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Resumo

Esta tese é uma investigação de alguns aspectos matemáticos de percolação de elos de Bernoulli

não-homogênea em dois grafos 𝔾 = (𝕍,𝔼) distintos; em cada um deles, consideramos uma

decomposição 𝔼′ ∪ 𝔼′′ do conjunto de elos 𝔼 em questão e, dados 𝑝, 𝑞 ∈ [0, 1], atribuímos

parâmetros 𝑝 e 𝑞 aos elos de 𝔼′ e 𝔼′′, respectivamente. Em tal formulação, um dos conjuntos,

digamos 𝔼′′, é visto como o conjunto de inomogeneidades.

O primeiro grafo 𝔾 = (𝕍,𝔼) considerado é aquele induzido pelo produto cartesiano de

um grafo infinito e conexo 𝐺 = (𝑉 , 𝐸) e o conjunto dos inteiros ℤ. Escolhemos uma coleção

infinita C de subgrafos finitos e conexos de 𝐺 e trabalhamos com o modelo de percolação de

elos de Bernoulli em𝔾 que atribui probabilidade 𝑞 de estar aberto a cada elo cuja projeção em𝐺

incide sobre algum subgrafo em C, e probabilidade 𝑝 para os demais elos. Aqui, focamos nossa

atenção no parâmetro crítico para percolação, 𝑝𝑐 (𝑞), definido como o supremo dos valores de 𝑝

para os quais percolação com parâmetros 𝑝, 𝑞 não ocorre. Mostramos que a função 𝑞 ↦→ 𝑝𝑐 (𝑞)

é contínua em (0, 1), no caso em que os grafos de C estão “suficientemente espaçados entre si”

em 𝐺 e seus conjuntos de vértices possuem cardinalidade uniformemente limitada.

O segundo grafo é a usual rede hipercúbica 𝑑-dimensional, 𝕃𝑑 = (ℤ𝑑 ,𝔼𝑑), 𝑑 ≥ 3, onde

definimos o modelo de percolação de Bernoulli não-homogênea em que cada elo contido no

subespaço 𝑠-dimensional ℤ𝑠 × {0}𝑑−𝑠 , 2 ≤ 𝑠 < 𝑑 , está aberto com probabilidade 𝑞, e os demais

elos estão abertos com probabilidade 𝑝 . Definindo 𝑞𝑐 (𝑝) como o supremo dos valores de 𝑞

para os quais percolação com parâmetros 𝑝, 𝑞 não ocorre e denotando o ponto crítico para

percolação homogênea em𝕃𝑑 por 𝑝𝑐 ∈ (0, 1), provamos dois resultados: primeiro, a unicidade do

aglomerado infinito na fase supercrítica de parâmetros (𝑝, 𝑞), para 𝑝 ≠ 𝑝𝑐 ; segundo, mostramos

que, para 𝑝 < 𝑝𝑐 , o ponto crítico (𝑝, 𝑞𝑐 (𝑝)) pode ser aproximado por pontos críticos de slabs,

no espírito do clássico teorema de Grimmett e Marstrand para percolação homogênea.

Palavras-chave: percolação não-homogênea, unicidade, curva crítica, teorema de Grimmett–

Marstrand.
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Samenvatting

In dit proefschrift bestuderen we enige wiskundige aspecten van inhomogene Bernoulli-

percolatie op twee verschillende grafen 𝔾 = (𝕍,𝔼); in beide gevallen beschouwen we een

decompositie 𝔼′ ∪ 𝔼′′ van de betreffende verzameling kanten 𝔼 van de graaf, en voor gegeven

𝑝, 𝑞 ∈ [0, 1] kennen we parameters 𝑝 en 𝑞 toe, respectievelijk aan de kanten in 𝔼′ en aan die in

𝔼′′. In zo’n formulering wordt een van de twee verzamelingen kanten, zeg 𝔼′′, opgevat als de

verzameling inhomogeniteiten.

De eerste graaf, 𝔾 = (𝕍,𝔼), die we beschouwen wordt verkregen door het Cartesisch

product te nemen van een oneindige samenhangende graaf 𝐺 = (𝑉 , 𝐸) en de verzameling

gehele getallen ℤ. We kiezen een oneindige collectie C, bestaande uit eindige samenhangende

subgrafen van 𝐺 , en beschouwen het Bernoulli kantpercolatie-model op 𝔾 dat een kans 𝑞 om

open te zijn toekent aan elke kant waarvan de projectie op 𝐺 in een subgraaf uit C ligt, en

een kans 𝑝 om open te zijn aan elke andere kant in de graaf. We laten zien dat de kritieke

percolatiedrempel 𝑝𝑐 (𝑞) een continue functie op (0, 1) is, onder de voorwaarde dat de grafen in

C voldoende ver uit elkaar liggen en dat hun verzamelingen punten een uniform begrensde

cardinaliteit hebben.

De tweede graaf die we beschouwen is het standaard 𝑑-dimensionale rooster, 𝕃𝑑 = (ℤ𝑑 ,𝔼𝑑),

𝑑 ≥ 3, waarop we werken met het inhomogene Bernoulli-percolatiemodel waarin iedere kant

in het 𝑠-dimensionale hypervlak ℤ𝑑 × {0}𝑑−𝑠 , 2 ≤ 𝑠 ≤ 𝑑 , open is met kans 𝑞 en iedere andere

kant open is met kans 𝑝 .

Daarvoor bewijzen we twee resultaten: Ten eerste bewijzen we de uniciteit van de oneindige

cluster in de superkritische fase, voor parameters (𝑝, 𝑞), als 𝑝 ≠ 𝑝𝑐 , waar 𝑝𝑐 ∈ (0, 1) de drempel

voor homogene percolatie op 𝕃𝑑 aangeeft; en ten tweede laten we zien dat het kritieke punt

(𝑝, 𝑞𝑐 (𝑝)) benaderd kan worden door de kritieke punten van "slabs"van eindige dikte, voor elke

𝑝 < 𝑝𝑐 .
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Abstract

This thesis is an investigation of some mathematical aspects of inhomogeneous Bernoulli bond

percolation in two different graphs 𝔾 = (𝕍,𝔼). In each of them, we consider a decomposition

𝔼′ ∪ 𝔼′′ of the relevant edge set 𝔼 and, given 𝑝, 𝑞 ∈ [0, 1], we assign parameters 𝑝 and 𝑞 to the

edges of 𝔼′ and 𝔼′′, respectively. In such formulation, one of the sets, say 𝔼′′, is regarded as

the set of inhomogeneities.

The first graph 𝔾 = (𝕍,𝔼) we consider is the one induced by the cartesian product of

an infinite and connected graph 𝐺 = (𝑉 , 𝐸) and the set of integers ℤ. We choose an infinite

collection C of finite connected subgraphs of 𝐺 and consider the Bernoulli bond percolation

model on 𝔾 which assigns probability 𝑞 of being open to each edge whose projection onto 𝐺

lies in some subgraph of C and probability 𝑝 to every other edge. Here, we focus our attention

on the critical percolation threshold, 𝑝𝑐 (𝑞), defined as the supremum of the values of 𝑝 for

which percolation with parameters 𝑝, 𝑞 does not occur. We show that the function 𝑞 ↦→ 𝑝𝑐 (𝑞)

is continuous in (0, 1), provided that the graphs in C are “suffciciently spaced from each other”

on 𝐺 and their vertex sets have uniformly bounded cardinality.

The second graph is the ordinary 𝑑-dimensional hypercubic lattice, 𝕃𝑑 = (ℤ𝑑 ,𝔼𝑑), 𝑑 ≥ 3,

where we define the inhomogeneous Bernoulli percolation model in which every edge inside

the 𝑠-dimensional subspace ℤ𝑠 × {0}𝑑−𝑠 , 2 ≤ 𝑠 < 𝑑 , is open with probability 𝑞 and every other

edge is open with probability 𝑝 . Defining 𝑞𝑐 (𝑝) as the supremum of the values of 𝑞 for which

percolation with parameters 𝑝, 𝑞 does not occur and letting 𝑝𝑐 ∈ (0, 1) be the threshold for

homogeneous percolation on 𝕃𝑑 , we prove two results: first, the uniqueness of the infinite

cluster in the supercritical phase of parameters (𝑝, 𝑞), whenever 𝑝 ≠ 𝑝𝑐 ; second, we show that,

for any 𝑝 < 𝑝𝑐 , the critical point (𝑝, 𝑞𝑐 (𝑝)) can be approximated by the critical points of slabs,

in the spirit of the classical theorem of Grimmett and Marstrand for homogeneous percolation.

Keywords: inhomogeneous percolation, uniqueness, critical curve, Grimmett–Marstrand

theorem.
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Introduction

The object of study of this thesis. Percolation Theory is a well-established discipline,

having its mathematical roots back in 1957, with the seminal work of Broadbent and Ham-

mersley [6]. Initially proposed as a model for the transport of fluid through a porous medium,

the theory has evolved up to the present days, reaching a wide range of topics, specially in

mathematics and physics. From the physicist’s standpoint, it has been applied to the study of

disordered physical systems, such as random electrical networks, the modeling of epidemics

and oil recovery. As for the mathematician’s point of view, it has become the source of elegant

and challenging problems in combinatorics, probability theory, graph theory and analysis.

This thesis is an investigation of some mathematical aspects of inhomogeneous Bernoulli

bond percolation on two different graphs 𝔾 = (𝕍,𝔼); in each of them, we consider a decom-

position 𝔼′ ∪ 𝔼′′ of the relevant edge set 𝔼 and, given 𝑝, 𝑞 ∈ [0, 1], we assign parameters 𝑝

and 𝑞 to the edges of 𝔼′ and 𝔼′′, respectively. In such a formulation, one of the sets, say 𝔼′′,

is regarded as the set of inhomogeneities. In our study, we analyze, in both models, some

properties of the critical curve 𝑞 ↦→ 𝑝𝑐 (𝑞) (or 𝑝 ↦→ 𝑞𝑐 (𝑝)), where 𝑝𝑐 (𝑞) is the supremum of the

values of 𝑝 for which percolation with parameters 𝑝, 𝑞 does not occur. In one of the models, we

also prove the uniqueness of the infinite cluster in the supercritical phase.

The above-mentioned topics are of intrinsic interest. Perhaps one of the earliest works

concerning the behavior of critical curves is due to Kesten, presented in [19]. Considering

the square lattice 𝕃2 = (ℤ2,𝔼2) and choosing 𝔼′′ and 𝔼′ to be respectively the sets of vertical

and horizontal edges, he proves that 𝑝𝑐 (𝑞) = 1 − 𝑞. Later on, Zhang [25] also considers the

square lattice, but with the edge set 𝔼′′ being only the vertical edges within the 𝑦-axis and

𝔼′ = 𝔼2 \ 𝔼′′ . He proves that, for any 𝑞 < 1, there is no percolation at 𝑝 = 1/2, which

implies that 𝑝𝑐 (𝑞) is constant in the interval [0, 1). In the context of long-range percolation, de

Lima, Rolla and Valesin [9] consider an oriented, 𝑑-regular, rooted tree 𝕋𝑑,𝑘 , where besides the

usual set of “short bonds” 𝔼′, there is a set 𝔼′′ of “long edges” of length 𝑘 ∈ ℕ, pointing from

xiii
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each vertex 𝑥 to its 𝑑𝑘 descendants at distance 𝑘 . They show that 𝑞 ↦→ 𝑝𝑐 (𝑞) is continuous

and strictly decreasing in the region where it is positive. This conclusion is also achieved by

Couto, de Lima and Sanchis [8], where the authors consider the slab of thickness 𝑘 induced

by the vertex set ℤ2 × {0, . . . , 𝑘}, with 𝔼′ and 𝔼′′ being respectively the sets of edges parallel

and perpendicular to the 𝑥𝑦-plane. As for the number of infinite clusters in a supercritical

percolation configuration, this is one of the most basic questions studied in percolation theory.

For invariant percolation on the 𝑑-dimensional lattice, major contributions in proving the

uniqueness of the infinite cluster are those of Aizenman, Kesten and Newman [1] and Burton

and Keane [7]. An extension of the latters’ argument to more general graphs can be found in

the book of Lyons and Peres [20].

Overview of this thesis. This thesis consists of three chapters, each of them containing one

main result. In Chapter 1, we present an extension of the recent work of Szabó and Valesin [23],

published in [10]. In [23], the authors have proved the continuity of the critical curve 𝑞 ↦→ 𝑝𝑐 (𝑞)

on the interval (0, 1), when 𝔾 = (𝕍,𝔼) is the graph induced by the cartesian product between

an infinite and connected graph 𝐺 = (𝑉 , 𝐸) and the set of integers ℤ, the set 𝔼′′ is obtained by

selecting finite subsets 𝑉 ′ ⊂ 𝑉 , 𝐸′ ⊂ 𝐸 and defining

𝔼′′ = (∪𝑢∈𝑉 ′{{(𝑢, 𝑛), (𝑢, 𝑛 + 1)} : 𝑛 ∈ ℤ}) ∪ (∪{𝑢,𝑣}∈𝐸 ′{{(𝑢, 𝑛), (𝑣, 𝑛)} : 𝑛 ∈ ℤ}),

and 𝔼′ = 𝔼 \ 𝔼′′. In Chapter 1 ([10]), we extend their result, in the sense that the continuity of

𝑞 ↦→ 𝑝𝑐 (𝑞) still holds if 𝑉 ′ and 𝐸′ are infinite sets, provided that the set 𝑉 ′ ∪ (∪𝑒∈𝐸 ′𝑒) do not

possess arbitrarily large connected components in𝐺 , and the graph-theoretic distance between

any two such components is bigger than 2. This is achieved through the construction of a

coupling which allows us to understand how a small change in the parameters 𝑝 and 𝑞 of the

model affects the percolation behavior and is largely based on the ideas of [9] and [23].

Chapters 2 and 3 are devoted to the study of inhomogeneous percolation on ℤ𝑑 , 𝑑 ≥ 3,

with a sublattice of inhomogeneities. In this setting, the graph 𝔾 is the 𝑑-dimensional lattice

𝕃𝑑 = (ℤ𝑑 ,𝔼𝑑), the set 𝔼′′ is the set of edges within the subspace ℤ𝑠 × {0}𝑑−𝑠 , 2 ≤ 𝑠 < 𝑑 ,

and 𝔼′ = 𝔼𝑑 \ 𝔼′′. Some properties of this model have already been addressed by Iliev, Janse

van Rensburg and Madras [18]. Besides several classical results that have been transferred

from the homogeneous to the inhomogeneous percolation setting, the authors have proved

that the critical function 𝑝 ↦→ 𝑞𝑐 (𝑝) is strictly decreasing in the interval [0, 𝑝𝑐 (𝑑)], where
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𝑝𝑐 (𝑑) ∈ (0, 1) here denotes the critical point for percolation on 𝕃𝑑 in the homogeneous case.

This is particularly interesting since it shows the existence of parameters (𝑝, 𝑞), 𝑝 < 𝑝𝑐 (𝑑) <

𝑞 < 𝑝𝑐 (𝑠), for which there is an infinite cluster almost surely. To complement [18], we provide

the following additional results:

In Chapter 2, we prove the uniqueness of the infinite cluster in the supercritical phase. As

we shall discuss further, the lack of invariance of the percolation measure under a transitive

group of automorphisms of 𝕃𝑑 plays against a direct application of the existing techniques

of [1, 7, 20]. We will then explore some other properties of our model, so that we can overcome

this issue and conveniently adapt the known arguments to prove the uniqueness of the infinite

cluster in our case.

In Chapter 3, we address the problem of whether for any 𝑝 ∈ [0, 𝑝𝑐 (𝑑)), the critical

point (𝑝, 𝑞𝑐 (𝑝)) ∈ [0, 1]2 can be approximated by the critical point of the restriction of the

inhomogeneous process to a slab ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2, for large 𝑁 ∈ ℕ. Here, the classical

work of Grimmett and Marstrand [13] serves as the standard reference for providing the

building blocks that give an affirmative answer to this question. We shall see that, since we

are dealing with a supercritical regime of parameters (𝑝, 𝑞), where 𝑝 < 𝑝𝑐 (𝑑) < 𝑞 < 𝑝𝑐 (𝑠), the

construction of a suitable renormalization process for our case possesses some particularities

that contrast with the usual approach of [13]. As a consequence, the finite-size criterion used

in the construction of long-range connections should be modified accordingly, which in turn

introduces some technical obstacle in the renormalization procedure that must be properly

dealt with.

Basic definitions and notations. The requirements for the reader to follow this study are

the knowledge of elementary probability theory, real analysis and some concepts from graph

theory and ergodic theory. Fundamental definitions that are common to every chapter of this

text are introduced in the following. A detailed account on percolation theory can be found in

the book of Grimmett [14].

We begin with some terminology from graph theory. We say that 𝔾 = (𝕍,𝔼) is a graph

with vertex set 𝕍 and edge set 𝔼 if 𝕍 is a non-empty countable set and 𝔼 is a subset of the

family of subsets of𝕍with two elements. For example, the 𝑑-dimensional lattice 𝕃𝑑 = (ℤ𝑑 ,𝔼𝑑)

is the graph with vertex set ℤ𝑑 and edge set 𝔼𝑑 ≔ {{𝑥,𝑦} ⊂ ℤ𝑑 : ∥𝑥 − 𝑦∥1 = 1}, where

∥𝑥 − 𝑦∥1 =
∑︁𝑑
𝑖=1 |𝑥𝑖 − 𝑦𝑖 |. If 𝔾′ = (𝕍′,𝔼′) is a graph, 𝕍′ ⊂ 𝕍 and 𝔼′ ⊂ 𝔼, we say that 𝔾′ is a

subgraph of 𝔾. Given 𝑥,𝑦 ∈ 𝕍, a path 𝜋 (𝑥,𝑦) from 𝑥 to 𝑦 on 𝔾 is a set of distinct vertices
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𝜋 (𝑥,𝑦) = {𝑥 = 𝑣0, 𝑣1, . . . , 𝑣𝑚 = 𝑦} ⊂ 𝕍, such that {𝑣𝑖, 𝑣𝑖+1} ∈ 𝔼 for every 𝑖 = 1, . . . ,𝑚. Denoting

by P(𝑥,𝑦) the set of paths from 𝑥 to 𝑦, the graph-theoretic distance between 𝑥 and 𝑦 on 𝔾 is

the number dist𝔾(𝑥,𝑦) ≔ inf{|𝜋 (𝑥,𝑦) | : 𝜋 ∈ P(𝑥,𝑦)} − 1. That is, dist𝔾(𝑥,𝑦) is the number

of edges within the shortest path from 𝑥 to 𝑦. The degree of a vertex 𝑥 ∈ 𝕍 is the number

deg(𝑥) ≔ |{𝑦 ∈ 𝕍 : {𝑥,𝑦} ∈ 𝔼}|. If deg(𝑥) = 0, we say that 𝑥 is an isolated vertex. The graph

𝔾 = (𝕍,𝔼) is said to have bounded degree if there is some 𝑘 ∈ ℕ such that deg(𝑥) ≤ 𝑘 for

every 𝑥 ∈ 𝕍.

Next, we introduce the relevant definitions for working with inhomogeneous Bernoulli

bond percolation. Briefly, a percolation process on a graph𝔾 = (𝕍,𝔼) is defined as a probability

measure on the set of subgraphs of 𝔾. Among the many possible variants, we shall work with

bond percolation models, in which every edge of𝔼 can be open (retained) or closed (removed),

states represented by 1 and 0, respectively. Thus, a typical percolation configuration is an

element of Ω = {0, 1}𝔼; this set can be regarded as the set of subgraphs of 𝔾 induced by their

open edges. That is, an element 𝜔 ∈ Ω is associated with the subgraph (V(𝜔), E(𝜔)), where

E(𝜔) = {𝑒 ∈ 𝐸 : 𝜔 (𝑒) = 1} and V(𝜔) = {𝑥 ∈ 𝑉 : ∃𝑒 ∈ E(𝜔) such that 𝑥 ∈ 𝑒}, and conversely, a

subgraph (𝕍′,𝔼′) ⊂ 𝔾 with no isolated vertices induces the configuration 𝜔 ∈ Ω, given by

𝜔 (𝑒) = 1 if 𝑒 ∈ 𝔼′ and 𝜔 (𝑒) = 0 otherwise. The underlying 𝜎-algebra F of the process is the

one generated by the finite-dimensional cylinder sets of Ω. As for the probability measure, let

𝑏 (𝛼) be the Bernoulli measure with parameter 𝛼 ∈ [0, 1] and let 𝔼′ ∪𝔼′′ be a decomposition of

the edge set 𝔼. Given 𝑝, 𝑞 ∈ [0, 1], we define 𝑃𝑝,𝑞 ≔
∏︁
𝑒∈𝔼′ 𝑏 (𝑝) ×

∏︁
𝑒∈𝔼′′ 𝑏 (𝑞). That is, 𝑃𝑝,𝑞 is

the product measure on (Ω, F ) with densities 𝑝 and 𝑞 on 𝔼′ and 𝔼′′, respectively.

