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Resumo

Sistemas de software configuráveis permitem que desenvolvedores mantenham uma

plataforma única atendendo a uma diversidade de contextos, usos e implantações. Os

testes de sistemas configuráveis são essenciais porque as configurações que falham po-

dem prejudicar os usuários e degradar a reputação do projeto. No entanto, testar

sistemas configuráveis é muito desafiador devido ao número de configurações a serem

executadas em cada teste, levando a uma explosão combinatória do número de configu-

rações e testes. Atualmente, várias estratégias de teste foram propostas para lidar com

esse desafio, mas suas potenciais aplicações práticas permanecem amplamente inexplo-

radas. Na verdade, as comparações preliminares existentes de estratégias de testes não

visam um conjunto uniforme de sistemas configuráveis. Com base em um grande con-

junto de dados de 30 sistemas configuráveis, esta tese compara várias estratégias para

testar sistemas configuráveis encontrados por um estudo de mapeamento sistemático.

No primeiro estudo, foi projetado e realizado um estudo empírico comparativo com

as duas principais ferramentas de teste sólido, chamadas VarexJ e SPLat. Em um

segundo estudo empírico foram comparadas dezesseis estratégias de testes pareados.

Com a experiência adquirida por meio dos estudos empíricos foi proposta uma lista de

dez desafios enfrentados ao criar as suítes de teste para sistemas configuráveis. Ainda,

foi relatado como os autores lidaram com as suítes de teste para o conjunto de sistemas

descritos nesta tese. A lista proposta inclui, por exemplo, os desafios de testar classes

de alto acoplamento e de determinar métricas para medir a qualidade do conjunto

de testes. Os resultados dos estudos empíricos indicam quais e quando as estratégias

de testes são mais rápidas e eficazes para identificar falhas em sistemas configuráveis.

No geral, os autores acreditam que os profissionais podem adquirir o conhecimento

necessário por meio dos resultados alcançados, a fim de escolherem uma estratégia de

teste que melhor se adapte às suas necessidades e ainda, os profissionais podem se

beneficiar com as soluções propostas para cada desafio.

Palavras-chave: Teste de Sistemas Configuráveis, Ferramentas de Teste para Sis-

temas Configuráveis, Falhas de Interação de Features.
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Abstract

Configurable software systems allow developers to maintain a unique platform and ad-

dress a diversity of deployment contexts and usages. Testing configurable systems is

essential because configurations that fail may potentially hurt users and degrade the

project reputation. However, testing configurable systems is challenging due to the

number of configurations to run with each test suite, leading to a combinatorial ex-

plosion in the number of configurations and tests. Currently, several testing strategies

have been proposed to deal with this challenge, but their potential practical appli-

cation remains largely unexplored. In fact, existing comparisons of testing strategies

do not rely on a uniform dataset of configurable software systems. Based on a large

dataset of 30 configurable systems, this thesis compares several strategies for testing

configurable systems found by a systematic mapping study on two empirical studies.

In the first study, we designed and performed a comparative empirical study of the

two main sound testing tools, namely VarexJ and SPLat. We also compare sixteen

t-wise testing strategies in a second empirical study. With the experience we have in

the empirical studies, we propose a list of ten challenges faced when creating test suites

for configurable systems and dealing with a test suite for our dataset systems. Our list

includes, for instance, the challenges of testing high coupled classes and of determining

metrics for measuring the quality of the test suite. Results of the empirical studies

indicate which and when strategies are faster and more effective on identifying faults

in configurable software systems. Overall, we believe that practitioners acquire the

necessary knowledge to choose a testing strategy that best fits their needs with our

results and also benefit from our work, observing our solutions for each challenge.

Palavras-chave: Testing Configurable Systems, Testing Tools for Configurable Soft-

ware Systems, Feature Interactions Faults.

ix



List of Figures

1.1 Study steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Feature model and some configurations of Weather Report . . . . . . . . . 13

2.3 Feature interaction faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Feature model and suggested configurations using a 1-, 2-, 3-, and 4-wise

strategies for the Elevator configurable system. . . . . . . . . . . . . . . 20

3.1 Filtering process conducted for study selection . . . . . . . . . . . . . . . . 28

3.2 Number of testing tools by publication venues . . . . . . . . . . . . . . . . 30

3.3 Tools distribution over years and testing strategies . . . . . . . . . . . . . 31

3.4 Distribution of downloaded and tested tools . . . . . . . . . . . . . . . . . 31

3.5 Distribution of testing strategy tools . . . . . . . . . . . . . . . . . . . . . 35

3.6 Evaluation metrics found . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Evaluation approaches found . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Dataset creation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Steps of the empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Select of testing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Effectiveness data collection process . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Time to run and to generate the list of configurations . . . . . . . . . . . 71

6.2 Summary of t-wise strategies comparison . . . . . . . . . . . . . . . . . . . 84

7.1 Faults distribution found . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

x



List of Tables

3.1 Studies obtained after the search process. . . . . . . . . . . . . . . . . . . . 29

3.2 Characteristics each tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Testing strategies description . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Testing strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Evaluation configurable systems found . . . . . . . . . . . . . . . . . . . . 39

4.1 Dataset metrics, adapted from Metrics [2020] . . . . . . . . . . . . . . . . 49

4.2 Size and variability metrics of the dataset . . . . . . . . . . . . . . . . . . 50

4.3 Test suite metrics of the dataset . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Measurement of effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Total time in seconds spent by the target testing strategies . . . . . . . . . 70

6.2 P-value for RQ1 (time to generate and to execute configurations) . . . . . 72

6.3 Percentage of configurations analyzed by strategies . . . . . . . . . . . . . 74

6.4 P-value results for pertence of configurations analyzed . . . . . . . . . . . 75

6.5 Recall of testing strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 P-value results for Recall of testing strategies . . . . . . . . . . . . . . . . 77

6.7 Time Efficiency of testing strategies . . . . . . . . . . . . . . . . . . . . . . 79

6.8 P-value results for Time Efficiency by the strategies . . . . . . . . . . . . . 79

6.9 Coverage Efficiency of testing strategies . . . . . . . . . . . . . . . . . . . . 81

6.10 P-value results for Coverage Efficiency of testing strategies . . . . . . . . . 81

7.1 Faults found by class with traditional metrics . . . . . . . . . . . . . . . . 91

7.2 Faults found by class with variability metrics . . . . . . . . . . . . . . . . . 92

7.3 Faults found by feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



Contents

Acknowledgments vi

Resumo viii

Abstract ix

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Problem and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Thesis Project Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background and Related Work 12

2.1 Developing Configurable Systems . . . . . . . . . . . . . . . . . . . . . 13

2.2 Feature Interaction Problem . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Testing Configurable Systems . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Systematic Mapping Study 25

3.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Overview of Primary Studies . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xii



3.5 Evaluation Overview of Testing Tools for Configurable Systems . . . . 38

3.6 Implications for Researchers and Practitioners . . . . . . . . . . . . . . 40

3.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 A Test-enriched Dataset for Configurable Software Systems 44

4.1 Selecting Subject Systems . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Generating Variability Encoding Systems . . . . . . . . . . . . . . . . . 46

4.3 Creating Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Collecting Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Test-enriched Configurable System Dataset . . . . . . . . . . . . . . . . 48

4.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Sound Testing Tools: A Comparative Study 53

5.1 Goal and Research Questions . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Study Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Efficiency of the Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Effectiveness of the Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Evaluating T-wise Testing 63

6.1 Goal and Research Questions . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Selected Testing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Operationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 The Fastest Testing Strategies (RQ1) . . . . . . . . . . . . . . . . . . . 69

6.6 The Most Comprehensive Strategies (RQ2) . . . . . . . . . . . . . . . . 73

6.7 The Most Effective Strategies (RQ3) . . . . . . . . . . . . . . . . . . . 76

6.8 The Most Time-Efficient Strategy (RQ4) . . . . . . . . . . . . . . . . . 78

6.9 The Most Coverage-Efficient Strategy (RQ5) . . . . . . . . . . . . . . . 80

6.10 Grouping Testing Strategies . . . . . . . . . . . . . . . . . . . . . . . . 82

6.11 Implications for Practitioners . . . . . . . . . . . . . . . . . . . . . . . 83

6.12 Implications for Researchers and Tool Builders . . . . . . . . . . . . . . 85

6.13 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.14 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xiii



7 Investigating the Dispersion of Faults over Classes and Features 88

7.1 Goal and Research Questions . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Operationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Dispersion of Faults over Classes (RQ1) . . . . . . . . . . . . . . . . . . 91

7.5 Dispersion of Faults over Features (RQ2) . . . . . . . . . . . . . . . . . 94

7.6 On the Relation between Faulty Classes and Faulty Features . . . . . . 96

7.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.8 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Ten Challenges for Testing Configurable Software Systems 101

8.1 Creating from Scratch and Expanding Test Suites . . . . . . . . . . . . 102

8.2 Creating Test Cases in Highly Coupled Classes . . . . . . . . . . . . . . 104

8.3 Dealing with the Combinatorial Explosion of Configurations . . . . . . 105

8.4 Sampling Configurations for Test . . . . . . . . . . . . . . . . . . . . . 105

8.5 Running the Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.6 Assessing the Quality of the Automated Test Suites . . . . . . . . . . . 107

8.7 Measuring the Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.8 Dealing with False Positives from Tests . . . . . . . . . . . . . . . . . . 108

8.9 Tracking Feature Interaction Faults to their Sources . . . . . . . . . . . 109

8.10 Finding Technical Debts in Test Cases of Configurable Systems . . . . 110

8.11 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 Conclusion 112

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 118

xiv



Chapter 1

Introduction

Configurable software systems (for short configurable systems) are software systems

that can be adapted based on a set of features that fits specific customer needs [Svahn-

berg et al., 2005; Pohl and Metzger, 2006; Apel et al., 2013a]. Features allow config-

urable systems to have an optional or incremental unit of functionality [Batory, 2005;

Apel and Kästner, 2009]. Through variability, configurable systems can be efficiently

extended, changed, customized or configured, according to different customer require-

ments [Svahnberg et al., 2005]. Nowadays, it is widespread the use of configurable

systems. For instance, Web browser Firefox [Garvin and Cohen, 2011; Mozilla, 2020],

Linux Kernel [Linux, 2020] and Android family [Galindo et al., 2016; Li et al., 2016]

are well-known examples of such systems, with many variants for different users.

In practice, variations in configurable systems are achieved by two main imple-

mentation approaches [Apel et al., 2013a]: compile-time or execution-time. In the

former [Kastner., 2010; Apel et al., 2013a; Czarnecki and Eisenecker, 2000], the code

is annotated with #ifdef-like directives that check if the configuration options are

enabled in order to generate the final product, for instance, by using conditional com-

pilation. For instance, the Linux Kernel is implemented using this approach. In the

latter [Post and Sinz, 2008; Apel et al., 2013c,a], the configuration options are repre-

sented through variables that guard code blocks which are enabled at execution time.

For example, the Android family configurations options are implemented this way.

Not limited to these two practices, recent studies have empirically shown the use of

modularity-based approaches [Figueiredo et al., 2008; Gaia et al., 2014; Diniz et al.,

2017; Cavarlé et al., 2018].

To address a diversity of deployment contexts and usages, developers of config-

urable systems only need to activate or deactivate features. Although configurable

systems are expected to increase code reuse and productivity, developers have to deal

1



1. Introduction 2

with several configuration options [Pohl et al., 2005]. Hence, to ensure that all config-

urations correctly compile, build, and run, developers spend considerable effort testing

their systems. This effort is necessary mainly because configurations that fail may hurt

potential users and degrade the reputation of a project [Halin et al., 2019].

Aware that software testing is a key component for ensuring that all configurations

work properly, researchers have proposed testing strategies and methods [Classen et al.,

2013; Henard et al., 2014b; Sánchez et al., 2014; Medeiros et al., 2016; Halin et al., 2019]

as well as created tools [Kim et al., 2006; Hervieu et al., 2011; Henard et al., 2013a]

and performed studios about software testing on configurable systems [Engström and

Runeson, 2011; Lee et al., 2012b; Machado et al., 2014; Lopez-Herrejon et al., 2015].

Despite the number of studies on testing configurable systems, previous work [Engström

and Runeson, 2011; Machado et al., 2014; Lopez-Herrejon et al., 2015] reports a lack

of empirical evaluations including a community-wide dataset to guide the comparison

of different testing strategies and tools.

1.1 Problem and Motivation

The recurring challenge in testing configurable systems is how to deal with a combina-

torial explosion of configurations and tests [Apel et al., 2013a]. Although configurable

systems may increase code reuse and productivity, they also have several configuration

options and combinations of them to deal with. Therefore, testing configurable sys-

tems is more challenging than testing traditional systems. While in traditional software

systems, there is only one product/configuration (combination of features), there are

many configurations to run all tests in configurable systems, leading to a combinatorial

explosion of configurations and tests [Apel et al., 2013a]. Therefore, testing thoroughly,

against all configurations, is a costly practice. Alternatively, a popular strategy used

in industry is to run the tests for a default configuration. This approach is efficient,

but it can miss bugs [Greiler et al., 2012; Machado et al., 2014].

Between those two extremes, several approaches for testing configurable systems

have been proposed [Cohen et al., 2003; Kuhn et al., 2004, 2010; Kim et al., 2012b,

2013; Liebig et al., 2013a; Nguyen et al., 2014; Medeiros et al., 2016; Souto et al., 2017].

Other approaches [Kim et al., 2013; Liebig et al., 2013a; Nguyen et al., 2014; Souto

et al., 2017] take the code (test or system) into account in addition to the feature model,

and dynamically explore all reachable configurations from a given test. Alternatively,

developers may test a sample of valid configurations [Machado et al., 2014].
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Configurable systems are very different from each other. For example, they can

vary in the numbers of valid configurations, points of variability, size in lines of code,

number of features, and functionality. To achieve desired levels of efficiency and ef-

fectiveness and given the peculiarities of each configurable system, choosing a more

suitable test strategy is challenge. For example, a configurable system with thousands

of valid configurations when using a sampling test strategy, that prioritizes some units

of configurations for testing, will not check thousands of combinations of features. Even

though the configurations returned by the strategy are representative, many faults may

not be detected. However, if the tester wants to use a quick strategy for an initial check,

it is not feasible to use a strategy that would cost hours to test thousands of configura-

tions. In fact, we lack an in-depth study of configurable system testing that discusses

and lists characteristics of configurable systems, characteristics of interactions of failing

features, and characteristics of testing strategies. A study in this direction can support

developers, testers, and researchers to test configurable systems.

Moreover, feature interaction faults are a significant challenge for configurable

systems. Feature interactions occur when features influence the behavior of other fea-

tures [Apel and Kästner, 2009; Apel et al., 2011]. It becomes an issue when developers

look at features together and find an unexpected behavior that does not occur when

they look at features in isolation [Soares et al., 2018b]. Unexpected behavior can in-

troduce faults that manifest themselves in specific configurations. Feature interactions

are among the greatest challenges in developing configurable systems [Kim et al., 2010;

Apel et al., 2011; Garvin and Cohen, 2011; Siegmund et al., 2012; Abal et al., 2014;

Machado et al., 2014; Schuster et al., 2014; Soares et al., 2018b; Nguyen et al., 2019] and

enforces the need to create testing suites that cover all potential interactions [Cohen

et al., 2008; Oster et al., 2011].

However, a prior work reports the lack of study on common faults on configurable

systems, mainly emerged due to feature interactions [Machado et al., 2014]. Knowing

common faults is an opportunity for researchers characterizing and providing recom-

mendations for practitioners correct them as well as compare issues (e.g., bugs, faults,

and variability-aware smells) that bother developers on the configurable system evo-

lution and maintenance processes [Vale et al., 2014, 2015a]. Regarding practitioners,

a deep understanding of feature interaction faults in configurable systems may help

them to identify the reasons of faults that occur in their systems. Knowing the origin

of faults may be useful to avoid the future appearance of the same failure and end with

a vicious cycle of solving related faults. Practitioners may also use this knowledge to

improve existing testing strategies.



1. Introduction 4

Previous studies [Engström and Runeson, 2011; Machado et al., 2014; Lopez-

Herrejon et al., 2015] have reported and created repositories of open-source configurable

systems, although they neglected their test suites. However, no study comparing testing

strategies with a community-wide dataset was found. While the comparison of test-

ing strategies may benefit practitioners supporting their choice of a testing strategy

that best fits their needs, a deep understanding of faults may help practitioners learn

characteristics of classes and features prone to fail. Furthermore, developers can avoid

similar faults, and testers can increase the test coverage in these fault-prone classes

and features. On the other hand, comparing testing strategies with a community-wide

dataset may also benefit researchers and tool builders by showing them opportunities

for improving existing testing strategies and tools.

1.2 Goals

This thesis aims to provide a detailed view of testing strategies for configurable software

systems. Besides, this work relies on this knowledge to propose a list of challenges

faced when testing configurable systems and dealing with a test suite for our dataset

systems. Our results can be seen as lessons learned on creating tests for configurable

systems and they aim at supporting researchers and practitioners on this activity for

configurable systems. Researchers may also use this knowledge to improve existing

testing strategies. To achieve the general goals of this thesis, the following specific

goals (SG) are defined.

• SG1 Investigate testing tools and strategies for configurable systems in the liter-

ature.

• SG2 Investigate which configurable systems are available in the literature to

create a dataset of test-enriched configurable systems.

• SG3 Perform comparative study with sound testing strategies.

• SG4 Perform comparative study with t-wise testing strategies.

• SG5 Analyze the dispersion of faults over classes and features in the subject

dataset.

• SG6 Propose a list of challenges faced when creating test suites for configurable

systems and dealing with a test suite for our dataset systems.
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was essential to discover what are the main restrictions of testing configurable systems

(Chapter 3).

Step 2. We conduct an ad hoc literature review by analyzing survey papers

on testing configurable systems and well-known datasets of configurable systems (e.g.,

spl2go1 and SPL Repository2) (see Chapter 4). Despite we have found 60 config-

urable systems developed in Java-based programming languages, only 10 configurable

systems have their test suite public available. Aiming at increasing this number, we

create a test suite for further 20 systems. The creation of tests followed two stop crite-

ria: (i) at least 70% of code coverage and (ii) at least 40% of the mutants killed. These

two criteria aim at providing a high-quality testing dataset. At the end, we created test

suites for 30 configurable systems. With the creation and expansion of the test suites

for the dataset systems, we identified the main challenges faced. This dataset has been

used by the community to research testing approaches in configurable systems [Ferreira

et al., 2020d].

Step 3. We conducted a comparative study (see Chapter 5) to evaluate the two

main sound tools found in the systematic mapping studies: VarexJ [Meinicke et al.,

2016] and SPLat [Kim et al., 2013]. The main goal of that step was to identify ad-

vantages and drawbacks on testing tools that use sound testing techniques. Hence, we

measured the effectiveness and efficiency of VarexJ and SPLat to test seven systems

identified in Step 2. We observed that, even though both tools claim to use sound

testing technique strategy, they generally did not present high intersection rates. Al-

ternatively, our experiments have shown that for configurable systems with up to 17

features, it was possible to use testing strategies that test all configurations.

Step 4. In this study (see Chapter 6), we compared variations of five t-wise

sampling testing strategies, named CASA [Garvin et al., 2011], Chvatal [Johansen

et al., 2012b], ICPL [Johansen et al., 2012b], IncLing [Al-Hajjaji et al., 2016a], and

YASA [Krieter et al., 2020]. We selected t-wise strategies because they ensure a de-

gree of coverage for determining the set of configurations recommended by the strat-

egy. At the end, we compared sixteen t-wise strategies (CASA-T1, CASA-T2, CASA-

T3, CASA-T4, Chvatal-T1, Chvatal-T2, Chvatal-T3, Chvatal-T4, ICPL-T1, ICPL-T2,

ICPL-T3, IncLing-T2, YASA-T1, YASA-T2, YASA-T3, and YASA-T4 ) and two base-

lines (brute force and random selection).

Step 5. We investigated the dispersion of faults over classes and features from the

dataset (see Chapter 7). A deep understanding of faults may help practitioners to learn

characteristics of classes and features prone to fail, to avoid the introduction of similar

1http://spl2go.cs.ovgu.de/
2http://labsoft.dcc.ufmg.br/doku.php?id=%20about:spl_list
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faults, and to guide them to increase the test coverage in these fault-prone classes and

features. We first retrieve a list of all classes that failed and discuss their dispersion

over each subject configurable system. Then, aiming at discovering whether these faulty

classes have distinct characteristics from other classes, we compute traditional and CK

metrics for each class of each subject system. Similar to investigating characteristics of

faulty classes, we investigate characteristics of faulty features. We use metrics related

to features, such as the number of classes and methods a feature is located (scattering).

Step 6. In this step, we summarize the main challenges observed in the previous

steps. Although previous work concentrates on the explosion of combinations [Apel

et al., 2013a] and feature interactions [Apel and Kästner, 2009; Apel et al., 2011] chal-

lenges, we present other challenges faced when testing configuration systems in practice.

For instance, the challenges (1) on the creation of a test suite, (2) on measuring the

test suite and its quality, and (3) on the identification of faults are often ignored. We

defined ten challenges related to configurable software testing based through our expe-

rience when creating and extending the test suite for our dataset systems (Chapter 4).

In this step, our main goal is to report the main challenges in the complete life-cycle of

30 open-source configuration systems. Therefore, instead of focus on the well-known

challenges present in the literature, we present challenges faced when creating, extend-

ing, assessing, and using test suites for 30 configurable systems.

1.4 Contributions and Publications

This thesis main contribution is the empirical knowledge about testing configurable

systems. We believe that with our results, practitioners acquire the necessary knowl-

edge to choose a testing strategy that best fits their needs. Moreover, researchers and

tool builders are served with opportunities to improve existing testing strategies and

tools. We also observed a lack of information on creating tests for configurable soft-

ware systems. We propose a list of ten challenges faced when performing test suites

for configurable systems and dealing with a test suite for our dataset systems. Our

list includes, for instance, the challenges of testing high coupled classes and of deter-

mining metrics for measuring the quality of the test suite. Our results can be seen as

lessons learned on creating tests for configurable systems and they aim at supporting

researchers and practitioners on this activity for configurable systems. Until now, the

research reported in this thesis has generated the following publications:
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1. Ferreira, Fischer; Vale, Gustavo; Diniz, João Paulo; Figueiredo, Eduardo;

2021. Evaluating T-wise Testing Strategies in a Community-wide Dataset

of Configurable Software Systems. Journal of Systems and Software (JSS),

https://doi.org/10.1016/j.jss.2021.110990.

2. Ferreira, Fischer; Diniz, João Paulo; Vale, Gustavo; Figueiredo, Eduardo; 2021.

On the Challenges for Creating a Test Suite for Configurable Software Systems.

Proceedings of the 24th Ibero-American Conference on Software Engineering,

Software Engineering Track (CIbSE - SET).

3. Ferreira, Fischer; Vale, Gustavo; Diniz, João Paulo; Figueiredo, Eduardo; 2020.

On the Proposal and Evaluation of a Test-enriched Dataset for Configurable Sys-

tems. Proceedings of the 14th International Working Conference on Variability

Modelling of Software-Intensive Systems (VaMoS).

4. Ferreira, Fischer; Viggiato, Markos; Souza, Maurício; Figueiredo, Eduardo; 2020.

Testing Configurable Software Systems: The Failure Observation Challenge. Pro-

ceedings of the 24th ACM International Systems and Software Product Line

Conference (SPLC).

5. Ferreira, Fischer; Figueiredo, Eduardo; 2020. A Test Strategy for Configurable

Software Systems using Machine Learning. Proceedings of the 23th Ibero-

American Conference on Software Engineering (CIbSE) Doctoral Symposium.

6. Ferreira, Fischer; Diniz, João Paulo; Silva, Cleiton; Figueiredo, Eduardo; 2019.

Testing Tools for Configurable Software Systems: A Review-based Empirical

Study. Proceedings of the 13th International Working Conference on Variability

Modelling of Software-Intensive Systems (VaMoS).

1.5 Results

This thesis provides the following main results.

We found 25 primary studies cited in previous secondary studies [Meinicke et al.,

2014; Machado et al., 2014; Lopez-Herrejon et al., 2015; Varshosaz et al., 2018] and

another 39 primary studies on testing tools for configurable systems. Our mapping

study covered studies published between 2014 and 2020. Therefore, in total, we found

64 papers resulting in 60 testing tools for configurable systems. We analyzed the

tools found concerning 16 characteristics and four main testing strategies. This thesis

shows an overview of 64 primary studies found and presents an overview of how the
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researchers evaluated testing tools for configurable systems. Finally, we discuss our

results regarding implications for researchers and practitioners. We have also listed all

papers used in the proposed mapping study steps [Ferreira et al., 2020a].

We searched for configurable systems in the literature and we found 243 systems

being 60 developed in a Java-based programming language. However, only ten systems

have a test suite available. In this way, we created tests until they have a coverage of

70 % and kill at least 40 % of mutants for the other 20 projects. These two criteria aim

at providing a high-quality testing dataset. At the end, we created a dataset with 30

test-enriched configurable systems varying in domains, size, variability, and test suite

size. We make our infrastructure and data publicly available for follow-up studies on

a supplementary website [Ferreira et al., 2020c].

We designed and executed a comparative study with two sound testing strategies,

namely SPLat and VarexJ. In this empirical study, we note that VarexJ is generally

more efficient than SPLat. However, when it was not more efficient, it was by a

large difference in specific situations related to its implementation of variability-aware

execution. We observed that VarexJ and SPLat presented different results for efficiency

while testing the target systems and that, although VarexJ found more faults than

SPLat for the majority of the target systems, such result deserves a more in-depth

investigation because we expected a higher intersection of faults encountered by them.

In the second empirical study, we compare the performance of the configurations

suggested by sixteen t-wise strategies. We found that for each t-wise group: (i) ICPL-

T1, ICPL-T2, ICPL-T3 and YASA-T4 are usually fast in relation to groups 1-, 2-,

3-, and 4-wise, respectively; (ii) Chvatal-T1, IncLing-T2, Chvatal-T3, and Chvatal-T4

are the most comprehensive testing strategy; (iii) Chvatal-T1, ICPL-T2, Chvatal-T3,

and Chvatal-T4 are the testing strategies that recommends configurations able to find

the greatest number of faults; (iv) Chvatal-T1, ICPL-T2, Chvatal-T3, and YASA-T4

are the testing strategy that recommends configurations able to find the best balance

among faults found and time; and (v) Chvatal-T1, CASA-T2, Chvatal-T3, and Chvatal-

T4 are the testing strategies that recommends configurations able to find the best

balance among faults found and the number of recommended configurations in relation

to groups 1-, 2-, 3-, and 4-wise.

In the third empirical study, we look at the dispersion of faults found over classes

and features in the subject dataset. Then, we measure each class and feature with

metrics commonly used in practice [Chidamber et al., 1998]. Number of lines of code

(LoC ) [CK, 2020], weighted methods per class (WMC ) [CK, 2020], and response for a

class (RFC ) [CK, 2020] are examples of metrics at class-level. Feature scattering and

feature tangling are examples of feature-level metrics. Finally, we compute Spearman’s
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rank correlation between the number of faults in a component (i.e., class or feature) and

a given metric aiming to provide a deep understanding of faults found in a community-

wide dataset. We found that faults are usually concentrated in a few classes and

features and these fault-prone components are distinguishable from components safe

of faults only measuring their source code with metrics normally used in practice.

Finally, in this thesis we discussed ten challenges related to the life-cycle of tests

for configurable systems. We summarized the challenges through our observations

based on the background acquired from previous empirical studies. We believe that

researchers and practitioners can benefit from the described challenges and can propose

solutions for them making our challenges just a starting point for future research.

Therefore, instead of focus on the well-known challenges present in the literature, we

present challenges faced when creating, extending, assessing, and using test suites for

30 configurable systems. For brief, our list of challenges is:

1. Creating from scratch and expanding test suites

2. Creating test cases in highly coupled classes

3. Dealing with the combinatorial explosion of configurations

4. Sampling configurations for test

5. Running the test suites

6. Assessing the quality of the automated test suites

7. Measuring the test suites

8. Dealing with false positives from tests

9. Tracking feature interaction faults

10. Finding technical debts in test cases of configurable systems

1.6 Thesis Project Outline

In addition to this introductory chapter, the remainder of this thesis project is organized

as follows.

Chapter 2 provides the essential concepts to support this thesis. In addition to details

concerning testing of configurable systems. We present an overview of variability
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encoding, techniques, and challenges related to develop configurable systems. This

chapter also discusses related work.

Chapter 3 presents the protocol and results of a systematic mapping study conducted

to identify the state-of-the-art testing tools for configurable systems.

Chapter 4 presents the proposal of a test-enriched dataset to support the evaluation

of testing strategies for configurable systems. The proposed dataset is the first dataset

for configurable systems with extensive test suites.

Chapter 5 compares two sound testing tools called VarexJ and SPLat. We found

these test tools in the systematic mapping study (Chapter 3) .

Chapter 6 presents a comparison of variations of five t-wise sampling testing strate-

gies CASA [Garvin et al., 2011], Chvatal [Johansen et al., 2012b], ICPL [Johansen

et al., 2011], IncLing [Al-Hajjaji et al., 2016a], and YASA [Krieter et al., 2020]. We

found these five t-wise sampling testing strategies in the systematic mapping study

(Chapter 3).

Chapter 7 presents at the dispersion of faults found over classes and features in the

subject dataset.

Chapter 8 presents a list of ten challenges faced when performing test suites for

configurable systems and dealing with a test suite for our dataset systems.

Chapter 9 presents the conclusion of this thesis, reviewing the results concerning the

specific goals. We discuss the contributions and implications of this thesis. We also

discuss future works as a consequence of this study.



