26,158
Vegetarianism 832,128 280 1,767

Life/Arts

Coffee 1,889,441 990 3,772
Law 1,719,589 5,754 24,726
Literature 851,488 713 3,900
Parenting 4,129,958 6,432 34,739
Pets 2,575,865 3,654 15,553

Professional

Aviation 2,475,645 6,681 49,365
CS Educators 670,882 807 5,294
Freelancing 2,777,681 1,769 7,381
Open Source 1,677,603 1,575 6,257
Writing 4,183,549 6,265 41,608

Science

AI 1,094,726 1,690 6,203
Astronomy 2,596,235 3,831 18,002
Biology 3,823,745 9,684 45,465
Economics 1,991,423 3,563 16,660
Theoretical CS 4,230,954 4,588 26,630

Technology

Android 4,903,585 38,412 113,989
Comp. Graphics 1,616,526 1,017 4,449
Internet of Things 911,373 748 2,871
Robotics 3,080,148 3,091 12,193
Windows Phone 3,340,411 2,450 8,755

Average 2,670,213.7 4,798.6 22,111.5
Median 2,596,235 3,563 16,660

Std. Dev. 1,241,558.2 6,904.3 22,613.4

et al., 1999] to rank the nodes of a graph based on the structure of their ties, thus revealing
their importance on the network.

In other words, we employ the notion of social capital given by the strategic position-
ing of actors in a social structure [Burt, 2005; Granovetter, 1973] in order to evaluate the
assigned classes. In this way, we expect that the values of the aforementioned metrics as-
sociated with the nodes and edges are able to reveal their social importance given by our
proposed classification method. For instance, we expect nodes and edges assigned to closure
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Table 5.3: Network metrics.

Metric Formula

Degree centrality of a node i di =
∑ j∈V ai j

argmax
x∈V

∑y∈V axy
,

where ai j =

�
1, if the edge (i, j) ∈V
0, otherwise

Closeness centrality of a node i cli =
|V |−1

∑ j∈V d(i, j)
,

where d(i, j) is the distance between nodes i and j

Betweenness centrality of a node i bci = ∑
s,t∈V :s�=t

σst(i)
σst

,s �= i, t �= i

where σst is the total number of shortest paths from
node s to node t and σst(i) is the number of those
paths that pass through the node i

Betweenness centrality of an edge e bce = ∑
s,t∈V :s�=t

σst(e)
σst

where σst(e) is the number of shortest paths from
node s to node t that pass through the edge e

Clustering coefficient of a node i cci =
ei

ni(ni −1)
,

where ei is the number of edges between neighbors
of i and ni is the number of neighbors of node i

and brokerage classes to have higher betweenness centrality values than those assigned to
innocuous ones.

5.3 Summary

In this chapter, we presented the experimental methodology designed to assess our proposed
social-based classification method. First, we introduced our target social networks derived
from two distinct social contexts: academic coauthorship networks and Q&A communities.
In general, they have distinct characteristics, which allow us to contrast the effect of our clas-
sification method in different social scenarios. Then, based on Newman [2004]’s approach,
we presented the idea of applying network properties for determining the importance of
nodes and edges by means of their positions in a social structure.

As we shall see in Chapter 6, our analysis covers such social scenarios, thus bringing a
more accurate discussion of their behavioral dynamics (e.g., contrasting social behaviors).



Chapter 6

Analysis and Discussion

In this chapter, we characterize several social contexts based on our proposed classification
method. In order to evaluate our method for classifying social networks based on social
capital concepts, we divide our analysis into three parts. First, we analyze the overall results
of our method when classifying the nodes’ social behavior and the social meaning of the
interactions (Section 6.1). Then, we analyze the effects of our method with respect to the
knowledge transfer classification (Section 6.2). Finally, we contrast the results of our two
classifications strategies (Section 6.3).

6.1 Social-based Classification

In this section, we present an overall analysis of our classification methodto determine the
social role of the nodes and the social meaning of the edges in social networks. For this we
apply it to two application domains: academic coauthorship networks and Q&A communi-
ties.

6.1.1 Academic Coauthorship Networks

As mentioned in the previous chapter, we investigate separately two scenarios by exploring
the persistence of the researchers with respect to the relevant words from their articles’ titles
(tokens) and the social ties with their respective communities [Silva and Laender, 2018; Silva
et al., 2018].

Relevant Tokens. Table 6.1 summarizes the distribution of the node and edge classes for the
networks considered. Overall, the classification shows a significant presence of nodes of the
class innocuous, whereas there is more balanced classification for the edges. First, we focus
on the large networks and then we detail the SIG communities.

46
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Table 6.1: Relevant tokens: Social classification of nodes and edges for the coauthorship
networks.

Networks
Nodes Edges

closure brokerage innocuous closure brokerage innocuous

24 SIGs
Average 27.0% 15.2% 57.8% 29.4% 35.3% 35.2%
Median 27.1% 14.9% 57.2% 30.4% 34.8% 32.3%
Std. Dev. 8.5% 2.8% 10.8% 7.0% 10.4% 14.6%

Full Network (24 SIGs) 18.8% 12.2% 69.0% 31.5% 37.1% 31.4%
DBLPJ 16.7% 11.8% 71.5% 25.6% 31.8% 42.6%
DBLPC 24.0% 12.0% 64.0% 39.1% 41.6% 19.3%
DBLP 24.2% 12.4% 63.4% 38.5% 41.3% 20.2%

Regarding the DBLPJ network, although its node classes show similar percentages
when compared with the Full Network (comprising all 24 SIGs), this network stands out
with a well differentiated behavior for its edges. The high proportion of 42.6% of innocuous

edges implies a slight reduction in this figure for the other edge classes. This fact can be seen
as specific for this class of venues, which usually does not evidentiate a regular participation
of the majority of its members. This can be illustrated by the case of students who tend to
publish more regularly in conferences than in journals.

On the other hand, the networks DBLPC and DBLP have very similar characteristics.
The main difference when they are compared with the Full Network and DBLPJ networks
is their significant percentage of closure nodes (24.0% and 24.2%, respectively), since those
networks aggregate more information about the academic trajectory of the researchers with
a more established career. With respect to the edges, the brokerage class is the most repre-
sentative one with similar percentages. In contrast, there is a low percentage of innocuous

edges. Overall, the DBLP network shows that 79.8% of its edges, i.e., excluding the innocu-

ous ones, carry some relevant information according to the social concepts explored in our
study.

Now, we analyze in detail each one of the 24 ACM SIG networks. Figure 6.1 presents
the distribution of the node classes for the 24 ACM SIG communities and the Full Network

that includes all these communities. Overall, the classification shows a significant pres-
ence of nodes of the class innocuous (average of 57.8%). Indeed, an academic coauthorship
network usually has a strong presence of new nodes (e.g., students or sporadic collabora-
tors). Despite that, there is also a strong presence of nodes of the class closure with percent-
ages above 30% for more established communities such as CIKM, KDD, SIGIR, SIGMOD,
STOC, SIGMETRICS, ISCA, PODC, POPL and MICRO. Particularly, most members from
these communities tend to be coherent in the research topics addressed throughout their
academic trajectories. In contrast, communities such as SAC, SIGUCCS, SIGGRAPH and
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Figure 6.1: Social-based classification of nodes for the 24 ACM SIG communities and the
Full Network.

SIGDOC show percentages below 18% for the class closure, which represents some lack of
synergy among their members. Particularly, SIGUCCS (University and College Computing
Services) and SIGDOC (Design of Communication) are two communities that address very
specific topics. SIGGRAPH (Computer Graphics), although a well established scientific
community, covers here only its editions up to 2003, since after that year their proceedings
were discontinued and replaced by special issues of the ACM Transactions on Graphics.

Generally, such percentages can be seen as evidence of the characteristics of each
community. For instance, members of the STOC (Theory of Computing) community have
a tendency to show more competence in specific topics related to computation theory, thus
the higher number of nodes of the class closure (41.3%). On the other hand, SAC (Applied
Computing) is a community mainly focused on applied issues, thus covering a wide range of
topics, which justifies the high number of innocuous nodes (69.9%).