Given a configuration 𝜔 ∈ Ω = {0, 1}𝔼, an open path in 𝔾 = (𝕍,𝔼) is a set of vertices

{𝑣0, 𝑣1, . . . , 𝑣𝑚} ⊂ 𝕍, such that 𝜔 ({𝑣𝑖, 𝑣𝑖+1}) = 1 for every 𝑖 = 0, . . . ,𝑚 − 1. For 𝑥,𝑦 ∈ 𝕍, we say

that 𝑥 is connected to𝑦 in𝜔 if either 𝑥 = 𝑦 or there is an open path from 𝑥 to𝑦, this event being

denoted by {𝑥 ↔ 𝑦}. The cluster C(𝑥) of 𝑥 in 𝜔 is the random set C(𝑥) ≔ {𝑦 ∈ 𝑉 : 𝑥 ↔ 𝑦}.

If |C(𝑥) | = ∞, we say that the vertex 𝑥 percolates and write {𝑥 ↔ ∞} for the event of such

configurations.

We end this introductory section recalling an important result, extensively used in percola-

tion theory, called the FKG Inequality, named after Fortuin, Kasteleyn and Ginibre [12]. This

result is inserted in the more general context of correlation inequalities on partially ordered

sets, but here we state a specific version, first proved by Harris [17], for the case of Bernoulli

percolation. We refer the reader to [14] for a proof of the result.
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Consider the following partial ordering of the elements of Ω = {0, 1}𝔼: given 𝜔,𝜔′ ∈ Ω,

we say that 𝜔 ≼ 𝜔′ if and only if 𝜔 (𝑒) ≤ 𝜔′(𝑒) for every 𝑒 ∈ 𝔼. In this context, we say that

an event 𝐴 ∈ F is increasing if the following property holds: if 𝜔 ∈ 𝐴, 𝜔′ ∈ Ω and 𝜔 ≼ 𝜔′,

then 𝜔′ ∈ 𝐴. The event {𝑥 ↔ ∞} is an example of an increasing event. An event 𝐴 ∈ F is

decreasing if 𝐴𝑐 is increasing.

Theorem 0.1 (FKG Inequality). If 𝐴, 𝐵 ∈ A are both increasing or both decreasing events, then

𝑃𝑝,𝑞 (𝐴 ∩ 𝐵) ≥ 𝑃𝑝,𝑞 (𝐴)𝑃𝑝,𝑞 (𝐵). (1)

This result is fairly intuitive in the sense that, if 𝐴 and 𝐵 are positively correlated events,

then the probability of 𝐴 conditioned that 𝐵 occurs must be at least the probability of 𝐴 itself.

For instance, if we condition on the event that there is an open path joining two vertices

𝑥,𝑦 ∈ 𝕍, then it is more likely to have an open path joining 𝑥 to a third vertex 𝑧 ∈ 𝕍.



1 Inhomogeneous Percolation on ladder

graphs: Continuity of the critical curve

1.1 Overview of the chapter

In this chapter, we present an extension of the work of Szabó and Valesin [23], published in [10].

It regards the inhomogeneous Bernoulli bond percolation model on a graph 𝔾 = (𝕍,𝔼), where

the relevant edge set𝔼 can be written as a decomposition𝔼′∪𝔼′′, and parameters 𝑝 and 𝑞, both

in [0, 1], are assigned to the edges of 𝔼′ and 𝔼′′, respectively. In [23], the authors considered

𝔾 = (𝕍,𝔼) to be the graph induced by the cartesian product between an infinite and connected

graph𝐺 = (𝑉 , 𝐸) and the set of integers ℤ; the set 𝔼′′ was chosen by selecting finite subsets

𝑉 ′ ⊂ 𝑉 , 𝐸′ ⊂ 𝐸 and defining

𝔼′′ = (∪𝑢∈𝑉 ′{{(𝑢, 𝑛), (𝑢, 𝑛 + 1)} : 𝑛 ∈ ℤ}) ∪ (∪{𝑢,𝑣}∈𝐸 ′{{(𝑢, 𝑛), (𝑣, 𝑛)} : 𝑛 ∈ ℤ}),

and 𝔼′ = 𝔼 \ 𝔼′′. They have proved the continuity of the critical curve 𝑞 ↦→ 𝑝𝑐 (𝑞) on the

interval (0, 1), where 𝑝𝑐 (𝑞) is the supremum of the values of 𝑝 for which percolation with

parameters 𝑝, 𝑞 does not occur. In [10], we extend this result in the sense that the continuity

of 𝑝𝑐 (𝑞) still holds if 𝑉 ′ and 𝐸′ are infinite sets, provided that the set of vertices 𝑉 ′ ∪ (∪𝑒∈𝐸 ′𝑒)

do not possess arbitrarily large connected components in 𝐺 , and the graph-theoretic distance

between any two such components is bigger than 2. This is achieved through the construction

of a coupling (a combination of Lemmas 1.5 and 1.6), which allows us to understand how a

small change in the parameters 𝑝 and 𝑞 of the model affects the percolation behavior.

Aspects of the critical curve have been explored by several authors in different models [8,

9, 18, 19, 23, 25]; some of these results are mentioned in the Introduction. With respect to our

model, we shall define it rigorously and state the main result in Section 1.2. In Section 1.3, we

develop some technical lemmas and prove the main result.

1
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In the next sections, we use the following notation: for a graph𝐺 = (𝑉 , 𝐸), vertices𝑢,𝑤 ∈ 𝑉

and subsets𝑈 ,𝑊 ⊂ 𝑉 , we denote by dist𝐺 (𝑢,𝑤) the graph-theoretic distance between𝑢,𝑤 ∈ 𝑉 ,

and dist𝐺 (𝑈 ,𝑊 ) ≔ min𝑢∈𝑈
𝑤∈𝑊

dist𝐺 (𝑢,𝑤). We also define E𝑈 ≔ {𝑒 ∈ 𝐸 : 𝑒 ⊂ 𝑈 }.

1.2 Definition of the model and main result

Let𝐺 = (𝑉 , 𝐸) be an infinite and connected graph with bounded degree and define 𝔾 = (𝕍,𝔼),

where 𝕍 ≔ 𝑉 × ℤ and

𝔼 ≔
{︁
{(𝑢, 𝑛), (𝑣, 𝑛)} : {𝑢, 𝑣} ∈ 𝐸, 𝑛 ∈ ℤ

}︁
∪
{︁
{(𝑢, 𝑛), (𝑢, 𝑛 + 1)} : 𝑢 ∈ 𝑉 ,𝑛 ∈ ℤ

}︁
.

Consider the following Bernoulli percolation process on 𝔾. Every edge of 𝔼 can be open or

closed, states represented by 1 and 0, respectively. Thus, a typical percolation configuration is

an element of Ω = {0, 1}𝔼. As usual, the underlying 𝜎-algebra F is the one generated by the

finite-dimensional cylinder sets in Ω. Given 𝑝 ∈ [0, 1] and 𝑞 ∈ (0, 1), the governing probability

𝑃𝑝,𝑞 of the process is the product measure on (Ω, F ) with densities 𝑝 and 𝑞 on the edges of 𝔼,

specified as follows:

Fix a family of subgraphs of 𝐺 , denoted by

{︁
𝐺 (𝑟 ) =

(︁
𝑈 (𝑟 ), 𝐸 (𝑟 )

)︁}︁
𝑟∈ℕ, (1.1)

such that:

• 𝐺 (𝑟 ) is finite and connected for every 𝑟 ∈ ℕ;

• 𝐸 (𝑟 ) = E𝑈 (𝑟 ) ;

• dist𝐺 (𝑈 (𝑖),𝑈 ( 𝑗)) ≥ 3, for every 𝑖 ≠ 𝑗 .

For each 𝑟 ∈ ℕ, let

𝔼in,(𝑟 ) ≔
{︁
{(𝑢, 𝑛), (𝑣, 𝑛)} : {𝑢, 𝑣} ∈ 𝐸 (𝑟 ), 𝑛 ∈ ℤ

}︁
∪
{︁
{(𝑢, 𝑛), (𝑢, 𝑛 + 1)} : 𝑢 ∈ 𝑈 (𝑟 ), 𝑛 ∈ ℤ

}︁
.

(1.2)

We assign parameter 𝑞 to each edge of 𝔼in,(𝑟 ) , for every 𝑟 ∈ ℕ, and parameter 𝑝 to each edge of

𝔼 \ (∪𝑟∈ℕ𝔼in,(𝑟 )).
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In what follows, we shall work with the notions of open paths, connectivity between

vertices and percolation of vertices. The reader is referred to the Introduction of this thesis

for an account of these definitions. First, given 𝑝, 𝑞 ∈ [0, 1], fix a vertex 𝑣 ∈ 𝑉 and note

that whether or not 𝑃𝑝,𝑞 ((𝑣, 0) ↔ ∞) > 0 depends on the values of 𝑝 and 𝑞. Our aim is to

understand the shape of the surfaces determined by the sets of percolative and non-percolative

parameters (𝑝, 𝑞) ∈ [0, 1]2. Thus, our object of interest is the critical parameter function,

𝑝𝑐 : [0, 1] → [0, 1], defined by

𝑝𝑐 (𝑞) ≔ sup
{︁
𝑝 ∈ [0, 1] : 𝑃𝑝,𝑞 ((𝑣, 0) ↔ ∞) = 0

}︁
.

Given 𝑝, 𝑞 ∈ (0, 1) and 𝑥,𝑦 ∈ 𝕍, the connectivity of 𝔾 implies that 𝑃𝑝,𝑞 (𝑥 ↔ 𝑦) > 0. Thus,

if 𝑃𝑝,𝑞 (𝑥 ↔∞) > 0, then the FKG Inequality (1) implies

𝑃𝑝,𝑞 (𝑦 ↔∞) ≥ 𝑃𝑝,𝑞 (𝑦 ↔ 𝑥, 𝑥 ↔∞) ≥ 𝑃𝑝,𝑞 (𝑦 ↔ 𝑥)𝑃𝑝,𝑞 (𝑥 ↔∞) > 0,

since {𝑦 ↔ 𝑥} and {𝑥 ↔∞} are increasing events. Therefore, although the value of 𝑃𝑝,𝑞 (𝑥 ↔

∞) may depend on 𝑥 ∈ 𝕍, the value of 𝑝𝑐 (𝑞) does not depend on the choice of 𝑥 ∈ 𝕍.

What we shall prove is a simple generalization of Theorem 1 of [23]. It states that the

continuity of 𝑝𝑐 (𝑞) still holds, provided that the cardinalities of the sets 𝑈 (𝑟 ) are uniformly

bounded. In the context of Section 1.2, the model of [23] is the case where 𝐺 (𝑟 ) = (∅, ∅) for

every 𝑟 ≥ 2.

Theorem 1.1 (Continuity of the critical curve). If dist𝐺 (𝑈 (𝑖),𝑈 ( 𝑗)) ≥ 3 for every 𝑖 ≠ 𝑗 and

sup𝑟∈ℕ |𝑈 (𝑟 ) | < ∞, then 𝑝𝑐 (𝑞) is continuous in (0, 1).

Remark 1. Just as we have based our non-oriented percolation model upon the one of Szabó

and Valesin [23], we can generalize the oriented model also present in [23] in an analogous

manner. In this setting, the set of vertices 𝕍 of the oriented graph is the same as the non-

oriented case, and the set of oriented edges is 𝔼⃗ = {⟨(𝑢, 𝑛), (𝑣, 𝑛 + 1)⟩ : {𝑢, 𝑣} ∈ 𝐸, 𝑛 ∈ ℤ}. The

inhomogeneities are assigned to the set

𝔼⃗
′′
= ∪{𝑢,𝑣}∈𝐸 ′

(︁
{⟨(𝑢, 𝑛), (𝑣, 𝑛 + 1)⟩ : 𝑛 ∈ ℤ} ∪ {⟨(𝑣, 𝑛), (𝑢, 𝑛 + 1)⟩ : 𝑛 ∈ ℤ}

)︁
,

where 𝐸′ is some finite subset of 𝐸. By a similar reasoning we shall present in the sequel, the

continuity of the critical parameter for the oriented model also holds.
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1.3 Proof of Theorem 1.1

Theorem 1.1 is a consequence of the following proposition:

Proposition 1.2. Fix 𝑝, 𝑞 ∈ (0, 1) and let 𝜆 = min(𝑝, 1 − 𝑝). If sup𝑟∈ℕ |𝑈 (𝑟 ) | < ∞ and

dist𝐺
(︁
𝑈 (𝑖),𝑈 ( 𝑗)

)︁
≥ 3 for every 𝑖 ≠ 𝑗 , then for any 𝜀 ∈ (0, 𝜆), there exists 𝜂 = 𝜂 (𝑝, 𝑞, 𝜀) > 0

such that

𝑃𝑝−𝜀,𝑞+𝛿 ((𝑣, 0) ↔ ∞) ≤ 𝑃𝑝+𝜀,𝑞−𝛿 ((𝑣, 0) ↔ ∞)

for every 𝛿 ∈ (0, 𝜂) and 𝑣 ∈ 𝑉 \ (∪𝑟∈ℕ𝑈 (𝑟 )).

Proof of Theorem 1.1. Since 𝑞 ↦→ 𝑝𝑐 (𝑞) is non-increasing, any discontinuity, if it exists, must

be a jump. Suppose 𝑝𝑐 is discontinuous at some point 𝑞0 ∈ (0, 1), let 𝑎 = lim𝑞↓𝑞0 𝑝𝑐 (𝑞) and

𝑏 = lim𝑞↑𝑞0 𝑝𝑐 (𝑞). Then, for any 𝑝 ∈ (𝑎, 𝑏), we can find an 𝜀 > 0 such that

𝑃𝑝+𝜀,𝑞0−𝛿 ((𝑣, 0) ↔ ∞) = 0 < 𝑃𝑝−𝜀,𝑞0+𝛿 ((𝑣, 0) ↔ ∞)

for every 𝛿 > 0 and 𝑣 ∈ 𝑉 , a contradiction to Proposition 1.2. □

The proof of Proposition 1.2 is based on the construction of a coupling which allows

us to understand how a small change in the parameters 𝑝 and 𝑞 of the model affects the

percolation behavior. This construction is done in several steps. First, we split 𝔾 = (𝕍,𝔼) into

an appropriate family of connected subgraphs (𝕍𝛼 ,𝔼𝛼 ), 𝛼 ∈ 𝐼 , such that {𝔼𝛼 }𝛼∈𝐼 constitutes a

decomposition of 𝔼. Second, we define coupling measures on each 𝔼𝛼 , in such a way that the

increase of parameter 𝑝 compensates the decrease, by some small amount, of parameter 𝑞, in the

sense of preserving the connections between boundary vertices of 𝕍𝛼 . This property will play

an important role when we consider percolation on the graph 𝔾 as a whole. Third, we verify

that we can set the same parameters for each coupling measure, provided that sup𝑟∈ℕ |𝑈 (𝑟 ) | < ∞.

Finally, we merge these couplings altogether by considering the product measure of each one.

The first and second steps consist of ideas developed in [9] and [23]. The third step, which

allows extending the result of [23], is the main result of [10]. To introduce them rigorously, we

begin with some definitions.
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For 𝑟 ∈ ℕ, 𝑛 ∈ ℤ, let 𝐿𝑟 ≔ |𝑈 (𝑟 ) | and

𝕍
(𝑟 )
𝑛 ≔

{︁
(𝑣,𝑚) ∈ 𝕍 : dist𝐺

(︁
𝑣,𝑈 (𝑟 )

)︁
≤ 1, (2𝐿𝑟 + 2)𝑛 ≤ 𝑚 ≤ (2𝐿𝑟 + 2) (𝑛 + 1)

}︁
;

𝔼
(𝑟 )
𝑛 ≔ E

𝕍
(𝑟 )
𝑛
\ E𝑉×{2𝐿𝑟 (𝑛+1)};

𝔼(𝑟 ) ≔ ∪𝑛∈ℤ𝔼(𝑟 )𝑛 .

(1.3)

Based on these definitions, note that:

• Since𝐺 = (𝑉 , 𝐸) has bounded degree and |𝑈 (𝑟 ) | < ∞, it follows that the graph (𝕍(𝑟 )𝑛 ,𝔼
(𝑟 )
𝑛 )

is finite;

• 𝔼
(𝑟 )
𝑛 ∩ 𝔼(𝑟 )𝑛′ = ∅, for every 𝑛 ≠ 𝑛′;

• Since we are assuming dist𝐺 (𝑈 (𝑟 ),𝑈 (𝑟
′)) ≥ 3, for every 𝑟 ≠ 𝑟 ′, it follows that, given

𝑛, 𝑛′ ∈ ℤ, we have dist𝔾(𝕍(𝑟 )𝑛 ,𝕍
(𝑟 ′)
𝑛′ ) ≥ 1. Therefore, 𝔼(𝑟 )𝑛 ∩ 𝔼

(𝑟 )
𝑛′ = ∅, ∀𝑛, 𝑛′ ∈ ℤ and

𝑟 ≠ 𝑟 ′.

Next, recall the definition of 𝔼in,(𝑟 ) in (1.2) and let

𝔼
𝜕,(𝑟 )
𝑛 ≔ 𝔼

(𝑟 )
𝑛 \ 𝔼in,(𝑟 ), 𝔼

in,(𝑟 )
𝑛 ≔ 𝔼

(𝑟 )
𝑛 ∩ 𝔼in,(𝑟 ), 𝔼O ≔ 𝔼 \

(︁
∪𝑟∈ℕ𝔼(𝑟 )

)︁
.

One should also observe that 𝔼 is a disjoint union of the sets above:

𝔼 = 𝔼O ∪
[︁
∪𝑟∈ℕ𝔼(𝑟 )

]︁
= 𝔼O ∪

[︂
∪𝑟∈ℕ
𝑛∈ℤ

𝔼
(𝑟 )
𝑛

]︂
= 𝔼O ∪

[︂
∪𝑟∈ℕ
𝑛∈ℤ

(︁
𝔼
𝜕,(𝑟 )
𝑛 ∪ 𝔼in,(𝑟 )

𝑛

)︁ ]︂
.

Thus, letting

ΩO ≔ {0, 1}𝔼O , Ω(𝑟 )𝑛 ≔ {0, 1}𝔼
(𝑟 )
𝑛 , Ω𝜕,(𝑟 )

𝑛 ≔ {0, 1}𝔼
𝜕,(𝑟 )
𝑛 , Ωin,(𝑟 )

𝑛 ≔ {0, 1}𝔼
in,(𝑟 )
𝑛 ,

we can write

Ω = ΩO ×
∏︂
𝑟∈ℕ
𝑛∈ℤ

Ω(𝑟 )𝑛 = ΩO ×
∏︂
𝑟∈ℕ
𝑛∈ℤ

(︁
Ω𝜕,(𝑟 )
𝑛 × Ωin,(𝑟 )

𝑛

)︁
.

Finally, let

𝜕𝕍
(𝑟 )
𝑛 ≔

{︁
(𝑣,𝑚) ∈ 𝕍(𝑟 )𝑛 : dist𝐺 (𝑣,𝑈 (𝑟 )) = 1

}︁
∪
[︁
𝑈 (𝑟 ) × {(2𝐿𝑟 + 2)}

]︁
∪
[︁
𝑈 (𝑟 ) × {(2𝐿𝑟 + 2)}

]︁
,

(1.4)
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and, for 𝐴 ⊂ 𝜕𝕍(𝑟 )𝑛 and 𝜔 (𝑟 )𝑛 ∈ Ω(𝑟 )𝑛 , define the random set

𝐶
(𝑟 )
𝑛

(︁
𝐴,𝜔

(𝑟 )
𝑛

)︁
≔

{︁
(𝑣,𝑚) ∈ 𝜕𝕍(𝑟 )𝑛 : ∃(𝑣0,𝑚0) ∈ 𝐴, (𝑣,𝑚)

(𝕍(𝑟 )𝑛 ,𝔼
(𝑟 )
𝑛 )←−−−−−−→ (𝑣0,𝑚0) in 𝜔 (𝑟 )𝑛

}︁
, (1.5)

where 𝑎 𝐺 ′←→ 𝑏 indicates that 𝑎 and 𝑏 are connected by a path entirely contained in the graph𝐺′.

For 𝑝, 𝑞 ∈ [0, 1] and 𝐸′ ⊂ 𝔼, let 𝑃𝑝,𝑞 |𝐸 ′ be the measure 𝑃𝑝,𝑞 restricted to {0, 1}𝐸 ′. It is clear

that

𝑃𝑝,𝑞 = 𝑃𝑝,𝑞 |𝔼O ×
∏︂
𝑟∈ℕ
𝑛∈ℤ

𝑃𝑝,𝑞 |𝔼(𝑟 )𝑛
.

With these definitions in hand, we are ready to establish the facts necessary for the proof

of Proposition 1.2.