Chapter 2

Background and Related Work

Software testing is a key component for ensuring that all configurations work prop-

erly [McGregor, 2001; Ammann and Offutt, 2016]. Despite its importance, testing

configurable software systems is more challenging than testing traditional software sys-

tems. While in traditional software systems there is only one product or configuration

(a combination of features) to be tested, for configurable systems, we need to run all

tests in several different configurations, which makes exhaustive testing prohibitively

expensive and practically infeasible [Apel et al., 2013a].

Alternatively, developers may test a sample of valid configurations [Machado

et al., 2014]. Several strategies for choosing a sample of configurations have been

proposed [Medeiros et al., 2016; Souto et al., 2017]. Some of them use information only

available in the feature model [Nie and Leung, 2011; Johansen et al., 2011; Al-Hajjaji

et al., 2016a; Medeiros et al., 2016], while others also use information from the source

code [Kim et al., 2013; Nguyen et al., 2014; Souto et al., 2017].

This chapter presents an overview of approaches and techniques to develop con-

figurable systems. The remainder of this chapter is organized as follows. Sections 2.1

and 2.2 provide an overview of developing configurable systems and feature interaction

problem, respectively. Section 2.3 shows an overview of testing configurable systems

and t-wise techniques. Section 2.4 discusses the related work. Finally, Section 2.5

concludes this chapter.

12
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tion of all the possible configurations of the configurable system in terms of features

and relationships among them [Krzysztof and Eisenecker, 2000]. As an example, the

configurable system Weather Report has 24 valid configurations.

Configuration 1 (Figure 2.1) represents a version of Weather Report with

only basic functionalities. In this case, only mandatory features are enabled (BASE,

and VIEW). If a child feature is mandatory, it is enable in all configurations in which

its parents are enable. In Configuration 2, in addition to the mandatory features, the

features LOGGING, TXT, WEATHER, and TERMINAL, are enabled, allowing

Weather Report to have other functionalities. The features GUI, LOGGING,

SMILEY, and WEATHER are optional features. If a child feature is defined as

optional, it can be optionally enabled in configurations in which its parents are enabled.

In a feature model, it is possible to define the features as XOR alternatives

and OR. A set of child features is defined as an alternative feature if only one feature

of this set can be selected when its parents are enabled in a configuration. Figure 2.1

presents two alternatives features (TERMINAL and GUI). As the feature VIEW is

mandatory, each configuration must contain either the features TERMINAL OR GUI

and a configuration cannot have these features enabled at the same time. Regarding

OR-relation features: a set of child features is said to have an or-relation with their

parents when one or more of them can be enable in the configuration in which their

parents are enable. Figure 2.1 presents two or-relation features (TXT and SQL). If

feature LOGGING is enable in a configuration at least one of the features TXT and

SQL must be enable. The propositional formulas under the tree represents the cross-

tree constraints. For example, in Figure 2.1 if the SMILEY feature is enable the GUI

feature has to be enable. In this way, several versions of Weather Report can be

generated according to the feature model.

To develop configurable systems, developers may choose between the two main

strategies: compile- and execution-time [Apel et al., 2013a]. In compile-time strategies,

developers activate a set of features that is (pre)processed in order to generate the

final product [Czarnecki and Eisenecker, 2000; Kastner., 2010; Apel et al., 2013a].

This strategy can be divided into annotative and compositional approaches. The main

difference among these approaches is that in the annotative strategy, the developers

annotate their code (e.g., with #ifdef-like directives) to represent variation points.

However, developers implement each variation point in modularized components in

compositional approaches (e.g., features, aspects or deltas).
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Compositional approaches. In compositional approaches, developers implement

each variation point in modularized components (e.g., features [Batory, 2005; Ferreira

et al., 2014] to Feature-oriented programming, aspects [Kiczales, 1996; Figueiredo et al.,

2008; Schaefer et al., 2011] to AOP or deltas [Schaefer et al., 2010; Diniz et al., 2017]

to DOP). Conditional compilation (CC) is an example of a technique that uses the

annotative approach [Post and Sinz, 2008; Apel et al., 2013c]. Feature-oriented pro-

gramming (FOP) [Batory, 2005], aspectual feature modules (AFM) [Apel et al., 2008;

Gaia et al., 2014], and delta-oriented programming (DOP) [Schaefer et al., 2010] are ex-

amples of techniques that use a compositional approach. The Linux Kernel [Linux,

2020] and the Firefox Web Browser [Garvin and Cohen, 2011; Mozilla, 2020] are

examples of configurable systems developed with compile-time strategies.

Variability Encoding. In execution-time strategies, developers activate features

that contain code blocks at execution-time [Post and Sinz, 2008]. Variability encoding

is an example of execution-time strategy [Apel et al., 2013a,c]. Similar to conditional

compilation, developers should create conditional structures (e.g., if/else statements

or ternary operator ?:) and generate the so-called meta-products [Thüm et al., 2012]

in variability encoding. Then, developers should create configuration files determin-

ing features to be enabled in a target configuration. This way, all features can be

activated or deactivated at execution time [Kim et al., 2013; Meinicke et al., 2016;

Wong et al., 2018]. Android family is a (set of) configurable system(s) developed

using variability encoding [Galindo et al., 2016; Li et al., 2016]. In this study, config-

urable systems are implemented using variability encoding and, through manipulating

functional features, they are added at run-time. We do not consider systems in which

program parameters [Apel et al., 2013a] are used to determine configurations.

Variability Encoding is the technique used for our dataset systems presented in

Chapter 4. Configurable software systems have long been studied by the software

product line engineering community [Pohl and Metzger, 2006; Apel et al., 2013b].

Among the strategies to introduce variability in software systems, variability encoding

has drawn practitioners attention since developers only need to annotate variation

points on their existing systems. This way, developers simply activate or deactivate

features to address different deployment contexts. For short, while annotating variation

points, developers should create a configuration file where they determine options that

are going to be enabled in a target variation.

Listing 2.1 presents a fragment of code in a configurable system of our dataset

(Chpater 4), named Companies. In this example, the method getTotal returns a

string containing a calculated value. If the feature TOTAL_WALKER is enable,

the method returns the value calculated by the TotalWalker class. If the fea-
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ture TOTAL_REDUCER is enable, the method returns the value calculated by

the TotalReducer class. On the other hand, if the features TOTAL_WALKER

and TOTAL_REDUCER are not enable, no value is calculated. The variations in

configurable systems of our dataset (4) use the variability encoding (execution-time)

technique.

1 public String getTotal () {

2 String value = "";

3 if ( Configuration . TOTAL_WALKER ) {

4 TotalWalker walker = new TotalWalker ();

5 walker . postorder ( currentValue );

6 value = Double . toString ( walker . getTotal ());

7 } else if ( Configuration . TOTAL_REDUCER ) {

8 TotalReducer total = new TotalReducer ();

9 double valueDouble = total. reduce ( currentValue );

10 value = Double . toString ( valueDouble );

11 }

12 return value;

13 }

Listing 2.1: Variability encoding example

To translate a configuration systems code from Annotative to Variability Encod-

ing format, we use the process described by Souto [2015]. We demonstrate a common

example proposed in her study and applied in our thesis (listings 2.2 and 2.3). List-

ing 2.2 presents an Annotative example and Listing 2.3 presents their translation to

Variability Encoding. We need to guard the definitions and uses of the Annotative

translating into Variability Encoding remaining the same behavior.

1 class ClassExample {

2 void methodNumber (){

3 int x = 0;

4 //#ifdef A

5 x = 10;

6 //#endif

7 // ...

8 //#ifdef B

9 x = 20;

10 //#endif

11 // ...

12 }

13 }

Listing (2.2) Annotative example

1 class ClassExample {

2 void methodNumber (){

3 int x = 0;

4 if( Configuration .A)

5 x = 10;

6
7 // ...

8 if( Configuration .B)

9 x = 20;

10
11 // ...

12 }

13 }

Listing (2.3) Variability encoding example
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2.2 Feature Interaction Problem

The concept of feature interactions was initially studied in telecommunication sys-

tems [Bowen et al., 1989]. The first reported feature interaction problem was unex-

pected behavior of the system in case of concurrent features: call waiting, and call

forwarding. If both are active, the system can behave in a non-deterministic way,

sometimes putting the call on hold, occasionally forwarding the call to another number

(or mailbox).

Feature interactions occur when features influence the behavior of other fea-

tures [Batory et al., 2011]. It becomes an issue when developers look at features

together and find an unexpected behavior that does not occur when they look at fea-

tures in isolation [Soares et al., 2018b]. Unexpected behavior can introduce faults that

manifest themselves in specific configurations. Feature interaction faults are among the

greatest challenges in developing configurable systems [Kim et al., 2010; Apel et al.,

2011; Garvin and Cohen, 2011; Siegmund et al., 2012; Machado et al., 2014; Schuster

et al., 2014; Soares et al., 2018b; Nguyen et al., 2019] and enforces the need to create

testing suites that cover all potential interactions [Cohen et al., 2008; Oster et al.,

2011]. These faults are usually caused by a problem with the interactions of two or

more features.

1 public class WeatherReport {

2 private Date date;

3 private String temperature ;

4 public WeatherReport (Date currentDate , String currentTemperature ){

5 this.date = currentDate ;

6 this. temperature = currentTemperature ;

7 }

8 public String createText ( String c) {

9 if ( Configuration . SMILEY )

10 c = c. replace (":]", getSmiley (":]"));

11 if ( Configuration . WEATHER )

12 c = c. replace ("[: weather :]", temperature );

13 return c;

14 }

15 }

Listing 2.4: Variability encoding example adapted from Meinicke et al. [2016]

To illustrate, Listing 2.1 presents a traditional and simple example of feature

interaction problem adapted from WordPress [Meinicke et al., 2016] . In this example,

the createText method edits and returns a string c. If only feature SMILEY is enable,
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when the feature WEATHER is enable. For short, receiving string “[:weather:]” it

should return “30.0°C”.

1 public class WeatherReportTest {

2 WeatherReport wr;

3 @Before

4 public void setUp () {

5 WeatherReport wr = new WeatherReport ("2020 -08 -25", "30.0°C");

6 }

7 @Test

8 public void weatherTest () {

9 if ( Configuration . WEATHER )

10 assertEquals (wr. createText ("[: weather :]"), "30.0°C");

11 }

12 }

Listing 2.5: Test cases for WeatherReport class

The fact that the number of product variants grows exponentially with the num-

ber of variation points makes it infeasible to test all possible feature combinations after

a certain number of features. This way, practitioners have to choose somehow to test

only a sample of configurations. Over the years, various strategies have been devel-

oped to test configurable systems [Engström and Runeson, 2011; da Mota et al., 2011;

Machado et al., 2014; Ferreira et al., 2019]. These strategies can be classified into:

variability-aware testing [Kim et al., 2013; Meinicke et al., 2016; Wong et al., 2018]

and configuration sampling testing [Johansen et al., 2012a; Al-Hajjaji et al., 2016a;

Souto et al., 2017]. Variability-aware testing strategies explore dynamically all reach-

able configurations from a given test, by monitoring feature variable accesses during

test execution.

Configuration sampling. Configuration sampling testing strategies sample a sub-

set of valid configurations and test them individually. We focus on configuration sam-

pling testing strategies because they are more often used in practice [Varshosaz et al.,

2018]. Configurable sampling testing strategies (for short, sampling strategies) can be

classified into four groups [Varshosaz et al., 2018]: manual selection, semi-automatic

selection, automatic selection, and coverage. In the first, practitioners should manu-

ally select the configurations to be tested. In the second, the selection of configurations

requires an input representing the stop criteria (e.g., the number of products to be gen-

erated, the time for sampling, or a degree of coverage). In the third, the selection of

configurations has support of greedy (i.e., optimal interactive choice) or meta-heuristic

algorithms (e.g., local search or population-based search). In the fourth, the selection

of configurations uses the coverage criteria to assure the quality of product sampling
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We used the unit testing and mutation testing techniques to create the test suite

for the configurable systems presented in Chapter 4. Unit testing, Among techniques

for testing software systems in general, unit testing are widely used [Jia and Harman,

2010; Papadakis et al., 2018a; Petrović and Ivanković, 2018; Papadakis et al., 2018b;

Mao et al., 2019]. Unit tests focus the verification effort on the smallest software unit,

such as a function or a software component. This way, important control paths are

tested to find errors within component boundaries. The relative complexity of the tests

and the found faults are limited by the scope established for a specific unit test, and

unit tests usually have one or a few inputs and usually a single output.

Mutation testing, on the other hand, is a fault-based technique commonly used

to evaluate the effectiveness of software testing [Gopinath et al., 2014; Just et al.,

2014]. Even though it is a self cost technique, it has been empirically shown to be

one of the most robust test selection criteria when compared to other measures such

as control flow and data flow-based testing [Andrews et al., 2005; Gopinath et al.,

2014; Just et al., 2014]. Mutation testing consists of introducing syntactical changes,

called mutations, into the source code and check whether the test cases distinguish

them [DeMillo et al., 1978]. The resulting programs are called mutants. A mutant is

killed if the test suite observes the modification of the mutant from the original code.

If the test suite cannot see changes, the mutant remains alive indicating that the test

suite is not good enough to identify faults and developers should improve their test

suite to kill surviving mutants.

2.4 Related Work

There are dozens of papers related to testing configurable systems [Engström and

Runeson, 2011; Lamancha et al., 2013; Lee et al., 2012b; Lopez-Herrejon et al., 2015;

Machado et al., 2014; da Mota et al., 2011; Pohl and Metzger, 2006]. We present studies

that investigate faults, feature interactions, compare testing strategies for configurable

systems, and variability bugs datasets.

Faults on Configurable Systems. Lopez-Herrejon et al. [2014] proposed a dataset

with 19 configurable systems obtained through studies published in the five events

(SPLC, VaMoS, ICSE, ASE, and FSE), and four repositories publicly available

(SPL Conqueror, FeatureHouse, SPL2go, and SPLOT). Our thesis has three

systems in common (ArgoUML-SPL, GPL, and ZipMe). Their work analyzed con-

figurations recommended by CASA, PGS, and ICPL testing strategies in terms of size,

performance, similarity, and frequency, considering information from the feature model.
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The objective of their work is to evaluate the effectiveness of the testing approaches

which is similar to one of our goals. In addition to having additional goals, in Chapter 6,

we evaluate a larger set of systems, other testing strategies (Chvatal and IncLing), and

other properties (eg , time, comprehensiveness, time-efficient, and coverage-efficient).

In line with our results, ICPL was one of the fastest strategies.

Sánchez et al. [Sánchez et al., 2017] mined a list of faults from Drupal. Drupal

is a modular web content management framework written in PHP with 48 features and

21 cross–tree constraints. They identified 3392 faults, and report feature interactions

associated with these faults in two analyzed Drupal versions (v7.22 and v7.23). They

characterized Drupal through the number of changes (during two years), cyclomatic

complexity, number of test cases, number of test assertions, number of developers, and

number of reported installations. Different from them, we use a much larger set of

metrics and multiple systems. We present our dataset in Chapter 4. Our results are

inline with their study concerning the number of code lines handled by the feature and

weight method class can be used as good estimators for identifying fault-prone features

and classes.

Fischer et al. [2018] proposed a dataset with six configurable systems for eval-

uating the fault detection capabilities of configurable systems testing strategies. Our

dataset has two configurable systems in common (GPL and Notepad) (Chapter 4).

They reported that one of the main limitations of their work was the automatic genera-

tion of test cases using the EvoSuite tool. Our dataset addresses this limitation since

we manually developed a test suite for systems without one and extending the test

suite of other systems that already had one. We believe that our test suites are more

comprehensive than theirs, which reflects also on the number of faults we found. Simi-

lar to their work, we introduced mutations to emulate faults and verify the effectiveness

of the test suite created (Chapter 4).

Feature Interaction Investigations. Considering that identify feature interaction

faults is expensive and challenging, several studies in the literature have proposed differ-

ent approaches to deal with the feature interaction [Garvin and Cohen, 2011; Machado

et al., 2014; Schuster et al., 2014; Siegmund et al., 2012; Soares et al., 2018a,b]. As

an example, Soares et al. [2018a] proposed a strategy called VarXplorer, which

focuses on pair-wise feature interactions. VarXplorer is an incremental and inter-

active lightweight process to detect problematic interactions dynamically. Through

VarXplorer, the user identifies features that should not interact, and this way, a

specification of the features is created. Our thesis also investigates feature interaction

faults. However, we use the suite of automated and configurations recommended by

sixteen t-wise strategies to inspect features (Chapter 6). Our results demonstrate that
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it is possible to identify feature interaction problems through automated tests. The

creation of a formal specification is costly, may be incomplete, ambiguous, or have

errors. As an alternative to find feature interaction faults, automated testing can be a

viable alternative.

Comparison of Testing Strategies Designed for Configurable Systems. [Medeiros

et al., 2016] investigated faults using ten sampling algorithms (SPLCATool,

CASA, ACTS, Statement-coverage, Most-enabled-disabled and Random) and 135

configuration-related faults from 24 subject systems developed in C programming lan-

guage and ten different types of faults such as Memory Leaks. The main difference from

our study is that we evaluated the configurations recommended by t-wise strategies in

Java-based configurable systems and we provide analyses investigating the dispersion

of faults on classes and features. Furthermore, while in their study, researchers man-

ually created a corpus of 135 faults, we identified faults automatically. Regarding the

difference on results, Medeiros et al. [2016] showed that the recommended configura-

tions of their selected sampling algorithms include at least 66% of the 135 faults. In

our study, the t-wise strategies found around 1/3 of the faults found. Anyway, it is

hard to compare these results because the set of systems, strategies used as well as

the programming language are different and they may provide different results (see

Chapter 6). In any event, similar to them, we found t-wise strategies with greater “t”

have greater coverage. In our work, a 4-wise strategy found about 1/3 of the faults

and in their work a 6-wise strategy found all 135 reported faults.

Variability bugs datasets. Few bug datasets were found in the literature [Abal

et al., 2018; Palix et al., 2011; Do et al., 2005; Slaby et al., 2013]. However, only Abal

et al. [2018] propose a variability bug dataset. Abal et al. [2018] created a variability

bugs dataset (named VBDb) occurring in four highly configurable systems: Linux,

Apache, BusyBox, and Marlin based on a manual investigation of these projects.

Their dataset is composed by 98 variability bugs with a detailed data record about

each bug. These bugs comprise common types of errors in systems developed in C

and cover different types of feature interactions. The main differences from our study

are the number of configurable systems and the programming language. While they

investigated four configurable systems, we investigated 30 configurable systems. Indeed

the systems of their dataset are larger than the systems of our dataset. However, we

manually created the test suite for most of the configurable systems and we also have

industry-strength systems, such as ArgoUML. Regarding the programming language,

they analyze C systems while we evaluate Java-based systems. This is an advantage,
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since practitioners may benefit from a different set of supporting tools and researchers

may compare these studies as well as better understand how developers introduce

variability bugs in configurable systems.

2.5 Final Remarks

This chapter describes the fundamental concepts used in this thesis and discusses re-

lated works. We started by introducing developing configurable systems. Following, we

presented two main strategies to develop configurable systems (compile and execution-

time). Then, we showed a feature interaction overview and introduced a traditional

and simple example of a feature interaction problem adapted from WordPress. Next,

we present an overview of this testing configurable software systems. In Section 2.4, we

presented studies investigating faults, feature interactions, comparing testing strategies

for configurable systems, and variability bugs datasets. Furthermore, we discuss the

applications of work related to the chapters of this thesis.

After presenting an overview of configurable systems and configurable system

testing in the next chapter, we presented some configurable system testing tools and

their particularities. Thus, Chapter 3 presents a systematic mapping study that aims to

provide an overview of the state-of-the-art testing tools and strategies for configurable

systems.



Chapter 3

Systematic Mapping Study

This chapter reports the planning, execution, analysis, and results of the systematic

mapping study (SMS) conducted in this thesis. This mapping study explores the ex-

isting testing tools for configurable software systems, understands how this works, and

applies the literature tools. The main contribution of this chapter is the identification

of the state-of-the-art of testing tools for configurable software systems. In addition,

we extend and update four previous secondary studies [Meinicke et al., 2014; Machado

et al., 2014; Lopez-Herrejon et al., 2015; Varshosaz et al., 2018]. These studies were

found through an ad hoc review of the literature. We analyze these previous studies to

find out the testing tools for configurable systems reported in them.

For this SMS, we propose two research questions as follows. First, what are the

main characteristics of the testing tools for configurable systems? We investigate tools’

characteristics described in the primary studies and use these tools (when available for

download). Second, what are the main strategies used to test configurable systems? We

observed the classifications commonly presented in the primary studies and grouped

the tools found following these classifications. As a result, we found a total of 64

primary studies resulting in 60 tools. We analyze the main characteristics of the tools

found (e.g., graphical user interface, and free for use). Moreover, we identify four main

strategies used to test configurable systems (e.g., Sound Testing, and Automatic Test

Case Generation).

The remainder of this chapter is organized as follows. Section 3.1 presents the

planning of this SMS by demonstrating the protocol adopted for the study. Section 3.2

describes the execution according to the protocol. It also shows the selection process

of the relevant papers in this SMS. Section 3.3 shows an overview of primary studies.

25
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Section 3.4 presents and discusses the results of the SMS. Section 3.5 shows an eval-

uation overview of the testing tools found. Section 3.6 presents some implications of

our results for researchers and practitioners. Finally, Section 3.7 discusses the threats

to validity and Section 3.8 concludes this chapter.

3.1 Planning

In the planning phase, we define the protocol for conducting the SMS. The activities

carried out in this phase were: (i) defining the SMS goal, (ii) specifying the research

questions; (iii) selecting the databases to search papers; (iv) constructing the search

string to be used; and (v) applying the inclusion and exclusion criteria.

Goal: The goal of this study is to identify and analyze tools reported in the

literature for testing configurable software systems. We defined this goal due to the

wide number of proposed testing tools and the diversification of strategies described in

the literature. We believe that software testers would benefit from such summarization

and comparison of tools reported in this study.

Research Questions: The research questions (RQ) aim to investigate and un-

derstand the state-of-the-art of testing tools for configurable systems. To achieve the

goal of this chapter, we establis two general purpose research questions.

RQ1 - What are the main characteristics of the testing tools for configurable

systems?

RQ2 - What are the main strategies used to testing configurable systems?

RQ1 aims to check the key features of testing tools for configurable systems.

During the execution of the SMS, we found studies that presented different strategies

for testing configurable systems. Furthermore, we observed that tools could be classified

according to their strategies. Therefore, we propose RQ2 to find the main strategies

used for testing configurable systems.

Electronic Databases: The electronic databases used for the search of the

primary studies were: ACM Digital Library 1, IEEE Xplore 2, Engineering Village 3,

Science Direct 4, Scopus 5 and Springer Link 6. These digital libraries have been

1http://dl.acm.org/
2http://ieeexplore.ieee.org/
3https://www.engineeringvillage.com
4http://www.sciencedirect.com/
5http://scopus.com/
6http://link.springer.com/
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chosen because they have a large collection of full research papers. They are indexed for

published researches from conferences and journals of great importance to the academic

community.

Search String: To identify the relevant papers about testing tools for config-

urable systems, we formulate a search string to find primary studies related to our

mapping. Initially, the key words “tool” ,“configurable software systems” and “soft-

ware test” were defined as the main terms of the expression. After piloting search,

we define for synonyms of these terms to refine this expression. We also test different

search strings for singular of the plural in the terms used for search.

("tool") AND ("configurable software systems" OR "software product

lines") AND ("software test" OR "software testing")

Inclusion and Exclusion Criteria: The inclusion and exclusion criteria allow

classifying each study in the mapping study as a candidate to be included to or excluded

from the SMS [Kitchenham and Charters, 2007]. As a SMS may involve a large number

of studies, we limited the scope of this SMS to select only full papers. The following

inclusion and exclusion criteria were defined.

Inclusion Criteria - Papers published in English, published in Computer Sci-

ence, available in electronic format, published in conferences and journals, and related

to the search string terms.

Exclusion Criteria - Shorter than two pages, secondary studies, duplicated

studies.

3.2 Execution

We divide the execution of our SMS into two main phases as demonstrated in Figure 3.1.

In the first phase, through a review of four secondary studies [Meinicke et al., 2014;

Machado et al., 2014; Lopez-Herrejon et al., 2015; Varshosaz et al., 2018], we selected

25 primary studies. The second phase, following the planning described in Section 3.1,

consists in applying the search string in the databases to search primary studies. The

inclusion and exclusion criteria were then applied to filter the studies. After Phase 1

and Phase 2, we merged the studies found to answer our research questions.

Phase 1: we analyzed were the studies reported in previous secondary stud-

ies [Meinicke et al., 2014; Machado et al., 2014; Lopez-Herrejon et al., 2015; Varshosaz

et al., 2018]. The 25 primary studies on testing tools for configurable systems that

these papers mentioned were included in our SMS.
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Table 3.1: Studies obtained after the search process.

Data Base Studies Returned Selection

ACM Digital Library 110 12
Springer 193 9 (+4)
Engineering Village 74 7
IEEE Xplore 297 5 (+2)
Science Direct 225 4
Scopus 154 2 (+1)

Total 1031 39

Step 1 - Exclusion of duplicates. It involves the elimination of duplicated studies.

Studies with same title and authors were discarded. This step eliminated 323 papers,

resulting in 708 papers to be analyzed in Step 2.

Step 2 - Read metadata. It consists in removing documents that are not papers.

Thus, documents classified as tutorials, posters, panels, lectures, round tables, theses,

dissertations, and technical reports were removed in this step. Other studies were

discarded because the title did not indicate that the work was about testing configurable

systems. This step eliminated 96 papers, resulting in a total of 612 papers to be

analyzed in Step 3.

Step 3 - Exclusion of short papers. In this step, we identified the short papers.

This step eliminated 60 papers, resulting in a total of 552 papers to be analyzed in

Step 4.

Step 4 - Read abstract. The titles and abstracts of the 552 papers selected in

Step 3 were checked. Only reading the title and abstract of some papers, it was not

possible to have the idea about the content addressed. For this reason, when analyzing

some studies, we could not decide about the inclusion or exclusion of them. Therefore,

as a way to avoid fast decisions, these studies were included and moved to Step 5 for

further reading. This step identified 89 papers with relevance.

Step 5 - Read full text. In this step, we conducted a full-text paper read for

89 papers, aiming to discard papers that does not propose or use testing tools for

configurable systems and kept 35 studies.

Step 6 - Snowballing. Searching in electronic databases does not guarantee that

all relevant studies on a particular topic would be retrieved. In order to mitigate this

limitation, a snowballing process was performed in this step. By applying backward

snowballing [Wohlin, 2014] approach, we have included four studies in this step.
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3.4 Data Analysis

In this subsection, we address each research question presented in Section 3.1. With

respect to RQ1, Table 3.4 presents the 60 testing tools for configurable systems we

found in the 64 primary studies. We included testing tools for configurable systems

regardless of the strategy implemented by the tool.

RQ1 - What are the main characteristics of the testing tools for configurable

systems?

Table 3.4 lists the characteristics of each tool. We defined these characteristics

based on previous studies [Pereira et al., 2015; Chen and Babar, 2011; Lee et al.,

2012a]. The following characteristics were considered. We indicate whether the tool is

accessible for download (Accessible), type of user interaction (TUI), prototype, plugin,

free for use (Free), open-source, user guide available (USG), solution examples available

(SE). Furthermore, we indicate if we were able to use the tool (Used), code level test

(CLT), feature model check (FMC), feature interaction (FI), input data, output data,

tool dependency, and tool website. We use "n/a" for information not available.

Regarding the format of the tools, we identified the type of user interaction as

command line (LC), graphical user interface (GUI), and online (ONL). We found a

total of 34 tools with some type of user interface. The most recurring type of user

interface is graphical user interface (30%), followed by command line (28.3%), and

online (10%). Additionally, 17 (28.3%) of the tools are described as prototypes, and

20 (33.3%) are plugins for Eclipse. The majority of the tools (56.6%) are described as

free for use, and 43.3% are open-source projects.

With respect to the documentation of the tools, we identified that 43.3% tools

have user guides available (USG), and 65% have solution examples available (SE).

However, we were able to use only 48.3% of the tools. An initial challenge was that only

53.7% of the tools have valid URLs. In addition, some tools have errors of execution

or lack of documentation to understand all the requirements for the tools to work

correctly.

