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Resumo

O avanço no desempenho de computadores é promovido em diversas frentes. Iniciativas
como a implementação de algoritmos ótimos, paralelização de algoritmos e arquiteturas
e, em um nível mais baixo, a Lei de Moore, têm garantido a evolução do desempenho.
Essa última, em especial, já apresenta claros sinais de esgotamento impondo à indústria
e à academia a busca de alternativas. Isso ocorre porque a geração de calor tem sido
um dos principais entraves na continuidade da redução das dimensões dos dispositivos
digitais. Landauer investigou a origem deste problema e demonstrou analiticamente
em 1961 que a causa é o apagamento de informação que ocorre em cada porta lógica.
O Princípio de Landauer, nome pelo qual este limite energético fundamental ficou co-
nhecido, foi provado experimentalmente em 2012 indicando que de fato há um limite
na escalabilidade energética para sistemas computacionais convencionais. Neste tra-
balho, são identificadas e exploradas oportunidades de redução dos limites energéticos
fundamentais em circuitos digitais de dispositivos de acoplamento local de campo. As
estratégias propostas de redução do apagamento de informação são baseadas em ma-
nipulações na temporização ou no leiaute dos circuitos após o processo de síntese lógica.
Avaliando o impacto das alterações da temporização sobre um conjunto de benchmarks
do estado-da-arte, foi observado que há um grande espaço de configurações para os cir-
cuitos. Neste caso há um compromisso entre vazão e energia onde a melhora de uma
destas métricas implica na degradação da outra. Através da análise deste espaço de con-
figurações foi possível indicar estratégias ótimas que permitem melhorar uma métrica
e minimizar a degradação da outra. Especificamente, foi desenvolvido um algoritmo
que, dada a rede lógica de um circuito, retorna a configuração que produz a energia
dissipada mínima enquanto considerada uma restrição mínima de vazão. Também foi
desenvolvido um algoritmo em que dada uma restrição máxima de energia, encontra
a vazão máxima. Desta forma, um projetista pode encontrar a melhor configuração
de temporização dado seus requisitos de projeto. Experimentos demonstraram que os
algoritmos propostos superam o algoritmo do estado-da-arte em qualidade e quanti-
dade de soluções, sendo capaz de dominar 56% das melhores soluções e gerar 11⇥ mais
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soluções em média. Outra contribuição deste trabalho é a proposta de um novo tipo
de sistema parcialmente reversível. A estratégia de redução de perdas energéticas con-
siste na mudança de leiaute do circuito de forma a incorporar derivações (fanouts) em
portas lógicas. Observa-se neste caso que os limites energéticos fundamentais podem
ser reduzidos em média em 44% sem nenhum atraso adicional dos sinais lógicos. Caso
atrasos não sejam um problema, a redução média pode alcançar até 77%. Por fim, foi
realizada uma análise unificada dos sistemas resultantes de cada estratégia. Estes es-
forços apresentados criam novas perspectivas para o projeto de circuitos de dispositivos
de acoplamento local de campo onde a eficiência energética é essencial.

vii



Abstract

Progress in computer performance is promoted on several fronts. Initiatives such as
the implementation of optimal algorithms, parallelization of algorithms and architec-
tures, and, at a lower level, Moore’s Law, have guaranteed performance evolution. The
latter, in particular, already shows clear signs of exhaustion, imposing on industry and
academia the search for alternatives. The reason is heat generation, which has been
one of the main obstacles to reducing digital devices’ dimensions. Landauer investi-
gated the origin of this problem and demonstrated analytically in 1961 that the cause
is the erasure of information in each logic gate. This fundamental energy limit, named
Landauer’s Principle, was experimentally proven in 2012, indicating that there is in-
deed a limit on energy scalability for conventional computer systems. In this work,
we introduce approaches to reduce those losses by applying post-synthesis methods.
First, we propose a novel method to divide Partially Reversible Pipelined circuits into
stages, computing the optimal energy vs. throughput tradeoff. Specifically, we develop
an algorithm that, given the circuit, it returns the division that yields the minimum
possible energy dissipation while considering a minimum throughput restriction. We
also developed an optimal algorithm that, given the maximum energy restriction, finds
the maximum possible throughput. Therefore, the designer can have the best par-
tially reversible pipelined circuit configuration according to its project requirements.
Computational experiments show that our algorithm outperforms the state-of-the-art
algorithm from the literature in solution’s quantity and quality, being able to domi-
nate about 56% of its best solutions and to generate 11⇥ more solutions, on average.
The other strategy is a novel technique that identifies exploitable fan-outs and uses
them to reduce energy losses in FCN circuits, thus enabling the design of new types of
partially reversible systems. Moreover, we propose an algorithm that creates partially
reversible systems while allowing the designer to choose between energy reduction with
no effect on the delay or focus solely on energy and accepting a potential delay penalty.
Simulation results for state-of-the-art benchmarks indicate an average reduction of the
fundamental energy limit by 44% without affecting the delay. If delay is not the main
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concern, the average reduction reaches even 77%. Finally, we present a unified analysis
of both partially reversible systems. These efforts open new perspectives in designing
FCN systems where energy efficiency is mandatory.
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Chapter 1

Introduction

The semiconductor industry has always acted as one of the main players in computer
performance evolution through Moore’s Law support. Proposed by Gordon Moore in
1965, his law states that the number of transistors in integrated circuits doubles within
a few years [Moore, 1965]. More than an empirical observation, this "law" absorbed
other meanings that together became goals for the industry [Mollick, 2006]. Dennard
et al. were the first to formally broaden these meanings by associating Moore’s Law
with transistor feature size, delay time, and power density reductions [Dennard et al.,
1974].

In addition to these technical aspects, Moore’s Law also embodied economic char-
acteristics. As transistors shrunk and chips became faster, the market grew to not
only enable the return from investment in research and development but also allowed
the funding for next generation advancement [Cross, 2016]. Figure 1.1 quantitatively
presents the evolution of these ideas and also reveals some interesting information. Al-
though the number of transistors per chip continues to follow the same pattern, some
aspects no longer improve, such as the clock frequency. When it comes to the monetary
cost, the situation is even worse as each transistor has become more expensive.

Power dissipation deserves special attention, as it is considered one of the main
obstacles to survival of Moore’s Law [DeBenedictis, 2017]. The main reason for that
is transistor miniaturization, which has led to reducing the channel-to-gate insulating
layer to a few atoms. In a thinner layer, electron tunneling is facilitated and, conse-
quently, leakage current increases. This scenario contributes to a decrease in energy
efficiency and a less predictable operation of the device, i.e., the transistor deviates
from the ideal model of an electronically controlled switch. Although alternatives
to minimize this problem have already emerged, such as the FinFET or the stacked
nanosheet FET, recent studies indicate that this device is reaching the end of its energy
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1. Introduction 2

Figure 1.1: Intel’s processors evolution [Cross, 2016].

improvement process [DeBenedictis, 2016; Ye et al., 2019].

1.1 Research Motivation

“The search for faster and more compact computing circuits leads directly to the
question: What are the ultimate physical limitations on the progress in this direc-
tion?” [Landauer, 1961]. This visionary statement from Landauer reveals that he was
already concerned with how far computing devices could reach. In his groundbreaking
work, he showed that every irreversible computational process, i. e., one that results
in information loss, dissipates a proportional amount of energy related to the Laws of
Thermodynamics.

Landauer meant by Information a description at the lowest level of any physical
artifact performing a specific computation. Despite the decades of debate about this
energy-information relationship, Landauer’s idea was experimentally verified in differ-
ent physical artifacts, confirming a physical limit in irreversible computation [Bérut
et al., 2012; Orlov et al., 2012; Hong et al., 2016; Lent et al., 2018]. These experiments
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have also been causing a change of perspective regarding Information. It began to be
recognized as a physical quantity [Parrondo et al., 2015; Anderson, 2017, 2018; Frank,
2018b; Lent et al., 2018; Lent, 2019]. Unfortunately, although Landauer’s principle
dates all the way back to the 1960s, only recently these discussions have gained at-
tention and visibility since the thermodynamic view of computers cannot be neglected
anymore [Conte et al., 2019].

Landauer’s limit has severe implications. This ultimate energy limit is genuinely a
lower bound exclusively related to the performed computation. It is independent from
the physical quantity’s type used to encode bits, e.g., electrical, mechanical, magnetic,
and so on. Even with an additional component in the overall energy related to those
specific physical degrees of freedom, the total energy loss could not be less than the
information loss. There is why we call it fundamental energy loss, i.e., it is unavoidable.
Therefore, reducing information losses is mandatory to improve the system’s energetic
scalability, considering that technological advances can reduce non-fundamental losses.

Landauer believed that irreversibility plays an essential and inevitable role in any
computational process. It took a little more than a decade for his colleague Bennett
to show that any irreversible computational process could be mapped onto a reversible
structure, thus avoiding fundamental energy losses [Bennett, 1973]. Accurately, Ben-
nett presented a natural computational process that worked according to his idea, the
transcription of a DNA strand into RNA. Proposals for device implementations that
could incorporate the same ideas were missing. The first contributions only came in
1982 from Fredkin and Toffoli’s work, who proposed electrical and mechanical systems
capable of operating reversibly [Fredkin and Toffoli, 1982]. Their work also presented
the first reversible logic gates and a ballistic computing model.

Fredkin and Toffoli’s systems involved many idealizations, which posed substan-
tial engineering challenges in their construction. It was not until the 1990s that the first
silicon-based proofs of concept emerged. A reversible logic family has been proposed
and constructed, as well as reversible processors [Younis and Knight, 1993; Vieri et al.,
1998]. Despite these significant innovations in building reversible systems, at the same
time, the industry has also made progress with its conventional (irreversible) comput-
ing model. This scenario made funding scarce as the reversible approach would involve
a complete change in the industry and processes, so few new proposals for physical
implementation appeared [Frank, 2018a].

Meanwhile, the field of reversible circuit synthesis has evolved as an enabler path
to quantum computing. The basic primitives proposed by Toffoli and Bennett have
become the first logical gates of quantum computing [Deutsch, 1989]. Since then, this
field has advanced mainly because of the expectations of high performance for quantum
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computers due to their inherent parallelism [Saeedi and Markov, 2013]. Yet, despite
the excitement around quantum computing, it will not replace classical computing
because it addresses only a few classes of computational problems. Additionally, even
with recent breakthroughs, such as the quantum supremacy experiment, constructing
a universal quantum computer with many qubits will be challenging. There is a long
path to reach an immune or noise-tolerant implementation [Preskill, 2018; Versluis and
Hagen, 2020].

Acknowledging the inevitable end of scalability of their CMOS transistors model
and conventional (irreversible) logic, the last IRDS1 (International Roadmap for De-
vices and Systems) document presents some viable paths. Among others, two ideas
can be combined in a beyond CMOS scenario: Reversible Computing as an emerging
device-architecture interaction protocol, and Field-Coupled devices as an alternative
to conventional transistors.

Field-Coupled Nanocomputing (FCN) devices achieve computation through local
field interactions between building blocks distributed in patterns. Although this type
of device has been proposed for more than two decades, Landauer’s ideas about digital
devices and power dissipation have been incorporated into its design [Lent et al., 1993;
Tougaw and Lent, 1994; Lent and Tougaw, 1997a; Lent and Snider, 2014]. Recently,
several experimental advances have emerged in the development of its electronic ver-
sion and its magnetic version [Haider et al., 2009; Pitters et al., 2011; Kolmer et al.,
2015; Eichwald et al., 2014; Zografos et al., 2017; Hong et al., 2018a; Huff et al., 2018;
Manipatruni et al., 2019]. Moreover, recent studies show promising advances in the
development of FCN designs. For instance, placement and routing algorithms, logic
synthesis algorithms of majority-based logic networks, and theoretical studies of quan-
tum to classical transitions in FCN devices [Silva et al., 2019; Formigoni et al., 2019,
2020; Torres et al., 2020; Walter et al., 2019, 2018; Testa et al., 2018a,b; Riener et al.,
2019; Neutzling et al., 2017, 2018, 2019; Zhou and Blair, 2020; Blair et al., 2018; Ram-
sey and Blair, 2017; Blair and Lent, 2013; Cirillo et al., 2019; Ardesi et al., 2019; Ng
et al., 2020].

As shown above, there are several device-level and circuit-level innovations, but
there is still a gap between these innovations and the exploration of circuit-level re-
versibility. The last truly physically reversible FCN system date back to 2011 [Ottavi
et al., 2011]. There is a majority of other works linking FCN reversibility to FCN
fault tolerance circuits and none of them are physically reversible in the given con-
ditions [Ma et al., 2008; Thapliyal and Ranganathan, 2010; Sen et al., 2014; Roohi

1https://irds.ieee.org/editions/2018/beyond-cmos
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et al., 2016; Singh et al., 2017; Chabi et al., 2017; Das and De, 2017; Kianpour and
Sabbaghi-Nadooshan, 2017]. Finally, reversible logic synthesis is computationally more
expensive than conventional synthesis and it is mostly directed to quantum systems
[Saeedi and Markov, 2013; Soeken et al., 2018; Testa et al., 2018a; Wille et al., 2019;
Saeed et al., 2019]. Even when targeting CMOS based reversible logic, the primitives
are not the simplest and most generic for FCN classical reversible computing [Morrison
and Ranganathan, 2014; Frank, 2017; Zulehner et al., 2019].

1.2 Thesis Statement and Goals

This work delivers strategies to reduce fundamental energy limits based on the ideas
of reversible (classical) computation applied to circuits of FCN devices. Overall, this
thesis addresses the general question: "Is its possible to reduce the fundamental energy
limits for a FCN circuit without any synthesis change? Specifically, can we take advan-
tage of the current state-of-the-art irreversible logic synthesis algorithms and reduce
energy limits in a post-synthesis process?"

The specific objectives of this work are:

1. Review FCN’s information loss quantification and its dynamics to identify reduc-
tion opportunities.

2. Conduct an in-depth analysis of energy-throughput tradeoff for FCN partially
reversible pipeline to enhance it.

3. Construct a method to reduce the energy of FCN circuit without any throughput
degradation.

4. Extend the tradeoff analysis on the energy reduction of FCN circuits and other
relevant metrics of digital circuits.

1.3 Contributions

This thesis fulfills a gap between the physics of FCN devices and efficient computation.
We present, in a novel way, physical principles related to computing and Field-

coupled nanocomputing devices specifics properties. We explain Landauer’s Principle,
Bennett’s Reversible Computing proposal, Field-coupled nanocomputing devices fun-
damentals, and their clocking systems.
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We dramatically extend FCN partially reversible pipeline limits. First, we de-
signed a new simulation mechanism for partially reversible pipelines and embedded it
in the primary CAD tool of local field coupling devices. Next, we studied the Energy-
Throughput configuration space for these systems. Both contributions were published
in the Journal of Computational Electronics [Chaves et al., 2018a]. Then, we proposed
algorithms capable of producing the best (optimal) configurations for a specific netlist.
Precisely, given a netlist, our algorithm returns the best pipeline division based on a
throughput or energy restriction. This study was published in the IEEE Design and
Test journal [Ribeiro et al., 2020]. A preliminary version of this work, a heuristic
version, was firstly published in the Symposium on Integrated Circuits and Systems
Design [Ribeiro et al., 2018a].