Lemma 1.3. Let 𝑝, 𝑞 ∈ (0, 1) and 𝜆 = min(𝑝, 1 − 𝑝). For any 𝜀 ∈ (0, 𝜆) and 𝛿 ∈ (0, 1) such that

(𝑞 − 𝛿, 𝑞 + 𝛿) ⊂ [0, 1], there exists a coupling 𝜇O = (𝜔O, 𝜔′O) on Ω2
O such that

• 𝜔O
(𝑑)
= 𝑃𝑝−𝜀,𝑞+𝛿 |𝔼O ;

• 𝜔′O
(𝑑)
= 𝑃𝑝+𝜀,𝑞−𝛿 |𝔼O ;

• 𝜔O ≤ 𝜔′O for every (𝜔O, 𝜔′O) ∈ Ω
2
O .

Proof. This construction is standard. Let 𝑍 = (𝑍1, 𝑍2) ∈ Ω2
O be a pair of random elements

defined in some probability space, such that the marginals 𝑍1 and 𝑍2 are independent on

every edge of 𝔼O and assign each edge to be open with probabilities 𝑝 − 𝜀 and 2𝜀/(1 − 𝑝 + 𝜀),

respectively. Taking 𝜔O = 𝑍1 and 𝜔′O = 𝑍1 ∨ 𝑍2, define 𝜇O to be the distribution of (𝜔O, 𝜔′O)

and the claim readily follows. □

To properly compare percolation configurations in (𝕍(𝑟 )𝑛 ,𝔼
(𝑟 )
𝑛 ) at different parameter values,

we make use of the following result, proved in [9] and also used in [23]. It is based on Doeblin’s

maximal coupling lemma (see [24], Chapter 1.4).

Lemma 1.4. Let {𝑃𝜃 }𝜃∈(0,1) be probability measures on a finite set 𝑆 , such that 𝜃 ↦→ 𝑃𝜃 (𝑧) is

continuous in (0, 1) for every 𝑧 ∈ 𝑆 . If 𝑃𝜏 (𝑥) > 0 for some 𝜏 ∈ (0, 1) and 𝑥 ∈ 𝑆 , then, for every

𝛼, 𝛽 ∈ (0, 1) close enough to 𝜏 , there exists, on a larger probability space (𝑆2,ℙ), a coupling

𝑋,𝑌 ∈ 𝑆 , such that 𝑋
(𝑑)
= 𝑃𝛼 , 𝑌

(𝑑)
= 𝑃𝛽 and

ℙ({𝑋 = 𝑌 } ∪ {𝑋 = 𝑥} ∪ {𝑌 = 𝑥}) = 1.
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Proof. Since 𝜃 ↦→ 𝑃𝜃 (𝑧) is continuous in (0, 1) for every 𝑧 ∈ 𝑆 , then the function

ℎ(𝜃,𝛾) ≔ 1 −
∑︂
𝑧≠𝑥

𝑃𝜃 (𝑧) ∨ 𝑃𝛾 (𝑧)

is also continuous. By hypothesis, we have ℎ(𝜏, 𝜏) = 1 − ∑︁
𝑧≠𝑥 𝑃𝜏 (𝑧) = 𝑃𝜏 (𝑥) > 0, so that

ℎ(𝛼, 𝛽) > 0 for every (𝛼, 𝛽) close enough to (𝜏, 𝜏).

Now, let ℙ be the probability measure on 𝑆2 defined by

ℙ(𝑧1, 𝑧2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −∑︁𝑧≠𝑥 𝑃𝛼 (𝑧) ∨ 𝑃𝛽 (𝑧), if 𝑧1 = 𝑧2 = 𝑥 ;

𝑃𝛼 (𝑧) ∧ 𝑃𝛽 (𝑧), if 𝑧1 = 𝑧2 = 𝑧 ≠ 𝑥 ;

[𝑃𝛼 (𝑧) − 𝑃𝛽 (𝑧)]+, if 𝑧1 = 𝑧 ≠ 𝑥 and 𝑧2 = 𝑥 ;

[𝑃𝛽 (𝑧) − 𝑃𝛼 (𝑧)]+, if 𝑧1 = 𝑥 and 𝑧2 = 𝑧 ≠ 𝑥 ;

0 if 𝑧1 ≠ 𝑧2 and 𝑧1, 𝑧2 ≠ 𝑥 .

Thus, if𝑋,𝑌 : 𝑆2 → 𝑆 are defined by𝑋 (𝑥,𝑦) = 𝑥 and 𝑌 (𝑥,𝑦) = 𝑦, the result readily follows. □

The next lemma is one of the fundamental facts established in [23]. It is motivated by the

observation that if a vertex 𝑣 ∈ 𝕍\𝕍(𝑟 )𝑛 percolates, then closing some edges within𝕍(𝑟 )𝑛 \ 𝜕𝕍(𝑟 )𝑛
does not change the percolative behavior of 𝑣 , as long as these closed edges do not interfere in

the connectivity between the vertices of 𝜕𝕍(𝑟 )𝑛 . To make this assertion precise, we make use of

the set 𝐶 (𝑟 )𝑛 (𝐴,𝜔 (𝑟 )𝑛 ), defined by (1.5).

Lemma 1.5 (Coupling two configurations inside a finite cylinder). Let 𝑟 ∈ ℕ,𝑛 ∈ ℤ, 𝑝, 𝑞 ∈ (0, 1)

and 𝜆 = min(𝑝, 1− 𝑝). For any 𝜀 ∈ (0, 𝜆), there exists 𝜂 (𝑟 ) > 0, such that if 𝛿 ∈ (0, 𝜂 (𝑟 )), there is a

coupling 𝜇 (𝑟 )𝑛 = (𝜔 (𝑟 )𝑛 , 𝜔′(𝑟 )𝑛 ) on Ω(𝑟 )𝑛 × Ω(𝑟 )𝑛 with the following properties:

• 𝜔 (𝑟 )𝑛
(𝑑)
= 𝑃𝑝−𝜀,𝑞+𝛿 |𝔼(𝑟 )𝑛

;

• 𝜔′(𝑟 )𝑛
(𝑑)
= 𝑃𝑝+𝜀,𝑞−𝛿 |𝔼(𝑟 )𝑛

;

• 𝐶 (𝑟 )𝑛 (𝐴,𝜔 (𝑟 )𝑛 ) ⊂ 𝐶 (𝑟 )𝑛 (𝐴,𝜔′(𝑟 )𝑛 ) for every 𝐴 ∈ 𝜕𝕍(𝑟 )𝑛 almost surely.

Moreover, the value of 𝜂 (𝑟 ) > 0 depends only on the choice of 𝑞, 𝑝, 𝜀 and the graph (𝕍(𝑟 )0 ,𝔼
(𝑟 )
0 ).

Proof. Let 𝑟 ∈ ℕ and 𝑛 ∈ ℤ. The measures 𝜇 (𝑟 )𝑛 will be translations of 𝜇 (𝑟 )0 , hence we shall

construct only the latter. Our aim is to use Lemma 1.4 to properly compare percolation
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configurations in (𝕍(𝑟 )0 ,𝔼
(𝑟 )
0 ) at different parameter values. To do so, we must first point out

the relevant objects in the setting of the referred lemma.

For the finite set, we consider 𝑆 = Ω𝜕,(𝑟 )
0 × Ω𝜕,(𝑟 )

0 × Ωin,(𝑟 )
0 .

Next, for 𝑝 ∈ (0, 1) and 𝜆 = min(𝑝, 1 − 𝑝), fix 𝜀 ∈ (0, 𝜆) and let {𝑃𝑝,𝜀,𝑡 }𝑡∈(0,1) be the family of

probability measures on 𝑆 = Ω𝜕,(𝑟 )
0 × Ω𝜕,(𝑟 )

0 × Ωin,(𝑟 )
0 such that, independently, each edge in the

first copy of 𝔼𝜕,(𝑟 )
0 is open with probability 𝑝 − 𝜀, each edge in the second copy of 𝔼𝜕,(𝑟 )

0 is open

with probability 2𝜀/(1 − 𝑝 + 𝜀), and each edge in 𝔼
in,(𝑟 )
0 is open with probability 𝑡 . For every

𝑧 ∈ 𝑆 , the application 𝑡 ↦→ 𝑃𝑝,𝜀,𝑡 (𝑧) is a polynomial, therefore it is continuous on (0, 1).

In this context, we consider 𝑥 = (𝑥 𝜕,(𝑟 ),1, 𝑥 𝜕,(𝑟 ),2, 𝑥 in,(𝑟 )) ∈ 𝑆 , where 𝑥 𝜕,(𝑟 ),1(𝑒) = 0 for every

edge 𝑒 in the first copy of 𝔼𝜕,(𝑟 )
0 , 𝑥 𝜕,(𝑟 ),2(𝑒) = 1 for every edge 𝑒 in the second copy of 𝔼𝜕,(𝑟 )

0 , and

𝑥 in,(𝑟 ) is defined according to the following rule:

Let 𝐺 (𝑟 ) = (𝑈 (𝑟 ), 𝐸 (𝑟 )) be the subgraph of 𝐺 specified in (1.1) and recall that 𝐿𝑟 = |𝑈 (𝑟 ) |.

Define Δ𝑈 (𝑟 ) ≔ {𝑣 ∈ 𝑉 : dist𝐺 (𝑣,𝑈 (𝑟 )) = 1} and assume that the vertices 𝑤1, . . . ,𝑤𝐿𝑟 ∈ 𝑈 (𝑟 )

are enumerated so that

dist𝐺
(︁
𝑤 𝑗 ,Δ𝑈

(𝑟 ) )︁ ≤ dist𝐺
(︁
𝑤 𝑗+1,Δ𝑈

(𝑟 ) )︁ ∀𝑗 = 1, . . . , 𝐿𝑟 − 1.

For a fixed 𝑗 = 1, . . . , 𝐿𝑟 − 1, choose a vertex 𝑤 ′𝑗 ∈ Δ𝑈 (𝑟 ) such that dist𝐺 (𝑤 𝑗 ,Δ𝑈
(𝑟 )) =

dist𝐺 (𝑤 𝑗 ,𝑤
′
𝑗 ), and a shortest path 𝛾 𝑗 = {𝑤 𝑗 = 𝑥1, 𝑥2, . . . , 𝑥𝑘 = 𝑤 ′𝑗 } from 𝑤 𝑗 to 𝑤 ′𝑗 , both of

them specified according to some predefined order. Let

Γ𝑗 ≔ 𝛾 𝑗 ∩𝑈 (𝑟 ) = 𝛾 𝑗 \ {𝑤 ′𝑗 },

and, for𝑚,𝑚′ ∈ ℕ,𝑚 < 𝑚′, denote

𝑊𝑚′
𝑚 ( 𝑗) ≔ {(𝑤 𝑗 ,𝑚), (𝑤 𝑗 ,𝑚 + 1), . . . , (𝑤 𝑗 ,𝑚

′)}.

We set 𝑥 in,(𝑟 ) (𝑒) = 1 if and only if

𝑒 ⊂
(︁
𝑈 (𝑟 ) × {𝐿𝑟 + 1}

)︁
, (1.6)

or, for some 𝑗 ∈ {1, . . . , 𝐿𝑟 }, we have

𝑒 ⊂
[︁
𝑊

𝑗

0 ( 𝑗) ∪ (Γ𝑗 × { 𝑗})
]︁
∪
[︁
𝑊

2𝐿𝑟+2
2𝐿𝑟+2− 𝑗 ( 𝑗) ∪ (Γ𝑗 × {2𝐿𝑟 + 2 − 𝑗})

]︁
. (1.7)

Thus, note that, for any 𝑞 ∈ (0, 1), we have 𝑃𝑝,𝜀,𝑞 (𝑥) > 0. Hence, Lemma 1.4 implies the
existence of 𝜂 (𝑟 ) = 𝜂 (𝑝, 𝜀, 𝑞,𝕍(𝑟 )0 ,𝔼

(𝑟 )
0 ) > 0, such that if 𝛿 ∈ (0, 𝜂 (𝑟 )), then there exists a

coupling
𝑋 =

(︁
𝑋
𝜕,(𝑟 ),1
0 , 𝑋

𝜕,(𝑟 ),2
0 , 𝑋

in,(𝑟 )
0

)︁
, 𝑌 =

(︁
𝑌
𝜕,(𝑟 ),1
0 , 𝑌

𝜕,(𝑟 ),2
0 , 𝑌

in,(𝑟 )
0

)︁
,

where 𝑋,𝑌 ∈ 𝑆 possess the following properties:
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• The values of 𝑋 𝜕,(𝑟 ),1
0 , 𝑋

𝜕,(𝑟 ),2
0 , 𝑋

in,(𝑟 )
0 are independent on all edges, and the same is true

for 𝑌 𝜕,(𝑟 ),10 , 𝑌
𝜕,(𝑟 ),2
0 , 𝑌

in,(𝑟 )
0 ;

• 𝑋 𝜕,(𝑟 ),1
0 and 𝑌 𝜕,(𝑟 ),10 assign each edge of the first copy of 𝔼𝜕,(𝑟 )

0 to be open with probability

𝑝 − 𝜀;

• 𝑋 𝜕,(𝑟 ),2
0 and𝑌 𝜕,(𝑟 ),20 assign each edge of the second copy of𝔼𝜕,(𝑟 )

0 to be open with probability

2𝜀/(1 − 𝑝 + 𝜀);

• 𝑋 in,(𝑟 )
0 and 𝑌 in,(𝑟 )

0 assign each edge of 𝔼in,(𝑟 )
0 to be open with probabilities 𝑞 + 𝛿 and 𝑞 − 𝛿 ,

respectively;

• ℙ({𝑋 = 𝑌 } ∪ {𝑋 = 𝑥} ∪ {𝑌 = 𝑥}) = 1.

Now, let 𝜔 (𝑟 )0 , 𝜔′(𝑟 )0 ∈ (Ω
𝜕,(𝑟 )
0 × Ωin,(𝑟 )

0 ) = Ω(𝑟 )0 be given by

𝜔
(𝑟 )
0 =

(︁
𝑋
𝜕,(𝑟 ),1
0 , 𝑋

in,(𝑟 )
0

)︁
, 𝜔′(𝑟 )0 =

(︁
𝑌
𝜕,(𝑟 ),1
0 ∨ 𝑌 𝜕,(𝑟 ),20 , 𝑌

in,(𝑟 )
0

)︁
,

and define 𝜇 (𝑟 )0 to be the distribution of the pair (𝜔 (𝑟 )0 , 𝜔′(𝑟 )0 ). The first four properties of 𝑋

and 𝑌 listed above imply that 𝜔 (𝑟 )0
(𝑑)
= 𝑃𝑝−𝜀,𝑞+𝛿 |𝔼(𝑟 )0

and 𝜔′(𝑟 )0
(𝑑)
= 𝑃𝑝+𝜀,𝑞−𝛿 |𝔼(𝑟 )0

, so that the first

two properties listed in the statement of Lemma 1.5 are satisfied. To show that 𝐶 (𝑟 )0 (𝐴,𝜔
(𝑟 )
0 ) ⊂

𝐶
(𝑟 )
0 (𝐴,𝜔′

(𝑟 )
0 ) for every 𝐴 ∈ 𝜕𝕍

(𝑟 )
0 almost surely, it suffices to check that this property holds in

the event {𝑋 = 𝑌 } ∪ {𝑋 = 𝑥} ∪ {𝑌 = 𝑥} of probability one. As a matter of fact,

• If 𝑋 = 𝑌 , then 𝜔 (𝑟 )0 (𝑒) ≤ 𝜔′
(𝑟 )
0 (𝑒) for every 𝑒 ∈ 𝔼

(𝑟 )
0 , so that the property immediately

follows.

• If 𝑋 = 𝑥 , then 𝜔 (𝑟 )0 = (0, 𝑥 in,(𝑟 )) ∈ (Ω𝜕,(𝑟 )
0 × Ωin,(𝑟 )

0 ). The only open edges in this

configuration are those indicated in (1.6) and (1.7), which are not capable of connecting

any two vertices of 𝜕𝕍(𝑟 )0 . Therefore, 𝐶 (𝑟 )0 (𝐴,𝜔
(𝑟 )
0 ) = 𝐴 ⊂ 𝐶

(𝑟 )
0 (𝐴,𝜔′

(𝑟 )
0 ) for every 𝐴 ⊂

𝜕𝕍
(𝑟 )
0 .

• If 𝑌 = 𝑥 , then 𝜔′(𝑟 )0 = (1, 𝑥 in,(𝑟 )) ∈ (Ω𝜕,(𝑟 )
0 × Ωin,(𝑟 )

0 ). Since in this configuration every

edge of 𝔼𝜕,(𝑟 )
0 and every edge indicated in (1.7) is open, any vertex of 𝜕𝕍(𝑟 )0 is connected

to𝑈 (𝑟 ) × {𝐿𝑟 + 1}. By (1.6), every edge inside this set is also open, so that𝐶 (𝑟 )0 (𝐴,𝜔′
(𝑟 )
0 ) =

𝜕𝕍
(𝑟 )
0 ⊃ 𝐶 (𝑟 )0 (𝐴,𝜔

(𝑟 )
0 ) for every non-empty subset 𝐴 ⊂ 𝜕𝕍(𝑟 )0 .

Thus, we conclude the proof of Lemma 1.5. □

The key fact that allows us to extend the results in [23] to the model defined in Section 1.2 is

our main contribution to this study and the last ingredient used in the proof of Proposition 1.2.
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Lemma 1.6 (Same coupling parameter for all cylinders). If sup𝑟∈ℕ |𝑈 (𝑟 ) | < ∞, then for any

𝜀 > 0 fixed, the sequence {𝜂 (𝑟 )}𝑛∈ℕ in Lemma 1.5 may be chosen bounded away from 0.

Proof. From Lemma 1.5, it follows that, for every 𝑟 ∈ ℕ, the value of 𝜂 (𝑟 ) > 0 depends on the

choice of 𝑞, 𝑝, 𝜀 and the graph (𝕍(𝑟 )0 ,𝔼
(𝑟 )
0 ). Note that while the values of 𝑞, 𝑝 and 𝜀 are the same

for every 𝑟 ∈ ℕ, the graphs (𝕍(𝑟 )0 ,𝔼
(𝑟 )
0 ) may differ. However, there are only a finite number

of graphs that (𝕍(𝑟 )0 ,𝔼
(𝑟 )
0 ) can assume. As a matter of fact, recalling that Δ𝑈 (𝑟 ) = {𝑣 ∈ 𝑉 :

dist𝐺 (𝑣,𝑈 (𝑟 )) = 1}, one may observe by definition (1.3) that (𝕍(𝑟 )0 ,𝔼
(𝑟 )
0 ) is constructed from

the vertex set𝑈 (𝑟 ) ∪ Δ𝑈 (𝑟 ) and from the edges with both endpoints within𝑈 (𝑟 ) ∪ Δ𝑈 (𝑟 ) . Since

sup𝑟∈ℕ |𝑈 (𝑟 ) | < ∞ and 𝐺 has bounded degree, we have 𝑀 = sup𝑟∈ℕ |𝑈 (𝑟 ) ∪ 𝜕𝑈 (𝑟 ) | < ∞. Since

there are only a finite number of graphs of bounded degree with at most𝑀 vertices, the claim

regarding (𝕍(𝑟 )0 ,𝔼
(𝑟 )
0 ) follows, that is, 𝜂 ≔ inf𝑟∈ℕ 𝜂 (𝑟 ) > 0. □

Proof of Proposition 1.2. Lemmas 1.5 and 1.6 imply the following result: let 𝑝, 𝑞 ∈ (0, 1) and

𝜆 = min(𝑝, 1 − 𝑝). For any 𝜀 ∈ (0, 𝜆), there exists 𝜂 > 0 such that if 𝛿 ∈ (0, 𝜂), there is a family

of couplings {𝜇 (𝑟 )𝑛 }𝑟∈ℕ
𝑛∈ℤ

, with each 𝜇 (𝑟 )𝑛 = (𝜔 (𝑟 )𝑛 , 𝜔′(𝑟 )𝑛 ) defined on Ω(𝑟 )𝑛 × Ω(𝑟 )𝑛 and having the

following property:

• 𝜔 (𝑟 )𝑛
(𝑑)
= 𝑃𝑝−𝜀,𝑞+𝛿 |𝔼(𝑟 )𝑛

;

• 𝜔′(𝑟 )𝑛
(𝑑)
= 𝑃𝑝+𝜀,𝑞−𝛿 |𝔼(𝑟 )𝑛

;

• 𝐶 (𝑟 )𝑛 (𝐴,𝜔 (𝑟 )𝑛 ) ⊂ 𝐶 (𝑟 )𝑛 (𝐴,𝜔′(𝑟 )𝑛 ) for every 𝐴 ∈ 𝜕𝕍(𝑟 )𝑛 almost surely.

Let 𝜇O be the coupling of Lemma 1.3 and define the coupling 𝜇 = (𝜔,𝜔′) on Ω2 by

𝜇 = 𝜇O ×
∏︂
𝑟∈ℕ
𝑛∈ℤ

𝜇
(𝑟 )
𝑛 .

