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Resumo

Nesta tese, investigamos abordagens de solução exata para o p-arborescence star
problem (p-ASP) e o pickup and delivery traveling salesman problem with multiple
stacks (PDTSPMS). Esses dois problemas de otimização combinatória possuem
aplicações no projeto de redes de sensores sem fio e no planejamento de rotas veiculares
sob restrições de carregamento, respectivamente. Para o p-ASP, nós desenvolvemos
algoritmos branch-and-cut baseados em cada uma das nossas duas formulações
propostas e melhoramos um algoritmo branch-and-cut anterior para o problema com
um método de separação exata. Além disso, provamos que encontrar uma solução viável
para uma instância arbitrária do p-ASP é NP-difícil e introduzimos procedimentos
de pré-processamento. Para instâncias do benchmark de tamanho pequeno e médio,
nossos algoritmos propostos obtém os melhores resultados. Para as instâncias maiores,
nosso melhor algoritmo mostra-se competitivo com a versão melhorada da abordagem
existente. Ambos os algoritmos têm desempenho similar para essas instâncias difíceis e
resolvem uma instância que o outro não é capaz. Com relação ao PDTSPMS, propomos
uma nova formulação junto com novas desigualdades válidas. As novas desigualdades
válidas são versões fortalecidas de desigualdades usadas com sucesso em algoritmos para
o problema e suas variantes. Em seguida, implementamos um algoritmo branch-and-cut
baseado na formulação proposta que incorpora as desigualdades válidas. Além disso,
também apresentamos várias estratégias de aceleração para nosso método. O algoritmo
é comparado com todas as abordagens exatas para o PDTSPMS encontradas na
literatura. Nosso algoritmo implementado supera todos os algoritmos para as instâncias
de benchmark. Além de reduzir drasticamente o tempo necessário para resolver a
maioria das instâncias, o algoritmo proposto resolve mais instâncias no total do que os
outros métodos.

Palavras-chave: programação inteira; branch-and-cut ; arborescência; redes de
sensores sem fio; caixeiro viajante; restrições de carregamento; coleta e entrega.
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Abstract

In this thesis, we investigate exact solution approaches for the p-arborescence star
problem (p-ASP) and the pickup and delivery traveling salesman problem with multiple
stacks (PDTSPMS). These two combinatorial optimization problems have applications
in the design of wireless networks and the planning of vehicle routes under loading
constraints, respectively. For the p-ASP, we develop branch-and-cut algorithms based
on each one of our two proposed formulations and improve an earlier branch-and-cut
algorithm for the problem with an exact separation method. Also, we prove that
finding a feasible solution for an arbitrary p-ASP instance is NP-hard and introduce
preprocessing procedures. For small and medium-sized benchmark instances, our
proposed algorithms provide the best results. For large instances, our best algorithm
shows to be competitive with the improved version of the existing approach. Both
algorithms perform similarly for these hard instances and solve one instance that the
other does not. Regarding the PDTSPMS, we propose a new formulation along with
new valid inequalities. The new valid inequalities are lifted versions of inequalities used
successfully in exact algorithms for the problem and its variants. Then, we implement
a branch-and-cut algorithm based on the proposed formulation which incorporates the
valid inequalities. Moreover, we also present several acceleration strategies for our
method. The algorithm is compared with all exact approaches for the PDTSPMS
found in the literature. Our implemented algorithm outperforms all other algorithms
for the benchmark instances. Besides drastically reducing the time needed to solve
most of the instances, the proposed algorithm solved more instances in total than the
other methods.

Keywords: integer programming; branch-and-cut; arborescence; wireless sensor
networks; traveling salesman; loading constraints; pickup and delivery.
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Chapter 1

Introduction

In this first chapter, we outline and motivate the two problems studied in this thesis.
First, we motivate and give a general description of the investigated problems. Next,
we detail the contributions resulted from the work of this doctorate. Finally, in the
last section, we summarize the structure and organization of the present text.

1.1 Motivation

Multiple applications found in the design of wireless sensor networks and planning of
vehicle fleets involve discrete choices, for instance, the topology of the wireless network,
where to install transmission towers, the number of vehicles to use, which customers
they should visit, and etcetera. Integer linear programming approaches provide the
means to model such choices. The essence of these models involves deciding which
elements will be part of a solution or not. Thus, the use of combinatorial optimization
techniques allows us to model and solve a huge number of practical situations. Problems
involving network planning and vehicle routing are among the most studied topics in
combinatorial optimization [Magnanti and Wong, 1984].

So far, there is no efficient algorithm of polynomial complexity to solve general
problems of integer linear programming. Despite this difficulty, several successful
approaches have been proposed to address these types of problems. The idea of
a branch-and-bound enumeration method [Land and Doig, 1960] combined with a
cutting planes algorithm [Gomory, 1958] to evaluate the relaxed linear problems
resulted in branch-and-cut methods. This method has been successfully used for
several combinatorial optimization problems in recent years [Morrison et al., 2016].
For further reading and study about integer programming, we refer the reader to the
works of Wolsey [1998] and Cook et al. [2011].

1



1. Introduction 2

Networks can be used to represent communication systems where there is an
exchange of information between elements. Likewise, routing problems are used to
model problems where one or more vehicles must visit a set of locations. These classes
of problems are usually encountered with several additional constraints. Regarding
network design problems, we can find in the literature problems involving networks
with a fixed number of nodes [Golden et al., 2012], selection of clusters with coverage
constraints [Calik et al., 2017], topologies with multiple levels [Labbé et al., 2004],
among others. Similarly, we can find vehicle routing problems involving plenty of
features like time windows [Azi et al., 2007], distance constraints [Kek et al., 2008],
pickup and delivery restrictions for multiple vehicles [Ropke and Cordeau, 2009], and
several others. We indicate the surveys of Akyildiz et al. [2002] and Pollaris et al. [2015]
for an overview of problems found in the area of design of wireless sensor networks and
vehicle routing, respectively.

We study two combinatorial optimization problems in this thesis, namely, the p-
arborescence star problem (p-ASP), and the pickup and delivery traveling salesman
problem with multiple stacks (PDTSPMS). The p-ASP consists of determining p

cluster-heads such that they define a reverse arborescence topology covering the
remaining nodes of the network. The problem finds applications in the context of
wireless sensor networks design [Morais et al., 2019]. In such settings, a clustering
protocol is commonly used to limit the number of active nodes, aiming at extending
the network lifetime. The PDTSPMS is a routing problem where a single vehicle must
pick up and deliver items to complete customer requests. The items are stored in stacks
of limited capacity which follow the last-in-first-out policy. The aim of the problem is
to find a vehicle route of minimum cost fulfilling all requests. Practical applications of
the problem include situations where the vehicle can only be operated through the rear
or where relocating items inside the vehicle is expensive [Pereira and Urrutia, 2018].

Although the p-ASP and the PDTSPMS have different characteristics and
definitions, we can still see them in a general form and use similar approaches. Both
problems can be defined in directed graphs subject to a set of side constraints. By
modeling such constraints in an integer programming formulation, we can relax them
and use a branch-and-cut approach to solve them. A common aspect between the
problems is the connectivity constraint which can be modeled through cutsets or
subtour elimination constraints. Consequently, strategies to separate and manage such
inequalities can be applied to both problems. Other approaches such as preprocessing
and arc elimination can also be applied to the p-ASP and PDTSPMS.

Since they are challenging problems with multiple applications, the main
motivation of this thesis is to improve the state-of-the-art for these two problems
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using well-established optimization techniques for exact approaches. Although the
first problem follows a line of tree-based formulations while the second fits the group
of problems based on path generation, the motivation for this thesis is to use the
same exact algorithm structure for both problems, more specifically exploring classic
branch-and-cut methods. Traditional strategies for improving such algorithms are the
study of valid inequalities and separation methods. Valid inequalities and separation
methods can improve the dual bounds obtained from the linear relaxations of the
formulations. Thus, small reductions in the optimality gaps can drastically decrease
the size of the branch-and-bound tree. Moreover, we also study acceleration strategies
for the algorithms based on specific aspects of the problems. Even though the focus
of this thesis is on specific topology and routing problems, the new algorithms and
strategies introduced for these problems can also be extended to other similar variants.

1.2 Contributions

Our main contributions to the p-ASP concern exact algorithms and theoretical results.
We propose new models for the problem together with theoretical results of the
relationship between the existing formulations. We develop an exact separation
procedure for an inequality that was previously separated using a heuristic method.
The new separation procedure improves the existing branch-and-cut algorithm.
Besides, we also introduce two new exact algorithms for the problem. Given an
arbitrary p-ASP instance, we show that finding a feasible solution is an NP-hard
problem. Although it is NP-hard to find a feasible solution for the problem, we present
preprocessing algorithms that allow us to determine if a set of nodes contains at least
one cluster-head. Considering the same computational environment, our proposed
branch-and-cut algorithms obtain better results than the previous existing approach
for the problem.

The major contribution for the PDTSPMS is a new branch-and-cut algorithm.
The algorithm is based on a new formulation that incorporates new valid inequalities.
The model uses the same set of constraints as previous approaches to model
connectivity and precedence. However, we use new constraints for the LIFO policy
and capacity. We introduce new valid inequalities and use specific characteristics of the
problem to lift existing valid inequalities from the PDTSPMS literature. Furthermore,
we present new separation procedures and acceleration strategies that are incorporated
in our branch-and-cut algorithm. One of the strategies solves a bin packing problem
to check if the corresponding capacity inequality can be lifted. All algorithms from
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the PDTSPMS literature are executed and compared in the same computational
environment. Our proposed branch-and-cut algorithm outperforms all other algorithms
considering the benchmark instances.

1.3 Text organization

The primary objective of our research is to devise exact algorithms for the p-ASP
and PDTSPMS. In this thesis, we present and discuss the findings and results of our
research during the doctoral program. The remainder of this text is divided into three
chapters. Chapter 2 is dedicated to the p-ASP and is based on the article Pereira et al.
[2020] with a few additions. In particular, we added Theorems 1 and 2 which were
removed during the peer review phase. We chose to add these proofs since they might
help the reader have a better understanding in his first contact with the work. The
reader might be a student in his contact with the work and might not be familiar with
the results of Magnanti and Wolsey [1995] for network optimization problems on trees.
Chapter 3 is about a new branch-and-cut algorithm for the PDTSPMS. Initially, we
describe our formulation and propose new valid inequalities. Next, we describe the
details of the branch-and-cut algorithm implemented based upon the formulation and
valid inequalities. Finally, we analyze the results of the algorithm for the benchmark
instances and compare them with the results of other approaches from the literature.
This chapter was compiled into an article and submitted to a top journal in the field of
operational research. We conclude with Chapter 4, in which we discuss the work done
and the future work directions we plan to follow.

Although the chapters share similar terms, we emphasize that the notations used
in Chapters 2 and 3 are distinct. We do not unify the notations between them because
we chose to use the standard notation in the literature for each one of the problems.
The p-ASP has a notation aligned with the context of networks, while the PDTSPMS
has a notation directed to the context of vehicle routing.



Chapter 2

The p-arborescence star problem

Given a connected digraph, a vertex designated as the root, and an integer p, the
p-arborescence star problem is to choose p vertices beside the root and define a reverse
arborescence spanning them. Each vertex outside the arborescence must be assigned
to one vertex inside it. The objective of the problem is to minimize arborescence and
assignment costs. We propose two formulations for the problem and prove theoretical
results about their strength. Moreover, we develop branch-and-cut algorithms based
on each one of the formulations and improve an earlier branch-and-cut algorithm for
the problem with an exact separation method. Additionally, we show that finding
a feasible solution for an arbitrary instance is NP-hard and introduce preprocessing
procedures for the problem. The proposed algorithms are evaluated with a set of
benchmark instances from the literature. For small and medium-sized instances, our
proposed algorithms provide the best results when compared to the existing algorithm
from the literature. For large instances, our best algorithm obtains similar results
to the improved version of the existing approach. Each algorithm solves an instance
that the other is unable to. Therefore, for the hard instances in the benchmark, one
algorithm does not dominate the other.

2.1 Introduction

Let G = (V,A) be a symmetric connected digraph where V is the set of vertices and
A the set of arcs. We observe that the set of arcs contains no self-loop and might be
incomplete. A reverse arborescence is a directed rooted tree where there is precisely
one elementary path from each vertex to the root. Associated with the use of each arc
(i, j) ∈ A there is a nonnegative arborescence or assignment cost cij. Given an integer
p and a root r ∈ V , the p-arborescence star problem (p-ASP) consists of finding a

5



2. The p-arborescence star problem 6

subset H ⊆ V \ {r} of vertices such that:

• The cardinality of H is equal to p.

• The subgraph induced by Hr = H ∪ {r} defines a reverse arborescence
T = (Hr, AT ) rooted at r, AT ⊆ A.

• The subset H is a dominating set of G: for each vertex v ∈ V \ Hr, there is a
vertex i ∈ H such that (v, i) ∈ A.

• The cost
∑︁

(u,v)∈AT

cuv +
∑︁

u∈V \Hr

argmin
v∈H

cuv of making all the connections is

minimized.

In summary, we wish to find a reverse arborescence of size p + 1 rooted at r

such that vertices outside the arborescence are covered by exactly one vertex inside it,
and the cost of the connections is minimized. We call the reverse arborescence T the
backbone. A vertex i ∈ H is called cluster-head and the vertices not in H directly
connected to it form its cluster. Given an arc (i, j) ∈ A, if i ∈ H and j ∈ H we say it
is an inter-cluster arc, else, if j ∈ H and i ∈ V \ Hr we say it is an intra-cluster arc.
The name star is given from the intra-cluster star topology derivated from the arcs
pointing towards a cluster-head.

Figure 2.1 displays a feasible p-ASP solution. The graph has 41 vertices and the
value p is set to 9. In the figure, cluster-heads are represented as gray vertices, and the
root is indicated by a black vertex. The dashed arcs describe intra-cluster arcs. The
backbone rooted at the root r = 0 is drawn with solid lines.
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Figure 2.1: Graph showing a feasible p-ASP solution.
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The p-ASP finds applications in the context of wireless sensor networks (WSNs).
A WSN consists of a large number of sensors operating autonomously in unattended
environments. These sensor nodes are responsible for monitoring physical or
environmental variables, such as movement or temperature, and transmitting data to
a sink node [Akyildiz et al., 2002]. These variables can then be used in meteorological
forecasts or disaster management situations such as earthquakes. One of the advantages
of a WSN is its ability to work in isolated or harsh environments, in which human
supervision is costly or risky [Abbasi and Younis, 2007].

Sensors usually have limited memory, sensing devices, communication hardware,
and a limited battery. Given the lifespan of the battery, the energy efficiency of the
communication widely affects the network lifetime. Therefore, the efficient use of energy
among the sensors is fundamental to prolong the lifetime of the network [Akyildiz et al.,
2002]. An approach to reduce the energy consumption among sensors is a clustering
protocol. The nodes of the network are divided into groups, each possessing a leader
called cluster-head, in charge of communication with the sink [Younis and Akkaya,
2008]. In a typical network, the traffic is gathered from many sensors, combined, and
finally forwarded to the sink.

Taking into consideration the previous discussion, the p-ASP consists of selecting
p vertices to be cluster-heads, connecting them through a reverse arborescence topology,
and assigning the regular sensors to the chosen cluster-heads. The aim is to maximize
the network lifetime while minimizing transmission costs. The cluster-heads are
expected to spend more energy than the regular nodes in the network. Therefore,
the cardinality constraint restricts the percentage of active sensors in the network,
reducing energy consumption and the overall cost if all the nodes were responsible
for the transmissions. Clustering protocols such as LEACH [Heinzelman et al., 2000]
and LEACH-C [Heinzelman et al., 2002] keep a fixed number of active nodes in the
network, changing the cluster-heads of the network at regular intervals to increase
the network lifetime. Practical applications of this type of problem might contain
additional constraints. For instance, a cluster-head should have a limit on the number
of incoming connections [Duarte-Melo and Liu, 2003] or have an energy capacity that
might deplete along time [Matos et al., 2012].

The problem has polynomial cases depending on the value of p. In the case where
p = 1, the chosen cluster-head i ∈ V \ {r} must be connected through one arc to all
j ∈ V \{i}. If no such vertex i exists, then the problem is infeasible. Otherwise, choose
the vertex i ∈ V \ {r} which minimizes the cost

∑︁
(u,i)∈A cui + cir as the only cluster-

head. If p = n, the problem reduces to the minimum weight spanning arborescence
problem [Chu and Liu, 1965; Edmonds, 1967]. The p-ASP is NP-hard in the general
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case, since the p-median problem [Hakimi, 1965] can be reduced to it [Morais et al.,
2019].

The contributions of this work are two new integer linear programming
formulations and branch-and-cut algorithms for the p-ASP. Additionally, we introduce
several preprocessings for the problem, and improve an earlier branch-and-cut
algorithm from the p-ASP literature with an exact separation method. We compare the
branch-and-cut algorithms experimentally using the set of benchmark instances. The
proposed algorithms are able to converge faster on the solved benchmark instances. As
theoretical contributions, we study the relationship of the formulations and show that
finding a feasible solution or proving the infeasibility of an arbitrary p-ASP instance is
NP-hard.

The chapter is organized as follows. We provide a literature review for the
p-ASP in Section 2.2. In Section 2.3, we present the proposed formulations for the
problem along with theoretical results about their strength. Based on our proposed
formulations, we describe branch-and-cut algorithms in Section 2.4. In this section,
we also prove that determining the feasibility of an arbitrary p-ASP instance is
NP-hard and describe our suggested preprocessing procedures. Section 2.5 compares
the branch-and-cut algorithms using the set of benchmark instances. Moreover, we
conduct a study about the impact of parameter p on the execution time. The last
section summarizes the chapter and discusses ideas for future works.

2.2 Literature Review

The p-ASP was formally defined and introduced in the work of Morais et al. [2019].
They investigated exact solution approaches for the problem based on two formulations.
The first is a compact formulation based on multicommodity directed flows. The
second one uses an exponential number of cutset constraints to impose the connected
backbone. Both formulations use two sets of arc variables to differentiate between intra
and inter-cluster arcs. They also introduced a heuristic algorithm based on Benders
decomposition to provide initial upper bounds for the proposed exact algorithms. The
results showed that the cutset based formulation is computationally superior to the
multicommodity flow formulation. The branch-and-cut algorithm based on the cutset
formulation was able to solve more instances and converge to an optimal solution in less
time. Morais and Mateus [2019] proposed a set partitioning p-ASP formulation based
on the concept of configurations. The authors define a configuration as p cluster-heads
and their corresponding stars. They devise a column-and-row generation algorithm
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to compute the lower bound given by the linear relaxation at the root node of the
branch-and-bound tree. The connected backbone constraint is imposed on the master
problem. Columns corresponding to configurations are added dynamically. Despite
improving the lower bounds obtained by Morais et al. [2019], no exact algorithm based
on the procedure to compute the correspondent lower bounds is provided.

Matos et al. [2012] studied a clustering problem to manage energy consumption in
wireless sensor networks efficiently. The cluster of the problem has a fixed cardinality,
but no topology is imposed on it. Despite describing the problem, no formal definition
or formulation is proposed. They also implemented a Greedy Randomized Adaptive
Search heuristic coupled with an intensification phase based on Path Relinking. The
performance of their heuristic is compared with other clustering protocols found in the
literature.

A related problem that Simonetti et al. [2011] considered is the minimum
connected dominating set problem (MCDSP). They presented an integer programming
formulation and valid inequalities that are incorporated in a branch-and-cut algorithm.
In the MCDSP, one wishes to find a connected dominating set of minimum cardinality.
Despite the need to exist at least one edge between a vertex outside the dominating
set with a vertex inside it, no cost is associated with such edges in the objective
function. Applications for the MCDSP arise in the design of ad-hoc wireless sensor
networks where the network topology is dynamic. Gendron et al. [2014] studied several
exact algorithms for solving the MCDSP. The authors investigated three approaches
to deal with the problem, a probing strategy, a Benders decomposition algorithm,
and a branch-and-cut method. Besides, they proposed hybrid algorithms based on
the combination of the previous three strategies. Gendron et al. [2014] also explored
several valid inequalities and integrated them into their algorithms according to their
strengths. It is worth mentioning that the branch-and-cut algorithm of Gendron et al.
[2014] is an improved version of the algorithm initially proposed by Simonetti et al.
[2011]. In the MCDSP, unlike the p-ASP, the dominating set has no fixed cardinality
associated with it, and there are no costs associated with connections.

The MCDSP is closely related to the maximum leaf spanning tree problem
(MLSTP) where you have to find a spanning tree with the maximum number of leaves.
Fujie [2003] proposed the first exact branch-and-cut algorithm for the problem. Later,
Fujie [2004] conducted polyhedral investigations for the MLSTP and showed several
facet defining inequalities. Lucena et al. [2010] proposed two formulations for the
MLSTP and implemented branch-and-cut algorithms for these two formulations. The
first model is a directed graph reformulation of the formulation used by Fujie [2004].
The second formulation recasts the MLSTP as a Steiner arborescence problem. Lucena
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et al. [2010] also enhanced the algorithm introduced by Fujie [2003] with a dynamic
greedy heuristic. Recently, Gouveia and Simonetti [2017] presented a new extended
model applicable to the MLSTP. The new formulation improved previous known dual
bounds for the problem, and the algorithm based on it proved competitive with the
existing approaches.