Regarding the edge classification, Figure 6.2 presents the distribution of the edge
classes for the 24 ACM SIG networks and the Full Network, which comprises the 24 SIG
networks altogether. As we can see, most of these edge classes carry some kind of infor-
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Figure 6.2: Social-based classification of edges for the 24 ACM SIG networks and the Full
Network.

mation and have been characterized as closure or brokerage (on average, they sum 64.7%),
thus demonstrating a strong social tie between the researchers and their relevant topics. On
the other hand, edges without any social meaning (i.e., innocuous) tend to be less present
in the networks. Again, specific communities show a singular behavior, such as ISSAC
(Symbolic and Algebraic Computation) and SIGIR (Research and Development in Informa-
tion Retrieval) with the highest presence of closure edges. SAC, SIGUCCS and SIGDOC
also stand out for having an expressive number of innocuous edges (more than 50%), thus
reinforcing the fact their members show no regularity with their research topics.

The Full Network shows a substantial drop from 27.0% to 18.8% in the number of
closure nodes when compared with the average of all 24 ACM SIG conferences (Table 6.1
and Figure 6.1). Despite that, the number of innocuous nodes considerably increased from
57.8% to 69.0%. This was expected due to the fact that more active nodes (researchers) tend
to participate in more than one community. Thus, with more subjects covered, the likelihood
of having many relevant attributes decreases.

With respect to the edges (Table 6.1 and Figure 6.2), all classes tend to maintain their
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Figure 6.3: Proportion of relationships for each node class.

proportions when compared with the average of all 24 ACM SIG networks (maximum vari-
ation of 3.8%). This emphasizes the importance of characterizing the social meaning of the
relationships because, although there are fewer closure nodes, there is still relevant informa-
tion flowing through them.

Analyzing the relationships according to their nodes’ classes, Figure 6.3 shows their
percentages for each one. In proportion, all nodes tend to maintain strong relations with
those of the class closure, followed by the innocuous ones. In all cases, relationships with
brokerage nodes are less frequent, emphasizing a tendency to privilege relationships with the
most important nodes in the network (closure) or to establish new social ties with specific
ones (innocuous). We can see such results, especially the innocuous-closure relationships, as
a social tie between expert and novice. We also can interpreted these collaborative patterns
as a close-knit research group with newcomers and, to a lesser extent, bridging with other
social groups. For example, a cohesive computer theory team of experienced members that
includes new graduate students annually, as well as creating bridges when applying their
results in other areas.

Finally, Figure 6.4 shows the Full Network, where the edges classified according to the
concept of closure are shown in blue (strong ties), those classified according to the concept of
brokerage are shown in red (weak ties) and those that express no social meaning are shown
in black (innocuous). Note that the edges based on the brokerage and closure concepts
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Figure 6.4: Social-based classification of the 24 SIGs communities. Blue edges emphasize
the closure concept (strong ties) and red ones the brokerage concept (weak ties). Black edges
correspond to those regarded as innocuous (i.e., edges that have no important information
passing through them). Best viewed in color.

dominate the center of the graph, while the extremities tend to have a greater prominence of
edges regarded as non-relevant (those in black). This means that edges strongly related to
social concepts tend to be better positioned in a social structure (i.e., linked to central nodes),
which provides early access to information passing through the network.

Relevant Community Ties. By exploring the social ties with communities, Table 6.2 shows
a very low percentage of nodes classified as closure. In other words, these figures show that
not all nodes have strong ties with certain communities. Nevertheless, as the networks grow,
from the Full Network (all 24 SIGs) to the entire DBLP, there is an increase in the closure

rate. Even so, note that the percentage of nodes acting as bridges for others is quite stable,
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Table 6.2: Community ties: Social-based classification of nodes and edges for the coauthor-
ship networks.

Networks
Nodes Edges

closure brokerage innocuous closure brokerage innocuous
Full Network (24 SIGs) 0.7% 29.7% 69.6% 1.6% 6.7% 91.7%
DBLPJ 2.5% 26.0% 71.5% 3.8% 17.8% 78.4%
DBLPC 6.5% 29.5% 64.0% 9.5% 43.3% 47.2%
DBLP 7.3% 29.2% 63.5% 9.6% 46.7% 43.7%

corresponding to almost 30% of the total in all cases.

Considering the classification of edges, we can see a distinct scenario regarding the
assigned classes. Despite that, the closure class also has the lowest percentages for all net-
works. As the Full Network includes few communities, very low values of relevant classes
are expected (specifically, closure and brokerage sum up 8.3%). Although with more expres-
sive values than the Full Network for important classes, the network DBLPJ stands out with
less than a quarter of edges passing important information through the edges. In contrast, the
DBLPc and DBLP show similar values, highlighting more than half their edges with a strong
bond within communities.

Note that the percentages of the innocuous class decrease as the networks become
larger (e.g., 91.7% for the Full Network and 43.7% for the entire DBLP network). Consider-
ing the DBLP network, we observe that the social ties of its researchers with their communi-
ties tend to present a low percentage of closure nodes (few strong ties), but with a remarkable
presence of edges of the classes brokerage (46.7%). Overall, considering closure and broker-

age classes altogether, only 8.3% of the edges carry some social meaning in the Full Network

and 21.6% in the DBLPJ network. On the other hand, in the DBLPC and DBLP networks
these same classes represent 52.8% and 56.3% of the edges.

6.1.2 Questions and Answers Communities

As we only consider frequent users in the Q&A communities (see Section 5.1), by definition
there are no innocuous nodes in these networks [Silva et al., 2018]. With respect to the node
classes, Figure 6.5 shows few variations in the percentages of closure and brokerage nodes
across the communities (average values of 79.8% and 20.2%, respectively). More specif-
ically, the Vegetarianism and Buddhism communities show the highest proportions for the
closure class (87.5% and 85.3%, respectively), whereas Anime & Manga stands for 72.8%.

In contrast, we notice that the full academic coauthorship network had 18.8% of its
nodes classified as closure, 12.2% as brokerage and 69.0% as innocuous (see Table 6.1). In-
deed, there are few closure nodes (e.g., research leaders) in an academic network compared
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Figure 6.5: Social-based classification of nodes for the 28 Q&A communities.

with the other ones (e.g., new students). However, in the Q&A communities, users are in
general experts and enthusiasts about specific topics, which gives them some authority [Pos-
nett et al., 2012; Shah and Kitzie, 2012; Vasilescu et al., 2014].

Considering the social classification of the edges in Figure 6.6, the proportions by cat-
egory and by community have significant oscillations, thus reinforcing a distinct behavior of
our classification method on several topics. For example, the Buddhism community (85.3%
of closure nodes) has 84.7% of closure edges, whereas the AI community (81.4% of closure

nodes) has a much smaller proportion of 63.8% of edges of that same class. There are also
notorious divergences between communities in the same category such as Ask Patents and
Quantitative Finance from the Business category, Aviation and Freelancing from the Pro-

fessional category, and Literature and Parenting from the Life/Arts category. As we only
selected frequent users, it justifies the very low presence of innocuous edges.

By comparing the Q&A distribution by communities with the same figures from the
academic ones (see Table 6.1), we observed that the entire DBLP academic coauthorship
network had 38.5% of its edges classified as closure, 41.6% as brokerage and 20.2% as
innocuous. That is, we note that both scenarios reveal very different proportions of assigned
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Figure 6.6: Social-based classification of edges for the 28 Q&A communities.

classes, particularly with a higher proportion of the closure class in the Q&A scenarios,
whereas in the academic scenarios the most representative class tended to be brokerage.

6.2 Knowledge Transfer Dynamics

Now, we analyze the knowledge transfer dynamics by characterizing results regarding
knowledge transfer across the edges and the social behavior of the nodes [Silva et al., 2019,
2020]. Next, we present characterization results of distinct social scenarios derived from the
24 SIG networks (Subsection 6.2.1) and the Question and Answers communities (Subsec-
tion 6.2.2).

6.2.1 Academic Coauthorship Networks

Although our discussion is about dynamics of multiple edges over time, let us first analyze
a static scenario considering the final aggregated graph (i.e., containing all interactions as
a single edge) [Silva et al., 2019]. In this context, we identify whether in the final stage of
the interactions between two researchers there is a transfer of new attributes, thus neglecting
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Figure 6.7: Aggregated Graph. Knowledge transfer classification of edges for the 24 ACM
SIG communities and the Full Network. Networks sorted in ascending order according to
their number of nodes.

the exchanging of information in previous periods. In this way, for instance, this allows
us to conclude whether the current relationship between two individuals is still a source of
knowledge (otherwise, both have reached a common maturity on a set of subjects).