Thus, it is clear that𝜔 (𝑑)= 𝑃𝑝−𝜀,𝑞+𝛿 ,𝜔′
(𝑑)
= 𝑃𝑝+𝜀,𝑞−𝛿 and, almost surely, for every 𝑣 ∈ 𝑉 \(∪𝑟∈ℕ𝑈 (𝑟 )),

if (𝑣, 0) ↔ ∞ in 𝜔 , then (𝑣, 0) ↔ ∞ in 𝜔′. □



2 Percolation on ℤ𝑑 with a sublattice of inhomo-

geneities: The uniqueness problem

2.1 Overview of the chapter

Let 𝕃𝑑 = (ℤ𝑑 ,𝔼𝑑), 𝑑 ≥ 3, be the 𝑑-dimensional hypercubic lattice. In this chapter, we consider

the inhomogeneous Bernoulli percolation model on 𝕃𝑑 in which every edge inside the 𝑠-

dimensional subspace ℤ𝑠 × {0}𝑑−𝑠 , 2 ≤ 𝑠 < 𝑑 , is open with probability 𝑞 and every other edge

is open with probability 𝑝 . We prove the uniqueness of the infinite cluster in the supercritical

regime whenever 𝑝 ≠ 𝑝𝑐 (𝑑), where 𝑝𝑐 (𝑑) denotes the threshold for homogeneous percolation.

For homogeneous percolation on the 𝑑-dimensional lattice, major contributions to this topic

are those of Aizenman, Kesten and Newman [1] and Burton and Keane [7]. An extension of

the latters’ argument to more general graphs can be found in the book of Lyons and Peres [20],

where the authors make use of minimal spanning forests to establish the uniqueness of the

infinite cluster under the conditions of amenability of the graph, insertion-tolerance of the

process and invariance of the percolation measure under a transitive group of automorphisms

(these terms are precisely defined in Section 2.3). In Section 2.2, we define the model rigorously,

state the main result and discuss the caveats of our setting that we must overcome. When 𝑝 ≠ 𝑞,

we shall see that the lack of invariance of the percolation measure under a transitive group of

automorphisms of 𝕃𝑑 plays against the direct application of existing techniques. Therefore,

we explore some specific features of our model, which in turn allow us to properly adapt the

known arguments to deal with the inhomogeneous process.

In Section 2.3, we develop the general background used throughout the chapter, introducing

the notions of automorphisms, transitivity, invariance, ergodicity and insertion tolerance, as

well as establishing the essential facts for dealing with the uniqueness problem. In Sections 2.4

and 2.5, we provide the proof of the uniqueness of the infinite cluster in the supercritical phase

of the parameters (𝑝, 𝑞), respectively when 𝑝 < 𝑝𝑐 (𝑑) and 𝑝 > 𝑝𝑐 (𝑑). Although the techniques

11
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used in both cases are unable to provide a proof for 𝑝 = 𝑝𝑐 (𝑑), we conjecture that uniqueness

also holds in this case.

2.2 Definition of the model and main result

From now on, the percolation process we are going to consider is the one studied by Iliev,

Janse van Rensburg and Madras [18], which consists of Bernoulli bond percolation on the

𝑑-dimensional lattice, with an 𝑠-dimensional sublattice of inhomogeneities. Formally speaking,

given 𝑑 ≥ 3, let 𝕃𝑑 = (ℤ𝑑 ,𝔼𝑑), where 𝔼𝑑 = {{𝑥,𝑦} ⊂ ℤ𝑑 : ∥𝑥 − 𝑦∥1 = 1} and ∥𝑥 − 𝑦∥1 =∑︁𝑑
𝑖=1 |𝑥𝑖 − 𝑦𝑖 |. For 2 ≤ 𝑠 < 𝑑 , define 𝐻 ≔ ℤ𝑠 × {0}𝑑−𝑠 and E𝐻 ≔ {𝑒 ∈ 𝔼𝑑 : 𝑒 ⊂ 𝐻 }. Let

Ω = {0, 1}𝔼𝑑 and F be the 𝜎-algebra generated by the finite-dimensional cylinder sets of Ω. For

𝑝, 𝑞 ∈ [0, 1], the governing probability measure of the process is the product measure on (Ω, F )

given by 𝑃𝑝,𝑞 ≔
∏︁
𝑒∈E𝐻 𝑏 (𝑞) ×

∏︁
𝑒∈𝔼𝑑\E𝐻 𝑏 (𝑝), where 𝑏 (𝛼) denotes the Bernoulli measure with

parameter 𝛼 ∈ [0, 1]. That is, each edge of E𝐻 is open with probability 𝑞 and each edge of

𝔼𝑑 \ E𝐻 is open with probability 𝑝 , independently of any other edge.

In [18], the authors generalized several classical results of homogeneous bond percolation

to this inhomogeneous setting. Besides, they presented the phase-diagram for percolation

and showed that the critical curve 𝑝 ↦→ 𝑞𝑐 (𝑝) is strictly decreasing for 𝑝 ∈ [0, 𝑝𝑐 (𝑑)], where

𝑝𝑐 (𝑑) is the threshold for homogeneous Bernoulli bond percolation on 𝕃𝑑 . This is particularly

interesting since it guarantees the existence of a set of parameters (𝑝, 𝑞) ∈ [0, 1]2 such that

𝑝 < 𝑝𝑐 (𝑑) < 𝑞 < 𝑝𝑐 (𝑠) and there is an infinite cluster 𝑃𝑝,𝑞-almost surely. In what follows, we

shall prove the uniqueness of the infinite cluster in the supercritical phase, a result that has not

yet been considered for the model described above.

The definitions of open paths, connectivity between vertices and percolation of vertices

are present in the Section “Basic definitions and notations”, in the Introduction. Besides,

we will need to work with the notion of amenability; that is, a graph𝐺 = (𝑉 , 𝐸) is amenable

if there exists a sequence {𝑉𝑛}𝑛∈ℕ of finite subsets of 𝑉 such that |Δ𝑣𝑉𝑛 |/|𝑉𝑛 | → 0 as 𝑛 →∞,

where Δ𝑣𝑉𝑛 ≔ {𝑥 ∈ 𝑉 \𝑉𝑛 : ∃𝑦 ∈ 𝑉𝑛 s.t. {𝑥,𝑦} ∈ 𝐸}. For 𝜔 ∈ Ω, we recall that the cluster of a

vertex 𝑥 ∈ ℤ𝑑 is denoted by C(𝑥). Since we are interested in investigating how many infinite

clusters exist in the supercritical phase for a given configuration 𝜔 ∈ Ω, we define the number

of infinite components of 𝜔 as the random variable 𝑁∞ : Ω → ℕ ∪ {∞}, given by

𝑁∞ ≔ |{C(𝑥) : 𝑥 ∈ ℤ𝑑 , |C(𝑥) | = ∞}|.
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Additionally, for any 𝑑 ∈ ℕ, let 𝑝𝑐 (𝑑) ≔ sup{𝑝 : 𝑃𝑝,𝑝 (𝑜 ↔∞ in 𝕃𝑑) = 0}. The main result

of this chapter is the following:

Theorem 2.1 (Uniqueness of the infinite cluster). If 𝑝 ≠ 𝑝𝑐 (𝑑), then 𝑁∞ ∈ {0, 1} 𝑃𝑝,𝑞-a.s. for

every 𝑞 ∈ [0, 1].

Before we move on to the proof, let us briefly discuss the issues that appear in our model

and are not covered by the existing literature regarding the determination of the number of

infinite components. For a precise definition of the terminology used here, see Section 2.3. On

amenable graphs such as 𝕃𝑑 , there is an important property used in [7] and [20] which plays

a key role to determine the uniqueness of the infinite component in the supercritical phase,

namely the invariance of the percolation measure under a transitive group of automorphisms

of the graph. Under this condition, assuming 𝑁∞ = ∞, one can find a positive lower bound

for the probability of any vertex 𝑥 ∈ ℤ𝑑 to be a trifurcation. This fact, together with the

observation that the number of trifurcations lying inside any box of ℤ𝑑 cannot exceed the

size of its boundary, implies the non-amenability of the graph, a contradiction. However, in

our model, the group of automorphisms for which 𝑃𝑝,𝑞 is invariant is not transitive, hence the

above argument cannot be applied. As a matter of fact, if 𝑝 < 𝑝𝑐 (𝑑) and 𝑃𝑝,𝑞 (𝑜 ↔∞) > 0, the

probability that a vertex 𝑥 is a trifurcation decays exponentially fast with the distance between

𝑥 and 𝐻 , which leads us to the conclusion that the expected number of trifurcations in a box of

length 𝑛 is of order 𝑛𝑠 , yielding no contradiction with the fact that the size of the boundary

of the box is of order 𝑛𝑑−1. On the other hand, when 𝑝 > 𝑝𝑐 (𝑑), we must ensure that setting

the parameter 𝑞 to any value other than 𝑝 does not cause the appearance of any new infinite

cluster around the subspace 𝐻 . We shall circumvent these difficulties by exploring additional

properties of the percolation measure 𝑃𝑝,𝑞 .

The proof of Theorem 2.1 is divided in two cases, namely the case when 𝑝 < 𝑝𝑐 (𝑑) and

the case when 𝑝 > 𝑝𝑐 (𝑑), because different techniques are used in each situation. To deal

with the case 𝑝 < 𝑝𝑐 (𝑑), we first develop some results regarding a less restrictive bond

percolation process P on a graph𝐺 = (𝑉 , 𝐸), that comprises the process 𝑃𝑝,𝑞 on the lattice 𝕃𝑑 as

a particular instance, and then show the impossibility of having more than one infinite cluster

in the supercritical phase for the inhomogeneous percolation model. Here, our argument is

an adaptation of the use of minimal spanning forests as in Chapter 7 of [20], together with

the exponential decay of the probability of the one-arm event for subcritical homogeneous

percolation, derived by Menshikov [21], Aizenman and Barsky [2] and Duminil-Copin and
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Tassion [11]. When 𝑝 > 𝑝𝑐 (𝑑) and 𝑞 ∈ [0, 1], we make use of the so-called mass transport

principle as in Häggström and Peres [16], to show that, under the increasing coupling of

percolation configurations induced by the family {𝑈 (𝑒) : 𝑒 ∈ 𝔼𝑑} of i.i.d. random variables

having uniform distribution in [0, 1], each infinite cluster of the inhomogeneous process on ℤ𝑑

with parameters (𝑝, 𝑞) contains an infinite cluster of the homogeneous percolation process on

the half-space ℤ𝑑−1 × ℤ+ with parameter 𝑝 . As we mentioned earlier, although the techniques

used in both cases are unable to provide a proof for 𝑝 = 𝑝𝑐 (𝑑), we conjecture that uniqueness

also holds in this case.

2.3 General background

We begin with some definitions. A (vertex)-automorphism of a graph𝐺 = (𝑉 , 𝐸) is a bijection

𝑔 : 𝑉 → 𝑉 such that {𝑔(𝑢), 𝑔(𝑣)} ∈ 𝐸 if and only if {𝑢, 𝑣} ∈ 𝐸. We write Aut(𝐺) for the group

of automorphisms of 𝐺 . Given a subgroup Γ ⊂ Aut(𝐺), we say that Γ acts transitively on 𝐺

if, for any 𝑢, 𝑣 ∈ 𝑉 , we have 𝑔(𝑢) = 𝑣 for some 𝑔 ∈ Γ. We say that 𝐺 is transitive if Aut(𝐺)

itself acts transitively on 𝐺 .

For any bond percolation process (Ω, F , P) on 𝐺 = (𝑉 , 𝐸), note that every 𝑔 ∈ Aut(𝐺)

induces a transformation 𝑔̂ : Ω → Ω, given by

[𝑔̂(𝜔)] ({𝑢, 𝑣}) = 𝜔 ({𝑔−1𝑢,𝑔−1𝑣}), {𝑢, 𝑣} ∈ 𝐸.

We say that P is 𝚪-invariant if P(𝑔̂𝐴) = P(𝐴) for every 𝐴 ∈ F and 𝑔 ∈ Γ.

Now, let IΓ ≔ {𝐴 ∈ F : 𝑔̂𝐴 = 𝐴,∀ 𝑔 ∈ Γ}. That is, IΓ ⊂ F is the 𝜎-field of events of F

that are invariant under the action of all elements of Γ. We call the measure P 𝚪-ergodic if

P(𝐴) ∈ {0, 1} for every 𝐴 ∈ IΓ .

Finally, given 𝜔 ∈ Ω and 𝐹 ⊂ 𝐸, let

Π𝐹𝜔 (𝑒) ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 𝑒 ∈ 𝐹,

𝜔 (𝑒), if 𝑒 ∉ 𝐹 .

That is, Π𝐹𝜔 ∈ Ω is the configuration obtained by opening the edges of 𝐹 in 𝜔 . We also denote

by Π¬𝐹𝜔 the configuration obtained by closing the edges of 𝐹 in 𝜔 (the same expression as

above, but with 0 in place of 1). For any event 𝐴 ∈ F , we define Π𝐹𝐴 ≔ {Π𝐹𝜔 : 𝜔 ∈ 𝐴} and

Π¬𝐹𝐴 ≔ {Π¬𝐹𝜔 : 𝜔 ∈ 𝐴}.
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A bond percolation process P on 𝐺 is insertion tolerant (resp. deletion tolerant) if we

have P(Π𝐹𝐴) > 0 (resp. P(Π¬𝐹𝐴) > 0) for any finite subset 𝐹 ⊂ 𝐸 and any event 𝐴 ∈ F

satisfying P(𝐴) > 0. If a process is both insertion and deletion tolerant, it is said to have the

finite-energy property.

Having defined all the relevant concepts, from now on we regard P as an insertion-tolerant

bond percolation process on 𝐺 = (𝑉 , 𝐸), which is invariant and ergodic for some subgroup

Γ ⊂ Aut(𝐺). Moreover, for 𝑆 ⊂ 𝑉 , define E𝑆 ≔ {𝑒 ∈ 𝐸 : 𝑒 ⊂ 𝑆}, Γ |𝑆 ≔ {𝑔 |𝑆 : 𝑔 ∈ Γ} and

C𝑆 (𝑢) ≔ C(𝑢) ∩ 𝑆 . We shall also require that there exists a set 𝑆 ⊂ 𝑉 , such that Γ |𝑆 acts

transitively on the subgraph (𝑆, E𝑆 ) and

P( |C(𝑢) | = ∞, |C𝑆 (𝑢) | < ∞) = 0 for every 𝑢 ∈ 𝑉 . (2.1)

One can note that 𝑃𝑝,𝑞 is a process of the above kind: as a matter of fact, 𝑃𝑝,𝑞 is invariant

under the subgroup Γ of translations of ℤ𝑑 parallel to the subspace 𝐻 = ℤ𝑠 × {0}𝑑−𝑠 , and

insertion-tolerance comes from the fact that the states of the edges of 𝔼𝑑 are independent of

each other. A proof of condition (2.1) with 𝑆 = 𝐻 is postponed to the later sections. As for the

ergodicity of 𝑃𝑝,𝑞 under Γ, the argument for Bernoulli percolation is canonical: let 𝐴 ∈ IΓ and

𝜀 > 0. Then, there is a cylinder event 𝐵 ∈ F such that 𝑃𝑝,𝑞 (𝐴△𝐵) < 𝜀. Since 𝑃𝑝,𝑞 is invariant

under Γ, we have 𝑃𝑝,𝑞 (𝛾𝐴△𝛾𝐵) = 𝑃𝑝,𝑞 (𝛾 (𝐴△𝐵)) < 𝜀 for every 𝛾 ∈ Γ. If 𝐹 ⊂ 𝔼𝑑 is the finite set

of edges which determines the event 𝐵, then there exists a translation 𝛾 ∈ Γ such that 𝐹 and

𝛾𝐹 = {{𝛾𝑥,𝛾𝑦} : {𝑥,𝑦} ∈ 𝐹 } are disjoint. In turn, it follows that 𝐵 and 𝛾𝐵 are independent.

Since for any events 𝐶1, 𝐶2 and 𝐷 , we have

|𝑃𝑝,𝑞 (𝐶1 ∩ 𝐷) − 𝑃𝑝,𝑞 (𝐶2 ∩ 𝐷) | ≤ 𝑃𝑝,𝑞 ( [𝐶1 ∩ 𝐷]△[𝐶2 ∩ 𝐷]) ≤ 𝑃𝑝,𝑞 (𝐶1△𝐶2),

we conclude that

|𝑃𝑝,𝑞 (𝐴) − 𝑃𝑝,𝑞 (𝐴)2 | = |𝑃𝑝,𝑞 (𝐴 ∩ 𝛾𝐴) − 𝑃𝑝,𝑞 (𝐴)2 |

≤ |𝑃𝑝,𝑞 (𝐴 ∩ 𝛾𝐴) − 𝑃𝑝,𝑞 (𝐵 ∩ 𝛾𝐴) | + |𝑃𝑝,𝑞 (𝐵 ∩ 𝛾𝐴) − 𝑃𝑝,𝑞 (𝐵 ∩ 𝛾𝐵) |

+ |𝑃𝑝,𝑞 (𝐵 ∩ 𝛾𝐵) − 𝑃𝑝,𝑞 (𝐵)2 | + |𝑃𝑝,𝑞 (𝐵)2 − 𝑃𝑝,𝑞 (𝐴)2 |

≤ 𝑃𝑝,𝑞 (𝐴△𝐵) + 𝑃𝑝,𝑞 (𝛾𝐴△𝛾𝐵) + |𝑃𝑝,𝑞 (𝐵)𝑃𝑝,𝑞 (𝛾𝐵) − 𝑃𝑝,𝑞 (𝐵)2 |

+ (𝑃𝑝,𝑞 (𝐴) + 𝑃𝑝,𝑞 (𝐵)) |𝑃𝑝,𝑞 (𝐵) − 𝑃𝑝,𝑞 (𝐴) |

< 𝜀 + 𝜀 + 0 + 2𝜀,
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which implies that 𝑃𝑝,𝑞 (𝐴) ∈ {0, 1}.

For a percolation process P as above, Newman and Schulman [22] proved that the we cannot

have 𝑁∞ ∈ {2, 3, . . .} with positive probability. This is expressed by the following result:

Theorem 2.2 (Theorem 7.5 of [20]). Let 𝐺 = (𝑉 , 𝐸) be a connected graph. For any 𝑆 ⊂ 𝑉 and

Γ ⊂ Aut(𝐺), define E𝑆 ≔ {𝑒 ∈ 𝐸 : 𝑒 ⊂ 𝑆} and Γ |𝑆 ≔ {𝑔 |𝑆 : 𝑔 ∈ Γ}. Let P be an insertion-tolerant

bond percolation process on𝐺 , such that there exist an infinite connected set 𝑆 ⊂ 𝑉 and a subgroup

Γ ⊂ Aut(𝐺) with the following properties:

i. P is invariant and ergodic under Γ;

ii. Γ |𝑆 acts transitively on the subgraph (𝑆, E𝑆 ).

Then 𝑁∞ ∈ {0, 1,∞} P-a.s..

Proof. Note that the action of any element of Γ on a configuration 𝜔 ∈ Ω does not change the

value of 𝑁∞. Hence, 𝑁∞ is measurable with respect to IΓ and, by ergodicity, it is constant P-a.s..

If 𝑁∞ ∈ {2, 3, . . .} almost surely, then, there exist 𝑥,𝑦 ∈ 𝑉 such that the event 𝐴 = {|C(𝑥) | =

∞} ∩ {|C(𝑦) | = ∞} ∩ {C(𝑥) ∩ C(𝑦) = ∅} has positive probability. Let {𝑥 = 𝑥1, 𝑥2, . . . , 𝑥𝑛 = 𝑦}

be a path from 𝑥 to 𝑦 and 𝐹 the set of edges within it. By insertion tolerance, we have both

P(𝐴) > 0 and P(Π𝐹𝐴) > 0. But this contradicts the fact that 𝑁∞ is constant almost surely, since

𝑁∞(Π𝐹𝜔) < 𝑁∞(𝜔) for every 𝜔 ∈ 𝐴. Therefore, 𝑁∞ ∈ {0, 1,∞} P-a.s.. □

Thus, what comes next is intended to rule out the case 𝑁∞ = ∞, using a similar approach

to Theorem 7.9 of [20]. We emphasize that, unless 𝑝 = 𝑞, this result cannot be applied directly

in the present situation: if 𝑝 ≠ 𝑞, the only subgroup Γ ⊂ Aut(𝕃𝑑) for which 𝑃𝑝,𝑞 is invariant is

that of the translations parallel to the subspace 𝐻 , and Γ does not act transitively on 𝕃𝑑 , as

required by the theorem.

First, we introduce some sets of vertices and edges of a graph𝐺 = (𝑉 , 𝐸) that will be needed

in our proof. For a subset 𝐾 ⊂ 𝑉 and a subgraph 𝐺′ = (𝑉 ′, 𝐸′) ⊂ 𝐺 , we define the exterior

vertex boundary of 𝐾 in 𝐺′ and the exterior edge boundary of 𝐾 in 𝐺′ respectively as the

sets
Δ𝐺

′
𝑣 𝐾 ≔ {𝑦 ∈ 𝑉 ′ \ 𝐾 : ∃𝑥 ∈ 𝐾 such that {𝑥,𝑦} ∈ 𝐸′},

Δ𝐺
′

𝑒 𝐾 ≔ {{𝑥,𝑦} ∈ 𝐸′ : 𝑥 ∈ 𝐾,𝑦 ∈ 𝑉 ′ \ 𝐾}.