Another relevant problem is the tree star problem (T-SP) [Lucena et al., 2016].
In the T-SP, an edge has an assigned cost according to its role in the spanning tree that
contains it. Considering different costs for edges connecting leaves and internal vertices,
the T-SP is to find a minimum cost spanning tree. The problem has applications
in telecommunications where links are priced according to their capacities. Lucena
et al. [2016] introduced a mixed integer programming formulation based on generalized
subtour elimination constraints together with a branch-and-cut algorithm.

Leitner et al. [2017] studied a family of problems with tree-star topologies,
namely, the connected facility location problem (ConFL) [Gollowitzer and Ljubić,
2011], rent-or-buy problem [Nuggehalli et al., 2003; Swamy and Kumar, 2004], and
the (generalized) Steiner tree-star [Khuller and Zhu, 2002]. Their approach consisted
of showing that all the previous tree-star problems can be modeled as special cases of
the asymmetric version of the ConFL. The ConFL consists of choosing which facilities
to open, such that the core network induced from the chosen facilities is connected,
and all the customers are assigned to an open facility. The objective is to minimize
the cost of all connections and the cost associated with opening facilities. The authors
incorporated three strategies to improve their branch-and-cut algorithm: (i) use of cuts
based on a dual ascent procedure, (ii) reduction procedures in the input graph based
on dual costs, and (iii) incorporation of primal heuristics to obtain tight upper bounds.
Different from the p-ASP, there are subsets of vertices for each role in the network,
Steiner vertices can be used to connect facilities, and no cardinality is imposed in the
core network.

The p-cable trench problem (p-CTP) has a fixed cardinality constraint on its
topology, like the p-ASP. In the problem, p facilities have to be located in order
to define a forest such that every customer is connected to precisely one facility.
Unlike the p-ASP, the opened facilities need not be connected, and there is no star
topology. The customer and the facility do not need to be connected through only
one arc. There may be other customers on the path between a facility and a specific
customer. Marianov et al. [2012] defined the p-CTP as an extension of the original
cable trench problem introduced by Vasko et al. [2002] to model telecommunication
network problems. Marianov et al. [2012] proposed a multicommodity flow formulation
and two Lagrangean relaxation heuristics for the p-CTP. Calik et al. [2017] generalized



2. The p-arborescence star problem 11

the previous variants of the problem and introduced an algorithm framework based on
Benders decomposition to deal with the various cable trench problems found in the
literature. Their proposed general version includes capacity and covering constraints.

Telecommunication networks are commonly structured as multilayer hierarchical
networks. In this context, the p-ASP can be viewed as a two-level network design
problem. The minimum ring-star problem (MRSP), where a cycle (ring) has to be
defined, and vertices outside the cycle must be covered, also fits this classification.
Each edge has two costs according to whether both endpoints are internal vertices or
a leaf and an internal vertex. Labbé et al. [2004] proposed several valid inequalities
and implemented a branch-and-cut algorithm for the problem. Simonetti et al. [2011]
formulated the MRSP as a Steiner arborescence problem on a layered graph and
developed a branch-and-cut algorithm based on this formulation. This formulation
dominates the formulation proposed by Labbé et al. [2004]. Simonetti et al. [2011]
also investigated a related problem that has not received too much attention, the
minimum spanning caterpillar problem (MSCP). In the MSCP, one is looking for the
minimum path such that all vertices not in the path are leaves. Integer programming
formulations for the MSCP were first studied in Simonetti et al. [2009]. Baldacci
et al. [2007] addressed a general version of the MRSP where multiple rings are allowed.
Besides multiple rings, each ring has a maximum length. The authors suggested two
formulations and assessed their correspondent branch-and-cut algorithms. Baldacci
et al. [2007] also provide a nice discussion about the implementation issues of their
approaches.

In this work, we focus on exact algorithms for the p-ASP. Initially, we show
that due to the equal costs between intra and inter-cluster arcs in the problem,
we can define the network topology using only one set of arc variables. Next, we
propose two approaches to enforce backbone connectivity. The first, following an earlier
approach for the problem, is based on cutset constraints. The second is based on the
classic subtour elimination constraints. We show that the linear relaxations of both
formulations provide the same dual limits. Furthermore, we prove that the formulation
of Morais et al. [2019] is strictly contained within the proposed formulations. Although
the dual bounds are stronger, our computational experiments show that the proposed
formulations solve the linear programming relaxations faster. Finally, we present
preprocessing procedures together with our branch-and-cut algorithms and improve
the branch-and-cut algorithm of Morais et al. [2019]. For the small and medium-sized
instances, our proposed algorithms outperform the previous exact algorithm in the
literature. In the hard instances, there was no clear dominance between our best
algorithm and the improved algorithm of Morais et al. [2019].
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2.3 Mathematical formulations

Before we present our formulations, we will introduce the notation used throughout
the chapter. Given a subset S ⊆ V , we define δ+(S) = {(i, j) ∈ A : i ∈ S ∧ j ̸∈ S}
as the set of arcs leaving S, and δ−(S) = {(i, j) ∈ A : i ̸∈ S ∧ j ∈ S} as the set of
arcs entering subset S. When S = {i}, we write δ+({i}) = δ+(i) and δ−({i}) = δ−(i).
Also, let A(S) = {(i, j) ∈ A : i ∈ S ∧ j ∈ S} be the set of arcs with both endpoints
inside S. Finally, we define S = V \ S as the complement of subset S ⊆ V .

First, we describe the formulation proposed by Morais et al. [2019]. We use
the model to demonstrate theoretical results about the strength of our proposed
formulations. Moreover, the reproduction of the formulation here allows a more
convenient reading and easy comparison. To formulate the p-ASP, we make use of
the following sets of variables:

• {hi ∈ {0, 1} : i ∈ V } indicates whether the vertex i ∈ V is a cluster-head (hi = 1)
or not (hi = 0).

• {yij ∈ {0, 1} : (i, j) ∈ A} expresses if an arc (i, j) ∈ A is used as an intra-cluster
arc (yij = 1) or not (yij = 0).

• {zij ∈ {0, 1} : (i, j) ∈ A} states whether an arc (i, j) ∈ A is used in the backbone
(zij = 1) or not (zij = 0).

Given these sets of variables, Morais et al. [2019] formulated the p-ASP as:

(F1 ) min
∑︂

(i,j)∈A

cij (zij + yij), (2.1)

s.t.
∑︂

i∈V \{r}

hi = p, (2.2)

hr = 1, (2.3)∑︂
(i,j)∈A

yij = 1− hi, i ∈ V \ {r}, (2.4)

∑︂
(i,j)∈A

zij = hi, i ∈ V \ {r}, (2.5)

zij + zji + yij ≤ hj, (i, j) ∈ A, (2.6)∑︂
(i,j)∈δ−(r)

(zji + yij + yji) = 0, (2.7)

∑︂
(i,j)∈δ−(r)

zij ≥ 1, (2.8)
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∑︂
(i,j)∈δ+(S)

zij −
∑︂

(v,j)∈A(S)

yvj ≥ hv, S ⊂ V \ {r}, 2 ≤ |S| , v ∈ S, (2.9)

hi ∈ {0, 1}, i ∈ V, (2.10)

yij ∈ {0, 1}, (i, j) ∈ A, (2.11)

zij ∈ {0, 1}, (i, j) ∈ A. (2.12)

The objective function (2.1) minimizes the total cost of making all the
connections. The fixed cardinality of the backbone is imposed through (2.2), stating
that p cluster-heads must be chosen. Equality (2.3) fixes the root as a cluster-head.
Constraints (2.4) establish the star located around each cluster-head. If the vertex i

is not defined as a cluster-head, then there is an intra-cluster arc pointing out from
it. Otherwise, the vertex i has no intra-cluster outgoing arc. Each vertex defined as
cluster-head has an outgoing backbone arc through constraints (2.5). Constraints (2.6)
are responsible for the consistency between the h, y, and z variables. If an arc (i, j) ∈ A

is designated as an inter-cluster arc, it cannot be an intra-cluster arc at the same time.
Also, if an arc (i, j) ∈ A is selected to be in the solution, then vertex j must necessarily
be a cluster-head. We use constraints (2.7) to enforce that the root r has no outgoing
arc and no intra-cluster arc points to it. Moreover, constraint (2.8) requires at least
one arc to reach the root. The domain of variables h, y, and z, is established through
constraints (2.10)-(2.12).

The connectivity of the backbone is imposed with constraints (2.9). Morais
et al. [2019] proposed two forms of enforcing backbone connectivity. The first one is a
classical way of enforcing connectivity on tree problems. They used a set of constraints
based on multicommodity flows that originated from each vertex directed to the root
[Magnanti and Wolsey, 1995]. The second manner used to impose the connectivity
was the application of exponentially many cutset constraints. Initially, they defined
a standard cutset (without the term

∑︁
(v,j)∈A(S) yvj) for the backbone. However, the

two sets of arc variables allow the use of the ideas found in the work of Gendron et al.
[2014] to lift these standard cutset inequalities, which resulted in constraints (2.9).
We highlight that Morais et al. [2019] separated constraints (2.9) heuristically in their
branch-and-cut algorithm. In Section 2.4, we describe how to separate constraints (2.9)
exactly, which improves the overall performance of the algorithm.

2.3.1 Formulation with one set of arc variables

We can take advantage of the fact that there is no difference between intra and
inter-cluster arc costs in the problem to formulate the p-ASP using only one set of
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arc variables. This fact allows us to use half of the number of arc variables from the
previous formulation, which helps to tackle one of the bottlenecks in the problem, which
we will discuss in Section 2.5. Our proposed formulation makes use of the variables
{xij ∈ {0, 1} : (i, j) ∈ A}, xij = 1 if and only if arc (i, j) ∈ A is used in a solution,
otherwise, xij = 0. The x variables indicate both the use of intra and inter-cluster arcs.

We still use the binary variables h defined previously to indicate if a vertex is
chosen as a cluster-head or not. Given the defined variables, the p-ASP is formulated
as:

min
∑︂

(i,j)∈A

cijxij, (2.13)

s.t.
∑︂

i∈V \{r}

hi = p, (2.14)

hr = 1, (2.15)∑︂
(i,j)∈A

xij = 1, i ∈ V \ {r}, (2.16)

xij ≤ hj, (i, j) ∈ A, (2.17)

xir ≤ hi, (i, r) ∈ A, (2.18)∑︂
(i,j)∈δ−(r)

xij ≥ 1, (2.19)

hi ∈ {0, 1}, i ∈ V, (2.20)

xij ∈ {0, 1}, (i, j) ∈ A. (2.21)

Since the x variables indicate the use of intra and inter-cluster arcs, the objective
function (2.13) minimizes backbone and assignment costs. Equality (2.14) states that
p cluster-heads must be chosen, and equality (2.15) defines the root as a cluster-head.
Constraints (2.16) ensure that at least one arc leaves each vertex. Since the topology is
a spanning reverse arborescence, the outdegree of each vertex is exactly one. Note that
according to the problem definition, only vertices defined as cluster-heads can have an
indegree greater than or equal to one. Therefore, as specified by constraints (2.17),
if a vertex has an arc incident to it, it must be a cluster-head. Also, as constraints
(2.18) state, if a vertex has an arc directed to the root, then, necessarily, this vertex is
a cluster-head. At least one arc must reach the root r according to inequality (2.19).
Note that equality (2.15) is implied by inequalities (2.17) and (2.19). Constraints (2.20)
and (2.21) state the binary nature of variables h and x.

Formulation (2.13)-(2.21) imposes the degree constraints and the overall structure
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of the problem. However, it does not enforce backbone connectivity. In Figure 2.2,
we show an infeasible solution for the p-ASP, but valid for formulation (2.13)-(2.21).
A vertex i ∈ V \ {r} with gray color indicates that hi = 1, and white that hi = 0.
The root r = 0 is colored in black. The arcs in the figure represent the values of the
x variables. We depict intra-cluster arcs with dashed lines and inter-cluster arcs with
solid lines. The solution satisfies constraints (2.14)-(2.21). Despite that, it violates the
restriction that the backbone obtained from the cluster-heads must establish a reverse
arborescence.
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Figure 2.2: Integer feasible solution satisfying formulation (2.13)-(2.21).

In the remainder of the section, we show our approaches to enforce backbone
connectivity. In addition, we prove theoretical results about the relationship of the
formulations.

2.3.1.1 Cutset backbone

The first approach to impose backbone connectivity is through cutset constraints.
Recall that an arborescence is a directed subgraph in which there is exactly one path
between the root and any other vertex. In a reverse arborescence, we reverse all the
arcs, pointing them towards the root. Therefore, the root must be reachable from any
vertex in the graph. This definition naturally leads to a cutset formulation:∑︂

(i,j)∈δ+(S)

xij ≥ 1, S ⊂ V \ {r}, |S| ≥ 2. (2.22)

Inequalities (2.22) state that given any subset S of vertices not containing the
root, there must be an arc going from S to S. In other words, given any subset of
vertices not including the root, at least one arc must leave the subset in order to reach
the root. We refer to the formulation given by (2.13)-(2.22) as F2.
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2.3.1.2 Subtour elimination constraint backbone

Our alternative approach for enforcing connectivity with the root is the idea that if a
subset S ⊂ V \ {r} does not reach the root r of the reverse arborescence, then there is
a cycle inside S. Consequently, backbone connectivity can also be established through
subtour elimination constraints:∑︂

(i,j)∈A(S)

xij ≤ |S| − 1, S ⊂ V \ {r}, |S| ≥ 2. (2.23)

While inequalities (2.22) follow from the definition of reverse arborescence, the
same does not happen for constraints (2.23). Next, we prove the validity of the
inequalities.

Theorem 1. Inequalities (2.23) are valid for the p-ASP.

Proof. Let S ⊂ V \ {r} be a subset satisfying
∑︁

(i,j)∈A(S) xij > |S| − 1. We will
show that S contains a cycle. Summing up (2.16) for every vertex i ∈ S, we obtain∑︁

(i,j)∈A(S) xij +
∑︁

(i,j)∈δ+(S) xij = |S|. Since we supposed
∑︁

(i,j)∈A(S) xij > |S| − 1, we
have

∑︁
(i,j)∈δ+(S) xij = 0. Thus, there are |S| arcs inside S. Note that we want to

show that (2.23) does not cutoff any feasible solution for the p-ASP. Therefore, we are
dealing only with integral solutions.

While S has a vertex v with indegree zero, we remove it. Then, since we subtract
one from each side, we have that

∑︁
(i,j)∈A(S\{v}) xij > |S \ {v}| − 1, and the inequality

is still violated. Otherwise, all vertices inside S have indegree at least one, and
according to constraints (2.17), are cluster-heads. Choose a cluster-head v ∈ S, since∑︁

(i,j)∈δ+(S) xij = 0, because of (2.16) we know there is an u ∈ S such that xvu = 1.
Apply this same argument iteratively. Since S is finite, at some point we will return
to a vertex already considered. Therefore, S has a cycle. ■

Using Figure 2.2 as an example, after the vertices with indegree zero are removed
from the component in the left, the remaining vertices 3 and 6 define a cycle. We
denote by F3 the formulation given by (2.13)-(2.21) and (2.23).

2.3.2 Comparison of formulations

In this section, we compare the formulations for the p-ASP presented previously.
Initially, we discuss that the linear relaxations of the formulations F2 and F3 provide
the same dual limits. Next, we show that for any feasible fractional solution of
formulation F1, it is possible to obtain an equivalent solution for formulation F2.



2. The p-arborescence star problem 17

The result indicates that formulation F1 is at least as strong as formulation F2. To
conclude, we provide a feasible fractional point for formulation F2 that is infeasible
for formulation F1. This concludes the proof and demonstrates that formulation F1

is stronger than formulation F2. Since formulations F2 and F3 are equivalent, the
previous results are identical for formulation F3.

In the minimum spanning tree problem, it is well known that models based on
directed graphs produce stronger linear programming bounds than models defined in
undirected graphs. For models defined by cutset and subtour elimination constraints,
if both models are defined in an undirected graph, the subtour elimination constraint
model provides tighter bounds [Magnanti and Wolsey, 1995]. However, in directed
graphs, both models obtain the same linear programming bounds. The previous result
is valid for the p-ASP. That is, formulations F2 and F3 are equivalent.

Theorem 2. Formulations F2 and F3 are equivalent. The linear relaxation of both
formulations represent the same set of fractional points.

Proof. Given that constraints (2.13)-(2.21) are the same in both formulations F1 and
F2, we have to show that, for each fractional solution of formulation F2 such that
(2.22) is violated, then (2.23) of F3 is also violated, and vice-versa.

Let S ⊂ V \ {r} be a subset of vertices used in the definition of (2.22). Summing
up (2.16) for each i ∈ S we obtain:∑︂

i∈S

∑︂
(i,j)∈A

xij = |S|, (summing (2.16) for each i ∈ S) (2.24)

∑︂
(i,j)∈A(S)

xij +
∑︂

(i,j)∈δ+(S)

xij = |S|, (using our defined notation) (2.25)

∑︂
(i,j)∈δ+(S)

xij = |S| −
∑︂

(i,j)∈A(S)

xij, (rearranging the terms) (2.26)

1 > |S| −
∑︂

(i,j)∈A(S)

xij, (assuming
∑︂

(i,j)∈δ+(S)

xij < 1, i.e., (2.22) is violated) (2.27)

∑︂
(i,j)∈A(S)

xij > |S| − 1, (rearranging the terms, (2.22) is violated
if and only if (2.23) is violated).

(2.28)

■

While both formulations F2 and F3 are equivalent, as we will see in Section 2.5,
the overall performances of the branch-and-cut algorithms based on both formulations
are different. Next, we prove that given any feasible fractional solution for formulation
F1, it is possible to obtain a feasible solution for formulation F2. Since formulations
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F2 and F3 represent the same set of solutions, the result is also valid for formulation
F3.

The y and z variables are used to indicate the use of an arc according to whether
its origin is a cluster-head or not. Therefore, the x variables are not used in formulation
F1. However, for the purpose of proving the results about the formulations, we add
the x variables in (2.1)-(2.12) with the following constraints:

xij = zij + yij, (i, j) ∈ A, (2.29)

xij ∈ {0, 1}, (i, j) ∈ A. (2.30)

Also, we substitute the y and z variables in the objective function (2.1) for the x

variables using the new equalities (2.29). We obtain:

min
∑︂

(i,j)∈A

cij (zij + yij) = min
∑︂

(i,j)∈A

cijxij. (2.31)

Note that the value of the new objective function stays the same as the costs are
equal between intra and inter-cluster arcs. We denote by F ′

1 the new formulation given
by the objective function (2.31) and constraints (2.2)-(2.12) and (2.29)-(2.30).

Theorem 3. The projection of F ′
1 in the h and x variables space is contained in F2.

Proof. Let (h, x, y, z) be a feasible fractional solution for the linear programming
relaxation of formulation F ′

1 , obtained by eliminating the restriction that the decision
variables h, x, y, and z, in the model (2.2)-(2.12) and (2.29)-(2.31), need to be integer.
We will show that (h, x) is a feasible solution for the linear programming relaxation of
formulation F2.

One can observe that (2.2) and (2.3) are equivalent to (2.14) and (2.15),
respectively. Therefore, the solution values h also satisfy constraints (2.14)-(2.15) of
the linear relaxation of F2. Next, for the x variables, we show that x together with h

satisfy (2.16)-(2.19) and (2.22).
For constraints (2.16), if we fix a vertex i ∈ V \ {r} and sum constraints (2.4)

with constraints (2.5), we obtain
∑︁

(i,j)∈A yij +
∑︁

(i,j)∈A zij = 1 − hi + hi = 1, which
means, using the linking constraint (2.29) to substitute the sum of the y and z variables,∑︁

(i,j)∈A xij = 1.
Inequalities (2.6) can be written as xij+zji ≤ hj. Accordingly, without modifying

the inequality, we have xij ≤ hj, and constraints (2.17) is satisfied.
For inequalities (2.18), we want to show xir ≤ hi for each (i, r) ∈ A. From (2.7)

we have that for each (i, r) ∈ A, yir = 0, and zri = 0. Breaking the sum of equalities
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(2.5), we have
∑︁

j∈V \{r} zij + zir = hi, then, zir ≤ hi. Therefore, we obtain zir ≤ hi,
and since xir = zir + yir and yir = 0, we have that xir ≤ hr.