Figure 6.7 shows the distribution of knowledge transfer classes according to the aggre-
gated directed graph. First of all, it is clear that the closure class is not representative in any
academic network (i.e., bidirectional edges are rare). On the other hand, relationships that
do not present a well-defined knowledge transfer (i.e., innocuous edges) represent more than
74% of the edges in all networks. Although such a percentage certainly includes many new-
comers (e.g., students and researchers from other areas), another explanation for this case
is the fact that new mentions to specific associated attributes (i.e., new subjects) originated
from a set of nodes (e.g., an article coauthored by several people) start becoming noticeable
from that instant onwards. In fact, scientific knowledge is highly dynamic with new subjects
constantly coming up.

Since such percentages can be seen as evidence of how knowledge is transferred within
a network, we can now analyze specific aspects of each community. For instance, members



56 CHAPTER 6. ANALYSIS AND DISCUSSION

Figure 6.8: Knowledge transfer classification of the 24 SIG communities. Red edges repre-
sent brokerage relationships and blue edges dependent ones.

of the STOC (Theory of Computing) community have a tendency to show more competence
in specific topics related to computing theory, which are usually more stable across time.
Thus, the high number of edges with knowledge transfer detected (25.6%), which suggests a
strong cohesion in knowledge dissemination within this community. On the other hand, SAC
(Applied Computing) is a community mainly focused on applied computing, thus covering a
wide range of topics (i.e., small groups focused on specific issues that do not collaborate with
other internal groups), which justifies the low number of meaningful knowledge transfers
(5.5%).

Focusing on the brokerage and dependent classes, the ISSAC (Symbolic and Alge-
braic Computation), STOC (Theory of Computing) and PODC (Principles of Distributed
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Figure 6.9: Dynamic Multigraph. Knowledge transfer classification of edges for the 24
ACM SIG communities and the Full Network. Networks sorted in ascending order according
to their number of nodes.

Computing) communities stand out for having a brokerage class percentage of more than
6% and a dependent class representation of over 12%. Again, such communities have a
strong theoretical background, favoring dependent relationships that involve the same group
of collaborators. Such an evidence is in line with the tendency that theoretical subjects are
more consolidated, whereas technological ones are more ephemeral.

Regarding the Full Network (last bar), which comprises all interactions across the 24
ACM communities, it shows that our previous observations are sustained. Specifically, Fig-
ure 6.8 illustrates the relationship classes of the type brokerage (in red) and dependent (in
blue). Closure relationships (green edges) are rare and cannot be clearly visualized in this
picture. As expected, there are more dependent edges (65.2%) than brokerage ones (33.9%).
Note that the most central part of the graph tends to be blue, reinforcing the closure effect,
i.e., there are important nodes linked to them. On the other hand, the extremities tend to have
more edges classified as brokerage, reflecting a bridging aspect.

Regarding the dynamic directed multigraph (Section 3.3), which differs from the ag-
gregated one by comprising in terms of parallel edges all multiple interactions between nodes
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Figure 6.10: Knowledge transfer classification of nodes for the 24 ACM SIG communities
and the Full Network.

over time, there is a greater dissemination of knowledge when inspecting the interaction his-
tory (Figure 6.9) [Silva et al., 2020]. Note that this new multiple interaction representation
is fully expressed by distinct edges and not by a single one. Observe that this dynamic
approach identifies greater proportion of edges with knowledge transfer (closure and bro-

kerage), in spite of a predominance of the classes dependent and innocuous. This occurs
because usually there is more knowledge transfer in the initial interactions than in the fi-
nal ones, since nodes tend to learn similar knowledge along the time. Moreover, brokerage

and closure edges are more likely to be associated with more experienced researchers, who
in general collaborate many times along their careers. Again, the proportion of knowledge
transfer edges tend to be larger in communities having a strong theoretical basis, such as
ISSAC, PODC and STOC, whereas communities like SAC still present low knowledge dis-
semination. Overall, our discussion about the aggregated scenario also holds for the dynamic
multigraph one.

With respect to node characterization, Figures 6.10 show the node’s classification ac-
cording to their behaviors when transferring knowledge. In particular, the nodes from the
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academic networks tend to achieve larger percentages in the classes dependent and innocu-

ous. We can see it as a particular academic scenario where there are mentors (strongly bond
to specific attributes) who have a timid collaboration with other members who are also very
knowledgeable on certain attributes (i.e., establishing a two-way bridge), rather than estab-
lishing relationships with new students and young researchers. Nevertheless, there is the fact
that few members are highly influential in their respective communities [Alves et al., 2013].

Comparing these results with the dynamic edge classification (Figure 6.9), in general,
we observe that the percentages of brokerage classes are smaller, while the percentages of
dependent ones tend to be larger. For the closure classes, there are slightly higher values.
Particularly, the STOC network presents percentages of the closure class of 20.6% and of
the innocuous one of 27.2%, which differs from its edge percentages of 15.6% and 34.0%,
respectively. On the other hand, the tendency of members of the SAC network having a non
disseminating behavior is confirmed.

6.2.2 Questions and Answers Communities

We now report the results of the social scenarios in the Q&A communities [Silva et al.,
2019, 2020]. We omit the results from the static scenario (i.e., single-edge aggregated graph)
because they are very similar to the dynamic one. One explanation for this similarity is that,
unlike the scientific coauthorships, in the Q&A communities users do not tend to keep long
interactions with the same group of people. Thus, we next discuss only the dynamic scenario
and refer the reader to Silva et al. [2019] for more details about the aggregated knowledge
transfer classification.

Regarding knowledge transferred across the network by the edges, Figure 6.11 clearly
shows the closure class as the most representative for all communities, achieving more than
50.0% and reflecting the own nature of the social interactions in Q&A communities [Shah
and Kitzie, 2012; Vasilescu et al., 2014]. Indeed, such online networks offer an environment
of valuable information resources, thus enabling people to share their knowledge. This con-
trasts with the low presence of the closure class in academic social networks (see Figures 6.7
and 6.9), in which new knowledge tend to be originated from a set of nodes (e.g., coauthors
of their first paper on a subject) instead of from single individuals. Similar to the academic
context, the percentages of the dependent class are superior to those of the brokerage one.

Analyzing by category, in general, there are similar minimum and maximum percent-
ages. However, the dependent class shows a great divergence. Specifically, communities
from the Technology category present higher figures for the closure class, which is in line
with the tendency that technological discussions are more ephemeral.

Overall, there are different percentages of classifications by communities. For exam-
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Figure 6.11: Knowledge transfer classification of edges for the Questions & Answers com-
munities.

ple, the Ask Patents (Business) and Android (Technology) communities reveal very different
percentages by class compared with the others. Focusing on communities from the same cat-
egory, there are also distinct behaviors such as the case of Buddhism and Islam that, although
discuss issues related to religious topics, their knowledge-sharing behaviors are discrepant.
In fact, note that the Buddhism and Writing communities are the ones with the highest pro-
portion of knowledge transfer edges, what may be a consequence of their more closed and
coherent group of users.

With respect to node characterization, Figure 6.12 shows that the nodes from the Q&A
communities tend to achieve larger percentages in the class closure, whereas the the classes
dependent and innocuous are the most expressive in the academic networks. There is a sharp
decrease in the percentages of the class brokerage and a slight one in the class closure when
compared with the edges (see Figure 6.11). On the other hand, the dependent class achieves
percentages of more than 20% for all communities, thus emphasizing a social behavior of
just receiving knowledge from other users. Even so, the closure class is still the most repre-
sentative of all communities with more than 40%, which can be interpreted as existing a clear
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Figure 6.12: Knowledge transfer classification of nodes for the Questions & Answers com-
munities.

social behavior of both teaching and learning when interacting with other users. Indeed, this
reflects the own nature of the social interactions in the Q&A communities, which offers an
environment of valuable information resources, thus allowing people to share their knowl-
edge [Neshati et al., 2017]. Nevertheless, the proportions of edge and node classifications
are consistent.

6.3 Comparative Analysis

We now contrast our two classification strategies for determining the strength of social struc-
tures (i.e., social-based classification), regarding the dynamics of knowledge transfer (Sub-
section 6.3.1). As we are interested in characterizing social interactions and in order to
check how each method separates social interactions from non-relevant ones, we expanded
our analysis to compare our strategies against the RECAST algorithm (Random rElationship

ClASsifier sTrategy) [Vaz de Melo et al., 2015] (Subsections 6.3.2 and 6.3.3), which provides
a strategy for identifying random and social interactions based on network properties.
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Figure 6.13: Social-based classification (edge class) versus knowledge transfer classification
(bars) for the Full Network.