In particular, Δ𝑣𝐾 ≔ Δ𝐺𝑣 𝐾 and Δ𝑒𝐾 ≔ Δ𝐺𝑒 𝐾 . For any vertex 𝑢 ∈ 𝑉 , we define the degree of the

vertex 𝑢 in 𝐾 as the number deg𝐾 (𝑢) ≔ |Δ𝑣 {𝑢} ∩ 𝐾 |. We also write deg(𝑢) ≔ deg𝑉 (𝑢).
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The relation between these sets we are going to use is expressed in the next result, which is

Exercise 7.3 of [20].

Lemma 2.3. Let 𝑇 = (𝑉𝑇 , 𝐸𝑇 ) be a tree with deg(𝑢) ≥ 2 for all 𝑢 ∈ 𝑉𝑇 and consider the set

𝐵 ≔ {𝑢 ∈ 𝑉𝑇 : deg(𝑢) ≥ 3}. Then, for every finite set 𝐾 ⊂ 𝑉𝑇 , we have

|Δ𝑣𝐾 | ≥ |𝐾 ∩ 𝐵 | + 2. (2.2)

Proof. We proceed by induction on |𝐾 |. If |𝐾 | = 1, then 𝐾 = {𝑢} ⊂ 𝑉𝑇 . Hence, |Δ𝑣𝐾 | =

deg(𝑢) ≥ |𝐾 ∩ 𝐵 | + 2 and the result follows easily. Now, suppose (2.2) holds for every 𝐾 ⊂ 𝑉𝑇
with |𝐾 | = 𝑛 ∈ ℕ.

If |𝐾 | = 𝑛 + 1, choose 𝑢 ∈ 𝐾 such that deg𝐾 (𝑢) ≤ 1 (this leaf always exists because 𝐾 is

finite). Hence, |𝐾 \ 𝑢 | = 𝑛 and, by the induction hypothesis, we have

|Δ𝑣 (𝐾 \ 𝑢) | ≥ |(𝐾 \ 𝑢) ∩ 𝐵 | + 2. (2.3)

We now consider the following cases:

If deg𝐾 (𝑢) = 0, then

• If 𝑢 ∈ 𝐵, then |Δ𝑣𝐾 | ≥ |Δ𝑣 (𝐾 \ 𝑢) | + 3 and |𝐾 ∩ 𝐵 | = | (𝐾 \ 𝑢) ∩ 𝐵 | + 1.

• If 𝑢 ∉ 𝐵, then |Δ𝑣𝐾 | ≥ |Δ𝑣 (𝐾 \ 𝑢) | + 2 and |𝐾 ∩ 𝐵 | = | (𝐾 \ 𝑢) ∩ 𝐵 |.

If deg𝐾 (𝑢) = 1, then

• If 𝑢 ∈ 𝐵, then |Δ𝑣𝐾 | ≥ |Δ𝑣 (𝐾 \ 𝑢) | + 1 and |𝐾 ∩ 𝐵 | = | (𝐾 \ 𝑢) ∩ 𝐵 | + 1.

• If 𝑢 ∉ 𝐵, then |Δ𝑣𝐾 | ≥ |Δ𝑣 (𝐾 \ 𝑢) | and |𝐾 ∩ 𝐵 | = | (𝐾 \ 𝑢) ∩ 𝐵 |.

Thus, one can easily note that the bound (2.3) implies (2.2) in all the above-mentioned cases. □

Until the end of this section, it will be useful to keep in mind the correspondence between

the space Ω = {0, 1}𝐸 and the set of the subgraphs of 𝐺 = (𝑉 , 𝐸) induced by their open edges.

We shall regard the configurations of Ω in both ways, referring to the most convenient manner

when necessary.

We now state a version of Lemma 7.7 of [20], specifically designed to deal with inhomo-

geneous percolation on ℤ𝑑 with a sublattice of defects and similar models. The proof of this

version is carried out in the same way as that of its counterpart in [20], with minor modifica-

tions. For the statement of the lemma, we need the following definition: a vertex 𝑢 ∈ 𝑉 is called
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a furcation of a configuration 𝜔 ∈ Ω if 𝑢 percolates in 𝜔 and removing all edges incident to 𝑢

splits C(𝑢) into at least three distinct infinite clusters. The set of furcations of a configuration

𝜔 will be denoted by Λ(𝜔). For 𝑆 ⊂ 𝑉 , recall that C𝑆 (𝑢) ≔ C(𝑢) ∩ 𝑆 .

Lemma 2.4. Let𝐺 = (𝑉 , 𝐸) be a connected graph and P be an insertion-tolerant bond percolation

process on𝐺 . Suppose there exist a subgroup Γ ⊂ Aut(𝐺) and a (necessarily infinite) connected

set 𝑆 ⊂ 𝑉 such that

i. P is invariant under Γ;

ii. P( |C(𝑢) | = ∞, |C𝑆 (𝑢) | < ∞) = 0 for every 𝑢 ∈ 𝑉 .

If P(𝜔 : 𝑁∞(𝜔) = ∞) > 0, then there exists, on a larger probability space (˜︁Ω,˜︁P), a coupling

(𝔉, 𝜔) with the following properties:

a. 𝔉 ⊂ 𝜔 and𝔉 is a random forest;

b. The distribution of the pair (𝔉, 𝜔) is Γ-invariant;

c. ˜︁P(Λ(𝔉) ∩ 𝑆 ≠ ∅) > 0.

Proof. Let {𝑈 (𝑒) : 𝑒 ∈ 𝐸} be independent random variables with uniform distribution on

[0, 1] and let 𝑃𝑈 be the associated product measure on [0, 1]𝐸 . On the product space ˜︁Ω =

[0, 1]𝐸 × {0, 1}𝐸 , consider ˜︁P ≔ 𝑃𝑈 × P and let 𝔉 : ˜︁Ω → {0, 1}𝐸 be the random element of Ω

given by

𝔉(𝑈 ,𝜔) (𝑒) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 𝜔 (𝑒) = 1 and ∄ cycle 𝛾, 𝑒 ∈ 𝛾 ⊂ 𝜔 s.t. 𝑈 (𝑒) = max𝑒 ′∈𝛾 𝑈 (𝑒′),

0, otherwise.

The graph associated with𝔉(𝑈 ,𝜔) is called the free minimal spanning forest of (𝑈 ,𝜔). By

definition, 𝔉 ⊂ 𝜔 and 𝔉 has no cycles, since for every cycle in 𝜔 , the edge with the largest

value of𝑈 (𝑒) is not in𝔉. Moreover, the Γ-invariance of 𝑃𝑈 and P implies that the distribution

of the pair (𝔉, 𝜔) is Γ-invariant as well. We have thus proved properties a and b.

In order to establish c, we first show that every component (tree) of 𝔉 that lies in an

infinite component of 𝜔 is ˜︁P-a.s. infinite. As a matter of fact, if 𝑇 = (𝑉𝑇 , 𝐸𝑇 ) is a finite

component of 𝔉 and 𝑇 ⊂ 𝜂 = (𝑉𝜂, 𝐸𝜂) for some infinite component 𝜂 ⊂ 𝜔 , then there exists

an edge 𝑓 ∈ [Δ𝑒𝑉𝑇 ] ∩ 𝐸𝜂 such that𝑈 (𝑓 ) = min𝑒 ′∈[Δ𝑒𝑉𝑇 ]∩𝐸𝜂 𝑈 (𝑒′). Such an edge is˜︁P-a.s. unique,
since the uniform random variables are almost surely distinct in every edge. If 𝛾 ⊂ 𝜂 is a
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cycle containing 𝑓 , then there exists 𝑓 ′ ∈ [Δ𝑒𝑉𝑇 ] ∩ 𝐸𝜂 , 𝑓 ′ ≠ 𝑓 , such that 𝑓 ′ ⊂ 𝛾 . Since

𝑈 (𝑓 ′) > min𝑒 ′∈[Δ𝑒𝑉𝑇 ]∩𝐸𝜂 𝑈 (𝑒′) = 𝑈 (𝑓 ), this implies 𝑓 ∈ 𝐸𝑇 , a contradiction.

Hence, if P(𝜔 : 𝑁∞(𝜔) = ∞) > 0, there exist 𝑥,𝑦, 𝑧 ∈ 𝑉 such that, with positive probability,

the components C(𝑥), C(𝑦) and C(𝑧) are infinite and mutually disjoint. Since P( |C(𝑢) | =

∞, |C𝑆 (𝑢) | < ∞) = 0 for every 𝑢 ∈ 𝑉 , we may suppose 𝑥,𝑦, 𝑧 ∈ 𝑆 . For such vertices, let

𝐴 ≔ {|C(𝑢) | = ∞,∀𝑢 ∈ {𝑥,𝑦, 𝑧}} ∩ {C(𝑢) ∩ C(𝑣) = ∅,∀𝑢, 𝑣 ∈ {𝑥,𝑦, 𝑧}, 𝑢 ≠ 𝑣}

and 𝑇 = (𝑉𝑇 , 𝐸𝑇 ) be a finite tree with 𝑥,𝑦, 𝑧 ∈ 𝑉𝑇 ⊂ 𝑆 (this tree always exists because 𝑆

is connected). By insertion tolerance, P(Π𝐸𝑇𝐴) > 0 and, on the event Π𝐸𝑇𝐴, we have that

𝑉𝑇 ⊂ C(𝑥) and C(𝑥) \𝑉𝑇 has at least three infinite components. Thus, the event consisting

of the configurations (𝑈 ,𝜔) such that 𝑈 (𝑒) < 1/2 for every 𝑒 ∈ 𝐸𝑇 , 𝑈 (𝑓 ) ≥ 1/2 for every

𝑓 ∈ Δ𝑒𝑉𝑇 and 𝜔 ∈ Π𝐸𝑇𝐴 has positive probability ˜︁P. On this event, 𝔉 contains 𝑇 and there is

some vertex in 𝑉𝑇 ⊂ 𝑆 which is a furcation of𝔉. □

When P is insertion-tolerant and invariant under Aut(𝐺), the uniqueness of the infinite

cluster is established for amenable graphs by proving the claim that if P(𝜔 : 𝑁∞(𝜔) = ∞) > 0,

then 𝐺 is non-amenable, see for example Theorems 7.6 and 7.9 of [20]. What we shall exhibit

in the next result is a simple and straightforward generalization of this fact. It will help us to

make a proper argument regarding the uniqueness of the infinite cluster in the inhomogeneous

percolation model on ℤ𝑑 with a sublattice of defects, which is not invariant under Aut(𝕃𝑑). Its

proof is carried out in much the same way as the theorems mentioned above.

For a graph 𝐺 = (𝑉 , 𝐸), let 𝑆′, 𝑆 ⊂ 𝑉 with |𝑆′| < ∞, and define

C(𝑆′, 𝑆) ≔ {𝑢 ∈ 𝑆′ : ∃𝑣 ∈ 𝑆 such that 𝑣 ↔ 𝑢}.

Lemma 2.5 (Criterion for non-amenability). Let 𝐺 = (𝑉 , 𝐸) be a connected graph and P be an

insertion-tolerant bond percolation process on 𝐺 . Suppose there exist a subgroup Γ ⊂ Aut(𝐺) and

a connected set 𝑆 ⊂ 𝑉 , such that the following conditions hold:

i. P is invariant and ergodic under Γ;

ii. P( |C(𝑢) | = ∞, |C𝑆 (𝑢) | < ∞) = 0 for every 𝑢 ∈ 𝑉 ;

iii. Γ |𝑆 acts transitively on the subgraph (𝑆, E𝑆 ), where E𝑆 ≔ {𝑒 ∈ 𝐸 : 𝑒 ⊂ 𝑆}.
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If P(𝜔 : 𝑁∞(𝜔) = ∞) > 0, then there exists a constant 𝑐 > 0 such that, for every finite set 𝑅 ⊂ 𝑉

satisfying 𝑅 ∩ 𝑆 ≠ ∅, we have
E|C(Δ𝑣𝑅; 𝑆) |
|𝑅 ∩ 𝑆 | ≥ 𝑐. (2.4)

Before proving this result, note that if P is invariant and ergodic under Γ and Γ acts

transitively on𝐺 , we can take 𝑆 = 𝑉 and inequality (2.4) becomes the non-amenability condition

for 𝐺 = (𝑉 , 𝐸). Besides, we would like to stress the importance of the quantity E|C(Δ𝑣𝑅; 𝑆) |

in (2.4). If this term is replaced by a larger one, such as |Δ𝑣𝑅 |, then it is not possible to extract

any useful information from our percolation model. For instance, if 𝐵𝑛 = {−𝑛, . . . , 𝑛}𝑑 and

we consider the inhomogeneous percolation process on ℤ𝑑 defined in Section 2.2 for 𝑑 = 3,

𝐻 = ℤ2 × {0} and 𝑝 < 𝑝𝑐 (3) < 𝑞 < 𝑝𝑐 (2), it follows that there is a constant 𝑐 > 0 such

that |Δ𝑣𝐵𝑛 | ≥ 𝑐 |𝐵𝑛 ∩ 𝐻 | for all 𝑛 ∈ ℕ. Nevertheless, we shall see in the next section that

inequality (2.4) does not hold for 𝐵𝑛 on such a model, therefore 𝑃𝑝,𝑞 (𝜔 : 𝑁∞(𝜔) = ∞) = 0.

Proof of Lemma 2.5. Let˜︁P and𝔉 be as in Lemma 2.4. Conditions i – iii imply that there is a

constant 𝑐 > 0 such that ˜︁P(𝑢 ∈ Λ(𝔉)) = 𝑐 for every 𝑢 ∈ 𝑆 . Hence, the expected number of

furcations of𝔉 in 𝑅 ∩ 𝑆 is

˜︁E|Λ(𝔉) ∩ 𝑅 ∩ 𝑆 | = ∑︂
𝑢∈𝑅∩𝑆

˜︁P(𝑢 ∈ Λ(𝔉)) = 𝑐 |𝑅 ∩ 𝑆 |. (2.5)

LetT be the set of the infinite components (trees) of𝔉. Also, consider the process of inductively

removing the leaves of a tree. Applying this process to any 𝑇 = (𝑉𝑇 , 𝐸𝑇 ) ∈ T, we are left,

at the end of the procedure, with an infinite tree 𝑇 ′ = (𝑉𝑇 ′, 𝐸𝑇 ′) ⊂ 𝑇 that has no leaves and

Λ(𝑇 ′) = {𝑢 ∈ 𝑉𝑇 ′ : deg(𝑢) ≥ 3} = Λ(𝑇 ). Thus, an application of Lemma 2.3 with 𝐾 = 𝑅 ∩𝑉𝑇 ′

yields |︁|︁Δ𝑇𝑣 (𝑅 ∩𝑉𝑇 )|︁|︁ ≥ |︁|︁Δ𝑇 ′𝑣 (𝑅 ∩𝑉𝑇 ′)|︁|︁
≥ |𝑅 ∩𝑉𝑇 ′ ∩ Λ(𝑇 ′) | = |𝑅 ∩ Λ(𝑇 ) |.

Observing that [Δ𝑇𝑣 (𝑅 ∩𝑉𝑇 )] ⊂ [Δ𝑣𝑅 ∩𝑉𝑇 ] and summing up the above inequality over all trees

𝑇 ∈ T, we arrive at

|Δ𝑣𝑅 ∩𝑉𝔉∞ | ≥ |𝑅 ∩ Λ(𝔉∞) | = |𝑅 ∩ Λ(𝔉) |, (2.6)

where𝔉∞ ≔ ∪𝑇∈T𝑇 .
Finally, by property a. of Lemma 2.4, we have 𝔉∞ ⊂ 𝜔∞, where 𝜔∞ is the union of all

the infinite components of 𝜔 . Since every vertex of 𝜔∞ is connected to 𝑆 by condition ii and
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P(𝑁∞ = ∞) = 1 by ergodicity, it follows that˜︁P-a.s.
|Δ𝑣𝑅 ∩𝑉𝔉∞ | ≤ |Δ𝑣𝑅 ∩𝑉𝜔∞ | ≤ |C(Δ𝑣𝑅; 𝑆) |. (2.7)

Combining equations (2.6) and (2.7), taking the expectation ˜︁E and using equality (2.5), we
conclude that

E|C(Δ𝑣𝑅; 𝑆) | ≥ 𝑐 |𝑅 ∩ 𝑆 |.

□

2.4 Proof of Theorem 2.1: the case 𝒑 < 𝒑𝒄 (𝒅)

Returning to the inhomogeneous percolation process on ℤ𝑑 defined in Section 2.2, we recall

that the conditions of Lemma 2.5 are satisfied for P = 𝑃𝑝,𝑞 and 𝑆 = 𝐻 = ℤ𝑠 × {0}𝑑−𝑠 . In the

case 𝑝 < 𝑝𝑐 (𝑑) and 𝑃𝑝,𝑞 (𝑁∞ > 0) = 1, condition (2.1) is trivially satisfied since there is no

infinite cluster on ℤ𝑑 \ 𝐻 almost surely. By Theorem 2.2, we then have 𝑁∞ ∈ {0, 1,∞} 𝑃𝑝,𝑞-a.s..

However, going in the opposite direction of having infinitely many infinite clusters, we have

the following result:

Proposition 2.6 (Violation of non-amenability criterion). Let 𝐵𝑛 = {−𝑛, . . . , 𝑛}𝑑 , 𝑛 ∈ ℕ. If

𝑝 < 𝑝𝑐 (𝑑), then
𝐸𝑝,𝑞 |C(Δ𝑣𝐵𝑛;𝐻 ) |
|𝐵𝑛 ∩ 𝐻 |

−−−−→
𝑛→∞

0.

Proof. By the exponential decay of the one-arm event in the homogeneous model with param-

eter 𝑝 < 𝑝𝑐 (𝑑) [2, 11, 21], there exists a positive constant 𝑐𝑝 > 0 such that 𝑃𝑝,𝑞 (𝑢 ↔ 𝐻 ) ≤

exp{−𝑐𝑝 dist(𝑢, 𝐻 )} for any vertex 𝑢 ∈ ℤ𝑑 , where dist(𝑢,𝐻 ) denotes the graph-theoretical

distance between 𝑢 and 𝐻 . Therefore, taking 𝛼 > (𝑑 − 𝑠 − 1)/𝑐𝑝 and observing that Δ𝑣𝐵𝑛−1 ⊂

𝜕𝐵𝑛 ≔ 𝐵𝑛 \ 𝐵𝑛−1, we have

𝐸𝑝,𝑞 |C(Δ𝑣𝐵𝑛−1;𝐻 ) | ≤ 𝐸𝑝,𝑞 |C(𝜕𝐵𝑛;𝐻 ) |

=
∑︂
𝑢∈𝜕𝐵𝑛

dist(𝑢,𝐻 )<𝛼 log𝑛

𝑃𝑝,𝑞 (𝑢 ↔ 𝐻 ) +
∑︂
𝑢∈𝜕𝐵𝑛

dist(𝑢,𝐻 )≥𝛼 log𝑛

𝑃𝑝,𝑞 (𝑢 ↔ 𝐻 )

≤ 𝐶
[︂
𝑛𝑠−1(𝛼 log𝑛)𝑑−𝑠 + 𝑛𝑑−1 exp{−𝑐𝑝𝛼 log𝑛}

]︂
≤ 𝐶′|𝐵𝑛−1 ∩ 𝐻 | ×

[︃
(𝛼 log𝑛)𝑑−𝑠

𝑛
+ 𝑛𝑑−𝑠−1−𝑐𝑝𝛼

]︃
,

for positive constants 𝐶 = 𝐶 (𝑠, 𝑑) and 𝐶′ = 𝐶′(𝑠, 𝑑). Observing that the last term in brackets

goes to zero as 𝑛 →∞, the result follows. □
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As an immediate consequence of Lemma 2.5 and Proposition 2.6, we can rule out the case

𝑁∞ = ∞ when 𝑝 < 𝑝𝑐 (𝑑).

Corollary 2.7. If 𝑝 < 𝑝𝑐 (𝑑) then 𝑁∞ ∈ {0, 1} 𝑃𝑝,𝑞-a.s..