We found that 63.3% of the tools identify configurations for testing from feature

models and 38% use the system’s source code. Feature interaction is a situation in

which the composition of several features leads to emergent behavior that does not

occur when one of them is absent [Svahnberg et al., 2005]. There is a significant

percentage of tools aimed at testing the interaction of features. We observed 63.3% of

the tools look for feature interactions.
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FeatureIDE, Eclipse, and SPLCAT are the most recurring tool dependency found

(8.3%, 6.7%, and 3.3%, respectively). XML is the main format for input data (15.6%),

followed by DIMACS (8.3%) and GUIDSL (5%). Other formats include SPLX, Clafer,

Z3, SXFM, and SPLOT files. Test tools for systems configurable with the aid of a

SAT Solver, which takes as inputs such a feature model and a configuration set also

represented as a boolean expression. Finally, most of the tools produce outputs in

the format of configuration lists (20%) or logs (18.3%). Other output formats are

interaction graphs (used in VarXporer [VarXplorer, 2018]) and JUnit reports (used in

ParTeG [ParTeg, 2008]). List Configurations are usually represented as CSV, TXT,

and XML files.
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Table 3.2: Characteristics each tool
Tool [Ref.] Accessible TUI Prototype Plugin Free Open-source USG SE Used CLT FMC FI Input date Tool Dependency Output date Website

Baital [Baranov et al., 2020] • LC • • • • • • • DIMACS CL [Baital, 2020]
YASA [Krieter et al., 2020] • GUI • • • • • • • • XML FeatureIDE CL;LOG [YASA, 2020]
VarXplorer [Rocha et al., 2020] • GUI • • • • • • • • VarexJ; Varviz Interaction Graph [VarXplorer, 2018]
Nautilus/VTSPL [Ferreira et al., 2020e] • ONL • • • • • • Nautilus Framework [Nautilus-VTSPL, 2018]
Hasan [Hasan et al., 2020] n/a n/a n/a n/a n/a n/a n/a • n/a n/a n/a
GrES [Hierons et al., 2020] • n/a n/a n/a n/a n/a • • n/a • n/a n/a n/a n/a [GrES, 2019]
CoPTA [Luthmann et al., 2019b] • LC [CoPTA, 2019]
Kaltenecker [Kaltenecker et al., 2019] • LC • • • • • • XML SPLConq. LOG [Sampling, 2019]
Smarch+BBPF [Munoz et al., 2019] • LC • • • • • Clafer; DIMACS; Z3 [Smarch+BBPF, 2019]
Luthmann [Luthmann et al., 2019a] n/a n/a n/a n/a n/a n/a n/a • CoPTA
Al-Hajjaji [Al-Hajjaji et al., 2016c, 2014] • GUI • • • • • • • • XML FeatureIDE CL;LOG [Luthmann, 2019]
ECCO [Fischer et al., 2019] n/a n/a • n/a n/a n/a
MOCSFO [Ramgouda and Chandraprakash, 2019] n/a • n/a n/a n/a
ConFTGen [Fragal et al., 2019] • GUI • • • • • n/a • • • n/a Eclipse; FeatureIDE n/a [ConFTGen, 2019]
CoPRO [Nguyen et al., 2019] n/a n/a n/a n/a n/a • n/a • • n/a n/a n/a
Yan [Yan et al., 2019] n/a n/a n/a n/a n/a • n/a • n/a XML n/a n/a
Arrieta [Arrieta et al., 2019] • n/a n/a n/a n/a n/a • • n/a n/a FeatureIDE n/a [Arrieta, 2019]
VarexC [Wong et al., 2018] • LC • • • • • • • LOG [VarexC, 2018]
Ruland [Ruland et al., 2018] • LC • • • • • • CPAchecker; CPATiger; ICPL; SiMPOSE [Ruland, 2018]
Li [Li et al., 2018] n/a n/a n/a n/a n/a n/a • • n/a n/a n/a n/a n/a
Filho [L. et al., 2018] n/a n/a n/a n/a n/a n/a • n/a • n/a n/a JMetal n/a
FMTS [Ferreira et al., 2017] n/a • n/a n/a n/a • • n/a FaMA n/a
S-SPLat [Souto et al., 2017] • LC • • • • • • • • GUIDSL LOG [REFRACT, 2014]
Al-Hajjaji [Al-Hajjaji et al., 2016b] • GUI • • • • • • • • • • XML n/a CL; LOG [Al-Hajjaji, 2016]
IncLing [Al-Hajjaji et al., 2016a] • GUI; LC n/a • • • n/a • • • • XML FeatureIDE CL; LOG [IncLing, 2016]
TESALIA [Galindo et al., 2016] • GUI; ONL • • • n/a • • n/a n/a n/a [TESALIA, 2016]
VarexJ [Meinicke et al., 2016] • LC • • • • • • • • • DIMACS log [VarexJ, 2016]
Matnei-Filho [Matnei Filho and Vergilio, 2016] n/a n/a n/a n/a n/a n/a XML FMTS n/a
CPA/tiger [Bürdek et al., 2015] • LC • n/a • • • • CPAchecker [CPA/TIGER, 2015]
CTWeb [Lamancha et al., 2015] ONL • n/a • n/a n/a • • n/a n/a n/a
TEMSA [Wang et al., 2015] • ONL • • • • n/a n/a n/a [TEMSA, 2015]
Reuling [Reuling et al., 2015] • GUI • • • • • • • • • SXFM; SPLX Eclipse; SPLCAT n/a [Reuling, 2019]
Arcaini [Arcaini et al., 2015] n/a n/a n/a • • • XML
Henard [Henard et al., 2013b] • GUI • • • • • • • DIMACS; XML PLEDGE CL [Johansen, 2012]
Sánchez [Sánchez et al., 2014] • LC • • • • • • • XML SPLAR; BeTTy; SPLCAT n/a [Sánchez, 2012]
FeatureIDE [Thüm et al., 2014] • GUI • • • • • • • • • GUIDSL; XML; SPLConq. Eclipse CL; LOG [FeatureIDE, 2014]
MPLM [Samih and Bogusch, 2014] GUI • • • n/a n/a • • pure::variants Eclipse n/a
PLEDGE [Henard et al., 2013a, 2014a] • GUI • • • • • • • • • DIMACS CL [PLEDGE, 2014]
REFRACT [Swanson et al., 2014] • ONL • n/a • n/a n/a n/a • • • n/a Rainbow n/a [REFRACT, 2014]
Varex [Nguyen et al., 2014] GUI; ONL • • n/a n/a • n/a n/a n/a
Marijan [Marijan et al., 2013] n/a n/a n/a n/a n/a n/a n/a • • XML PACOGEN n/a
IPT [Wang et al., 2013] n/a n/a • n/a n/a n/a • • • n/a n/a n/a
SPLAT [Kim et al., 2013] • LC • • • • • • • • • GUIDSL LOG [SPLAT, 2013]
Henard [Henard et al., 2014b] • LC n/a • • • • • • DIMACS n/a [Henard, 2020]
Shi [Shi et al., 2012] n/a n/a n/a n/a • n/a • n/a n/a n/a
ICPL [Johansen et al., 2012a] • GUI; LC n/a • • • n/a • • • • XML FeatureIDE CL; LOG [ICPL, 2012]
MATE [Seiger and Schlegel, 2012] n/a • • n/a n/a n/a n/a n/a n/a n/a Eclipse n/a
shared-execution [Kim et al., 2012b] n/a n/a n/a n/a n/a n/a n/a • • • n/a n/a n/a
Chvatal [Johansen et al., 2012b] n/a • • • • • n/a n/a n/a
CASA [Garvin et al., 2011] • GUI; LC • • n/a • • • • • XML FeatureIDE CL; LOG [CASA, 2014]
MoSo-PoLiTe [Oster et al., 2011, 2010] n/a n/a • n/a n/a n/a • • n/a n/a n/a n/a n/a
Pacogen [Hervieu et al., 2011] • LC • • • • • • • • • SPLOT Eclipse CL [Pacogen, 2011]
SPLCAtool [Johansen et al., 2011] • GUI • • • • • • • • GUIDSL; DIMACS CL [SPLtool, 2013]
SPLTester [Kim et al., 2011a] • n/a n/a • • Eclipse
SPLverifier [Apel et al., 2013c, 2011] • LC • n/a n/a • • • • JavaPathfinder [SPLVerifier, 2011]
Kesit [Uzuncaova et al., 2008] n/a • n/a n/a n/a n/a • n/a n/a • n/a n/a n/a
SPLMonitor [Kim et al., 2010] •

ParTeG [Weißleder et al., 2008] • GUI • • • n/a • • • Eclipse JUnit report [ParTeg, 2008]
GATE [Feng et al., 2007] • n/a n/a n/a n/a • •

Asadal [Kim et al., 2006] GUI • n/a n/a n/a n/a • • n/a n/a n/a
Total 34 17 20 34 26 26 39 29 23 38 38
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Table 3.3: Testing strategies description

Strategy Description

Automatic Test
Case Generation

Strategies are based on heuristic techniques for determining appropriate test cases for testing
configurable systems

Configuration Sampling Uses techniques to test only a representative subset of all possible configuration

Sound Testing Use to test all possible configurations of the configurable systems

Test case
prioritization

Orders test cases for execution in an order that attempts to increase their effectiveness at
meeting some performance goals

Manual Selection Configurations are selected for testing manually

Semi-Automatic
Selection

Test configurations are selected based on some parameter for selection such as coverage on
feature interactions

Automatic Selection
Configurations are selected according to some strategy of prioritizing configurations
for testing

Meta-Heuristic
It is strategies aim at selecting a subset of configuration as an optimal solution for this
problem using computational search in a configuration space

Greedy
The approach selects the best local solution to select the most representative configurations
for testing according to the criteria adopted in each approach

Local Search
Such approaches start with an initial set of configurations and each iteration seeks to extend
the set of selected configurations

Population-Based
Search

The initial approach with initial set of configurations that mutated and recombined into
new configurations. A fitness function is usually used as a measure for evolving the set of
solutions during the process

Coverage
It is a criterion used to guarantee the quality of the qualifications selected for testing.
For example, feature can be used interaction coverage

Code
Generally, approaches list a metric to measure the configurable system source code and
check the coverage of the test configurations against the metric used

Feature Interaction
The approaches evaluate sample configurations by checking feature interaction.
T-wise can be used to check the coverage of feature interaction

T-wise
Select a subset of configurations that covers a valid group of t features being activated
and deactivated simultaneously (2-wise, also known as pairwise)

sampling found Manual Selection, Automatic Selection, Semi Automatic Selection, and

Coverage found 3.3%, 15%, 11.7%, and 28.3% , respectively. We also identified a small

number of tools of which the strategy for configurable systems is Test Case Prioritiza-

tion. The total for this strategy is 1.7% of the overall tools found. Finally, we identified

15% for Automatic Test Case Generation.



3. Systematic Mapping Study 37

Table 3.4: Testing strategies

Tool [Ref.]
Sound
Testing

Manual
Selection

Automatic
Selection

Semi Automatic
Selection

Coverage
Test Case
Prioritization

Automatic Test
Case Generation

Baital [Baranov et al., 2020] Greedy T-wise
YASA [Krieter et al., 2020] Greedy T-wise
VarXplorer [Rocha et al., 2020] • Pairwise
Nautilus/VTSPL [Ferreira et al., 2020e] Local search
Hasan [Hasan et al., 2020] Local search
GrES [Hierons et al., 2020] Pairwise
CoPTA [Luthmann et al., 2019b] Greedy •

Kaltenecker [Kaltenecker et al., 2019] Population-based search
Smarch+BBPF [Munoz et al., 2019] Local search
Luthmann [Luthmann et al., 2019a] Greedy
Al-Hajjaji [Al-Hajjaji et al., 2016c, 2014] Local search
ECCO [Fischer et al., 2019] •

MOCSFO [Ramgouda and Chandraprakash, 2019] Local search
ConFTGen [Fragal et al., 2019]
CoPRO [Nguyen et al., 2019]
Yan [Yan et al., 2019] Local search
Arrieta [Arrieta et al., 2019] Local search
VarexC [Wong et al., 2018] •

Ruland [Ruland et al., 2018] Population-based search Pairwise
Li [Li et al., 2018] •

Filho [L. et al., 2018] Local search Pairwise
FMTS [Ferreira et al., 2017] •

S-SPLat [Souto et al., 2017] Greedy Pairwise
Al-Hajjaji [Al-Hajjaji et al., 2016b] •

IncLing [Al-Hajjaji et al., 2016a] Greedy Pairwise
TESALIA [Galindo et al., 2016] Population-based search
VarexJ [Meinicke et al., 2016] •

Matnei-Filho [Matnei Filho and Vergilio, 2016] Population-based search Pairwise
CPA/tiger [Bürdek et al., 2015] •

CTWeb [Lamancha et al., 2015] Greedy Pairwise
TEMSA [Wang et al., 2015] •

Reuling [Reuling et al., 2015] Greedy
Arcaini [Arcaini et al., 2015] Greedy
Henard [Henard et al., 2013b] Local search
Sánchez [Sánchez et al., 2014] Local search
FeatureIDE [Thüm et al., 2014] •

MPLM [Samih and Bogusch, 2014] •

PLEDGE [Henard et al., 2013a, 2014a] Local search
REFRACT [Swanson et al., 2014] •

Varex [Nguyen et al., 2014] •

Marijan [Marijan et al., 2013] Local search
IPT [Wang et al., 2013] Local search
SPLAT [Kim et al., 2013] •

Henard [Henard et al., 2014b] Population-based search •

Shi [Shi et al., 2012] Greedy
ICPL [Johansen et al., 2012a] Greedy T-wise
MATE [Seiger and Schlegel, 2012] •

shared-execution [Kim et al., 2012b] •

Chvatal [Johansen et al., 2012b] Greedy •

CASA [Garvin et al., 2011] Local search T-wise
MoSo-PoLiTe [Oster et al., 2011, 2010] Greedy • Pairwise
Pacogen [Hervieu et al., 2011] Local search
SPLCAtool [Johansen et al., 2011] Greedy T-wise
SPLTester [Kim et al., 2011a] •

SPLverifier [Apel et al., 2013c, 2011] •

Kesit [Uzuncaova et al., 2008] •

SPLMonitor [Kim et al., 2010] Greedy Code coverage
ParTeG [Weißleder et al., 2008] •

GATE [Feng et al., 2007] •

Asadal [Kim et al., 2006] •

Total 8 2
Greedy:15
Local search: 15
Population-Based Search: 5

6
Pairwise:9
T-wise: 5
Code: 3

1 9
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3.5 Evaluation Overview of Testing Tools for

Configurable Systems

This section discusses the strategies used in the primary studies to evaluate the test-

ing tools. We present an evaluation overview of testing tools for configurable systems

described in the papers found in this mapping study. We found that about 87% of

the papers present some evaluation of the tools reported and most present as evalua-

tion metrics, target configurable systems, and approaches to comparison. Metrics are

usually related to the research questions reported by the papers. Target configurable

systems are used to observe the behavior of the proposed tools. In addition, the papers

use other approaches consolidated in the literature to serve as a comparison. These

approaches can be algorithms, methods, and other testing tools.

Evaluation metrics. Figure 3.6a shows the metrics used to evaluate configurable

system testing tools. We only present metrics with four or more occurrences. As an

example, for the metric Number of test configurations found 29 occurrences, followed by

Memory consumption found 20 occurrences. We counted how many metrics the papers

use to evaluate the proposed configurable system testing tools, Figure 3.6b presents

this summary. As can be seen in Figure 3.6b it shows that 19 papers use two metrics

for evaluation and only one paper uses seven metrics for evaluation. As can be seen,

the papers use few metrics for evaluating configurable system test tools. Researchers

wishing to do an assessment of their tools can look at these results to guide them in

designing their assessments.

Evaluation configurable systems. Table 3.5 presents a summary of the main sys-

tems used to evaluate test strategies for configurable systems. As can be seen, the

systems Electronic Shopping and GPL were the most used in evaluations of test

tools, and both appear in the validation of 14 tools. We have omitted the systems that

were used in only one paper. We note that the papers use few systems to evaluate

the tools. 30 papers use up to five target systems, 18 papers use between six and ten

target systems, only two papers use more than ten target systems as evaluation.

Evaluation tools. Figure 3.7 presents a summary of the main approaches that the

papers use to evaluate the proposed tools. As can be seen the NSGA-II, Random and

CASA where the highest approaches, mentioned in 8, 8 and 6 papers, respectively. We

have omitted the approaches that were used as an assessment in just one paper. We

found that 14 papers use up to two approaches as comparison, we also found 14 papers

that use 3 to 4 approaches as comparison. Finally, we found 2 papers that use 5 to 6

approaches as comparison of their proposed tools.
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possible to observe an Overview on the evaluation of the proposed tools. Researchers

can be guided by our opinions and design future works to evaluate and propose test

tools for configurable systems.

Testing activity for configurable systems is very costly. Our work contributes

to practitioners’ need to have the necessary tooling support to learn about new tools

through their main characteristics and strategies. Practitioners can benefit from our

mapping study and have an initial guide to discovering new tools, saving time and effort

to find tools that best suit their preferences and constraints. Aiming at supporting the

choice of a testing strategy, we condensed our results in Tables 3.4 and Tables 3.4

representing the characteristics and strategies of the tools separately. Testers can

extend their set of user testing tools or incorporate new testing strategies into testing

activity. With the 60 test tools presented, testers can expand testing configurable

systems, either with a more current tool to replace a used strategy or even incorporate

new test strategies.

3.7 Threats to Validity

A key issue in our SMS is the validity of the results. Even with careful planning,

different factors may affect these research results. This section discusses decisions we

made to reduce the impact of these factors on the study validity. These actions are

mainly related to the research method we adopted to increase the study confidence.

Review Scope and Search Strategy. We selected six different electronic databases

for the SMS, but there might be relevant papers in other databases. To minimize

this threat, we rely on the use of databases that aggregate papers from diversified

publishers, such as Scopus and Engineering Village. With respect to the search strategy,

we designed a search string for filtering results. This string includes the most common

terms for “configurable software systems” and “testing tools”. We expected achieved a

sufficient number of relevant papers in the studied context. In addition, we performed

a pilot search to define the terms to appear in the final search string. However, we

cannot assume that all existing related papers were found by this filtering strategy.

Manual Filtering. To eliminate repeated papers and keep only relevant work, one

researcher verified the inclusion and exclusion criteria manually and another researcher

audited the results. In this filtering process, we performed three steps. First, the Ph.D.

candidate read each metadata paper and classified it as “out of scope”, “unsure for re-

vision”, “papers that use a tool”, and “papers that propose a tool”. We discarded all

papers classified as out of scope. In the second step, another researcher repeated the
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previous procedure. Finally, a third researcher decided to include or not a paper based

on the classification given by the other two researchers. In case of conflicting classifi-

cation, the paper was included for the next step. We believe this protocol minimized

biases by considering the point of view of three researcher, and the agreement of at

least two of them.

Full-text Analysis and Data Extraction. The Ph.D. candidate was responsible

to read fully the selected papers and extract information about the testing tools. In

case of doubts, he discussed with at least one other researcher. Although the careful

conduction of this, with no deadline for completion, we do not take other measures

for risk reduction. In this context, some tools may have been wrongly discarded. For

instance, we discarded tools, such as CPAchecker [Dirk and Keremoglu, 2011], because

we considered their focus not related to testing of configurable systems.

Identifying Features and Comparing Tools. We were not able to find the name

and characteristics of some tools. In these cases, we named a tool with the authors who

proposed it and tried our best to infer some missing information. Some tools were, in

fact, an evolution of previous tools and, in such cases, we kept the name of the previous

tool.

3.8 Final Remarks

This chapter presented a SMS to identity the state-of-the-art testing of tools for con-

figurable systems. The goal was to explore the existing testing tools for configurable

systems and understand how it works. We mined six scientific databases (ACM Digital

Library, IEEE Xplore, Engineering Village, Science Direct, Scopus, and Springer) and

retrieved 64 primary studies. In this primary studies we found a total of 60 testing

tools for configurable systems and classified them according to 16 characteristics and

four main testing strategies.

The SMS presented in this chapter can benefit developers and testers to find

configurable tools that best fit their needs. Furthermore, researchers can benefit from

the study presented in this chapter, because in addition to the list of relevant papers

that describe the tools, as the testing strategies used. We analyzed the tools found

concerning the 16 characteristics and four main testing strategies. This thesis shows an

overview of 64 primary studies found and presents an overview of how the researchers

evaluated testing tools for configurable systems found. Finally, we discuss our results

regarding implications for researchers and practitioners. We have listed all papers used

in the proposed mapping study steps [Ferreira et al., 2020a].
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The next chapter describes the process of creating a test-enriched dataset for

configurable systems. Our dataset contains some of the most configurable systems

reported in the literature and known repositories. To the best of the PhD candidate

knowledge, this dataset is the first one for configurable systems with an extensive test

suite [Ferreira et al., 2020b].



Chapter 4

A Test-enriched Dataset for

Configurable Software Systems

Despite the number of studies on testing configurable software systems, previous work

[Engström and Runeson, 2011; Machado et al., 2014; Lopez-Herrejon et al., 2015] re-

port a lack of empirical evaluations, including a community-wide dataset, to guide the

comparison of different testing approaches, strategies, and methods. To fill this gap,

we proposed a test-enriched dataset of configurable systems [Ferreira et al., 2020b].

Although we have found 60 configurable systems developed in Java-based program-

ming languages, only ten configurable systems have their available test suite. Aiming

at increasing the number and scope of systems in our dataset, we created a test suite

for further 20 systems. Based on previous studies, the creation of tests followed two

reasonable thresholds to increase the testing suite’s quality: 70% of code coverage [Of-

futt et al., 2003] and 40% of killed mutants [Aaltonen et al., 2010] for all 20 systems

of the dataset. These two criteria aim at providing a high-quality testing dataset. At

the end, we created a dataset with 30 test-enriched configurable systems.

This chapter presents the five steps on the dataset creation. Figure 4.1 presents

an overview of these five steps. We describe each part of Figure 4.1 in Section 4.1 to

Section 4.4. First, we report how we selected subject projects (Section 4.1). Second,

we describe how we translate systems developed in other variability techniques into

variability encoding (Section 4.2). Third, we report the test suite creation (Section

4.3). Fourth, we describe the metric collection process (Section 4.4). Finally, we

provide an overview of the test-enriched dataset (Section 4.5). We also discuss the

threats to the validity of the study (Section 4.6) and concludes concludes this chapter

(Section 4.7).

44
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4.1 Selecting Subject Systems

As shown in Figure 4.1, we searched for configurable systems on six survey papers

about testing configurable systems [da Mota et al., 2011; Engström and Runeson, 2011;

Lee et al., 2012b; Lamancha et al., 2013; Machado et al., 2014; Lopez-Herrejon et al.,

2015] and on all primary studies found on them. In addition, we included configurable

systems of three well-known repositories of configurable systems: SPL2go [SPL2go,

2020], SPL Repository [Vale et al., 2015b], and ESPLA Catalog [Martinez et al.,

2017]. At the end of this initial search, we found 234 configurable systems. Then,

given tool constraints, we limited our dataset to configurable systems developed in a

Java-based programming language (i.e., in Java with variability encoding, conditional

compilation, or AHEAD). As a result, only 70 configurable systems remain in our

dataset. By analyzing these 70 systems, we noted that only 10 of them have a test

suite available (8 developed with variability encoding, 1 with conditional compilation,

and 1 with AHEAD). Consequently, only these 10 systems would compose our dataset.

Aiming at increasing the number of systems in our dataset, we looked at the remaining

60 configurable systems developed in a Java-based programming language without a

test suite. Considering that we need a deep understanding of the systems as well

as their features to develop a test suite, we looked at each system’s documentation

searching for information. Once we found an example of use for each available feature

of a target configurable system, we included it into our dataset. As an outcome of

this analysis, we selected 20 additional configurable systems (i.e., 1 with variability

encoding, 5 with conditional compilation, and 14 in AHEAD). At the end, we selected

30 configurable systems to compose our dataset.

4.2 Generating Variability Encoding Systems

Our dataset is composed of annotated systems with variability through variability

encoding(Chapter 2). For the 21 configurable systems not developed using variability

encoding (i.e., 15 and 6 written in AHEAD and conditional compilation, respectively),

we translated their code to variability encoding, as show in Figure 4.1. Among the

strategies to introduce variability in software systems, variability encoding has drawn

practitioners’ attention since developers only need to annotate variation points on

their existing systems. Therefore, developers simply activate or deactivate features to
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address different deployment contexts. For short, while annotating variation points,

developers should create a configuration file where they determine options that are

going to be active in a target variation.

Aiming at facilitating the testing suite execution, we translate the (6) condi-

tional compilation and (15) AHEAD systems into variability encoding systems. For

conditional compilation systems, we manually converted the compilation directives into

variability encoding. As the translation is straight forward (e.g., #ifdef(FEATURE) into

if(Configuration.FEATURE)), chances of manual errors are minimized. For AHEAD

systems, we relied on FeatureIDE to automatically translate AHEAD code into a

variability encoding code. FeatureIDE [Thüm et al., 2014] is an open-source inte-

grated development environment on Eclipse that supports several implementation tech-

niques for feature-oriented software development, such as AHEAD, FeatureC++,

and AspectJ. After translation of each system, we extensively, run test cases to iden-

tify eventual transformation errors.

4.3 Creating Test Suite

As shown in Figure 4.1, for the 20 systems without a test suite, we created the test

suite from scratch. Aiming at enriching discussions and test suite coverage, we extend

the test suite of other three systems. The creation/extension of the test suites consist

of creating testing cases, executing the test suite with mutants, and checking if the

stop criteria are satisfied, as we explain next.

Creating testing cases. We use JUnit framework [JUnit, 2020], FEST [FEST,

2020], and Mockito [Mockito, 2020] for creating testing cases, writing tests for sys-

tems with graphical user interfaces, and creating mock objects which simplifies the

development of tests for classes with external dependencies, respectively.

Executing mutation testing. For each subject system, we generated a single con-

figuration containing as many active features as possible. We then use PIT [Coles

et al., 2016] to generate mutants on each configuration and execute the respective test

suite against them. Based on the PIT’s execution report, we decided whether it was

necessary to create more test cases aiming at increasing killed mutants coverage.

Checking stop criteria fulfillment. We use JaCoCo [JaCoCo, 2020] to retrieve

code coverage and repeat creating test cases until we achieve for each subject system:

(i) 70% of testing coverage and (ii) 40% of the mutants killed.
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4.4 Collecting Metrics

To provide for a better overview of the subject configurable systems in our dataset,

we collected a set of 14 software metrics. Table 4.1 shows these metrics. These met-

rics include traditional, CK, test, variability, and feature measurements, as shown in

Figure 4.1. With Metrics [Metrics, 2020] and CK tool [CK, 2020], we compute

traditional and CK metrics (e.g., number of lines of code and number of packages).

With FeatureIDE, we extract metrics related to variability (e.g., the number of

features and valid configurations). As mentioned, with JaCoCo [JaCoCo, 2020] and

PIT [Coles et al., 2016], we retrieve metrics related to the test suite. To collect metrics

related to each feature, we wrote our own script1. For each system, our script searches

for code snippets containing specific variability statements. Moreover, for each feature,

it computes the number of classes, methods, constructors, and lines of code containing

variability statements. We increase internal validity of our research through manually

checking our script outcomes.

4.5 Test-enriched Configurable System Dataset

The 30 configurable systems of our dataset belong to several domains such as games,

text editor, media management, and file compression. Tables 4.2 and 4.3 present

an overview of these systems divided into size, variability, and test suite measures.

Additional information of the dataset is available in our supplementary website [Ferreira

et al., 2020c].

Size measures. We selected systems from a large variation of size regarding

their number of lines of code (LOC ), packages (NOP), classes (NOC ), and meth-

ods (NOSM ). For instance, subject configurable systems vary from 189 lines of code

(BankAccount) to more than 150000 lines of code (ArgoUML). Similarly, while

IntegerSetSPL has only 3 classes, ArgoUML has almost 2000 classes.

Variability measures. We selected systems with different variability. For instance,

while CheckStyle has 141 features, Chess, TaskObserver, and Telecom have

only three features (NOFE) each. We can also see a similar variation in the number of

valid configurations (NCF). For instance, while Elevator has 20 valid configurations,

FeatureAMP3 has 20500 valid configurations.

Test suite measures. In the FTC column of Table 4.3, we see the number of test

cases for each system of our dataset and the percentage increase compared to the initial

1https://github.com/fischerJF/Community-wide-Dataset-of-Configurable-Systems/

tree/master/Parser
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Table 4.1: Dataset metrics, adapted from Metrics [2020]

Metric Description

CBO (Coupling between Objects) Counts the number of dependencies a class has
WMC (Weight Method Class) Counts the number of branch instructions in a class
DIT (Depth Inheritance Tree) Counts the number of fathers a class has
NOC (Number of Children) Counts the number of children a class has
RFC (Response for a Class) Counts the number of unique method invocations in a class

LCOM (Lack of Cohesion of Methods)
Measures how frequent methods in a class access common
attributes

NOM (Number of Methods) Counts the number of methods
NOPM (Number of Public Methods) Counts only the number of public methods
NOC (Number of Class) Counts the number of class
NOP (Number of Packages) Counts the number of packages
NOSM (Number of Static Methods) Counts the number of static methods in the selected scope
NOF (Number of Fields) Counts the number of fields
NOPF (Number of Public Fields) Counts only the public fields
NOSF (Number of Static Fields) Counts only the static fields
NOSI (Number of Static Invocations) Counts the number of invocations to static methods
LOC (Lines of Code) Counts the lines of count, ignoring empty lines and comments
NOFE (Number of Features) Counts the number of features
NCV (Number of Valid Configurations) Counts the number of valid configurations
NVC (Number of Occurrences of Variability
in the Source Code)

Counts the number of occurrences of variability in the
source code

ITC (Initial Number of Test Cases) Counts the initial number of test cases
FTC (Final Number of Test Cases) Counts the final number of test cases
LTC (Lines of Testing Code) Counts the number Lines of testing code
CV (Percentage of Test Suite Coverage) Counts the percentage of test suite coverage
KM (Percentage of killed Mutants) Counts the percentage of killed mutants

number of test cases (ITC column). Note that the number of lines of testing code varies

from 207 for FeatureAMP6 to 17 014 for ArgoUML. As expected, smaller systems

often have fewer lines of testing code and test cases. At the end, our dataset has a

total of 3 182 test cases of which we created 727 test cases for 20 configurable systems,

90 tests for the three systems we extended test suites and, the remaining 2 365 test

cases come from systems that already had test suite.

4.6 Threats to Validity

Even with the careful planning, this research can be affected by different factors which

might threat our findings. We discuss below these factors and the main decisions we

have made to mitigate their impact on the research.