Starting from inequality (2.8), we have that
∑︁

(i,j)∈δ−(r) yij +
∑︁

(i,j)∈δ−(r) zij ≥ 1.
Because adding

∑︁
(i,j)∈δ−(r) yij does not change the inequality. Therefore, after

substituting equality (2.29), we obtain,
∑︁

(i,j)∈δ−(r) xij ≥ 1, satisfying inequality (2.19).
Also, note that we have

∑︁
(i,j)∈δ−(r) yij = 0 from equalities (2.6). Now, only inequalities

(2.22) remains to be satisfied.
Let S ⊂ V \{r}, such that |S| ≥ 2, be a subset of vertices used in the definition of

(2.9). Given a vertex v ∈ S, after rearranging the terms from equalities (2.4), we obtain
hv = 1 −

∑︁
(v,j)∈A yvj. Hence, substituting it into the right-hand side of inequalities

(2.9) for a given vertex v ∈ S, yields:∑︂
(i,j)∈δ+(S)

zij −
∑︂

(v,j)∈A(S)

yvj ≥ 1−
∑︂

(v,j)∈A

yvj, (2.32)

∑︂
(i,j)∈δ+(S)

zij +
∑︂

(v,j)∈A

yvj −
∑︂

(v,j)∈A(S)

yvj ≥ 1, (rearranging the terms) (2.33)

∑︂
(i,j)∈δ+(S)

zij +
∑︂

(v,j)∈δ+(S)

yvj ≥ 1, (after subtraction only arcs
outgoing S remain)

(2.34)

∑︂
(i,j)∈δ+(S)

zij +
∑︂

(i,j)∈δ+(S)

yij ≥ 1, (Since v ∈ S, after the sum the
inequality is still valid)

(2.35)

∑︂
(i,j)∈δ+(S)

xij ≥ 1, (using equalities (2.29)). (2.36)

Therefore,
∑︁

(i,j)∈δ+(S) xij ≥ 1, and inequalities (2.22) are also respected. ■

We proved that for any feasible fractional solution of the linear relaxation of
formulation F ′

1 we can build a corresponding feasible solution for the linear relaxation
of formulation F2. Since formulations F2 and F3 represent the same space of fractional
solutions, the solutions built by the previous procedure are also valid for F3. Note that
the term

∑︁
(v,j)∈A(S) yvj in inequalities (2.9) can be viewed as a slackness. Which might

mean that formulation F2 contains fractional points not contained in F ′
1 . We prove

this result in the next theorem.

Theorem 4. The projection of F ′
1 in the h and x variables space is strictly contained

in F2.

Proof. Let (h, x, y, z) be a fractional solution for formulation F ′
1 satisfying (2.2)-(2.8)

and (2.29), that violates inequalities (2.9), such that, the subset S ⊂ V \ {r} and the
vertex v ∈ S causing the violation satisfy: the subset S has at least three vertices
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{t, u, v} in a manner that hv = 1 and hi = 0.5, for i ∈ S and i ̸= v. Also,∑︁
(t,j)∈δ+(S) ztj = 0.5,

∑︁
(t,j)∈δ+(S) ytj = 0.5, and

∑︁
(i,j)∈δ+(S\{t}) zij + yij = 0.0. The

outflow from S \ {t} must be zero. Only vertex t ∈ S has an outflow from S greater
than zero, which is divided equally between the y and z variables. Therefore, we need
that

∑︁
(i,j)∈A(S\{t}) zij + yij = |S \ {t}|. Observe that without vertex u in S, we could

have
∑︁

(i,j)∈δ+(S\{t}) zij > 0.0, and the correspondent inequality (2.9) could be satisfied.
Given the previous discussion, the inequality (2.9) defined is:

=0.5⏟ ⏞⏞ ⏟∑︂
(i,j)∈δ+(S)

zij −

=0.0⏟ ⏞⏞ ⏟∑︂
(v,j)∈A(S)

yvj ≥ hv (2.37)

0.5− 0.0 ̸≥ 1.0 (2.38)

And the inequality is violated. Using the proof of Theorem 3 to construct a
solution (h, x) for F2, we obtain

∑︁
(t,j)∈δ+(S) ztj+

∑︁
(t,j)∈δ+(S) ytj =

∑︁
(t,j)∈δ+(S) xtj = 1.0.

Then, for the inequality (2.22) defined by S, we have
∑︁

(i,j)∈δ+(S) xij ≥ 1.0. The outflow
from S using the x variables for vertex t is 1. Thus, the inequality is satisfied. As
we showed in the previous proof, the solution also respects (2.14)-(2.19) and (2.22).
Therefore, the solution (h, x) constructed is feasible for F2. ■

In Figure 2.3, we show an infeasible fractional solution for formulation F ′
1 that

violates inequality (2.9). In the figure, S = {1, 4, 5}, t = 1, u = 5, and v = 4. The solid
arcs represent the z variables, and the dashed arcs represent the y variables. The value
of the variable corresponding to each arc is in its label. We also indicate in the figure
the value of the h variable for each vertex. If we construct a solution for formulation
F2 using the previously described procedure, the resulting solution is feasible. Since
the solution displayed in the figure is feasible for F2, but infeasible for F ′

1 , we proved
that formulation F ′

1 is stronger than formulation F2 and F3. Notice that with the x

and h values fixed, there is no assignment of values for y and z such that the solution
is feasible for F ′

1 .
We proved previously that formulation F1 is stronger than formulations F2 and

F3. However, although stronger, it has twice the number of arc variables. Thus, the
solution of the linear programming relaxation of formulation F1 is expected to be more
expensive in terms of computational effort than the solutions of formulations F2 and F3.
As we will see in Section 2.5, the computational experiments with benchmark instances
show that our proposed models solve in much shorter times the linear programming
relaxations of the formulations. The results show that our tradeoff between lower
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Figure 2.3: Example of a fractional solution satisfying the conditions of Theorem 4.

bound quality and speed to obtain it is advantageous, the quality of the lower bound
deteriorates, but the time to calculate it improves.

2.4 Algorithms

In this section, we provide the implementation details of our proposed branch-and-cut
algorithms. We use the branch-and-cut framework available through the Concert
library in CPLEX 12.6 to implement the algorithms. We provide an upper bound
(UB) at the beginning of the algorithms. The UB is obtained by the combinatorial
Benders heuristic introduced by Morais et al. [2019].

Morais et al. [2019] implemented a heuristic based on Benders decomposition to
find feasible solutions for the p-ASP. However, in the worst case, the heuristic can
enumerate all feasibility cuts for the model, which is an exponential amount. Thus, a
question arises if finding a feasible solution for a general p-ASP instance is a polynomial
problem. Next, we prove that the decision version of the feasibility problem is NP-hard:

feasibility p-ASP

Input: A digraph G = (V,A), a positive integer p, and a root r ∈ V .
Question: Is there a feasible solution for the instance?

We use a reduction from the decision version of the dominating set problem
[Garey and Johnson, 1990]:



2. The p-arborescence star problem 22

dominating set

Input: An undirected graph G = (V,E) and a positive integer k ≤ |V |.
Question: Is there a dominating set of size k or less?

Theorem 5. feasibility p-ASP is NP-hard.

Proof. To reduce an instance of the dominant set in the feasibility p-ASP, we
build a digraph G = (V + {r}, A) and set p = k. For each edge {i, j} ∈ E, we create
two arcs, (i, j) ∈ A and (j, i) ∈ A. Also, for every u ∈ V we add arcs (u, r) ∈ A and
(r, u) ∈ A. Now, we have to show that a dominant set instance has a dominating
set of size at most k if, and only if, the corresponding feasibility p-ASP instance
built is feasible.

Suppose that the dominant set instance has a dominating set of size at most
k. Therefore, there is a subset S ⊆ V \ {r} of cluster-heads with cardinality p such
that, for any vertex v ̸∈ S ∪ {r}, there is an arc (v, u) ∈ A such that u ∈ S. Thus, v is
covered by u. Moreover, we know that S define a reverse arborescence by construction
because of the arcs (u, r) for each u ∈ V . Thus, the correspondent feasibility p-ASP

instance is feasible. Furthermore, if the cardinality of subset S is less than p, we can
increase it by adding leaves until |S| = p.

Assume, by contraposition, that the dominant set instance has no dominant
set of size k or less. Observe that any subset S ⊆ V \ {r} of vertices with cardinality
p induces a reverse arboresce with the root r by construction. Although the reverse
arborescence constraint is satisfied, there is no subset S ⊆ V \ {r} with cardinality
p such that all the vertices in V \ S are covered, since it would contradict our initial
assumption that there is no dominating set of size k or less. Therefore, the instance is
infeasible and the answer of feasibility p-ASP is negative. ■

Note that finding a feasible solution for a p-ASP instance cannot be easier than
determining whether it exists or not. Given a candidate solution for the p-ASP, we can
check if the set H is a dominant set and induces a reverse arborescence in polynomial
time. Therefore, feasibility p-ASP is NP-complete.

2.4.1 Preprocessing procedures

In the proposed algorithms, arcs of the form (r, i), such that i ∈ V \{r}, do not appear
in any feasible solution. Therefore, we remove all outgoing arcs from the root r. We
do not remove any other types of arcs. In the minimum weight spanning arborescence
problem, we can eliminate leaves from the graph and the problem remains the same.
The optimal solution will not be affected as long as we add the cost of their connections.
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However, the same does not apply to the p-ASP since the leaves may be necessary to
reach the value p. Additionally, due to Theorem 5, the feasibility of the new instance is
not guaranteed. Consequently, removing vertices in the problem is not a simple task.

Despite the difficulty of eliminating vertices in the problem, there are cases where
we can say that a subset of vertices contains at least one cluster-head. Let S ⊆ V \{r}
be a subset of vertices not containing the root, in the case where S must have at least
one cluster-head, we define the following general valid inequalities:

∑︂
i∈S

hi ≥ 1, S ⊆ V \ {r}. (2.39)

These inequalities state that at least one vertex of S is a cluster-head. If a vertex
v ∈ V \{r} is an articulation point, then S = {v} defines a valid inequality (2.39). One
can detect articulation points using a depth-first search starting from the root r. A
vertex v ∈ V \ {r} is an articulation point if and only if v has a child u such that there
is no back arc from u or any child of u to an ancestor of v [Cormen et al., 2009]. In
the following, we provide several conditions where a subset S defines a valid inequality
(2.39).

2.4.1.1 Vertex separator

Given a digraph G = (V,A) and two vertices u and v, a subset S ⊆ V \ {u, v} is called
a vertex separator if the removal of S from the graph disconnects u and v. In the
p-ASP, if a subset S is a vertex separator between a vertex v ∈ V \ {r} and the root
r, then S contains at least one cluster-head. Every path connecting v and the root r

visits at least one vertex of S. Thus, if S does not have a cluster-head, it is impossible
to connect v with the root r.

Considering the previous discussion, if S is a vertex separator between a vertex
v ∈ V \ {r} and the root r, then S defines a valid inequality (2.39). We compute the
vertex separator between each vertex v ∈ V \ {r} and the root r using the algorithm
found in Even [2011]. The algorithm solves a max-flow problem on a modified graph
to compute the minimum vertex separator between the pair of vertices.

2.4.1.2 Minimum weight spanning arborescence with upper bound

Let S ⊆ V \ {r} be a subset of vertices that will be connected as leaves in a
reverse arborescence. Initially, we remove all vertices of S from the graph and solve
the minimum weight spanning reverse arborescence in the resulting graph. Then,
we connect the vertices of S with their cheapest neighbor in the computed reverse
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arborescence. If the total cost of the arborescence is greater than a valid UB, then at
least one vertex in S is cluster-head, and the subset defines a valid inequality (2.39).
Note that the solution is worse than the available UB if we connect all vertices of S as
leaves. Therefore, at least one of the vertices of S has to be an internal vertex to have
a solution equal to or better than the one the UB provides.

To find subsets that satisfy the previous description, we randomly create 3 types
of subsets with 0.25 |V | vertices each. For the first type of subset, we randomly
choose vertices until the desired size. In the second type, we sort the set of vertices
non-increasingly by the degree. Then, we choose a random number t in the range [0, 1].
The element in the position ⌈|V | · td⌉ is added to S. We proceed iteratively until S
is filled. The third approach performs the previous procedure, but this time sorting
non-decreasingly. After creating the subsets, we check whether S or S \ {r} define a
valid inequality (2.39). We run the previous procedure for MAXIT iterations. Based on
preliminary experiments with a subset of instances from the benchmark, we set d to 5

and MAXIT to 250. Although in small instances a small subset size is sufficient, for hard
instances it is necessary to have a size of at least 0.2 |V | in order to find valid subsets
for inequalities (2.39).

The use of parameter d to choose a vertex in position ⌈|V | ·td⌉ from the sorted list
is motivated by the work of Shaw [1998]. In the work, he uses the parameter to control
which requests are removed based on a distance metric. The removal of a vertex is
biased towards those that are at the beginning of the list. As Shaw [1998] discusses,
the parameter d controls the degree of the bias. A high value for parameter d favors
vertices at the beginning of the sorted list.

2.4.1.3 Arborescence based subset

Given a subset of vertices S ⊆ V \ {r} without the root, if S ∪ {r} does not define
a reverse arborescence, then S \ {r} has at least one cluster-head. Otherwise, it is
impossible to visit the root from all vertices in S.

S0

1

2

3

4

5

6

7

8

Figure 2.4: Example of a valid subset for inequalities (2.39).
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Observe that S is a vertex separator, but it might be different from those
computed in Section 2.4.1.1. We display an example in Figure 2.4. The subset
S = {1, 2, 5, 6, 7, 8} does not define a reverse arborescence with the root r = 0.
Therefore, S \ {r} = {3, 4} is vertex separator and admits a valid inequality (2.39).
Note that S\{r} is different from the subsets {5}, {6}, {3, 6}, {4, 5}, {3, 2}, and {1, 4},
computed with the algorithm in Section 2.4.1.1.

If the procedure described in Section 2.4.1.2 does not find valid subsets S and
S \ {r}, we check whether the subgraphs induced by the subsets define a reverse
arborescence with the root r. We perform a depth-first search and if the vertex is
in the subset, we do not iterate over it recursively. At the end of the procedure, the
subgraph induced by the search must define a reverse arborescence. We also check
whether S defines a reverse arborescence for each vertex separator S \ {r} computed
in Section 2.4.1.1.

2.4.2 Initial model

The initial models for formulations F2 and F3 are both composed of the objective
function (2.13) and constraints (2.14)-(2.19). The integrality restrictions (2.20) and
(2.21) of the variables are removed during the solution of the root node and the
enumeration of the branch-and-bound tree. We relax constraints (2.22) and (2.23)
in their correspondent algorithms and dynamically add them through our separation
procedures. We add in the models all valid inequalities (2.39) found during the
preprocessing.

Despite relaxing constraints (2.22) and (2.23), we enumerate all inequalities for
subsets of size two and three and add them in a cut pool in their respective initial
models [Cordeau, 2006; Baldacci et al., 2007]. In our preliminary experiments, the
version that enumerated all the previous subsets performed better than the version
that did not enumerate them. Since the amount of inequalities (2.22) and (2.23) for
|S| = 2 and |S| = 3 is small compared to the size of the models, we can enumerate and
add them as lazy constraints (O(V 2) and O(V 3), respectively, which is smaller than the
O(V 2E) complexity of the Dinic algorithm used to solve their separation problems).
We observed that several cuts added in integral solutions were due to cycles of size
two and three. Therefore, to reduce the computation time used to solve the separation
problems of these simple cases and the reoptimization of such nodes, we used the cut
pool mechanism.
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2.4.3 Branching

As discussed by Gollowitzer and Ljubić [2011], to avoid creating imbalances in the
branch-and-bound tree, it is advantageous to set branching priorities that take into
account the topology of the problem. We set the highest branching priority to variables
h in our branch-and-cut algorithms. Deciding which vertices are chosen as cluster-heads
is more important than deciding which arcs to use in a solution. Since the backbone
arcs are between cluster-heads, and the arcs inside a cluster depend on the vertex
defined as cluster-head. In Section 2.5, we show the results of the algorithm without
branching priorities.

We tested strong branching in our algorithms. While the small to medium-sized
instances converged faster, it impacted negatively on the larger ones. We also evaluated
limiting the number of simplex iterations performed on each variable in the candidate
list for strong branching. Although the time taken by the algorithms decreased in this
case, it was not enough to outperform the basic strategy without it. As we discuss
in our results section, it is very important to solve the linear programs obtained at
each node fast. Therefore, it was not beneficial to spend the extra time with strong
branching.

2.4.4 Separation procedures

Given a fractional solution (h, x) for formulations F2 and F3, we construct the
associated support graph G = (V,A), with vertices V and arcs A = A. Each arc
(i, j) ∈ A has a capacity equal to xij in G. The exact separation procedure for
inequalities (2.22) and (2.23) is the same [Padberg and Wolsey, 1983]. Note that the
solution is feasible if and only if the support graph G has a one unit flow from every
vertex to the root r. Therefore, the separation is carried out by solving a max-flow
problem for each vertex in the support graph. For each vertex v ∈ V \{r}, we compute
the max-flow from v to r. If the value of the maximum flow is less than 1, then, by
the max-flow min-cut theorem, the set S defining the minimum cut has a capacity less
than 1, which means,

∑︁
(i,j)∈δ+(S) xij < 1. Likewise, we have

∑︁
(i,j)∈A(S) xij > |S| − 1.

If the solution in the current node of the branch-and-bound tree is integral,
we can use a cheaper procedure to separate inequalities (2.22) and (2.23). We can
separate them using a graph search algorithm such as breadth-first search or depth-first
search. In our algorithms, we implemented a breadth-first search to find the connected
components and check if there is a cycle in the solution.

During the execution of the algorithm, we separate fractional solutions only at
the root node of the branch-and-bound tree. We tested separating fractional solutions
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on all nodes of the branch-and-bound tree, but this version performed worse in our
preliminary experiments. We implemented the algorithm of Dinic to solve our max-flow
problems [Dinic, 1970].

In our algorithms, we add all the cuts found during the separation phase of a
node, since, as we discuss in the next section, the number of cuts found is small.
We implemented a version of the algorithm that added the most violated cut in each
iteration. However, this approach brought no performance gain.

As we highlighted in Section 2.3, Morais et al. [2019] used a heuristic procedure to
separate inequalities (2.9) in their branch-and-cut algorithm. The separation algorithm
creates the support graph taking into account only the value of the z variables. Then, a
max-flow is solved from each vertex v ∈ V \{r} to the root r to find violated inequalities
(2.9). The result is a heuristic algorithm to separate inequalities (2.9), given that the
value of the term

∑︁
(v,j)∈A(S) yvj is not considered in the support graph when running

the max-flow from v to r. Next, we show how to separate constraints (2.9) exactly.

2.4.4.1 Exact separation of the lifted cutset inequalities

In our preliminary experiments, we observed that, for some instances, our proposed
formulations obtained tighter linear programming bounds than the formulation of
Morais et al. [2019] at the root node of the branch-and-bound tree. This happens
because they separate inequalities (2.9) heuristically in their branch-and-cut algorithm.
Next, we show how to separate the inequalities exactly.

From the proof of Theorem 3, given a subset S ⊂ V \ {r} and a vertex v ∈ S,
after substituting hv = 1 −

∑︁
(v,j)∈A yvj into the right-hand side of inequalities (2.9),

we showed that constraints (2.9) are equivalent to:∑︂
(i,j)∈δ+(S)

zij +
∑︂

(v,j)∈δ+(S)

yvj ≥ 1, S ⊂ V \ {r}, 2 ≤ |S| , v ∈ S. (2.40)

Note that all terms in the sum are expressed as the weights of arcs leaving the
subset S. Given a fractional solution (h, y, z) for formulation F1, for each vertex
v ∈ V \ {r}, we separate inequalities (2.40) in the following way:

1. Create the associated support graph G = (V,A), with vertices V and arcs A

where each arc (i, j) ∈ A has capacity equal to zij.

2. Increase the capacity of each arc (v, u) ∈ A by the value yvu.



2. The p-arborescence star problem 28

3. Run the max-flow from v to r. If the flow value is smaller than 1, then by the
max-flow min-cut theorem, we can obtain a set S such that v ∈ S and S violates
inequality (2.40).

We modified the code of Morais et al. [2019], kindly provided by the authors,
and implemented the exact separation procedure. In the next section, we compare the
results of the previous version of the algorithm with the new version using our exact
separation procedure.

2.5 Computational Results

In this section, we present the results from the computational experiments performed
to evaluate our proposed algorithms. We refer to the branch-and-cut algorithm based
on the cutset constraints formulation F2 as CUTBC, and to the algorithm based on
the subtour elimination constraints formulation F3 as SECBC. The source codes from
Morais et al. [2019] were kindly shared with us. Therefore, we implemented the exact
separation procedure described in Section 2.4.4.1. This new branch-and-cut algorithm
is denoted by EXSEPBC. First, we compare the algorithm of Morais et al. [2019] with
our version EXSEPBC which includes the exact separation procedure. Then we compare
the best of the two algorithms with our proposed CUTBC and SECBC algorithms.

The proposed algorithms were implemented using the C++ programming
language and compiled with GCC 4.7.3 using the optimization flag -O3. We used
the CPLEX 12.6 branch-and-cut framework to implement our algorithms and turned
off the preprocessing, cuts, multithreading, and heuristics of the solver. We set Dual
simplex as the default algorithm to use on node relaxations. The experiments were
performed on an Intel Xeon E5645 hexacore machine with 2.4Ghz with a total of 32GB
of RAM available running the Ubuntu 12.04 LTS operating system. All the algorithms
were compiled and ran in the same computational environment. In our experiments,
we set the maximum computational time to eight hours (28800 seconds).

We use the set of benchmark instances introduced by Morais et al. [2019]. The
instances are generated from a complete graph G = (V,A). The vertices are randomly
located on a square grid with arc costs based on the euclidean distance. The cardinality
p of the backbone is fixed with values from {4, 5, 8, 10, 15, 20, 30} and the size |V | = n

of the vertex set with values ranging from 30 to 200. Let S ⊆ V be a subset of
vertices of G. We denote by G[S] = (S,A(S)) the subgraph of G induced by S, in
which S is the vertex set and A(S) is the set of arcs. In order to guarantee feasibility,
a subset W ⊆ V is randomly chosen with uniform probability such that r ∈ W ,
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Table 2.1: Computational evaluation of the impact of the exact separation procedure
(results aggregated by the number of vertices).