2.5 Proof of Theorem 2.1: the case 𝒑 > 𝒑𝒄 (𝒅)

To work with the case 𝑝 > 𝑝𝑐 (𝑑), recall that the set of edges whose vertices both belong

to the subspace 𝐻 = ℤ𝑠 × {0}𝑑−𝑠 is denoted by E𝐻 ≔ {𝑒 ∈ 𝔼𝑑 : 𝑒 ⊂ 𝐻 } and let 𝑃 be the

probability measure associated with the family {𝑈 (𝑒) : 𝑒 ∈ 𝔼𝑑} of i.i.d. random variables

having uniform distribution in [0, 1]. Also, consider the decomposition 𝔼𝑑 = 𝐸+ ∪ 𝐸− ∪ E𝐻 ,

where 𝐸+ ≔ {{𝑥,𝑦} ∈ 𝔼𝑑 : (𝑥𝑑 ∨ 𝑦𝑑) > 0} and 𝐸− ≔ 𝔼𝑑 \ (𝐸+ ∪ E𝐻 ), and for 𝑝, 𝑞, 𝑡 ∈ [0, 1], let

𝜔𝑝,𝑞,𝑡 ∈ {0, 1}𝔼
𝑑 be the Bernoulli bond percolation process on 𝕃𝑑 given by

𝜔𝑝,𝑞,𝑡 (𝑒) ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1{𝑈 (𝑒)≤𝑝} if 𝑒 ∈ 𝐸+,

1{𝑈 (𝑒)≤𝑞} if 𝑒 ∈ E𝐻 ,

1{𝑈 (𝑒)≤𝑡} if 𝑒 ∈ 𝐸−.

To establish the uniqueness of the infinite cluster when 𝑝 > 𝑝𝑐 (𝑑) and therefore conclude the

proof of Theorem 2.1, we make use of the above coupling and the technique used in the proof

of Proposition 3.1 of [16] to derive the following result:

Proposition 2.8. If 𝑝 > 𝑝𝑐 (𝑑) and 𝑞 ∈ [0, 1], then 𝑁∞ = 1 𝑃𝑝,𝑞-a.s..

The proof of Proposition 2.8 relies on the so-called mass transport principle. As pointed

out in [16], it was first used in the percolation setting by Häggström [15] and fully developed

by Benjamini, Lyons, Peres and Schramm [5]. For our purposes, it suffices to state a particular

version of this principle, based on Theorem 2.1 of [16]:

Theorem 2.9 (The Mass-Transport Principle). Let Γ ⊂ Aut(𝕃𝑑) be the subgroup of translations

parallel to the subspace𝐻 = ℤ𝑠×{0}𝑑−𝑠 . If (Ω, P) is any Γ-invariant bond percolation process on𝕃𝑑

and𝑚(𝑥,𝑦, 𝜔) is a nonnegative function of 𝑥,𝑦 ∈ 𝐻 , 𝜔 ∈ Ω such that𝑚(𝑥,𝑦, 𝜔) =𝑚(𝛾𝑥,𝛾𝑦,𝛾𝜔)

for all 𝑥 , 𝑦 and 𝜔 and 𝛾 ∈ Γ, then

∑︂
𝑦∈𝐻

∫
Ω
𝑚(𝑥,𝑦, 𝜔) dP(𝜔) =

∑︂
𝑦∈𝐻

∫
Ω
𝑚(𝑦, 𝑥, 𝜔) dP(𝜔) ∀𝑥 ∈ 𝐻. (2.8)
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Proof. By definition of Γ, given 𝑥,𝑦 ∈ 𝐻 , there exists a unique 𝛾 ∈ Γ such that 𝑦 = 𝛾𝑥 . Since

𝑚(𝑥,𝑦, 𝜔) =𝑚(𝛾𝑥,𝛾𝑦,𝛾𝜔) for all 𝑥 , 𝑦 and 𝜔 and 𝛾 ∈ Γ, the invariance of P under Γ implies∑︂
𝑦∈𝐻

∫
Ω
𝑚(𝑥,𝑦, 𝜔) dP(𝜔) =

∑︂
𝛾∈Γ

∫
Ω
𝑚(𝑥,𝛾𝑥, 𝜔) dP(𝜔)

=
∑︂
𝛾∈Γ

∫
Ω
𝑚(𝛾−1𝑥, 𝑥,𝛾−1𝜔) dP(𝛾−1𝜔)

=
∑︂
𝑦∈𝐻

∫
Ω
𝑚(𝑦, 𝑥, 𝜔) dP(𝜔) .

□

This result can be viewed as the mass transport principle applied just on the subspace𝐻 . To

make proper use of this technique, we must establish condition (2.1), regarding the connected

component C(𝑣, 𝜔𝑝,𝑞,𝑡 ) of 𝑣 ∈ ℤ𝑑 in the configuration 𝜔𝑝,𝑞,𝑡 .

Lemma 2.10. If 𝑝 > 𝑝𝑐 (𝑑) and 𝑞 ∈ [0, 1], then for every 𝑣 ∈ 𝐻 we have

𝑃 ( |C(𝑣, 𝜔𝑝,0,0) | = ∞, |C(𝑣, 𝜔𝑝,0,0) ∩ 𝐻 | < ∞) = 0, (2.9)

𝑃 ( |C(𝑣, 𝜔𝑝,𝑞,𝑝) | = ∞, |C(𝑣, 𝜔𝑝,𝑞,𝑝) ∩ 𝐻 | < ∞) = 0. (2.10)

Proof. As proved by Barsky, Grimmett and Newman [4], the critical point for homogeneous

percolation on half-spaces is 𝑝𝑐 (𝑑), hence 𝑃 ( |C(𝑜, 𝜔𝑝,0,0) | = ∞) > 0. Since 𝑃 is Γ-invariant,

ergodicity implies that there are 𝑃-a.s. infinitely many vertices in 𝐻 belonging to an infinite

cluster of 𝜔𝑝,0,0 when 𝑝 > 𝑝𝑐 (𝑑). As also mentioned in [4], the infinite cluster of 𝜔𝑝,0,0 is almost

surely unique. Therefore, if 𝑣 ∈ 𝐻 belongs to this cluster, then |C(𝑣, 𝜔𝑝,0,0) ∩ 𝐻 | = ∞ almost

surely and equality (2.9) holds.

To prove (2.10), suppose that for some 𝑝 > 𝑝𝑐 (𝑑) and 𝑞 ∈ [0, 1], there is a finite set 𝐹 ⊂ 𝐻

such that the event

𝐵 = {𝑈 ∈ [0, 1]𝔼𝑑 : |C(𝑜, 𝜔𝑝,𝑞,𝑝 (𝑈 )) | = ∞, C(𝑜, 𝜔𝑝,𝑞,𝑝 (𝑈 )) ∩ 𝐻 = 𝐹 }

has positive probability. Since, for any𝑈 ∈ 𝐵, every edge within C(𝑜, 𝜔𝑝,𝑞,𝑝 (𝑈 )) that is incident

to 𝐻 is contained in Δ𝑒𝐹 ∩ Δ𝑒𝐻 , if we 𝑝-close every edge in Δ𝑒𝐹 ∩ Δ𝑒𝐻 , we are mapped to

a configuration 𝑈 ′ such that, for some vertex 𝑥 ∈ Δ𝑣𝐹 \ 𝐻 , we have |C(𝑥, 𝜔𝑝,𝑡,𝑝 (𝑈 ′)) | = ∞

and |C(𝑥, 𝜔𝑝,𝑡,𝑝 (𝑈 ′)) ∩ 𝐻 | < ∞ not only for 𝑡 = 𝑞, but for every 𝑡 ∈ [0, 1]. In particular, this
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holds for 𝑡 = 𝑝 . Therefore, denoting by 𝐵′ the event of such configurations, the finite-energy

property implies that 𝑃 (𝐵′) > 0. But this is a contradiction, since ergodicity and uniqueness of

the infinite cluster of 𝜔𝑝,𝑝,𝑝 imply that there are almost surely infinitely many vertices in 𝐻

belonging to the infinite cluster of 𝜔𝑝,𝑝,𝑝 when 𝑝 > 𝑝𝑐 (𝑑). □

Proof of Proposition 2.8. We shall show that every infinite cluster of 𝜔𝑝,𝑞,𝑝 contains an infinite

cluster of 𝜔𝑝,0,0. Uniqueness for 𝜔𝑝,𝑞,𝑝 follows from the fact that the cluster of 𝜔𝑝,0,0 is almost

surely unique. This is the same proof as that of Proposition 3.1 of [16]. We present the reasoning

again to indicate the places where Lemma 2.10 should be applied.

Let𝜔 = (𝜔1, 𝜔2) be the coupling of the processes𝜔1 = 𝜔𝑝,0,0 and𝜔2 = 𝜔𝑝,𝑞,𝑝 , with 𝑝 > 𝑝𝑐 (𝑑)

and 𝑞 ∈ [0, 1], and denote by 𝑃𝑖 the marginal distribution of 𝜔𝑖 , 𝑖 = 1, 2. Let C(𝑢,𝜔𝑖) be

the connected component of 𝑢 ∈ ℤ𝑑 in the configuration 𝜔𝑖 and C(∞, 𝜔𝑖) be the union of

the infinite clusters in the configuration 𝜔𝑖 . Since 𝑃𝑖 is invariant only by automorphisms

𝛾 ∈ Aut(𝕃𝑑) satisfying 𝛾 (𝐻 ) = 𝐻 , we shall use properties (2.9) and (2.10) to restrict our

analysis to the subspace 𝐻 . Hence, we also consider the random sets C𝐻 (𝑢,𝜔𝑖) ≔ C(𝑢,𝜔𝑖) ∩𝐻

and C𝐻 (∞, 𝜔𝑖) ≔ C(∞, 𝜔𝑖) ∩ 𝐻 .

For 𝑢, 𝑣 ∈ ℤ𝑑 , recall that dist(𝑢, 𝑣) denotes the graph-theoretic distance between 𝑢 and 𝑣 .

Given 𝑢 ∈ 𝐻 , define

𝐷1(𝑢) ≔ inf{dist(𝑢, 𝑣) : 𝑣 ∈ C𝐻 (∞, 𝜔1)};

𝐴(𝑢) ≔ {𝐷1(𝑢) > 0} ∩
{︁
𝐷1(𝑢) = min

𝑣∈C𝐻 (𝑢,𝜔2)
𝐷1(𝑣)

}︁
.

That is, 𝐴(𝑢) is the event where 𝑢 ∈ 𝐻 is one of the vertices of C𝐻 (𝑢,𝜔2) that are closest to

C𝐻 (∞, 𝜔1) in the configuration 𝜔1, this distance being positive.

By properties (2.9) and (2.10), every connected component of C(∞, 𝜔𝑖), 𝑖 = 1, 2, intersects

𝐻 at infinitely many vertices almost surely. Hence, since 𝜔1 ⊂ 𝜔2, if 𝑢 ∈ C𝐻 (∞, 𝜔2), then one

of the following events occurs:

• 𝑢 ∈ C𝐻 (∞, 𝜔1);

• 𝑢 ∉ C𝐻 (∞, 𝜔1), ∃𝑣 ∈ C(∞, 𝜔1) such that 𝑢 ∈ C𝐻 (𝑣, 𝜔2);

• 𝑢 ∉ C𝐻 (∞, 𝜔1), ∀𝑣 ∈ C(∞, 𝜔1), 𝑢 ∉ C𝐻 (𝑣, 𝜔2), |C(𝑢,𝜔2) | = ∞.

For any configuration in the first two events, it follows that C(𝑢,𝜔2) contains an infinite cluster

of C(∞, 𝜔1). For any 𝜔 = (𝜔1, 𝜔2) in the last event, there exists a vertex 𝑥 ∈ C𝐻 (𝑢,𝜔2) such
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that 𝐷1(𝑥) = min𝑣∈C𝐻 (𝑢,𝜔2) 𝐷1(𝑣) > 0. In other words, this configuration belongs to the event

∪𝑥∈𝐻 [{|C(𝑥,𝜔2) | = ∞} ∩𝐴(𝑥)]. Therefore, the proposition is proved if we show that

𝑃 ({|C(𝑢,𝜔2) | = ∞} ∩𝐴(𝑢)) = 0 ∀𝑢 ∈ 𝐻.

We begin by analyzing the event {|C(𝑢,𝜔2) | = ∞} ∩𝐴(𝑢) ∩ {𝐷1(𝑢) > 1}. For 𝑢, 𝑣 ∈ 𝐻 , let

𝐴𝑢,𝑣 ≔ {𝑣 ∈ C𝐻 (𝑢,𝜔2)} ∩
{︃
0 < 𝐷1(𝑣) < min

𝑤∈C𝐻 (𝑢,𝜔2)
𝑤≠𝑣

𝐷1(𝑤)
}︃
,

that is, 𝐴𝑢,𝑣 is the event in which 𝑣 ∈ C𝐻 (𝑢,𝜔2) and is the only vertex of C𝐻 (𝑢,𝜔2) that is

closest to C𝐻 (∞, 𝜔1) in the configuration 𝜔1.

For every 𝜔 = (𝜔1, 𝜔2) ∈ {|C(𝑢,𝜔2) | = ∞} ∩ 𝐴(𝑢) ∩ {𝐷1(𝑢) > 1}, if we open (in 𝜔2

only) an edge {𝑢,𝑤} ∈ E𝐻 with 𝐷1(𝑤) = 𝐷1(𝑢) − 1 and close every other edge incident to

𝑤 , we are mapped to a configuration in 𝐵𝑤,𝑤 ≔ {|C(𝑤,𝜔2) | = ∞} ∩ 𝐴𝑤,𝑤 . Since 𝑃2 has the

finite-energy property, if we show that 𝑃 (𝐵𝑤,𝑤 ) = 0, then we must have 𝑃 ({|C(𝑢,𝜔2) | =

∞} ∩𝐴(𝑢) ∩ {𝐷1(𝑢) > 1}) = 0, and the first part of the proof is completed.

Define 𝑚(𝑢, 𝑣, 𝜔) ≔ 1𝐴𝑢,𝑣
(𝜔) and, as in Theorem 2.9, let Γ ⊂ Aut(𝕃𝑑) be the subgroup

of translations parallel to the subspace 𝐻 = ℤ𝑠 × {0}𝑑−𝑠 . Since 𝑃 is Γ-invariant,𝑚(𝑥,𝑦, 𝜔) =

𝑚(𝛾𝑥,𝛾𝑦,𝛾𝜔) for all 𝑥,𝑦 ∈ 𝐻 , 𝜔 = (𝜔1, 𝜔2) and 𝛾 ∈ Γ, and 𝐴𝑢,𝑣 ∩ 𝐴𝑢,𝑤 = ∅ if 𝑣 ≠ 𝑤 , the

mass-transport principle (2.8) yields∫
Ω

∑︂
𝑣∈𝐻

𝑚(𝑣,𝑢, 𝜔) d𝑃 (𝜔) =
∑︂
𝑣∈𝐻

∫
Ω
𝑚(𝑢, 𝑣, 𝜔) d𝑃 (𝜔)

=
∑︂
𝑣∈𝐻

𝑃 (𝐴𝑢,𝑣 ) = 𝑃 (∪𝑣∈𝐻𝐴𝑢,𝑣 ) < 1.
(2.11)

By property (2.10), we have |C𝐻 (𝑢,𝜔2) | = ∞ almost surely for every configuration 𝜔 ∈

𝐵𝑢,𝑢 ≔ {|C(𝑢,𝜔2) | = ∞} ∩ 𝐴𝑢,𝑢 , and consequently
∑︁
𝑣∈𝐻𝑚(𝑣,𝑢, 𝜔) = ∞ for every 𝜔 ∈ 𝐵𝑢,𝑢 .

This fact implies 𝑃 (𝐵𝑢,𝑢) = 0 for all 𝑢 ∈ 𝐻 , since otherwise we would have∫
Ω

∑︂
𝑣∈𝐻

𝑚(𝑣,𝑢, 𝜔) d𝑃 (𝜔) ≥
∫
𝐵𝑢,𝑢

∑︂
𝑣∈𝐻

𝑚(𝑣,𝑢, 𝜔) d𝑃 (𝜔) =
∫
𝐵𝑢,𝑢

∞ d𝑃 (𝜔) = ∞,

a contradiction with (2.11).

Now, it remains to show that 𝑃 ({|C(𝑢,𝜔2) | = ∞} ∩𝐴(𝑢) ∩ {𝐷1(𝑢) = 1}) = 0. For a subset

𝑉 ⊂ ℤ𝑑 and 𝑥,𝑦 ∈ 𝑉 , let dist𝑉 (𝑥,𝑦) be the graph-theoretic distance between 𝑥 and 𝑦 in the
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subgraph of ℤ𝑑 induced by 𝑉 . For𝑤 ∈ 𝐻 , define the random set

𝑆 (𝑤) ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
∅, if𝑤 ∉ C𝐻 (∞, 𝜔1),⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣 ∈ C𝐻 (𝑤,𝜔2) : distC(𝑤,𝜔2) (𝑣,𝑤)

< distC(𝑤,𝜔2) (𝑣, 𝑥) ∀𝑥 ∈ C(∞, 𝜔1) \ {𝑤}

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , if𝑤 ∈ C𝐻 (∞, 𝜔1).

That is, 𝑆 (𝑤) is the set of vertices 𝑣 ∈ C𝐻 (𝑤,𝜔2) such that 𝑤 is the only vertex of C(∞, 𝜔1)

closest to 𝑣 in the metric of C(𝑤,𝜔2).

Note that, for any 𝜔 = (𝜔1, 𝜔2) ∈ {|C(𝑢,𝜔2) | = ∞} ∩ 𝐴(𝑢) ∩ {𝐷1(𝑢) = 1}, if we open

(in 𝜔2 only) an edge {𝑢,𝑤} ∈ E𝐻 with 𝑤 ∈ C𝐻 (∞, 𝜔1), we are mapped to a configuration in

{|𝑆 (𝑤) | = ∞}. Since 𝑃2 is insertion-tolerant, we conclude that 𝑃 ({|C(𝑢,𝜔2) | = ∞} ∩ 𝐴(𝑢) ∩

{𝐷1(𝑢) = 1}) = 0 if we show that 𝑃 ( |𝑆 (𝑤) | = ∞) = 0.

Let𝑚(𝑢,𝑤,𝜔) = 1{𝑢∈𝑆 (𝑤)}. Again by the mass-transport principle (2.8), we have∫
Ω

∑︂
𝑤∈𝐻

𝑚(𝑤,𝑢,𝜔) d𝑃 (𝜔) =
∑︂
𝑤∈𝐻

∫
Ω
𝑚(𝑢,𝑤,𝜔) d𝑃 (𝜔)

=
∑︂
𝑤∈𝐻

𝑃 (𝑢 ∈ 𝑆 (𝑤)) = 𝑃 (∪𝑤∈𝐻 {𝑢 ∈ 𝑆 (𝑤)}) < 1.
(2.12)

By property (2.10), we have
∑︁
𝑤∈𝐻𝑚(𝑤,𝑢,𝜔) = ∞ for any 𝜔 ∈ {|𝑆 (𝑢) | = ∞}, and this fact

together with (2.12) implies 𝑃 ( |𝑆 (𝑢) | = ∞) = 0, similarly to the previous case. Since 𝑃2 is

insertion-tolerant, we conclude that 𝑃 ({|C(𝑢,𝜔2) | = ∞} ∩𝐴(𝑢) ∩ {𝐷1(𝑢) = 1}) = 0. □



3 Percolation on ℤ𝑑 with a sublattice of inhomo-

geneities: Approximation on slabs

3.1 Overview of the chapter

In this chapter, we continue to work with the inhomogeneous Bernoulli bond percolation

process on 𝕃𝑑 , defined in Section 2.2. The problem we address here regards the critical curve

𝑝 ↦→ 𝑞𝑐 (𝑝) of the model, where 𝑞𝑐 (𝑝) is the supremum of the values of 𝑞 for which percolation

with parameters 𝑝, 𝑞 does not occur. We ask if, for any 𝑝 ∈ [0, 𝑝𝑐 (𝑑)), the critical point

(𝑝, 𝑞𝑐 (𝑝)) ∈ [0, 1]2 can be approximated, in any direction, by the critical point of the restriction

of the inhomogeneous process to a slab ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2, for large 𝑁 ∈ ℕ. Here, the

classical work of Grimmett and Marstrand [13] serves as the standard reference for providing

the building blocks that give an affirmative answer to this question. We have to manage the

construction of a suitable renormalization process, which possesses some particularities that

arise with the introduction of inhomogeneities, contrasting with the usual approach of [13].

In Section 3.2, we state the main result of this chapter and discuss its relevance. In Sec-

tion 3.3, we discuss the key ideas used in the proof and develop the technical lemmas needed in

Section 3.4, where we provide the proof of the main result through a renormalization argument.

3.2 Statement of the main result

As we mentioned, the main result of this chapter is a claim about the critical parameter

function, 𝑞𝑐 : [0, 1] → [0, 1], defined by

𝑞𝑐 (𝑝) ≔ sup
{︁
𝑞 ∈ [0, 1] : 𝑃𝑝,𝑞 (𝑜 ↔∞) = 0

}︁
.