We proposed and validated a new type of FCN partially reversible system based
on layout manipulation and without any circuit throughput degradation. First, we
created new partially reversible gates. Then, we designed post-synthesis algorithms
that locally change a netlist by replacing conventional gates with our proposed new
gates. Next, we validated our techniques and evaluated the results when applied to
the state-of-the-art benchmarks. This study was published in the IEEE Transactions
on Nanotechnology [Chaves et al., 2019]. A preliminary version of this work was firstly
published in the IEEE International Symposium on Circuits and Systems [Chaves et al.,
2018b].

Finally, we introduce a unified analysis with both partially reversible systems.
Notably, we analyze these systems in an Energy-Throughput-Depth space, consolidat-
ing the relevant metrics influenced by our techniques. This analysis reveals the typical
applicability for each system.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents the foundations
for the development of this work, i.e. the Landauer’s Limit, the reversible computation
proposal and the basic principles of local field coupling devices. Chapters 3 and 4
present the main contributions of this work, namely the the energy improvements
via clock interventions and the improvements via layout interventions, respectively.
Chapter 5 presents a unified analysis of both partially reversible systems. Finally, the
last chapter presents some final remarks and possible future work.



Chapter 2

Background

This chapter presents and explains the background for this thesis. Far from being an
exhaustive review, the intention is to explicitly highlight and clarify only the funda-
mental concepts in the field. Section 2.1 describes Landauer’s work and briefly dis-
cusses its implications [Landauer, 1961]. Bennett’s Reversible Computing is presented
in Section 2.2 [Bennett, 1973]. Next, the connection between gate abstractions and
reversibility is explained in Section 2.3 [Anderson, 2013]. Finally, Sections 2.4 and 2.5
introduce Field-Coupled Nanocomputing devices and their clocking systems.

2.1 Irreversibility and Heat Generation in the
Computing Process

In his groundbreaking work, Landauer started an analysis from basic principles. First,
that digital devices are designed in such a way that the transitions between their
physical states or groups of physical states necessarily correspond to the input/output
relations specified by a truth table. Hence, a binary device must have at least one
degree of freedom representing information. The state of a binary device is classically
associated with kBT Joules of thermal energy, where kB is the Boltzmann constant
and T the temperature of the environment. Also, to operate in a reliable way, the
device must present a potential barrier between its two states with a value higher than
thermal energy. Therefore, its final state is determined only by the influence of its
inputs and not by noise. Figure 2.1 shows an example of a bistable potential well of a
binary device.

This energy landscape represents the dynamic of a device. The device state,
represented by the red dot, moves because of a cyclical energy exchange with its sur-

7



2. Background 8

Figure 2.1: Potential energy landscape of bistable devices and system state (red dot).
The example presents a system in "0" state and a barrier of at least kBT Joules between
the two states.

roundings, but it always ends in the potential energy minimum, i.e., the stable points.
The external influences could come from a number of sources and types. They could
be the inputs, undesired noise, or intended control signals such as clocks.

Landauer showed that the fundamental energy dissipation occurs when devices
irreversibly erase information. He defined as logically irreversible operations those
which generate outputs that do not uniquely define the operation input values, i. e., no
bijective function is performed. For example, a binary device D executing a RESTORE
TO 1 operation, i. e., starting from an undefined initial state of 0 or 1 and ending in
the state 1, causes irreversible erasure of information.

Landauer’s argument relies on the concept of physical entropy and the implica-
tions of the Second Law of Thermodynamics. First, the usual definition of entropy in
Statistical Mechanics is a measure of information, S = �kB

P
j

pj ln(pj), where kB is

the Boltzmann constant, j labels the device data states and pj denotes their respec-
tive probabilities of occurrence. Additionally, one should consider a device such as D

(detailed above) with two equiprobable initial states and in thermal equilibrium with
the environment. Then, the initial configuration has 0.6931 kB units of entropy, while
the only possible final configuration has an entropy of 0. The Second Law of Ther-
modynamics indicates that this entropy reduction of the device must necessarily occur
with compensation of greater or equal intensity in the neighborhood entropy. Thus,
the energy transferred in the form of heat is at least 0.6931 kB T Joules.

As aforementioned, Landauer carried out a calculation solely based on
information-bearing degrees of freedom. Therefore, as any physical computational
artifact must contemplate at least these degrees, in his view, it is an unavoidable loss
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Figure 2.2: An adiabatic RESTORE TO 1 operation.

independent of the material used to implement the irreversible operation. That means
fundamental energy losses result from the erasure of information, and thus, cannot
be reduced by any emerging technology or process improvement. Considering its im-
plication, it is not surprising that Landauer’s Principle has been debated since its
publication.

Only after 2012, the first experiments appeared. Bérut et al. proved the principle
using a system of a single colloidal particle trapped in a modulated double-well potential
[Bérut et al., 2012]. Orlov et al. used a switched voltage source and an RC circuit
to manage the experiment [Orlov et al., 2012]. Hong at al. performed the erasure
test with nanomagnets, and, finally, Neri and López-Suárez used a micro-mechanical
system [Hong et al., 2016; Neri and López-Suárez, 2016].

All these experiments share the same energetic conditions and protocol showed
in Figure 2.2 and described as follows. The systems start from a double-well energy
potential that is adiabatically, smoothly, distorted to reach the reset process. These
tests made in entirely different physical systems confirm the generality of Landauer’s
Principle.

2.2 Logical Reversibility of Computation

Bennett proposed a reversible Turing machine to circumvent the problem raised by
Landauer [Bennett, 1973]. The idea is to design a machine that operates in three
steps. In the first one, the machine performs the same steps as its irreversible equivalent
would perform, but saving the intermediate results in an additional tape, ensuring the
reversibility of each step. The second step consists in copying the final result to another
additional tape. Finally, the original copy of the final result is used as input to reverse
the computation. This third step uncomputes all signals saved in step 1. At the end
of the whole process, the machine returns to its original configuration, and its tapes
end only with the original input and the final result.

Bennett’s idea involves time and space tradeoffs [Bennett, 1989; Li and Vitanyi,
1996]. Reversibility can be ensured by penalizing memory, that is, by performing all
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the steps that make up the desired computation and storing the intermediate results
and then decomputing them. On the other hand, the whole computational process can
be performed by dividing it into cycles: an intermediate step is performed, its response
is copied, the step is undone, and the next one is performed, thus damaging the time
in this approach.

Bennett’s proposal was considered a significant milestone because it proved that
any irreversible function could be simulated by a reversible machine. This is the only
possible way to perform arbitrary computations with arbitrarily low energy costs. Un-
fortunately, despite Bennett’s framework application example, i.e., the transcription of
a DNA strand into RNA, his work lacks a demonstration of an engineered reversible
device.

One of Landauer’s experimental proofs, specifically Orlov and collaborators’ ex-
periment, also demonstrated Bennett’s idea in practice [Orlov et al., 2012]. They made
the aforementioned logically irreversible operation RESTORE TO 1 mapped in a re-
versible system. During the erasure process, they put the system in physical contact
with another artifact (which is also part of the machine) holding the same information.
Thus, as the computer avoids information erasure, this change is physically reversible.
In their experiment, Orlov’s group performed this reversible erasure expending only
0.001 kB T Joules. To clarify the nuances of this experiment, the following section
brings a broader framework.

2.3 Gate Abstractions and Reversibility

Although Bennett explained his reversible protocol with an abstract machine, i.e., a
reversible Turing Machine, actual computers are typically made of logic gates. There-
fore, it is crucial to elucidate the logical-physical link relating gate abstractions and
reversibility, which Anderson clarifies and formalizes the more general case [Anderson,
2013]. From the physical point of view, the logical transformation performed by the
system is associated with the temporal evolution of a collection of interacting physical
artifacts. Thus, the first step in understanding the proposed model is defining the
boundaries in terms of space and time of all artifacts involved.

This is satisfied by associating a set of subsystems, shown in Figure 2.3, and a
computational cycle. The Sin and Sout physical subsystems are artifacts that maintain
unambiguous physical representations of input and output values through distinguish-
able physical states at specific moments within a cycle. The G subsystem represents
the physical artifact that performs the mapping between Sin and Sout states, that is,
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Figure 2.3: Physical gate abstraction. Adapted from Anderson [2013].

the implementation of the desired logic. The E artifact represents the environment,
which is the entity that receives the energy in the form of heat when the computer
system (SinGSout) loses information.

Figure 2.4a represents the typical irreversible computational cycle with four steps
performed by a logic gate that has two input wires and only one output wire. Note that
Sin is twice the height of the Sout to represent that the first could carry at most 2 bits
of information and the later no more than 1 bit. The first step starts with information
flowing from Sin to G (highlighted in green). Next, while information remains in G, Sin

loses it, and Sout receives only a fraction. Then, in the third step, some portion of the
information is irreversibly lost since it has nowhere to flow from G to Sout (highlighted
in red). The other portion is in Sout. Lastly, in the fourth time step, the system
adjusts for a new computational cycle with Sin receiving new data and Sout losing its
information.

Note that the Landauer Principle applied to this model only determines that the
environment receives the information lost by the compound SinGSout over the cycle.
Yet the Principle does not determine how, at the end of the cycle, the information
should be distributed among these subsystems that compose the computer. There are
two options for making an operation physically reversible. The first possibility occurs
when the system, even with a gate G not performing a 1-to-1 mapping, has each of its
components erasing information with its inputs having a copy of the same information.
Take a look at Figure 2.4b. First, Sin transfers its information to G. Second, Sin

and G hold the information while Sout receives a portion of the information from G.
In the third step, the artifact that is being fed by the computer copies the result.
Then, in steps 4 to 8, the information is erased in reverse order, i.e., from outputs
to inputs, always with an adjacent copy nearby. By doing so, the computer never
loses information to the environment. Information always flows through computer and
returns to its inputs.
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(a) Irreversible process. (b) Reversible process case 1. (c) Reversible process case 2.

Figure 2.4: Three types of logic operations. The green color represents information
flowing through a computational system. The red color shows irreversible information
erasure. Irreversible process (a) presents two cycles, Reversible process case 1 (b) shows
only one cycle and Reversible process case 2 (c) presents two cycles.

The other possibility occurs when the system performs a bijective relation between
Sin and Sout states. In this case information and erasure flow forward from Sin to Sout

through G, which performs a 1-to-1 relation between Sin and Sout states. Figure 2.4c
illustrates the process. First, Sin transfers its information to G. Second, Sin loses its
information in contact with G, which holds the same information. At the same time
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Sout receives identical information from G. In the third step, Sin holds no information,
G loses its knowledge while Sout still retains the information. Finally, step 4 completes
the computational cycle, i.e., Sin receives new data when Sout transfers the previous
computation results, which contain at the end of the cycle all the information that was
originally in Sin at the beginning of the cycle.

There is one last subtlety. After Bennett’s contribution, Fredkin and Toffoli
proposed special logic gates, which perform a 1-to-1 mapping [Fredkin and Toffoli,
1982]. Their reversible gates perform 2

n relations linking inputs and outputs, where
n is the number of input bits. Unfortunately, this requirement, a bijective connection
between inputs and outputs, is more restricted than it should be. What is actually
required for physical reversibility is a 1-to-1 mapping between initial and final physical
states. Take, for example, some gate in a specific place in a netlist where only occurs a
subset of its 2n inputs combinations with just bijective relations. This gate is logically
reversible, and it could be physically designed to reach arbitrarily low energy levels
[DeBenedictis et al., 2016]. Frank formalized and named this concept as "Conditional
Reversibility" [Frank, 2005, 2017]. In conclusion, the system could not expend any
amount of energy in the form of heat.

2.4 Field-Coupled Nanocomputing Circuits

Field-Coupled Nanocomputing (FCN) devices are a potential alternative to traditional
CMOS technologies [Anderson and Bhanja, 2014]. Lent et al. proposed this type of
digital device based on four essential ideas [Lent et al., 1993]. The first consists in
using the position of the charges to encode Boolean states. This feature comes from
the ability to create structures known as quantum dots that are capable of trapping
electrical charges. The second idea relates to the robustness of devices. According
to Landauer, devices that exhibited an bistable information transfer function with
saturation would be more tolerant to variations in the manufacturing process and
environmental disturbances [Landauer, 1989]. The third idea is the nonlinearity of
charge tunneling between such dots because of charge quantization. Finally, the last
idea is the notion of a local coupling architecture as an analogy to cellular automata.

FCN devices are based on nanoscale cells that interact via local fields in absence of
any current flow. This enables tremendously low energy dissipation and motivated nu-
merous contributions in the past. Several physical realization of FCN devices have been
developed both for its electronic version, Quantum-dot Cellular Automata (QCA), and
for its magnetic version, Nanomagnet Logic (NML) [Haider et al., 2009; Pitters et al.,
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2011; Eichwald et al., 2014; Zografos et al., 2017; Hong et al., 2018b]. Moreover, recent
studies show promising theoretical advances in the development of FCN designs [Lent
et al., 2016; Walter et al., 2018; Torres et al., 2018; Ribeiro et al., 2018a,b].

In case of QCA, each cell consists of four quantum dots, i. e., structures able to
confine electric charges. These quantum dots are arranged in a square-like fashion such
that free mobile electrons can move between them. Since these electrons impose mutual
repulsion due to Coulomb interaction, they tend to locate themselves at opposite cor-
ners of the square [Lent and Tougaw, 1997b]. Thus, they assume stable states, called
polarizations, which are energetically equal and interpreted as binary 0 and 1. When
placed close to each other, the polarization of one QCA cell influences the polarization
of the other–again by Coulomb interaction. One can exploit this effect to construct
logic gates, such as the NOT and the MAJ gates. Finally, locking one of the inputs of
a MAJ gate to 0 or 1-state creates an AND or an OR gate, respectively.

NML circuits operate in a similar fashion but, instead of cells with quantum dots,
the technology has single-domain nanomagnets as basic blocks. The magnetization of
each nanomagnet is associated with binary 0 and 1, where both states are energetically
equal as in QCA. Again, when placed close to each other, the magnetization of one
nanomagnet influences the magnetization of its neighbors. The MAJ gate has the
same layout as its QCA counterparts, while the NOT gate is even simpler through
antiferromagnetic coupling [Imre et al., 2006].