6.3.1 Social Structure versus Knowledge Transfer

Figure 6.13 depicts the strengths of social structures (Edge class) versus the transfer of
knowledge (bars). First, we note a discrepancy between the two classifications, thus showing
that they represent two distinct approaches based on different social concepts. For example,
not all edges classified as closure or brokerage by the knowledge transfer classification (first
bar) are respectively classified as closure or brokerage by the social-based classification (val-
ues inner the bars). Even so, there is a clear trend that reveals the classes associated with
social concepts as those responsible for the great diversity in the social dynamics. On the
other hand, analyzing the innocuous bar, we find that the highest percentage of edges in this
knowledge-transfer class is associated with the social structural brokerage. However, we
expected that no brokerage and closure instances would be assigned as innocuous, since the
innocuous class represents relationships with no social meaning.

With respect to the nodes, Figure 6.14 contrasts the knowledge-transfer classes ac-
cording to the social role of the nodes involved in each relationship. For example, closure-

brokerage indicates that an edge was established by connecting a node of the closure class
with a node of the brokerage class. As expected, it is more evident that the knowledge-
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Figure 6.14: Social-based classification (relationship type) versus knowledge transfer classi-
fication (bars) for the Full Network. Darker tones represent more important social ties.

Table 6.3: RECAST classification of edges for the Full Network.

RECAST classes
friend bridge acquaintant random
2.23% 0.18% 84.53% 13.06%

transfer relationships of the most important classes (closure and brokerage) tend to be
strongly associated with the most important structural relationship types (darker tones). On
the other hand, the bars dependent and innocuous are more mixed, but in a less extent to
relevant relationships (dark tones) than less important ones (lighter tones).

In general, even the methods based on different social perspectives, the contrast ob-
served by the classification results shows a coherence between the methods. Thus, the greater
the edge’s strength of their relationships, the more diverse are their dynamic behavior.

6.3.2 Social Structure versus RECAST

We now contrast our results with those of the RECAST algorithm [Vaz de Melo et al., 2015].
As discussed in Section 2, the RECAST algorithm assigns social classes to edges in tempo-
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Figure 6.15: Social-based classification of the edges classified by the RECAST algorithm.

ral networks and was used in some previous works to characterize academic coauthorship
networks [Brandão et al., 2017, 2018; Leão et al., 2018]. For this, it explored the regularity
of relationships and the topological overlap existing among them over time. By comparing
such regularities with random temporal graphs, it classifies social ties as friend, bridge, ac-

quaintant and random. As the graph model adopted by RECAST is single-edge, we first
transformed our aggregated multigraph into a single-edge one, in which the most represen-
tative edge class associated with each pair of nodes become the actual edge class in the new
graph (draws were resolved considering the following importance order: closure, brokerage

and innocuous).

First, we present the results of the RECAST classification in Table 6.3. We clearly
note an unbalanced classification, showing the acquaintant class as the most representative
(84.53%), followed by the random one (13.06%). Such results are compatible for different
academic networks analysis, where in addition to relationships of type acquaintant, also
revealed a large number of random ties [Brandão et al., 2017].

Considering that the RECAST algorithm separates social from casual relationships,
we expect that the important social classes defined by it (friend and bridge) to be strongly
associated with our most important ones (closure and brokerage). First, we analyze the pro-
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Figure 6.16: Social role of the nodes classified by the RECAST algorithm. Darker tones
represent more important social ties.

portion of the social meaning of the classes grouped by the RECAST classes in Figure 6.15.
Looking at the friend and bridge bars, we can see that their edges are mostly associated with
the two most important classes of our method, closure and brokerage. Moreover, there is
a very low overlapping of the innocuous edges with the friend and bridge ones. Although
we expected the innocuous classes to be mostly associated with casual relationships (i.e.,
acquaintant or random classes), in contrast, the last two bars tend to be quite diverse with
more equal proportions with respect to our classes. In the next section, we will better ana-
lyze the results of the random class according to the network properties, thus validating the
consistency of our social classification.

Regarding the nodes, Figure 6.16 shows how the RECAST classes have been assigned
according to the social role of the nodes involved in each relationship. In this scenario,
we see clearly that the relationships of the most important nodes considered by our method
(darker tones) tend to be strongly associated with the most important classes of the RECAST
algorithm (friend and bridge). Again, there is more diversity in the proportion bars of the
acquaintant and random RECAST classes, but with the presence of less important classes
(lighter tones). Overall, even the methods based on different social perspectives, they are
coherent regarding the edges’ strength.
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Figure 6.17: Knowledge transfer classification versus the RECAST classification.

6.3.3 Knowledge Transfer versus RECAST

Figure 6.17 shows the intersection of the classes identified by the RECAST algorithm (bars)
with those classified in terms of knowledge transfer. As expected, note that the less impor-
tant classes of our method (dependent and innocuous) are mostly associated with the less
important classes of RECAST (acquaintant and random). Moreover, associations with bidi-
rectional knowledge transfer (closure) are mostly attributed to the friend and bridge classes.
We expected low proportions of associations between the least important class of our method
(innocuous) with the two most important classes of RECAST, friend and bridge. However,
there is a notable presence of that class associated with these two RECAST classes: friend

(50%) and bridge (35%).

Nevertheless, given that the most important RECAST classes are friend and bridge,
and considering that their correspondence with the classes of our method are, in decreasing
order, closure, brokerage, dependent and innocuous, we can analyze the correlation among
them. For example, there are more, in proportion, closure and brokerage classes instances
for friend and bridge than for acquaintant and random. Therefore, we observe a strong
coherence between the social definitions of both methods.
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6.4 Summary

In this chapter, we presented the results of characterizing several social contexts by means
of our proposed classification methods. We summarize this chapter as follows:

• We characterized different social scenarios as, for example, revealing a contrasting
social behavior between the Theory of Computing and Applied Computing networks,
and between the Buddhism and Islam communities.

• We illustrated the edges classified based on the brokerage and closure concepts in
terms of the social-based classification and knowledge transfer one, thus reinforcing
such edges as being better positioned in a social structure.

• We compared the differences regarding our two classification methods, as well as we
contrasted them with the RECAST algorithm [Vaz de Melo et al., 2015]. In summary,
we concluded that our approach provides a new social perspective to contribute to the
understanding of social interactions.

In the next chapter, we shall see that the classifications proposed for nodes and edges
are associated with their strategic positioning in a social structure given by network proper-
ties (e.g., the most important classes are better well-positioned than the non-relevant ones).
Thereafter, we perform a sensitivity analysis to check the robustness of our classification
methods.



Chapter 7

Experimental Validation

Besides analyzing how our classification methods behave in different scenarios (Chapter 6),
we should validate our classification results by using an experimental methodology already
established in the literature. In addition, we should statistically assess the sensitivity of our
classification methods for dealing with particular time aspects and random scenarios.

For this, we first detail our experimental methodology introduced in Section 5. We
follow Newman’s approach, which explores the closeness and betweenness centrality met-
rics to determine the best positioned nodes in an academic coauthorship network [Newman,
2004]. Likewise, we employ the notion of social capital given by the strategic positioning of
a particular actor in a social structure to validate the assigned classes based on the following
network properties, which have been formally defined in Section 5.2 (see Table 5.3):

• Degree Centrality. As interpreted by Srinivas and Velusamy [2015], this metric indi-
cates influential nodes as, for example, a node with an immediate risk of catching a
virus or getting some information. Thus, a node with high connectivity is more likely
to have early access to knowledge.

• Closeness Centrality. Nodes with higher closeness are, by definition, closer (on aver-
age) to the other nodes in the network. Then, we expect important classes (closure and
brokerage) to have high values for this metric, since they have better access to knowl-
edge from other nodes (e.g., making an opinion to reach other nodes more quickly).

• Betweenness Centrality. As discussed by Newman [2004], nodes with a high degree
of betweenness centrality are likely to be influential, since they act as an intermediary
for other nodes (e.g., in message-passing scenarios). Thus, as nodes and edges with
high betweenness centrality values play crucial roles in the spread of knowledge in
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social networks [Mahyar et al., 2018], then we expect high values for this metric for
important nodes and edges assigned to the closure and brokerage classes.