27
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In [18], the authors showed that 𝑞𝑐 (𝑝) is strictly decreasing in the interval [0, 𝑝𝑐 (𝑑)], which in

turn implies that there exists a set of parameters (𝑝, 𝑞) ∈ [0, 1]2 such that 𝑝 < 𝑝𝑐 (𝑑) < 𝑞 < 𝑝𝑐 (𝑠)

and 𝑃𝑝,𝑞 (𝑜 ↔∞) > 0. Complementing this study, one can ask whether 𝑞𝑐 (𝑝) is a continuous

function in the interval [0, 𝑝𝑐 (𝑑)). Besides the intrinsic motivation of this problem, a positive

answer to this question leads us to a better knowledge of our model. For instance, in Theorem 1

of [18], the authors show that if (𝑝, 𝑞) is an interior point of {(𝑝, 𝑞) : 𝑃𝑝,𝑞 (𝑜 ↔∞) = 0}, then

𝐸𝑝,𝑞 |𝐶 (𝑜) | < ∞. Therefore, if 𝑞𝑐 (𝑝) is continuous, we conclude that the phase-transition of our

model is “sharp”, i.e.,

𝑞𝑐 (𝑝) = sup{𝑞 ∈ [0, 1] : 𝐸𝑝,𝑞 |𝐶 (𝑜) | < ∞}.

Thus, the main theorem of this chapter arose as an effort to prove the (left)-continuity of

𝑞𝑐 (𝑝) in the interval [0, 𝑝𝑐 (𝑑)). Denoting by 𝑞𝑁𝑐 the analogous function for the restriction of

the inhomogeneous percolation process on ℤ𝑑 with subspace of defects 𝐻 = ℤ𝑠 × {0}𝑑−𝑠 to the

slab ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2, we have the following result:

Theorem 3.1 (Approximation on slabs). Let 𝑝 < 𝑝𝑐 (𝑑). For every 𝜂 > 0, there exists an 𝑁 ∈ ℕ

such that

𝑞𝑁𝑐 (𝑝 + 𝜂) < 𝑞𝑐 (𝑝) + 𝜂.

Although the idea of essential enhancements cannot be directly applied to determine the

continuity of 𝑞𝑐 (𝑝), the work of Aizenman and Grimmett [3] implies that 𝑞𝑁𝑐 (𝑝) is continuous

and strictly decreasing in the interval [0, 𝑝𝑐 (𝑑)), for every 𝑁 ∈ ℕ. Therefore, the left-continuity

of 𝑞𝑐 (𝑝) would follow if we could replace 𝑞𝑁𝑐 (𝑝 + 𝜂) by 𝑞𝑁𝑐 (𝑝) in the statement of Theorem 3.1.

Since we were not able to make this improvement, the continuity of 𝑞𝑐 (𝑝) remains an open

problem.

3.3 Technical lemmas

The proof of Theorem 3.1 is accomplished using the ideas developed by Grimmett andMarstrand

in [13]. It involves dividing a region of𝕃𝑑 into a family of large adjacent blocks and constructing

a site percolation process using these new pieces. As we will see in Section 3.4, a block is

deemed “open” if there is a certain large open path on 𝕃𝑑 within it and its neighbors. This is

done in such a way that an infinite open path in the “block lattice” implies an infinite open path

on the slab ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2, and we shall show that this happens with positive probability.
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To achieve this behavior, we must guarantee that the probability of a block to be open

is sufficiently high. Since we are considering supercritical parameters (𝑝, 𝑞) ∈ [0, 1]2, with

𝑝 < 𝑝𝑐 (𝑑), it follows that the infinite cluster of ℤ𝑑 intersects 𝐻 at infinitely many vertices

almost surely, and the probability that a vertex 𝑥 ∈ ℤ𝑑 percolates decays exponentially fast

with dist𝕃𝑑 (𝑥, 𝐻 ) [2, 11, 21]. This technicality may lead us to the undesirable situation in which

good blocks consisting of vertices that are “distant” from 𝐻 have a probability of being open

that is not sufficiently high. Thus, in what follows, we adapt the techniques used in [13] to the

inhomogeneous setting. We do so by modifying the finite-size criterion that determines the

shape of the long-range paths inside the blocks, ensuring that these paths “begin and end in

the subspace 𝐻”.

This type of long-range connections is rigorously achieved by Lemma 3.5, whose proof relies

on Lemmas 3.2 and 3.3, and Claim 3.4. Following the proof, we discuss some problems regarding

a direct application of Lemma 3.5, and show how to overcome them through Lemma 3.6. Finally,

we find in Lemma 3.7 the condition used to show that, if the blocks in the “block lattice” are

open with high probability, then we can achieve percolation on the slab ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2

with positive probability.

Every result stated in this section has an analogous counterpart in [13], and this correspon-

dence will be indicated. We shall also highlight the relevant aspects that are particular to our

case. From now on, we denote 𝜃 (𝑝, 𝑞) ≔ 𝑃𝑝,𝑞 (𝑜 ↔∞).

Recall that 𝐻 = ℤ𝑠 × {0}𝑑−𝑠 and that Δ𝑣𝑆 and Δ𝑒𝑆 denote the external vertex and edge

boundaries of a set 𝑆 ⊂ ℤ𝑑 , respectively. Also, define the internal vertex boundary of 𝑆 by

𝜕𝑆 ≔ {𝑥 ∈ 𝑆 : ∃𝑦 ∈ ℤ𝑑 \𝑆, {𝑥,𝑦} ∈ 𝔼𝑑}. For𝑚 ∈ ℕ, let 𝐵𝑚 ≔ {−𝑚, . . . ,𝑚}𝑑 and 𝐵𝐻𝑚 ≔ 𝐵𝑚 ∩𝐻 .

Given 𝛼, 𝛽 > 0 and 𝑛 ∈ ℕ, let

𝑆
𝛼,𝛽
𝑛 ≔ {𝑥 ∈ 𝐻 : 𝛽𝑛 + 1 ≤ ∥𝑥 ∥∞ ≤ 𝛽𝑛 + 𝛼𝑛},

and, for𝑚 ∈ ℕ with 𝛽𝑛 > 𝑚, consider the random set

𝑈
𝛼,𝛽
𝑛 ≔

{︂
𝑥 ∈ Δ𝑣𝑆𝛼,𝛽𝑛 : 𝑥

𝐵𝛽𝑛+𝛼𝑛\𝑆𝛼,𝛽𝑛←−−−−−−−→ 𝐵𝐻𝑚

}︂
, (3.1)

where 𝑥 𝑆←→ 𝐵 indicates that the vertex 𝑥 is connected to the set 𝐵 by an open path whose

vertices are entirely contained in the set 𝑆 . Our first task is to show that, in the regime

𝑝 < 𝑝𝑐 (𝑑) < 𝑞 < 𝑝𝑐 (𝑠), if the cluster of 𝐵𝐻𝑚 is infinite for some𝑚 ∈ ℕ, then it is unlikely that
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𝑈
𝛼,𝛽
𝑛 consists of just a few vertices, as 𝑛 →∞. We work with definition (3.1) because, unlike

the homogeneous percolation process, since we are considering 𝜃 (𝑝, 𝑞) > 0 and 𝑝 < 𝑝𝑐 (𝑑), we

know that the probability of a vertex 𝑥 ∈ 𝐵𝛼𝑛+𝛽𝑛 to be connected to 𝐵𝐻𝑚 within 𝐵𝛽𝑛+𝛼𝑛 decays

exponentially fast with dist𝕃𝑑 (𝑥, 𝐻 ). Therefore, when we search for such vertices, we are

compelled to consider only the candidates lying near the subspace 𝐻 . The following result is

the equivalent of Lemma 3 of [13].

Lemma 3.2. For any 𝑘,𝑚 ∈ ℕ, 𝛼, 𝛽 > 0 and 𝑝 < 𝑝𝑐 (𝑑) < 𝑞 < 𝑝𝑐 (𝑠), we have

𝑃𝑝,𝑞
(︁
|𝑈 𝛼,𝛽
𝑛 | ≤ 𝑘, 𝐵𝐻𝑚 ↔∞

)︁
−→
𝑛

0.

Proof. Under the conditions of the lemma we have

𝑃𝑝,𝑞
(︁
|𝑈 𝛼,𝛽
𝑛 | ≤ 𝑘, 𝐵𝐻𝑚 ↔∞

)︁
≤ 𝑃𝑝,𝑞

(︁
|𝑈 𝛼,𝛽
𝑛 | = 0, 𝐵𝐻𝑚 ↔∞

)︁
+ 𝑃𝑝,𝑞

(︁
1 ≤ |𝑈 𝛼,𝛽

𝑛 | ≤ 𝑘
)︁
.

Hence, the result is proved if we show that the two probabilities on the right-hand side of the

inequality above go to zero as 𝑛 →∞. To see this, note that since 𝑝 < 𝑝𝑐 (𝑑), the exponential

decay of the radius of the open cluster [2, 11, 21] implies that there is a constant 𝑐𝑝 > 0 such

that

𝑃𝑝,𝑞
(︁
|𝑈 𝛼,𝛽
𝑛 | = 0, 𝐵𝐻𝑚 ↔∞

)︁
≤ 𝑃𝑝,𝑞

(︂
𝐵𝛽𝑛

𝐵𝛽𝑛+𝛼𝑛\𝑆𝛼,𝛽𝑛←−−−−−−−→ 𝜕𝐵𝛽𝑛+𝛼𝑛
)︂
≤
|︁|︁𝜕𝐵𝛽𝑛|︁|︁𝑒−𝑐𝑝𝛼𝑛 . (3.2)

Also, since the random variable |𝑈 𝛼,𝛽
𝑛 | does not depend on the states of the edges in Δ𝑒𝑆

𝛼,𝛽
𝑛 ,

given 𝑗 ∈ {1, . . . , 𝑘}, we have

𝑃𝑝,𝑞
(︁
|𝑈 𝛼,𝛽
𝑛 | = 𝑗

)︁
(1 − 𝑞)𝑘 ≤ 𝑃𝑝,𝑞

(︁
|𝑈 𝛼,𝛽
𝑛 | = 𝑗

)︁
(1 − 𝑞) 𝑗

≤ 𝑃𝑝,𝑞
(︁
|𝑈 𝛼,𝛽
𝑛 | = 𝑗,Δ𝑒𝑈

𝛼,𝛽
𝑛 ∩ Δ𝑒𝑆

𝛼,𝛽
𝑛 closed

)︁
≤ 𝑃𝑝,𝑞

(︂{︁
𝐵𝐻𝑚 ↔ 𝜕𝐵𝛽𝑛, 𝐵

𝐻
𝑚 ↮ 𝜕𝐵𝛽𝑛+𝛼𝑛

}︁
∪
{︂
𝐵𝐻𝑚

𝐵𝛽𝑛+𝛼𝑛\𝑆𝛼,𝛽𝑛←−−−−−−−→ 𝜕𝐵𝛽𝑛+𝛼𝑛
}︂)︂

≤ 𝑃𝑝,𝑞
(︁
𝐵𝐻𝑚 ↔ 𝜕𝐵𝛽𝑛, |C(𝐵𝐻𝑚) | < ∞

)︁
+ |𝜕𝐵𝛽𝑛 |𝑒−𝑐𝑝𝛼𝑛,

where C(𝐵𝐻𝑚) denotes the open cluster of 𝐵𝐻𝑚 . Consequently, it follows that

𝑃𝑝,𝑞
(︁
1 ≤ |𝑈 𝛼,𝛽

𝑛 | ≤ 𝑘
)︁
= (1 − 𝑞)−𝑘

𝑘∑︂
𝑗=1
(1 − 𝑞)𝑘𝑃𝑝,𝑞

(︁
|𝑈 𝛼,𝛽
𝑛 | = 𝑗

)︁
≤ (1 − 𝑞)−𝑘𝑘

[︂
𝑃𝑝,𝑞

(︁
𝐵𝐻𝑚 ↔ 𝜕𝐵𝛽𝑛, |C(𝐵𝐻𝑚) | < ∞

)︁
+ |𝜕𝐵𝛽𝑛 |𝑒−𝑐𝑝𝛼𝑛

]︂
. (3.3)
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Thus, the proof is completed by observing that the right-hand sides of (3.2) and (3.3) go to zero

as 𝑛 →∞. □

The next result we state is the equivalent of Lemma 4 of [13]. It says that if 𝐵𝐻𝑚 percolates,

then for sufficiently large 𝑛, there is always a portion of Δ𝑣𝑆𝛼,𝛽𝑛 where we can find as many

sites connected to 𝐵𝐻𝑚 as we like with positive probability, which goes to one as𝑚 →∞.

Define the sets

𝐹
𝛼,𝛽
𝑛 ≔ [𝛽𝑛 + 1, 𝛽𝑛 + 𝛼𝑛] × [0, 𝛽𝑛 + 𝛼𝑛]𝑠−1 × {0}𝑑−𝑠,

𝑇
𝛼,𝛽
𝑛 ≔ Δ𝑣𝐹

𝛼,𝛽
𝑛 ∩ 𝐵𝛽𝑛+𝛼𝑛,

𝑉
𝛼,𝛽
𝑛 ≔

{︂
𝑥 ∈ 𝑇 𝛼,𝛽𝑛 : 𝑥

𝐵𝛽𝑛+𝛼𝑛\𝐹𝛼,𝛽𝑛←−−−−−−−→ 𝐵𝐻𝑚

}︂
.

Lemma 3.3. For any 𝑘,𝑚 ∈ ℕ, 𝛼, 𝛽 > 0 and 𝑝 < 𝑝𝑐 (𝑑) < 𝑞 < 𝑝𝑐 (𝑠), we have

lim inf
𝑛

𝑃𝑝,𝑞
(︁
|𝑉 𝛼,𝛽𝑛 | ≥ 𝑘

)︁
≥ 1 − 𝑃𝑝,𝑞

(︁
𝐵𝐻𝑚 ↮ ∞

)︁1/𝑠2𝑠
.

Proof. Since the parameters 𝛼, 𝛽 > 0 do not play any important role in this proof, we shall omit

them when we refer to the sets 𝑇 𝛼,𝛽𝑛 , 𝑉 𝛼,𝛽𝑛 , 𝑆𝛼,𝛽𝑛 and𝑈 𝛼,𝛽
𝑛 henceforth.

For 𝑦 ∈ {−1, 1}𝑠 and 𝑖 = 1, . . . , 𝑠 , let 𝜎𝑦 : ℝ𝑑 → ℝ𝑑 , and L𝑖 : ℝ𝑑 → ℝ𝑑 be the mappings

[︁
𝜎𝑦 (𝑥)

]︁
𝑗
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦 𝑗𝑥 𝑗 , if 𝑗 ≤ 𝑠,

𝑥 𝑗 , otherwise,
[L𝑖 (𝑥)] 𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝑥𝑖, if 𝑗 = 1,

𝑥1, if 𝑗 = 𝑖,

𝑥 𝑗 , otherwise,

and consider the random set

𝑉𝑛,𝑦,𝑖 ≔
{︂
𝑥 ∈ L𝑖 (𝜎𝑦 (𝑇𝑛)) :

𝐵𝛽𝑛+𝛼𝑛\𝑆𝑛←−−−−−→ 𝐵𝐻𝑚

}︂
.

Note that

Δ𝑣𝑆𝑛 ⊂
[︃
∪ 𝑖∈{1,...,𝑠}
𝑦∈{−1,1}𝑠

L𝑖 (𝜎𝑦 (𝑇𝑛))
]︃
,

which implies, by the definition of𝑈𝑛 (3.1), that

{|𝑈𝑛 | ≤ 𝑠2𝑠𝑘} ⊃
[︃
∩ 𝑖∈{1,...,𝑠}
𝑦∈{−1,1}𝑠

{︁|︁|︁𝑉𝑛,𝑦,𝑖 |︁|︁ ≤ 𝑘}︁]︃ .
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The events {|𝑉𝑛,𝑦,𝑖 | ≤ 𝑘} are decreasing and have the same probability for every 𝑖 ∈ {1, . . . , 𝑠}

and 𝑦 ∈ {−1, 1}𝑠 . Hence, observing that 𝑉𝑛,1,1 = 𝑉𝑛 , the FKG Inequality (1) implies

𝑃𝑝,𝑞 ( |𝑈𝑛 | ≤ 𝑠2𝑠𝑘) ≥ 𝑃𝑝,𝑞 ( |𝑉𝑛 | ≤ 𝑘)𝑠2
𝑠

,

whence

𝑃𝑝,𝑞 ( |𝑉𝑛 | ≥ 𝑘) ≥ 1 −
[︁
𝑃𝑝,𝑞

(︁
|𝑈𝑛 | ≤ 𝑠2𝑠𝑘, 𝐵𝐻𝑚 ↔∞

)︁
+ 𝑃𝑝,𝑞

(︁
𝐵𝐻𝑚 ↮ ∞

)︁ ]︁1/𝑠2𝑠
.

Taking lim inf𝑛 on the inequality above and then using Lemma 3.2 yields the desired result. □

Now, we go one step further and show that, if the origin percolates for some 𝑝 < 𝑝𝑐 (𝑑) <

𝑞 < 𝑝𝑐 (𝑠), then for sufficiently large 𝑛 and𝑚, it is very likely to have 𝐵𝐻𝑚 connected to some

translate 𝑥 + 𝐵𝐻𝑚 which is contained in 𝐹𝛼,𝛽𝑛 and whose edges are all open. That is, we shall

establish the equivalent of Lemma 5 of [13]. Although the proof of our result is carried out

similarly as its counterpart, one of its steps uses a more general argument. This is done to avoid

the verification, at a certain point of the proof, that 2𝑚 + 1 divides both 𝛼𝑛 + 1 and 𝛼𝑛 + 𝛽𝑛 + 1,

for some 𝛼, 𝛽 > 0 and𝑚,𝑛 ∈ ℕ.

For𝑚 ∈ ℕ and 𝑥 ∈ 𝐻 , we say that 𝑥 + 𝐵𝐻𝑚 is an 𝒎-seed if every edge in 𝑥 + 𝐵𝐻𝑚 is open.

Thus, we define, for 𝛼𝑛 > 2𝑚 + 1,

𝐾
𝛼,𝛽
𝑚,𝑛 ≔

{︂
𝑥 ∈ 𝑇 𝛼,𝛽𝑛 : ∃𝑦 ∈ 𝐹𝛼,𝛽𝑛 , {𝑥,𝑦} ∈ 𝔼𝑑 , 𝜔 ({𝑥,𝑦}) = 1, 𝑦 is in an𝑚-seed in 𝐹𝛼,𝛽𝑛

}︂
.

The strategy here is the following: provided that we can find any large number of vertices

in |𝑉 𝛼,𝛽𝑛 | with probability as high as we need, we additionally require that some fixed number

of these vertices are connected to a seed in 𝐹𝛼,𝛽𝑛 . Using the structure of ℤ𝑑 we can ensure

that these candidates are far away from each other in such a way that all the possible seeds

are mutually disjoint. Hence, if we have many such candidates, we can conclude that 𝐵𝐻𝑚 is

connected to 𝐾𝛼,𝛽𝑚,𝑛 with high probability.

The following assertion describes a structural property of ℤ𝑑 we will make use of:

Claim 3.4. For every 𝑀,𝑘 ∈ ℕ, 𝑀 ≥ 2, there exists 𝑇 (𝑀,𝑘) ∈ ℕ such that if 𝐴 ⊂ ℤ𝑑 and

|𝐴| > 𝑇 (𝑀,𝑘), then there is a subset {𝑥1, . . . , 𝑥𝑀 } ⊂ 𝐴 satisfying ∥𝑥𝑖 − 𝑥 𝑗 ∥∞ > 𝑘 for every 𝑖 ≠ 𝑗 ,

where 1 ≤ 𝑖, 𝑗 ≤ 𝑀 .
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Proof. Let 𝑇 (𝑀,𝑘) = ∑︁𝑀−1
𝑗=1 𝑗 (2𝑘 + 1)𝑑 . If𝑀 = 2 and |𝐴| > (2𝑘 + 1)𝑑 , it follows that there are at

least two vertices 𝑥,𝑦 ∈ 𝐴 such that ∥𝑥−𝑦∥∞ > 𝑘 , since the ball 𝐵(𝑥, 𝑘) = {𝑦 ∈ ℤ𝑑 : ∥𝑦−𝑥 ∥∞ ≤

𝑘} has (2𝑘 + 1)𝑑 vertices for any 𝑥 ∈ ℤ𝑑 .

Now, suppose the result holds for some 𝑀 ≥ 2. Then, if any set 𝐴 ⊂ ℤ𝑑 satisfies |𝐴| >

𝑇 (𝑀 + 1, 𝑘) = 𝑇 (𝑀,𝑘) +𝑀 (2𝑘 + 1)𝑑 , it follows by the induction hypothesis that there is a subset

{𝑥1, . . . , 𝑥𝑀 } ⊂ 𝐴 satisfying ∥𝑥𝑖 − 𝑥 𝑗 ∥∞ > 𝑘 for every 𝑖 ≠ 𝑗 , where 1 ≤ 𝑖, 𝑗 ≤ 𝑀 . Moreover,

it follows that
∑︁𝑀
𝑗=1 |𝐵(𝑥 𝑗 , 𝑘) | ≤ 𝑀 (2𝑘 + 1)𝑑 < 𝑇 (𝑀 + 1, 𝑘) < |𝐴|. This immediately implies

that there exists 𝑥𝑀+1 ∈ 𝐴 such that ∥𝑥𝑀+1 − 𝑥 𝑗 ∥∞ > 𝑘 for every 1 ≤ 𝑗 ≤ 𝑀 , and the claim is

proved. □

Lemma 3.5. If 𝜃 (𝑝, 𝑞) > 0 and 𝑝 < 𝑝𝑐 (𝑑) < 𝑞 < 𝑝𝑐 (𝑠), then for every 𝛼, 𝛽, 𝜂 ∈ (0,∞), there exist

𝑚,𝑛 ∈ ℕ such that

𝑃𝑝,𝑞

(︂
𝐵𝐻𝑚

𝐵𝛽𝑛′+𝛼𝑛′←−−−−→ 𝐾
𝛼,𝛽

𝑚,𝑛′

)︂
> 1 − 𝜂 for all 𝑛′ ≥ 𝑛.