To build more complex FCN devices, one does not only needs to select the place-
ment of cells carefully but also needs to synchronize the information, avoiding a signal
to reach a logic gate and propagate before the other inputs reach the gate. This is
achieved by clocking systems and is crucial for FCN circuits, ensuring its correct oper-
ation.

2.5 Clocking Systems

The clocking system is an important factor in the dynamics of FCN circuits. Its
principal functions are the synchronization of data flows and the implementation of
adiabatic operation, enabling circuits with high energy efficiency. In QCA circuits,
this efficiency is archived by adiabatic switching typically divided in four phases [Lent
and Tougaw, 1997b; Lent et al., 2016]. The dynamics of NML circuits can be controlled
by clock signals with three and four phases. However, lowest energy consumption is
also only possible with the latter [Lambson et al., 2011; Martini et al., 2016].

The clock is an electrical field which controls the tunneling barriers within a cell,



2. Background 15

(a)

False

P = -1

(b)

True

P = +1

(c)

Coulomb Repulsion

A A

(d)

Coulomb

Repulsion

A ¬A

(e)

Coulomb

Repulsion

B <A, B, C>

A

C

(f)

Figure 2.5: QCA: (a) A basic cell. (b) A cell fixed on false. (c) A cell fixed on true.
(d) A wire. (e) An inverter gate. (f) A majority gate.

thus keeping control when a cell might or might not be polarized [Lent and Tougaw,
1997a]. It can be applied to groups of cells (clock zones). In each zone, a single
potential can modulate the barriers between the dots. The scheme of clock zones
permits a cluster of QCA cells to change their polarization accordingly to its neighbors
from the previous zone, performing a certain calculation. It also allows the same cluster
to have its states frozen, acting this way as inputs to the next clock zone.

QCA’s clocking phases, named Switch, Hold, Release, and Relax, do this feature.
On the Switch phase, the cell starts with its tunneling barriers low, growing gradually,
allowing the cell to polarize according to the state of their input cells. On the next
phase, Hold, its barriers stay high while the cell holds its polarization and can be used
as input to the next stage. On the Release, the barriers lower gradually, allowing the
cell to depolarize. Finally, on the Relax phase, the barriers continue lowered while the
cell stays relaxed.

Landauer clocking scheme has four different phases [Lent and Tougaw, 1997a].
Figure 2.6 shows an example. In the first time step, the cells in clock zone 1 are in
Switch, which means that they start depolarized with low tunneling potential barriers.
During this phase, the barriers between the dots are progressively increased, and the
cells begin to polarize according to the state of their drivers (their input or neighbor
cells). At the end of the first step, the barriers are high enough to avoid the tunneling
of any electron, so the cells’ states are fixed.

During the second time step, clock zone 1 is in Hold, the cells have fixed states
as the barriers are kept high. So they can be used as inputs to the cells in clock zone
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2, which are in Switch.
In the third time step, the cells in clock zone 1 enter the Release phase, where the

barriers are progressively lowered, and the cells are allowed to relax to a depolarized
state. The cells of clock zone 2 (Hold) polarize the cells in clock zone 3 (Switch).
One can see that, until this step, all input information is still preserved in the circuit.
However, it is not the case for the fourth time step.

In the fourth, zone 2 starts to release its state and then irreversibly erases part of
circuit’s inputs highlighted in red. Despite this issue, Landauer’s clock has a fixed
throughput that is independent from the depth of the circuit due to its inherent
pipeline. We have new output values for each 4 time steps, a full cycle. Therefore, any
circuit with Landauer’s clock has a fixed throughput of 1/4 Operations Per Time Unit
(OPTU).

An alternative to avoid this irreversible erasure of information is to change the
clocking signals in a way that the circuit can naturally return to its initial state after
the computation. This requires a modification in the timing of the clocking signals.
This way the information is simply held in place by the clock until a computational
block is complete, then erased in the reverse order of computation [Lent et al., 2006].
This is called Bennett clocking. Figure 2.7 shows an example.

In the first time step, the cells in clock zone 1 are in Switch, meaning that they
can polarize according to the polarization of the input cell. At the same time, the cells
in clock zones 2 through 6 are in Relax.

In the second time step, clock zone 1 is in Hold, clock zone 2 changes to Switch

and clock zones 3 through 6 remain in Relax. This pattern lasts until clock zone 6

reaches Hold, as one can see in the seventh time step.
Then, in the eighth time step, clock zone 6 changes to Release, while the other

clock zones are in Hold. In the ninth time step, clock zone 6 is in Relax, clock zone
5 is in Release and all other clock zones still in Hold. Again, this pattern lasts until
all clock zones reach Relax phase. One can see that, in all steps, the information is
reversibly erased since a copy still exists in an adjacent cell.

Despite this six zones example, the Bennett clocking strategy works for an arbi-
trary number of zones. Nevertheless, this scheme induces a delay in signal propagation,
since all cells in a circuit must be totally polarized, and then completely depolarized
in reverse. This disrupts the pipeline of QCA circuits when operating with Landauer
clock. Note that we use the same layout in Figures 2.6 and 2.7. This circuit needs 4

time steps to transfer information under Landauer clock scheme. Therefore it has a
throughput of 1/4 OPTU. Under Bennett’s clocking scheme, the same circuit needs 14

time steps to transfer information. Therefore, it has a throughput of 1/14 OPTU. We
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can generalize the cycle size under Bennett’s operation: 2n+2, where n is the number
of zones. Thus, the throughput in all Bennett’s schemes is 1/2n+2 OPTU.

To minimize the damage in throughput and preserve some gain in energy con-
sumption, Ottavi et al. [2011] proposed an architecture which divides a circuit into
smaller Bennett clocking regions or stages. Instead of waiting for the full circuit to
switch and then relax, the system could recover its pipeline attribute due to its division
in stages. As soon as any stage’s computation result reaches its output, the next stage
starts to switch, and the current stage begins to release.

The Figure 2.8 shows an example of a circuit with two stages (Bennett clocking
regions), each of which has three Bennett’s zones. First, the zone 1 in stage 1 switches
while the other zones of the same stage are in relax phase. In the second time step
the aforementioned zone 1 stays in hold phase while the following zone switches. This
pattern continues until the information reaches the current stage’s output and the
next stage’s input as we could see in steps 1 to 4. In the fifth time step the different
dynamics from the previous case (Bennett clocking) arises: the last zone of the first
stage starts to release while the second zone of the second stage starts to switch. So,
while the data moves through the second stage to polarize its output, the first stage
lose its polarization related to the previous computation as we can see in steps 5 to 8.
After that, the system ends its cycle returning to its original state.

Note that Bennett’s clocking scheme is a particular case of Ottavi’s pipeline when
the number of stages is equal to 1. For this reason the throughput is also 1/2n+2 OPTU,
where n is the number of zones in a stage. One sees that losses always occur once per
cycle between stages (cycles 7 and 10 in Figure 2.8).

The three configurations, i.e., Landauer’s, Bennett’s and partially reversible
pipelines, have differences regarding information/energy losses. In Landauer’s case,
the losses are a property of the layout. They are a result of locally states’ merge,
occurring within the conventional logic gates, e.g., AND, OR, MAJ. In these gates, n-
bits inputs are merged in some particular way to produce 1-bit output. It is possible
to build reversible systems under this clocking scheme if the designer uses reversible
logic gates (with a 1-to-1 relation between gates’ initial and final states) instead of the
conventional ones [Lent et al., 2006]. The other typical artifacts in logic netlists (in-
verters, wires, and fanouts) are already reversible ones. This strategy will be explored
in Chapter 4.

The dynamics of the Bennett’s clocking are reversible independent of the layout.
Figure 2.7 shows that the circuit can always return to any previous state exactly in
reverse order if the zone’s control signals are time-reversed. At the end of a cycle, the
losses within the circuit are negligible, and only its primary inputs could be lost [Lent
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et al., 2006].
The partially reversible pipeline is an intermediary case since each stage is exactly

a Bennett clocked circuit. Consequently, the losses take place in each stage’s inputs.
Note that this means that even wires that connect stages are no longer reversible. This
strategy will be explored in Chapter 3.

Let’s take the layout in Figure 2.8 as an example. In Landauer’s clock, the losses
will occur in the two MAJ gates. In Bennett’s clock, they will only occur in the circuit’s
primary input. Finally, in the partially reversible pipeline, it will occur in the two
stages inputs.

2.6 Summary

Computers do operations over random data. These machines typically do not know
about their input probabilities; they only do deterministic transformations on their
input data. This knowledge of input probability distribution, quantified by physical
entropy, is linked to energy fundamental limit and heat generation. As mentioned pre-
viously, heat could be eliminated through mapping computation in a reversible process.
Reversibility is related not only to the device’s mapping but also to its boundary con-
ditions. All information lost by a logic gate must flow to another part of the computer,
either inputs or outputs, so it is not thermalized.

Field-Coupled Nanocomputing devices were conceived from Landauer’s ideas.
Hence, their energetic losses are mainly related to how clocking and layout together
allow information erasure. Our contributions to reduce such losses are presented in
the next two chapters. Chapter 3 presents techniques based on timing manipulation.
Afterwards, Chapter 4 presents a new proposal for a partially reversible system based
on layout manipulation.



Chapter 3

Partial Reversibility via Clocking

The notion of Partially Reversible QCA Systems was first employed by Ottavi et al.
[2011]. Here, we propose new contributions to enhance this structure. The first con-
tribution is an algorithm enabling the simulation of clock-based reversible systems in
the main QCA CAD tool, QCADesigner [Walus et al., 2003]. Another significant con-
tribution is our exploration of the energy/throughput tradeoff in the state-of-the-art
benchmark suite. This analysis allows us to identify valuable opportunities to improve
both metrics. Finally, we propose an optimal algorithm to return the best energy dissi-
pation given a throughput restriction and the opposite, i.e., the best throughput given
an energy dissipation restriction.

3.1 Partially Reversible Pipelines in QCADesigner

QCADesigner is the main tool used to simulate QCA circuits [Walus et al., 2003]. This
software performs simulations based on two engines. The first and simpler type, called
bistable, assumes that each QCA cell is a simple two-state system and does not take
into account any timing consideration related to the quantum-mechanical evolution of
the system. The second type, namely coherence vector engine, is based on the density
matrix approach, which models the power dissipative effects of QCA cells. Unlike the
bistable engine, the latter performs a time-dependent simulation of the QCA circuits.
Although one of the engines presents energy considerations, its calculations are not
information oriented. It does not consider losses related to information erasure. It is
worth to mention that QCADesigner uses the tunneling probability as clock signals
rather than the tunneling potential barriers.

The latest version of the QCADesigner only performs Landauer clocked circuit
simulations. In this case, the pipelined dynamics in Figure 2.6 results from the use of

22
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Figure 3.1: Wave base for Bennett’s clocking signals generation. QCADesigner uses
the tunneling probability as clock signals rather than the tunneling potential barriers.
The clocking phases Switch, Hold, Release and Relax are indicated by sw, hd, rs and
rx, respectively.

four clocking waves shifted by ⇡/2 as potential barrier modulators. QCADesigner cal-
culates the clock signal as a hard-saturating cosine and ties it directly to the tunneling
energy. To implement this clocking scheme in the software, they pre-established and
used four clocking waves to switch the circuit accordingly. Those waves are calculated
as being truncated cosine in a way that Hold and Relax phases have the same duration.

In the Bennett clocking scheme, Hold and Relax phases have different, but spe-
cific relations. In a circuit with four Bennett clock zones, as in Figure 2.7, the first
clock zone stays 7 time steps in Hold and 1 time step in Relax. The second zone, in
its turn, spends 5 steps in Hold and 3 in Relax. The third zone stays 3 steps in Hold

and 5 in Relax, and, finally, the last zone stays 1 in Hold and 7 in Relax. Equations
(3.1a) and (3.1b) show a way to generalize those relations for an arbitrary number of
zones:

r = 2i+ 1 , i 2 [0, k) (3.1a)

h = 2k � r (3.1b)

where i is the i-th clock zone, k is the total number of zones, r and h are the
numbers of time steps in Relax and Hold phases, respectively.

As the ratios between Hold and Relax are already known, we use it to generate
Bennett’s clocking signals. Using a⇥ cos(!t)+ b as a base function, the task is to slice
this function to generate waves as those in Figure 3.1. Here, ! and t are the clocking
frequency and time, respectively. The parameter a is a multiplicative factor of the
cosine function. It is used to enhance the function curve, decreasing or increasing the
gradient of the zones in Switch and Release phases. The parameter b is the offset of
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Algorithm 1: Bennett clock signals generation.
data : A: clock amplitude
data : !: clock frequency
result : nested waves related to Bennett clocking zones

1 cdata ?
2 foreach zone in clocking zones do

3 cdata[zone] ?
4 for t t0 to tf do

5 val  min (1, A⇥ cos (!t) + bzone)
6 val  max (�1, val)
7 med (cmax� cmin) /2
8 cdata[zone][t] val ⇥med+ cmin

9 return cdata

the cosine function between the clock zones.
We carried out a numerical analysis in order to find the parameters that lead to a

relation between Hold and Relax that met the required ratios previously established.
Then the value of clock for each time step in the simulation can be calculated. The
clocking algorithm of the QCADesigner was modified, as seen in Algorithm 1. The outer
loop at line 2 iterates over each clock zone. The inner loop at line 4 has its iterations
representing time steps. Lines 5 and 6 implements clocking signal saturations, i.e.,
they ensure that the clock is always between -1 and 1. Finally, lines 7 and 8 shift the
waves vertically so that the values are within the expected range.

It is simple to extend this implementation to allow partially reversible pipelines
simulations. For a circuit with n zones to be divided in m stages, the zone control
signals of each stage differs only by a ⇡n/m shift, i.e., the first clocking wave of the n

stage has the shape of the first clocking wave of the n+ 1 stage but delayed as can be
seen in Figure 3.2.

We performed three computational experiments to validate our algorithm using
the coherence vector engine of the modified QCADesigner 2.0.3.

First, we simulated the transmission of data through a wire (Figure 3.3). The
circuit presents one stage with four Bennett clock zones (which imply in a cycle of 10
time steps wide), using 21 cells in a 1 ⇥ 21 cells area. We measured the polarization
of the last cell in each zone and it was as expected, i.e., each one kept its polarization
only up to the moment when the polarization and depolarization of remaining zones
happened.

Second, to test a bigger structure, we simulated the operation of a 4-to-1 multi-
plexer (Figure 3.4a). The circuit presented two stages with four Bennett clock zones
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Figure 3.2: Clocking signals for a circuit with 8 zones divided in 2 stages.

each (which imply in a cycle of 10 time steps wide), using 184 cells in a 35 ⇥ 50 cells
area. Despite testing the multiplexer with all possible inputs combinations, Figure 3.4b
only shows the simulation results of a few cases for clarity.