• Clustering Coefficient. As this metric reveals the fraction of a node’s neighbors that are
connected to each other (i.e., how complete the neighborhood of a node is) [Srinivas
and Velusamy, 2015], we expect low clustering coefficient values for the most impor-
tant classes (closure and brokerage), confirming the behavior of connecting different
parts of a network.

In addition, we also use the PageRank algorithm [Page et al., 1999] by considering that
more important nodes tend to make stronger endorsements due to their connectivity and ties
to other important nodes. That is, we also expect closure and brokerage nodes to have high
values for this metric.

For instance, let us look at the RECAST classes according to the centrality betweenness
metric. As detailed in Section 2.3, we recall that the RECAST classification assigns to
the edges the classes friend, acquaintant, bridge and random. In summary, the algorithm
aims to separate relationships based on strong social interactions (i.e., friend and bridge)
from merely casual ones (i.e., acquaintant and random). Based on this, it is expected the
betweenness values to be associated with the edges according to the importance of the classes
inferred by the RECAST. Thus, friend and bridge classes should have higher betweenness
values than those classified as acquaintant and random.

Figure 7.1 shows the distribution of the betweenness centrality metric with respect to
the RECAST classification. We clearly note that the bridge edges have the highest values,
in accordance with the brokerage concept. However, the friend class, regarded as the most
strong one, has very low figures. On the other hand, the random edges, surprisingly, have
the second highest values. As the crucial task of the RECAST algorithm is to separate social
from casual relationships [Vaz de Melo et al., 2015], then we would like to observe the
interactions between friends and acquaintances with more importance than those regarded as
random.

Likewise, for the next experiments, we expect the aforementioned network properties
to be associated with the nodes and edges according to our proposed classification method.
In this way, nodes and edges classified as closure and brokerage should have better network
properties values than those of the other classes (innocuous and dependent).

Now, we consider the Full Network, which comprises the 24 ACM SIGs communities
altogether. As the distributions of the network property values per class did not pass the
normality test, we evaluated the statistical significance between each two classes by means
of the non-parametric Mann-Whitney-Wilcoxon test and among all classes by means of its
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Figure 7.1: Betweenness centrality distributions per RECAST class. Outliers suppressed for
better visualization.

extension given by the Kruskal-Wallis test, as described by Hollander et al. [2013]. All
experiments were performed with a significance level of α = 0.05.

Next, we discuss the results for the social-based classification (Section 7.1) and the dy-
namics of knowledge transfer (Section 7.2). Finally, we assess the sensitivity of the proposed
classifications (Section 7.3).

7.1 Social-based Classification

In this section, we investigate separately two scenarios by exploring the persistence of the
researchers with respect to the relevant words from their articles’ titles (tokens) and the social
ties with their respective communities.

Relevant Tokens. For the classification of the nodes, Figure 7.2 presents the distribution of
the network properties by node class. The clustering coefficient results (Figure 7.2a) em-
phasizes the characteristic of the nodes assigned as innocuous to be very dependent on its
neighborhood. This is in stark contrast with the classes closure and brokerage, which tend
to diversify their relationships. The other metrics also validate the closure and brokerage

classes assigned to the nodes better positioned within a social structure. More specifically,
they have more social ties (Figure 7.2b), are on average closer to other nodes (Figure 7.2c)
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(a) Clustering Coefficient (b) Degree Centrality

(c) Closeness Centrality (d) PageRank

(e) Betweenness Centrality (nodes) (f) Betweenness Centrality (edges)

Figure 7.2: Distribution of network properties per class for nodes (a-e) and edges (f). Outliers
were suppressed from (e) and (f) for better visualization.
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and topologically more important (Figure 7.2d), and have more information passing through
them (Figure 7.2e). In addition, there is a clear class distinction, where closure has values
greater than brokerage and brokerage has values greater than innocuous. Formally, all distri-
butions are statistically different by means of the Mann-Whitney-Wilcoxon test (among all
classes) and by the Kruskal-Wallis test (between each pair) [Hollander et al., 2013].

As for the classification of the edges, Figure 7.2f shows the distribution of the between-
ness centrality metric with respect to our classification. We clearly note that the brokerage

and closure classes have more expressive values for this metric. Note that the distributions of
closure and brokerage distinguish less than those reported for nodes, but now the brokerage

class is slightly superior to the closure one in contrast to the classification of the nodes (Fig-
ures 7.2a-e). Nonetheless, they are still statistically different according to the Kruskal-Wallis
and Mann-Whitney-Wilcoxon tests. Moreover, even though the innocuous class accounts for
31.4% of all edges (see Table 6.1), their centrality values are very low.

Finally, comparing such results with the betweenness centrality distributions for RE-
CAST (Figure 7.1), we clearly note that our social-based method showed some coherence in
between the social concepts and the network properties, whereas RECAST classifies many
structural edges (i.e., those with high network properties), as random as well as several edges
with low figures as friend.

Relevant Community Ties. The results for relevant title words also hold here for commu-
nity ties. Moreover, the distributions are more well-defined among the classes, i.e., there is
a clear distinction among them. For instance, unlike in the relevant title words scenario, the
boxes of the closure and brokerage classes do not overlap in all cases. Again, all classes are
statistically valid by means of the Kruskal-Wallis and Mann-Whitney-Wilcoxon tests. As
the results from this scenario are very similar to the previous one, we omit the distribution
figures and refer the reader to Silva et al. [2018] for more details about them.

Overall, the two scenarios (relevant title words and community ties) confirm the social
role of the nodes and the strength of the social characteristics of their interactions.

7.2 Knowledge Transfer Dynamics

For the classification of the nodes, Figures 7.3a-e present the distribution of the network
properties by node class. The clustering coefficient results (Figure 7.3a) emphasizes the
characteristic of the nodes assigned as dependent and innocuous to be very dependent on its
neighborhood. This is in stark contrast with the classes closure and brokerage, which tend
to diversify their relationships.

The other metrics also validate the closure and brokerage classes assigned to the nodes
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(a) Clustering Coefficient (b) Degree Centrality

(c) Closeness Centrality (d) PageRank

(e) Betweenness Centrality (nodes) (f) Betweenness Centrality (edges)

Figure 7.3: Distribution of network properties per class for nodes (a-e) and edges (f). Outliers
suppressed for a better visualization.
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better positioned within a social structure. More specifically, they have more social ties
(Figure 7.3b), are on average closer to other nodes (Figure 7.3c), are topologically more
important (Figure 7.3d) and have more information passing through them (Figure 7.3e). In
addition, there is clearly a class distinction, where closure is superior to brokerage, brokerage

is superior to dependent and, finally, dependent is superior to innocuous. Again, all distribu-
tions are statistically different by means of the Mann-Whitney-Wilcoxon and Kruskal-Wallis
tests.

Regarding the information passing through the edges, Figure 7.3f shows the distribu-
tion of the betweenness centrality metric with respect to the knowledge-transfer classifica-
tion. We clearly note that the closure and brokerage classes have more expressive values
for this metric. In addition, the dependent class values are also higher than those of the
innocuous edges. Although the distributions of closure and brokerage distinguish less than
those reported for nodes (Figures 7.3a-e), they are still statistically different according to
the Kruskal-Wallis and Mann-Whitney-Wilcoxon tests. Comparing with the betweenness
centrality distributions for RECAST (Figure 7.1) and our social-based method (Figure 7.2f),
we highlighted that RECAST fails to separate social from casual relationships, whereas our
social-based method showed some coherence between its social definition and the network
properties.

7.3 Sensitivity Analysis

Since we are dealing with temporal attributed networks, the relevant attributes and time as-
pects must be properly analyzed regarding the effectiveness of our classification method.
Next, we stress these issues in terms of: (i) the discriminatory power of their assigned at-
tributes; (ii) the existence time of the nodes in a network; and (iii) the random node-attributes
associations.

Discriminatory power of attributes. In order to measure the strength of social interactions,
Algorithm 1 ensures the function Γ containing the sets of all statistically relevant attributes
for each node (Section 3.2). In fact, if an attribute is associated with a node several times,
then we can infer its importance.

However, a specific statistical treatment can be added to this process in order to exclude
attributes that, even if randomly distributed, were erroneously considered as relevant ones.
This additional statistical step consists in making the function Φ, which associates each edge
e with a specific set of attributes, a random association Φ�. Then, we get Γ from different
Φ� instances to measure the probability that each attribute has been erroneously classified
as being relevant. Finally, we exclude such attributes that were considered as relevant with
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probability significantly higher than the level of significance α . In other words, we filter
from our input the attributes that can interfere in the process of identifying the relevant ones.
Even removing some of the data, we expect the proposed method to be robust enough to
properly classify nodes and edges.