Morais et al. [2019] EXSEPBC
Vertices Gapr Timer Gapf Timef Nodes Cuts Solved Gapr Timer Gapf Timef Nodes Cuts Solved

30 2.18 0.26 0.00 0.81 4.14 10.71 7 / 7 0.28 0.30 0.00 0.33 0.00 10.29 7 / 7
51 2.49 0.98 0.00 5.17 50.5 7.25 8 / 8 2.10 1.72 0.00 5.74 25.25 4.00 8 / 8
76 2.50 8.38 0.00 26.35 31.17 10.17 6 / 6 2.07 12.25 0.00 32.75 17.50 4.67 6 / 6
99 4.91 20.49 0.00 124.43 216.17 33.67 6 / 6 4.76 30.04 0.00 162.68 244.00 53.67 6 / 6

101 4.99 20.40 0.00 113.07 487.14 17.71 7 / 7 4.31 46.06 0.00 166.25 395.14 10.29 7 / 7
127 1.77 31.72 0.00 140.75 133.33 20.33 12 / 12 1.59 27.57 0.00 117.56 99.42 18.17 12 / 12
152 7.17 428.43 0.11 10167.16 16722.86 181.00 6 / 7 6.55 84.76 0.00 8964.54 16282.14 610.00 7 / 7
180 13.65 412.99 0.70 17102.47 9834.20 92.40 3 / 5 11.33 838.51 0.47 17302.74 6496.20 68.60 4 / 5
200 14.26 1011.8 4.35 28800.00 16610.25 206.75 0 / 4 12.33 2455.73 4.23 28800.00 8522.25 112.75 0 / 4

|W | = p + 1, and the induced subgraph G[W ] = (W,A(W )) is a connected subgraph.
Then, additional arcs are randomly selected from A\A(W ) until the desired arc density
d ∈ {30%, 40%, 50%, 60%, 70%, 100%} is achieved. The name of each instance indicates
the parameters set in its definition, for example n100p5d50, we have n = 100, p = 5,
and d = 50%.

We summarize the results obtained by the algorithms of Morais et al. [2019] and
EXSEPBC in Table 2.1. The values are the average of the results for all the instances in
the benchmark set with the same number of vertices. The columns for each algorithm
in the table represents: the average gap in the root node of the branch-and-bound tree
(Gapr), calculated as (BUB−LBR)/(BUB), where LBR is the lower bound obtained in
such node and BUB is the best upper bound known; the average time, in seconds, taken
to obtain the lower bound in the root node of the branch-and-bound tree (Timer); the
average final gap (Gapf ), computed as (BUB − BLB)/(BUB), where BLB is the best
lower bound obtained by the algorithm during its execution; the average final execution
time, in seconds, of the algorithm (Timef ); the average number of nodes investigated in
the branch-and-bound tree (Nodes); the average amount of cuts added in nodes with
integer solution of the branch-and-bound tree (Cuts); and the number of instances
solved by each algorithm together with the total of instances in the benchmark set
(Solved / Total).

Examining the results in Table 2.1, one can see that the average gap obtained
in the root node of the branch-and-bound tree decreased for all instance classes. This
reduction indicates that the algorithm of Morais et al. [2019] stops the optimization
at the root node of the branch-and-bound tree prematurely because the heuristic
separation for inequalities (2.9) finds no violated cut. Since the exact separation
procedure continues beyond the point at which the heuristic separation stops, the time
spent at the root node tends to increase. However, the total time spent by the EXSEPBC
algorithm remained in the same order of magnitude as the algorithm of Morais et al.
[2019]. Moreover, it is worth noting that the average number of nodes enumerated in
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Table 2.2: Results for the variants of the branch-and-cut algorithm based on
formulation F2.

Algorithm Gapr Timer Gapf Timef Nodes Cuts Solved
CUTBC 5.98 61.72 0.85 3936.53 56670.89 49.76 57 / 62
CUTBC without preprocessing 6.00 61.14 1.08 4632.14 41491.89 46.56 55 / 62
CUTBC without preprocessing
and branching priorities 6.00 61.84 2.20 7165.82 59057.05 40.84 47 / 62

the branch-and-bound tree decreased in the algorithm. The algorithm EXSEPBC solved
two more instances than the algorithm of Morais et al. [2019], one with 152 vertices and
another with 180 vertices. In view of the previous discussion, the algorithm EXSEPBC

performed better. Thus, we use the results of the algorithm EXSEPBC in the rest of the
section.

Table 2.2 displays the results of the variants of the algorithm CUTBC. The first
column (Algorithm) indicates the algorithm considered. The following columns have
the same meaning as in Table 2.1, this time considering all instances in the benchmark.
From the table, we can see that preprocessing helped to solve two more instances
and slightly improved the gap at the root. The average total time spent by the
algorithm decreased. We suppose that inequalities (2.39) help the algorithm make
better branching decisions since it has a huge influence on the performance. As we can
see, the version of the algorithm where we do not set branching priorities has a worse
behavior when compared to the other approaches.

We show in Tables 2.3 and 2.4 the computational results for each instance in the
benchmark set to compare EXSEPBC, CUTBC, and SECBC. The tables have four blocks.
The first one shows the name of the instance (Name) and the best known upper bound
for it (BUB), if in any of the algorithms the instance has gap zero, then this value is the
optimal solution. Otherwise, it is the minimum value of the best upper bounds found
by the algorithms. The next three blocks contain the results for each of the algorithms.
Each block has six consecutive columns, which represent the same information as in
Table 2.1, but for each specific instance, instead of the average for all the instances
with the same number of vertices. If the instance has 28800 in its final time column, it
indicates that the time limit was reached and the optimization aborted. Consequently,
optimality is not guaranteed.

Analyzing the results from Table 2.3, we observe that the algorithms CUTBC and
SECBC obtained the overall best performance for these instances. Both algorithms
solved the instances of up to 101 vertices in shorter times than the algorithm EXSEPBC,
except for instances with 30 vertices, which were solved in the root node of the
branch-and-bound tree by EXSEPBC. In some cases, the total time taken by our
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algorithms to solve the instance was smaller than the time spent by EXSEPBC solving the
linear programming relaxation obtained at the root node. Despite the short execution
times, the lower bounds obtained in the root are weaker, which was expected. However,
we can see that the tradeoff between the lower bound quality and the total time spent
by the proposed algorithms to solve the linear programming relaxation is advantageous.
For this set of instances, the time necessary by algorithm SECBC to solve the instances
was slightly worse than algorithm CUTBC.

We report in Table 2.4 the results for the larger instances. For instances up to
127 vertices, the behavior observed for smaller instances remains, our algorithms can
solve them in shorter execution times. For instances with more than 152 vertices, the
number of nodes in the branch-and-bound tree grows significantly compared to smaller
instances, and the previous dominance for the runtime is no longer observed. The
algorithm CUTBC cannot solve one instance solved by EXSEPBC in the set of instances
with 152 vertices. Nevertheless, CUTBC is capable of solving one instance with 200
vertices (n200p10d50) that EXSEPBC cannot. For instances that remain unsolved, the
best UBs were obtained by our proposed algorithms CUTBC and SECBC. The algorithm
CUTBC obtained the best primal bounds for instances n180p15d60, n200p10d70, and
n200p20d40. The algorithm SECBC obtained the best UB for n200p15d50. The
algorithm EXSEPBC obtained the best dual bounds, certainly due to the stronger
formulation.

One can notice in Tables 2.3 and 2.4, for all instances in the benchmark, that the
time taken to solve the linear programming relaxation in the root node is smaller for
the algorithms CUTBC and SECBC. For instances with 152 vertices, although the times
to solve the linear relaxation of the root node are shorter, CUTBC solved one instance
less than EXSEPBC and SECBC three less than EXSEPBC. We suppose this is because some
instances have the highest values for p. The difficulty of the algorithms can be observed
by the explosion of the number of nodes. Regarding the time to solve the instances,
our algorithms achieve the shortest times for small and medium-sized ones.

In Table 2.5, we aggregate the results obtained by the algorithms CUTBC and
SECBC by the number of vertices. The table columns represent the same information
as the columns of Table 2.1. Although formulations F1 and F2 are equivalent, their
correspondent branch-and-cut algorithms show different performances. The algorithm
CUTBC solves three more instances of the benchmark than the algorithm SECBC.
Moreover, the time required by CUTBC to solve the linear programming relaxation
obtained in the root node of the branch-and-bound tree is better.

Comparing Tables 2.1 and 2.5, for instances with 180 and 200 vertices, the
algorithms CUTBC and SECBC obtain tighter gaps in the root node than the algorithm of
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Table 2.5: Average results aggregated by the number of vertices for our proposed
algorithms.

CUTBC SECBC
Vertices Gapr Timer Gapf Timef Nodes Cuts Solved Gapr Timer Gapf Timef Nodes Cuts Solved

30 3.32 0.03 0.00 0.25 46.57 1.43 7 / 7 3.32 0.07 0.00 0.30 50.43 1.14 7 / 7
51 3.89 0.06 0.00 0.88 697.50 10.75 8 / 8 3.89 0.09 0.00 1.03 844.50 13.00 8 / 8
76 3.57 0.40 0.00 2.86 265.83 20.33 6 / 6 3.57 0.62 0.00 3.75 331.67 27.83 6 / 6
99 6.06 0.89 0.00 10.21 908.50 65.83 6 / 6 6.05 1.21 0.00 13.89 935.33 66.50 6 / 6

101 5.89 1.09 0.00 13.12 1335.57 50.43 7 / 7 5.90 1.22 0.00 17.01 1291.86 47.14 7 / 7
127 2.93 1.67 0.00 19.34 1552.17 28.08 12 / 12 2.93 2.40 0.00 22.81 1420.75 31.08 12 / 12
152 9.32 45.24 1.13 11246.45 386648.57 146.29 6 / 7 9.32 54.79 3.15 16285.27 257775.57 152.71 4 / 7
180 12.73 337.42 1.91 12146.74 44291.00 39.80 4 / 5 12.59 423.91 1.77 13700.19 19029.60 37.00 4 / 5
200 13.29 446.66 8.76 26048.68 136168.25 139.75 1 / 4 13.29 531.83 11.54 28800.00 46360.50 127.75 0 / 4

Morais et al. [2019]. Besides, the proposed algorithm EXSEPBC with the exact separation
achieves the best gaps in the root node for all the instances. Regarding the performance,
the algorithms displayed in Table 2.5 have better execution times than the algorithms
in Table 2.1 for small and medium-sized instances.

For some instances, despite a large number of nodes, the number of added
cuts is small, which indicates that little time is spent reoptimizing the nodes of the
branch-and-bound tree. Consequently, in the problem, most of the time is spent solving
the relaxations. As we discussed about the implementation details in Section 2.4,
focusing on solving the linear programming problems fast is an efficient strategy since
the integer solutions obtained are feasible most of the time. The small amount of added
cuts is an indication that it is easy to guarantee feasibility in the problem, allowing
approaches with special focus on solving the linear programming relaxations quickly.

In Figure 2.5, we perform a study about the impact of the variation of parameter p
in the difficulty of the problem. We used benchmark instances and varied the value of p
up to n. The subcaption of each graphic describes the instance used in the experiment.
We display the time (seconds) necessary to solve the instance using a logarithmic scale.
From the graphics, we observe that the times required to solve the instances increases
as the value of p grows until it reaches a peak. Then, the time starts to decrease
until it is negligible. As p approaches n, the problem begins to resemble a minimum
weight spanning arborescence. One can observe from the graphics that while for low
values of p the algorithm easily solves the instances, for greater values, they become
very difficult. When p is approximately 30% of the number of vertices, the instances
reach the greatest difficulty. Besides, from the moment that p is at least 60% of n, the
instances become easier, and it takes a few seconds to solve them.
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Figure 2.5: Time to solve the instance as a function of the fixed paramater p.

2.6 Conclusion

This work addressed the p-arborescence star problem (p-ASP). Initially, we presented
two new formulations for the problem that differ in the way they impose connectivity.
Then, we proved theoretical results about the relationship of existing formulations for
the p-ASP. Based on both formulations, we implemented two exact branch-and-cut
algorithms. Moreover, we showed that finding a feasible solution for an arbitrary
p-ASP instance is NP-hard and introduced preprocessing procedures for the problem.
Also, for the branch-and-cut algorithm found in the literature for the p-ASP, we
developed an exact separation procedure for an inequality that was separated using
a heuristic method, and implemented the new separation algorithm into the existing
branch-and-cut algorithm.
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All the algorithms were evaluated and compared using a set of benchmark
instances for the p-ASP. The new exact separation algorithm improved the existing
branch-and-cut algorithm from the literature. For small and medium-sized instances,
our proposed algorithms obtained the best results, being able to solve instances with
shorter execution times. For the larger instances, there was no clear dominance between
our best algorithm and the improved algorithm.

As we discussed in the computational experiments section, new strategies for
addressing the problem may involve formulations and methods to quickly solve the
linear programming problems obtained in the nodes of the branch-and-bound tree.
One approach we want to investigate is to apply Lagrangian relaxation to existing
formulations for the problem. It is worth mentioning that the problem is also
an interesting field for heuristic methods since the existing Benders decomposition
based heuristic for the problem obtains weak primal bounds. Besides, the problem
of obtaining a feasible solution for the p-ASP is NP-hard. Thus, developments in
heuristics can also contribute to advances in exact algorithms for the problem. From our
computational experiments, many benchmark instances remain unsolved. Therefore,
the problem is interesting to study and propose new solution methods.



Chapter 3

The pickup and delivery traveling
salesman problem with multiple
stacks

The focus of this work is the study of valid inequalities and exact approaches for the
pickup and delivery traveling salesman problem with multiple stacks. In the problem,
a single vehicle must fulfill a set of client requests. Each request states that the vehicle
must pick up an item at a given location, and later deliver it to another particular
location. Inside the vehicle, items are stored in horizontal stacks of limited capacity.
The loading and unloading operations of items follow the last-in-first-out policy. Every
item is picked up on top of a stack and can only be delivered if it is also on top of its
stack. The goal of this problem is to find a vehicle route of minimum cost. We propose
a new formulation along with new valid inequalities for the problem. Several of these
valid inequalities are lifted versions of inequalities previously proposed in the literature.
The branch-and-cut algorithm based on the formulation and the valid inequalities is
compared with the state-of-the-art solution methods for the problem. Computational
experiments performed on benchmark instances show that the implemented algorithm
outperforms all other competing exact algorithms for this problem.

3.1 Introduction

We define the problem on a complete digraph G = (V,A) where V = {0, 1, . . . , 2n+1}
is the vertex set and A = {(i, j) : i ∈ V ∧ j ∈ V ∧ i ̸= j} is the set of arcs. The
subsets P = {1, . . . , n} ⊂ V and D = {n+1, . . . , 2n} ⊂ V represent the sets of pickup

37
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and delivery locations, respectively. Vertices 0 and 2n + 1 denote, respectively, the
initial and final depots of the route. A nonnegative travel cost cij is associated with
the use of each arc (i, j) ∈ A. A single vehicle must visit each location satisfying n

customer requests. Each customer request establishes to pick up an item of size di ≥ 0

at location i ∈ P and deliver it at location n + i ∈ D. Besides, we refer to the item
picked up at location i ∈ P , and delivered at n+ i ∈ D, as item i. The vehicle contains
a set M of stacks, each one of capacity Q, used to load and unload the items. The
loading and unloading operations in each stack must follow the last-in-first-out (LIFO)
policy. Every item is loaded on top of a stack and can only be delivered if it is on
top of its stack. The aim of the pickup and delivery traveling salesman problem with
multiple stacks (PDTSPMS) is to find a minimum cost route, starting at depot 0 and
ending at depot 2n+ 1, satisfying all customer requests.
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Figure 3.1: Diagram showing a feasible PDTSPMS route.

Figure 3.1 displays a feasible PDTSPMS solution for an instance with n = 4

requests, pickup set P = {1, 2, 3, 4}, delivery set D = {5, 6, 7, 8}, and initial and final
depots equal to 0 and 9, respectively. The vehicle contains a set M = {1, 2} of identical
stacks with capacity Q = 4. The item sizes are d1 = 4, d2 = 3, d3 = 2, and d4 = 1.
Above the arcs, we show the loading compartment of the vehicle after visiting each
route location. The stacks are drawn with dashed lines and ordered from bottom to
top. The pickup location and its corresponding delivery location have the same color
in the route, with the deliveries possessing a double circle around it. We use this same
convention throughout the text. The vehicle starts from depot 0 visiting pickup 2 and
loading its item in stack 1. Then, it visits location 3 and loads its corresponding item
into stack 2. Note that the capacity constraint would be violated if item 3 was loaded
in the same stack as item 2. Soon after, the vehicle delivers item 2 and afterward loads
item 1 in the same stack. Next, item 4 is loaded in the second stack. Due to the LIFO
policy, item 3 cannot be delivered since it is not at the top of its stack. Finally, the
vehicle delivers the remaining items and moves to the final depot.
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The PDTSPMS models situations where the loading and unloading of items can
only be carried out from the rear of the vehicle. Hence, only the last item loaded in
each stack is available for delivery and must be delivered before all the other items in
the same stack. The constraint that only the last loaded item is available for delivery
avoids the reorganization of items inside the loading compartment, as this might incur
in delays and costs. Moreover, reorganizing items outside the depot is costly, as items
can be large, heavy, fragile, or dangerous. In the situation where it might be possible
to relocate items, they must be small packages. If they are large, once the vehicle is
outside the depot, there may be no equipment or place to move them. Within this
context, it is important to design the vehicle route to avoid such complications.

Ladany and Mehrez [1984] addressed a practical application of the problem faced
by a freight company where a single truck collects cargos in Tel Aviv and delivers it
in Haifa. The truck can be loaded only through the rear door, and the internal area
is narrow. Therefore, the loading and unloading operations follow the LIFO policy.
Levitin and Abezgaouz [2003] studied an application of the PDTSPMS arising in a
warehouse where cargos are placed on pallets, and each pallet is placed on top of
the previous one by an automated guided vehicle (AGV). Automated guided vehicles
are widely used in automated industries to move pallet batches between different
locations. To avoid wasting time and space, the AGV route is planned to prevent
the rearrangement of items. These routes follow the LIFO policy to avoid the excessive
use of space and time to rearrange the pallets in a batch.

The main contribution of our work is a new branch-and-cut algorithm that
incorporates new valid inequalities and separation strategies for the PDTSPMS.
We provide separation algorithms for our proposed inequalities and new separation
procedures for inequalities previously used in the problem. Additionally, we introduce
several strategies that are integrated into our algorithm and improve its overall
performance. The proposed algorithm is compared with the state-of-the-art exact
algorithms for the problem in the same computational environment. The algorithm
outperforms all other algorithms for all instances in the benchmark classes. Our branch-
and-cut obtains shorter times and solves 20 more instances in total from the benchmark,
several of which for the first time. In addition to obtaining better times and solving
more instances, our algorithm achieves stronger dual bounds for all instance families in
the benchmark and closes the performance gap between unitary demand sized instances
and non-unitary demand sized instances.

The remainder of the text is structured as follows. In Section 3.2, we review
the existing PDTSPMS literature. We describe our defined notation and present
a new linear integer programming formulation in Section 3.3. After presenting the
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formulation, in Section 3.4, we present new valid inequalities for the PDTSPMS. Next,
in Section 3.5, we describe our implemented branch-and-cut algorithm. In Section 3.6,
we report the computational results for the benchmark instances and compare all the
branch-and-cut algorithms for the problem. Finally, we state our concluding remarks
in Section 3.7.

3.2 Literature review

The PDTSPMS first appeared in the literature in a particular case with only one
stack called pickup and delivery traveling salesman problem with LIFO loading
(PDTSPL). Carrabs et al. [2007b] studied local search operators for the PDTSPL. They
implemented three local search operators in a variable neighborhood search (VNS)
heuristic. Carrabs et al. [2007a] introduced the first exact algorithm for the PDTSPL, a
branch-and-bound algorithm that uses additive lower bounds based on assignment and
arborescence relaxations. They also used elimination rules to remove arcs that cannot
belong to feasible solutions. Cordeau et al. [2010] investigated the PDTSPL with a
special focus on the uncapacitated case. They analyzed the structure of the problem
and presented the first formulations with constraints for the LIFO policy and capacity.
Moreover, they introduced several valid inequalities that were incorporated into their
three branch-and-cut algorithms. The authors compared their algorithm with the one of
Carrabs et al. [2007a] and remarked that the proposed algorithm is capable of solving
the instances in less computational time. Li et al. [2011] showed how to represent
PDTSPL solutions in a tree structure rather than a list of vertices. They adapted
the operators of Carrabs et al. [2007b] and introduced three new operators based on
the tree representation. These neighborhood operators are used in a VNS heuristic.
The computational experiments showed that the implemented heuristic obtains better
quality solutions than the one of Carrabs et al. [2007b].