Finally, to test a structure with more Bennett clock zones, we simulated the
operation of a 2-bit adder (Figure 3.4c). The circuit presented two stages with 16

Bennett clock zones each (which imply in a cycle of 34 time steps), using 997 cells in
a 99 ⇥ 80 cells area. Figure 3.4d shows that it works properly for all possible input
combination.

One can see that the clocking signals fulfill their role as cell potential barrier
modulators. They allow the cells to polarize only when their clocking signal is at its
lowest level (QCADesigner actually displays the tunneling probability as clock signals
rather than the tunneling potential barriers).

All presented designs also work under Landauer clock without any change in
the cells’ placement. The change in the number of clock zones in partially reversible
pipelines allows a balance between performance and energy efficiency, as demonstrated
in Ottavi’s work [Ottavi et al., 2011]. Our presented adder could be faster if we divide
our design into more stages and fewer Bennett zones per stage. However, the cost
will be the energy consumption increase. We will explore this tradeoff in the following
section.
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Figure 3.3: Validation of our Bennett clocking implementation.

3.2 Energy-Throughput Relations

The clock scheme impacts directly in the following circuit’s performance metrics:
throughput and energy. The first metric is obtained from the clock size (Section 2.5).
Therefore, for Landauer’s configuration, it has a fixed value of 0.25 OPTU due to its
inherent pipeline. In Bennett’s case and its variations, the throughput depends on
how we divide the layout into stages and is evaluated as 1/2n+2 OPTU, where n is the
number of zones inside a stage.

We evaluated the energy dissipation using a method similar to Ottavi’s [Ottavi
et al., 2011]. Despite that his implementation of the Parity Checker and Full Adder was
at a lower level with AND, OR and MAJ gates, he evaluated at a higher level considering
XOR and 1-bit Full Adders as monolithic blocks, counting the number of input bits for
each block in the design as energy losses. In our work, for Landauer’s clock scheme we
count the number of input bits for each lower level gate in the design as energy losses.
For Bennett’s and its variations, we followed exactly Ottavi’s evaluation, considering
the number of input bits in the stages as losses.

To evaluate the impact in performance for different clock configurations, we used
the EPFL Combinational Benchmark suite [Amarù et al., 2015]. These benchmarks
present 20 circuits that are divided into classes according to the nature of their function
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Figure 3.4: 4-to-1 multiplexer: (a) circuit layout and (b) functional simulation results.
2-bit adder: (c) circuit layout and (d) functional simulation results.

being 10 arithmetic circuits and 10 related to the random/control functions. We used
the benchmark’s logic netlists exactly as it was released. We consider the number of
gates on the circuits’ critical paths as the number of zones between circuit’s primary
inputs and outputs. Therefore, we are considering the best (minimum) delays.

Figures 3.5, 3.6 and 3.7 show features of various configurations of three differ-
ent circuits, Adder, Memory Controller and Sine. These specific circuits were chosen
because they have different loss patterns, but similarities to the other seventeen bench-
mark circuits. Thus, these three represent well the whole set according to the relevant
characteristics analyzed here, energy and throughput.

First, Figures 3.5a, 3.6a and 3.7a presents in the y-axis the accumulated energy
loss, and in the x-axis presents the layout’s zone where this loss occurs. Each zone
corresponds to a level. According to Section 2.5, the losses in Landauer’s clock occurs
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at each logic gate. On the other hand, in Bennett’s configurations, the losses take place
in the stage’s input. Therefore the number of energy steps in the Bennett’s curves is
equal to the number of stages.

Figures 3.5b, 3.6b and 3.7b show the number of wires and the number of gates’
input bits in each level of the circuit. Figures 3.5c, 3.6c and 3.7c show the configura-
tion space of each circuit. These images show the Energy and Throughput values for
the Landauer, Bennett and Partially Reversible Pipeline configurations. The latter is
divided into non-dominated solutions, which configurations are better than the others
in at least one aspect (energy or Throughput), and the dominated solutions, which are
worse than the others in all aspects under evaluation.

The first group contains circuits whose losses are almost constant through its
data path. It encloses the Adder, the Divisor, the Square-Root and the Round-Robin
Arbiter. Figure 3.5a shows the Adder’s accumulated energy loss for different clocking
configurations. One can see that for Landauer’s case, despite the layout’s first zones
losses, we have a linear pattern. Even in Bennett’s configurations, the pattern lasts,
i.e., the step height stays almost constant. This pattern can be explained by analyzing
Figure 3.5b, which shows the number of wires and gate’s input bits in each circuit
level. As the 7-stages partially reversible pipeline is energetically worse than Landauer’s
configuration, dividing this circuit into 7 stages or more is not worth. Figure 3.5c shows
the entire configuration space for Adder’s circuits. Bennett’s configuration presents the
best energy (smallest) and the worst throughput (smallest). Landauer’s configuration,
on the other hand, presents the best throughput (highest). Therefore, as the number
of stages rises, the throughput improves, and the energy deteriorates. We can conclude
that these divisions are only useful while the configurations have at least one metric
better than Landauer’s, energy or throughput.

The second group contains circuits whose losses decay as levels become deeper.
It encloses the Memory Controller, the Square, the Coding-Cavlc, the i2c Controller,
the Int to Float Converter, the Priority Encoder, the Lookahead XY Router and the
Voter. Figure 3.6a shows the accumulated energy loss for the Memory Controller.
There is a common pattern behind Landauer’s and Bennett’s configurations: the loss
rate diminishes as information approaches the outputs. The reason is the high decrease
in wires density from the circuit’s primary inputs to outputs, as Figure 3.6b shows.
Figure 3.6c shows viable configurations for Energy and Throughput, except for the
highest gray point (11-stages partially reversible pipeline).

The third group contains more complex circuits regarding losses rate. It encloses
the Barrel shifter, the Hypotenuse, the Log2, the Max, the Multiplier, the Sine, the
Alu Control unit, and the Decoder. Figure 3.7a shows the Sine circuit. It has different
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Figure 3.5: In-depth analysis of EPFL’s Adder benchmark
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Figure 3.6: In-depth analysis of EPFL’s Memory Controller benchmark
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patterns through the levels as seen in its Landauer’s curve. Near to the circuit’s input,
it presents a linear loss rate (zone 0 to 25). In the following zones, it has a higher
linear rate (zone 25 to 75), and then the rate decays (zone 75 to 100). Finally, it grows
again (zone 100 to 150) and then decays (zone 150 to 225). This is a consequence of
the variation in irreversible gates’ density along with the circuit levels as can be seen in
Figure 3.7b. The Bennett’s configurations energy results, on the other hand, hide this
information. The losses, in these cases, are similar to the pattern of the second group
since the division in stages also accounts the cut wires that are no longer reversible.
Note that for the sake of clarity, we do not present each possible, viable, partially
reversible pipeline configuration in Figure 3.7a.

The wire’s density change in Sine’s circuit, showed in Figure 3.7b, create an
exceptional situation: The expectation is that as the circuit is further divided, the
throughput will improve and the energy will worsen. Nevertheless, this is not always
the case as can be seen from the gray dots in Figure 3.7c that represent the dominated
solutions. The 8-stages pipeline (the leftmost gray dot) has worse energy than the
9-stages pipeline. The same situation occurs when considering throughput, i.e., the
9-stages pipeline is better than the 8-stages pipeline according to this other criteria.
The 7-stages pipeline, compared with the 8-stages, presents better (smaller) energy.
Hence, there is no reason to choose the 8-stages pipeline. In cases when energy is the
priority, one must choose the 7-stages configuration. If the priority were throughput,
the 9-stages pipeline must be chosen. The same situation occurs with 15, 16, and 17

stages. This similarity is due to both 8 and 16 stages, having a stage cut precisely in
the wire’s density peak showed in Figure 3.7b. Dividing this circuit into 20 stages or
more is not worth since its energy loss is worse than Landauer’s.

Table 3.1 summarizes the results. The first column presents the EPFL suite’s
circuits. The second column displays the number of input/output bits and the third
column shows the circuit’s depth. The fourth and fifth columns refer to Bennett’s clock
compared to Landauer’s clock. Throughput Degradation presents the ratio between
Landauer’s and Bennett’s throughput (less is better), and the Energy Improvement
shows the ratio between Landauer’s and Bennett’s energy dissipation (more is better).

The last three columns are related to partially reversible pipelines. We show only
the configuration with the maximum number of stages where the energy dissipation is
smaller than the one in Landauer’s configuration (sixth column). Taking the Adder
as an example, the 6-stages configuration has smaller energy than Landauer’s. The
next configuration, i.e., 7-stages, is energetically worse than Landauer’s (Figure 3.5a).
Therefore, the 6-stages is the frontier for viable configurations of the Adder’s partially
reversible pipeline. The Decoder entry in the table has these three columns empty
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because it has only 3 levels. Thus, it is too narrow to be divided into stages.
Landauer clocked circuits always present better throughput values, and pure Ben-

nett version (1-stage) always have fewer energy losses. Although, when we consider
those two metrics simultaneously, interesting situations arise. In 60% of the circuits
(12 in 20) the improvement in energy is greater than the degradation in the throughput
(highlighted in bold).

If throughput metric is a concern in the design, then there are possibilities in the
configuration space where the designer can reduce its degradation at the cost of in-
creasing energy dissipation. For the EPFL benchmark, the designer has, in average, 21
different configurations for each of these circuits where he can trade between these met-
rics. The number of stages displayed for each circuit sets the boundary for the search
in this configuration space. It is up to the designer to choose the best arrangement
regarding its project requirements.

3.3 Algorithms

The previous section presented some interesting relations regarding energy and
throughput in partially reversible pipelines. The energy e is directly related to the
number of wires cut when dividing the circuit into stages. The throughput, on the
other hand, is inversely proportional to the maximum stage size m (number of zones
inside a stage). In this section, we present a strategy call lazy fanouts, which reduces
the number of wires between stages. We also present two algorithms for splitting a
Partially Reversible Pipelined QCA circuit into Bennett’s stages. The algorithms focus
on finding the set of indices where each Bennett’s stage starts, while maintaining the
energy dissipation and maximum stage size as low as possible. For the sake of brevity,
we will denote the energy dissipation objective as Z(e) and the maximum stage size
objective as Z(m).

To be able to work with two objectives (Z(e) and Z(m)), we used the concepts
of dominance, Pareto optimality, and Pareto frontier. A given solution si dominates
another solution sj if one of si’s objectives is strictly better than its counterpart from
sj and all the others are better than or equal to their analogs in sj. We also say that
si is Pareto-optimal if and only if one of its objectives cannot be improved without
degrading another one, i. e., there exists no solutions for the problem that dominates
si. Finally, a Pareto frontier from a given set S of solutions is the subset F ✓ S of
solutions non-dominated by any other in S.

The first algorithm, called the Section-Splitter Algorithm, SSA, is used as base-
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line. It is an heuristic that finds good
�
Z(e), Z(m)

�
points when receiving a fixed

number of stages as input. The second, called the Optimal splitter algorithm, OSA, is
the main contribution of this work. Instead of dealing with a fixed number of stages,
it receives as input a maximum stage size restriction, i. e., the maximum value allowed
for Z(m). Then, for the given restriction, it finds the division indices that yield the
Pareto-optimal point

�
Z(e), Z(m)

�
, where Z(e) is the minimum possible. We also show

an extension that does the opposite, i. e., given a maximum energy restriction, it finds
the division indices that yield the Pareto-optimal point

�
Z(e), Z(m)

�
, where Z(m) is

the minimum possible.

3.3.1 Lazy Fanouts Netlist Manipulation Strategy

To understand how our lazy fanouts strategy works, one should first understand how
does the netlist manipulation used in Section 3.2. We call their strategy as early fanouts
since it expands every fanout at the origin gate’s level. It effectively creates all needed
wires at once and routes them to their destinations. Figure 3.8a shows how does a
netlist looks when using early fanouts.

Despite making the representation simpler and resembling the graph, the early
fanouts strategy has some drawbacks when employed in Partially Reversible Pipelines,
since it increases the number of wires passing through every level. In this work, we
apply a different netlist manipulation strategy. We call our strategy as lazy fanouts,
and it only expands a fanout right before the target gate. Hence, it avoids passing
wires through levels before they are needed, thus reducing the energy dissipation.
Figure 3.8b shows how does the same netlist in Figure 3.8a looks when manipulated
using lazy fanouts.

i

b

c d

a

(a) Netlist using early fanouts.

i

b

c d

a

(b) Netlist using lazy fanouts.

Figure 3.8: Netlist manipulation methods.

Comparing both strategies in practice (Figures 3.8a and 3.8b), one can see that
when we divide the circuit on the dashed level, the early fanouts causes the dissipation
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of 4 bits of energy while the lazy fanouts strategy dissipates 3 bits, reducing the energy
dissipation by 25% with no effect on throughput.

We carried out an experiment to evaluate the energy reduction by using the lazy
fanouts strategy over the early fanouts. To be fair when comparing both strategies, we
considered that every circuit uses every level as a section. This way, we can compare
how each strategy affects the energy in the worst-case scenario, i. e., the one with
maximum energy dissipation.

Table 3.2 presents the results of this experiment, where the first column displays
the benchmark name, the second the circuit’s depth, and the third the average energy
reduction. We evaluated the reduction for each circuit as 1�le/ee, where le and ee are the
energy from the lazy and early strategies, respectively. One can see that manipulating
the netlist reduced the energy dissipation by 47.30% on average. As in the previous
analysis, we found better results for deeper over shallower circuits. This disparity
happens because in deeper circuits the early fanouts strategy needs to spawn a more
significant number of wires since gates usually are more distant.

3.3.2 The Section-Splitter Algorithm

Our algorithm receives as input a list B of bit counts passing through each one of
the n levels, a target number of divisions s, and a maximum difference between two
section sizes d. It works by creating ranges where it can choose a position to start a
new section while respecting the d’s constraint. Then, for each range R, it selects the
position p 2 R that will dissipate the minimum energy, i. e., where Bp is minimal.

We present the section-splitter’s pseudocode in Algorithm 2. Line 1 creates the
set cuts that will hold the start positions of each section. It always selects the index
0, since it marks the start of the circuit. Line 2 initializes the first exact cut (pos),
and line 3 iterates it over all possible exact cuts on B. Lines 4 and 5 select the range
whence the algorithm will select the cut. Each range starts at �d/4 from the exact cut
and ends at d/4 after it, ensuring that the difference between two sections will never be
bigger than d, as proved below. Lines 6 and 7 selects the position with minimum bits
(energy) in the range and save it to the cuts set. Line 8 changes pos to the next exact
cut. Finally, line 9 returns the set of chosen cuts.

To demonstrate that the section-splitter algorithm never selects two sections with
size difference bigger than d, we will consider the worst case scenario. In this scenario,
a section S1 begins at the stop of a range centered at pos1 and ends at the start of
the next one (centered at pos1 + n/s), i. e., its size is the minimum possible. Besides,
a different section S2 begins at the start of a range centered at pos2 and ends at the
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Table 3.2: Energy reduction from using lazy fanouts.