As a result, both configurations (without the exclusion step and with the step of ex-
cluding attributes that are not statistically valid when randomly distributed) are statistically
equivalent by means of the distribution of network properties by classes. Precisely, we have
noted a better distinction among the classes when such non-discriminatory attributes are ex-
cluded. In practice, this step eliminates natural evolution information of the network and,
therefore, is not part of the classification process.
Existence time of the nodes. This sensitivity test consists in investigating the robustness
of our approach to differentiate nodes with similar existence times. For this, we divided the
nodes into the following annual time intervals: [1,5), [5,10), [10,15) e [15,∞).

Regarding the social-based method, it was able to distinguish the distributions of all
network metrics by classes for all time intervals in terms of the Kruskal-Wallis test. For the
time interval [1,5), the Mann-Whitney-Wilcoxon test did not differentiate the distributions
between the classes closure and brokerage for the metrics betweenness centrality (relevant
title words), clustering coefficient (relevant title words and community ties) and degree cen-

trality (community ties). Considering the knowledge-transfer scenario, the same results hold,
where again the Mann-Whitney-Wilcoxon test did not differentiate the distributions between
the classes closure and brokerage for the interval [1,5). Even so, the values for the classes
closure and brokerage are higher than those for the dependent and innocuous ones (the values
for the class dependent are also higher than those for the innocuous one).
Random node-attribute associations. To check the validity of the knowledge transfer
classification on a network, we evaluate the classification robustness when the set of relevant
attributes are randomly associated with the nodes (i.e., shuffling the sets Γ(u)), but keeping
the same social structure (i.e., preserving the structure of nodes and edges in G). In this
random scenario, our proposed classification method is expected to be robust enough not to
misclassify nodes and edges as being closure and brokerage. In other words, assuming that
the knowledge transfer passes through the network according to strong social ties, then we
expect that such random associations will result in non-relevant classes for the nodes and
edges (i.e., innocuous).

Tables 7.1 and 7.2 show the averages and standard deviations of the edge and node
classifications, respectively, for 10 random runs. As expected, there is a rarity of nodes and
edges classified as either closure or brokerage. In addition, the standard deviations are very
low, thus indicating the coherence of our method. Despite that, the ideal result would be that
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Table 7.1: Random Classification of Edges.

Random
Real Avg. Std. Dev.

Closure 8.16% 0.14% 0.01%
Brokerage 9.53% 0.09% 0.01%
Dependent 31.70% 6.17% 0.30%
Innocuous 50.60% 93.61% 0.32%

Table 7.2: Random Classification of Nodes.

Random
Real Avg. Std. Dev.

Closure 11.56% 0.55% 0.04%
Bokerage 4.55% 0.18% 0.01%
Dependent 48.95% 14.53% 0.34%
Innocuous 34.94% 84.75% 0.34%

for which all nodes and edges were classified as innocuous, but as we can see 6.17% of the
nodes and 14.53% of the edges were classified as dependent. Nonetheless, in the previous
section we observed that both dependent nodes and dependent edges tend to have very low
importance in a social structure.

7.4 Summary

In this chapter, we validated the assigned classes to edges and nodes in terms of their impor-
tance in a social structure. For this, we based on the premise that our social-based classes
determine how nodes and edges tend to be positioned in a network [Newman, 2004]. We can
summarize our main contributions in this chapter as follows:

• We statistically validated the assigned classes according to network properties, thus
agreeing with their expected social values.

• We stressed the proposed method in terms of its robustness for dealing with the ex-
istence time of the nodes in a network and the discriminative power of their assigned
attributes.

In the next chapter, we apply our proposed model to identify influential nodes based
on social concepts.



Chapter 8

Application: A Social-based Ranking

In this chapter, we address our third research goal, which regards the application of our pro-
posed method to a real-world problem: a social-based ranking. For this, we deal with the
task of identifying influential nodes in a coauthorship network based on their social influ-
ence. First, we present a semi-supervised strategy that combines other social approaches
(Section 8.1). Then, we propose an unsupervised strategy based entirely on our proposed
model (Section 8.2). Finally, we present the experimental methodology (Section 8.3) and
the ranking results (Section 8.4).

8.1 Supervised Ranking Strategy

To train our supervised strategy, we assume that a researcher is more likely to be influential
in a network if (i) the greater her participation in the network is, (ii) the better positioned in
a social structure she is, (iii) the greater her social ties with the propagated relevant attributes
are and (iv) the greater her dynamic diffusion behavior is [Silva et al., 2019]. Thus, based on
these considerations, the ranking function of a researcher n is given by Equation 8.1:

SocialRank(n) = α1
#publ(n)

argmax
x∈V

#publ(x)
+α2

social(n)
argmax

x∈V
social(x)

+α3
|Γ(n)|

argmax
x∈V

|Γ(x)|+

α4
∑(i, j)∈Ed

Origin(i,n)
argmax

x∈V
∑(i, j)∈Ed

Origin(i,x)
(8.1)

Each one of the above assumptions is represented by the terms of the Equation 8.1,
which are, respectively:

• Participation. The function #publ returns the number of publications of a researcher
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n. Thus, the greater the participation of a researcher in a network is, the stronger her
structural ties are likely to be.

• Social Structure. The function social is expressed by

social(n) = ∑
e∈�t

i=1 Ei|n∈ nodes(e)

w(e)

and returns the aggregated weight of the edges. Here, we consider the social-based
classification (Section 4.1) and divide the edges classified as brokerage into three as
being strong, regular and weak bridges. Briefly, a strong bridge is established by two
nodes that have total control over the information passing by the edge; regular bridge

when only one node has full control over information, but the other node has control
over other subjects; and a weak bridge when only one of the nodes has no information
to be exchanged regardless of what is passing through the network. Then, the value of
the weight function is given by

w(e) =





3, if the edge e is strong bridge or regular bridge

2, else if the edge e is closure

1, else if the edge e is weak bridge

0, otherwise.

In other words, the weights above have been defined considering the distribution of
the social meaning of the relationship classes according to the betweenness centrality
metric (see Figure 7.2f). This means that the edge weighting privileges the brokerage

relationships established by strong ties, then the closure relationships, and finally the
brokerage relationships in terms of weak ties. Innocuous relationships do not con-
tribute to the score.

• Relevant Attributes. The function |Γ| returns the number of relevant attributes. In
this way, the greater is the potential for acquiring knowledge, the greater are the nodes’
social ties with its set of relevant attributes, which means that their reputation is likely
to be high.

• Knowledge Transfer. The function Origin(i,n) returns 1 if the origin node i and the
node n are the same, or 0 otherwise. Thus, this final term quantifies the number of out-
edges in the directed knowledge-transfer graph D. Indeed, it measures the spreading
of its relevant attributes to its neighborhood. Thus, the greater is the number of social
ties in the directed graph, the greater is the effectiveness of its influence.



8.2. UNSUPERVISED RANKING STRATEGY 79

As each function term is normalized by the maximum individual score, the coefficients
αi scale the importance of each assumption by setting relative weights.

8.2 Unsupervised Ranking Strategy

The previous supervised strategy has two major drawbacks. First, only two assumptions (so-
cial structure and dynamic diffusion behavior) are based on our proposed model. Second, it
associates coefficients to scale the importance of each assumption by setting relative weights,
thus requiring a training phase to estimate the weights for each term. Thus, to overcome both
issues, here we propose an unsupervised ranking strategy based entirely on our classification
model [Silva et al., 2020] presented in Chapter 3.

As discussed by Burt [2005], the social concepts of closure (relationships within a
group) and brokerage (social ties beyond a group) determine how people are connected in
a social structure. In this way, when such players are well-positioned in a network (i.e.,
their closure and brokerage figures are high), they take advantage of early access to the
information circulating around them and of a wider diversity of knowledge.

Based on that, how can we measure the node importance by means of closure and bro-
kerage concepts? Burt [2005] addresses this question as a structural autonomy that informs
when people are tightly connected to one another with extensive bridge ties beyond them.
Specifically, maximum performance (e.g., innovation and productivity) is achieved with high
closure and brokerage values (e.g., trust and cooperation), whereas minimum performance
occurs when these values are lower (e.g., distrust and indifference).