We followed a careful set of procedures to create a repository of configurable

systems and their test cases. As the number of open source configurable systems found

is limited, and due to limited resources and the high effort required, we could not

create a large repository with a high number of configurable systems. This limitation
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Table 4.2: Size and variability metrics of the dataset

System Name
Size Measures Variability Measures

LOC NOP NOC NOM NOFE NCV NVC T

ATM [Santos et al., 2016] 1160 2 27 100 7 80 44 CC
ArgoUML [Martinez et al., 2017] 153977 92 1812 13034 8 256 1388 CC
BankAccount [SPL2go, 2020] 189 3 9 22 10 144 13 A
Checkstyle [Wong et al., 2018] 61435 14 78 719 141 >2135 180 VE
Chess [Santos et al., 2016] 2149 7 22 162 3 8 20 CC
Companies [Souto et al., 2017] 2477 16 50 244 10 192 255 VE
Elevator [Meinicke et al., 2014] 426 2 7 59 5 20 9 VE
Email [Souto et al., 2017] 429 3 7 49 8 40 30 VE
FeatureAMP1 [SPL2go, 2020] 1350 4 15 93 28 6732 40 A
FeatureAMP2 [SPL2go, 2020] 2033 3 14 167 34 7020 55 A
FeatureAMP3 [SPL2go, 2020] 2575 8 16 223 27 20500 93 A
FeatureAMP4 [SPL2go, 2020] 2147 2 57 203 27 6732 57 A
FeatureAMP5 [SPL2go, 2020] 1344 3 9 895 29 3810 36 A
FeatureAMP6 [SPL2go, 2020] 2418 8 30 202 38 21522 76 A
FeatureAMP7 [SPL2go, 2020] 5644 3 46 220 29 15795 57 A
FeatureAMP8 [SPL2go, 2020] 2376 2 6 106 27 15708 48 A
FeatureAMP9 [SPL2go, 2020] 1859 3 8 134 24 6732 53 A
GPL [Souto et al., 2017] 1235 3 17 78 13 73 59 VE
IntegerSetSPL [SPL2go, 2020] 200 2 3 20 3 2 7 A
Jtopas [Souto et al., 2017] 4397 7 43 472 5 32 10 VE
MinePump [SPL2go, 2020] 244 2 7 26 7 64 4 A
Notepad [Souto et al., 2017] 1564 4 17 90 17 256 24 VE
Paycard [SPL2go, 2020] 374 2 8 27 4 6 10 CC
Prop4J [SPL2go, 2020] 1138 2 15 90 17 5029 17 A
Sudoku [Souto et al., 2017] 949 2 13 51 6 20 53 VE
TaskObserver [Santos et al., 2016] 486 2 10 33 4 8 9 CC
Telecom [Santos et al., 2016] 273 2 40 11 3 4 6 CC
UnionFindSPL [SPL2go, 2020] 335 2 36 5 13 10 12 A
VendingMachine [Martinez et al., 2017] 472 2 7 21 8 256 7 CC
ZipMe [Souto et al., 2017] 4647 3 311 33 13 24 343 VE

LOC: number of lines of code, NOP: number of packages, NOC: number of classes, NOM: number of methods,
NOFE: number of features, NCV: number of valid configurations, NVC: Number of occurrences of variability
in the source code, T: variability technique being possible variability encoding (VE), AHEAD (A),
and conditional compilation (CC).

has implications in the amount of analyzed test faults, which is particularly relevant

to the analysis of in Chapter 7. To mitigate this threat, we used a dataset proposed in

a previous study that has configurable systems of different sizes, and we aim to cover

at least 70% of the systems code and to kill at least 40% of the generated mutants.

Some factors may threat the generalization of our results. For instance, it is not

possible to ensure that the selected systems reflect the best samples of the recurrent

practices. We mitigate this threat by searching for representative samples in the rel-

evant literature. We also selected configurable systems from well-known repositories,

such as SPL2Go [SPL2go, 2020]. In addition, we have also filtered systems with less

than 1000 lines of code since we considered them as toy examples. As another external

validity threat, all systems that compose our dataset are developed in Java. Therefore,
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Table 4.3: Test suite metrics of the dataset

System Name ITC FTC LTC CV KM TS

ATM [Santos et al., 2016] 0 76(100%) 1371 91% 79% C
ArgoUML [Martinez et al., 2017] 1326 1326 (0%) 17014 17% 9% O
BankAccount [SPL2go, 2020] 0 42(100%) 539 92% 62% C
Checkstyle [Wong et al., 2018] 719 719 (0%) 13606 38% 5% O
Chess [Santos et al., 2016] 0 77(100%) 1296 72% 72% C
Companies [Souto et al., 2017] 42 42 (0%) 1850 70% 46% O
Elevator [Meinicke et al., 2014] 0 59(100%) 683 92% 73% C
Email [Souto et al., 2017] 30 85 (65%) 1429 97% 61% E
FeatureAMP1 [SPL2go, 2020] 0 18(100%) 977 85% 46% C
FeatureAMP2 [SPL2go, 2020] 0 18(100%) 698 72% 43% C
FeatureAMP3 [SPL2go, 2020] 0 15(100%) 725 77% 42% C
FeatureAMP4 [SPL2go, 2020] 0 12(100%) 622 82% 40% C
FeatureAMP5 [SPL2go, 2020] 0 17(100%) 730 91% 49% C
FeatureAMP6 [SPL2go, 2020] 0 9(100%) 207 31% 43% C
FeatureAMP7 [SPL2go, 2020] 0 8(100%) 180 28% 40% C
FeatureAMP8 [SPL2go, 2020] 0 78(100%) 1637 82% 42% C
FeatureAMP9 [SPL2go, 2020] 0 105(100%) 1975 83% 63% C
GPL [Souto et al., 2017] 45 51 (12%) 1162 83% 60% E
IntegerSetSPL [SPL2go, 2020] 0 19(100%) 286 100% 80% C
Jtopas [Souto et al., 2017] 87 87 (0%) 6703 67% 50% O
MinePump [SPL2go, 2020] 0 34(100%) 459 91% 65% C
Notepad [Souto et al., 2017] 25 25 (0%) 1790 59% 15% O
Paycard [SPL2go, 2020] 0 13(100%) 453 88% 61% C
Prop4J [SPL2go, 2020] 63 63 (0%) 504 71% 67% O
Sudoku [Souto et al., 2017] 6 35 (82%) 650 80% 67% E
TaskObserver [Santos et al., 2016] 0 24(100%) 280 91% 71% C
Telecom [Santos et al., 2016] 0 26(100%) 391 99% 65% C
UnionFindSPL [SPL2go, 2020] 0 40(100%) 616 84% 66% C
VendingMachine [Martinez et al., 2017] 0 37(100%) 297 97% 83% C
ZipMe [Souto et al., 2017] 22 22 (0%) 703 41% 19% O

ITC: initial number of test cases, FTC: Final number of test cases,LTC: Lines of testing code,
CV: percentage of test suite coverage, KM: percentage of killed mutants,

TS: test suite being created by us (C), extended by us (E), or original (O).
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we cannot claim that similar results would have been observed in other programming

languages or technologies. This is a common limitation of several research studies on

configurable software systems [Kim et al., 2012b, 2013; Meinicke et al., 2014; Souto

et al., 2017; Wong et al., 2018].

Our findings are also restricted to the set of selected metrics, such as source code

and test metrics. We quantify eight metrics for all configurable systems that compose

our repository and we also compute metrics for test and feature characteristics. To

make these measurement processes easier and automated, we used specific tools, such

as CK Tool [CK, 2020] and JaCoCo [JaCoCo, 2020]. In addition, we also manually

checked few cases to ensure the results of these tools were as expected, since some used

tools were not aimed at measuring code of configurable systems. Therefore, we believe

that similar conclusions would also be achieved if someone uses different measures and

tools that quantify similar attributes or features for this set of configurable systems.

4.7 Final Remarks

To create a test-enriched dataset, we searched for configurable software systems in

the literature. As a result, we found 243 systems being 60 developed in Java-based

programming languages. However, we only found 10 systems with a test suite available.

To increase this number, we created a test suite for other 20 projects. As means for

quality assurance, we created tests until the have a code coverage of 70% and kill at least

40% of mutants. The final dataset has 30 systems varying in domains, size, variability,

and test suite size. We provide three groups of metrics (traditional, variability, and

test suite) to characterize the proposed dataset. We are confident this dataset will

benefit practitioners and also be useful for researchers comparing testing approaches

and methods.

Several datasets for the configurable systems have been proposed and used before.

However, this dataset is the first dataset for configurable systems with an extensive

test suite [Ferreira et al., 2020b]. We believe our dataset can be a common point

of comparison for configurable system testing strategies. Researchers, testers, and

developers can benefit from our dataset of configurable systems with an extensive test

suite. In the next two chapters, we present two empirical studies with sound and t-wise

testing strategies.



Chapter 5

Sound Testing Tools: A Comparative

Study

Testing configurable software systems is challenging due to the number of configurations

to run with each test, leading to a combinatorial explosion in the number of configura-

tions and tests. Currently, several testing techniques and tools have been proposed to

deal with this challenge, but their potential practical application remains mostly un-

explored. The lack of studies to explore the tools motivated us to design and perform

a comparative empirical study of the two sound testing tools named VarexJ [Meinicke

et al., 2016] and SPLat [Kim et al., 2013]. This sound testing tool was found in the

systematic mapping study (see Chapter 3). They are considered sound testing tech-

niques [Souto et al., 2017; Liebig et al., 2013b; Meinicke et al., 2016; Kim et al., 2012a,

2013] because they explore all reachable configurations from a given test.

Our main goal is to identify the advantages and drawbacks of these testing tools.

Therefore, we analyzed the effectiveness and efficiencies of VarexJ and SPLat to test

a group of configurable systems from our dataset presented in the Chapter 4. In

summary, VarexJ [Meinicke et al., 2016] is a variability-aware interpreter for Java

bytecode and SPLat [Kim et al., 2013] explores all reachable configurations from a

given test. Therefore, researchers and testers can benefit from our empirical study. We

believe that researchers can observe the benefits and limitations of the analyzed tools.

Testers can, through our comparative study, choose the most appropriate tool to test

their configurable systems. For more details see [Ferreira et al., 2019].

The remainder of this chapter is organized as follows. Section 5.1 presents the

research questions. Section 5.2 describes the steps of the study. Sections 5.3 and 5.4

discusses our achieved result. Section 5.5 discusses the threats to the validity of the

study. Finally, Section 5.6 concludes this chapter.
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5.1 Goal and Research Questions

We conducted a comparative study to evaluate two testing tools found in the systematic

mapping studies described in Chapter 3. We systematically defined our goal based on

the goal question metric(GQM) template [Basili and Rombach, 1988]. We analyze two

sound testing techniques for the purpose of identify advantages and drawbacks of

testing tools that use sound testing techniques; with respect to support practitioners

and researchers to choose the most appropriate strategy to fulfill their needs, avoid

the recurrence of similar faults, and improve existing testing strategies; from the

viewpoint of researchers and software developers with expertise in software testing

in the context of same target systems and test suites in the execution of each

tool. The idea is to compare the faults returned by both tools (VarexJ and SPLat).

We perceived a lack of studies that evaluate testing tools for configurable systems

concerning the effectiveness of finding faults. To support our empirical study, we

defined the following research questions.

RQ1 How efficient are the sound tools for testing configurable systems? RQ1 investi-

gates how much time is spent by the tools to test our set of selected projects. This is

an important direction since the cost to run the test suite for configurable systems is

a critical point.

RQ2 How effective are the sound tools for testing configurable systems? We propose

RQ2 to investigate the effectiveness of sound tools for detecting configurable systems

faults.

Figure 5.1: Steps of the empirical study

5.2 Study Steps

To answer the research questions presented in Section 5.1, we evaluate two testing tools

for configurable systems named VarexJ and SPLat. Figure 5.1 shows the four study

steps we followed in the proposed empirical study. Step 1 is the filtering of selected

testing tools. We show the selection criteria adopted in this step. Step 2 presents the

target systems used to compare the testing tools. In addition, we demonstrate the
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output, VarexJ logs the JVM stack trace of each failure and gives boolean expressions

representing combination (or interaction) of features that lead to each one.

Selection of the target systems. We selected seven configurable systems of our

dataset (Chapter 4) to compose our empirical study. Due to the limitation of the

testing tools analyzed, we discarded systems that had a graphical interface and had

more than 17 features. In this way, the configurable systems used in this chapter were

Companies, Elevator, Email, GPL, JTopas, Sudoku, and ZipMe. These target

systems were already analyzed in previous studies [Kim et al., 2013; Meinicke et al.,

2016; Souto et al., 2017].

Environment preparation. We installed the selected tools with all dependencies

in a personal computer prepared for the study. This computer has 16 GB of RAM,

processor i7 3.60 GHz and operating system Windows 10. To use the VarexJ and

SPLat tools in our research, we instrumented the source code and test suite of the

target systems at each point of variability. The two tools used in the study rely on

the feature model to validate possible combinations of features found in the tests. We

had to translate the feature model into the format suitable to VarexJ, the DIMACS

Conjunctive Normal Form format. However, we do not need to translate the feature

model into the SPLat format, which is the Guidsl Grammar [Guidsl, 2020] because all

target systems already used these files.

We also need to know the maximum time limit to run a test suite for every valid

configuration on all target systems. To achieve this goal, we developed a baseline

algorithm that finds all valid configurations and runs the test suite for each of them.

For this, the baseline implemented an algorithm for generating power sets. We used

this implementation by providing a set of features (of each target configurable systems)

as input and retrieving all possible combinations of them as output.

Although the power set algorithm has exponential complexity and does not scale

to a large number of features, it was possible to use this approach to find all possible

feature combinations of each target configurable systems because the systems are small.

We used a feature model validator to check each possible configuration returned by the

power set. We then ran the test suite for each target configurable systems only for the

valid configurations1.

Data collection. This step consists of running the selected testing tools against

the test suite of the target systems and collecting the data to evaluate such tools in

terms of efficiency (RQ1) and effectiveness (RQ2). For the former evaluation, we mean

the execution time. To mitigate random effects, we conducted the experiments running

1https://github.com/fischerJF/Community-wide-Dataset-of-Configurable-Systems/

tree/master/workspace_IncLing/Baseline
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each tool against each target system test suite 100 times and computed the average

execution time. For the effectiveness evaluation, we measure the amount of configura-

tions causing faults that each testing tool was able to identify. For each target system,

we followed the process depicted in Figure 5.3 to retrieve data for measuring the effec-

tiveness of VarexJ and SPLat. The log generated by both testing tools provide similar

pieces of information, corresponding to a general set of configurations that causes a

fault (e.g., all configurations with features X and Y enabled) and the respective stack

traces. We first parsed the text log into a structured text containing the representation

of configurations that cause the faults and the respective lines of test cases from which

the faults emerged.

Figure 5.3: Effectiveness data collection process

Apart from this process, we previously translated the feature model of each target

system into a boolean expression. With the aid of a SAT Solver, takes as inputs such

feature model and a configuration set also represented as a boolean expression. We

retrieved all valid configurations that caused faults and mapped them to each line of

the test cases. We named such information data as fault pair, which is composed by a

valid configuration and a test case. The more fault pairs a tool is able to find, the more

effective it is. Finally, we performed set operations with the sets of fault pairs obtained

for VarexJ (V FP ) and for SPLat (SFP ), generating three other sets: V FP ∩ SFP

(pairs found by VarexJ and SPLat), V FP − SFP (pairs found by VarexJ and not by

SPLat), and SFP − V FP (pairs found by SPLat and not by VarexJ ).
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Table 5.1: Execution time

Target Systems #features #Confs. Baseline (ms) SPLat (ms) VarexJ (ms)

JTopas 6 16 57 1443 412
Elevator 6 20 170 377 152
Sudoku 7 20 87 269 2479
Email 9 40 369 4703 33023
Companies 10 96 832 2518 360
GPL 13 124 6999 3647 1196
ZipMe 13 48 11347 208 466

#features: Feature set that the target system has; #Confs.: Total valid configurations;
Baseline: Time in ms returned by baseline algorithm; SPLat: Time in ms returned by SPLat tool
VarexJ : Time in ms returned by VarexJ tool.

5.3 Efficiency of the Tools

RQ1 How efficient are the sound tools for testing configurable systems?

Table 5.1 shows the collected data of the time spent by the VarexJ and SPLat

tools to run the target systems. We observe SPLat spent significantly less time to run

the target systems Email and Sudoku. In turn, considering JTopas, Companies,

and GPL, SPLat spent more time than VarexJ. For Email, we noticed that one of its

test classes has a particular setUp method that is executed before each of its test cases

that caused the execution time in VarexJ much higher than in SPLat. This method

resets an array of Client objects, setting null to all of its 2,000,000 positions. Since

VarexJ implements context-aware and aggregated results, the structure of such array

causes a considerable overhead for the reset operation.

For the Sudoku target system, VarexJ spent more time than SPLat to test it.

The main reason for this is because Sudoku manipulates files for the construction of

its game board and VarexJ also takes a considerable overhead for file manipulation.

In addition, the overhead to start the execution is high in VarexJ and, since Sudoku

has only 20 valid configurations to be explored, SPLat executes faster this configurable

system test suite. For the Companies and GPL target systems, SPlat spent more

testing time compared to VarexJ because of the number of features and products that

these systems have. As can be seen in Table 5.1, Companies and GPL have 10 and 13

features, and 96 and 124 different valid configurations, respectively. Since the number

of variation points in the code is high to test all possible configurations achievable by

the test cases, VarexJ can execute faster than SPLat.



5. Sound Testing Tools: A Comparative Study 59

Table 5.2: Measurement of effectiveness

Target Systems VarexJ SPLat VarexJ - SPLat SPLat - VarexJ VarexJ ∩ SPLat

JTopas 16 28 16 28 0 (0%)
Elevator 0 0 0 0 0 (0%)
Sudoku 82 48 34 0 48 (58%)
Email 44 43 1 0 43 (98%)
Companies 701 600 202 101 499 (62%)
GPL 731 589 335 193 396 (42%)
ZipMe 600 588 276 264 324 (37%)

VarexJ : Number of pairs found by VarexJ ; #SPLat: Number of pairs found by SPlat;
VarexJ - SPLat: Number of pairs found by VarexJ and not found by SPLat;
SPLat - VarexJ : Number of pairs found by SPLat and not found by VarexJ ;
VarexJ ∩ SPLat: Number of pairs found by both tools (intersection).

Additionally, Table 5.1 shows baseline execution times which grows according to

the number of features, since constructing the power set of the features is the greater

computational cost for the baseline. For the VarexJ and SPLat tools, we have an

initial overhead. However, according to Table 5.1, SPLat and VarexJ can have a

smoother time growth than the baseline. SPLat and VarexJ are able to cope better

with the growth in the number of configurations, due to their strategies in testing valid

configurations.

RQ1 Summary. We note that VarexJ is generally more efficient than SPLat.

However, when it was not more efficient, it was by a large difference in specific

situations related to its implementation of variability-aware execution.

5.4 Effectiveness of the Tools

RQ2 How effective are the sound tools for testing configurable systems?

The first and second columns of Table 5.2 indicate the total fault pairs found by

VarexJ and by SPLat, respectively. The fourth and fifth columns of Table 5.2 indicate

total fault pairs found by VarexJ and not by SPLat, and total fault pairs found by

SPLat and not by VarexJ, respectively. Finally, the last column indicates the total

number of fault pairs that were found by both tools.

Apart from Elevator, VarexJ and SPLat found feature interaction faults in all

of the target systems. Consequently, we got fault pairs for six systems. Given the

characteristics of both VarexJ and SPLat regarding their implementations of STT, we

were expecting more similar effectiveness results for those tools, i.e., higher intersection
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values. However, Table 5.2 usually shows the opposite. The higher intersection values

found were for the systems: Email, Companies, and Sudoku. As can be seen the

differences presented in Columns 4 and 5 of the Table 5.2. Despite that, for those 3

target systems, we verified that VarexJ found more fault pairs than SPLat.

VarexJ and SPLat found faults in distinct test cases for JTopas. Consequently,

they got distinct fault pairs, which led to an empty intersection set of fault pairs for this

target system. Moreover, JTopas was the only system for which SPLat found more

fault pairs than VarexJ. For Sudoku, VarexJ found all fault pairs found by SPLat and

more 34. Finally, for Email, VarexJ found only one fault pair that SPLat did not.

Indeed, both tools found faults with the same two test cases. Interestingly, however,

from VarexJ log, we found an error in a configuration in which all optional features

were disable, whereas SPLat log did not provided that.

RQ2 Summary. We observed that VarexJ and SPLat presented distinct results

for efficiency while testing the target systems. Although VarexJ found more faults

than SPLat for the majority of the target systems, such result deserves a more in-

depth investigation because we expected a higher intersection of faults encountered

by them.

5.5 Threats to Validity

A key issue in empirical studies like study presented in this chapter is the validity

of the results. Even with careful planning, different factors may affect these research

results [Wohlin, 2014]. This section presents potential threats to the study validity

and discuss some bias that may have affected the study results. We also explain our

actions to mitigate them.

Conclusion Validity. We extracted fault pairs as the unit of measurement for

effectiveness evaluation (see Section 5.2). This data extraction could, if misconducted,

lead us to incorrect results and conclusions. To mitigate this threat, two researchers

manually analyzed the fault pairs and attempt to infer similar information from the

log provided by each evaluated testing tool. It was done with all the pairs generated

for JTopas, Sudoku, and Email, and with a sampling of the pairs generated for

Companies, GPL and ZipMe.

External Validity. We cannot claim that our results directly generalize to other

environments and tools, such as to industry practices. A major threat to validity in this

case can be the selected tools and the target systems. We choose two tools classified



5. Sound Testing Tools: A Comparative Study 61

as sound testing techniques and we cannot guarantee that our observations can be

generalized for this category. We tried to minimize this threat choosing tools that

implement different testing techniques, such as variability-aware execution (VarexJ )

and a lightweight dynamic analysis for reducing combinatorics (SPLat).

Construction Validity. We translate the feature model of the target systems

for Conjunctive Normal Form (CNF) that is the way VarexJ reads a feature model.

This may be a threat to the construction validity because the translation may contain

mistakes. To mitigate this threat, we made a truth table for each type and compared

the results. We considered the correct translations when the truth tables returned the

same results.

External Validity. First, we have performed our study with seven configurable

systems. As one could expect, our target systems may not represent the characteristics

of all configurable systems. To mitigate the effect of the configurable systems’ repre-

sentativeness chosen to compose our study, we are confident that we selected systems

from various domains and test suite sizes. Second, we have restricted our analysis to

configurable systems developed in the Java programming languages. Thus, we cannot

generalize to other programming languages. This limitation may affect the generaliza-

tion of our results. Finally, the threat to our study is the quality of the test suite in

the selected configurable systems. All of our analysis is conditioned on the test suite’s

ability to reveal faults. To mitigate the test to be different for the SPLAT to VarexJ,

we have removed from our study all tests of the target systems that exercise graphical

interface and manipulation of files because VarexJ presented some complex issues such

as execution abortion.

5.6 Final Remarks

This chapter presented a comparative empirical study with two tools (SPLat and

VarexJ ) selected from the systematic mapping study (Section 3). The goal was to

compare these two tools when testing all valid configurations of the configurable sys-

tems. This chapter’s main contribution was to provide researchers and testers with

an analysis of the two strategies’ effectiveness and efficiency. Regarding the effective-

ness of SPLat and VarexJ, we note that VarexJ is generally more efficient than SPLat.

However, when it was not more efficient, it was by a large difference in specific situ-

ations related to its implementation of variability-aware execution. Furthermore, for

efficiency, we observed that VarexJ and SPLat presented distinct results while testing

the target systems. Although VarexJ found more faults than SPLat for the majority
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of the target systems, such result deserves a more in-depth investigation because we

expected a higher intersection of faults encountered by them.

In the next chapter, we present a comparative empirical study with eight sampling

testing strategies. This comparison aims to find which strategies are faster, more

comprehensive, effective on identifying faults. We also analyse the reasons why a

strategy performed better in one investigated property.



Chapter 6

Evaluating T-wise Testing

In the previous chapter, we presented a study with two main sound testing tools namely

VarexJ [Meinicke et al., 2016] and SPLat [Kim et al., 2013]. However, the extensively

testing of all valid configurations may be infeasible in practice and several sampling

testing strategies have been proposed to recommend an optimal sample of configura-

tions able to find most existing faults. In this chapter, we use our dataset proposed

in Chapter 4 and compare recommended configurations from sixteen t-wise testing

strategies (e.g., ICPL-T2 and IncLing -T2 ). This comparison aims to find which

strategies are faster, more comprehensive, effective on identifying faults, time-efficient,

and coverage-efficient in our dataset and the reasons why a strategy fared better in one

investigated property.

T-wise interaction sampling defines a set of a cost-effective sampling techniques

for discovering interaction faults in configurable systems [Henard et al., 2014a]. These

techniques have attracted the interest of several researchers because they achieve ef-

fective results with lower cost by minimizing the number of configurations to be tested

even when using small values for t (e.g., 1 or 2) [Al-Hajjaji et al., 2016a; Garvin et al.,

2011; Henard et al., 2014a; Johansen et al., 2011; Kaltenecker et al., 2019; Krieter et al.,

2020; Kuhn and Reilly, 2002; Nie and Leung, 2011; Xiang et al., 2021]. In this work,

we chose to evaluate t-wise strategies implemented in FeatureIDE [Thüm et al., 2014].

Our goal in this chapter is to provide a comparison of sampling testing strategies.

The comparison of testing strategies may benefit practitioners supporting their choice

of a testing strategy that best fits their needs. On the other hand, this study may

also benefit researchers and tool builders by showing them opportunities for improving

existing testing strategies and tools. To achieve our first goal, we choose (i) a dataset,

(ii) testing strategies to be compared, and (iii) the comparison criteria. The dataset

used in this evaluation is composed of all configurable software systems presented in

63
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Chapter 4. As testing strategies to be compared, we selected variations of five t-

wise sampling testing strategies: CASA [Garvin et al., 2011], Chvatal [Johansen et al.,

2012b], ICPL [Johansen et al., 2011], IncLing [Al-Hajjaji et al., 2016a], and YASA [Kri-

eter et al., 2020]. We selected these strategies because t-wise strategies assure a de-

gree of testing coverage on the recommended configurations (see details of our choice

in Section 6.2). At the end, we compare sixteen t-wise strategies (CASA-T1, CASA-

T2, CASA-T3, CASA-T4, Chvatal-T1, Chvatal-T2, Chvatal-T3, Chvatal-T4, ICPL-T1,

ICPL-T2, ICPL-T3, IncLing-T2, YASA-T1, YASA-T2, YASA-T3, and YASA-T4 ) and

two baselines (brute force and random selection). As comparison criteria, we evaluate

which testing strategies are faster, more comprehensive (i.e., with greater coverage),

more effective in identifying faults, time-efficient, and coverage-efficient. To make our

study feasible, we limit the number of recommended configurations for the baselines

for up to 250 configurations.

The remainder of this chapter is organized as follows. Section 6.1 presents our goal

and research questions. Section 6.2 describes the subject testing strategies. Sections

6.3 and 6.4 describe how we acquire data and operationalize the answer of our research

questions, respectively. Sections 6.5 to 6.9 present the results achieved. Sections 6.10

to 6.12 discusses the results. Section 6.13 describes the main limitations and threats

to validity of this study. Finally, Section 6.14 concludes this chapter.

6.1 Goal and Research Questions

Based on the goal question metric (GQM) template [Basili and Rombach, 1988], we

systematically defined our goal. We analyze sixteen testing strategies for the pur-

pose of identifying the fastest, most comprehensive, most effective, and most efficient

strategies; with respect to support practitioners and researchers to choose the most

appropriate strategy to fulfill their needs, avoid the recurrence of similar faults, and

improve existing testing strategies; from the viewpoint of researchers and software

developers with expertise in software testing in the context of a previously proposed

dataset (Chapter 4) of configurable software systems with test suite available. Previous

work [Engström and Runeson, 2011; Lopez-Herrejon et al., 2015; Machado et al., 2014]

reported a lack of empirical evaluation based on a community-wide dataset to guide

the comparison of different testing strategies. Motivated by this goal, we formulate the

following research questions.

RQ1: What are the fastest strategies for testing configurable systems?
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RQ1.1: Which are the fastest testing strategies on generating a list of configu-

rations?

RQ1.2: Which configurations suggested by testing strategies do execute faster?

RQ2: Which testing strategies do suggest a list of configurations that covers most

configurations in configurable systems?

RQ3: Which testing strategies are more effective on finding faults in configurable sys-

tems?

RQ4: Which testing strategies are more time-efficient on finding faults in configurable

systems?

RQ5: Which testing strategies are more coverage-efficient on finding faults in config-

urable systems?

These research questions show which testing strategies are faster, more compre-

hensive, more effective, and more efficient. This comparison with a community-wide

dataset may benefit software testers because, from now on, they have results for several

configurable systems to support their choice of a testing strategy that best fits their

needs. Note that in the first two research questions, we provide a broader view of the

configurable systems in the subject dataset. In the last three research questions, we

look only at faulty systems.

6.2 Selected Testing Strategies

We focus on t-wise testing strategies because (i) they ensure certain quality of the

set of suggested configurations (see Chapter 2), and (ii) the literature lacks a com-

parison among them on a community-wide dataset [Engström and Runeson, 2011;

Lopez-Herrejon et al., 2015; Machado et al., 2014]. We are confident that we selected

well-known testing strategies, once all selected strategies are developed in the Fea-

tureIDE - an integrated development environment (IDE) widely used by developers

of configurable systems [Thüm et al., 2014]. Some strategies like Chvatal presents ver-

sions for 1-, 2-, 3-, and 4-wise. However, other strategies, such as IncLing, are only

available for 2-wise tests. We investigate all testing strategies versions available in

FeatureIDE. The constraint for 4-wise is due to the number of suggested configu-

rations. That is, the running time would increase significantly and make our study

unfeasible.

At the end, we compared 16 t-wise strategies and two baselines. The baselines

are mainly important to identify faults in the subject systems. For short, we selected
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brute force (baseline 1), random (baseline 2), four variations of CASA, four variations

of Chvatal, three variations of ICPL, one variation of IncLing, and four variations of

YASA. Next, we briefly present all testing strategies investigated.

Brute Force (baseline 1) [Al-Hajjaji et al., 2016b; Thüm et al., 2014] is a strat-

egy that generates all distinct valid configurations. However, due to time constraints,

we generate a fixed number of valid configurations for a configurable system (i.e., 250).

Random (baseline 2) [Al-Hajjaji et al., 2016b; Thüm et al., 2014] is a SAT

solver-based strategy that randomly generates a pre-defined number of valid configu-

rations.

CASA [Garvin et al., 2011] is a greedy algorithm for sampling test configurations

(more specifically, a simulated annealing algorithm). It works on two iterative steps.