Benchmark Levels Reduction %

adder 255 19.20

arbiter 87 88.14

bar 12 51.77

cavlc 16 34.65

ctrl 10 42.09

dec 3 0.00

div 4372 91.50

hyp 24 801 93.54

i2c 20 24.03

int2float 16 28.75

log2 444 86.85

max 287 1.80

mem_ctrl 114 65.67

multiplier 274 58.15

priority 250 46.52

router 54 23.04
sin 225 74.87

sqrt 5058 86.56

square 250 18.42

voter 70 10.47

Average 1831 47.30

stop of the next one (centered at pos2 + n/s), i. e., its size is the maximum possible.
Therefore, S1 begins at start1 6 (pos1+ d/4) and ends at end1 > (pos1+ n/s� d/4), thus
its minimum size is min1 =

n/s � d/2. Furthermore, S2 begins at start2 > (pos2 � d/4)

and ends at end2 6 (pos2 + n/s + d/4), thus its maximum size is max2 =
n/s + d/2. One

can see that the maximum size difference between S1 and S2 is |min1 �max2| = d.
We created an example to illustrate how the section-splitter algorithm works.

Figure 3.9a shows the input list B, sized n = 10, storing the number of bits passing
through a circuit. Also, we set s = 4 and d = 2. Figure 3.9b shows the solution
returned by the naïve approach, i. e., to divide on the floor of each exact division,
where each dashed line denotes a division. One can see that its throughput is 1/8 since
its max section is m = 3. Also, it dissipates 8+3+7+3 = 21 bits of energy. Now, let us
consider the section-splitter algorithm. Figure 3.9c shows each range of possible division
created by it. For each range, it selects the position that dissipates the minimum energy,
resulting in the division on Figure 3.9d. One can see that its throughput is also 1/8,
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Algorithm 2: The Section-Splitter Algorithm.
input : B  list of size n of bits passing through each level, including

circuit’s inputs and outputs
input : s target amount of stages
input : d maximum stage size difference allowed
output: divs set of indices limiting the stages

1 divs { 0 }
2 pos n/s
3 while pos < n do

4 sta d pos� d/4 e
5 sto b pos+ d/4 c
6 div  argmin

x2[ sta .. sto ]
(Bx)

7 divs divs [ { div }
8 pos pos+ n/s

9 return divs

8 5 4 9 7 5 3 2 1
0 1

3
2 3 4 5 6 7 8 9

(a) Input vector.

8 5 4 9 7 5 3 2 1
0 1

3
2 3 4 5 6 7 8 9

(b) Naïve solution for s = 4.

8 5 4 9 7 5 3 2 1
0 1

3
2 3 4 5 6 7 8 9

(c) Ranges created for s = 4 and d = 2.

8 5 4 9 7 5 3 2 1
0 1

3
2 3 4 5 6 7 8 9

(d) Section-splitter’s solution for s = 4 and
d = 2.

Figure 3.9: Section-splitter example.

but it dissipates 8+3+7+2 = 20 bits of energy. Therefore, the algorithm was able to
reduce the energy dissipation without affecting the throughput. Note that this is not
always the case since the algorithm prioritizes energy over throughput.

In this experiment, we compare the naïve division algorithm results showed in
Section 3.2 (algn) with the proposed section-splitter algorithm (algs). To show all the
extra possibilities that algs can find, we explored its entire search-space, i. e., we ran
it for every possible section number s, and maximum difference between section sizes
d. Therefore, for a benchmark with depth n, we tested s 2 [ 2, n ], since s = 1 means
Bennett’s clocking and s > n is impossible, and d 2 [ 2, b2n/sc ], since d = 1 means the
naïve division and d > 2n/s may lead to range overlapping.

Aside from the figures, we numerically evaluated each pair (b,m) of benchmark
and netlist manipulation strategy. To achieve this, we joined the solutions from the
Pareto frontier of algn (F1) and algs (F2) for (b,m) and evaluated the Pareto frontier
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of F1 [ F2 (F1,2). Then, we counted the percentage p1 and p2 of solutions from F1 and
F2, respectively, on F1,2. This way, one can infer the percentage of solutions of algn
that were dominated by algs by calculating 100% � p1 and vice-versa. For example,
consider two algorithms algi and algj. If the value of pi for a given pair (b,m) is 30%,
it means that 70% of Fi’s solutions were dominated by Fj’s solutions.

Table 3.3: Section-splitter algorithm vs. the naïve approach.

Early fanouts Lazy fanouts

Benchmark Levels algn % algs % algn % algs %

adder 255 16.67 100.00 14.29 100.00

arbiter 87 0.00 100.00 60.00 100.00

bar 12 60.00 87.50 60.00 71.43

cavlc 16 66.67 100.00 66.67 100.00

ctrl 10 100.00 100.00 100.00 100.00

dec 3 100.00 50.00 100.00 50.00

div 4372 31.82 99.91 20.20 96.90

hyp 24 801 11.27 99.85 32.44 93.69

i2c 20 16.67 100.00 16.67 100.00

int2float 16 66.67 100.00 66.67 100.00

log2 444 5.56 100.00 38.89 89.26

max 287 0.00 100.00 0.00 100.00

mem_ctrl 114 20.00 100.00 18.75 98.59

multiplier 274 25.00 100.00 27.59 99.32

priority 250 63.64 100.00 57.89 100.00

router 54 71.43 100.00 62.50 97.22
sin 225 25.00 98.58 29.17 92.05

sqrt 5058 40.00 99.69 30.19 95.46

square 250 51.85 100.00 53.57 100.00

voter 70 76.92 92.11 61.54 97.14

Average 1831 42.46 96.38 45.85 94.05

Table 3.3 shows the results of this experiment. The first column presents the
benchmark name, and the second column its depth. The next two columns show,
respectively, for the netlists employing early fanouts, the percentage of solutions on
F1,2 from F1 and F2. The two final columns show this same data, but for the netlists
employing lazy fanouts.

This data shows that our algorithm’s solutions dominate about 56% of solutions
from the naïve approach while being about only 5% dominated. Besides, it works
better on deeper circuits than on shallower ones. On deep circuits, e. g., div and hyp,
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our algorithm can explore better the configuration space since there is plenty of space
to find a good place to start a new section. On the other hand, shallow circuits, such
as the dec and the ctrl, do not permit a more significant variation on the d parameter.
Therefore, our algorithm cannot substantially improve the circuit’s energy dissipation
in these cases.

There is also a slight difference in our algorithm’s performance on circuits em-
ploying early fanouts and on circuits using lazy fanouts. Since the lazy strategy passes
a smaller number of wires through different levels, it gives to our algorithm a smaller
margin to modify the division points. Thus, circuits using the early fanouts method
have more flexibility for optimizations.

We created an example to illustrate how the SSA works. Fig. 3.9a shows the input
list B, sized n = 10. Also, we set s = 4 and d = 2. Fig. 3.9c shows each range of possible
division indices created by the SSA and Fig. 3.9d shows its resulting division. One can
see that it has maximum stage Z(m) = 3 and dissipates Z(e) = 8+3+7+2 = 20 bits
of energy.

3.3.3 The Optimal Splitter Algorithm

The Optimal Splitter Algorithm (OSA) receives as input a list B = { b0, . . . , bn�1 }
of bit counts passing through each one of the n levels, and a bound m, representing
the maximum Z(m) allowed. Then, it finds the division indices that yield the Pareto-
optimal point

�
Z(e), Z(m)

�
where Z(e) is minimum and Z(m) 6 m. This is done

by representing the bits passing through the circuit’s levels as a graph and solving a
modified bi-objective shortest path problem on it.

3.3.3.1 Graph Representation

Given an input vector B0, where B0
= B [ { 0 }, the OSA constructs a Directed

Acyclic Graph (DAG) G = (V,A) as follows. Let V be a set of vertices and A be a
set of arcs. We define a bijective function f : V 7! B0 that associates each vertex
vi 2 V with the input bi 2 B0. Furthermore, each vertex vi 2 V associates with an
energy value ei = bi. Given the maximum stage size m, we construct A as follows. For
each vertex vi 2 V , we define an arc (vi, vi+j) for all 1 6 j 6 m and i + j 6 |V |. In
addition, each arc (vi, vj) 2 A has an associated weight wi,j = j � i. Fig. 3.10a shows
the resulting DAG for the input vector given on Fig. 3.9a when m = 2.
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8 5 3 4 9 7 5 3 2 1 0

2 2 2 2 2

2 2 2 2

1 1 1 1 1 1 1 1 1 1

(a) DAG constructed by OSA for m = 2.

8 5 3 4 9 7 5 3 2 1 0

2 2 2 2 2

2 2 2 2

1 1 1 1 1 1 1 1 1 1

(b) OSA’s solution for m = 2. The selected vertices, i. e., divisions, are shown in bold.

Figure 3.10: Optimal Splitter Algorithm example.

3.3.3.2 Minimum Energy Given Maximum Stage Size

Note that returning Z(e) alone and using Z(m) = m does not guarantee that the
solution is Pareto-optimal, as a smaller m may yield the same Z(e). Therefore, we
developed a bi-objective adaptation from the shortest path algorithm for DAGs that
uses the energy values ei as cost. As a second objective, it also minimizes Z(m) for
the Z(e) found. This is done by preferring (i) the paths with a smaller Z(e), i. e.,
the default for the shortest path algorithm; or (ii) a smaller Z(m) when there are two
choices with equal Z(e).

One can see that the maximum Z(m) restriction is automatically respected, since
there are no arcs connecting two vertices vi, vj, where j� i > m. Hence vi, vj will never
be subsequent on the selected path. Also, adding preference (ii) will not change the
correctness of the OSA as a shortest path solver. Since its clause requires that Z(e) is
equal to the minimum found, the algorithm will keep the behavior of choosing paths
with lower costs. Fig. 3.10b presents the solution given by OSA for the DAG shown in
Fig. 3.10a. It has maximum stage Z(m) = 2 and dissipates Z(e) = 8+3+4+7+3+1 =

26 bits of energy.
Algorithm 3 shows how OSA works. It starts by initializing the vertices’ best

objectives found as infinite (Lines 1 to 3). Then, it initializes those objectives for
the source vertex, i. e., the first division index (Lines 4 and 5). Lines 6 to 15 are the
shortest path’s main evaluation loop. Since we are dealing with a DAG, we can use a
simplified shortest path algorithm that iterates in topological order. Line 6 iterates on
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Algorithm 3: The Optimal Splitter Algorithm
input : G graph representation
output: divs set of indices limiting the stages

1 for i 0 to |V |� 1 do

2 Z(e)i  1
3 Z(m)i  1
4 Z(e)0  e(0)
5 Z(m)0  0

6 for i 0 to |V |� 1 do

7 for ai,j 2 arcs(vi) do

8 newe  Z(e)i + e(j)
9 newm  max {wi,j, Z(m)i }

10 bete  newe < Z(e)j
11 betm  

�
newe = Z(e)j

�
^
�
newm < Z(m)j

�

12 if bete _ betm then

13 Z(e)j  newe

14 Z(m)j  newm

15 parent(j) i

16 divs ?
17 c |V |� 1

18 while c 6= 0 do

19 c parent(c)
20 divs { c } [ divs

21 return divs

all vertices vi 2 G, starting at v0, and Line 7 iterate on vi’s arcs. Lines 8 and 9 evaluate
the new Z(e) and Z(m) for vj if the path to vj passes through vi. Lines 10 to 12 check
if preferences (i) or (ii) are fulfilled. If true, Lines 13 to 15 update both objectives for
vj and its parent. Lines 16 to 20 builds the division indices by following the shortest
path from v0 to vn in reverse order. Note that vn is discarded. Finally, Line 21 returns
the division indices. OSA’s complexity is O

�
n2
�
. We prove the optimality of OSA on

Theorems 1 and 2.

Lemma 1 The OSA always returns the division indices that yield the minimum Z(e).

Proof. We know that, as a shortest path solver, the OSA gives us the set of vertices
V ✓ V that form the shortest path from v0 to vn, i. e.,

P
vi2V ei is minimum. Therefore,

the indices represented by the selected vertices are the ones who will yield the minimum
Z(e). ⇤
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Lemma 2 The OSA always returns the cuts that yield the minimum Z(m) for the
Z(e) found.

Proof. Basing on Theorem 1 and knowing, by preference (i), that the final Z(m)i for
a given vertex vi will only be defined when then minimum Z(e)i is found, we consider,
without loss of generality, that the OSA will only process the Z(m) on the paths with
minimum Z(e). Therefore, for the Z(m), the problem becomes an instance of the
minimax path problem, i. e., to find a path from v0 to vn where the maximum weighted
arc selected is the minimum possible.

One can solve the minimax path problem through an adaptation of the shortest
path problem that chooses paths with lower maximum arcs’ weights. Since we are
assuming that the Z(e) is equal for all paths, such adaptation is achieved by preference
(ii). Therefore, the OSA solves the minimax path problem on these minimum Z(e)

paths, hence being able to find the Pareto-optimal point
�
Z(e), Z(m)

�
. ⇤

3.3.3.3 Smallest Maximum Stage Size Given Energy

As proved on Theorem 2, the OSA always finds the divisions that yield the Pareto-
optimal point

�
Z(e), Z(m)

�
, where Z(e) is minimum, given a maximum Z(m) restric-

tion. One might want to go the other way ahead, i. e., finding the divisions indices’
that yield the minimum Z(m) and

�
Z(e), Z(m)

�
is Pareto-optimal, given a maximum

Z(e) restriction. Hence, based on Theorem 3, we developed an iterative version from
the OSA that solves this problem.

Lemma 3 Consider two solutions returned by the OSA, a =

�
Z(e)a, Z(m)a

�
and

b =
�
Z(e)b, Z(m)b

�
, found using the same list of bits B, but with maximum Z(m) equal

to ma and mb, respectively. Then, Z(e)a 6 Z(e)b () ma > mb.

Proof. First, we define Ga and Gb as the graphs constructed by the OSA for a and b,
respectively. To prove the if part, assume that ma < mb, which implies that Ga ⇢ Gb.
This means that all paths in Ga are in Gb and yet Gb’s shortest path is larger than
Ga’s. Therefore, we have a contradiction. By the same reason, it is not possible that
Z(e)a > Z(e)b when Gb ✓ Ga. Hence, by contradiction, the only if part is also true.
⇤

Given the fact that the points generated by the OSA are always Pareto-optimal,
we know that, if we apply it for all possible maximum stage sizes restrictions m, i. e.,
m 2

⇥
1 .. n

⇤
, we will generate all Pareto-optimal points. Hence, basing on Theorem 3,

we know that the Z(e) of these points will be on descending order when m is crescent.