Considering the above discussion, here we propose a knowledge-transfer ranking by
exploring the strong ties between nodes and their relevant attributes (the closure effect), as
well as the dissemination of the knowledge acquired by the nodes in the network (the bro-
kerage effect). The former is defined in terms of |Γ|, which returns the number of relevant
attributes. In this way, the greater is the potential for acquiring knowledge, the greater are the
nodes’ social ties with its set of relevant attributes, which means that their reputation is likely
to be high. The latter is defined as the degree centrality in the directed knowledge-transfer
graph D. Indeed, it measures the spreading of its relevant attributes to its neighborhood.
Thus, the greater is the number of social ties in the directed graph, the greater is the effec-
tiveness of its influence.

Formally, the ranking function of a node n is given by Equation 8.2. Note that each
term is normalized by the maximum individual score and the ranking applies the geometric
mean, since a node tends to be more important if she presents expressive values for both
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closure and brokerage (having little relevance otherwise).

KT-Rank(n) =

���� |Γ(n)|
argmax

x∈V
|Γ(x)| ×

∑ j∈Vd
ai j

argmax
x∈Vd

∑y∈Vd
axy

, (8.2)

where ai j =

�
1, if the edge (i, j) ∈Vd

0, otherwise.

8.3 Ranking Validation

In academic social networks, the problem of ranking researchers is critical for a broad range
of real-world problems (e.g., funding purposes) and there is no consensus on the ideal met-
rics for a fair decision process [Lima et al., 2013]. To overcome this, we validate our ranking
strategies in terms of its results by first classifying the set of distinguished researchers who
received at least one ACM award for their contributions or innovations to their specific re-
search communities. Then, we built a ground-truth composed of 544 (out of 79,684) of
such influential researchers and, following similar experimental protocols [Lü et al., 2011;
Newman, 2004], applied traditional network properties to rank them. Besides considering
betweenness centrality and Page-Rank, we also tested the ranking generated by degree cen-
trality and closeness centrality, but we omitted their results because they were inferior to
those of the network metrics. Also, we tested an alternative formulation for Equation 8.2
that considered the closure expressed by means of the clustering coefficient centrality and
the brokerage expressed by the betweenness centrality, but it achieved inferior results.

As our ranking proposal relays on the network structure, we do not use citation-based
approaches (i.e., expensive methods requiring published material content). Instead, we ex-
panded our experimental evaluation by comparing our method with three different social
approaches:

(i) Neighborhood-based Centrality. Considering the importance of the centrality of a
node in a social structure, the H-index of a network node is defined as the maximum
number h such that it has at least h neighbors with degrees greater than h [Lü et al.,
2016]. Thus, this index captures the node’s spreading importance, since the spread
process is likely to cease if the node’s neighbors have low degrees.

(ii) Social Hierarchical Structure. Based on the premise that nodes that are connected
to other ones in lower social hierarchies cause them some kind of social agony, Gupte
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et al. [2011] proposed a metric (here called SocialAgony) that finds the best ranking
that provokes the least agony.

(iii) PageRank-Like Algorithm. LeaderRank is a ranking algorithm based on random
walks on a network, in which a node’s score is given by the fraction of time the random
walker spends on that node [Lü et al., 2011]. Thus, this index explores the leadership
topology in order to identify influential nodes.

In order to evaluate our ranking and the baselines in light of the ground-truth, we
use the discounted cumulative gain (DCG) metric [Järvelin and Kekäläinen, 2002], which
measures the quality of a ranking by applying a log-based discount factor that privileges
high relevant ranked nodes. Formally, the DCG at a rank position k can be defined as

DCG@k =
k

∑
i=1

2gi −1
log2(i+1)

, (8.3)

where gi denotes a binary relevance associated with a node ranked at the i-th position, indi-
cating 1 if the node represents a winner of an ACM award and 0, otherwise.

8.4 Results

Our task here is to retrieve in the first 544 positions of a list of 79,684 nodes (Computer
Science researchers), those that are unquestionably considered as outstanding for their con-
tributions to the area and have been recognized for that by receiving an ACM award or being
named an ACM distinguished member (ACM Fellow or Distinguished Scientist)1.

Before, we need to set the weights αi of the supervised ranking (Equation 8.1). To
estimate such parameters, we divided our dataset into four folds and applied the parameter
tuning by grid search (values varying from 0 up to 1 by incrementing 0.01 at each iteration).
By definition, all four terms of the equation are individually normalized and the average
of the best configurations obtained was α1 = 0.5α2 = α3 = 0.5α4. This means that the
number of publications (α1) and the number of relevant terms (α3) are twice as important
as the score derived from the social capital aspect (α2) and the knowledge transfer one (α4).
Nevertheless, all assumptions are essential to the effectiveness of our proposed ranking.

Figure 8.1 compares our supervised and unsupervised strategies, here called Social-
Rank and KT-Rank respectively, with the number of publications (#publ), the network prop-
erties (betweenness centrality and PageRank), the aforementioned baselines (H-index, Lead-
erRank and Social-Agony) and our previously proposed social-based rank (SocialRank) in

1https://awards.acm.org/advanced-member-grades.
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Figure 8.1: Comparison of the SocialRank and KT-Rank with the baselines according to the
nDCG.

terms of the attained nDCG@k, with 1 ≤ k ≤ 50, where the best metric is the one with the
highest nDCG.

The results show that our KT-Rank outperforms or performs equally to the other
rankings from the first position until the 40th one. Then, the betweenness centrality out-
performs or performs equally to the SocialRank and KT-Rank. As we are interested in
the top positions, our strategies report the best results, whereas the other ranking met-
rics have slight oscillations in the first positions. Besides that, the time complexity of the
betweenness centrality on an unweighted network is O(|V ||E|) and on a weighted one is
O(|V ||E|+ |V |2 log |V |) [Brandes, 2001], which can be prohibitive to be applied to large so-
cial networks. Finally, we clearly note an improvement in the ranking based entirely on the
concepts of brokerage and closure (KT-Rank) over the supervised SocialRank.

In order to illustrate such results, Table 8.1 lists the top twenty most influential re-
searchers according to the best ranking strategy KT-Rank (k = 20), showing their relative
rank positions according to other social approaches (left) and network properties (right). Be-
sides highlighting the ACM awardees, we also indicate the ACM distinguished members
(ACM Fellows and ACM Distinguished Scientists). As we can see, several well known
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Table 8.1: Top 20 researchers according to KT-Rank and their relative rank positions on the
baselines: bold indicates ACM awardees (by innovations or contributions), ACM fellows (�)
and ACM distinguished scientists (*).

Social Approaches Network Properties
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1 Jiawei Han� 1 1 1 77 2 1 1 1 2
2 Christos Faloutsos� 3 3 3 81 4 3 4 2 1
3 Tat-Seng Chua 5 5 5 80 6 309 174 844 506
4 Philip S. Yu� 2 2 2 84 1 2 2 3 3
5 W. Bruce Croft� 4 28 26 399 3 21 5 192 19
6 Scott Shenker� 7 4 4 83 12 4 7 4 6
7 Hui Xiong* 8 9 8 204 20 9 11 90 36
8 Jian Pei� 15 10 10 86 28 7 8 18 15
9 Qi Tian 12 8 9 79 13 14367 13262 10658 9719
10 Maarten de Rijke 11 16 16 299 8 12 9 159 16
11 Xian-Sheng Hua* 9 36 36 307 9 2487 1691 5124 2635
12 Shih-Fu Chang� 30 19 20 210 55 73719 73544 73544 73544
13 Susan T. Dumais� 31 172 172 347 34 159 104 21 7
14 Alberto L. S.-Vincentelli� 13 6 6 340 7 5 3 399 4
15 Jason Cong� 26 30 29 438 29 25 13 196 9
16 Wei-Ying Ma* 14 13 13 82 10 31 57 140 102
17 Ryen W. White 34 49 55 230 15 45 34 38 18
18 Carl Gutwin* 23 230 234 805 36 193 70 2441 199
19 Donald F. Towsley� 29 75 73 679 44 85 33 220 112
20 Jieping Ye 33 17 17 397 43 14 19 379 116

Computer Science researchers, including ACM awardees, appear in the top 20 positions.
The only exception in this list is Qi Tian, whose name is listed as ambiguous in DBLP2.