Petersen and Madsen [2009] introduced the double traveling salesman problem
with multiple stacks (DTSPMS). The DTSPMS is a particular variant of the
PDTSPMS in which all pickup operations must be completed before any delivery
operation can take place. Petersen and Madsen [2009] implemented four heuristics
based on local search for the DTSPMS. The authors also provided a compact flow
formulation for the problem. Petersen et al. [2010] presented several formulations and
exact approaches for the DTSPMS. The algorithm that obtained the best results
decomposes the DTSPMS into two levels. At the upper level, the algorithm obtains
the pickup and delivery routes separately for the problem. At the lower level, it checks
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whether there is a feasible loading plan for the two routes together. Ángel Felipe et al.
[2009] presented a hybrid VNS heuristic along with neighborhood operators. The VNS
heuristic uses the operators proposed by Petersen and Madsen [2009] and four operators
introduced by the authors. The computational experiments showed that it obtains
better results than the heuristic of Petersen and Madsen [2009]. Lusby et al. [2010]
designed an exact algorithm that pairs the best routes for the two regions iteratively.
Casazza et al. [2012] studied theoretical properties of the DTSPMS and proposed
polynomial algorithms for subcases of the problem. Carrabs et al. [2013] implemented
an additive branch-and-bound algorithm for the DTSPMS considering that the vehicle
contains only two stacks. Alba Martínez et al. [2013] presented several valid inequalities
which were integrated into a branch-and-cut algorithm. The branch-and-cut algorithm
outperformed the previous exact algorithms for the DTSPMS considering the set of
benchmark instances. Urrutia et al. [2015] proposed a two-stage heuristic for the
DTSPMS. The computational results showed that the heuristic is competitive with
the other existing ones for the problem. Barbato et al. [2016] devised a branch-and-cut
algorithm that uses several valid inequalities for the case where the vehicle has only
two stacks.

The PDTSPL was generalized to multiple vehicles before the PDTSPMS in the
literature. Eventually, the PDTSPMS also received a version with multiple vehicles.
Cheang et al. [2012] extended the PDTSPL by considering multiple vehicles and a
limitation on the total distance traveled by each vehicle. They proposed several
neighborhood operators and devised a two-stage heuristic for the problem. It is worth
noting that, unlike the PDTSPL, the capacity of the stack in each vehicle is unlimited
in their work. Cherkesly et al. [2014] studied exact algorithms for a version of the
PDTSPL with multiple vehicles and time windows. Differently from Cheang et al.
[2012], there is no constraint on the maximum length of the routes and the stacks have
finite capacities. They proposed three branch-price-and-cut algorithms and adapted
valid inequalities from the literature. Similarly, Benavent et al. [2015] extended the
PDTSPL by adding multiple vehicles and maximum route length. They provided two
formulations and a multi-start heuristic based on tabu search for their problem variant.
For the formulation with exponentially many constraints, they developed a branch-and-
cut algorithm. Cherkesly et al. [2016] introduced a PDTSPMS variant with multiple
vehicles and time windows. The authors proposed two branch-price-and-cut algorithms
to tackle their version of the problem. Veenstra et al. [2017b] introduced handling costs
in the PDTSPL. If an item is not on top of its stack, additional handling operations
are allowed to unload and reload items blocking its access. They implemented a large
neighborhood search (LNS) heuristic to solve the problem. Veenstra et al. [2017a] added
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multiple vehicles, time windows, and handling operations, in the standard definition of
the PDTSPL. The difference to the problem studied by Veenstra et al. [2017b] is the
incorporation of multiple vehicles and time windows. The authors developed branch-
price-and-cut algorithms for the two rehandling policies analyzed.

Côté et al. [2012a] performed the first study regarding exact algorithms and valid
inequalities for the PDTSPMS. They proposed three formulations for the problem.
Additionally, they adapted valid inequalities from other problems to the PDTSPMS and
proposed new ones. These valid inequalities were analyzed and employed in a branch-
and-cut algorithm. The best algorithm is based on the formulation that depends on
the resolution of an NP-hard packing problem to guarantee the feasibility of a solution.
When the algorithm finds a route that satisfies the connectivity and precedence, the
packing problem is called to check whether there is a feasible assignment of stacks
for the items such that the capacity and LIFO policy are satisfied. If the problem is
infeasible, the algorithm adds a constraint prohibiting this infeasible route. Since the
algorithm of Côté et al. [2012a] was the first exact algorithm for the problem, they
compared it with existing exact approaches for the DTSPMS. The results showed that
the branch-and-cut obtains superior results for the DTSPMS instances even though it
was not designed specifically for the problem. Sampaio and Urrutia [2017] presented
a formulation for the PDTSPMS that uses a set of variables to indicate the stack
operations of the vehicle in the arcs of the graph. Thus, instead of solving a packing
problem to guarantee the feasibility of a route like Côté et al. [2012a], they model
the capacity and LIFO policy using this set of variables. Since the formulation is
based on several sets of exponentially many constraints, Sampaio and Urrutia [2017]
implemented a branch-and-cut algorithm. The algorithm is executed in a different
computational environment than the algorithm of Côté et al. [2012a]. Therefore, it
was not possible to make a direct comparison between them. Pereira and Urrutia
[2018] conducted a study about formulations and exact algorithms for the PDTSPMS.
The authors proposed three new formulations along with valid inequalities for the
problem. The first formulation is an adaptation of the formulation of Sampaio and
Urrutia [2017] where a set of variables is eliminated. The second formulation is a
combination of the models of Côté et al. [2012a] and Sampaio and Urrutia [2017],
and the third formulation is a compact model. They implemented three branch-and-
cut algorithms based on each of the formulations. The algorithms incorporate their
proposed valid inequalities and the inequalities already used for the PDTSPMS. The
proposed branch-and-cut algorithms are compared to the algorithms of Côté et al.
[2012a] and Sampaio and Urrutia [2017] in the same computational environment.
The algorithms implemented by Pereira and Urrutia [2018] are capable of solving the
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instances in a shorter computational time. Moreover, within the one hour limit, the
algorithms were able to solve more instances of the benchmark than the algorithms of
Côté et al. [2012a] and Sampaio and Urrutia [2017].

In this work, we present a new formulation for the PDTSPMS along with new
valid inequalities. Some of these new valid inequalities are lifted versions of inequalities
previously proposed in the literature. Then, we implement a branch-and-cut algorithm
based on the formulation that includes the new valid inequalities. Besides, we introduce
new separation procedures and implement several strategies which improve the overall
performance of our branch-and-cut algorithm. Our proposed algorithm closes the
performance gap that existed previously for the other algorithms between the two
classes of instances in the benchmark. We compare our algorithm in the same
computational environment with all the other existing algorithms for the PDTSPMS.
The new algorithm outperforms the other algorithms for all the benchmark instances
and solves several instances for the first time.

3.3 Mathematical formulation

In order to formulate the problem mathematically, we define the set {xij ∈ {0, 1} :

(i, j) ∈ A} of binary variables, which indicate whether an arc (i, j) ∈ A belongs to
the route (xij = 1) or not (xij = 0), and the set of binary variables {yki ∈ {0, 1} :

i ∈ P ∧ k ∈ M}, which indicate whether the item i ∈ P is loaded into stack k ∈ M

(yki = 1) or not (yki = 0). To define our model, we associate an item of size −di with
each delivery location n + i ∈ D, and items d0 = d2n+1 = 0 with the depots. Given
two subsets S ⊆ V and T ⊆ V , such that S ∩ T = ∅, we define S = V \ S as the
complement of set S, x(S) =

∑︁
i∈S
∑︁

j ̸=i,j∈S xij as the sum of the arc variables inside
set S, and x(S, T ) =

∑︁
i∈S
∑︁

j∈T xij, as the sum of the arc variables in the cut between
the sets S and T . Let ‡ denote the collection of all subsets S ⊂ V , such that 0 ∈ S,
2n+ 1 /∈ S, and there is a pickup i ∈ P such that i ̸∈ S and n+ i ∈ S. Finally, define
the function γ : P ∪D → P , γ(i) = i for all i ∈ P , and γ(n+ i) = i for all n+ i ∈ D.
For simplicity, we use i when we refer to the set {i}, i ∈ V .

Taking into account the previous definitions, the PDTSPMS is formulated as
follows:

min
∑︂

(i,j)∈A

cijxij (3.1)

s.t. x(i, V \ {i}) = 1, i ∈ P ∪D ∪ {0} , (3.2)



3. The PDTSPMS 44

x(V \ {i}, i) = 1, i ∈ P ∪D ∪ {2n+ 1} , (3.3)

x(S, S) ≥ 1, S ⊂ P ∪D, |S| ≥ 2, (3.4)

x(S, S) ≥ 2, S ∈ ‡, (3.5)∑︂
k∈M

yki = 1, i ∈ P, (3.6)

yki + ykj + x(S) + x(S, n+ i) ≤ |S|+ 1, S⊂P ∪D, i, j ∈ P, j ∈ S,

i, n+ i, n+ j /∈ S, k ∈ M ,
(3.7)

x(S, S) ≥
∑︁

u∈S duy
k
γ(u)

Q
, S ⊂ P ∪D, k ∈ M, (3.8)

yki ∈ {0, 1} , i ∈ P, k ∈ M, (3.9)

xij ∈ {0, 1} , (i, j) ∈ A. (3.10)

The objective function (3.1) minimizes the total cost of the route. According to
equalities (3.2) and (3.3), the vehicle leaves and enters each vertex once, respectively.
Inequalities (3.4) are the standard cutset constraints and guarantee the connectivity
of the route by forbidding subtours. Inequalities (3.5) establish the precedence
relationship between a pickup and its corresponding delivery. The inequalities forbid
any path from depot 0 which visits a delivery before visiting its corresponding pickup.
Equalities (3.6) require each pickup item to be loaded in a stack.

Inequalities (3.7) are responsible for enforcing the LIFO policy in the route. To
show how the LIFO policy can be violated in a route, consider two different pickup
locations, i ∈ P and j ∈ P . Let the notation u ≺ v mean that u is visited before v

in the route. We say that items i and j cross each other if they are visited according
to the pattern i ≺ j ≺ n + i ≺ n + j. If such visitation pattern occurs, items i and j

cannot be in the same stack, because it would violate the LIFO policy since item j is
loaded after item i, but item i is delivered first.

Let S ⊂ P ∪D be a subset such that i, j ∈ P , j ∈ S, and i, n+ i, n+ j ̸∈ S. Also,
let k ∈ M be a stack of the vehicle. If the vehicle visits i and loads its item in stack
k, traverses set S without leaving it, also loading item j in stack k, and immediately
after visits n + i, then the LIFO policy is violated, since item j is loaded after item i

in stack k, but n + i is visited before n + j. Observe that pickup i has to be visited
before entering S, otherwise the precedence between i and n+ i would be violated.

The capacity constraint of each stack in the vehicle is imposed through inequalities
(3.8). These fractional capacity inequalities are similar to the ones found in the
capacitated vehicle routing problem (CVRP). The difference is that, in the CVRP,
the right-hand side of the inequalities is an integer. Given a subset S ⊂ P ∪ D of
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vertices, and a stack k ∈ M , these constraints, together with the integrality of the
variables, impose that at least

∑︁
u∈S duy

k
γ(u)/Q vehicle visits are needed to satisfy the

demand in S using only stack k. We use function γ because the y variables are not
defined for delivery locations. Therefore, when u ∈ S and u ∈ D, we use the function
to obtain the variable corresponding to its pickup.

3.4 Valid inequalities

In this section, we present valid inequalities for the PDTSPMS. Initially, we
describe inequalities previously proposed in the literature, which we incorporate in our
algorithm. Then, we introduce new valid inequalities that explore particular properties
of the problem.

Given that every solution for the PDTSPMS is also feasible for the pickup and
delivery traveling salesman problem (PDTSP), all valid inequalities for this problem
can be used. We use the following additional notation: given a subset S ⊆ P ∪D, let
π(S) = {i ∈ P : n+ i ∈ S} be the set of pickup vertices such that their corresponding
delivery vertices belong to S, and σ(S) = {n + i ∈ D : i ∈ S} be the set of delivery
vertices such that their respective pickup vertices are in S. We consider two classes of
inequalities introduced by Balas et al. [1995]:

x(S \ π(S), S \ π(S)) ≥ 1, S ⊆ P ∪D, (3.11)

x(S \ σ(S), S \ σ(S)) ≥ 1, S ⊆ P ∪D. (3.12)

Given a subset S ⊆ P ∪D, in a feasible route, inequalities (3.11) state that the
last node visited in S and the node visited immediately after S cannot be a pickup
with its corresponding delivery in S. Similarly, inequalities (3.12) assert that the last
node visited before entering S and the first node visited in S cannot be a delivery
with its corresponding pickup inside S. Inequalities (3.11) and (3.12) are referred to
as predecessor and successor inequalities, respectively.

Côté et al. [2012a] adapted the classical rounded capacity inequalities of the
CVRP to the PDTSPMS. Let q(S) =

∑︁
u∈S du be the total sum of the item size of

each vertex inside S ⊆ P ∪ D. Using the improved lower bound (LB) of Ropke and
Cordeau [2009], on the number of times that the vehicle must leave subset S to satisfy
its demand, the rounded capacity inequalities are:

x(S, S) ≥
⌈︃
max

(︃
1,

q(π(S) \ S)
|M |Q

,
−q(σ(S) \ S)

|M |Q

)︃⌉︃
, S ⊂ P ∪D. (3.13)
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Inequalities (3.13) consider the total capacity |M |Q of the vehicle. Observe that
π(S) \ S is the set of items the vehicle delivers in S, and σ(S) \ S is the set of items
the vehicle delivers from S.

Inequalities (3.11), (3.12), and (3.13), are used by all the other algorithms from
the literature for the PDTSPMS. The difference between the algorithms is in the way
they are separated and managed. In the next sections, we present new valid inequalities
for the PDTSPMS.

3.4.1 Strengthening the fractional capacity inequalities

The sum
∑︁

u∈S duy
k
γ(u) in the right-hand side of inequalities (3.8) considers the item sizes

of both pickups and deliveries in set S. Hence, the right-hand side of the inequalities is
reduced due to the sum of negative sizes from deliveries. We can split the sum into two
other sums,

∑︁
u∈π(S)\S duy

k
u and

∑︁
u∈σ(S)\S duy

k
γ(u), the total demand from S delivered in

S using stack k and the total demand from S picked up in S using stack k, respectively.
Note that

∑︁
u∈σ(S)\S duy

k
γ(u) < 0, since we add the demands for deliveries whose

corresponding pickups belong to S. Therefore, given a subset S ⊂ P ∪D, and a stack
k ∈ M , we have that

∑︁
u∈S duy

k
γ(u) ≤ max(1,−

∑︁
u∈σ(S)\S duy

k
γ(u),

∑︁
u∈π(S)\S duy

k
u). As

a result, we obtain the inequalities:

x(S, S) ≥ max

(︄
1,

−
∑︁

u∈σ(S)\S duy
k
γ(u)

Q
,

∑︁
u∈π(S)\S duy

k
u

Q

)︄
, S ⊂ P ∪D, k ∈ M. (3.14)

Note that the resulting inequalities (3.14) are nonlinear due to the maximum
function. In Section 3.5, we explain how we use such inequalities in our algorithm.

The number of times the vehicle leaves a subset of vertices is an integer.
Therefore, the lower bound

∑︁
u∈π(S)\S duy

k
u/Q, the number of vehicle visits needed

to satisfy the demand from S delivered in S using only stack k, can be increased
to ⌈

∑︁
u∈π(S)\S duy

k
u/Q⌉. This same reasoning can be used to the lower bound

−
∑︁

u∈σ(S)\S duy
k
γ(u)/Q, the number of vehicle visits needed to satisfy the demand from

S picked up in S using stack k, to obtain ⌈−
∑︁

u∈σ(S)\S duy
k
γ(u)/Q⌉. Since there is a

term containing variables inside the ceil function, if we substitute these lower bounds
in the right-hand side of inequalities (3.8) directly, it results in nonlinear inequalities.
To obtain linear inequalities, we use the following theorem from Baldacci et al. [2007].

Theorem 6. Let a, b, and c be three nonnegative integer values with a > c and
mod(a, c) ̸= 0. Then, ⌈︃

a− b

c

⌉︃
≥
⌈︂a
c

⌉︂
− b

mod(a, c)
. (3.15)
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Although stated in Theorem 6, it is not necessary for b to be an integer. Given
a subset S ⊂ P ∪ D of vertices, and a fixed stack k ∈ M , we have the identity∑︁

i∈π(S)\S di =
∑︁

i∈π(S)\S diy
k
i +
∑︁

i∈π(S)\S
∑︁

l∈M\{k} diy
l
i. From equalities (3.6), for each

i ∈ P , note that
∑︁

l∈M yli = yki +
∑︁

l∈M\{k} y
l
i = 1. Therefore, multiplying the previous

equation by di and summing for each vertex i ∈ π(S)\S, we obtain the previous identity,
which can be rewritten as

∑︁
i∈π(S)\S diy

k
i =

∑︁
i∈π(S)\S di −

∑︁
i∈π(S)\S

∑︁
l∈M\{k} diy

l
i.

Using this identity and Theorem 6, we can derive the following valid inequalities:

x(S, S) ≥

⌈︄∑︁
i∈π(S)\S di

Q

⌉︄
−
∑︁

i∈π(S)\S
∑︁

l∈M\{k} diy
l
i

mod(
∑︁

i∈π(S)\S di, Q)
, S ⊂ P ∪D, k ∈ M. (3.16)

Similarly, using the same reasoning applied to obtain the previous identity, we
deduce that

∑︁
i∈σ(S)\S diy

k
γ(i) =

∑︁
i∈σ(S)\S di −

∑︁
i∈σ(S)\S

∑︁
l∈M\{k} diy

l
γ(i). Now, using

Theorem 6 again, we obtain the following valid inequalities:

x(S, S) ≥

⌈︄
−
∑︁

i∈σ(S)\S di

Q

⌉︄
+

∑︁
i∈σ(S)\S

∑︁
l∈M\{k} diy

l
γ(i)

mod(−
∑︁

i∈σ(S)\S di, Q)
, S ⊂ P ∪D, k ∈ M. (3.17)

Note that we multiplied the terms by −1 because di < 0, for i ∈ σ(S). We can
use the same rationale of inequalities (3.14) to employ the maximum function between
the right-hand side of inequalities (3.16) and (3.17). As we explain in Section 3.5, we
use this idea to add in the model the most violated inequality among the two.

3.4.2 Lifted LIFO inequalities

Initially, we show how to lift the constraints proposed by Cordeau et al. [2010] to model
the LIFO policy in the PDTSPL. Côté et al. [2012a] used these constraints to derive
LIFO inequalities for the PDTSPMS. Then, from our lifted version of the inequalities
proposed by Cordeau et al. [2010], we lift the inequalities of Côté et al. [2012a].

Let Ω be the collection of all sets S ⊂ P ∪D for which there is at least one pickup
j ∈ P , such that j ∈ S and n + j ̸∈ S, or j ̸∈ S and n + j ∈ S. The LIFO policy in
the PDTSPL is guaranteed by the following inequality:

x(i, S) + x(S) + x(S, n+ i) ≤ |S| , S ∈ Ω, i ∈ P, i, n+ i ̸∈ S. (3.18)

To model the LIFO policy when only one stack is available, it is necessary just
one of the conditions used in the definition of Ω, i.e. j ∈ S and n+ j ̸∈ S or n+ j ∈ S

and j ̸∈ S. The constraint establishes that there cannot be a path that leaves i, visits
subset S, and exits through n + i. In the case where j ∈ S and n + j ̸∈ S, the
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Figure 3.2: Solution that violates inequalities (3.18).
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(a) Inequality (3.18) violated such that j =
1 ∈ S, n + j = 3 ̸∈ S, i = 2 ̸∈ S, and
n+ i = 4 ̸∈ S.
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(b) Inequality (3.18) violated such that j =
1 ̸∈ S, n + j = 3 ∈ S, i = 2 ̸∈ S, and
n+ i = 4 ̸∈ S.

Figure 3.3: Two different fractional solutions that violate inequalities (3.18).

vehicle delivers i before j, despite j being visited after i. In the case where j ̸∈ S and
n + j ∈ S, the vehicle delivers j before i, despite i being visited after j. The LIFO
policy is violated in both situations. Figure 3.2 shows an example of this situation.
We can use either set S or set T with their corresponding paths to define a violated
inequality (3.18).

Although we can consider only one of the conditions to impose the LIFO policy
in the PDTSPL. For fractional solutions, given an inequality violated for one of the
conditions, there is not necessarily an inequality violated for the other. In Figure
3.3, we show an example of two fractional solutions that violate inequalities (3.18).
In Figure 3.3a, there is a subset S ⊂ P ∪ D such that j ∈ S and n + j ̸∈ S, and
the defined inequality (3.18) is violated. However, there is no S ⊂ P ∪ D such that
n + j ∈ S and j ̸∈ S, and an inequality (3.18) is violated. In Figure 3.3b, we show
the opposite situation. There is S ⊂ P ∪ D such that n + j ∈ S and j ̸∈ S, and the
defined constraint (3.18) is violated. On the other hand, there is no S ⊂ P ∪D such
that j ∈ S and n+ j ̸∈ S, in a manner that the defined constraint is violated.

After this discussion, we can lift inequalities (3.18) by treating each one of the
cases separately, obtaining:

x(S) + x(S, n+ i) ≤ |S| − 1, S⊂P ∪D, i, j ∈P, j ∈S, i, n+ i, n+ j ̸∈S, (3.19)

x(i, S) + x(S) ≤ |S| − 1, S⊂P ∪D, i, j ∈P, n+ j ∈S, i, n+ i, j ̸∈S. (3.20)
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Although inequalities (3.18) are valid when the vehicle has only one stack, they
are invalid for the PDTSPMS since items that cross each other can be loaded in different
stacks. For example, if the vehicle has two stacks, two pickups can cross each other,
since they can be loaded in different stacks. However, there cannot be a scenario where
three items cross each other, since three stacks would be necessary and the vehicle has
only two. Consequently, Côté et al. [2012a] extended inequalities (3.18) for the case
where the vehicle has multiple stacks.