First, it minimizes the number of created configurations. Second, it ensures that a

certain degree of coverage is achieved. We use CASA versions 1-, 2-, 3-, and 4-wise.

Chvatal [Johansen et al., 2011] is an adaptation of a greedy algorithm proposed

by Chvatal [Chvatal, 1979] to solve the covering array problem. At the end, it is a

heuristic that selects a subset of possible configurations with a t-wise covering array.

We use Chvatal versions 1-, 2-, 3-, and 4-wise.

ICPL [Johansen et al., 2012b] is an algorithm for t-wise covering arrays. This

strategy is also based on the Chvatal algorithm [Chvatal, 1979]. However, it contains

optimizations for increasing its performance. We use ICPL versions 1-, 2-, and 3-wise.

IncLing [Al-Hajjaji et al., 2016a] is an incremental sampling for 2-wise (i.e.,

pair-wise) interaction testing. The main difference between IncLing and other testing

strategies is that IncLing generates configurations one at a time to enhance sampling

efficiency in terms of interaction coverage rate.

YASA [Krieter et al., 2020] is based on the traditional IPOG algorithm [Lei

et al., 2008; Yu et al., 2013], which starts with a given empty sample and then iterates

over all t-wise once at the time. Through the application of different heuristics and

caching methods, this testing strategy, in theory, improves its sampling time compared

to other t-wise sampling strategies. We use YASA versions 1-, 2-, 3-, and 4-wise.

6.3 Data Acquisition

Our data acquisition consists basically of three tasks: (i) run the testing strategies

presented in Section 6.2 for each configurable system in the subject dataset (Chapter 4),

(ii) extract information from logs creating a set of true faults (reference list), and (iii)

collect metrics. In what follows, we give details on how we automated these tasks.
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Running Testing Strategies. Once we run a testing strategy, it returns a

list of configurations. Hence, for each configuration, we selected the set of features of

the target configuration, ran the testing suite related to it, and analyzed the outcome

logging. As it is a time-consuming and error-prone task, we created a script to au-

tomate this task. Considering time constraints, we defined an upper threshold of 250

configurations per subject system and testing strategy.

Creating a Reference List. We analyzed the execution log of the 18 (16 t-wise

strategies and two baselines) testing strategies against the 30 subject systems. After

parsing the log, we found test cases of which a fault emerged as well as the reason why

it happened. Hence, we investigated each reported fault to confirm that it is truly a

fault and if it arose due to a feature interaction. The reference list is the union of all

faults found on all configurations suggested by all testing strategies investigated in this

study.

Metrics Collection. We use different tools to extract metrics used in our study.

Once we did not find tools to compute metrics used to answer our research questions,

we computed them with our scripts ( Chapter 4). Our analysis scripts (written in Java)

are open-source. All data necessary for replicating this study are stored in csv files.

All tools, links to subject projects, reports of faults for each testing strategy, and data

used in this study are available at our supplementary website [Ferreira et al., 2020c].

6.4 Operationalization

For each research question, we defined the following null and alternative hypotheses.

(H0) All testing strategies present similar results.

(H1) At least one testing strategy differ from the others.

To perform a normality test, we used the Shapiro-Wilk method [Razali and Wah,

2011]. As a result, this test failed in all cases indicating that our data do not follow

a normal distribution. Taking this information into account, we used Friedman’s Test

to verify the hypotheses formulated in our study since it is used for one-way repeated

measure analysis of variance by ranks. For short, this test detects differences in treat-

ments across multiple test attempts [Sheskin, 2020]. In our case, it is similar to the

Kruskal–Wallis one-way analysis of variance by ranks. When it was possible to re-

ject the null hypothesis, we used Post Hoc Analysis to identify which subject testing

strategies tend to statistically differ from the others.
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Next, we detail how we answered each research question. For the first five research

questions, the independent variables are the 16 t-wise testing strategies.

Answering RQ1. To answer RQ1, we compute the time (in seconds) to generate

configurations (RQ1.1) and the time (in seconds) to run the test suite for the config-

urations suggested by each subject testing strategy (RQ1.2). In summary, number of

seconds (#Seconds) consists of the sum of the time to generate configurations and to

execute the suggested configurations. To mitigate random effects on time measure-

ment, we use the average of seconds, performing these analyses ten times. We use a

computer with 16 GB of RAM, i7 processor 3.60 GHz, Windows 10, and JVM with 2

GB of memory. The lower the #Seconds, the faster the testing strategy is. We report

results for each configurable system and show which strategies performed better for a

greater number of configurable systems. In RQ1, #Seconds is our dependent variable.

Answering RQ2. To answer RQ2, we compute the percentage of the number

of configurations reported by a testing strategy (#Configurations) over the number

of valid configurations for each configurable system. The higher the percentage, the

higher the testing strategy coverage. We report results for each configurable system

and also show which testing strategies are more comprehensive for a greater number

of configurable systems. In RQ2, #Configurations is our dependent variable.

Answering RQ3. To answer RQ3, we use recall (Eq. 6.1). In our context,

recall is the number of correct faults found by the configurations suggested by a target

testing strategy (i.e., true positive faults) divided by the number of existing faults in

our reference list (i.e., the sum of true positive and false negative faults). The higher

the recall, the more effective the testing strategy is. We report the recall calculated

for each testing strategy over each configurable system from which at least one feature

interaction fault exists. In RQ3, recall is our dependent variable.

Recall =
TP faults

(TP faults + FN faults)
(6.1)

Answering RQ4. To answer RQ4, we compute time-efficiency (Eq. 6.2). Time-

efficiency is the number of correct faults found by the configurations suggested by

a target strategy divided by #Seconds used to answer RQ1. The higher the time-

efficiency, the more efficient the strategies. We report results for each configurable

system and show which strategies performed better for the higher number of systems.

In RQ4, time-efficiency is our dependent variable.

TimeEfficiency =
TP faults

#Seconds
(6.2)
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Answering RQ5. To answer RQ5, we compute coverage-efficiency (Eq. 6.3).

Coverage-efficiency is the number of faults found by the configurations suggested by

a target strategy divided by #Configurations used to answer RQ2. The higher the

coverage-efficiency, the more efficient the testing strategy. We report results for each

configurable system and show which testing strategies performed better for a higher

number of configurable systems. In RQ5, coverage-efficiency is our dependent variable.

CoverageEfficiency =
TP faults

#Configurations
(6.3)

6.5 The Fastest Testing Strategies (RQ1)

Table 6.1 presents the sum of the time to generate configurations (RQ1.1) and execute

the test suite (RQ1.2) for all configurations suggested by each subject testing strat-

egy. We highlight the time of the fastest testing strategy for each configurable system

according to the t-wise group. Once multiple strategies have the same shortest time,

we consider those as the fastest ones. Note that the time to generate configurations

and execute these configurations varied from 3 to 28963 seconds (≈ 8 hours) and, in

general, 1- and 4-wise strategies were respectively faster and slower than the other

testing strategies. In addition, in most cases, the time to generate the configurations

were far greater than the time to execute the configurations. As an extreme example,

for FeatureAMP9 using CASA-T4, it was necessary 28800 seconds to generate the

configurations and 163 seconds to execute the test suite for the suggested configura-

tions.

As a result, we can see that for the 1-wise group, ICPL-T1 is faster than the

other testing strategies for ten configurable systems. CASA-T1 and YASA-T1 are the

fastest for nine configurable systems. For the 2-wise group, ICPL-T2 is faster than the

other testing strategies for 12 configurable systems. CASA-T2 is the fastest for ten

configurable systems. YASA-T2 is the fastest for seven configurable systems. For the

3-wise group, ICPL-T3 is faster than the other testing strategies for 11 configurable

systems. CASA-T3 is the fastest for nine configurable systems. YASA-T3 is the

fastest for eight configurable systems. For the 4-wise group, YASA-T4 is faster than

the other testing strategies for fourteen configurable systems. CASA-T4 is the fastest

for eight configurable systems. Chavatal-T4 is the fastest for five configurable systems.

YASA-T4 was the only strategy that was able to generate a list of configurations for

CheckStyle. This configurable system has 141 features, which lead to 2135 valid

configurations.
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Table 6.1: Total time in seconds spent by the target testing strategies

(a) Time spent in seconds by the 1- and 2-wise testing strategies

Name Baseline1 Baseline2 CASA-T1 Chvatal-T1 ICPL-T1 YASA-T1 CASA-T2 Chvatal-T2 ICPL-T2 IncLing-T2 YASA-T2

ArgoUML-SPL 2376.00 3336.00 4.50 15.00 31.00 8.48 8.00 41.00 38.00 27.00 17.88
ATM 532.87 700.33 8.27 28.59 8.48 11.73 27.55 33.85 14.48 30.01 32.92
BankAccount 142.75 207.06 3.33 4.12 3.06 3.33 7.50 8.24 9.06 10.25 8.38
CheckStyle 1007.00 1048.00 31.16 36.00 12.00 15.26 116.65 118.00 65.00 78.00 66.93
Chess 21.23 259.23 7.92 11.17 5.61 8.88 14.65 12.13 7.61 35.00 9.87
Companies 94.41 264.41 5.44 4.51 5.52 4.03 15.14 9.26 9.52 12.30 8.86
Elevator 9.40 243.40 3.39 4.10 5.10 4.38 6.40 7.20 7.10 8.20 6.36
Email 172.00 470.00 9.69 14.00 12.00 11.68 36.25 23.00 16.00 319.00 17.00
FeatureAMP1 2410.00 2629.00 4.14 5.90 222.68 4.13 17.20 31.00 228.68 231.30 16.68
FeatureAMP2 5234.00 5426.00 14.23 28.00 25.65 11.68 21.14 92.00 32.65 213.95 76.38
FeatureAMP3 1155.00 789.00 15.65 25.00 17.92 6.97 25.65 68.00 32.92 40.00 65.67
FeatureAMP4 2718.00 2427.00 33.45 15.00 25.24 33.45 39.45 109.00 32.24 57.00 226.36
FeatureAMP5 7470.00 6809.00 15.39 66.00 59.00 20.31 23.65 155.00 68.00 133.00 104.56
FeatureAMP6 781.00 920.00 18.87 12.00 12.00 9.56 63.67 39.00 23.00 57.00 20.91
FeatureAMP7 660.00 234.30 9.32 4.50 4.70 4.29 12.34 13.70 11.70 14.00 10.37
FeatureAMP8 1998.00 2161.00 20.12 48.00 17.00 17.68 39.26 45.00 24.00 55.00 71.40
FeatureAMP9 1975.00 2534.00 6.44 23.00 24.00 27.90 82.91 87.00 33.00 103.00 66.72
GPL 41.00 102.00 7.38 5.50 5.70 5.43 14.55 16.20 13.70 18.20 12.71
IntegerSetSPL 4.00 84.00 3.36 3.10 3.10 3.34 3.41 3.10 3.10 4.20 3.40
Jtopas 22.00 91.00 3.81 3.70 3.50 4.34 6.75 7.70 7.50 6.80 7.30
MinePump 666.00 703.00 3.44 3.40 3.50 3.37 6.44 10.00 8.50 9.20 6.49
Notepad 22460.00 22557.00 201.30 299.00 235.00 197.34 450.00 1646.00 241.00 1077.00 721.92
Paycard 442.00 539.00 168.48 68.45 72.00 68.58 171.48 207.31 74.00 172.29 171.36
Prop4J 11.00 108.00 3.38 4.30 3.20 4.40 10.44 15.40 11.20 12.80 8.49
Sudoku 14.80 103.40 3.50 5.00 3.80 4.53 7.80 8.70 7.80 9.80 7.92
TaskObserver 77.00 778.00 23.80 25.00 25.00 24.80 45.50 82.70 60.00 88.00 39.72
Telecom 22.00 778.00 16.77 20.00 9.90 16.73 20.73 27.00 27.90 17.00 40.70
UnionFindSPL 10.90 103.80 9.80 11.80 10.70 10.20 19.54 12.80 8.70 17.90 11.79
VendingMachine 110.40 103.80 6.00 4.40 4.40 6.32 8.10 15.80 10.40 10.70 12.25
ZipMe 15.00 99.00 4.20 4.90 4.80 5.32 7.30 11.00 10.80 7.70 7.37

(b) Time spent in seconds by the 3- and 4-wise testing strategies

Name Baseline1 Baseline2 CASA-T3 Chvatal-T3 ICPL-T3 YASA-T3 CASA-T4 Chvatal-T4 YASA-T4

ArgoUML-SPL 2376.00 3336.00 27.84 66.00 39.00 18.77 63.50 153.00 89.19
ATM 532.87 700.33 39.08 122.27 45.08 65.62 125.53 171.55 146.55
BankAccount 142.75 207.06 17.52 19.42 18.18 16.52 49.40 38.25 35.00
CheckStyle 1007.00 1048.00 3487.00 364.08 2869.00 368.76 ** ** 18691.00
Chess 21.23 259.23 23.87 24.32 19.43 14.83 17.00 24.01 16.00
Companies 94.41 264.41 19.29 23.13 20.16 20.18 43.38 53.84 40.20
Elevator 9.40 243.40 12.41 12.30 12.30 10.48 19.54 17.50 22.49
Email 172.00 470.00 47.92 70.00 272.00 26.93 58.88 1012.00 42.28
FeatureAMP1 2410.00 2629.00 194.00 55.40 265.00 158.67 1304.00 1791.00 1226.22
FeatureAMP2 5234.00 5426.00 461.42 420.00 111.32 398.84 1235.01 1249.00 1267.60
FeatureAMP3 1155.00 789.00 214.42 283.00 97.00 175.45 1379.63 2614.00 705.00
FeatureAMP4 2718.00 2427.00 44.45 389.00 127.00 245.27 2681.39 3758.00 614.35
FeatureAMP5 7470.00 6809.00 312.91 540.00 163.00 327.04 1223.77 2222.00 1752.37
FeatureAMP6 781.00 920.00 2759.71 279.00 119.00 135.48 28863.25 6881.00 526.40
FeatureAMP7 660.00 234.30 95.41 45.20 37.70 35.42 28800.42 751.50 272.66
FeatureAMP8 1998.00 2161.00 62.87 145.00 64.00 182.69 28897.42 1105.00 584.86
FeatureAMP9 1975.00 2534.00 306.36 321.00 33.00 177.15 28963.06 1088.00 706.68
GPL 41.00 102.00 29.18 34.70 40.50 29.32 98.85 71.40 60.64
IntegerSetSPL 4.00 84.00 3.41 3.10 3.10 *** * * *
Jtopas 22.00 91.00 9.78 11.40 11.70 10.89 13.70 22.30 16.01
MinePump 666.00 703.00 10.55 39.00 12.60 11.53 29.38 149.00 21.81
Notepad 22460.00 22557.00 496.00 2149.00 836.00 3008.98 9782.11 5234.00 3613.55
Paycard 442.00 539.00 207.40 207.34 171.01 206.51 203.28 205.90 400.11
Prop4J 11.00 108.00 38.50 30.80 30.50 24.66 249.76 37.20 63.01
Sudoku 14.80 103.40 13.80 16.00 13.80 14.25 19.10 21.00 20.48
TaskObserver 77.00 778.00 84.21 107.00 114.00 72.13 85.65 101.00 76.16
Telecom 22.00 778.00 22.68 33.20 45.00 *** * * *
UnionFindSPL 10.90 103.80 12.61 12.80 12.90 14.45 17.69 14.20 14.55
VendingMachine 110.40 103.00 25.30 16.20 16.70 25.30 45.22 41.90 47.70
ZipMe 15.00 99.00 13.40 14.70 13.70 11.45 33.40 28.00 21.63

*Number of features of target configurable systems is less than t. **Could not generate configurations, time greater than 8 hours.
***The strategy did not generate any configuration.
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Table 6.2: P-value for RQ1 (time to generate and to execute configurations)

RQ 1-wise 2-wise 3-wise 4-wise

RQ1.1 0.1754 0.0013 0.3441 0.5273
RQ1.2 0.0795 0.0013 0.0013 0.9636
RQ1 0.0907 0.0003 0.9658 0.1690

In the first row of Table 6.2, we present the results of the p-value for the Fried-

man’s Test grouped according to the t-wise group. As we can see, only the time to

generate the list of configurations of 2-wise testing strategies is statistically significant

different from the other testing strategies (i.e., p-value < 0.05). It means that for 1-,

3-, and 4-wise strategies, we could not find a statistical difference on the time to gen-

erate the configurations. Therefore, we reject the null hypothesis (H0) and accept the

alternative hypothesis (H1) only for the 2-wise testing strategies.

Aiming at finding out which 2-wise testing strategies differ from each other, we

used the Post Hoc Analysis (see our operationalization in Section 6.4). As a result,

CASA and YASA are the ones that statistically differ for the other 2-wise testing

strategies. We noted that YASA took less time to generate the configurations for

systems with more than 20 features. CASA, on the other hand, spent more time for

systems with more than 20 features.

RQ1.2. Comparing the time to execute the test suite for the suggested configura-

tions. Similar to Figure 6.1a, Figure 6.1b shows the boxplots with the time taken to

execute the test suite for the suggested configuration by each testing strategy organized

by t-wise group. In general, CASA took less time than the other testing strategies and

Chvatal took more time than the other testing strategies. The greater exception was

on for the 1-wise group, of which Chvatal was the fastest testing strategy on running

the test suite.

In the second row of Table 6.2, we present the results of the p-value performing

the Friedman’s Test. We found statistical difference for the 2- and 3-wise groups.

Therefore, for these groups, we can reject the null hypothesis (H0) and accept the

alternative hypothesis (H1). Regarding the Post Hoc Analysis for these two groups,

we found that: (i) in the case of 2-wise testing strategies, CASA, ICPL, and YASA are

statistically different from the other testing strategies. For the 3-wise group, CASA and

YASA testing strategies are statistically different from the others. In general, CASA

configurations were faster on running the test suite of the suggested configurations than

ICPL and YASA testing strategies.
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RQ1. Considering both the time to generate and to execute the suggested config-

urations. Finally, we performed the analysis for the sum of the time to generate and

to execute the configurations. In the third row of Table 6.2, we present the results

of the p-value for the Friedman’s Test grouped according to the t-wise group. As we

can see, only the time of 2-wise testing strategies is statistically significant different

from the other testing strategies (i.e., p-value < 0.05). As a result of the Post Hoc

Analysis for 2-wise group, the time of IncLing, Chvatal, and CASA testing strategies

are statistically different from the other testing strategies. .

Implications. Practitioners should look at our results to estimate how long their

test suite might take for each testing strategy. To do so, they can compare the time

that systems with similar characteristics to theirs last for each testing strategy. For

instance, ArgoUML-SPL, with 153977 lines of code, 256 valid configurations, and

with 1326 test cases took around 15 seconds for 1-wise strategies, 25 seconds for 2-wise

strategies, 35 seconds for 3-wise strategies, and 90 seconds for 4-wise strategies

RQ1 Summary. Although we found statistically significant results only in some

cases, data of Table 6.1 show that, as expected, strategies with smaller ’t’, took

less time to generate and execute configurations than strategies with greater ’t’.

Looking the result for the same t-wise group, ICPL-T1, ICPL-T2, ICPL-T3, and

YASA-T4 were faster than the other testing strategies.

6.6 The Most Comprehensive Strategies (RQ2)

Table 6.3 presents the number of valid configurations (#Conf.) and the percentage

of configurations recommended by each testing strategy and configurable system. We

highlight the greatest percentage for each configurable system. Once multiple strategies

have the same greatest percentage and it is greater than 0, we consider those as the

most comprehensive ones. We included baseline results in Table 6.3 aiming at fostering

discussions (Section 6.10).

As a result, for 1-wise group, Chvatal-T1 is the most comprehensive testing

strategy for 15 configurable systems. ICPL-T1, YASA-T1, and CASA-T1 are the

most comprehensive testing strategies for 9, 7 and 4 configurable systems, respectively.

In the 2-wise group, IncLing-T2 is the most comprehensive testing strategy for 15

configurable systems. ICPL-T2, Chvatal-T2, CASA-T2, and YASA-T2 are the most

comprehensive testing strategies for 11, 9, 1 and 1 configurable systems, respectively.

For 3-wise group, Chvatal-T3 is the most comprehensive testing strategy for 20 con-

figurable systems. Next, ICPL-T3, and YASA-T3 are more comprehensive for 9 and 2
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Table 6.3: Percentage of configurations analyzed by strategies

(a) Percentage of configurations analyzed by 1- and 2-wise testing strategies

Name #C Baseline1 Baseline2 CASA-T1 Chvatal-T1 ICPL-T1 YASA-T1 CASA-T2 Chvatal-T2 ICPL-T2 IncLing-T2 YASA-T2

ArgoUML-SPL 256 97.66% 97.66% 0.78% 0.78% 0.78% 0.78% 0.78% 2.73% 2.73% 2.73% 0.78%
ATM 80 100.00% 100.00% 2.50% 2.50% 1.25% 2.50% 7.50% 8.75% 8.75% 8.75% 7.50%
BankAccount 144 100.00% 100.00% 1.39% 2.08% 1.39% 1.39% 4.17% 4.86% 4.86% 5.56% 4.17%
CheckStyle >2135 ∼0.00% ∼0.00% ∼0.00% ∼0.00% ∼0.00% ∼0.00% ∼0.00% ∼0.00% ∼0.00% ∼0.00% ∼0.00%
Chess 8 87.50% 87.50% 25.00% 25.00% 25.00% 25.00% 50.00% 37.50% 62.50% 50.00% 50.00%
Companies 192 100.00% 100.00% 2.08% 2.08% 2.08% 1.04% 6.25% 6.77% 6.77% 6.77% 6.25%
Elevator 20 100.00% 100.00% 10.00% 15.00% 10.00% 15.00% 25.00% 30.00% 35.00% 30.00% 25.00%
Email 40 100.00% 100.00% 5.00% 7.50% 5.00% 5.00% 15.00% 15.00% 15.00% 17.50% 15.00%
FeatureAMP1 6732 3.71% 3.71% 0.03% 0.04% 0.04% 0.03% 0.12% 0.16% 0.15% 0.21% 0.12%
FeatureAMP2 7020 3.56% 3.56% 0.03% 0.04% 0.04% 0.04% 0.03% 0.17% 0.16% 0.19% 0.04%
FeatureAMP3 20500 1.22% 1.22% 0.01% 0.01% 0.01% 0.01% 0.01% 0.07% 0.08% 0.10% 0.01%
FeatureAMP4 6732 3.71% 3.71% 0.03% 0.04% 0.04% 0.03% 0.12% 0.15% 0.16% 0.15% 0.12%
FeatureAMP5 3810 6.56% 6.56% 0.05% 0.08% 0.08% 0.05% 0.26% 0.31% 0.31% 0.29% 0.26%
FeatureAMP6 21522 1.16% 1.16% 0.02% 0.01% 0.01% 0.01% 0.07% 0.06% 0.05% 0.10% 0.07%
FeatureAMP7 15795 1.58% 1.58% 0.02% 0.02% 0.02% 0.02% 0.08% 0.08% 0.09% 0.09% 0.08%
FeatureAMP8 15708 1.59% 1.59% 0.01% 0.02% 0.02% 0.01% 0.07% 0.07% 0.07% 0.07% 0.07%
FeatureAMP9 6732 3.71% 3.71% 0.03% 0.04% 0.04% 0.03% 0.13% 0.18% 0.16% 0.18% 0.13%
GPL 73 100.00% 100.00% 5.48% 5.48% 6.85% 8.22% 17.81% 17.81% 23.29% 19.18% 17.81%
IntegerSetSPL 2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Jtopas 32 100.00% 100.00% 6.25% 9.38% 6.25% 6.25% 18.75% 18.75% 18.75% 18.75% 18.75%
MinePump 64 100.00% 100.00% 3.13% 4.69% 3.13% 3.13% 10.94% 10.94% 12.50% 10.94% 10.94%
Notepad 256 97.66% 97.66% 1.17% 1.56% 1.17% 1.17% 3.13% 5.47% 4.30% 5.47% 3.13%
Paycard 6 100.00% 100.00% 33.33% 33.33% 33.33% 33.33% 83.33% 100.00% 83.33% 83.33% 83.33%
Prop4J 5029 4.97% 4.97% 0.04% 0.06% 0.04% 0.06% 0.16% 0.22% 0.24% 0.28% 0.16%
Sudoku 20 100.00% 100.00% 10.00% 10.00% 10.00% 10.00% 35.00% 35.00% 40.00% 40.00% 35.00%
TaskObserver 8 100.00% 87.50% 25.00% 25.00% 25.00% 25.00% 37.50% 87.50% 50.00% 50.00% 37.50%
Telecom 4 100.00% 75.00% 50.00% 50.00% 50.00% 75.00% 100.00% 75.00% 75.00% 100.00% 100.00%
UnionFindSPL 10 20.00% 20.00% 40.00% 40.00% 40.00 40.00% 40.00% 60.00% 50.00% 20.00% 50.00%
Vending Machine 256 97.66% 97.66% 0.78% 1.56% 1.95% 0.78% 2.34% 13.67% 2.34% 2.34% 2.34%
ZipMe 24 100.00% 100.00% 8.33% 12.50% 20.83% 12.50% 8.33% 29.17% 25.00% 25.00% 12.50%

#C: number of valid configurations.

(b) Percentage of configurations analyzed by 3- and 4-wise testing strategies

Name #C. Baseline1 Baseline2 CASA-T3 Chvatal-T3 ICPL-T3 YASA-T3 CASA-T4 Chvatal-T4 YASA-T4

ArgoUML-SPL 256 97.66% 97.66% 4.69% 7.03% 6.25% 5.47% 9.38% 14.06% 12.89%
ATM 80 100.00% 100.00% 7.50% 20.00% 20.00% 17.50% 30.00% 41.25% 37.50%
BankAccount 144 100.00% 100.00% 11.11% 14.58% 13.89% 11.81% 25.00% 29.17% 27.78%
CheckStyle >2135 ∼0.00% ∼0.00% ∼0.00% ∼0.00% ∼0.00% ∼0.00% ** ** ∼0.00%
Chess 8 87.50% 87.50% 87.50% 87.50% 87.50% 87.50% 100.00% 87.50% 87.50%
Companies 192 100.00% 100.00% 13.02% 16.67% 16.67% 11.46% 31.25% 40.10% 23.44%
Elevator 20 100.00% 100.00% 55.00% 55.00% 60.00% 55.00% 90.00% 90.00% 90.00%
Email 40 100.00% 100.00% 30.00% 40.00% 32.50% 32.50% 55.00% 70.00% 55.00%
FeatureAMP1 6732 3.71% 3.71% 0.36% 0.48% 0.48% 0.45% 0.98% 1.25% 1.19%
FeatureAMP2 7020 3.56% 3.56% 0.37% 0.54% 0.50% 0.47% 0.37% 1.34% 1.23%
FeatureAMP3 20500 1.22% 1.22% 0.20% 0.25% 0.26% 0.23% 0.20% 0.56% 0.66%
FeatureAMP4 6732 3.71% 3.71% 0.37% 0.49% 0.49% 0.46% 0.59% 1.35% 0.58%
FeatureAMP5 3810 6.56% 6.56% 0.73% 0.92% 0.97% 0.89% 0.73% 2.57% 2.44%
FeatureAMP6 21522 1.16% 1.16% 0.26% 0.21% 0.21% 0.31% 0.26% 1.01% 0.54%
FeatureAMP7 15795 1.58% 1.58% 0.23% 0.28% 0.28% 0.26% 0.23% 0.80% 0.75%
FeatureAMP8 15708 1.59% 1.59% 0.16% 0.21% 0.20% 0.18% 0.16% 0.55% 0.55%
FeatureAMP9 6732 3.71% 3.71% 0.43% 0.51% 0.49% 0.46% 0.43% 1.28% 1.17%
GPL 73 100.00% 100.00% 42.47% 47.95% 47.95% 58.90% 42.47% 86.30% 83.56%
IntegerSetSPL 2 100.00% 100.00% 100.00% 100.00% 100.00% *** * * *
Jtopas 32 100.00% 100.00% 31.25% 65.63% 37.50% 50.00% 31.25% 65.63% 50.00%
MinePump 64 100.00% 100.00% 23.44% 32.81% 29.69% 20.31% 23.44% 56.25% 42.19%
Notepad 256 97.66% 97.66% 8.59% 11.72% 10.94% 9.77% 8.59% 23.44% 20.31%
Paycard 6 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Prop4J 5029 4.97% 4.97% 0.52% 0.66% 0.66% 0.58% 0.52% 1.59% 1.59%
Sudoku 20 100.00% 100.00% 70.00% 75.00% 70.00% 70.00% 70.00% 100.00% 100.00%
TaskObserver 8 100.00% 87.50% 87.50% 100.00% 100.00% 87.50% 100.00% 100.00% 87.50%
Telecom 4 100.00% 75.00% 100.00% 100.00% 60.00% *** * * *
UnionFindSPL 10 20.00% 20.00% 60.00% 100.00% 60.00% 50.00% 30.00% 100.00% 60.00%
Vending Machine 256 97.66% 97.66% 4.69% 31.25% 33.20% 5.47% 10.16% 68.36% 12.11%
ZipMe 24 100.00% 100.00% 41.67% 66.67% 58.33% 45.83% 41.67% 91.67% 95.83%

#C: number of valid configurations. *Number of features of target configurable systems is less than t. **Could not generate
configurations, time greater than 8 hours. ***The strategy did not generate any configuration.
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Table 6.4: P-value results for pertence of configurations analyzed

1-wise 2-wise 3-wise 4-wise

p-value 0.9864 0.9493 0.1000 0.1292

configurable systems, respectively. CASA-T3 did not have better results for any con-

figurable system. For the group 4-wise, Chvatal-T4 is the most comprehensive testing

strategy for 17 configurable systems. After, CASA-T4, and YASA-T4 are the most

comprehensive testing strategies for 8 and 3 configurable systems, respectively.