3. Partial Reversibility via Clocking 44

Therefore, given a maximum energy restriction, we can make a binary search on these
OSA’s results and generate only the ones required through the search. Hence, we can
solve the problem in O

�
n2

log2(n)
�

time.
This section compares the effectiveness of the OSA over the SSA. We ran the

OSA for all possible maximum stage sizes m, i. e., m 2
⇥
1 .. n

⇤
, where n is the circuit’s

depth. To make a fair comparison, we also ran the SSA for its entire search-space,
i. e., for every possible stages number s, and maximum difference between stage sizes
d. Therefore, we evaluated s 2

⇥
1 .. n

⇤
, and d 2

⇥
2 .. b2n/sc � 1

⇤
. Note that d 6 1

causes empty ranges, and d > 2n/s leads to range overlapping. All netlists employed
the lazy fanouts strategy, i. e., the fanouts were delayed to reduce the number of wires
passing through stages.

Fig. 3.11 shows an in-depth analysis of the sin circuit. First, Fig. 3.11a shows
part of the Pareto-frontier around some selected points. One can see that, in this area,
the OSA’s points dominate all of SSA’s points. To select those points, we defined
a maximum Z(m) restriction m = 48 and chosen the point with best energy from
the SSA

�
Z(e) = 619, Z(m) = 48

�
and the OSA

�
Z(e) = 499, Z(m) = 48

�
, under this

restriction (marked by stars). Fig. 3.11b shows the selected division indices from both
points. Some of SSA’s indices are stuck in local minima, which caused that, even
with the SSA selecting less indices than the OSA (5 and 6, respectively), it dissipated
more energy. Fig. 3.11c shows the cumulative energy sum per level. Despite that SSA
achieves a lower energy on some levels, the OSA achieves the minimum final energy
dissipation.

Aside from the figures, we numerically evaluated each benchmark. To achieve
this, we joined the solutions from the Pareto frontier of SSA (Fs) and OSA (Fo) for
a given benchmark, i. e., Fs [ Fo, and then we evaluated the general Pareto frontier
(Fg) from the union. Then, we counted the percentage ps and po of solutions from Fs

and Fo, respectively, on Fg. Thus, one can infer the percentage of solutions of SSA
that were dominated by OSA by calculating 100% � ps and vice-versa. For example,
consider two algorithms algi and algj. If the value of pi is 30%, it means that 70% of
Fi’s solutions were dominated by Fj’s solutions.

Table 3.4 shows the results of this experiment. The first column presents the
benchmark name, while the second column shows the number of levels, including the
inputs and outputs, of each benchmark. The third and fourth column present, re-
spectively, the number of points of the OSA in Fg and the percentage of the points
generated by OSA that are non-dominated within Fg. The two remaining columns
show the same information for the SSA.

One can see from Table 3.4 that all OSA’s solutions are in Fg. Furthermore,
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Figure 3.11: In-depth analysis of sin benchmark: SSA vs. OSA.
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Table 3.4: OSA vs. SSA.

OSA SSA

Benchmark Levels Points Percent Points Percent

adder 257 194 100.00 37 31.90

arbiter 89 28 100.00 12 70.59

bar 14 11 100.00 5 71.43

cavlc 18 18 100.00 8 72.73

ctrl 12 12 100.00 6 85.71

dec 5 5 100.00 2 66.67

div 4374 953 100.00 40 7.27

hyp 24 803 2926 100.00 84 6.41

i2c 22 22 100.00 8 57.14

int2float 18 18 100.00 8 72.73

log2 446 250 100.00 8 6.50

max 289 261 100.00 50 27.32

mem_ctrl 116 103 100.00 28 40.00

multiplier 276 220 100.00 61 41.50

priority 252 163 100.00 47 44.34

router 56 54 100.00 20 57.14
sin 227 144 100.00 19 21.11

sqrt 5060 937 100.00 67 13.81

square 252 190 100.00 49 42.61

voter 72 59 100.00 15 40.54

Average 1833 328 100.00 29 43.87

OSA generates an average of 328 points on the Pareto frontier, such that circuits
with a higher number of levels also have a larger number of points on their Pareto
frontiers. On the other hand, SSA only have an average of 29 points into the Pareto
frontier, which represents a total of 45.87% of the points generated by this algorithm,
on average. We highlight that the points generated by the SSA that are in the Pareto
frontier were also generated by the OSA. Therefore, those results indicate that OSA
greatly outperforms SSA. The proposed algorithm generates the whole Pareto frontier,
encompassing all the points given by the SSA. Furthermore, it generates a larger set
of points, which gives a wider set of options to the circuit designer to select a preferred
energy dissipation / throughput ratio.
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3.4 Summary

In this chapter, we proposed a technique that explores the optimal energy vs. through-
put tradeoff in Partially Reversible Pipelined QCA circuits. OSA divides a QCA circuit
into Bennett’s stages with the minimum possible energy dissipation while considering a
minimum throughput restriction. We also propose an extension that does the opposite,
i. e., it gives the maximum throughput considering the maximum energy restriction. We
also prove that both techniques are exact. These algorithms provide circuit designers
with a better and larger set of possible configurations to use.



Chapter 4

Partial Reversibility via Layout

Chapter 3 showed strategies to reduce energy in FCN circuits by clocking modifica-
tions. The advantage is that no layout change was needed, despite the degradation of
the circuit throughput. Here, we take a different approach based on layout changes
instead of modifications on timing. We propose an intermediary step towards fully
reversible systems by introducing a post-synthesis strategy that reduces fundamental
energy losses. Our main contribution is a novel technique that identifies exploitable
fan-outs and uses them for the recovery of bit energy in FCN circuits, thus enabling
the design of new types of partially reversible systems. This is done by embedding
fan-outs into a gate, creating what we call bit recycling gates. Moreover, we propose
an algorithm that creates partially reversible systems while allowing the designer to
choose between energy reduction with no effect on delay (depth-oriented), or to focus
solely on energy and accept a potential delay penalty (named energy-oriented).

4.1 Energy Evaluation in FCN Circuits

The main motivation for designing reversible systems is to ensure energy scalability,
i. e., to guarantee that also in next technology generations energy reduction is possible.
Therefore, it is important to quantify any energy losses of the system, ideally including
both fundamental and non-fundamental ones. In case of the QCA technology, QCAPro
is the first tool that enabled the energetic evaluation of QCA designs [Srivastava et al.,
2011]. It applies a model that estimates polarization errors within the QCA cells and
energy loss in non-adiabatic switching operations. Hence, the QCAPro provides an
upper-bound energy consumption.

Torres et al. [2018] recently proposed a logical synthesis model for QCAs that
incorporates the main physical aspects, such as energy dissipation. The authors also

48
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developed a tool, called QCADesigner-E, that performs the energy evaluation in QCA
circuits. The tool uses a quantum-level model for QCA cells and technological param-
eters such as cell size, cell geometry, the electrical permittivity of material for QCA
system. It enables the energy evaluation that arises in irreversible as well as in re-
versible elements like interconnection, such as wires and fan-outs. Consequently, the
QCADesigner-E provides the total energy consumed by a QCA circuit with specific
technological parameters.

Ercan and Anderson provide a method that solely extracts the fundamental losses
and disregards any non-fundamental ones [Ercan and Anderson, 2013; Anderson, 2013].
Their method is grounded in physical information theory, which guarantees generality
to their result, i.e., it is genuinely fundamental energy lower bound. As the authors said,
this bound reflects the local physical consequences of the logic gate’s cells interacting
with a heat bath given the global constraints imposed by quantum dynamics and
thermodynamics. Therefore, this is an appropriate approach for studies focusing on
the energy scalability of the designs, having in mind that non-fundamental losses can
be reduced by technological advances, while fundamental losses must be treated in a
different way [Li and Vitanyi, 1996].

As our main focus is Landauer clocking, we use Ercan and Anderson’s energy
evaluation framework, which is different than our Bennett’s clocking energy evaluation.
We discuss about those differences and the issues related to an unified energy evaluation
approach in Chapter 5.

In order to compute a gate’s unavoidable fundamental energy dissipation, one
should calculate the difference between the entropies of the probabilities of the initial
and final states of the gates. The Equations 4.1a and 4.1b presents the Shannon’s
entropy for a generic probability distribution S. In many cases there is no knowledge
about the probability P (xi) of each of its initial states xi 2 X, thus, although the
formalism does not requires it, each combination is considered to be equiprobable.
Given P (xi), we may now define the probability P (yi) of each of the gate’s final states
yi 2 Y . It is achieved by applying the gate’s logic function G on each xi and adding
P (xi) to P

�
G(xi)

�
. Then, by calling Eq. (4.1a) on xi, we evaluate the contribution

I(xi) that it adds to the overall Shannon’s entropy of X. Hence, the entropy H(X) of
X is the summation of the contributions of all initial states xi (Eq. (4.1b)). The same
is valid for Y , i. e., H(Y ) is the summation of the contributions I(yi) of all final states
yi. The Landauer’s limit for this gate is the difference between Shannon’s entropy of its
initial states and final states, i. e., H(X)�H(Y ). Finally, the Landauer’s limit of the
circuit is the sum of all losses of the gate. Following example shall detail this energy
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Figure 4.1: Half-adder circuit.

assessment.

I(s) = �P (s)⇥ log2

�
P (s)

�
(4.1a)

H(S) =
X

s2S

I(s) (4.1b)

Example 1 Consider the half-adder circuit depicted in Fig. 4.1. As the NAND gate
1 receives two of the four primary inputs of the circuit, each of its possible input com-
binations has a probability of 1/4. Therefore, the Shannon’s entropy of its initial state
is H(X) = 2 bits, as listed in Table 4.1a. Replicating this calculus for the final states
of gate 1 (see also Table 4.1a), the Shannon’s entropy of the final state is H(Y ) = 0.81

bits. That means, gate 1 loses H(X)�H(Y ) = 1.19 bits of information.
Table 4.1b presents the same calculation for gate 2. Despite this gate being a

NAND like gate 1, it has distinct fundamental losses due to their placement in the
circuit, i.e., both gates operate with different initial states’ probability (one of gate 2

input bits is produced by gate 1 and other is a primary input). In the case of gates 3

and 5, as the initial and final states’ probabilities are the same as those in gate 2, both
dissipate the same amount of energy (Tables 4.1c and 4.1e). Although, this is not the
case for gate 4, which loses less information (Table 4.1d).

Finally, adding up all gate’s losses gives us the Landauer’s limit for this half-
adder circuit. Hence, we conclude that this circuit loses 3.76 bits of information or has
a fundamental energy dissipation limit of 3.76 kB T ln(2) Joules.
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Table 4.1: Entropy calculations for gates in the half-adder of Fig. 4.1

(a) Gate 1.

Input Output

x

i

A B P (x
i

) I(x
i

) y

i

C P (y
i

) I(y
i

)

x0 0 0 1
/4 0.50

y0

1

3
/4 0.31x1 0 1 1

/4 0.50 1

x2 1 0 1
/4 0.50 1

x3 1 1 1
/4 0.50 y1 0 1

/4 0.50

H(X) 2.00 H(Y ) 0.81

(b) Gate 2.

Input Output

x

i

A C P (x
i

) I(x
i

) y

i

D P (y
i

) I(y
i

)

x0 0 1 2
/4 0.5

y0

1

3
/4 0.310 1 1

x1 1 0 1
/4 0.5 1

x2 1 1 1
/4 0.5 y1 0 1

/4 0.5

H(X) 1.5 H(Y ) 0.81

(c) Gate 3.

Input Output

x

i

C B P (x
i

) I(x
i

) y

i

E P (y
i

) I(y
i

)

x0 1 1 1
/4 0.50 y0 0 1

/4 0.50

x1

1 0
2
/4 0.50

y1

1

3
/4 0.311 0 1

x2 1 1 1
/4 0.50 1

H(X) 1.50 H(Y ) 0.81

(d) Gate 4.

Input Output

x

i

D E P (x
i

) I(x
i

) y

i

S P (y
i

) I(y
i

)

x0

1 1 2
/4 0.5

y0

0
2
/4 0.5

1 1 0

x1 0 1 1
/4 0.5

y1

1
2
/4 0.5

x2 1 0 1
/4 0.5 1

H(X) 1.5 H(Y ) 1

(e) Gate 5.

Input Output

x

i

E B P (x
i

) I(x
i

) y

i

C

out

P (y
i

) I(y
i

)

x0

1 0 2
/4 0.5

y0

0

3
/4 0.311 0 0

x1 0 1 1
/4 0.5 0

x2 1 1 1
/4 0.5 y1 1 1

/4 0.5

H(X) 1.50 H(Y ) 0.81

Note that the exact evaluation of Landauer’s limit requires a calculation for
each gate and for all possible primary inputs combinations. For example, in the
case of the half-adder circuit, which has 5 gates and 2 input bits, it requires
5 gates ⇥ 2

2 combinations = 20 calculations. Hence, the runtime of this method grows
exponentially with the number of primary inputs and linearly with the number of gates.
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x ∧ y0

y
x ∧ yx

y

(a) Conventional AND.

x x
x ∧ y
y

0
y

xx ∧ yy
x
y

(b) Fully reversible AND recycling energy of both inputs Lent et al. [2006].

x x
x ∧ y0

y

xx ∧ yx
y

(c) AND recycling energy of one input.

Figure 4.2: Symbols and layouts of conventional as well as n-bits recycling QCA AND
gates.

4.2 Energy Reduction by Layout Changes

Information losses quantified by the Landauer’s limit are the result of the local states’
merging that happens within conventional logic gates, e. g., AND, OR, or MAJ. Thus,
these losses directly depend on the probability distribution of the initial gate states.
Such gate can execute a reversible operation and consequently could spend less than
kB T ln(2) Joules when the probability distribution of initial states allows a 1-to-1
relation with the probability distribution of the final states [DeBenedictis et al., 2016].

Consider Fig. 4.2 which depicts three different implementations of a QCA AND
gate: Fig. 4.2a conventional, Fig. 4.2b unconditionally reversible (2-bit recycling gate)
proposed by Lent et al. [2006] and Fig. 4.2c conditionally reversible that recovers in-
formation of one input (1-bit recycling gate) proposed in this work. Lent showed that
the conventional QCA AND (Fig. 4.2a) must dissipate energy above kB T ln(2) joules,
when the value of one input differs from the output. They also demonstrated that the
dissipation of the fully reversible (2-bit recycling) QCA AND (Fig. 4.2b), which al-
ways guarantees a 1-to-1 relation between its initial and final states, can remain below
kB T ln(2) Joules.

We propose here a generalization of the proposal of Lent by echoing only a sub-
group of inputs to the output, e. g., the QCA AND gate depicted in Fig. 4.2c. That
means, these modified gates only operate reversibly for a subset of the 2

n possible
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(a) Original half-adder.
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(b) Half-adder circuit that exploits fan-outs without degrading delay.