Consider the following visitation pattern in which all pickups cross each other:
i1 ≺ i2 ≺ · · · ≺ i|M |+1 ≺ n+ i1 ≺ n+ i2 ≺ · · · ≺ n+ i|M |+1. Let Sih , 2 ≤ h ≤ |M |+1, be
a set that contains vertices ih to i|M |+1 and n+ i1 to n+ ih−2 (we define the sequence
from n+ i1 to n+ i0 as empty when h = 2) but without vertices i1 to ih−1 and n+ ih−1

to n + i|M |+1. As all pickups cross each other, at least |M | + 1 stacks are required.
Otherwise, by the pigeonhole principle, two items that cross each other will be loaded
in the same stack. Thus, to prohibit all paths that include this visitation pattern, Côté
et al. [2012a] proposed the following inequalities:

|M |∑︂
h=1

[︁
x(ih, Sih+1

) + x(Sih+1
) + x(Sih+1

, n+ ih)
]︁
≤

|M |∑︂
h=1

⃓⃓
Sih+1

⃓⃓
+ |M | − 1. (3.21)

Inequalities (3.21) prohibit all paths from ih to n + ih going through vertices in
Sh+1, for h = 1, . . . , |M |, from being made at the same time. We show an example
of a visitation pattern for |M | = 2 in Figure 3.4a. Although the vehicle has only
two stacks, the three pickups in the figure cross each other. In the bottom, in Figure
3.4c, excluding symmetrical alternatives, we show all possible options for loading three
items in a vehicle with two stacks. Note that none of them satisfy all three requests
simultaneously.

In order to lift inequalities (3.21), consider the previously discussed visitation
pattern where |M | + 1 requests cross each other and the sets Sih , 2 ≤ h ≤ |M | + 1.
Consider the following inequality, clearly valid for the PDTSPMS, that adds 1 unit to
the right-hand side of inequalities (3.19):

x(S) + x(S, n+ i) ≤ |S| , S⊂P ∪D, i, j ∈P, j ∈S, i, n+ i, n+ j ̸∈S. (3.22)

Summing inequalities (3.22) defined for each ih and Sih+1
, 1 ≤ h ≤ |M |, we

obtain:
|M |∑︂
h=1

[︁
x
(︁
Sih+1

)︁
+ x

(︁
Sih+1

, n+ ih
)︁]︁

≤
|M |∑︂
h=1

⃓⃓
Sih+1

⃓⃓
. (3.23)
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(a) Infeasible visitation pattern which violates
inequalities (3.21) and (3.24).
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(b) Infeasible visitation pattern which violates
inequalities (3.25).
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(c) All possible loading options for three items crossing
each other in a vehicle with two stacks.

Figure 3.4: Infeasible pattern with all possible loadings for a vehicle with two stacks.

The only possibility of equality in inequalities (3.23) is if the vehicle executes the
visitation pattern where all requests cross each other. This means that all inequalities
(3.22) defined for each ih and Sih+1

, 1 ≤ h ≤ |M |, are also at equality. Since the vehicle
has |M | stacks and |M | + 1 items cross each other, we have an infeasible visitation
pattern. Therefore, inequalities (3.24) follow:

|M |∑︂
h=1

[︁
x(Sih+1

) + x(Sih+1
, n+ ih)

]︁
≤

|M |∑︂
h=1

⃓⃓
Sih+1

⃓⃓
− 1. (3.24)

Comparing inequalities (3.24) with inequalities (3.21), note that we reduce a
fractional amount on the left-hand side, while we reduce an integral amount on the
right-hand side.

Let Sn+ih , 1 ≤ h ≤ |M |, be a set that contains vertices ih+2 to i|M |+1 and n + i1

to n+ ih (we define the sequence from ih+2 to i|M |+1 as empty when h+ 2 > |M |+ 1)
but without vertices i1 to ih+1 and n + ih+1 to n + i|M |+1. Proceeding for inequalities
(3.20) equivalently to what we did for inequalities (3.19), we obtain the following valid
inequalities:

|M |∑︂
h=1

[x(ih+1, Sn+ih) + x(Sn+ih)] ≤
|M |∑︂
h=1

|Sn+ih| − 1 (3.25)
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An example of a prohibited pattern for inequalities (3.25) together with the
defined sets is shown in Figure 3.4b. Observe in Figure 3.4 that for both inequalities
(3.24) and (3.25) the defined sets Sih and Sn+ih , respectively, move along the path
determined by the visitation pattern as h increases.

3.4.3 Lifted conflict capacity inequalities

We also lift and use in our branch-and-cut algorithm the conflict capacity inequalities
proposed by Côté et al. [2012a]:

x(i, S) + x(S) + x(S, n+ i) ≤ |S| , S ⊂ P ∪D, i ∈ P, i, n+ i /∈ S,

z(S) > Q(|M | − 1),
(3.26)

where z(S) = max(q(π(S)\S),−q(σ(S)\S)). The total demand q(π(S)\S) is the sum
of the sizes of items picked up before i and delivered before n+ i, and −q(σ(S) \ S) is
the sum of the sizes of items picked up between i and n + i and delivered after n + i.
The inequalities forbid items in S that cross with i from being loaded in the same
stack as i. Therefore, they must fit in the remaining capacity available Q(|M |−1). By
treating each case separately as we did for inequalities (3.18), we can lift inequalities
(3.26).

Given a subset S ⊂ P ∪D of vertices, and a pickup vertex i ∈ P , suppose that
q(π(S) \ S) > Q(|M | − 1), its not necessary to visit n+ i immediately after S as long
as i is visited immediately before S. All crossings are preserved since n + i has to be
visited after S to respect the precedence. All the items in π(S)\S are still loaded in the
vehicle before visiting i and entering S. Now, assume that −q(σ(S)\S) > Q(|M |−1),
its not necessary to visit i immediately before entering S as long as n + i is visited
immediately after S. All crossings are preserved since i has to be visited before entering
S to respect the precedence. Hence, all pickups whose deliveries are in σ(S) \ S will
be loaded in the vehicle along with item i. Therefore, we obtain the new inequalities:

x(i, S) + x(S) ≤ |S| − 1, S ⊂ P ∪D, i ∈ P, i, n+ i /∈ S,

q(π(S) \ S) > Q(|M | − 1),
(3.27)

x(S) + x(S, n+ i) ≤ |S| − 1, S ⊂ P ∪D, i ∈ P, i, n+ i /∈ S,

− q(σ(S) \ S) > Q(|M | − 1).
(3.28)

Côté et al. [2012a] extended inequalities (3.26) to the case where several items
cross each other in a path. We first present such inequalities, then we show how to
lift them. Consider the following visitation pattern performed by the vehicle i1 ≺ i2 ≺
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· · · ≺ ik ≺ n + i1 ≺ n + i2 ≺ · · · ≺ n + ik, 1 ≤ k ≤ |M | − 1, such that |M | ≥ 2.
Let Sih , 2 ≤ h ≤ k + 1, be a set that contains vertices ih to ik and n + i1 to n + ih−2

(the sequence from ih to ik and from n + i1 to n + i0 is empty when h = k + 1 and
h = 2, respectively) but without vertices i1 to ih−1 and n + ih−1 to n + ik. Due to
the visitation pattern, these k items must be loaded into k different stacks inside the
vehicle. Thus, all the other items in Sih+1

that cross with items ih, 1 ≤ h ≤ k, must be
loaded in the remaining |M | − k stacks. Note that these items does not need to cross
with each other.

We have to consider the items that were already loaded in the vehicle before
entering Si2 , and the items which will be in the vehicle after visiting Sik+1

. In the first
case, we have items loaded before i1 and delivered between ik and n+ i1. The deliveries
associated with these items are in Si2∩· · ·∩Sik+1

, as we want only those that are loaded
before i1, their corresponding pickups are not in Si2 ∪ · · · ∪ Sik+1

. In the second case,
the items are loaded between ik and n+ i1 and delivered after n+ ik. The pickups for
these items are in Si2 ∩ · · · ∩ Sik+1

, given that we want only those that are delivered
after n+ ik, their corresponding deliveries are not in Si2 ∪ · · · ∪ Sik+1

. Accordingly, let

z(Si2 , . . . , Sik+1
) = max(q(π(Si2 ∩ · · · ∩ Sik+1

) \ (Si2 ∪ · · · ∪ Sik+1
)),

−q(σ(Si2 ∩ · · · ∩ Sik+1
) \ (Si2 ∪ · · · ∪ Sik+1

)))
(3.29)

be the maximum between the total demand for items delivered and picked up in
Si2 , . . . , Sik+1

. If z(Si2 , . . . , Sik+1
) > Q(|M | − k), it is impossible to fit these items

in the remaining stacks. Consequently, we can eliminate such infeasible solution with
the following inequalities:

k∑︂
h=1

[︁
x(ih, Sih+1

) + x(Sih+1
) + x(Sih+1

, n+ ih)
]︁
≤

k∑︂
h=1

⃓⃓
Sih+1

⃓⃓
+ k − 1. (3.30)

In the case where −q(σ(Si2 ∩ · · · ∩Sik+1
) \ (Si2 ∪ · · · ∪Sik+1

)) > Q(|M | − k), using
inequalities (3.28), we can lift inequalities (3.30) to:

k∑︂
h=1

[︁
x(Sih+1

) + x(Sih+1
, n+ ih)

]︁
≤

k∑︂
h=1

⃓⃓
Sih+1

⃓⃓
− 1. (3.31)

Similarly, if q(π(Si2 ∩ · · · ∩ Sik+1
) \ (Si2 ∪ · · · ∪ Sik+1

)) > Q(|M | − k), we can also
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obtain a lifted version using inequalities (3.27):

k∑︂
h=1

[︁
x(ih, Sih+1

) + x(Sih+1
)
]︁
≤

k∑︂
h=1

⃓⃓
Sih+1

⃓⃓
− 1. (3.32)

In Section 3.5.8, we explain how to check if it is feasible to use inequalities (3.31)
and (3.32) when z(Si2 , . . . , Sik+1

) ≤ Q(|M |−k). This situation only occurs in instances
where items have non-unitary sizes.

3.4.4 Generalized LIFO inequalities with loading

Consider the following visitation pattern where k requests cross each other i1 ≺ i2 ≺
· · · ≺ ik ≺ n + i1 ≺ n + i2 ≺ · · · ≺ n + ik, 2 ≤ k ≤ |M |. Let Sih , 2 ≤ h ≤ k, be a
set that contains vertices ih to ik and n + i1 to n + ih−2 (the sequence from n + i1 to
n + i0 is empty when h = 2) but without vertices i1 to ih−1 and n + ih−1 to n + ik. If
the vehicle has |M | ≥ 2 stacks and k ≤ |M | requests cross each other, then all items
mutually crossing must be loaded in different stacks in the vehicle. This fact leads to
inequalities:

k∑︂
h=1

ylih +
k−1∑︂
h=1

[︁
x(Sih+1

) + x(Sih+1
, n+ ih)

]︁
≤

k−1∑︂
h=1

⃓⃓
Sih+1

⃓⃓
+ 1, l ∈ M. (3.33)

Given a stack l ∈ M , if the vehicle performs the previous visitation pattern,
then two items crossing each other cannot be loaded in stack l. Inequalities (3.33)
generalize constraints (3.7) for k ≥ 3 requests crossing each other. For the case where
|M |+1 requests cross each other, we have the stronger inequalities (3.24), which do not
consider the loading variables since the number of items crossing each other is greater
than the number of available stacks.

3.5 Branch-and-cut algorithm

We now present the proposed branch-and-cut algorithm based on formulation (3.1)-
(3.10) which incorporates the valid inequalities of Section 3.4. We use the branch-and-
cut framework available through the Concert library in IBM ILOG CPLEX 12.10 to
implement the algorithm. We provide an upper bound (UB) obtained by the Large
Neighborhood Search heuristic of Côté et al. [2012b] at the beginning of the algorithm.
We implemented the algorithm of Dinic to solve our max-flow problems [Dinic, 1970].
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3.5.1 Arc elimination

Although the problem is defined in a complete graph, some arcs never appear in a
feasible solution. Therefore, we can exclude such arcs from the formulation by not
defining variables for them. The initial depot 0 cannot be the predecessor of any
delivery, so we remove all arcs (0, n+ i) ∈ A, such that n+ i ∈ D. Also, the final depot
2n+ 1 cannot be the successor of any pickup, so we eliminate all arcs (i, 2n+ 1) ∈ A,
such that i ∈ P . The successor of a delivery cannot be its corresponding pickup, since
the precedence is violated. Therefore, we remove all arcs (n + i, i), such that i ∈ P .
We also delete arcs (i, 0) and (2n + 1, i) such that i ∈ V \ {0} and i ∈ V \ {2n + 1},
respectively.

3.5.2 Symmetry

The y variables introduce a degree of symmetry in formulation (3.1)-(3.10). Given
a feasible solution for the formulation, it is possible to obtain an equivalent set of
solutions exchanging items from stacks. For instance, if an item is loaded in a stack
k ∈ M , just change the stack to k + 1 mod |M |.

The first picked up item can be loaded in any stack inside the vehicle. Hence, to
reduce the degree of symmetry in our model, we add constraints (3.34). The constraints
state that the first pickup is performed using the first stack.

x0j ≤ y1j , j ∈ P. (3.34)

Depending on the choices of which fractional variables to branch, we can create
unbalanced branch-and-bound trees. Thus, it is beneficial to define branching priorities
to avoid this issue [Leitner et al., 2017]. As discussed earlier, the loading variables
introduce a degree of symmetry in the formulation. Consequently, it is interesting to
first define a route and then determine the loading for it. Otherwise, we can obtain the
same route on several nodes in the branch-and-bound tree. Therefore, in our branch-
and-cut algorithm, we define the highest branching priority for x variables.

3.5.3 Initial model

The initial model for formulation (3.1)-(3.10) consists of the objective function
(3.1), degree constraints (3.2) and (3.3), equalities (3.6) requiring each item to be
loaded in a single stack, and constraints (3.34) to reduce symmetry. The integrality
constraints (3.9) and (3.10) of the variables are removed during the enumeration of
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the branch-and-bound tree. We relax inequalities (3.4), (3.5), (3.7), and (3.8), in
the branch-and-cut algorithm, and add them dynamically throughout the branch-and-
bound tree using our separation procedures.

3.5.4 Cut pool

Inequalities (3.11), (3.12), and (3.13), are separated heuristically at the root node of
the branch-and-bound tree. Therefore, the bound provided by the linear relaxation
can vary according to how they are separated and managed. In our branch-and-cut
algorithm, we add the inequalities for which the set defining it does not contain a set
already found for another violated inequality. For each class of inequality, if the current
set is contained in a set previously found, then we replace the previous set with the
current one. Therefore, we keep all sets of violated inequalities found but not used in
a cut pool. When the separation step performed at the root node of the branch-and-
bound tree finds no further violated cut, we check if there is still any violated inequality
in the cut pool. If it exists, we add the violated inequalities to the model and continue
to solve the linear relaxation until no more violated inequality is found.

3.5.5 Variable fixing

If we add either the constraints xij = 1 or xij = 0 for an arc (i, j) ∈ A in the model
and the dual bound obtained is greater than an UB, then we can fix xij = 0 or xij = 1,
respectively. We can use the reduced cost of an arc variable to decide if we can fix
it to zero. However, for the case where we fix an arc variable to one, we must solve
the linear relaxation obtained. Despite the fast solution of the linear relaxation, the
number of arcs is enormous. Therefore, we perform this variable fixing only for the
arcs that leave the initial depot and those that go to the final depot. We execute our
variable fixing after the separation phase of the root node of the branch-and-bound
tree has ended.

3.5.6 Separation procedures

Given a fractional solution (x, y) for formulation (3.1)-(3.10), we construct the
associated support graph G = (V,A), with the same vertex set V and arcs A = A,
where each arc (i, j) ∈ A has capacity equal to xij. Using the associated support
graph G, we use the separation procedures described by Pereira and Urrutia [2018]
for inequalities (3.4), (3.5), (3.11), and (3.12). For inequalities (3.11) and (3.12), since
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they are separated heuristically, we also use the separation procedures proposed by
Balas et al. [1995].

When a violated inequality (3.4) or (3.5) is found for a vertex set S, we can check
whether max(⌈q(π(S) \ S)/|M |Q⌉, ⌈−q(σ(S) \ S)/|M |Q⌉) is greater than the lower
bound already provided by the right-hand of the correspondent inequality. We define
the inequality with the maximum lower bound calculated.

3.5.6.1 Fractional capacity constraints

To show how to separate inequalities (3.8) exactly, we first rewrite them. Given a
subset S ⊂ P ∪D, and a stack k ∈ M , the inequalities are equivalent to:

Qx(S, S) +
∑︂

i∈S∩D

−diy
k
λ(i) +

∑︂
i∈S∩P

di(1− yki ) +
∑︂

i∈P∩S

di ≥
∑︂
i∈P

di. (3.35)

Let f(S) = Qx(S, S) +
∑︁

i∈S∩D −diy
k
λ(i) +

∑︁
i∈S∩P di(1 − yki ) +

∑︁
i∈P∩S di. The

separation problem is equal to compute min{f(S) : S ⊂ P ∪D∧S ̸= ∅}. The fractional
capacity constraint is violated if and only if f(S) <

∑︁
i∈P di. On the other hand, if

f(S) ≥
∑︁

i∈P di, then no fractional capacity constraint is violated. It is possible to find
the subset S ⊂ P ∪D and stack k ∈ M for which f(S) is minimum using a max-flow
algorithm.

From the definition of inequalities (3.8), the subset S ⊂ P ∪D must necessarily
contain at least one pickup to violate the inequality for a given stack k ∈ M . Otherwise,
if it contains only deliveries, the sum

∑︁
i∈S diy

k
λ(i) is negative and the constraint is

trivially satisfied. For each pickup h ∈ P , and each stack k ∈ M , we proceed in the
following way:

1. Create the associated support graph G.

2. Multiply the capacity xij of each arc (i, j) ∈ A by Q.

3. Increase the capacity of each arc (h, j) ∈ A, j ∈ P , by the value dj.

4. Increase the capacity of each arc (n + i, 2n + 1) ∈ A, n + i ∈ D, by the value
dλ(n+i)y

k
λ(n+i).

5. For each i ∈ P , create the arc (i, 2n+ 1) with capacity di(1− yki ).

6. Run the max-flow from h to 2n + 1. If the flow value is smaller than
∑︁

i∈P di,
then by the max-flow min-cut theorem, we can obtain a set S ⊂ P ∪D such that
the inequality (3.8) defined is violated.
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Given a subset S ⊂ P ∪D and a stack k ∈ M , which define a violated inequality
(3.8) for a fractional solution, we do not add the corresponding inequality (3.8) in
the model. Instead, we check which of the inequalities (3.16) and (3.17) provide the
maximum violation for the particular solution, and add it to the model. Thus, the
previous procedure works as a heuristic method for separating inequalities (3.16) and
(3.17).

If the solution in the current node of the branch-and-bound tree is integral, we
can separate inequalities (3.8) by simply visiting the route and keeping the residual
capacity of each stack in the vehicle. If the capacity of a stack is exceeded at any pickup
location, the subset of nodes determined by the path between the moment the stack
was first used and this pickup defines a violated inequality (3.8). Similarly to fractional
solutions, in this case, instead of adding the corresponding violated inequality (3.8),
we compute the maximum of the respective inequality (3.14) and add it to the model.

3.5.6.2 LIFO constraints

To show how to separate inequalities (3.7), note that they are equivalent to:∑︂
l∈M\{k}

yli + ylj + x(S, S) + x(S, n+ i) ≥ 2, S⊂P ∪D, i, j ∈ P, j ∈ S,

i, n+ i, n+ j /∈ S, k ∈ M .
(3.36)

Define f(S) = x(S, S) + x(S, n+i). Note that the term
∑︁

l∈M\{k} y
l
i + ylj does

not depend from S. The separation problem of inequalities (3.36) is equivalent to
compute min{f(S) : S ⊂ P ∪D ∧ j ∈ S ∧ i ̸∈ S ∧ n + i ̸∈ S ∧ n + j ̸∈ S}. If f(S) <
2−

∑︁
l∈M\{k} y

l
i + ylj, then the LIFO inequality (3.7) defined is violated. Otherwise, if

f(S) ≥ 2−
∑︁

l∈M\{k} y
l
i + ylj, then no LIFO inequality is violated. For a given pair of

pickup vertices, we compute the minimum of f(S) using a max-flow algorithm.
For each pair of different pickup vertices, i ∈ P and j ∈ P , constraints (3.36) are

separated exactly in the following way:

1. Create the associated support graph G = (V,A).

2. Increase the capacity of each arc (j, u) ∈ A, u ∈ V \ {0, j, n + i, 2n + 1}, by the
value xu,n+i.

3. Set the capacity of arcs (i, n+ i), (n+ j, n+ i), and (2n+ 1, n+ i) equal to 2.

4. Execute the max-flow from source j to sink n + i. If the flow value is smaller
than 2−

∑︁
l∈M\{k} y

l
i + ylj, then by the max-flow min-cut theorem, we can obtain
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a set S such that j ∈ S, i ̸∈ S, n+ j ̸∈ S, n+ i ̸∈ S, and S violates the inequality
(3.7) defined.