As expected, increasing the ‘t’, the number of suggested configurations also in-

creases. For systems with more than 20 features for groups 1- and 2-wise, the percentage

of configurations is less than 1 % of configurations. For groups 3- and 4-wise, for config-

urable systems with more than 20 features, the percentage of configurations is less than

3%. For systems with 10 to 20 features for groups 1- and 2-wise, the highest percentage

of configurations was for UnionFindSPL through Chvatal-T2 with 60 % of config-

urations. For 3- and 4-wise groups with systems from 10 to 20 features, the greatest

percentage was 100% for UnionFindSPL through Chvatal-T3 and Chvatal-T4.

In three specific scenarios, we were not able to generate the configurations, for

IntegerSetSPL, 4-wise testing strategies did not work because that the number

of valid configurations was smaller than 4 (see Chapter 2). For Telecom and In-

tegerSetSPL, YASA-T3 could not generate any configuration for testing. Check-

Style, CASA-T4 and Chvatal-T4 did not generate any configuration after eight hours

and we interrupted their execution. It was not possible to reject the null hypothesis

for RQ2. Table 6.4 shows the p-values obtained running the Friedman’s Test.

Practitioners should look at our results to estimate how comprehensive the test

suite of their system is for each testing strategy as well as know the constraints and

limitations of testing strategies themselves. For instance, for systems with up to 8 valid

configurations, most testing strategies recommend at least half of the configurations.

For systems with more than 6000 configurations, testing strategies recommend no more

than 2% of the valid configurations. For systems with a very small or very large number

of configurations, 3- and 4-wise testing strategies may not work correctly because it

did not fulfill the requirements of the t-wise strategies or did not have enough memory

to run all configurations, respectively.
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RQ2 Summary. Even though the Friedman’s Test does not show that the testing

strategies differ in the number of suggested configuration, our data in Table 6.3

show that Chvatal seems the most comprehensive testing strategy for 1-, 3-, and

4-wise testing strategies. Among 2-wise strategies, IncLing-T2 is likely the most

comprehensive testing strategy.

6.7 The Most Effective Strategies (RQ3)

As we found faults in only 16 configurable systems, it is meaningfulness report recall

for all configurable systems of the subject dataset. Hence, in this section, we focus on

the 16 faulty systems. Table 6.5 presents the number of faults (#faults) found and

the recall of each testing strategy for each configurable system with faults. To increase

readability, we replace 0% to “ - ”. We highlight the most effective testing strategy for

each configurable system (i.e., the greatest recall). Once multiple strategies have the

same greatest recall and it is greater than 0%, we consider those as the most effective

ones. Similar to previous sections, we present the results for baseline strategies in

Table 6.5 aiming at fostering discussions in Section 6.10.

Regarding the 1-wise testing strategies, Chvatal-T1 faced better finding more

faults in 3 configurable systems and 4.25% of the total of faults in the reference

list. CASA-T1, YASA-T1, and ICPL-T1 come next finding 3.89%, 3.54%, and 3.01%

of the faults. Note that for three configurable systems (FeatureAMPP1, Fea-

tureAMPP2, and MinePump) only one testing strategy suggested configurations

that the test suite identified faults (ICPL-T1 in the first configurable system and

Chvatal-T1 in the others). Regarding 2-wise testing strategies, ICPL-T2 is the most

effective testing strategy finding 15.61% of the faults. Next, CASA-T2, Chvatal-T2,

IncLing-T2, and YASA-T2 found 13.31%, 13.18%, 9.46%, and 5.27% of the faults

from the reference list, respectively. Regarding 3- and 4-wise groups, Chvatal-T3 and

Chvatal-T4 are the most effective testing strategy with 23.12% and 30.17% of the

faults. Surprisingly, CASA-T3 and CASA-T4 downgraded the results from CASA-T2

reducing the percentage of faults found (from 13.31% to 13.02% and 9.74%, respec-

tively).

Looking at the effectiveness per configurable system, Chvatal-T4 and YASA-T4

achieved much greater recall than CASA-T4. Only for FeatureAMP1, CASA-T4

achieved a greater recall than these two other testing strategies. Note that YASA-T4

retrieves greater recall for four subject systems (FeatureAMP2, FeatureAMP5,

FeatureAMP8, and FeatureAMP9) compared to the other strategies. For the
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Table 6.5: Recall of testing strategies

(a) Recall of 1- and 2-wise testing strategies

Name #faults Baseline1 Baseline2 CASA-T1 Chvatal-T1 ICPL-T1 YASA-T1 CASA-T2 Chvatal-T2 ICPL-T2 IncLing-T2 YASA-T2

ATM 4 100.00% 100.00% - - - - - - - - -
BankAccount 4 100.00% 100.00% - - - - 25.00% - - - -
Chess 30 100.00% 100.00% 16.67% 16.67% 3.33% 16.67% 60.00% 30.00% 70.00% 56.67% 16.67%
Companies 17 100.00% 100.00% 11.67% - 5.88% - - 29.41% 11.76% 5.88% -
FeatureAMP1 439 18.91% 47.84% - - 0.23% 0.46% - 0.46% 0.23% 0.23% 0.23%
FeatureAMP2 148 9.46% 28.38% - 0.68% - - - 1.35% 0.68% 0.68% 0.68%
FeatureAMP3 180 5.56% 29.44% - - 0.56% - - 1.11% 5.56% 0.56% 2.78%
FeatureAMP4 147 13.61% 78.91% - - - - - - - - 0.68%
FeatureAMP5 5 80.00% - - - - - - - - - -
FeatureAMP6 24 - 79.17% - - - - 4.17% - - - -
FeatureAMP8 4 50.00% - - - - - - - - - -
FeatureAMP9 236 11.44% 22.88% 0.42% 0.42% 0.42% 0.42% 2.54% 2.97% 2.97% 3.81% 2.12%
GPL 23 100.00% 100.00% - 4.35% 4.35% 4.35% 8.70% 13.04% 26.09% 4.35% 8.70%
MinePump 24 100.00% 100.00% - 12.05% - - 12.50% 12.50% 12.50% 12.50% 12.50%
Paycard 3 100.00% 100.00% 33.33% 33.33% 33.00% 33.00% 100.00% 100.00% 100.00% 67.00% -
Sudoku 5 100.00% 100.00% - - - - - 20.00% 20.00% - 40.00%

All Systems 1293 61.81% 67.91% 3.89% 4.25% 3.01% 3.45% 13.31% 13.18% 15.61% 9.46% 5.27%

(b) Recall of 3- and 4-wise testing strategies

Name #faults Baseline1 Baseline2 CASA-T3 Chvatal-T3 ICPL-T3 YASA-T3 CASA-T4 Chvatal-T4 YASA-T4

ATM 4 100.00% 100.00% - - - - - - -
BankAccount 4 100.00% 100.00% - 25.00% - - - 25.00% 25.00%
Chess 30 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 16.67% 100.00% 100.00%
Companies 17 100.00% 100.00% 17.65% 23.53% 41.18% 17.65% 29.41% 47.06% 35.29%
FeatureAMP1 439 18.91% 47.89% 3.64% 0.68% 0.23% 5.69% 17.54% 0.68% 2.96%
FeatureAMP2 48 9.46% 28.38% 3.38% 4.05% 3.38% 4.73% 12.16% 6.76% 23.65%
FeatureAMP3 180 5.56% 29.44% 5.56% 14.44% 6.11% 1.67% 5.00% 14.44% 7.22%
FeatureAMP4 147 13.61% 78.91% - - - 0.68% - 5.44% 0.68%
FeatureAMP5 5 80.00% - - - - - - - 20.00%
FeatureAMP6 24 - 79.17% 4.17% - - 12.50% - - -
FeatureAMP8 4 50.00% - - - - 25.00% - - 25.00%
FeatureAMP9 236 11.44% 22.88% 5.51% 4.24% 5.93% 8.90% 6.36% 7.20% 11.44%
GPL 23 100.00% 100.00% 43.48% 13.04% 13.04% 17.39% 8.70% 26.09% 17.39%
MinePump 24 100.00% 100.00% 25.00% 25.00% 25.00% 12.50% - 50.00% 50.00%
Paycard 3 100.00% 100.00% - 100.00% 100.00% - - 100.00% -
Sudoku 5 100.00% 100.00% - 60.00% 40.00% 40.00% 60.00% 100.00% 60.00%

All Systems 1293 61.81% 67.91% 13.02% 23.12% 20.93% 15.42% 9.74% 30.17% 23.66%

Table 6.6: P-value results for Recall of testing strategies

1-wise 2-wise 3-wise 4-wise

p-value 0.0380 0.5846 0.0732 0.6677

configurable systems that YASA-T4 achieved greater recall have more than 20 features.

On the other hand, Chvatal-T4 achieves greater recall for the five subject systems

Companies, FeatureAMP1, FeatureAMP3, GPL, and Sudoku that have from

10 to 28 features. Note that for only three configurable systems (Chess, Paycard,

and Sudoku) the suggested configurations of a t-wise strategy was able to find all

faults in the reference list.

Practitioners should be aware that, as expected, the more configurations they

test, the greater are the chances of finding faults. In addition, despite t-wise strate-

gies suggested configurations which cover all features of a configurable system, these

strategies are still far to recommend configurations that capture most of the faults.
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For instance, even though Chvatal-T4 recommends 41.25% of the valid configurations

of ATM, these configurations find no fault. Researchers may see it as an opportunity

to propose sampling strategies that somehow recommend fault-prone configurations.

Table 6.6 presents the p-values for the Friedman’s Test according to the t-wise

group. As we can see, only 1-wise testing strategies is statistically significant different

from the other testing strategies (i.e., p-value < 0.05) on being effective on finding

faults. It means that for 2-, 3-, and 4-wise strategies, there is no statistical difference

on the time to generate the configurations. Therefore, we reject the null hypothesis (H0)

and accept the alternative hypothesis (H1) only for the 1-wise testing strategies. With

the Post Hoc Analysis for the 1-wise group, we did not obtain a significant difference

among the strategies. It might be because the p-value is close to our confidence level.

RQ3 Summary. Although we found statistically significant results only for 1-wise

strategies, data of Table 6.5 show that Chvatal-T4, YASA-T4, and Chvatal-T3 seem

to be the testing strategies that suggested configurations able to find fault mostly

effective. Nevertheless, there are still space for improvements since the strategy

that faced better found 30.17% of the faults in the reference list.

6.8 The Most Time-Efficient Strategy (RQ4)

Table 6.7 presents the time-efficiency of each testing strategy for each configurable

system with faults. We use “-” to represent testing strategies of which no fault was

found. We highlight the most time-efficient testing strategy for each configurable sys-

tem. Once multiple strategies have the same greatest time-efficiency, we consider those

as the most time-efficiency ones. Similar to previous sections, we present baseline re-

sults for fostering discussions (Section 6.10).

As a result, Chvatal-T1 is the most time-efficiency testing strategy in the 1-wise

group for 4 configurable systems. YASA-T1, ICPL-T1, and CASA-T1 are the most

time-efficient testing strategy for 3, 2 and 1 configurable systems, respectively. For

2-wise group, ICPL-T2 is the most time-efficient testing strategy for 6 configurable

systems. CASA-T2, Chvatal-T2, and YASA-T2 are the most time-efficient testing

strategy for 3, 2 and 2 configurable systems, respectively. IncLing-T2 was the most

time efficient testing strategy for no system. ICPL-T3 is the most time-efficient test-

ing strategy to the 3-wise group for 5 configurable systems. YASA-T3, Chvatal-T3,

and CASA-T3 are the most time-efficient testing strategy for 4, 2 and 2 configurable

systems, respectively. Finally, in the 4-wise group, YASA-T4 was the far most time-

efficient testing strategy compared to the other testing strategies. While it was the
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Table 6.7: Time Efficiency of testing strategies

(a) Time Efficiency of 1- and 2-wise testing strategies

Name Baseline1 Baseline2 CASA-T1 Chvatal-T1 ICPL-T1 YASA-T1 CASA-T2 Chvatal-T2 ICPL-T2 IncLing-T2 YASA-T2

ATM 0.008 0.006 - - - - - - - - -
BankAccount 0.028 0.019 - - - - 0.133 - - - -
Chess 1.413 0.116 0.631 0.448 0.178 0.563 1.229 0.742 2.760 0.631 0.507
Companies 0.180 0.064 0.368 - 0.181 - - 0.540 0.210 0.368 -
FeatureAMP1 0.034 0.080 - - 0.004 0.484 - 0.065 0.004 0.004 0.060
FeatureAMP2 0.005 0.008 - 0.036 - - - 0.022 0.031 0.005 0.013
FeatureAMP3 0.009 0.067 - - 0.056 - - 0.029 0.304 0.025 0.076
FeatureAMP4 0.024 0.048 - - - - - - - - 0.004
FeatureAMP5 0.001 - - - - - - - - - -
FeatureAMP6 0.026 0.021 - - - - 0.016 - - - -
FeatureAMP8 0.001 - - - - - - - - - -
FeatureAMP9 0.024 0.021 0.155 0.043 0.042 0.036 0.072 0.080 0.212 0.155 0.075
GPL 0.561 0.575 - 0.182 1.428 0.184 0.137 0.185 0.438 0.055 0.157
MinePump 0.036 0.039 - 0.882 - - 0.466 0.300 0.353 0.326 0.462
Paycard 0.007 0.006 0.006 0.015 0.014 0.015 0.017 0.014 0.041 0.006 -
Sudoku 0.338 0.048 - - - - - 0.115 0.128 - 0.253

(b) Time Efficiency of 3- and 4-wise testing strategies

Name Baseline1 Baseline2 CASA-T3 Chvatal-T3 ICPL-T3 YASA-T3 CASA-T4 Chvatal-T4 YASA-T4

ATM 0.008 0.006 - - - - - - -
BankAccount 0.028 0.019 - 0.051 - - - 0.026 0.029
Chess 1.413 0.116 1.257 1.234 1.544 2.023 0.294 1.249 1.875
Companies 0.180 0.064 0.156 0.173 0.347 0.149 0.116 0.149 0.149
FeatureAMP1 0.034 0.080 0.082 0.054 0.024 0.158 0.059 0.002 0.011
FeatureAMP2 0.005 0.008 0.011 0.014 0.045 0.018 0.015 0.008 0.028
FeatureAMP3 0.009 0.067 0.047 0.092 0.113 0.017 0.007 0.010 0.018
FeatureAMP4 0.024 0.048 - - - 0.004 - 0.002 0.002
FeatureAMP5 0.001 - - - - - - - 0.001
FeatureAMP6 0.026 0.021 0.001 - - 0.022 - - -
FeatureAMP8 0.001 - - - - 0.006 - - 0.002
FeatureAMP9 0.024 0.021 0.042 0.031 0.424 0.006 0.001 0.016 0.038
GPL 0.561 0.575 0.343 0.086 0.074 0.136 0.020 0.084 0.066
MinePump 0.036 0.039 0.569 0.154 0.476 0.260 - 0.081 0.550
Paycard 0.007 0.006 - 0.014 0.018 - - 0.015 -
Sudoku 0.338 0.048 - 0.188 0.154 0.140 0.157 0.238 0.146

Table 6.8: P-value results for Time Efficiency by the strategies

1-wise 2-wise 3-wise 4-wise

p-value 0.2939 0.9716 0.7581 0.6065

most time-efficient for 10 configurable systems, Chvatal-T4 and CASA-T4 were the

most time-efficient testing strategies for only 4 and 1 configurable systems, respec-

tively. Regarding the Friedman’s Test, it was not possible to reject the null hypothesis.

Table 6.8 shows the p-values obtained with the Friedman’s Test.
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RQ4 Summary. Although the Friedman’s Test does not show statistically differ-

ence on the time-efficiency among testing strategies from the same t-wise group,

our data in Table 4 show that Chvatal-T1, ICPL-T2, ICPL-T3, and YASA-T4 are

probably the testing strategies that suggested configurations able to find the best

balance among the number of faults and time for the 1-, 2-, 3-, and 4-wise groups,

respectively.

6.9 The Most Coverage-Efficient Strategy (RQ5)

Table 6.9 presents the coverage-efficiency of each testing strategy for each configurable

system with faults. We use "-" for representing testing strategies that no fault was

found. We highlight the most coverage-efficient testing strategy for each configurable

system. Once multiple strategies have the same greatest coverage-efficiency, we consider

those as the most coverage-efficient ones. Similar to previous sections, we present

results for baseline testing strategies aiming at fostering discussions (Section 6.10).

As a result for the 1-wise group, Chvatal-T1 is the most coverage efficient testing

strategy for 3 configurable systems. CASA-T1, YASA-T1, and ICPL-T1 are the most

coverage-efficient testing strategies for 2, 2, and 1 configurable systems, respectively.

For the 2-wise group, CASA-T2 and Chvatal-T2 are the most coverage-efficient testing

strategy for 5 configurable systems. ICPL-T2, IncLing-T2, and YASA-T2 are the most

coverage-efficient testing strategies for 2, 2, and 1 configurable systems, respectively.

For the 3-wise group, Chvatal-T3 is the most coverage-efficient testing strategy for 5

configurable systems. ICPL-T3, YASA-T3 , and CASA-T3 are the most coverage-

efficient testing strategies for 3, 3, and 2 configurable systems, respectively. For the 4-

wise group, Chvatal-T4 is the most coverage-efficient testing strategy for 6 configurable

systems. CASA-T4 and YASA-T4 are the most coverage-efficient testing strategies for

2 configurable systems, respectively.

Note that since each t-wise testing strategy faced better in at least one configu-

ration system, the coverage-efficiency analysis presented more dispersed results than

the previous ones. In Table 6.10, we show the p-values obtained with the Friedman’s

Test. As seen, it was not possible to reject the null hypothesis in any case.

RQ5 Summary. Although the Friedman’s Test does not show statistically dif-

ference on the coverage-efficiency among testing strategies from the same t-wise

group, our data of Table 6.9 show that Chvatal is the testing strategy that recom-

mends configurations able to find the best balance among faults and the number of

recommended configurations in all groups (1-, 2-, 3-, and 4-wise).
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Table 6.9: Coverage Efficiency of testing strategies

(a) Coverage Efficiency of 1- and 2-wise testing strategies

Name Baseline1 Baseline2 CASA-T1 Chvatal-T1 ICPL-T1 YASA-T1 CASA-T2 Chvatal-T2 ICPL-T2 IncLing-T2 YASA-T2

ATM 0.050 0.050 - - - - - - - - -
BankAccount 0.028 0.028 - - - - 0.143 - - - -
Chess 4.286 4.286 2.500 2.500 0.500 2.500 4.500 3.000 4.200 4.250 2.500
Companies 0.089 0.089 0.500 - 0.250 - - 0.385 0.154 0.077 -
FeatureAMP1 0.332 1.240 - - 0.333 1.000 - 0.182 0.100 0.071 0.100
FeatureAMP2 0.112 0.276 - 0.333 - - - 0.167 0.091 0.077 0.091
FeatureAMP3 0.040 0.316 - - 0.333 - - 0.133 0.625 0.048 0.556
FeatureAMP4 0.080 0.516 - - - - - - - - 0.100
FeatureAMP5 0.016 - - - - - - - - - -
FeatureAMP6 - 0.080 - - - - 0.071 - - - -
FeatureAMP8 0.008 - - - - - - - - - -
FeatureAMP9 0.188 0.296 0.500 0.333 0.333 0.500 0.667 0.583 0.636 0.750 0.500
GPL 0.258 0.258 - 0.250 0.200 0.167 0.143 0.231 0.120 0.071 0.118
MinePump 0.375 0.375 - 1.000 - - 0.429 0.429 0.375 0.429 0.500
Paycard 0.500 0.500 0.500 0.500 0.500 0.500 0.600 0.500 0.600 0.400 -
Sudoku 0.250 0.250 - - - - - 0.143 0.125 - 0.286

(b) Coverage Efficiency of 3- and 4-wise testing strategies

Name Baseline1 Baseline2 CASA-T3 Chvatal-T3 ICPL-T3 YASA-T3 CASA-T4 Chvatal-T4 YASA-T4

ATM 0.050 0.050 - - - - - - -
BankAccount 0.028 0.028 - 0.048 - - - 0.024 0.024
Chess 4.286 4.286 3.750 4.286 4.286 3.750 0.625 4.286 3.750
Companies 0.089 0.089 0.125 0.125 0.219 0.136 0.083 0.104 0.133
FeatureAMP1 0.332 1.240 0.667 0.094 0.031 0.833 1.167 0.036 0.160
FeatureAMP2 0.112 0.276 0.192 0.158 0.143 0.212 0.692 0.106 0.407
FeatureAMP3 0.040 0.316 0.250 0.500 0.204 0.064 0.136 0.228 0.096
FeatureAMP4 0.080 0.516 - - - 0.032 - 0.088 0.012
FeatureAMP5 0.016 - - - - - - - 0.011
FeatureAMP6 - 0.080 0.018 - - 0.045 - - -
FeatureAMP8 0.008 - - - - 0.033 - - 0.011
FeatureAMP9 0.188 0.296 0.448 0.294 0.424 0.677 0.517 0.198 0.342
GPL 0.258 0.258 0.250 0.086 0.086 0.091 0.063 0.095 0.065
MinePump 0.375 0.375 0.400 0.286 0.316 0.231 - 0.333 0.444
Paycard 0.500 0.500 - 0.500 0.500 - - 0.500 -
Sudoku 0.250 0.250 - 0.200 0.143 0.143 0.214 0.250 0.150

Table 6.10: P-value results for Coverage Efficiency of testing strategies

1-wise 2-wise 3-wise 4-wise

p-value 0.1893 0.8847 0.7961 0.5258
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6.10 Grouping Testing Strategies

While Section 6.5 to Section 6.9 present broader results, this section presents results

grouping similar strategies.

1-Wise Strategies. Comparing ICPL-T1 and Chvatal-T1, we see that both are

similarly fast, but little comprehensive, very little effective, and little time efficient.

Chvatal-T1 seems a little bit more time efficient than ICPL-T1.

2-Wise Strategies. Comparing ICPL-T2, Chvatal-T2, and IncLing-T2, we see

that ICPL-T2 is faster than the others, specially in the case of FeatureAMP9.

Chvatal-T2 and IncLing-T2 are more comprehensive than ICPL-T2. Chvatal-T2 has

a greater recall than the others. IncLing-T2 is more time and coverage efficient than

the others.

3-Wise Strategies. Comparing ICPL-T3 and Chvatal-T3, we see that they are

similarly slow and comprehensive. Nevertheless, Chvatal-T3 is slightly more effective

and time- and coverage-efficient than ICPL-T3.

ICPL Strategies. ICPL-T1 is normally faster and slightly coverage efficient than

ICPL-T2 and ICPL-T3. ICPL-T3 more comprehensive than the others. ICPL-T2 and

ICPL-T3 are similarly more effective than ICPL-T1. ICPL-T2 is more time efficient

than the other strategies.

Chvatal Strategies. Chvatal-T1 is faster and slightly more time efficient than the

others. Chvatal-T4 is more comprehensive and effective than the others. Chvatal-T3

and Chvatal-T4 are more coverage efficient than the others.

T-wise versus Baselines. We started using the baselines to increase the number

of configurations tested. However, our baselines remembered us that, looking at a

minimized number of configurations leaves a bunch of configurations behind where

unexpected feature interactions faults may occur. For instance, while baseline 1 and

2 found 856 and 795 faults, Chvatal-T4 found only 353 faults, which is less than half

of the faults found by the baselines. T-wise strategies follow an algorithm to select

configurations that cover a combination of all features (see Chapter 2). On the other

hand, baseline1 simply looks at a predefined number of configurations sequentially (e.g.,

brute force) and baseline2 randomly chooses a predefined number of configurations.

Hence, we do not question the logic behind, we only investigate the time, coverage,

effectiveness, time efficiency, and coverage efficiency of the configurations recommended

by all testing strategies investigated in this study. As a result, t-wise strategies are

faster, more time and coverage efficient than our baselines. On the other hand, the

baselines are more comprehensive and effective than t-wise strategies.
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All these comparisons agree with our results in Section 6.6 by showing that more

comprehensive strategies (i.e., the recommend a larger number of configurations) of-

ten have greater effectiveness. However, testing more configurations makes the testing

time-consuming. Regarding time and coverage efficiency, it depends on both the num-

ber of configurations and faults present in the target configurable system.

6.11 Implications for Practitioners

After reading this chapter a question may arise:

Which testing strategy should I use?

The answer varies depending on your system, project life-cycle, and organizational

constraints. In the ideal case, you should test all configurations. In practice, the

maximal number of feasible configurations, as explained next. Looking at the results

of Sections 6.5 and 6.6, practitioners have a practical estimation of time and coverage

of each testing strategy. For instance, for small projects, such as GPL (1235 lines of

code, 13 features, and 51 test cases), it is reasonable waiting around 10 milliseconds

to run the testing suite of all 73 valid configurations. On the other hand, for large

projects such as CheckStyle (61435 lines of code, 141 features, and 719 test cases),

it is not feasible or meaningful wait until finishing running the test suite of all >2135

configurations. Our suggestion is to first run configurations that test the source code

of changed features. Then, choose a t-wise strategy that fits your time- and coverage-

constraints to have a general view of the project.

Aiming at supporting the choice of a testing strategy, we condensed our results

in Figure 6.2 representing each t-wise group separately, only t-wise strategies, and

all testing strategies used in this study (i.e., including the baselines). For example,

in Figure 6.2a, we show the 1-wise testing strategies, in Figure 6.2b, we show the 2-

wise group, in Figure 6.2e, we show the comparison between t-wise groups, and, in

Figure 6.2f, we show all testing strategies used in this study. The broader the line,

the better the strategy is for a target characteristic. Next, we discuss each sub-figure

individually.

1-Wise testing strategies (Figure 6.2a). Comparing the 1-wise strategies, ICPL-

T1 stood out as the fastest strategy. Chvatal-T1 was the strategy with the greatest

coverage and recall, and was the most time- and coverage-efficient.

2-Wise testing strategies (Figure 6.2b). Comparing the 2-wise strategies, ICPL-

T2 was fastest and time-efficient and got the greatest coverage and recall. CASA-T2

and Chvatal-T2 were the most coverage-efficient strategies.
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(a) 1-wise (b) 2-wise (c) 3-wise

(d) 4-wise (e) T-wise Groups (f) T-wise and baselines

Figure 6.2: Summary of t-wise strategies comparison

3-Wise testing strategies (Figure 6.2c). Comparing the 3-wise strategies, ICPL-

T3 was fastest and time-efficient testing strategy. Chvatal-T3 achieved better coverage,

recall, and coverage-efficient.

4-Wise testing strategies (Figure 6.2d). Comparing the 4-wise strategies, YASA-

T4 was the fastest and time-efficient testing strategy. Chvatal-T4 covered more con-

figurations, achieved the greatest recall and was the most coverage-efficient testing

strategy.

T-wise testing strategies (Figure6.2e). If there is a great time-constraint, 1-wise

strategies might be the right option. 2-wise strategies found faults that no 1-wise

strategy found in BankAccount, FeatureAMP4, FeatureAMP6, and Sudoku.

For practitioners who want to test more configurations than the suggested by 1-wise

strategies and still has a great time-constraint, 2-wise strategies is a good option. 3-wise

strategies obtained greater time-efficiency and coverage-efficiency results than the other

groups. Note that 3-wise strategies recall was close to the recall of 4-wise strategies.

Practitioners might choose 3-wise group when prioritizing time- and coverage-efficiency.

When generating configurations using 4-wise strategies we noticed that they took a

while for systems with more than 20 features. However, considering that practitioners

do not need to generate the configurations every time (e.g., only when the feature

module changes), they can reuse the suggested list of configurations multiple times.
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This point make 4-wise strategies more usable in practice.

Comparing all testing strategies in the study (Figure 6.2f). As expected, the

baselines used in the study got better results for recall, percentage of configurations,

and coverage efficiency than the t-wise strategies. It happened because our baselines

test all possible configurations for systems with less than 250 valid configurations.

When the total number of valid configurations is small and there is not a strong time-

constraint, testing all configurations is the best option. However, for systems with a

much greater number of valid configurations, it is infeasible in practice.

We started using the baselines to increase the number of configurations tested.

However, our baselines remembered us that, looking at a minimized number of config-

urations leaves a bunch of configurations behind where feature interactions faults may

occur. For instance, while baseline 1 and 2 found 856 and 795 faults in the subject

dataset, Chvatal-T4 found only 353 faults. It is less than half of the faults found by

the baselines. Hence, depending on the number of valid configurations, it is meaningful

to test all of them.

6.12 Implications for Researchers and Tool Builders

Our study does not aim to point out which testing strategy has a better performance on

finding configurations that will be recommended. We only use the testing strategies’

outcome (i.e., their suggested configurations) to run the respective testing suite for

the recommended configurations and report results from the subject dataset. There-

fore, we are not comparing the testing strategies themselves but their recommended

configurations.

Our effectiveness results (Section 6.7) show that even when using sophisticated

t-wise testing strategies, it is difficult to find faults with the generated configurations.

In the best case using a t-wise strategy, we retrieve 30.62% of faults. We see two

prominent directions to improve testing strategies and to increase the chance of finding

more feature interaction faults. The first uses Machine Learning techniques to retrieve

information of faulty-features and faulty-classes. Hence, this information can be used as

an additional source for t-wise strategies. The second regards the creation of a strategy

that interactively asks developers for components that they want to prioritize. Hence,

the strategy should generate a set of configurations that exhaustively investigate the

target components.

Both researchers and tool builders benefit from these directions. While re-

searchers have the opportunity to propose testing strategies using information not yet
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used for this purpose, tool builders can automate new strategies leaving them ready

for practitioners to use.

6.13 Threats to Validity

Even with a careful planning, this research can be affected by different factors which

might threat our findings [Wohlin, 2014]. We discuss these factors and decisions to

mitigate their impact on our study divided into external and internal threats to validity

below.