Figure 4.3: Application of proposed method for the half-adder circuit.
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Table 4.2: Entropy calculations for gates in the half-adder circuit depicted in Fig. 4.3b

(a) New gate 1 with embedded signals A and B.

Input Output

xi A B P (xi) I(xi) yi A C B P (yi) I(yi)
x0 0 0 1/4 0.5 y0 0 1 0 1/4 0.5

x1 0 1 1/4 0.5 y1 0 1 1 1/4 0.5

x2 1 0 1/4 0.5 y2 1 1 0 1/4 0.5

x3 1 1 1/4 0.5 y3 1 0 1 1/4 0.5

H(X) 2 H(Y ) 2

(b) New gate 3 with embedded signal B.

Input Output

xi C B P (xi) I(xi) yi E B P (yi) I(yi)
x0 0 1 1/4 0.5 y0 1 1 1/4 0.5

x1
1 0

2/4 0.5 y1
1 0

2/4 0.5
1 0 1 0

x2 1 1 1/4 0.5 y2 0 1 1/4 0.5

H(X) 1.5 H(Y ) 1.5

initial states, i. e., the ones that have a 1-to-1 relation with the final state. Moreover,
AND and OR gates are indeed MAJ gates with one input fixed. Therefore, the same
layout also allows the recovery of 2 out of 3 bits on MAJ gates. Finally, the possibility
of recovering 3 bits on MAJ gates remains for future investigation.

Note that logic gates with a 1-to-1 relation between inputs’ and outputs’ states
only guarantee the reversibility at the gate level, but this is not sufficient to enable
reversibility at the circuit level. Data flow without discarding information between
gates is also needed to accomplish arbitrarily small energy levels. Hence, we propose
the exploitation of signals that are used more than once in the circuit. This gives us the
ability to add gates that recycle input bits such that we can reduce the fundamental
energy limit. Following example shall detail this approach.

Example 2 Fig. 4.3a shows the half-adder circuit with its internal fan-outs A, B, C,
and E highlighted in orange, blue, pink, and green, respectively. Note that this circuit
solely applies conventional gates. As shown in Example 1 (Tables 4.1a to 4.1e), it
dissipates 3.76 bits following Ercan’s method.
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Figure 4.4: Half-adder circuit that exploits fan-outs with delay penalty.

Looking at the circuit, one can notice that all highlighted signals feed more than
one gate. Hence, instead of using a fan-out structure that multiplies the signal, one
can feed it into gates that recycle its input energy and propagate the signal throughout
them to the following stages. The resulting circuit is shown in Fig. 4.3b. Here, gate 1

has been exchanged by its 2-bit recycling version that passes its input A and B to its
output (as in Fig. 4.2b). Gate 3 also could be replaced by a 1-bit recycling version that
passes its input B to its output (as in Fig. 4.2c). Tables 4.2a and 4.2b shows the new
calculation for gates 1 and 3. Landauer’s limit evaluation for this circuit results in a
loss of 1.88 bits. The delay of this circuit is identical to the initial version.

If the delay is of lower priority, one can exploit that still some signals are inputs
to more than one gate, e. g., signals C and E. Thus, instead of processing a signal
in parallel, one can serialize the access and apply it as an echoed input to gates that
recycle inputs. Fig. 4.4 depicts the resulting circuit, in which signal F also passes
through the 1-bit recycling gate 2 before entering gate 3. Also, signal E traverses gate
4 before being delivered to gate 5. Tables 4.3a and 4.3b show the new calculation for
those gates. This additional modification comes at the costs of an increased delay from
3 to 4 stages. However, this reduces the fundamental energy loss down to 0.69 bits.

We carried out an analysis with QCADesigner-E and contrasted the returned
energy with the fundamental limits. First, we produced the QCA layouts for the three
half-adder versions, i.e., the original netlist, the depth-oriented, and the energy-oriented
versions (all showed in Figure 4.5). All designs have the same number of QCA cells.
For each of these circuit’s layouts, we did simulations for all input combinations. Table
4.4 shows the averaged energy values mesured by QCADesigner-E using an uniform
distribution and the energy fundamental limits. Table 4.5 shows the simulation and
technology parameters.

The original half-adder layout presents a loss of 19.50 kB Joules. In this case, the
fundamental energy limit represents 19% of the total energy returned by QCADesigner-
E. In the depth-oriented and energy-oriented layouts, the energy fundamental limit is
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Table 4.3: Entropy calculations for gates in the half-adder circuit depicted in Fig. 4.4

(a) New gate 2 with embedded signal D.

Input Output

xi A C P (xi) I(xi) yi D C P (yi) I(yi)

x0
0 1

2/4 0.5 y0
1 1

2/4 0.5
0 1 1 1

x1 1 0 1/4 0.5 y1 1 0 1/4 0.5

x2 1 1 1/4 0.5 y2 0 1 1/4 0.5

H(X) 1.5 H(Y ) 1.5

(b) New gate 4 with embedded signal E.

Input Output

xi D E P (xi) I(xi) yi F E P (yi) I(yi)

x0
1 1

2/4 0.5 y0
0 1

2/4 0.5
1 1 0 1

x1 0 1 1/4 0.5 y1 1 1 1/4 0.5

x2 1 0 1/4 0.5 y2 1 0 1/4 0.5

H(X) 1.5 H(Y ) 1.5

Table 4.4: Energy values in kB Joules for half-adder circuits.

QCADesigner-E Fundamental Limit
Original 19.50 3.76
Depth-oriented 15.10 1.88
Energy-oriented 8.49 0.69

12% and 8% of the total energy dissipation. One can see that recycling bits indeed
reduces energy. Under lower frequencies, the fundamental energy took a more sub-
stantial amount of total energy [Torres et al., 2019]. It occurs due to the reduction of
friction-like losses.

4.3 The Bit-Recycling Algorithm

Algorithm 4 implements the proposed method for synthesized circuits given as netlist.
It starts by iterating over all fan-outs (represented by nodes that distribute an output
to different targets) in a reverse topological order so that nodes to be processed are not



4. Partial Reversibility via Layout 57

Table 4.5: Technology and simulation parameters in the tool QCADesigner-E

Parameter Description Standard Value

QD size Size of a quantum dot 5 nm
Cell area Dimensions of each cell 18 nm x 18 nm

Cell distance Distance between two cells 20 nm
⌧ Relaxation time 1E-15 s
�H Max. saturation energy of clock

signal
9.8E-22 J

�L Min. saturation energy of clock
signal

3.8E-23 J

✏r Relative permittivity of material
for QCA system

12.9⇤

Temp Operating temperature 1 K
reffect Maximum distance between cells

whose interaction is considered
80 nm†

T� Period of the clock signal 10E-12 s
�slope Rise and fall time of the clock sig-

nal slopes
1E-10 s

�shape Shape of clock signal slopes
[RAMP/GAUSSIAN]

GAUSSIAN

Tin Period of the input signals 10E-12 s
Tsim Total simulation time 80E-12 s
Tstep Time interval of each iteration

step
1E-16 s

⇤
Relative permittivity of GaAs and AlGaAs

†
Interaction effects between two cells decays inversely with the fifth

power of its distance

affected by a parent’s recycling (Line 1). For each of these nodes, the algorithm builds
chains of gates by selecting unique children from their outputs (Lines 2 to 8). The rank
provided by the function topological-order, i. e., the node’s distance from the primary
inputs, is also fundamental for building those chains. The algorithm first iterates on
a sorted-by-rank list containing sets of children nodes. Each set contains the children
that are on a same rank, created by the function ranked-children (Line 4). Thus, each
one of these sets is fed to a function choose which evaluates its nodes and selects a
valid one that can be recycled and added to the chain (Line 5). Besides discarding
invalid nodes, this function also enables the definition of gate’s priorities, e. g., 1-bit
recycling reversible gates over conventional ones. If energy shall be prioritized, it may
even select multiple gates within same set (It will be clear in the following examples).
In this work, we employed a straightforward choose that only selects the first valid
nodes. The selected nodes are added to the choices list (Line 6) and removed form the
set (Line 7). Finally, when the chain is complete, i. e., there are no sets left, it selects a
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B0

A0
F0

G0

(a) Original half-adder layout.

B1

A1
F1

G1

(b) Depth-oriented half-adder layout.

B2

A2

G2

F2

(c) Energy-oriented half-adder layout.

Figure 4.5: Half-adder circuit QCA layouts.

non-recyclable node, e. g., an output, to be at the bottom of the chain. After selection
of the children, the algorithm links their inputs and outputs together (Line 8). This
is done by the function make-chain. The execution stops when the choices list has at
most one node left (Line 9), since at this point it cannot build any other chain from
the fan-out.

The examples in Figs. 4.6 and 4.7 demonstrate the operation of the algorithm for
two circuits.

Example 3 Fig. 4.6 shows the generation of chains in the depth-oriented strategy. In
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Algorithm 4: Building chains of n-bits recycling gates.
data : netlist circuit’s netlist

1 foreach node 2 reverse-topological-order(netlist) do

2 repeat

3 choices ?
4 foreach set 2 ranked-children(node) do

5 sel-children choose(set)
6 choices choices [ sel-children
7 set setr sel-children
8 make-chain(node, choices)
9 until |choices| 6 1

the initial version of the circuit (Fig. 4.6a) the output of node N1 connects to all other
nodes. During the first iteration (Fig. 4.6b), the algorithm selects and merges nodes
A1, B1 and O1 into a chain that starts at node N1 (marked as blue lines). Further,
nodes A1 and B1 are changed to its 1-bit recycling versions. In the following iteration
(Fig. 4.6c), a second chain consisting of nodes A2 and B2 is created (marked as red
lines), and node A2 is modified to a 1-bit recycling gate.

Fig. 4.7 shows the operation of the energy-oriented strategy in another circuit.
In this case the algorithm only need one iteration to build the chain since it picks all
children, despite some of them (A1 and A2) being in the same rank.

Finally, the circuit from Fig. 4.8 illustrates how fully reversible gates are inte-
grated. Initially, Fig. 4.8a shows two nodes, N1 and N2, each one duplicating its
outputs and having a common children, A1. In the first iteration (Fig. 4.8b), the con-
nection between nodes N1 and O1 is placed between nodes A1 and O1 (blue lines). Fur-
ther, node A1 is modified to a 1-bit recycling gate. In the second iteration (Fig. 4.8c),
the connection between nodes N2 and O2 is moved between nodes A1 and O2 (red
lines). Now, node A1 is changed to a fully reversible gate.

In order to assess our strategies, we evaluated the Landauer’s limit for well-
established benchmarks. Having in mind that the computational cost grows exponen-
tially with the number of circuit’s primary inputs (see also Section 4.1), we analyzed
circuits with up to 40 input bits of the MCNC (154 circuits) and the EPFL (6 circuits)
[Yang, 1991; Amarù et al., 2015]. Table 4.6 presents the obtained results for 14 cir-
cuits of MCNC and 6 majority-based circuits produced by Testa based on the EPFL
benchmarks specifications [Testa et al., 2017]. All benchmarks were evaluated as they
were, i. e., we did not modify them before employing our technique.

Table 4.6 lists the experiments results. Here, the first column shows the bench-
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Figure 4.6: Generations of chains in the depth-oriented strategy.
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Figure 4.7: Generations of chains in the energy-oriented strategy.
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Figure 4.8: Integration of fully reversible gates.

mark names. The second, third and fourth columns display the size of the circuit
(number of gates) and the number of inputs and outputs, respectively. The fifth and
sixth columns lists the exact Landauer’s limit for an uniform input distribution ap-
plied to the original circuits, and its delay (number of levels). The next two columns
refer to the depth-oriented results. That means, the seventh column shows the fun-
damental energy limit, while column eight lists the energy reduction resulting from
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(a) Depth-oriented:
11 levels and 20% of energy reduction.

(b) Energy-oriented:
14 levels and 42% of energy reduction.

Figure 4.9: Circuit graphs resulting from the proposed strategies: the i1 circuit’s case.

our method. The remaining four columns relate to the energy-oriented results and list
the Landauer’s limit and its reduction as well as the new delay and its increase. We
count the delay as the logic depth on the circuits’ critical paths. Therefore, we are
considering the best (minimum) possible delays. Note that both strategies come at no
costs in terms of gate area. Hence, the circuit size is the same for the original and both
modified cases.

The simulation results reveal that the fundamental energy limits could be reduced
by, on average, 44% (up to 62%) on the depth-oriented case. If the delay was not
restricted, i. e., the energy-oriented case, fundamental energy limits decreased by, on
average 77% (up to 94%) at the costs of an average maximum delay increase of 16⇥
(up to 73⇥).

For the sake of clarity, we choose a small circuit, not presented in Table 4.6, to
show the new logic networks produced by the proposed strategies. Fig. 4.9 shows the
circuit produced by the proposed algorithms for the circuit i1 (MCNC benchmark).
Each color in the edges represents a signal for a specific fan-out, while the blue nodes
highlight bit recycling gates. Black nodes represent the circuit’s primary inputs and
outputs. Fig. 4.9a displays the depth-oriented result for this circuit where 9 conven-
tional gates were replaced by its recycling counterparts. This results into reduction
of the fundamental energy dissipation by 20% without any delay change. Fig. 4.9b
depicts for the same circuit the outcome of the energy-oriented algorithm. Here, the
fundamental energy dissipation can be reduced by 42% due to the serialization of some
information transfer. Note that both graphs are aligned level by level allowing the com-
parison of the delay degradation (from 11 to 14 levels). Note that we do not consider
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Figure 4.10: sin circuit’s evaluation.

input and output levels.
Fig. 4.10 presents the loss rate pattern and the fan-outs density for the EPFL

circuit sin. First, Fig. 4.10a shows the accumulated energy losses for the original
circuit version, the new depth-oriented version, which has the same delay as the original
(vertical dashed line), and the energy-oriented version. Then, Fig. 4.10b presents the
density fan-outs exploited by the depth-oriented and energy-oriented techniques.

It is interesting to note that circuits profit differently from both strategies, i. e.,
the ranking of the improvement of the energy limit for depth-oriented and energy-
oriented results is not the same. This follows from the fact that the first approach
takes advantage from the number of fan-outs that target different levels while the latter
benefits only from the number of fan-outs. The dec benchmark is a good example for
this observation. It has a high number of fan-outs that possess many targets on the
same level. This explains the negligible improvement of the energy limits when delay
is not impaired and the high gain when there is no such restriction.

4.4 Summary

In this chapter, we proposed a step towards feasible partially reversible circuits designed
for Field-Coupled Nanocomputing technologies that enable considerable reduction of
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its fundamental energy limits. The proposed technique identifies exploitable fan-outs
that can be embedded in logic gates to reduce local information losses without any
delay penalties. When delay is not a concern, energy can be decreased even more by
serializing gates and exploiting more fan-outs.