By comparing the aforementioned ranking based on social approaches (Table 8.1, left),
we notice several similar relative rank positions in the KT-Rank, SocialRank, LeaderRank
and SocialAgony lists. In particular, our proposals are quite similar (range 1 to 33), and
the relative rank positions showed by LeaderRank and SocialAgony are almost identical.
One exception is the H-index, whose positions significantly differ from the other social ap-
proaches in the range 77 to 805, thus confirming its worst performance shown in Figure 8.1.

Regarding network properties (Table 8.1, right), only the number of publications is
consistent with the social approaches (range 1 to 55), reinforcing the importance of a re-
searcher being active on the network. The other properties sometimes agree with the social
approaches (for instance, the cases of Jiawei Han, Christos Faloutsos and Philip S. Yu),
but fail dramatically in some important cases such as those of Tat-Seng Chua and Shih-Fu

Chang.

2https://dblp.uni-trier.de/pers/hd/t/Tian:Qi
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8.5 Summary

In this chapter, we showed how to apply our proposed graph model and classification method,
thus addressing our third research goal. In this regard, we proposed a strategy to rank nodes
based on their social influence. Our two strategies (supervised and unsupervised) outper-
formed the traditional network metrics and other social-based algorithms (neighborhood-
based, social hierarchical structure and PageRank-like algorithms).

In conclusion, the results demonstrate that our approaches differ slightly from the so-
cial baselines (except H-index) and, in some cases, in terms of network properties, thus
providing new social perspectives for a more robust evaluation of the importance of nodes in
a social structure.



Chapter 9

Conclusions and Future Work

This thesis addressed the problem of characterizing actors and their social interactions in
dynamic social networks. As additional complexity, the general scenario comprised parallel
relationships over time, as well as attributes associated with each social interaction. As a
scientific contribution, we reinforced the importance of the network theory paradigm for un-
derstanding the complexity that involves real world actors and their relationships [Barabási,
2009; Watts, 2004]. More specifically, we emphasized the social roles of actors in dynamic
attributed networks in order to determine the social meaning of their multiple dynamic inter-
actions. For this, we relied on Burt’s definition of two social concepts [Burt, 2005], closure

as the ability of aggregating individuals with similar social patterns, and brokerage as the
ability of creating bridges with diversified social patterns.

Next, we summarize our main findings (Section 9.1) and provide some considerations
for future work (Section 9.2).

9.1 Summary of Results

As discussed in Section 1.2, our main goal in this thesis was to provide a novel understanding
about real world complex systems. Next, we present our findings according to the following
three associated research goals.

RG1 - Modeling Dynamic Attributed Interactions. We explored node-attributes associ-
ations to model social interactions over time based on social concepts. Then, we defined
three graph representations to deal with dynamic interactions, their associated attributes and
how knowledge transfer flows across the network. More specifically, our strategy explored
the persistence (i.e., long-lasting associations) of the nodes with specific attributes to deter-
mine the social importance underlying the dynamicity of the interactions between the nodes
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over time. We showed that these models provide a new perspective for characterizing social
networks (Chapter 6), as well as to be used in practice (Chapter 8).
RG2 - Node and edge classifications. Regarding our second goal, we proposed a new
method to classify the dynamic interactions in attributed social networks. For this, we relied
on Burt’s definition of closure and brokerage [Burt, 2005], thus dealing with strong and weak
diversified interactions between the nodes along the time, respectively. Then, we based our
strategy on the persistence of the attributes in the nodes’ interaction history.

Considering the social-based classification and the dynamics of knowledge transfer:

• We defined three types of node behavior in a social structure, thus characterizing as
(i) closure those that have authority on certain attributes and, therefore, have a great
potential to diffuse knowledge from their domain; (ii) brokerage those that have a
weak association with their attributes; and (iii) innocuous those that have occasional
presence in the network.

• We classified the edges based on the same three social concepts. More specifically,
such classes emphasize the strength of relationships as strong ties (closure), weak ties
(brokerage) and non-relevant information passing through the edge (innocuous).

• We explored the dynamics involving individuals in terms of how their attributes are
transferred across the network. Then, we proposed a knowledge-transfer method that
captures the social tie of individuals and their associated attributes over time by ex-
ploring how the attributes pass through the network in order to assign social classes to
the nodes and edges.

We can summarize our experimental analysis as follows:

• We dealt with different social scenarios (academic coauthorship networks and Q&A
communities), which provided multiple social facets. Specifically in the academic
context, two scenarios were characterized by exploring the persistence of relevant to-
kens extracted from the article titles and the social ties with academic communities.
Additionally, in the Q&A scenario we characterized 28 communities divided into six
categories from Stack Exchange. In summary:

– Our social-based classification method characterized the social role of the nodes
and the strength of the social meaning of their multiple interactions. For instance,
members of the STOC (Theory of Computing) community have a tendency to
show more competence in specific topics related to computation theory, thus the
higher number of nodes of the class closure. On the other hand, SAC (Applied
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Computing) is a community mainly focused on applied computing, thus covering
a wide range of topics, which justifies the high number of innocuous nodes.

– Regarding the knowledge-transfer perspective, the communities from the Tech-

nology category have high values of the dependent and innocuous classes, which
is a behavior similar to that of the academic communities like ISSAC (Sym-
bolic and Algebraic Computation), STOC (Theory of Computing) and PODC
(Principles of Distributed Computing). Moreover, we presented contrasting so-
cial behaviors by comparing, for example, the Theory of Computing and Applied

Computing networks, and the Buddhism and Islam communities.

• Based on Newman’s experimental methodology [Newman, 2004], we statistically val-
idated the assigned classes according to network properties, thus agreeing with their
expected social meaning. Overall, our proposed method agrees with their expected so-
cial behavior, e.g., the most important classes (i.e., based on the closure and brokerage

concepts) are better well-positioned than the other ones in the social structure. Also,
our proposed method was stressed in terms of its robustness for dealing with the ex-
istence time of the nodes in a network and the discriminative power of their assigned
attributes.

RG3 - Application. Finally, we showed how to apply our proposed graph model and clas-
sification method. Specifically, we proposed two social strategies for identifying influential
nodes. For this, we focused on exploring the importance of nodes and their relationships
according to the classes assigned to them, thus weighting how better they are positioned in a
social structure. As a result, our strategy outperformed traditional network metrics and other
social-based approaches (neighborhood-based, social hierarchical structure and PageRank-
like algorithms).

9.2 Future Work

Given that our study presents a new perspective for analyzing edges and nodes based on so-
cial concepts, the next step is to investigate to what extent we can combine our strategies with
other works proposed in the literature. In this regard, although the RECAST algorithm [Vaz
de Melo et al., 2015] has not shown robust results to explicitly separate social from ran-
dom interactions by means of a good positioning in a social structure (see Figure 7.1), it
was extremely adept at identifying relationships underlying acquaintances. Thus, we can
now use such an outcome to better quantify which relationships are likely to be extremely
strong, as well as to discard those that may not have had positive indicators. Alternatively,
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we can use the RECAST to preprocess the data to, for example, filter out clearly sporadic
social interactions. In fact, as a first idea, we intend to explore concepts of the RECAST
algorithm, specially for detecting relationships with no social value. More precisely, we
intend to improve this strategy by separating strong social relationships from merely casual
interactions.

In another perspective, we can incorporate the social bond between the actors and their
communities into our problem. We have already tested the social tie actor-community by
means of attributes and the results have shown that there is a structural strength between them
over time (i.e., better network properties). But now, we can formalize a community-based
strategy in order to identify a set of nodes (social circles) that have some structuring power
in certain communities. By grouping similar nodes instead of considering them individually,
we can provide a better assessment when establishing the strength of the relationships. For
instance, bridges between groups can be considered more important than those connecting
two individual nodes in the same group. We also intend to apply our social concepts to the
problem of community detection by weighting the edges in terms of their assigned social
classes. In this way, we plan to investigate the persistence of the nodes with their neighbor-
hood to better assess each associated social class [Silva et al., 2020].

Finally, considering that nodes positioned in different parts of a network can have sim-
ilar structural roles within their local network topology [Donnat et al., 2018], we can learn
such structural representations to better assess the social role of the nodes and the meaning
of their interactions. Particularly, we can investigate how to consider small patterns (i.e.,
motifs [Paranjape et al., 2017]) involving the nodes and their associated attributes. In con-
clusion, discussing such issues corroborates to provide insights for characterizing complex
networks.
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