External Validity. External validity is threatened mainly by two factors. First,

our restriction to variability encoding as variability approach and Java as program-

ming language. The generalization to other variability approaches, a programming

languages, and configurable systems is limited. This limitation of the sample was

necessary to reduce the influence of confounds, increasing internal validity, though

[Siegmund and Schumann, 2015]. While more research is needed to generalize to other

variability approaches, programming languages, and configurable systems, we are con-

fident that we selected and analyzed a practically relevant variability approach and

a substantial number of configurable systems from various domains, longevity, size,

and valid configurations. Limiting the programming language is a common limitation

of several research studies on configurable software systems [Kim et al., 2012b, 2013;

Meinicke et al., 2014; Souto et al., 2017; Wong et al., 2018]. Second, the testing suite

and faults found in the dataset. Our results are restricted to the test suite and faults

found in the subject dataset. Using other systems, different versions of the subject

systems, or different testing suites may come up with other results. Aiming at mini-

mizing this threat, we chose a dataset previously proposed 4 that follows two reasonable

thresholds to increase the quality of the testing suite: 70% of code coverage and 40%

of killed mutants.

Internal Validity. There are three major threats to the internal validity of our

study. First, we could have wrongly implemented the subject testing strategies. How-

ever, as we use the implementation provided on FeatureIDE, we are confident that

they were correctly implemented. Second, we cannot ensure that we identified all

faults present in the subject systems. To increase testing coverage, we use two base-

lines. While the first baseline runs the test suite in all valid configurations for up to

250 valid configurations sequentially chosen, the second baseline runs the testing suite

for up to 250 valid configurations randomly chosen. This way we run all valid config-

urations for several subject systems. In addition, our reference list is the union set of
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all faults found by all configurations run by the ten subject testing strategies. Hence,

we are not prioritizing faults found by one testing strategy, and all testing strategies

have the same chance of finding faults.

Third, we may have not chosen the best metrics to represent systems, features,

and classes. We selected several well-known metrics to quantify the size, features,

classes, and test suite that compose the configurable systems of the subject dataset.

To make this measurement process simpler and automated, we used well-known tools,

such as CK Tool [CK, 2020] and JaCoCo [JaCoCo, 2020] and, for the metrics that

well-known tools are not able to compute, we create a script. We manually checked the

measurement of 5% of the components (e.g., classes, features) to confirm their results.

Hence, we believe that similar conclusions would also be achieved using different metrics

and tools that quantify similar attributes for the same set of configurable systems and

components.

6.14 Final Remarks

In this chapter, we compared the performance of the configurations recommended by

eight t-wise strategies. In this comparison, we used our dataset with 30 configurable

systems and with a test suite available for each of them. Regarding the performance

of a t-wise strategy, we identified which testing strategies provide configurations that

were often faster, more comprehensive, more effective, more time-efficient, and more

coverage-efficient. As a result, we found that: (i) ICPL-T1 is usually fast and slightly

more coverage efficient than the other strategies; (ii) Chvatal-T4 is by far the most

comprehensive testing strategy; (iii) Chvatal-T4 is the testing strategy that recom-

mends configurations able to find the greatest number of faults. (iv) Chvatal-T1 is the

testing strategy that recommends configurations able to find the best balance among

faults found and time, and (v) Chvatal-T4 is the testing strategy that recommends

configurations able to find the best balance among faults found and the number of

recommended configurations.

Our results can be used by practitioners to support their decision of which testing

strategy to use. Researchers and tool builders may also benefit from our study since we

provide directions for improving existing testing strategies. These directions include,

for instance, using source code metrics to identify fault-prone components and use this

information on existing testing strategies. Moreover, using a variant t on the testing

strategy may depend on the number of valid configurations or constraints provided by

practitioners when using the tool. In the next chapter, we investigate the dispersion of

faults over classes and features from the dataset.



Chapter 7

Investigating the Dispersion of Faults

over Classes and Features

Faults may occur in different modules of configurable software systems. It is important

to know the location of faults to ensure that all configurations are correctly compiled,

built, and run, developers spend considerable effort testing their systems. This effort is

necessary mainly because configurations that fail may hurt potential users and degrade

the reputation of a project. This chapter investigates the dispersion of faults over

classes and features in configurable software systems. Aiming to understand faults’

location investigated, we investigate if it is possible to distinguish failing classes and

failing features from classes and features safe of faults. A deep understanding of faults

may help practitioners learn the characteristics of classes and features prone to fail,

avoid introducing similar faults, and guide them to increase the test coverage in these

fault-prone classes and features.

We compared testing strategies in previous chapters. In this chapter, we investi-

gated features of classes and features that failed found in the study of Chapter 6. We

found at least one fault in 16 out of 30 systems in the subject dataset. Regarding the

class-level analysis, we found that faults are concentrated in only 0.8% of classes of the

subject dataset and high values of some source code metrics, such as LoC, WMC, and

RFC, appear to be related to fault-prone classes. Finally, regarding the feature-level

analysis, we found that faults are concentrated in a few features with high values of

some source code metrics, such as feature scattering and tangling.

The remainder of this chapter is organized as follows. Section 7.1 presents our

goal and research questions. Section 7.2 describes how we acquire data. Section 7.3

describe how we operationalize the answer of our research questions. Sections 7.4 and

7.5 present the results achieved regarding dispersion of faults over classes and features,

respectively. Section 7.6 presents discussions of the on the relation between faulty

88
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classes and faulty features. Section 7.7 describes the main limitations and threats to

validity of this work. Finally, Section 7.8 concludes this chapter.

7.1 Goal and Research Questions

Based on the goal question metric (GQM) template [Basili and Rombach, 1988], we

systematically defined our goal as follows. We analyze the dispersion of faults over

systems, classes and features; for the purpose of deeply understanding the location

of faults; with respect to support practitioners and researchers to broaden the under-

standing of the dispersion of faults over classes and features in configurable systems;

from the viewpoint of researchers and software developers with expertise in soft-

ware testing in the context of a previously proposed dataset of configurable software

systems with test suite available.

To build a reference list of faults, we use the union of all faults found by the

subject strategies of Chapter 6. Then, we measure each class and feature with met-

rics commonly used in practice [Chidamber et al., 1998]. Number of lines of code

(LoC ) [CK, 2020], weighted methods per class (WMC ) [CK, 2020], and response for

a class (RFC ) [CK, 2020] are examples of metrics at class-level. Feature scattering

and feature tangling are examples of metrics at feature-level. Finally, we compute

Spearman’s rank correlation between the number of faults in a component (i.e., class

or feature) and a given metric. A great understanding of these faults may benefit both

practitioners and researchers because they can (i) learn patterns from previous faults,

(ii) use these patterns to avoid the emergence of similar faults, and (iii) improve exist-

ing testing strategies. Aiming at investigating the dispersion of faults over classes and

features, we formulate the following two research questions.

RQ1: What are the characteristics of fault-prone classes of the configurable systems?

RQ2: What are the characteristics of fault-prone features of the configurable systems?

7.2 Data Acquisition

Our data acquisition consists basically of three tasks: (i) run the testing strategies

presented in Chapter 6 for each configurable system in the subject dataset (Chapter 4),

(ii) extract information from logs creating a set of true faults (reference list), and (iii)

collect metrics. In what follows, we give details on how we automated these tasks1.

1https://github.com/fischerJF/Community-wide-Dataset-of-Configurable-Systems/

tree/master/Tools
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Creating a Reference List. We analyzed the execution log of the 18 (16 t-wise

strategies and two baselines) testing strategies against the 30 subject systems. After

parsing the log, we found test cases of which a fault emerged as well as the reason why

it happened. Hence, we investigated each reported fault to confirm that it is truly a

fault and if it arose due to a feature interaction. The reference list is the union of all

faults found on all configurations suggested by all testing strategies investigated in this

study.

Metrics Collection. We use different tools to extract metrics used in our study.

Once we did not find tools to compute metrics used to answer our research questions,

we computed them with our scripts (see Chapter 4). Our analysis scripts (written

in Java) are open-source. All data necessary for replicating this study are stored in

csv files. All tools, links to subject projects, reports of faults for each testing strategy,

and data used in this study are available at our supplementary website [Ferreira et al.,

2020c].

7.3 Operationalization

Answering RQ1. To answer RQ1, we first retrieve a list of all classes that failed

and discuss their dispersion over each subject configurable system. Then, aiming at

discovering whether these faulty classes have distinct characteristics from other classes,

we compute traditional and CK metrics [Chidamber et al., 1998] for each class of each

subject system (see Section 4). After, we compute the Spearman’s rank correlation to

see whether faulty classes are often larger and more complex than non-faulty classes.

Spearman’s rank correlation is adequate to this analysis since the measures of our

classes represent continuous values and do not follow a normal distribution.

Answering RQ2. To answer RQ2, we did a similar analysis to answer RQ1.

The main difference is that instead of investigating characteristics of faulty classes,

we investigate characteristics of faulty features. Naturally, we use metrics related to

features, such as the number of classes and methods a feature is located (scattering).

Spearman’s rank correlation is adequate to this analysis since the measures of our

features represent continuous values and do not follow a normal distribution. We

detail the used metrics when answering this research question.
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Table 7.1: Faults found by class with traditional metrics

System Name Class Name CBO WMC DIT RFC LCOM NOM NOPM NOSM NOF NOPF NOSF NOSI LoC #F

ATM
ATMUserInterface 12 62 6 53 0 34 23 0 43 17 19 10 447 3
Withdrawal 6 31 2 11 0 5 4 0 4 0 1 0 159 1

Bankaccount Transaction 1 19 1 6 3 3 1 1 1 0 0 1 38 4

Chess

Model 6 75 1 48 76 20 16 1 18 1 1 0 289 23
Pawn 1 24 2 9 1 2 2 0 0 0 0 0 69 1
Board 13 196 1 47 124 40 27 0 14 0 0 0 596 6

Companies Controller 12 61 1 18 0 7 7 0 2 0 0 0 181 17

FeatureAMP1
PlaylistHandler 4 56 1 29 13 15 10 0 9 0 0 1 158 33
App 7 159 1 124 848 48 20 0 43 0 0 25 677 406

FeatureAMP2 Gui 11 310 7 178 3137 66 26 0 44 6 1 10 1161 148
FeatureAMP3 FeatureAmp 20 470 6 251 6511 117 17 1 57 0 5 12 1537 180

FeatureAMP4
FeatureAmp 13 78 1 56 404 33 10 3 12 1 1 8 285 93
PlayerBar 11 16 1 17 1 10 9 0 5 0 0 0 108 55

FeatureAMP5 Main 9 211 6 159 2889 60 3 2 34 0 4 22 860 5

FeatureAMP6
Playlist 1 62 1 23 116 24 18 0 4 2 2 0 185 10
Kernel 7 114 1 71 940 52 29 0 14 0 0 9 411 14

FeatureAMP8 Application 8 355 2 173 3987 75 39 1 37 1 0 11 1565 4
FeatureAMP9 Gui 7 311 6 176 2467 61 22 0 40 3 1 13 1172 236
GPL Graph 10 175 1 48 241 26 25 4 3 3 1 27 797 23
MinePump PL_Interface 3 31 1 16 34 9 8 4 5 2 5 7 186 24
PayCard PayCard 2 31 1 6 25 10 7 1 5 0 0 0 127 3
Sudoku BoardManager 7 99 1 33 54 21 15 0 4 0 0 12 295 5

CBO: Coupling between Objects; WMC: Weight Method Class; DIT: Depth Inheritance Tree; RFC:

Response for a Class; LCOM: Lack of Cohesion of Methods; NOM: Number of Methods; NOPM: Number

of Public Methods; NOSM: Number of Static Methods; NOF: Number of Fields; NOPF: Number of

Public Fields; NOSF: Number of Static Fields; NOSI: Number of Static Invocations; LoC: Lines of Code;

#F: Number of Faults Found.

7.4 Dispersion of Faults over Classes (RQ1)

Table 7.1 reports the 22 classes with faults distributed over 16 configurable systems. For

each faulty class, we present traditional source code metrics, such as Coupling between

Object Classes (CBO), Weighted Methods per Class (WMC), Depth Inheritance Tree

(DIT), Number of Methods (NOM), Lines of Code (LoC), and Faults Found (#F).

We analyze the log generated by JUnit to understand each fault found. Through the

JUnit log, we evaluated each faulty class. Table 7.2 presents the 22 classes with faults

concerning feature metrics, such as Total number Features that handle the related class

(TNF), Scattering over classes (ScC), and Tangling in class (TaC).

Considering that the subject dataset has 2740 classes and we found faults in

22, only 0.8% of the classes failed. It shows that faults are highly concentrated in a

few classes. By looking only at the 16 faulty systems, we see that in 11 systems the

faults are concentrated in only one class and in the other 5 systems (ATM, Chess,

FeatureAMP1, FeatureAMP4, and FeatureAMP6), the faults are located in

up to three classes.

Looking at the number of faults per faulty class, we see that most of the faults

found are in few classes. For instance, 31.40% of the faults are in the class App of

FeatureAMP1, 18.35% of the faults are in the class Gui of FeautureAMP9, and
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Table 7.2: Faults found by class with variability metrics

System Class Name TNF ScC VarC TaC MFA LoCIF #F

ATM
ATMUserInterface 6 10 32 15 2 40 3
Withdrawal 2 4 3 7 3 59 1

bankaccount Transaction 1 1 1 1 1 1 4

chess
Model 0 0 0 0 0 0 1
Board 3 10 20 6 8 22 23
Pawn 0 0 0 0 0 0 6

Companies Controller 5 119 155 85 3 16 17

FeatureAMP1
PlaylistHandler 3 8 11 7 5 10 33
APP 17 23 30 22 24 51 406

FeatureAMP2 GUI 19 35 55 29 37 85 148
FeatureAMP3 FeatureAmp 26 47 90 39 58 163 180

FeatureAMP4
FeatureAmp 12 50 35 24 2 61 93
PlayerBar 1 9 3 2 1 28 55

FeatureAMP5 Main 16 30 32 22 26 52 5

FeatureAMP6
Playlist 2 12 17 8 7 10 10
Kernel 8 47 50 29 18 35 14

FeatureAMP8 Application 23 27 41 26 38 72 4
FeatureAMP9 Gui 19 32 53 26 40 92 236
GPL Graph 11 28 58 5 15 474 23
MinePump PL_Interface 0 0 0 0 0 0 24
PayCard PayCard 3 10 5 4 5 7 3
Sudoku BoardManager 5 16 43 16 14 126 5

TNF: Total number Features that the related class handle; ScC Scattering against class features: Counts

the number of classes that implement the features that the analyzed class handles; VarC: Number of

occurrences of variability in the class; TaC Tangling in class: Counts the number of context switching

features manipulated in the classes; MFA: Counts the number of methods of the class that handle the

optional features.; LoCIF: Counts the number of lines of code for optional features in the analyzed class;

#F: Number of faults found.

13.92% of the faults are in the class FeatureAMP of FeautureAMP3. In summary,

we found more than 10 faults in 12 out of 22 faulty classes.

High values for coupling and complexity metrics, such as Response for a Class

(RFC) and Weighted Methods per Class (WMC), might be related to fault-prone classes

in configurable systems. For all systems with more than one class with faults, WMC

and RFC are greater for classes with more faults than classes with fewer faults. For

example, in the FeatureAMP1 system, the App class with 406 faults has greater

for WMC and RFC than the PlaylistHandler class, which has 33 faults. We can also

verify how the features are implemented by several classes of the system and mix up

with other features through the metrics of features used in this study. We observed

that Scattering against class Features (ScC), Number of occurrences of variability in

the class (VarC), and Tangling in class (TaC) might be related to fault-prone classes

in configurable systems. For example, in FeatureAMP6, Kernel class with 14 faults,

has greater SsC, VarC, and TaC values than the Playlist class, which 9 faults were

identified.
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Aiming at investigating whether faulty classes have some characteristics that dif-

fer them from non-faulty classes, we compute the Spearman’s rank correlation among

all classes in the dataset for all metrics shown in Table 7.1. Due to the small num-

ber of failing classes in our dataset, we only found a weak correlation (less than 0.15)

between the traditional source code metrics and the faults found. The higher correla-

tions (between 0.10 and 0.15) were found to WMC (0.13), NOF (0.12), NOM (0.11),

NOPF (0.11), LoC (0.11), RFC (0.10), and NOPM (0.10). Concerning feature metrics

(Table 7.2), we found a slightly highest correlation compared to traditional metrics.

However, we were able to find only weak correlations (less than 0.25) between the fea-

ture metrics and the faults found. The higher correlation (0.23) was found for TaC.

We found a slightly lower correlation to TNF (0.19), LoCIF (0.18), and MFA (0.18)

metrics. For the other feature metrics, we found 0.16 for ScC and VarC. These cor-

relations are statistically significant at 99% confidence level (i.e., p-value <0.01). For

DIT, NOC, NOSF, and NOSI, no statistically significant correlation was found.

We can see that the feature metrics had a slightly higher correlation with faults

than traditional metrics from source code. This result may indicate that classes that

are affected by features may be more likely to have feature interaction faults than

other classes that are not affected by optional features. Thus, a reduction in the

cost of testing would be to test more rigorously only the classes that implement the

features with many variability points. In another direction, it is known that classes

with high coupling make it challenging to understand the class, which makes the test

suite creation more challenging. In this way, the metrics we have pointed out can be

good to indicate faults. This result may indicate fault-prone classes of which testers

may want to prioritize. In this way, developers can avoid creating classes with high

values for these metrics to decrease the chances of feature interaction faults.

Although our fault group is very small, we did not find high correlations for the

metrics as indicators of faults. The small percentage of feature interaction faults can be

a characteristic of configurable systems. As far as we know, we lack an empirical study

to report the average percentage of feature interaction faults in configurable systems

at the source code level. The lack of a large dataset with automated tests may be the

reason for the lack of studies evaluating the fault location.

Regarding faults at the configuration level, there is a consensus in the literature

that faults occur only in a subset of all configurations [Medeiros et al., 2016; Soares

et al., 2018a]. Our results indicate that faults also occur in a few classes of configurable

systems. Even though in a small amount, these faults are difficult to find and decrease

the quality of configurable systems. Our findings might inspire researchers to deeply
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investigate characteristics of feature interaction faults considering not only the feature

model but also the source code of configurable systems.

RQ1 Summary. We found that faults are concentrated in only 0.8% of classes of

the subject dataset. Two classes are responsible for 49.75% of the faults. Our results

also show that source code metrics, such as LoC, WMC, and RFC, and the feature

metrics ScC, VarC, and TaC appear to be related to fault-prone classes. Therefore,

practitioners should be aware of large, complex, and highly coupled classes and

classes that implement features high scattering and tangled.

7.5 Dispersion of Faults over Features (RQ2)

This section reports the dispersion of faults found over features. Several studies on

feature interaction faults analyze the features only concerning the feature model and do

not analyze the implementation of features [Hervieu et al., 2011; Johansen et al., 2011;

Oster et al., 2011; Al-Hajjaji et al., 2016a]. Hence, there is still a lack of evidence on the

characteristics of fault-prone features. To achieve this goal, we compared characteristics

of faulty features with characteristics of no faulty features. At the end, we investigated

each failed configuration to discover the active features. Looking at the configurable

system’s source code, we analyze the active features related to the fault location. Hence,

we compute the active features in the failed configurations, and we use feature metrics

to measure these features. Table 7.3 shows the characteristics of the features frequently

active in failed configurations. The main difference of the metrics in this section and

metrics from the previous section is that while in this section we measure features

concerning the entire configurable system, in the previous section we measure the

features concerning each class. For example, in the previous section, we measured

scattering and tangling of features per the class. In this section, we use the scattering

and tangling to measure each feature in the entire project.

For short, we measure the number of variability points containing other features

using the Scattering (Sc.). Some features change the behavior of a more significant

amount of code, and others a specific part of the code. In this way, we compute the

number of times that features appear in the constructors (Co.) and methods (Me.).

The influence of the features in the configurable system through the lines of code

(LoC) that the feature handles. Some features cause many points of variability in the

source code. We calculate these variability points by feature using the variability points

(VP). Some features handle various classes of the configurable system and others only

in specific classes. To verify this characteristic, we compute the number of classes that



7. Investigating the Dispersion of Faults over Classes and Features 95

Table 7.3: Faults found by feature

Name Feature Sc. Co. Me. LoC VP Ta. DFT #F %F

ATM
DEPOSITING 3 1 17 264 7 3 2 4 5.00
USER_INTERFACE 3 3 24 237 12 4 3 4 5.00
WITHDRAWING 1 0 4 89 7 3 3 3 3.75

Bankaccount

OVERDRAFT 1 0 0 6 0 0 2 6 4.17
BANKACCOUNT 4 2 21 210 2 2 2 6 4.17
CREDITWORTHINESS 1 0 2 16 2 2 2 3 2.08
DAILYLIMIT 2 0 4 57 3 2 2 6 4.17

Chess
AI_PLAYER 4 4 38 690 10 2 2 8 100.00
OFFLINE_PLAYER 3 3 38 663 5 2 2 8 100.00
ONLINE_PLAYER 3 3 38 665 5 2 2 8 100.00

Companies

LOGGING 4 1 8 187 9 4 2 8 4.17
PRECEDENCE 4 1 9 186 13 4 2 16 8.33
TOTAL_WALKER 16 5 32 1119 31 17 3 16 8.33
TOTAL_REDUCER 16 5 23 1000 31 17 3 1 0.52
CUT_WHATEVER 29 9 49 1399 31 17 3 17 8.85
CUT_NO_MANAGER 29 8 46 1345 31 17 3 1 0.52
GUI 7 5 33 492 48 9 2 9 4.69

FeatureAMP1
PLAYLIST 3 1 13 163 4 2 4 416 45.66
PROGRESSBAR 1 0 2 24 2 1 5 416 45.66
SHOWTIME 1 0 2 22 2 1 5 415 45.55

FeatureAMP2
PLAYLIST 3 1 24 321 5 2 3 126 14.03
PROGRESSBAR 1 0 4 37 4 1 4 129 14.36
SHOWCOVER 1 0 3 30 3 1 3 90 10.02

FeatureAMP3

REMOVETRACK 1 1 4 54 4 1 5 107 10.09
VOLUMECONTROL 1 1 4 55 4 1 3 121 11.42
PLAYLIST 2 2 28 282 8 2 3 182 17.17
PROGRESSBAR 1 0 6 74 6 1 4 183 17.26
SHUFFLEREPEAT 2 1 6 141 5 1 5 74 6.98

FeatureAMP4
PLAYER_BAR 9 1 11 154 3 2 2 146 17.16
PLAYER_CONTROL 2 1 5 47 3 2 3 117 13.75
PLAYLIST 9 2 29 315 6 4 2 117 13.75
PROGRESS_BAR 4 1 5 59 3 2 3 125 14.69

FeatureAMP5
PLAYLIST 4 1 25 259 6 1 4 5 0.54
PROGRESSBAR 1 0 2 23 2 1 5 5 0.54
SHUFFLEREPEAT 3 0 8 128 3 2 5 3 0.33

FeatureAMP6
REORDER 3 1 7 124 2 2 4 19 1.59
PROGRESSBAR 2 1 4 86 3 1 4 22 1.84
PLAYLIST 7 3 31 451 8 5 2 21 1.76

FeatureAMP8
PLAYLIST 1 0 14 274 4 1 3 2 0.23
QUEUETRACK 1 0 8 292 6 1 4 4 0.45

FeatureAMP9
LOADFOLDER 1 0 5 91 3 1 4 230 26.05
PLAYLIST 2 1 20 244 6 2 3 230 26.05
PROGRESSBAR 1 0 3 48 3 1 4 231 26.16

GPL
SEARCH 2 0 6 77 6 2 5 4 1.60
NUMBER 3 1 4 19 5 3 4 2 0.80
STRONGLYCONNECTED 4 2 7 66 9 4 4 4 1.60

MinePump
STOPCOMMAND 2 0 2 21 1 1 4 12 18.75
HIGHWATERSENSOR 2 0 3 27 1 1 4 24 37.50

Paycard
PAYCARD 6 5 16 339 5 4 1 3 50.00
LOCKOUT 1 0 2 33 2 1 2 3 50.00
LOGGING 3 2 5 94 3 3 2 2 33.33

Sudoku

COLOR 1 3 0 48 3 1 2 3 15.00
SOLVER 7 4 19 467 23 7 2 4 20.00
GENERATOR 5 1 7 195 8 5 2 3 15.00
STATES 4 1 13 236 13 4 2 4 20.00
EXTENDEDSUDOKU 2 0 2 45 2 2 2 2 10.00
UNDO 2 0 2 44 2 2 2 4 20.00

Sc. (Scattering) column shows the number of classes that the feature manipulates. Co., and Me. columns show
the number constructors, and methods the feature is inserted into, respectively. LoC: Lines of code; shows the
number of lines of code handled by the feature. VP: variability points, occurrences of variability in source code
related to feature. Ta. (Tangling) show the number of variability points containing other features. DFT: Depth
of Feature tree; shows the depth of the feature relative to the feature model. #F: The number of faults found
where features are present. %F: Percentage of the active feature concerning the total configurations analyzed.
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the feature manipulates using the Tangling (Ta.). Finally, we use a metric to show

the depth of a feature relative to the feature model (DFT). This metric calculates the

distance of a feature from the root feature of its feature model.

We analyze the characteristics of the faulty features in the same way used in the

faulty classes. We compute the Spearman’s rank correlation among all features in the

dataset for all metrics shown in Table 7.3. We investigated a total of 350 features and

found values for correlation between 0.41 and 0.66 across all seven metrics in Table 7.3.

We have been found for Sc. (0.66), Co. (0.41), Me. (0.64), LoC (0.64), VP (0.64),

Ta. (0.65), and DFT (0.66). All these correlations are statistically significant at 99%

confidence level (i.e., p-value < 0.01).

The features that stand out with the greatest percentage of faults within the

configurations they have high values for the Scattering and Tangling metrics. In this

way, the features implemented by several modules of the system and mixed up with

other features are good indicators of fault-prone features in configurable systems. We

observed that the features with the greatest values for the metrics Sc., Me., LoC, VP,

and Ta are more related to faults. These metrics are related to size and measure how

much the features influence parts of the configurable system source code. Our results

show that the more the feature affected parts of the source code, the more fault-prone

this feature will be. This result can improve the set of configurations for testing, as the

features that have the most influence on the source code can be prioritized for testing.

Thus, researchers might prioritize these features in their testing approaches. On the

other hand, practitioners can be more careful on touching features that have greater

influence on the configurable system code and they can refactor these features dividing

them into multiple features. In this way, configurable system operations will not be

concentrated in a small number of features.

RQ2 Summary. We find that faults are concentrated in small groups of features,

and the features that have the most influence on the configurable system are fault-

prone. Our results also reveal that feature metrics, such as Scattering and Tangling,

seem to be good indicators to identify fault-prone features.

7.6 On the Relation between Faulty Classes and

Faulty Features

Figure 7.1 shows the distribution of faults found in the subject dataset. Figure 7.1a

shows the occurrence of faults in our dataset and which strategies found faults. Rows

indicate systems and columns indicate the testing strategies. We highlight in black the
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occurrence of faults for the configurable system. For example, for FeatureAMP5,

only the YASA-T4 strategy found faults. For FeatureAMP9, all 16 testing strategies

found faults. The only exception, is ATM, of which, only the baselines found faults.

In other words, no t-wise strategy found faults on ATM.

Figure 7.1b shows faulty classes and faulty features for all optional code (i.e.,

code of non-mandatory features). The internal layer shows the configurable systems,

the mid layer shows faulty classes, and the external layer shows faulty features. We

represent only optional code because they may change across configurations impacting

on the testing process. The larger the representation of an instance (i.e., project, class,

or feature), the more variation points are related to it. The darker the representation,

the larger the number of faults found. For example, in FeatureAMP4, there are four

classes with variability points (PlayerBar, Playlist, AudioFactory, and FeatureAMP)

and only two of them are faulty. We found 55 and 93 faults in the PlayerBar and Fea-

tureAmp classes, respectively. The failing code of these classes belongs to four features:

PLAYER_BAR, PROGRESS_BAR, PLAYER_CONTROL, and PLAYLIST.

Faults found in the other classes and features were pointed only by our baselines. Note

that a great number of variation points are often related to a great number of faults.

For instance, looking at FeatureAMP3, FeatureAMP9, FeatureAMP1, and

FeatureAMP4, we see that they concentrate most variation points and also most

faults.

7.7 Threats to Validity

Even with a careful planning, this research can be affected by different factors which

might threat our findings. We discuss these factors and decisions to mitigate their

impact on our study divided into external and internal threats to validity below.

External Validity. External validity is threatened mainly by two factors. First,

our restriction to variability encoding as variability approach and Java as programming

language. The generalization to other variability approaches, programming languages,

and configurable systems is limited. This limitation of the sample was necessary to re-

duce the influence of confounds, increasing internal validity [Siegmund and Schumann,

2015]. While more research is needed to generalize to other variability approaches,

programming languages, and configurable systems, we are confident that we selected

and analyzed a practically relevant variability approach and a substantial number of

configurable systems from various domains, longevity, size, and valid configurations.

Limiting the programming language is a common limitation of several research studies
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(a) Faults distribution found by configurable systems

(b) Faults distribution found by classes and features

Figure 7.1: Faults distribution found
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on configurable software systems [Kim et al., 2012b, 2013; Meinicke et al., 2014; Souto

et al., 2017; Wong et al., 2018].

Second, our results are restricted to the test suite and faults found in the subject

dataset. Using other systems, different versions of the subject systems, or different

testing suites may come up with other results. Aiming at minimizing this threat, we

chose a dataset previously proposed that follows two reasonable thresholds to increase

the quality of the testing suite: 70% of code coverage and 40% of killed mutants. We

provided an overview of the dataset in Chapter 4.

Internal Validity. There are two major threats to the internal validity of our

study. First, we cannot ensure that we identified all faults present in the subject sys-

tems. To increase testing coverage, we used two baselines. While the first baseline runs

the test suite in all valid configurations for up to 250 valid configurations sequentially

chosen, the second baseline runs the testing suite for up to 250 valid configurations

randomly chosen. This way, we run all valid configurations for several subject systems.