Chapter 5

Towards a Unified Analysis

Chapters 3 and 4 presented energy reduction techniques based on clock and layout
manipulation, respectively. Considering the proposed techniques, it is reasonable to
expect a unified analysis with both methods. In this chapter, we introduce several per-
spectives that can complete this investigation. In Section 5.1, we explain the differences
in energy evaluation in our techniques. Next, we carried out two orthogonal analyses.
In the first study, presented in Section 5.2, we discuss how layout-based methods re-
strict clock-based solutions. For that, we introduced a new configuration space for
circuits (an Energy-Throughput-Depth Space). Finally, in Section 5.3, we analyze how
our techniques benefit from different initial netlists for the same specification. More
precisely, we contrast our energy reduction methods applied in both the EPFL initial
netlists used in Chapter 3 and Testa’s depth-optimal netlists used in Chapter 4. These
perspectives open relevant opportunities for future works.

5.1 Energy Evaluation

The attentive reader may have already realized that we used different methods to eval-
uate the energy in each case. Strange as it may seem, there is a reasonable explanation
for this difference. In a partially reversible system based on layout changes (Landauer
clocked circuits), the energy evaluation relies on Shannon’s entropies of input and out-
put probability distributions. Specifically, these losses happen because typically these
gates have fewer degrees of freedom in their outputs than they have in their inputs. As
information and erasure waves flow only in one direction in these systems, i.e., from
inputs to outputs, the gate can only transfer to the output at most the amount of
information that fits the output’s degrees of freedom. Therefore, if there is any other
part of the original information missing from the outputs, then it is necessarily ejected

65
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in the form of heat to the environment. Information loss, in this case, is usually a frac-
tional number. This evaluation method follows Landauer’s original work and Ercan’s
approach for QCA systems [Landauer, 1961; Ercan and Anderson, 2013].

Unfortunately, the evaluation of Shannon’s entropy for all gates in a circuit comes
at a high computational cost with exponential time and space complexity, rendering
it laborious for comprehensive designs. Thus, when the available resources are not
enough to compute the circuit’s energy limit, we adopt a more straightforward ap-
proach. The main idea is the summation of the upper loss for each gate in the design,
i.e., the maximum entropy that a gate can receive. Note that by this choice, we are
overestimating losses since we are not considering conditionally reversible cases. In
the case of conventional gates, e.g., AND, OR, NAND, MAJ, we count the number of
variable input bits as losses. In other cases, we consider each embedded fan-out as a
recycled bit, and they are not considered losses.

In the partially reversible pipelines, the losses always happen in input wires for
each stage. Specifically, the erasure occurs in a place without any other adjacent part
that still preserves the information. Therefore, this loss is inevitable and, even if the
bit has different probabilities for 0 and 1 values, the loss is at most 1 bit of entropy.
The information loss is valued as an integer number (the sum of input wires for each
stage) even though the wires do not carry an integer amount of information (Shannon’s
Entropy). This evaluation method derives from some of our primary supporting ref-
erences [Frost-Murphy, 2009; Ottavi et al., 2011; Ercan and Anderson, 2011; Stearns
and Anderson, 2013].

5.2 Energy-Throughput-Depth Spaces

The analysis of partially reversible pipelines revealed the energy-throughput relations
for these systems, as showed in Chapter 3. Typically, as we improve throughput, energy
deteriorates and vice-versa. The viable partially reversible pipeline configurations lost
less energy than the Landauer clocked configuration did, i.e., the latter determines
a frontier of the energy-throughput configuration space (best throughput). The pure
Bennett clocked configuration defines the other border (best energy). Based on that
relation, we presented the OSA algorithm that produces the optimal solution for this
energy-throughput tradeoff. Our algorithm returns the best (smallest) energy for the
minimum tolerable throughput. Moreover, our algorithm can yield the best (biggest)
throughput for the maximum acceptable energy loss. With both values, we explored a
granular space of viable energy-throughput solutions (a Pareto frontier).
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Additionally, throughput and depth are linked in partially reversible pipelines. As
shown in Chapter 3, our optimization algorithm maximizes throughput by minimizing
the maximum stage size, m. The throughput is a function of m (1/2m+2), and the depth
is equal to the maximum stage size times the number of stages, i.e., each stage must
have the same delay as in a normal pipeline.

The partially reversible FCN circuits based on layout changes (Landauer clocked
circuits), on the other hand, do not degrade the throughput at all. This system ei-
ther enhances energy without depth degradation (depth-oriented) or improves energy
even more at the cost of depth deterioration, as revealed in Chapter 4. These energy
reduction strategies are implemented by a heuristic algorithm, i.e., returned energy
and depth are probably not the best solutions. The optimal solution and a granular
exploration for this energy-depth space (analogous to our energy-throughput relation
for partially reversible pipelines) are an open problem under investigation.

To analyze both sorts of systems, we need to merge those two-dimensional prob-
lems in one three-dimensional space, i.e., an Energy-Throughput-Depth space. We also
applied the Pareto dominance to the data analyzed in this Chapter, as in Chapter 3,
i.e., we are only considering configurations in the Pareto set. Let us take an example of
configuration space from the Adder benchmark case (EPFL’s initial netlist) presented
in Figure 5.1. For the sake of clarity, we present two perspectives of the configuration
space bounded by the EPFL’s Landauer clocked netlist. As depth-oriented partially
reversible circuits improve energy without any throughput or depth degradation, this
configuration defines a new frontier for viable partially reversible pipelines. This edge
also reduces the number of feasible pipeline configurations.

Table 5.1 shows some information about the configuration spaces for all other
EPFL benchmarks. The first column shows the benchmark name, the second to fifth
columns present data about EPFL’s initial netlists. Specifically, the second column
shows the netlist’s original depth. The third, fourth, and fifth columns display three
sets with the number of viable pipelines bounded by Landauer clocked circuits (original,
depth-oriented, and energy-oriented). Specifically, the third column presents the Set
Original, which is the Pareto set yield from all pipelines returned by the OSA algorithm
and the original circuit (Landauer-clocked). Set Depth, the Pareto set yield from the
Set Original and the depth-oriented netlist, is presented in the fourth column. Finally,
Set Energy, shown in the fifth column, is the Pareto set yield from the Set Depth and
the energy-oriented netlist. The sixth to ninth columns show the analogous information
for Testa’s depth-optimal EPFL netlists.

As EPFL’s initial netlists are always deeper than Testa’s (comparing Levels
columns), the former invariably has more viable pipelines than the latter. Let us
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retake the Adder circuit as an example with its data from Table 5.1. Considering the
EPFL netlist, the Set Original has 160 different viable pipelines. Now, considering
the depth-oriented netlist, the Pareto set shrinks to 156 feasible pipeline configura-
tions (Set Depth). That reduction occurs because the depth-oriented netlist has the
same throughput and depth as the original circuit (Landauer-clocked) but it requires
less energy, eliminating four pipelines from the set (also shown in Figure 5.1). The
Set Energy, though, does not shrink the space of viable configurations, but it adds
energy-oriented configuration.

A similar pattern occurs when considering Testa’s netlist, but with less diversity.
Set Depth is in most cases equal to Set Original, in the number of viable configurations
(the original circuit is replaced by the depth-oriented one). Also, Set Energy only adds
one more configuration (the energy-oriented).

5.3 Energy and Synthesis’ Depth Reduction

When it comes to designing a logic network, different goals might be pursued. For
instance, the designer might expect to minimize the size of the network, i.e., the number
of logic gates. Rather, the designer might want to reduce the depth of the circuit, i.e.,
the critical path length. These different goals for synthesis algorithms differently impact
our energy reduction techniques. In this section, we analyze the influence of reducing
depth in energy reduction opportunities. Specifically, we contrast size, energy, depth,
the number of fan-outs, and throughput from the EPFL initial netlists against Testa’s
depth optimal netlists.

First, we focus on Landauer clocked circuits. Table 5.2 presents our results,
which are all ratios of Testa’s depth optimal netlists over EPFL initial netlists. The
first column shows benchmark names. The second, third, and fourth columns display
data related to original netlists, specifically the size of the circuit (number of gates) and
approximate energy and depth, respectively. The next two columns refer to results from
depth-oriented strategy. That means the fifth column shows the number of exploitable
fan-outs, while column six lists the approximate energy limit resulting from our method.
The remaining three columns relate to the results from energy-oriented strategy. They
register the number of exploitable fan-outs, the approximate energy, and the new depth.

Looking only at both EPFL initial and Testa’s original netlists, we can arrange
EPFL circuits in three groups. The first collection, almost entirely composed of arith-
metic circuits, includes the Adder, the coding-cavlc, the log2, the max, the multiplier,
the sine, the square-root, the square, and the voter. In this group, the improvement
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in depth (Testa’s netlist) is related to a degradation in size and energy. When our
depth-oriented technique is applied to these circuits, we can see that Testa’s netlists
have more exploitable fan-outs than EPFL initial netlists do; hence they have more
energy reduction opportunities. Even with more opportunities, the number of fan-outs
was not enough to compensate for the increase in size and spent energy. This pattern
remains even when we apply our energy-oriented technique.

The second group, entirely composed of random/control benchmarks, contains the
round-robin arbiter, the ALU control unit, the i2c controller, the memory controller,
the priority encoder, and the router. Depth reduction results in an improvement in all
other metrics, e.g., size, energy, either in original, depth-oriented, or energy-oriented
netlists. Finally, to describe the int to float converter, the significant reduction in depth
does not result in meaningful changes in size or energy.

Looking at partially reversible pipelines, Table 5.3 presents data about EPFL ini-
tial netlists and Testa’s depth optimal netlists. The first column shows the benchmark
names. The second, third, and fourth columns display data related to EPFL initial
netlists. More accurately, the second column shows the average of pipeline energy
degradation related to pure Bennett clocked circuits (energy best value). The average
of pipeline throughput degradation related to Landauer’s clocked circuits (throughput
best value) is displayed in the third column. The fourth column presents the aver-
age quality, which we defined as the inverse of the product of throughput degradation
and energy degradation. The next three columns show the analogous information for
Testa’s depth-optimal EPFL netlists. The best results are highlighted in bold.

As expected, Testa’s depth-optimal netlists present a better (smaller) throughput
degradation than EPFL initial netlists for all circuits. Regarding energy degradation,
though, circuits could be grouped in similar classes to the Landauer clocked circuits
mentioned above. The arithmetic circuits present a smaller energy degradation for
EPFL’s netlist than Testa’s. The second group composed of random/control bench-
marks shows smaller energy degradation for Testa’s netlist than EPFL. The quality,
on the other hand, is always better for Testa’s netlists.

5.4 Summary

Our analyses reveal some essential details. Examining the configuration space for a
specific netlist, as shown in Section 5.2, when energy is a critical concern, the pre-
ferred choice will be partially reversible pipelines. On the other hand, if delay and
throughput also matter, then layout-based partially reversible systems are the solu-
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tion. Even though we used an approximate energy evaluation for Landauer clocked
circuits, that does not change our qualitative conclusions; it only reduces the number
of viable pipelines.

When analyzing different netlists for the same circuit specification, as done in Sec-
tion 5.3, we showed how each technique benefits from depth reduction in the synthesis
process. For Landauer clocked systems, one can see that reducing depth not neces-
sarily results in energy improvement. For partially reversible pipelines, we defined a
quality measure. This standard is based on the relevant metrics for those systems, i.e.,
the best values of energy and throughput, both independent of the netlist. This new
metric shows that partially reversible pipelines always benefit from depth reduction.



Chapter 6

Conclusions

Researchers must focus on energy scalability to establish emerging technologies. This
research aimed to identify effective strategies for energy reduction in FCN circuits.
Based on an in-depth analysis of information loss circumstances in FCN circuits, one
might conclude that local changes in the circuit netlist can reduce fundamental energy
limits without any resynthesis process. Therefore, the results indicate an affirmative an-
swer to the question "Can we take advantage of the current state-of-the-art irreversible
logic synthesis algorithms and reduce energy limits in a post-synthesis process?"

This thesis resulted in the following contributions. First, we created a novel
type of FCN partially reversible system based on conditionally reversible gates. These
systems reduce energy without any throughput degradation, differently from the other
existing FCN partially reversible systems (pipelines). This new system should be the
first option for designers when all performance metrics equally matter since pipelines
excessively damage the throughput.

The second main contribution was an enhancement of partially reversible
pipelines. We extended those systems in different ways. First, we developed the means
to simulate these pipelines in QCADesigner. Second, we proposed optimal algorithms
that improve energy-throughput tradeoff and allow granular exploration of the solution
space.

Another significant contribution was the design of a unified analysis of FCN
partially reversible systems. The study of both systems reveals the best choice for
designers based on their project requirements.

Finally, we delivered a clear and concise review of reversible computing and FCN
connections. Our review constitutes a significant contribution, as there are several
misconceptions about the application of reversible computing in FCN circuits, espe-
cially in designing reversible logic gates based on quantum computing gates such as
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Fredkin and Toffoli gates. Our Background chapter only highlights the core theory,
e.g., Landauer’s, Bennett’s, Anderson’s, and Frank’s works, including FCN basics and
its clocking systems, revealing the conditions for information loss.

In this thesis, we approached the design of energy-efficient FCN circuits from
a different perspective. Our techniques show immense improvements in those FCN
systems and they could be adapted for other technologies. Our work also opens other
research paths. Finally, we believe this thesis will act as a significant enabler for FCN
consolidation.

6.1 Future Work

We give some directions for future research.

• Union of modern FCN placement-and-routing algorithms with our op-

timal techniques for designing partially reversible pipelines. As shown in
Chapter 3, the energy-throughput tradeoff was designed considering the number
of logic gates in the maximum stage size. Placement-and-routing algorithms also
increase circuit depth due to restrictions in clocking distribution schemes. Hence,
it would be interesting to study the implications in the energy-throughput com-
promise when dealing with placement-and-routing solutions to acquire tighter
bounds for energy and throughput. Further, multiple-objective algorithms could
be designed based on this study.

• Development of optimal algorithms for designing partially reversible

systems (Landauer clocked circuits). Our algorithm for recycling bits pre-
sented in Chapter 4 is not optimal. Despite the notable improvements in circuit
energy, it could be better. Furthermore, a similar solution to the partially re-
versible pipelines is desirable, e.g., an optimal algorithm to return the best energy
dissipation given a depth restriction or the best depth given an energy dissipation
restriction.

• Development of strategies for a faster evaluation of energy limits. As
shown in Chapter 4, Landauer’s limit assessment is computationally expensive.
It is possible to improve efficiency by using different data structures and caching
strategies. Moreover, it is possible to improve our approximate evaluation pre-
sented in Chapter 6.

• Development of energy-aware synthesis algorithms based on our tech-

niques.
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