If the solution of the current node of the branch-and-bound tree is integral, we
can separate inequalities (3.7) with a more efficient algorithm. Given a route that
satisfies connectivity and precedence, visit each location using the loading assignment
given by the solution. If at any moment we try to deliver an item that is not at the
top of its stack, the LIFO constraint has been violated.

3.5.6.3 Lifted LIFO inequalities

We separate inequalities (3.24) using an enumerative procedure. For each pair of
pickups i ∈ P and j ∈ P , we check if there is a set S ⊂ P ∪ D such that j ∈ S,
n + j ̸∈ S, i ̸∈ S, n + i ̸∈ S, and x(S) + x(S, n + i) > |S| − 1. Note that this is
the definition of a violated inequality (3.19). To compute this set, we adapted the
procedure of Cordeau et al. [2010] proposed for inequalities (3.18). If such a set exists,
we store the tuple (i, j, S). Once all tuples have been computed for each pair i and j,
we check whether there are |M |+1 pickups that cross each other. All ordered sequences
of size |M | + 1 defined by pickups are enumerated to check if they define a violated
inequality (3.24). This checking can be done in O(n|M |+1).

The exact separation procedure for inequalities (3.25) works in a similar fashion.
The difference is that we separate x(i, S) + x(S) > |S| − 1, S ⊂ P ∪D, for each pair
pickups i ∈ P and j ∈ P such that n + j ∈ S, j ̸∈ S, i ̸∈ S, and n + i ̸∈ S. Again,
to compute this set, we adapted the procedure of Cordeau et al. [2010]. After, all
ordered sequences of size |M |+1 are checked to see if they define a violated inequality
(3.25). We employ inequalities (3.25) only for fractional solutions. We do not consider
them for integer solutions because in this case inequalities (3.24) are equivalent. Hence,
inequalities (3.25) would be redundant.

3.5.6.4 Lifted conflict capacity inequalities

The separation of conflict capacity inequalities (3.31) and (3.32) is similar to the
procedures described in Section 3.5.6.3. The difference is that we have to check
ordered sequences of size k and determine the intersection of the sets to compute
z(Si2 , . . . , Sik+1

). We use k ∈ {1, 2, . . . , |M | − 1}.
For each pair of vertices i ∈ P and j ∈ P , we compute the tuple (i, j, S) such that

j ∈ S, n+j, i, n+i ̸∈ S, and x(S)+x(S, n+i) > |S|. Next, we check all ordered pickup
sequences of size k to determine if they mutually cross. If all k pickups in the ordered
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sequence cross each other, we compute −q(σ(Si2 ∩ · · · ∩ Sik+1
) \ (Si2 ∪ · · · ∪ Sik+1

)) and
check if its greater than Q(|M | − k). In this case, a violated inequality (3.31) has been
found.

We separate inequalities (3.32) with an equivalent procedure. But in this case, we
have to compute q(π(Si2 ∩· · ·∩Sik+1

)\ (Si2 ∪· · ·∪Sik+1
)), if its greater than Q(|M |−k)

and all the k pickups in the ordered sequence cross each other, then the inequality
(3.32) defined is violated.

For inequalities (3.27) and (3.28) (k = 1), we check if each tuple defines a
violated inequality. We also check the tuples computed in the separation procedure of
inequalities (3.25) described in Section 3.5.6.3.

3.5.6.5 Generalized LIFO inequalities with loading

We separate inequalities (3.33) adapting the separation procedure for inequalities (3.24)
described in Section 3.5.6.3. After computing the tuples (i, j, S) for each pair of pickups
i and j, such that j ∈ S, n+ j, i, n+ i ̸∈ S, and x(S) + x(S, n+ i) > |S| − 1, we check
all ordered pickup sequences of size k to determine if they cross each other. Then, we
compute the sum

∑︁k
h=1 y

l
ih

to check if we can define a violated inequality (3.33). In
our algorithm, we use the procedure for k ∈ {3, 4, . . . , |M |}.

3.5.6.6 Rounded capacity inequalities

We can obtain the fractional version of rounded capacity inequalities (3.13) disregarding
the ceiling function and using the weaker lower bound, q(S)/|M |Q:

x(S, S) ≥ q(S)

|M |Q
, S ⊂ P ∪D. (3.37)

We can separate inequalities (3.37) in a similar way as fractional capacity
inequalities (3.8). To this end, we rewrite inequalities (3.37) in an equivalent form
as:

|M |Qx(S, S)− q(S ∩D) + q(S ∩ P ) ≥ q(P ), S ⊂ P ∪D. (3.38)

Note that −q(S ∩D) > 0, since dn+i < 0, for n+ i ∈ D. We separate inequalities
(3.38) exactly and use as a heuristic procedure for inequalities (3.13). Inequalities
(3.38) are separated exactly for each h ∈ P in the following way:

1. Create the associated support graph G.

2. Multiply the capacity xij of each arc (i, j) ∈ A by |M |Q.
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3. Increase the capacity of each arc (h, j) ∈ A, j ∈ P , by the value dj.

4. Increase the capacity of each arc (n + i, 2n + 1) ∈ A, n + i ∈ D, by the value
−dn+i.

5. Run the max-flow from h to 2n + i. If the flow value is smaller than q(P ), then
by the max-flow min-cut theorem, we can obtain a set S ⊂ P ∪D such that the
inequality (3.38) defined is violated.

Since inequalities (3.13) are stronger than inequalities (3.37), given a subset S ⊂
P ∪D which violates an inequality (3.37), S also defines a violated inequality (3.13).
Therefore, we add the corresponding inequality (3.13) in the model.

While the lower bound in the right-hand side of inequalities (3.38) consider the
total load picked up in a set S ⊂ P ∪D, we can also consider the load delivered in S

using the lower bound −q(S)/|M |Q. This leads to the following inequalities:

|M |Qx(S, S) + q(S ∩ P )− q(S ∩D) ≥ −q(D), S ⊂ P ∪D. (3.39)

The separation procedure for inequalities (3.39) is performed similarly to the
one for inequalities (3.38). We also use the approach of Ropke and Cordeau [2009]
to separate inequalities (3.13). From a randomly chosen initial vertex, the algorithm
maximizes function (3.40) below. At each iteration, the node that maximizes function
(3.40) is added to the set. The heuristic stops when a violated inequality (3.13) is
found, or when the S set remains the same between two iterations. We execute the
heuristic five times.

f(S) = λ1

(︁
max {q(π(S) \ S),−q(σ(S) \ S)} −Qx(S, S)

)︁
+λ2Q

(︃
max

{︃⌈︃
q(π(S) \ S)

Q

⌉︃
,

⌈︃
−q(σ(S) \ S)

Q

⌉︃}︃
− x(S, S)

)︃
+λ3

(︁
min {q(π(S) \ S),−q(σ(S) \ S)} −Qx(S, S)

)︁ . (3.40)

The function f(S) contains three parameters λ1, λ2, and λ3. At the beginning of
each execution, λ1 and λ2 receive random values in the range [1, 5], and λ3 receives a
random value in the range [0.1]. We refer the reader to the work of Ropke and Cordeau
[2009] for more details.

3.5.7 Checking feasibility

Given an integer solution that satisfies constraints (3.4) and (3.5), we verify whether
the solution is feasible for the other constraints heuristically. We check if there is
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a stack assignment such that the LIFO and capacity constraints are respected. The
motivation for the procedure is that, if a valid stack assignment is found, there is no
need to separate LIFO or capacity inequalities. Besides, if the values of variables y in
the current node are fractional, we avoid the need to branch. Although the problem is
NP-hard, Côté et al. [2012a] solve this feasibility problem exactly in their algorithm.
However, to mitigate the computational cost, we approach the problem heuristically.

The procedure works in a greedy fashion. Initially, we compute all crossings of
the route. Then, we visit the route loading an item in the first available stack. For
availability, given a stack, the item to be loaded in this stack cannot cross with any
other item and its size cannot cause the capacity to be exceeded. If there is no stack
available for the item, we check if moving an item from the top of a stack to the next
one allows us to load it. If at any moment there is no stack available for the item, we
abort the procedure.

3.5.8 Lifting capacity inequalities

The problem of determining whether a set I of item sizes can be packed into B stacks
of size W in the PDTSPMS can be reduced to a bin packing problem. The solution
of this problem allows to lift several capacity inequalities for the PDTSPMS. The
motivation of this procedure is because inequalities (3.13), (3.27), (3.28), (3.31), and
(3.32), estimate if the load can be packed in the vehicle by assuming that non-unitary
sized items can be divided among the stacks. Therefore, the procedure applies only to
instances that contain non-unitary sized items.

The lower bound on the right-hand side of inequalities (3.13) considers that non-
unitary sized items can be divided among the stacks. Figure 3.5 shows an example.
The figure shows a vehicle with |M | = 2 stacks of capacity Q = 2, and 3 items of size
2. Despite the total load of 6 being equal to the total capacity of the vehicle |M |Q, one
of the items is divided between the stacks, which is forbidden in the PDTSPMS. The
items in the vehicle would provide a lower bound of 1 for inequalities (3.13). However,
for the input I = {2, 2, 2}, B = 2, and W = 2, the answer of the respective bin packing
problem would be no. Consequently, the lower bound of the inequalities could be lifted
by one.

Examining Figure 3.5 for inequalities (3.27), (3.28), (3.31) and (3.32), we would
assume that the load fit into the two available stacks and the respective path would
be considered feasible. However, if the corresponding bin packing problem was solved,
such a path would be eliminated since it is impossible to load the items in two stacks
without dividing one of them.
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31

2

Figure 3.5: Items cannot be divided among stacks in the PDTSPMS.

To solve the associated bin packing problem we execute a heuristic with the aim
of fixing items in or out of bins first. The heuristic fixes items in bins and also prohibits
items from being placed in certain bins. If the sum of the sizes of two items is greater
than W , then we can fix these items in different bins (valid only for the first pair of
incompatible items). Then, for a new item considered, we check if it is in conflict
(being placed in the same bin would violate the capacity) with all the other items
already fixed. In a positive case, it can also be fixed in a different bin. If it is possible
to put the item in an already open bin, we cannot fix such an item. Even if we cannot
fix an item to a new bin, we can still prohibit it from being placed into bins where the
capacity would be exceeded.

At the end of the previous heuristic, we check if the number of fixed items is
greater than the number of available bins. If so, the problem is infeasible. If the
number of fixed items is less than the number of available bins, we solve the remaining
problem with an exact backtracking algorithm trying to assign the remaining items to
the available bins. If at any time we find a feasible solution, we stop the recursion. Since
the bin packing is a NP-hard problem, the execution time may become impracticable
depending on the size of the instance. Therefore, although it was not necessary for our
algorithm, after the fixing procedure, the size of the remaining problem can be checked
to decide whether to solve it or not.

Whenever possible violated inequalities (3.13), (3.27), (3.28), (3.31), and (3.32),
are found, we invoke the procedure to check if the corresponding inequality can be lifted.
For inequalities (3.13), the right-hand side is increased by one, and for inequalities
(3.27), (3.28), (3.31) and (3.32), we add the corresponding inequality since the visitation
pattern induced by the sets involved in the crossings is infeasible. We also invoke the
bin packing procedure for inequalities (3.4) and (3.5).
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3.6 Computational results

In this section, we present the results from the computational experiments performed to
evaluate our branch-and-cut algorithm. We compare our implemented algorithm with
all the other algorithms in the literature for the PDTSPMS. Namely, the algorithms
of Côté et al. [2012a], Sampaio and Urrutia [2017], and the two algorithms of Pereira
and Urrutia [2018], B&C Arc and B&C Node. We refer to our branch-and-cut algorithm
based on formulation (3.1)-(3.10) and inequalities from Section 3.4 as B&C New.

The proposed algorithm was implemented in the C++ programming language
and compiled with GCC 4.8.4 using the optimization flag -O3. We implemented
our algorithm using CPLEX 12.10 branch-and-cut framework. The algorithms were
executed with a single thread. We disabled all preprocessing procedures, cut generation,
and heuristics of the solver. We set Dual simplex as the default algorithm to solve
the linear programs. Our computational experiments were carried out with an Intel
i7 4790K 4.00GHz machine with 16GB of RAM available, under the Ubuntu 18.04
LTS operating system. Since the source codes from Côté et al. [2012a], Sampaio and
Urrutia [2017], and Pereira and Urrutia [2018], were all kindly shared with us, all the
algorithms were compiled and executed in the same computational environment. In our
experiments, we set the maximum computational time to five hours (18000 seconds).

We use the set of benchmark instances proposed by Côté et al. [2012a] to evaluate
the effectiveness of our branch-and-cut. The authors generated them based on the
instances of the PDTSPL in Cordeau et al. [2010]. Two classes of instances were
generated. Each class has a total of 54 instances, divided equally into 9 families. In
the first class, C1, the size of each pickup item is 1, the number of stacks is a random
number between 2 and 4, and the capacity of each stack is a random number between
1 and 3. In the second class, C2, the size of each pickup item is a random number
between 1 and 10, the number of stacks is a random number between 2 and 4, and the
capacity is a random number between 10 and 15.

Table 3.1 and 3.2 report the results of the algorithms considering all the instances
in classes C1 and C2, respectively. The values displayed are the average of the results
for all the instances in the corresponding class. The columns for each algorithm in the
table represent: the average gap in the root node of the branch-and-bound tree (Gapr),
calculated as (BUB − LBR)/(BUB), where BUB is the best upper bound known for
the instance, and LBR is the lower bound obtained in such node; the average final
gap (Gapf ), computed as (BUB − BLB)/(BUB), where BLB is the best lower bound
obtained by the algorithm during the search in the branch-and-bound tree; the average
execution time, in seconds, of the algorithm (Time); the average number of explored
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Table 3.1: Summarized results of all the algorithms for class C1.

Algorithm Gapr Gapf Time Nodes Cuts Solved
B&C New 3.88 0.50 2871.32 26841.24 5258.94 46 / 54
B&C New - LIFO 3.87 0.52 2889.80 23175.20 5706.80 46 / 54
B&C New - CAPACITY 4.32 0.73 4050.72 37543.20 7414.59 44 / 54
B&C New - CUTPOOL 4.91 0.63 3438.69 32552.80 6037.07 45 / 54
B&C New - BINPACKING 3.88 0.49 2871.97 26893.46 5261.22 46 / 54
B&C New - ALL 5.44 1.04 4800.52 41042.22 8730.81 41 / 54
B&C Arc [Pereira and Urrutia, 2018] 8.52 2.57 5181.18 53943.56 9909.46 40 / 54
B&C Node [Pereira and Urrutia, 2018] 8.52 1.62 5252.06 69087.67 8325.46 39 / 54
Côté et al. [2012a] 6.07 1.12 5609.30 28084.89 383002.33 40 / 54
Sampaio and Urrutia [2017] 8.84 3.09 6414.74 71993.04 10167.72 36 / 54

Table 3.2: Summarized results of all the algorithms for class C2.

Algorithm Gapr Gapf Time Nodes Cuts Solved
B&C New 4.74 0.44 2893.44 36052.41 5365.94 47 / 54
B&C New - LIFO 4.71 0.47 3102.01 35989.93 6151.07 47 / 54
B&C New - CAPACITY 5.24 0.76 4387.65 46928.98 8869.87 43 / 54
B&C New - CUTPOOL 5.64 0.56 3629.96 45187.63 6231.24 46 / 54
B&C New - BINPACKING 5.79 0.90 4586.46 56683.85 7836.33 42 / 54
B&C New - ALL 7.01 1.65 6905.64 78784.69 12645.91 36 / 54
B&C Arc [Pereira and Urrutia, 2018] 10.06 3.19 7785.17 101711.20 14455.85 33 / 54
B&C Node [Pereira and Urrutia, 2018] 10.20 2.84 7958.74 117587.00 12262.06 33 / 54
Côté et al. [2012a] 8.33 2.04 8727.75 59207.48 700194.59 32 / 54
Sampaio and Urrutia [2017] 10.35 3.52 8653.01 125171.61 13205.81 30 / 54

nodes in the branch-and-bound tree (Nodes); the average amount of cuts added in
the entire branch-and-bound tree (Cuts); and the number of solved instances by each
algorithm together with the total of instances in the class (Solved).

To evaluate the impact of the main components of our proposed algorithm, we
removed each one of them from the final version. Namely, B&C New - LIFO removes
inequalities (3.24), (3.25), and (3.33) from the algorithm; B&C New - CAPACITY removes
inequalities (3.16), (3.17), (3.31), and (3.32); B&C New - CUTPOOL removes the cut pool
from Section 3.5.4; B&C New - BINPACKING removes the lifting procedure based on bin
packing from Section 3.5.8; B&C New - ALL removes all of the previous components.

We show in Tables 3.1 and 3.2 the results of the versions of the proposed
algorithm. We can see that removing the cut pool from the root node of the branch-
and-bound tree weakens the linear relaxation bound and decreases the total number of
instances solved for both classes of instances. The same behavior is observed for the
removal of the bin packing procedure for class C2, the gap in the root node increases and
the algorithm solves 5 instances less than B&C New. Removing the proposed capacity
inequalities also worsens algorithm B&C New. The removal of LIFO inequalities has no
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impact like the other components, but it negatively impacts the algorithm if removed
together with all the previous components.

Analyzing the results of Tables 3.1 and 3.2 it is clear that the best of the
algorithms is B&C New. For all the metrics evaluated it obtains the best results for
both instance classes. The algorithm solves more instances than all other algorithms,
especially in class C2, where the other algorithms solve fewer instances than in class
C1. Besides, it obtains stronger dual bounds at the root node of the branch-and-bound
tree and also at the end of the execution. The computational time for all classes is also
smaller. As the algorithm of Côté et al. [2012a] adds the cuts locally, the amount of
cuts is considerably greater compared to the other algorithms. Similar to the results
obtained in Pereira and Urrutia [2018], comparing the existing algorithms from the
literature, B&C Arc obtains the best overall results by solving more instances. Thus,
in the next tables, we compare its results with our proposed B&C New algorithm.

We display in Tables 3.3 and 3.4 the results of B&C New and B&C Arc for class
C1 and C2, respectively. The table columns have the same meaning as in Tables 3.1
and 3.2, but this time considering each specific instance. Moreover, we added a block
with three columns to describe each instance. The column n indicates the number of
requests. Therefore, the corresponding instance has 2n+2 vertices. The column BUB
displays the best upper bound known for the instance. This value is the optimal solution
if one of the algorithms has a final gap equal to zero. It is worth mentioning that the
best primal bounds for the unsolved instances were obtained by our algorithm. If the
instance has 18000 in its time column, the time limit was reached and the optimization
aborted.

We can see the strength of our proposed formulation and inequalities through the
fact that our algorithm obtains the best dual bounds at the root node of the branch-
and-bound tree and the end of the algorithm for all the instances. We highlight that
this also holds when compared with the other existing algorithms. For several instances,
the gap of algorithm B&C New at the root of the branch-and-bound tree is smaller than
the final gap obtained by B&C Arc. In addition to the stronger formulation, we see that
the total number of enumerated nodes and added cuts is smaller for our algorithm. As
we can see from the tables, our B&C New algorithm was able to drastically reduce the
time needed to solve each instance. Reducing the time needed to reach optimality from
several hours to just a few seconds.

In addition to solving all instances that B&C Arc solves, B&C New solves 20 more
instances in total. Our branch-and-cut algorithm B&C New closed the difficulty gap
that existed between classes C1 and C2 for the other algorithms. Unlike the other
algorithms from the literature, our algorithm B&C New solves almost the same number
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Table 3.3: Detailed results for the instances in class C1.