In addition, our reference list is the union set of all faults found in all configurations run

by the sixteen subject testing strategies. Hence, we are not prioritizing faults found by

one testing strategy, and all testing strategies have the same chance of finding faults.

Second, we may have not chosen the best metrics to represent systems, features,

and classes. We selected several well-known metrics to quantify the size, features,

classes, and test suite that compose the configurable systems of the subject dataset.

To make this measurement process simpler and automated, we used well-known tools,

such as CK Tool [CK, 2020] and JaCoCo [JaCoCo, 2020] and, for the metrics that

well-known tools are not able to compute, we create a script. We manually checked

the measurement of 8% of the components (e.g., classes and features) to confirm their

results. Hence, we believe that similar conclusions would also be achieved using differ-

ent metrics and tools that quantify similar attributes for the same set of configurable

systems and components.

7.8 Final Remarks

In this chapter, we investigated the dispersion of faults over classes and features of

30 configurable software systems. As a result, we found at least one fault in 16 out

of 30 systems in the subject dataset. In the analysis, we show that faults are usu-

ally concentrated in few classes and features. Moreover, these fault-prone classes and

features have distinguish characteristics from fault-free classes and features and these

differences can be found based on commonly used source code metrics.
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Our results can be used by practitioners to support their decision of know char-

acteristics of classes and features that normally fail in configurable systems, and guide

them on increasing test coverage on fault-prone components. Researchers and tool

builders may also benefit from our study since we provide several directions for im-

proving existing testing strategies. These directions include, for instance, using source

code metrics to identify fault-prone components and use this information on existing

testing strategies.

In the next chapter, we report a list of ten challenges faced when performing test

suites for configurable systems and dealing with a test suite for our dataset systems.



Chapter 8

Ten Challenges for Testing

Configurable Software Systems

Previous chapters presented a sequence of studies about testing configurable software

systems. Based on the results of these studies, this chapter proposes a list of ten

challenges faced when developing test suites for configurable systems and dealing with

a test suite for our dataset systems. Our list of challenges includes, for instance, the

challenges of testing high coupled classes and of determining metrics for measuring the

quality of the test suite. Our results can be seen as lessons learned on creating tests

for configurable systems and they aim at supporting researchers and practitioners on

this activity for configurable systems.

Although previous work concentrates on the explosion of combinations [Cohen

et al., 2003; Kuhn et al., 2004; Kim et al., 2013; Liebig et al., 2013a; Nguyen et al.,

2014; Souto et al., 2017]. and feature interactions [Kim et al., 2010; Apel et al., 2011;

Garvin and Cohen, 2011; Siegmund et al., 2012; Machado et al., 2014; Schuster et al.,

2014; Soares et al., 2018b; Nguyen et al., 2019] challenges, we propose other challenges

faced when testing configuration systems in practice. For instance, the challenges (1)

on the creation of a test suite, (2) on measuring the test suite and its quality, and

(3) on the identification of faults are often ignored. We defined ten challenges related

to configurable software testing based on our experience when creating and extending

the test suite for our dataset systems (Chapter 4). Our main goal is to report the

main challenges in the complete life-cycle of 30 open-source configuration systems.

Therefore, instead of focus on the well-known challenges present in the literature, we

present challenges faced when creating, extending, assessing, and using test suites for

30 configurable systems. For brief, our list of challenges can be summarized as follows.

101
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1. Creating from scratch and expanding test suites

2. Creating test cases in highly coupled classes

3. Dealing with the combinatorial explosion of configurations

4. Sampling configurations for test

5. Running the test suites

6. Assessing the quality of the automated test suites

7. Measuring the test suites

8. Dealing with false positives from tests

9. Tracking feature interaction faults to their sources

10. Finding technical debts in test cases of configurable systems

We believe that presenting the faced challenges on the complete life-cycle of 30

configurable systems is just a starting point for researchers to deeply investigate each

challenge and propose different ways to deal with them. Practitioners can also benefit

from our work by looking at our solutions on each challenge and, hopefully, save time.

At the end, we learned that testing configurable systems is related to the ability to

automatically run test cases for all possible/desired configurations and identify faults

efficiently. Furthermore, a high concentration of faults in a region of code (i.e., a

method, class, or feature) might also be an indicative of technical debt in such region

(Chapter 6).

The remainder of this chapter is organized as follows. Sections 8.1 to 8.10 present

the ten main challenges observed when creating, extending, assessing, using, and iden-

tifying faults using the test suites of 30 configurable systems in our previous Chapters 5,

6, and 7. For each challenge, we present our solution. Each following subsection de-

scribes a challenge.

8.1 Creating from Scratch and Expanding Test Suites

Both creating and expanding a test suite for configurable systems are challenging be-

cause, when designing test cases, the requirements of the configurable system, the

variability of features, and their functionality should be taken into account. That is,

test suite has to be adjusted in terms of which test cases should be performed according
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to the state of the features (active/inactive) since it is not feasible to select each test

for the configuration to be tested manually.

The test suite has to be automatically called and only the tests related to the

current configuration must be performed. In this way, in the design of the test cases, we

have to consider active feature for the test case to be executed. For that, a mechanism

must be made in each test case to test the requirements using the specific active

features. On the other hand, such a mechanism is necessary to prevent the test cases

related to inactive features from being executed. If this occurs, the test result will be

a false positive.

Solution. Listing 8.1 shows a test class for the example presented in Listing

1.1 (for ease of viewing, we show Listing 1.1 again in this chapter as Listing 8.2).

In addition to the environment set up, it shows a test case testing the createText

method when the feature WEATHER is active. For short, taking “[:weather:]” as

input, it should provide “30.0°C” as output. Note that as we have only 2 features,

it is easy to create test cases to cover all 4 possible configuration scenarios (i.e., 22).

However, as the number of related features increases, it is not feasible anymore. To

deal with that, we inserted a general configuration file loaded before the execution of

the test suite. A further observation is that automated testing tools are not helpful on

creating test cases, specially when expanding a test suite. Initially, we tried to use tools

to automatically generate test cases (e.g., Randoop [Pacheco and Ernst, 2007] and

EvoSuite [Fraser and Arcuri, 2011]). However, after the generation of a small number

of test cases, the subsequent new ones usually did not increase the test coverage as well

as the percentage of killed mutants. As result, we suggest that testers use these tools

carefully to only generate preliminary versions of their test suites.

1 public class WeatherReportTest {

2 WeatherReport wr;

3 @Before

4 public void setUp () {

5 wr = new WeatherReport ("2019 -11 -13", "30.0°C");

6 }

7

8 @Test

9 public void weatherTest () {

10 if ( Configuration . WEATHER )

11 assertEquals (wr. createText ("[: weather :]"), "30.0°C");

12 }

13 }

Listing 8.1: Test Cases for the WeatherReport Class
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1 public class WeatherReport {

2 private Date date;

3 private String temperature ;

4

5 public WeatherReport (Date currentDate , String currentTemperature ){

6 this.date = currentDate ;

7 this. temperature = currentTemperature ;

8 }

9

10 public String createText ( String c) {

11 if ( Configuration . SMILEY )

12 c = c. replace (":]", getSmiley (":]"));

13 if ( Configuration . WEATHER )

14 c = c. replace ("[: weather :]", temperature );

15 return c;

16 }

17 }

Listing 8.2: Variability encoding example adapted from Meinicke et al. [2016]

8.2 Creating Test Cases in Highly Coupled Classes

To have a deep understanding on the projects of our dataset (Chapter 4), we first

needed to read the documentation. After, we spent a considerable time understanding

their architecture and source-code. We noted that high coupling classes made the

understanding challenging. It also reflected on the creation of test cases because we

had to take care of relationships that, in the first moment, were hidden.

Solution. To overcome this scenario, we had to simulate some particular setup

that in the first moment was challenging to achieve given high coupling among classes.

After creating test cases for several projects, it became easier because we could reuse

some strategies, or find some pieces of code that helped with feature interaction prob-

lems. We use Mockito [Mockito, 2020] to allow the creation of mock object simpli-

fying the development of tests for classes with dependencies of other classes [Spadini

et al., 2019].
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8.3 Dealing with the Combinatorial Explosion of

Configurations

The main challenge researchers and software companies face when developing config-

urable software systems is to test them. Indeed, adding configuration options yields

a combinatorial explosion on the number of configurations to test. Therefore, it is

impractical to test them all. For example, a configurable system with 320 features

can yield more possibilities (i.e., software variants) than the number of atoms in the

universe. It is an insuperable challenge to test all possibilities of configurations for

systems with many features. While in traditional software systems there is only one

configuration (a combination of features) to be tested, for configurable systems we need

to run all tests in several different configurations.

Configurable software testing can be divided into two main parts, generating

the configurations and running the automated test suite for these configurations. To

generate configurations, we may use strategies that have been developed to test config-

urable systems (Chapter 5). These strategies can be classified into: variability-aware

testing [Kim et al., 2013; Meinicke et al., 2016] and configuration sampling testing [Al-

Hajjaji et al., 2016a; Souto et al., 2017]. Variability-aware testing strategies explore

dynamically all reachable configurations from a given test, by monitoring feature vari-

able accesses during test execution. Concerning running the test suite for the generated

configurations, it is possible to make a configuration partition and test the configura-

tions by groups.

Solution. To test the most significant number of configurations in our study, we

run all valid configurations for configurable systems with up to 17 features. However,

for the other systems, we have created a configuration list for testing that is the union

set all configurations run by the sixteen testing strategies. Using multiple sampling

strategies allows us to achieve a wide range of configurations at a low cost (Chapter 6).

8.4 Sampling Configurations for Test

Even if testing all possible configurations of a configurable system is possible, the test

suite’s quality positively impacts the efficiency on observing faults. Generating the

configurations and running the test suite is time consuming. Recall that the time con-

sumption can consist of the sum of the time to generate configurations (by sampling

strategies) and the time to run the test suite for the configurations (Chapter 6). The

ideal scenario is to test all valid configurations but, in practice, the explosion of con-
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figurations for testing makes exhaustive testing prohibitively expensive and practically

infeasible. Alternatively, developers may test a sample of valid configurations [Al-

Hajjaji et al., 2016a]. Several strategies for choosing a sample of configurations to test

have been proposed. Some of them use information only from the feature model [Al-

Hajjaji et al., 2016a; Johansen et al., 2012b], while others also use information from

the source code [Kim et al., 2013; Souto et al., 2017].

Solution. Nowadays, several sampling test strategies are available [Al-Hajjaji

et al., 2016a; Garvin et al., 2011; Johansen et al., 2012b; Krieter et al., 2020], but, the

choice of a testing strategy should be adapted to the time available for testing. Even

using a sample strategy testing, the total testing time can take (Chapter 6). In this

way, during the configurable system life-cycle, different test strategies can be used to

meet the constraints of efficiency and effectiveness. For instance, 1-wise strategies (e.g.,

Chvatal-T1 and ICPL-T1 ) prioritize a minimal number of configurations and are able

to find faults. On the other hand, if developers needs a more robust test and can wait

longer, they can use strategies that return a greater number of configurations, such as

Chvatal-T4 and ICPL-T3. Testing few configurations in the test phase of configurable

systems can be an effective alternative as a preliminary and superficial evaluation of the

configurable system. However, a preliminary assessment may not discover all feature

interaction faults, as these types of faults are harder to discover. In this way, using an

efficient strategy can support testing for configurable systems.

8.5 Running the Test Suites

The number of configurations for testing determines the number of times the test

suite runs. Therefore, configurable systems with hundreds of configurations result in

hundreds of runs of the test suite. Hence, the process of running the suite for each

configuration must be automated. Faults in configurable systems can occur in the same

test case, but with different configurations. Therefore, there is no point in running the

test suite several times if it is impossible to track where the faults occurred.

Solution. We created in our studies a way to record the output of JUnit’s

execution [JUnit, 2020], always using as a pair the configuration for testing and the

line of the test case where the fault was triggered. We use the processor defined in

Chapter 5 to record JUnit’s execution. In this way, in the subsequent analysis of the

faults report, we can quickly identify which configuration fails and which part of the test

case code triggered the faults. Algorithm 1 shows a pseudo-code demonstrating how to

run the entire test suite for each configuration selected for testing strategy. Algorithm 1
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Algorithm 1 Test suite execution manager
Require: List of configurations selected for testing
Ensure: Test reports

1: totalConfigurations← size(ListOfConfigurations)
2: config ← 1
3: while config ≤ totalConfigurations do
4: c=nextConfiguration(ListOfConfigurations)
5: setFeatures(c);
6: Execute the test suite with configuration c
7: config ← config + 1
8: end while

has as input a list of configurations for testing. A configurable system test strategy

generates this list of valid configurations. Line 5 of Algorithm 1 sets the configurable

system features according to the features of each configuration analyzed. Then, in Line

6, we run the test suite for each configuration. Therefore, for all input configurations,

Algorithm 1 sets the features according to the analyzed configuration and executes the

test suite to test the configurable system according to each configuration. The output

of this algorithm is a log generated by Junit composed of the Stack Trace combined

with the analyzed configuration.

8.6 Assessing the Quality of the Automated Test

Suites

Despite of some techniques proposed for traditional systems to evaluate the quality of

tests (e.g., mutation analysis technique), we still face the challenge of testing multiple

configurations in configurable systems. Mutation testing is a fault-based technique

commonly used to evaluate the effectiveness of software testing [Just et al., 2014].

Solution. To use this technique in a test suite for a configurable system, a

viable alternative is to choose among the valid configurations, a single configuration

that exercises a greater number of test cases. Then, it is possible to use a mutant

generation tool, such as PIT [Coles et al., 2016]. Through the generated mutants it is

possible to check the quality of the test cases to kill the introduced mutants. New test

cases can be created to kill living, non-equivalent mutants [DeMillo et al., 1978]. We

use the mutant generation process described in the Chapter 4.
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8.7 Measuring the Test Suites

You cannot control something if you cannot measure it DeMarco [1986]. Hence, we

needed to find ways to measure what the test suite covers. Metrics like code coverage

and the number of test cases are not enough to know if the test suite covers a particular

feature. The testers can prioritize the test for specific features because they have more

accessible testing features, and testers can do not cover testing other features in the

same way. Therefore, we need to measure how the test suite covers the features.

Solution. Specific metrics to identify test suite coverage can also help the tester

creating new test cases. For example, if a particular feature has higher priority for users

of the configurable system, this feature should be heavily tested. In our studies, we

measured the distribution of the test suite for each feature by calculating the variability

points for each class and identifying which features reach the variability point. After,

we checked which test cases can test each code fragment of the variability point. This

way, we were able to estimate how the test suite tested the features.

8.8 Dealing with False Positives from Tests

The identification of false positives requires a manual verification effort [Zolfaghari

et al., 2020]. False positives occur mainly due to three problems: (i) poor test case

design, (ii) lack of memory, and (iii) timeout. Poor test case design. The project of

the test suite must consider all the features that are part of the tested functionality.

Otherwise, the test case may fail for some configurations on which the target feature is

not active. The problem is that this false positive can occur in only a few configurations,

giving the impression of the feature interaction faults when a problem occurs in the test

case design. Tests can also fail regardless of the configuration. These false positives are

easier to identify, but they can cause problems when many faults have to be analyzed.

A viable alternative is to correct the defects of these tests first since they fail in all

configurations. Thus, with any sample configuration for testing, it is possible to identify

these tests.

Lack of memory and Timeout. We analyzed the systems with several sample sizes.

We noticed that when running the test suite for many configurations, the execution

sometimes crashes due to a lack of memory. To identify problems with lack of memory,

we identified the test reports provided by JUnit. To deal with this, we ran the test

suite for batches of configuration. Timeout. Test cases can have problems with timeout

definitions that can cause the test case to fail improperly. However, this type of fault

is easily identified through the faults report provided by JUnit.
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Solution. A viable alternative for identifying false positives in tests of config-

urable systems is to identify the failing configurations reported by the tests. Then,

set the features according to the failed configuration, to the configurable system and

execute only the failed test case. The analysis must occur initially to verify that all

features are in the correct state. Otherwise, we checked if the computational state is

correct. If no error is found in the configurable system code, the test case scenario

should be reviewed.

8.9 Tracking Feature Interaction Faults to their

Sources

Identifying the origin of faults is challenging in configurable systems because the fea-

ture interaction must be considered. We perceived that the source code implementing

some features are often tangled. We noticed two constraints needed to discover fea-

ture interaction faults. First, the sampling of configurations for testing must include

at least one configuration with feature interaction faults. Second, at least one test

case must identify the feature interaction faults. Failure to comply with these two

constraints results in the tests’ inability to observe faults. The first constraint takes

up the challenge listed in Section 8.3 but, as discussed, it is impracticable to test all

possible configurations for systems with several features. Features with feature inter-

action faults can appear in several valid configurations. However, if only one faulty

configuration is found, it is sufficient to solve the problem reflected in several other

configurations.

Solution. We observed in our study that a test case can fail several times in the

same line of code but with different configurations. The developer solving the feature

interaction faults of the configuration found will be correcting the faults in several

other configurations that have the same feature combination. In this way, a viable

alternative to identify feature interaction faults is to use testing strategies by sampling

and creating compelling test suites to find faults.

Furthermore, we suggest to perform, for the list of configurations that caused

faults, in each test case, the frequent itemset mining analysis [Agrawal et al., 1994]. A

frequent itemset is defined as a set of items that occur together in at least a support

threshold value of all available transactions . Therefore, we expect to identify which

features and their respective states are most present in the faults. It is important to

note that this technique can provide itemsets of different sizes, facilitating the analysis.
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8.10 Finding Technical Debts in Test Cases of

Configurable Systems

Patterns and catalogs have been used in software engineering to deal with challenges.

As examples of catalogs, we can cite design patterns [Gamma, 1995], bad smells [Fowler,

2018], and architectural patterns [Buschmann et al., 2007]. We performed this last

challenge to encourage the creation of standards and catalogs for testing configurable

system. There are dozens of testing strategies that test by sampling [Medeiros et al.,

2016; Ferreira et al., 2021, 2019]. However, there is still no consensus on which strategy

to use under some constraints, such as time, the criticality of configurable systems, and

the number of features.

In addition, a failure taxonomy could be created. In this sense, Soares et

al. Soares. [2019] proposed a list of feature interaction faults including Bad Annotation

(the expression used in the annotation is incorrect), Wrong Object (an object used in

place of another), Misplaced Variable Overwrite (the value of a variable is overwritten

in a wrong place with a wrong value), Conditional Statement (incorrect implemen-

tation of conditional statements, using wrong or incomplete conditions), and Spread

Code (piece of code spread over different features leading to unnecessary dependencies

and problems related to code modularity).

Solution. Aiming at comparing sampling testing strategies and understanding

the location of faults, we use our dataset and compare suggested configurations from

variations of five t-wise testing strategies (Chapters 6). This comparison aims to find

which strategies are faster, more comprehensive, effective on identifying faults, time-

efficient, and coverage-efficient in this dataset and the reasons why a strategy fared

better in one investigated property. As a result, we had a first step toward the identi-

fication of patterns and problems in code that may easy or hinder testing.

8.11 Final Remarks

There are dozens of papers that describe the challenge of testing configurable sys-

tems [Kim et al., 2013; Medeiros et al., 2016; Meinicke et al., 2016; Souto et al., 2017].

However, previous work has focused on reporting the combinatorial explosion of the

number of configurations to test and feature interaction faults. We summarized the

challenges through our observations based on the knowledge acquired from the empir-

ical studies described in the previous chapters.

In this chapter, we presented other challenges faced when testing configuration
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systems in practice. For instance, the challenges on the creation of a test suite, on

measuring the test suite and its quality, and on the identification of faults are often

ignored by the literature. Therefore, we discussed ten challenges related to the life-cycle

of tests for configurable systems.

We believe that researchers and practitioners can benefit from the described chal-

lenges and can propose solutions for them making our challenges just a starting point

for future research. In addition, researchers and practitioners can also benefit from

our work by looking at our solutions on each challenge and, hopefully, save time. The

next chapter concludes this thesis summarizing the main findings of this thesis and

describing paths for future work.



Chapter 9

Conclusion

This chapter summarizes the results of this thesis, regarding its goals, contributions

and future work. Section 9.1 summarizes the key findings of this thesis. Section 9.2

reviews our main contributions. Section 9.3 outlines possible ideas for future work.

9.1 Summary

Configurable software systems allow developers to maintain a unique platform and

address a diversity of deployment contexts and usages. Testing configurable systems

is very challenging due to the number of configurations to run with each test, leading

to a combinatorial explosion in the number of configurations and tests. Currently,

several testing techniques and tools have been proposed to deal with this challenge,

but their potential practical application remains mostly unexplored. The lack of studies

to explore the tools that apply those techniques and empirical evaluations including a

community-wide dataset motivated us to investigate the literature to find testing tools

for configurable software systems and create a dataset of configurable systems with

test-enriched.

Considering a gap of knowledge on creating tests for configurable software sys-

tems, in this thesis, we conducted a set of empirical studies comparing sampling and

sound testing strategies and understanding the location of faults. Then we propose

a list of ten challenges faced when performing test suites for configurable systems

and dealing with a test suite for our dataset systems. Our results can be seen as

lessons learned on creating tests for configurable systems and they aim at supporting

researchers and practitioners on this activity for configurable systems. To achieve this

goal, the following specific goals (SG) were defined.

112
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• SG1 Investigate testing tools and strategies for configurable systems in the liter-

ature.

• SG2 Investigate which configurable systems are available in the literature to

create a dataset of test-enriched configurable systems.

• SG3 Perform comparative study with sound testing strategies.

• SG4 Perform comparative study with t-wise testing strategies.

• SG5 Analyze at the dispersion of faults found over classes and features in the

subject dataset.

• SG6 Propose a list of ten challenges faced when performing test suites for con-

figurable systems and dealing with a test suite for our dataset systems.

For SG1, we conducted a systematic mapping study on testing tools for con-

figurable systems, aiming to verify the state-of-the-art testing tools for configurable

systems. Moreover, with this systematic mapping study, we identified the main testing

strategies used by these tools (see Chapter 3). Some interesting findings resulted from

SG1 are:

• We found in the systematic mapping study 60 testing tools for configurable sys-

tems.

• We analyzed the tools found concerning 16 characteristics and four main testing

strategies.

• We presented an overview of 64 primary studies found and presents an overview

of how the researchers evaluated testing tools for configurable systems found.

• we discuss our results regarding implications for researchers and practitioners.

For SG2, we proposed a test-enriched dataset with 30 configurable software sys-

tems. This dataset was created based on a literature review and further implementation

of test suites to improve code coverage (see Chapter 4). Some relevant contributions

from SG2 are:

• We searched for configurable systems in the literature and found 243 systems

being 60 developed in a Java-based programming language. From those, only 10

systems have a test suite available.
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• We created a test suite for other 20 projects. We created tests until they had a

coverage of 70% and killed at least 40% of mutants.

• The final dataset has 30 systems varying in domains, size, variability, and test

suite size.

For SG3, we designed and performed a comparative empirical study of the main

sound testing tools (VarexJ [Meinicke et al., 2016] and SPLat [Kim et al., 2013]) found

in the systematic mapping study (see Chapter 3).

• We note that VarexJ is generally more efficient than SPLat. However, when it

was not more efficient, it was by a large difference in specific situations related

to its implementation of variability-aware execution.

• We observed that VarexJ and SPLat presented different results for efficiency while

testing the target systems. Although VarexJ found more faults than SPLat for

most of the target systems, such a result deserves a more in-depth investigation

because we expected a higher intersection of faults encountered by them.

For SG4, we used the community-wide dataset proposed in Chapter 4 and com-

pare recommended configurations from sixteen t-wise testing strategies (eg, ICPL-T2,

Chvatal-T4, and IncLing -T2 ). This comparison aimed to find which strategies are

faster, more comprehensive, effective on identifying faults, time-efficient, and coverage-

efficient in the community-wide dataset and the reasons why a strategy faced better in

one investigated property.

• 1-Wise testing strategies. Comparing the 1-wise strategies, ICPL-T1 stood out

as the fastest strategy. Chvatal-T1 was the strategy with the greatest coverage

and recall, and was the most time- and coverage-efficient.

• 2-Wise testing strategies. Comparing the 2-wise strategies, ICPL-T2 was the

fastest and the most time-efficient and got the greatest coverage and recall.

CASA-T2 and Chvatal-T2 were the most coverage-efficient strategies.

• 3-Wise testing strategies (Figure 6.2c). Comparing the 3-wise strategies, ICPL-

T3 was the fastest and the most time-efficient testing strategy. Chvatal-T3

achieved better coverage, recall, and coverage-efficient.

• 4-Wise testing strategies (Figure 6.2d). Comparing the 4-wise strategies, YASA-

T4 was the fastest and the most time-efficient testing strategy. Chvatal-T4 cov-

ered more configurations, achieved the greatest recall and was the most coverage-

efficient testing strategy.
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For SG5, we look at the dispersion of faults found over classes and features

in the subject dataset (Chapter 7). Then, we measure each class and feature with

metrics commonly used in practice [Chidamber et al., 1998]. Number of lines of code

(LoC ) CK [2020], weighted methods per class (WMC ) CK [2020], and response for

a class (RFC ) CK [2020] are examples of metrics at class-level. Feature scattering

and feature tangling are examples of metrics at feature-level. Finally, we compute

Spearman’s rank correlation between the number of faults in a component (i.e., class

or feature) and a given metric.

• We found at least one fault in 16 out of 30 systems in the subject dataset.

• We found that faults are concentrated in only 0.8% of classes of the subject

dataset and high values of some source code metrics, such as LoC, WMC, and

RFC, appear to be related to fault-prone classes.

• We found that faults are concentrated in a few features with high values of some

source code metrics, such as feature scattering and tangling.

• We show that faults are usually concentrated in few classes and features. More-

over, these fault-prone classes and features have distinguish characteristics from

fault-free classes and features and these differences can be found based on com-

monly used source code metrics

For SG6, we defined ten challenges related to configurable software testing based

through our experience when creating and extending the test suite for our dataset

systems (Chapter 8). Our main goal is to report the main challenges in the complete

life-cycle of 30 open-source configuration systems. Therefore, instead of focus on the

well-known challenges present in the literature, we present challenges faced when cre-

ating, extending, assessing, and using test suites for 30 configurable systems. For brief,

our list of challenges is:

1. Creating from scratch and expanding test suites

2. Creating test cases in highly coupled classes

3. Dealing with the combinatorial explosion of configurations

4. Sampling configurations for test

5. Running the test suites

6. Assessing the quality of the automated test suites
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7. Measuring the test suites

8. Dealing with false positives from tests

9. Tracking feature interaction faults

10. Finding technical debts in test cases of configurable systems

9.2 Contribution

Although previous work concentrates on the explosion of combinations and feature

interactions challenges. Considering that the lack of studies reporting and investigating

the challenges on the complete life-cycle of testing configurable systems, we aim at

filling this gap by reporting the challenges we faced when creating, extending, assessing,

using, and identifying faults on the test suites of 30 configurable systems. Additionally,

we present other challenges faced when testing configuration systems in practice. For

instance, the challenges (1) on the creation of a test suite, (2) on measuring the test

suite and its quality, and (3) on the identification of faults are often ignored. In

addition to the list of ten challenges mentioned, this thesis resulted in the following

contributions.

• We documented results of a systematic mapping study of the literature on test

tool for configurable systems.

• We proposed a test-enriched dataset with 30 configurable software systems.

• We documented results of an empirical study about two sound test tools.

• We provide evidence of which testing strategies are faster, more comprehensive,

more effective on finding faults, more time-efficient, and coverage-efficient based

on data from a community-wide dataset.

• We show that faults are usually concentrated in few classes and features. More-

over, these fault-prone classes and features have distinguish characteristics from

fault-free classes and features and these differences can be found based on com-

monly used source code metrics.

• We propose a list of ten challenges faced when performing test suites for con-

figurable systems and dealing with a test suite for our dataset systems. Our

list includes, for instance, the challenges of testinghigh coupled classes and of

determining metrics for measuring the qualityof the test suite.
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9.3 Future Work

We present a list of the main challenges we have identified in conducting the empirical

studies described in this thesis. Furthermore, we present at least one solution to the

proposed challenges for each challenge and use these solutions throughout the empirical

studies described in this thesis. However, our solutions are preliminary and need to be

validated in other contexts as another strategy of implementing configurable systems

such as annotative. Therefore, it is necessary to expand the scope of our solutions

before proper generalization of our results, with additional case studies and experiments

comparing these languages other than Java. In the future work in this direction, we

plan to investigate different solutions related to tests of configurable systems for other

languages and implementation techniques.

We describe our lessons learned from each study described in this thesis. How-

ever, an important branch of our work that can be explored in future works is creating

specific guidelines for developers, testers, and researchers on testing configurable sys-

tems based on lessons learned from this thesis. We believe that the challenges listed

in this thesis can be used as input for creating guidelines. For example, the Gener-

ating Configurations for Test challenge (see Section 8.4) can be explored to establish

guidelines on how to deal with test configurations.

Our restriction to variability encoding as variability approach and JAVA as a pro-

gramming language is the main limitation of our work. The generalization to other vari-

ability approaches, programming languages, and configurable systems is limited. This

limitation of the sample was necessary to reduce the influence of confounds, increas-

ing internal validity. While more research is needed to generalize to other variability

approaches, programming languages, and configurable systems, we are confident that

we selected and analyzed the relevant variability approach and a substantial number

of configurable systems from various domains, longevity, size, and valid configurations.

Limiting the programming language is a common limitation of several research studies

on configurable software systems. Another limitation that is relevant to be further

explore in future work is the necessity of a tool to support the test for configurable

systems. Researchers and tool builders could benefit from our analysis and lessons

learned about testing strategies investigated and the dispersion of faults over classes

and features and implement a tool. As an example, we described in Section 7.6, that

a tool can consider feature coverage, also takes characteristics of features and classes

into account on the selection of configurations for test.
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