Instance B&C New B&C Arc [Pereira and Urrutia, 2018]
Name n BUB Gapr Gapf Time Nodes Cuts Gapr Gapf Time Nodes Cuts
a280 11 449 2.38 0.00 0.27 46 219 9.63 0.00 0.40 157 408

13 468 2.31 0.00 0.33 37 193 10.47 0.00 1.07 239 656
15 542 2.60 0.00 0.56 34 246 13.28 0.00 15.14 1508 1945
17 624 2.45 0.00 0.87 30 235 10.90 0.00 6.67 653 960
19 669 2.67 0.00 2.08 72 364 10.24 0.00 53.13 2781 2525
21 739 4.00 0.00 16.48 1079 1054 11.77 0.00 347.66 13314 4505

att532 11 4177 0.00 0.00 0.07 0 102 0.49 0.00 0.04 3 106
13 4937 0.00 0.00 0.17 0 112 0.73 0.00 0.07 3 77
15 5151 0.65 0.00 0.44 3 172 2.17 0.00 0.34 16 187
17 5294 0.17 0.00 0.39 5 188 0.83 0.00 0.22 11 197
19 5587 0.87 0.00 0.95 4 199 2.16 0.00 1.05 34 309
21 9266 2.88 0.00 14.33 875 1111 3.45 0.00 77.44 5839 3732

brd14051 11 4396 3.57 0.00 0.84 113 384 3.74 0.00 1.17 283 533
13 4439 3.94 0.00 3.13 389 670 4.48 0.00 4.66 728 969
15 4797 6.89 0.00 498.37 35770 4530 10.16 2.66 18000.00 268075 17231
17 4922 5.93 0.00 2763.55 97369 7388 11.99 6.97 18000.00 115085 26671
19 6452 0.99 0.00 153.28 7218 3561 31.09 28.86 18000.00 85909 50039
21 6733 1.74 0.69 18000.00 118796 18616 33.54 10.56 18000.00 54829 41368

d15112 11 74603 4.10 0.00 0.41 45 293 4.93 0.00 0.26 62 271
13 80690 6.71 0.00 1.88 205 544 7.85 0.00 3.77 1320 752
15 89754 3.40 0.00 1.51 98 489 4.97 0.00 5.53 1405 998
17 96804 4.61 0.00 23.86 2148 1582 8.78 0.00 321.94 29339 4769
19 103356 7.20 0.00 3177.93 100568 10411 10.84 3.43 18000.00 177864 17822
21 108081 9.96 3.85 18000.00 112841 25584 14.21 7.73 18000.00 98445 27930

d18512 11 4280 0.00 0.00 0.12 0 246 1.02 0.00 0.17 18 219
13 4301 0.10 0.00 0.25 4 214 1.20 0.00 0.42 46 330
15 4638 4.77 0.00 10.94 1524 1171 6.99 0.00 129.79 15420 2769
17 4741 5.28 0.00 59.13 4659 2847 8.44 0.00 3992.78 123967 9394
19 4917 6.02 0.00 1026.47 40181 7496 9.85 0.97 18000.00 227930 17124
21 5100 8.60 3.96 18000.00 160011 22532 12.60 8.34 18000.00 110206 28222

fnl4461 11 1889 0.00 0.00 0.15 0 192 0.44 0.00 0.08 37 228
13 2088 0.00 0.00 0.39 0 240 2.27 0.00 0.68 243 678
15 2356 1.36 0.00 1.52 24 560 6.58 0.00 228.20 40546 5441
17 2517 1.36 0.00 3.63 79 856 9.37 0.00 7306.75 305653 15073
19 2933 4.54 0.00 231.40 4772 8186 18.57 13.71 18000.00 217608 29383
21 3561 3.93 0.53 18000.00 43199 42765 29.87 25.97 18000.00 115567 45324

nrw1379 11 2690 1.97 0.00 0.26 6 323 2.04 0.00 0.11 8 202
13 3061 9.99 0.00 2915.82 102951 11428 10.24 0.00 11592.79 199662 17843
15 3117 10.07 3.85 18000.00 174567 27949 10.67 4.05 18000.00 225373 23811
17 3197 9.03 1.51 18000.00 186067 21370 10.24 3.91 18000.00 184910 24326
19 3413 11.97 6.57 18000.00 137634 27688 14.27 10.14 18000.00 95038 45607
21 3634 11.70 5.75 18000.00 106128 22609 15.09 11.25 18000.00 61546 49031

pr1002 11 13718 0.35 0.00 0.07 3 94 1.47 0.00 0.05 13 139
13 15436 1.47 0.00 0.30 14 171 2.63 0.00 0.32 51 208
15 16268 3.36 0.00 3.05 526 601 4.36 0.00 7.93 2011 876
17 17601 3.16 0.00 4.37 345 756 4.23 0.00 15.55 2570 1216
19 18673 3.20 0.00 8.68 669 926 4.50 0.00 21.46 2596 1087
21 20150 3.27 0.00 19.27 1108 1219 4.33 0.00 93.10 7678 1765

ts225 11 22000 0.00 0.00 0.07 1 119 0.00 0.00 0.07 14 178
13 29395 0.00 0.00 0.20 2 190 0.07 0.00 0.10 6 167
15 32541 0.65 0.00 0.41 11 197 6.57 0.00 0.57 65 226
17 36405 4.53 0.00 1.17 47 264 8.98 0.00 2.71 213 472
19 40395 8.81 0.00 18.99 1638 975 14.61 0.00 387.20 28189 3077
21 42878 9.83 0.00 83.03 5512 1552 15.66 0.00 3162.24 87866 5735
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Table 3.4: Detailed results for the instances in class C2.

Instance B&C New B&C Arc [Pereira and Urrutia, 2018]
Name n BUB Gapr Gapf Time Nodes Cuts Gapr Gapf Time Nodes Cuts
a280 11 455 3.45 0.00 0.36 66 217 11.76 0.00 0.84 361 512

13 479 4.00 0.00 0.88 163 335 12.53 0.00 1.32 352 655
15 553 3.99 0.00 2.08 233 475 15.01 0.00 17.04 2138 1890
17 635 3.51 0.00 2.92 233 481 12.44 0.00 11.13 1198 1289
19 677 3.29 0.00 4.09 254 500 11.74 0.00 33.17 1728 2421
21 753 5.35 0.00 120.81 9713 2293 13.41 0.00 469.00 20834 4881

att532 11 4190 0.00 0.00 0.07 0 99 0.80 0.00 0.05 7 122
13 5033 0.21 0.00 0.20 4 151 2.62 0.00 0.32 65 205
15 5665 6.35 0.00 9.42 1318 947 11.05 0.00 1274.99 81587 7959
17 5865 6.47 0.00 26.99 2717 1705 10.87 2.17 18000.00 233489 28060
19 6184 6.99 0.00 100.65 6597 2967 11.69 3.35 18000.00 175469 31904
21 9998 4.68 0.00 52.48 2440 1350 10.36 5.94 18000.00 94660 35528

brd14051 11 4386 3.39 0.00 0.75 106 383 3.52 0.00 0.84 278 412
13 4458 3.16 0.00 3.95 452 736 4.83 0.00 29.65 7780 2043
15 4795 8.35 0.00 9994.86 213182 14598 10.08 2.64 18000.00 254081 16500
17 4889 7.48 1.29 18000.00 200716 19261 11.41 6.52 18000.00 157854 24724
19 6274 2.37 0.00 30.83 1340 2493 29.25 26.99 18000.00 75457 45509
21 6320 2.64 0.00 316.51 10061 6455 29.56 27.22 18000.00 72934 48441

d15112 11 73872 3.23 0.00 0.60 185 288 3.85 0.00 0.51 251 319
13 81657 7.78 0.00 13.80 2855 1467 8.94 0.00 94.85 22595 3861
15 91799 5.37 0.00 83.69 15968 2253 7.09 0.00 368.83 50576 6551
17 97040 8.04 0.00 244.41 18482 4988 9.00 0.70 18000.00 381724 28817
19 99660 6.51 0.00 376.56 15664 6214 7.53 0.00 7116.20 187521 21158
21 104213 9.54 1.52 18000.00 130632 24171 11.15 3.97 18000.00 98356 23506

d18512 11 4341 0.00 0.00 0.12 2 141 2.41 0.00 5.91 2523 803
13 4572 0.89 0.00 0.52 8 263 7.05 0.00 9939.80 521831 15468
15 4893 4.69 0.00 34.48 3444 2117 11.80 3.66 18000.00 226858 19206
17 5096 4.30 0.00 2075.23 70414 9030 14.80 6.03 18000.00 105240 27403
19 5359 5.78 1.67 18000.00 209390 15282 17.29 10.11 18000.00 82044 35743
21 5726 9.59 7.23 18000.00 122913 22286 22.16 17.95 18000.00 87505 43847

fnl4461 11 1883 0.16 0.00 0.12 11 164 0.16 0.00 0.06 13 153
13 2088 1.92 0.00 1.79 435 600 2.18 0.00 6.49 2538 1365
15 2262 1.89 0.00 1.73 237 468 2.81 0.00 25.97 6675 2286
17 2428 4.26 0.00 41.97 4558 2630 6.14 0.00 2470.22 168073 10175
19 2634 8.63 0.00 3947.73 106946 14122 9.32 4.29 18000.00 278274 26247
21 2773 7.66 0.00 2284.65 53855 11365 9.94 3.76 18000.00 227438 23997

nrw1379 11 2690 1.28 0.00 0.29 10 318 2.06 0.00 0.13 12 234
13 3055 9.84 0.00 2655.20 92720 12444 10.10 0.00 5024.02 225699 12224
15 3108 9.64 2.81 18000.00 169794 28480 10.41 3.73 18000.00 242344 23098
17 3197 7.13 0.00 7355.26 196598 14594 10.24 4.01 18000.00 226279 23672
19 3421 8.66 4.50 18000.00 130877 25764 14.47 10.16 18000.00 92140 44006
21 3769 7.68 4.87 18000.00 120668 27172 18.11 14.29 18000.00 58480 49231

pr1002 11 13527 1.35 0.00 0.16 35 152 1.92 0.00 0.24 127 279
13 15221 2.36 0.00 0.84 181 264 2.89 0.00 3.83 1556 1217
15 15676 1.87 0.00 0.89 100 282 2.33 0.00 6.77 1841 1784
17 17009 1.73 0.00 3.46 499 517 2.29 0.00 28.31 4513 4541
19 18136 2.45 0.00 7.33 554 868 3.04 0.00 102.46 9486 8623
21 19613 2.40 0.00 14.45 906 1109 2.95 0.00 156.42 9814 11438

ts225 11 22000 0.00 0.00 0.09 5 114 0.00 0.00 0.09 33 289
13 34000 3.08 0.00 0.34 9 200 13.61 0.00 188.89 34804 3720
15 37703 5.73 0.00 1.27 51 307 19.36 0.00 1525.97 126138 7129
17 41703 5.16 0.00 3.88 290 418 17.71 0.00 13494.63 443364 13526
19 45703 8.62 0.00 43.22 3741 1152 21.59 5.59 18000.00 230165 16118
21 49097 11.32 0.00 383.64 24198 2311 23.76 9.15 18000.00 155303 15527
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Table 3.5: Summarized results for the instance families in class C1.

Family B&C New B&C Arc [Pereira and Urrutia, 2018]
Gapr Gapf Time Nodes Cuts Solved Gapr Gapf Time Nodes Cuts Solved

a280 2.73 0.00 3.43 216.33 385.17 6 / 6 11.05 0.00 70.68 3108.67 1833.17 6 / 6
att532 0.76 0.00 2.73 147.83 314.00 6 / 6 1.64 0.00 13.19 984.33 768.00 6 / 6
brd14051 3.84 0.12 3569.86 43275.83 5858.17 5 / 6 15.83 8.17 12000.97 87484.83 22801.83 2 / 6
d15112 6.00 0.64 3534.27 35984.17 6483.83 5 / 6 8.60 1.86 6055.25 51405.83 8757.00 4 / 6
d18512 4.13 0.66 3182.82 34396.50 5751.00 5 / 6 6.68 1.55 6687.19 79597.83 9676.33 4 / 6
fnl4461 1.87 0.09 3039.52 8012.33 8799.83 5 / 6 11.18 6.61 7255.95 113275.67 16021.17 4 / 6
nrw1379 9.12 2.95 12486.01 117892.17 18561.17 2 / 6 10.42 4.89 13932.15 127756.17 26803.33 2 / 6
pr1002 2.47 0.00 5.96 444.17 627.83 6 / 6 3.59 0.00 23.07 2486.50 881.83 6 / 6
ts225 3.97 0.00 17.31 1201.83 549.50 6 / 6 7.65 0.00 592.15 19392.17 1642.50 6 / 6

Table 3.6: Summarized results for the instance families in class C2.

Family B&C New B&C Arc [Pereira and Urrutia, 2018]
Gapr Gapf Time Nodes Cuts Solved Gapr Gapf Time Nodes Cuts Solved

a280 3.93 0.00 21.86 1777.00 716.83 6 / 6 12.82 0.00 88.75 4435.17 1941.33 6 / 6
att532 4.12 0.00 31.64 2179.33 1203.17 6 / 6 7.90 1.91 9212.56 97546.17 17296.33 3 / 6
brd14051 4.57 0.21 4724.48 70976.17 7321.00 5 / 6 14.78 10.56 12005.08 94730.67 22938.17 2 / 6
d15112 6.75 0.25 3119.84 30631.00 6563.50 5 / 6 7.93 0.78 7263.40 123503.83 14035.33 4 / 6
d18512 4.21 1.48 6351.73 67695.17 8186.50 4 / 6 12.59 6.29 13657.62 171000.17 23745.00 2 / 6
fnl4461 4.09 0.00 1046.33 27673.67 4891.50 6 / 6 5.09 1.34 6417.12 113835.17 10703.83 4 / 6
nrw1379 7.37 2.03 10668.46 118444.50 18128.67 3 / 6 10.90 5.37 12837.36 140825.67 25410.83 2 / 6
pr1002 2.03 0.00 4.52 379.17 532.00 6 / 6 2.57 0.00 49.67 4556.17 4647.00 6 / 6
ts225 5.65 0.00 72.07 4715.67 750.33 6 / 6 16.01 2.46 8534.93 164967.83 9384.83 4 / 6

of instances in both classes.
We group the results by the instance family and summarize them in Tables 3.5

and 3.6. The table columns represent the same information as in Table 3.1. The
displayed values are the average of the results for all the instances in the corresponding
family. The algorithm B&C New clearly outperformed B&C Arc for all instance families.
We can see from Table 3.5 that all the metrics for all the instance families improved
significantly. We can see that the families that have unsolved instances by B&C New are
the same for classes C1 and C2. Moreover, family nrw1379 remains the most difficult
family for the problem. This same family of instances is also very hard in other variants
of the PDTSPMS.

3.7 Conclusion

This work addressed the pickup and delivery traveling salesman problem with multiple
stacks (PDTSPMS). The main contributions of our work were a new branch-and-cut
algorithm along with new valid inequalities. Some of these valid inequalities are lifted
versions of existing inequalities for the PDTSPMS. New separation procedures for them
were also presented. Besides, we show how to lift several capacity inequalities using a
procedure based on the solution of a bin packing problem. The proposed branch-and-
cut algorithm solves more instances from the benchmark than all the other algorithms
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from the literature. In addition to being able to solve more instances, our implemented
algorithm obtained a better performance for all evaluated metrics. We showed that
our proposed algorithm significantly outperforms the other exact algorithms from the
literature for this problem. We pushed the boundary on what is now solvable in five
hours for the PDTSPMS.

The algorithms developed in this work could be adapted to other routing problems
and versions of the PDTSPMS. Using a fixing heuristic, we demonstrated that is
practicable to couple the exact solution of a bin packing problem in our implemented
algorithm. This shows that is possible to apply the lifting procedure used in this work
for other routing problems that involve rounded capacity inequalities or the constraint
of items not being divisible between stacks. Also, since the gap in the root node
of the branch-and-bound tree can still be improved for most of the instances in the
benchmark, new studies may involve proposing new valid inequalities for the problem.

There are still unsolved instances for the problem benchmark, making new
approaches necessary to deal with the complexity of the problem. In addition to
the previous proposals, we intend to develop algorithms based on column generation
for the PDTSPMS. To the best of our knowledge, there is still no work in the
literature using such an approach in an exact algorithm specific to the problem. All
the exact approaches for the PDTSPMS are based on branch-and-cut algorithms.
Consequently, we intend to apply a Dantzig-Wolfe reformulation using specific aspects
of the problem.



Chapter 4

Conclusion and future research
directions

We discuss in this chapter the final remarks about our work and point out further
research directions we might follow. In the next section, we summarize the results
obtained in this thesis. Following, we address possible future works regarding the
studied problems.

4.1 Concluding remarks

We carried out the study of two combinatorial optimization problems in this work.
Our study focused on formulations, valid inequalities, and exact algorithms for
the considered problems. For both studied problems, our implemented approaches
outperformed the previously existing methods from the literature. All computational
experiments involving the algorithms were performed in the same computational
environment, which allowed a direct comparison between the various approaches.

For the first problem, the p-arborescence star problem (p-ASP), with applications
in the design of wireless sensor networks, we proposed two new formulations along
with branch-and-cut algorithms based on them. For the branch-and-cut algorithms,
we introduced preprocessing procedures that provide subsets of nodes for which at
least one of them is a cluster-head. We use these subsets to create inequalities that
are incorporated in the initial models used by the branch-and-cut algorithms. Also, we
proved the theoretical result that finding a feasible solution to the problem is NP-hard.
Our last contribution to the p-ASP was to improve the branch-and-cut algorithm from
the literature with an exact polynomial-time separation algorithm.

70
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We compared the algorithms for the p-ASP in the same computational setting.
Our proposed version of the algorithm from the literature obtained better dual bounds
at the root of the branch-and-bound tree than its previous counterpart that uses
a heuristic separation algorithm. Also, it solved more instances of the benchmark.
Regarding the branch-and-cut algorithms based on our proposed formulations, for small
and medium-sized instances, our algorithms obtained shorter execution times, despite
worse bounds in the root node the branch-and-bound tree. For the harder instances of
the benchmark, the two best algorithms do not show dominance over the other, each
of the two algorithms solves an instance that the other does not.

The second studied problem is the pickup and delivery traveling salesman problem
with multiple stacks (PDTSPMS). We introduced a new formulation along with new
valid inequalities. Several of these new valid inequalities are lifted versions from
previous works addressing the problem and its variants. The derived inequalities
focused on the capacity and LIFO policy aspects of the PDTSPMS. Using the
formulation and inequalities as a starting point, we implemented a branch-and-cut
algorithm. The devised algorithm also has several acceleration strategies. One of
these acceleration strategies is based on the solution of a bin packing problem to lift
several capacity inequalities. Although we solved the bin packing problem exactly, our
implementation showed that it is possible to solve it in negligible time with the support
of a fixation heuristic. As a result, we were able to integrate the procedure into our
branch-and-cut algorithm without any computational loss.

Since the authors of the other exact algorithms for the PDTSPMS kindly shared
their source codes with us, we compiled and executed all the algorithms using the same
machine and tools. Our algorithm outperforms all other algorithms for the benchmark
instances. The proposed algorithm solved more instances in total from the benchmark
set, obtained the strongest dual bounds at the root node of the branch-and-bound
tree for all instance families, and drastically reduced the time required to solve most
instances of the benchmark. Moreover, for unsolved instances of the benchmark, it
achieved the best upper bounds and optimality gaps.

4.2 Future research directions

As we discussed in Chapter 2, new approaches for the p-ASP may involve the study
of methods that allow a faster solution of the linear programs obtained from relaxing
the nodes in the branch-and-bound tree. One of the possible approaches is to apply
a Lagrangian relaxation to existing formulations. However, at the moment, we have
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not progressed on any idea in this direction. To move in this direction, we believe
that we need new inequalities to strengthen the formulations since the linear programs
obtained are already solved in short times. The problem is also interesting for the
development of heuristics, since finding a feasible solution is NP-hard. One approach
we will consider in the future is to develop a Feasibility Pump heuristic. However, we
believe that we still need to improve this contribution to pursue the direction. Finally,
new preprocessing procedures might be investigated.

One of the main motivations for defining the p-ASP is to extend the lifetime of
a dynamic network. Thus, an alternative line of study is to extend the problem to
consider a rotation of nodes per period. In this case, a time interval where a set of p
nodes remains as cluster-heads on the backbone can be considered, at the end of that
period, p new nodes are chosen to be cluster-heads. By adding periods to the problem,
we make it more representative of a real situation, since a node does not need to remain
as a cluster-head throughout the whole network lifetime. With both problems at hand,
a comparative study could evaluate if the inclusion of periods in the problem increases
the network lifetime significantly.

Our main focus as a next research step for the PDTSPMS is the development
of an exact algorithm based on column generation for the problem. To the best of
our knowledge, there is still no work in the literature using such an approach in an
exact algorithm for the problem. All exact approaches to the PDTSPMS are based on
branch-and-cut algorithms. In the benchmark of the problem, there are still unsolved
instances. Thus, it is interesting to study new exact approaches and analyze how they
behave. Our initial idea is to apply a Dantzig-Wolfe decomposition on the precedence
polytope.

Alongside the column generation investigation, we intend to study new valid
inequalities and separation algorithms for the PDTSPMS. As we observed in the results
of the computational experiments in Chapter 3, although our algorithm obtained the
best dual bounds at the root node of the branch-and-bound tree, there is still a lot
of margin to strengthen them. As we use the most efficient valid inequalities in the
literature for the problem, we suppose that to improve the formulations, new valid
inequalities are necessary. This same argument applies to the heuristic methods used to
separate several inequalities. More efficient methods of separation and cut management
can improve the dual bounds of the formulations.

While the tree [Magnanti and Wolsey, 1995], cycle [Grötschel and Padberg, 1979;
Bauer, 1997; Ruland and Rodin, 1998], and precedence [Balas et al., 1995; Dumitrescu
et al., 2010] polytopes are well studied, the LIFO polytope has not been investigated.
Therefore, this is a valid and interesting venue for research, since facets for the LIFO
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polytope can streghten the formulations and improve the performance of algorithms
for the PDTSPMS and its variants.

Even though the routing problem research field is rich in heuristics for several
problems, the PDTSPMS has little work related to this topic. Thus, an alternative
way of contributing to the problem literature is through the development of heuristics.
The PDTSPMS is complex and has several aspects that must be taken into account
for a route to be feasible. Thus, it is an interesting problem to propose and test the
efficiency of heuristic approaches.

Recently, the concept of handling operations was introduced in problem variants
of the PDTSPMS [Veenstra et al., 2017a; Chagas et al., 2020]. These operations allow
items blocking access to be rearranged within the vehicle. It is usually considered a
cost or time to reposition an item. Despite the fact that this aspect has been used for
other variants, it has not yet been studied in the classic version of the PDTSPMS. For
this reason, one line of research is to extend the problem with handling operations. In
this case, it is also possible to conduct an investigation from an operations research
perspective. The objective would be to assess whether repositioning items within the
vehicle can decrease the total costs involved in operating the vehicle to meet customer
requests.
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