Proof. If 𝜃 (𝑝, 𝑞) > 0, then there exists𝑚 ∈ ℕ such that

𝑃𝑝,𝑞 (𝐵𝐻𝑚 ↔∞) > 1 −
(︂𝜂
2

)︂𝑠2𝑠
. (3.4)

Let𝑀 ∈ ℕ be such that

𝑝𝑃𝑝,𝑞 (𝐵𝐻𝑚 is an𝑚-seed) > 1 −
(︂𝜂
2

)︂1/𝑀
(3.5)

and fix 𝑙 = 𝑇 (𝑀, 2(2𝑚 + 1) + 2) as in Claim 3.4. By Lemma 3.3 and (3.4), it follows that there

exists an 𝑛 ∈ ℕ such that

𝑃𝑝,𝑞
(︁
|𝑉 𝛼,𝛽
𝑛′ | ≥ 𝑙

)︁
> 1 − 𝜂2 for all 𝑛′ ≥ 𝑛. (3.6)

Now, let 𝑛′ ≥ 𝑛 and note that Claim 3.4 ensures that, for every configuration in the event

{|𝑉 𝛼,𝛽
𝑛′ | ≥ 𝑙}, there is a subset {𝑥1, . . . , 𝑥𝑀 } ⊂ 𝑉 𝛼,𝛽𝑛′ satisfying ∥𝑥𝑖 − 𝑥 𝑗 ∥∞ > 2(2𝑚 + 1) + 2 for

every 𝑖 ≠ 𝑗 , where 1 ≤ 𝑖, 𝑗 ≤ 𝑀 . Hence, if 𝑦𝑖 is the unique neighbor of 𝑥𝑖 that belongs to 𝐹𝛼,𝛽𝑛′
and 𝐵𝐻𝑚,𝑖 ⊂ 𝐻 is a box of side length 2𝑚 containing 𝑦𝑖 , then 𝐵𝐻𝑚,𝑖 ∩ 𝐵𝐻𝑚,𝑗 = ∅ for every 𝑖 ≠ 𝑗 ,

1 ≤ 𝑖, 𝑗 ≤ 𝑀 . Since the event {|𝑉 𝛼,𝛽
𝑛′ | ≥ 𝑙} does not depend on the states of the edges in 𝑆𝛼,𝛽

𝑛′
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and of Δ𝑒𝑆𝛼,𝛽𝑛′ , inequalities (3.5) and (3.6) imply

𝑃𝑝,𝑞

(︂
𝐵𝐻𝑚

𝐵𝛽𝑛′+𝛼𝑛′←−−−−→ 𝐾
𝛼,𝛽

𝑚,𝑛′

)︂
≥ 𝑃𝑝,𝑞

(︂{︁|︁|︁𝑉 𝛼,𝛽
𝑛′

|︁|︁ ≥ 𝑙}︁ ∩ [︂
∪𝑀𝑖=1

{︁
𝑥𝑖 ∈ 𝐾𝛼,𝛽𝑚,𝑛′

}︁]︂)︂
≥ 1 − 𝜂.

□

Recall that, for 𝑆 ⊂ ℤ𝑑 , we have E𝑆 ≔ {𝑒 ∈ 𝔼𝑑 : 𝑒 ⊂ 𝑆}, and let 𝑃 be the probability

measure associated with the family {𝑈 (𝑒) : 𝑒 ∈ 𝔼𝑑} of i.i.d. random variables having uniform

distribution in [0, 1]. In this context, for 𝑝 ∈ [0, 1], we say that 𝑒 ∈ 𝔼𝑑 is 𝒑-open if 𝑈 (𝑒) ≤ 𝑝

and 𝒑-closed otherwise. We also say that a subset 𝐹 ⊂ 𝔼𝑑 is (𝒑, 𝒒)-open if every edge of

𝐹 ∩ (𝔼𝑑 \ E𝐻 ) is 𝑝-open and every edge of 𝐹 ∩ E𝐻 is 𝑞-open.

The idea for proving Theorem 3.1 is to recursively grow the cluster of the origin of ℤ𝑑 to

more distant regions, jumping from a recently obtained seed to a farther one, and keep this

process going indefinitely with positive probability. Similarly to [13], due to the geometrical

nature of our connections, it is not possible to perform such an exploration independently. As

a matter of fact, any attempt to reach a new open seed from a recently obtained one always

involves an already explored region of ℤ𝑑 that contains closed edges in its external boundary,

creating a problem to the direct application of Lemma 3.5. Lemma 3.6, which is the equivalent

of Lemma 6 of [13], solves this issue by stating that if we give these explored closed edges a

small extra chance to be open, then the desired long-range connections can be attained with

high probability 𝑃 .

Lemma 3.6 (Finite-size criterion). Assume that 𝜃 (𝑝, 𝑞) > 0 for some 𝑝 < 𝑝𝑐 (𝑑) < 𝑞 < 𝑝𝑐 (𝑠).

Then, for every 𝜀, 𝛿 > 0 and 𝛼, 𝛽 > 0, there exist𝑚,𝑛 ∈ ℕ with the following property:

Suppose 𝑛′ ∈ ℕ and 𝑅 ⊂ ℤ𝑑 satisfy 𝐵𝐻𝑚 ⊂ 𝑅 ⊂ 𝐵𝛽𝑛′+𝛼𝑛′ and (𝑅 ∪ Δ𝑣𝑅) ∩𝑇 𝛼,𝛽𝑛′ = ∅. Also, let

𝛾 : Δ𝑒𝑅 ∩ E𝐵𝛽𝑛′+𝛼𝑛′ → [0, 1 − 𝛿] be any function and define the events

𝐸𝑛′ ≔

⎧⎪⎪⎨⎪⎪⎩
there is a path joining 𝑅 to 𝐾𝛼,𝛽

𝑚,𝑛′ which is (𝑝, 𝑞)-open

outside Δ𝑒𝑅 and (𝛾 (𝑓 ) + 𝛿)-open in its only edge 𝑓 ∈ Δ𝑒𝑅

⎫⎪⎪⎬⎪⎪⎭ ,
𝐹𝑛′ ≔

{︂
𝑓 is 𝛾 (𝑓 )-closed for every 𝑓 ∈ Δ𝑒𝑅 ∩ E𝐵𝛽𝑛′+𝛼𝑛′

}︂
.

Then 𝑃 (𝐸𝑛′ |𝐹𝑛′) > 1 − 𝜀 for every 𝑛′ ≥ 𝑛.

Proof. To improve the readability of the proof, we ommit the superscripts 𝛼, 𝛽 > 0 from the set
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𝐾
𝛼,𝛽
𝑚,𝑛 .

Suppose 𝜃 (𝑝, 𝑞) > 0 for some 𝑝 < 𝑝𝑐 (𝑑) < 𝑞 < 𝑝𝑐 (𝑠) and let 𝜀, 𝛿 > 0. Choose 𝑡 ∈ ℕ such

that

(1 − 𝛿)𝑡 < 𝜀

2 , (3.7)

and also 𝜂 > 0 so that

𝜂 <
𝜀

2 (1 − 𝑞)
𝑡 . (3.8)

By Lemma 3.5, there exist𝑚,𝑛 ∈ ℕ such that

𝑃𝑝,𝑞

(︂
𝐵𝐻𝑚

𝐵𝛽𝑛′+𝛼𝑛′←−−−−→ 𝐾𝑚,𝑛′
)︂
> 1 − 𝜂 for all 𝑛′ ≥ 𝑛.

Let 𝑛′ ≥ 𝑛 and consider the region 𝑅 and the function 𝛾 as in the hypotheses of the lemma.

Since 𝑅 ⊃ 𝐵𝐻𝑚 , it follows that

𝑃𝑝,𝑞

(︂
𝜕𝑅

𝐵𝛽𝑛′+𝛼𝑛′←−−−−→ 𝐾𝑚,𝑛′
)︂
> 1 − 𝜂. (3.9)

Let 𝐾 ⊂ 𝑇 𝛼,𝛽
𝑛′ and denote by𝑈𝑛′ (𝐾) the set of edges {𝑥,𝑦} ⊂ 𝐵𝛽𝑛′+𝛼𝑛′ such that

i. 𝑥 ∈ 𝑅, 𝑦 ∉ 𝑅;

ii. There is an open path joining 𝑦 to 𝐾 in 𝐵𝛽𝑛′+𝛼𝑛′ without using any edge contained in

𝑅 ∪ Δ𝑣𝑅.

Thus, observing that for any 𝐴 ⊂ Δ𝑒𝑅 the event {𝑈𝑛′ (𝐾) = 𝐴} does not depend on the states of

the edges in𝑈𝑛′ (𝐾), which in turn are independent from one another, we have

𝑃𝑝,𝑞
(︁
𝜕𝑅 ↮ 𝐾 in 𝐵𝛽𝑛′+𝛼𝑛′

)︁
= 𝑃𝑝,𝑞 (𝑈𝑛′ (𝐾) = ∅ or 𝑒 is closed for every 𝑒 ∈ 𝑈𝑛′ (𝐾))

≥ 𝑃𝑝,𝑞 ( |𝑈𝑛′ (𝐾) | ≤ 𝑡,𝑈𝑛′ (𝐾) closed)

=
∑︂
𝐴⊂Δ𝑒𝑅
|𝐴|≤𝑡

𝑃𝑝,𝑞 (𝑈𝑛′ (𝐾) = 𝐴)𝑃𝑝,𝑞 (𝑈𝑛′ (𝐾) closed|𝑈𝑛′ (𝐾) = 𝐴)

=
∑︂
𝐴⊂Δ𝑒𝑅
|𝐴|≤𝑡

(1 − 𝑞) |𝐴|𝑃𝑝,𝑞 (𝑈𝑛′ (𝐾) = 𝐴)

≥ (1 − 𝑞)𝑡𝑃𝑝,𝑞 ( |𝑈𝑛′ (𝐾) | ≤ 𝑡). (3.10)

Now, note that the events {|𝑈𝑛′ (𝐾) | ≤ 𝑡} and {𝐾𝑚,𝑛′ = 𝐾} are independent, as well as the
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events {𝜕𝑅 ↮ 𝐾 in 𝐵𝛽𝑛′+𝛼𝑛′} and {𝐾𝑚,𝑛′ = 𝐾}. Combining these two facts together with

inequalities (3.10) and (3.9), we arrive at

𝑃𝑝,𝑞 ( |𝑈𝑛′ (𝐾𝑚,𝑛′) | ≤ 𝑡) =
∑︂
𝐾⊂𝑇𝛼,𝛽

𝑛′

𝑃𝑝,𝑞 ( |𝑈𝑛′ (𝐾) | ≤ 𝑡)𝑃𝑝,𝑞 (𝐾𝑚,𝑛′ = 𝐾)

≤
∑︂
𝐾⊂𝑇𝛼,𝛽

𝑛′

(1 − 𝑞)−𝑡𝑃𝑝,𝑞 (𝜕𝑅 ↮ 𝐾 in 𝐵𝛽𝑛′+𝛼𝑛′)𝑃𝑝,𝑞 (𝐾𝑚,𝑛′ = 𝐾)

≤ 𝜂 (1 − 𝑞)−𝑡 ,

whence (3.8) implies

𝑃𝑝,𝑞 ( |𝑈𝑛′ (𝐾𝑚,𝑛′) | > 𝑡) > 1 − 𝜀2 . (3.11)

Finally, consider the coupling measure 𝑃 , defined before the statement of Lemma 3.6. Since

for any 𝐴 ⊂ Δ𝑒𝑅 the event {𝑈𝑛′ (𝐾𝑚,𝑛′) = 𝐴} is independent of the states of the edges in 𝐴 and

these states are independent of one another, conditioning on 𝐹𝑛′ gives us

𝑃 (𝑒 is (𝛾 (𝑒) + 𝛿)-closed ∀𝑒 ∈ 𝑈𝑛′ (𝐾𝑚,𝑛′), |𝑈𝑛′ (𝐾𝑚,𝑛′) | > 𝑡 |𝐹𝑛′)

=
∑︂
𝐴⊂Δ𝑒𝑅
|𝐴|>𝑡

𝑃 (𝑒 is (𝛾 (𝑒) + 𝛿)-closed ∀𝑒 ∈ 𝐴,𝑈𝑛′ (𝐾𝑚,𝑛′) = 𝐴|𝐹𝑛′)

=
∑︂
𝐴⊂Δ𝑒𝑅
|𝐴|>𝑡

(1 − 𝛿) |𝐴|𝑃 (𝑈𝑛′ (𝐾𝑚,𝑛′) = 𝐴|𝐹𝑛′) ≤ (1 − 𝛿)𝑡

<
𝜀

2 , (3.12)

where the last inequality comes from (3.7). Combining (3.11) and (3.12), it follows that

𝑃 (∃𝑒 ∈ 𝑈𝑛′ (𝐾𝑚,𝑛′) such that 𝑒 is (𝛾 (𝑒) + 𝛿)-open|𝐹𝑛′)

≥ 𝑃 (∃𝑒 ∈ 𝑈𝑛′ (𝐾𝑚,𝑛′) such that 𝑒 is (𝛾 (𝑒) + 𝛿)-open, |𝑈𝑛′ (𝐾𝑚,𝑛′) | > 𝑡 |𝐹𝑛′)

> 𝑃 ( |𝑈𝑛′ (𝐾𝑚,𝑛′) | > 𝑡 |𝐹𝑛′) −
𝜀

2 > 1 − 𝜀,

and the proof is complete. □

Remark 2. It is important to emphasize the condition “for every 𝑛′ ≥ 𝑛” in the statement of

Lemma 3.6. Further on, we will need to choose a finite number of pairs (𝛼1, 𝛽1), . . . , (𝛼𝑙 , 𝛽𝑙 ), and

check that there exists 𝑛0 ∈ ℕ such that 𝑃 (𝐸𝛼𝑖 ,𝛽𝑖𝑛0 |𝐹
𝛼𝑖 ,𝛽𝑖
𝑛0 ) is sufficiently large, for every 𝑖 = 1, . . . , 𝑙 .

Since for each pair (𝛼𝑖, 𝛽𝑖), there exists𝑛(𝛼𝑖, 𝛽𝑖) ∈ ℕ such that 𝑃 (𝐸𝛼𝑖 ,𝛽𝑖
𝑛′ |𝐹

𝛼𝑖 ,𝛽𝑖
𝑛′ ) is sufficiently large
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for every 𝑛′ ≥ 𝑛(𝛼𝑖, 𝛽𝑖), the desired result is achieved if we consider 𝑛0 = max1≤𝑖≤𝑙 𝑛(𝛼𝑖, 𝛽𝑖). The

necessity of working with boxes of multiple sizes is particular to our setting. This technicality

differs from [13], where the authors needed to use just one size of box in their renormalization

process.

The last technical result we need is Lemma 1 of [13], stated in the following. It is the condi-

tion that allows us to show that, if the blocks in the “block lattice” are open with high probability,

then percolation on the block lattice implies in percolation the slab ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2 with

positive probability. Let 𝐺 = (𝑉 , 𝐸) be an infinite and connected graph. Suppose we have a

collection of random variables {𝑍 (𝑥) ∈ {0, 1} : 𝑥 ∈ 𝑉 } defined on some probability space

(Ω, F , 𝜇), let 𝑓1, 𝑓2, . . . be an ordering of the edges in 𝐸 and fix 𝑥1 ∈ 𝑉 . Consider the following

random sequence S = {𝑆𝑡 = (𝐴𝑡 , 𝐵𝑡 )}𝑡∈ℕ of ordered pairs of subsets of 𝑉 : let

𝑆1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
({𝑥1}, ∅), if 𝑍 (𝑥1) = 1,

(∅, {𝑥1}), if 𝑍 (𝑥1) = 0.

Having obtained 𝑆1, . . . , 𝑆𝑡 for 𝑡 ≥ 1, we define 𝑆𝑡+1 in the following manner: denote 𝑓𝑖 = {𝑢𝑖, 𝑣𝑖}

and let 𝑗𝑡+1 = inf{𝑖 : 𝑢𝑖 ∈ 𝐴𝑡 , 𝑣𝑖 ∈ 𝑉 \ (𝐴𝑡 ∪𝐵𝑡 )}, with the convention that inf ∅ = ∞. If 𝑗𝑡+1 < ∞,

let 𝑥𝑡+1 = 𝑣 𝑗𝑡+1 and declare

𝑆𝑡+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝐴𝑡 ∪ {𝑥𝑡+1}, 𝐵𝑡 ), if 𝑍 (𝑥𝑡+1) = 1

(𝐴𝑡 , {𝑥𝑡+1} ∪ 𝐵𝑡 ), if 𝑍 (𝑥𝑡+1) = 0.

Otherwise, declare 𝑆𝑡+1 = 𝑆𝑡 . We call S the cluster-growth process of the vertex 𝑥1 with

respect to (𝑍 (𝑥))𝑥∈𝑉 . Note that the, in the context of site percolation, the open cluster C(𝑥1)

of 𝑥1 with respect to (𝑍 (𝑥))𝑥∈𝑉 is the set 𝐴∞ = ∪𝑡≥1𝐴𝑡 and its external vertex boundary is the

set 𝐵∞ = ∪𝑡≥1𝐵𝑡 .

Now, let 𝑝site𝑐 (𝐺) ∈ (0, 1) be the Bernoulli site percolation threshold for 𝐺 and define

𝜌 (S, 𝑡) ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜇 (𝑍 (𝑥𝑡+1) = 1|𝑆1, . . . , 𝑆𝑡 ), if 𝑗𝑡+1 < ∞,

1, otherwise.

The next result states that the cluster of 𝑥1 with respect to (𝑍 (𝑥))𝑥∈𝑉 is infinite with positive

probability 𝜇, provided that, when performing the cluster-growth process of 𝑥1, the conditional
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probability of augmenting the set 𝐴𝑡 at any step 𝑡 ∈ ℕ exceeds the parameter of a supercritical

Bernoulli site percolation process on 𝐺 .

Lemma 3.7 (Renormalization condition). If there exists 𝜆 ∈ (𝑝site𝑐 (𝐺), 1) such that

𝜌 (S, 𝑡) ≥ 𝜆 for all 𝑡 ∈ ℕ, (3.13)

then 𝜇 ( |𝐴∞ | = ∞) > 0.

Proof. Let 𝑃 be the probability measure associated with the family {𝑈 (𝑥) : 𝑥 ∈ 𝑉 } of i.i.d.

random variables having uniform distribution on [0, 1], fix 𝑥1 ∈ 𝑉 and consider the following

random sequence S∗ = {𝑆∗𝑡 = (𝐴∗𝑡 , 𝐵∗𝑡 )}𝑡∈ℕ of ordered pairs of subsets of 𝑉 : first, let

𝑆∗1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
({𝑥1}, ∅), if𝑈 (𝑥1) ≤ 𝜇 (𝑍 (𝑥1) = 1),

(∅, {𝑥1}), otherwise.

Having obtained 𝑆∗1, . . . , 𝑆∗𝑡 for 𝑡 ≥ 1, let 𝑗𝑡+1 and 𝑥𝑡+1 be defined analogously as it was described

for the sequence S. If 𝑗𝑡+1 < ∞, declare

𝑆∗𝑡+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝐴∗𝑡 ∪ {𝑥𝑡+1}, 𝐵∗𝑡 ), if𝑈 (𝑥𝑡+1) ≤ 𝜇 (𝑍 (𝑥𝑡+1) = 1|𝑆𝑡 = 𝑆∗𝑡 , . . . , 𝑆1 = 𝑆

∗
1),

(𝐴∗𝑡 , {𝑥𝑡+1} ∪ 𝐵∗𝑡 ), otherwise,

and let 𝑆∗𝑡+1 = 𝑆∗𝑡 if 𝑗𝑡+1 = ∞.

Additionally, fix 𝜆 ∈ (𝑝site𝑐 (𝐺), 1) and let S𝜆 = {𝑆𝜆𝑡 = (𝐴𝜆𝑡 , 𝐵𝜆𝑡 )}𝑡∈ℕ be the cluster-growth

process of 𝑥1 with respect to the random variables {1{𝑈 (𝑥)≤𝜆} : 𝑥 ∈ 𝑉 }.

Writing 𝐴𝜏∞ = ∪𝑡≥1𝐴
𝜏
𝑡 and 𝐵𝜏∞ = ∪𝑡≥1𝐵

𝜏
𝑡 , 𝜏 ∈ {∗, 𝜆}, it suffices to prove that

i. S and S∗ have the same distribution;

ii. 𝐴∗∞ ⊃ 𝐴𝜆∞;

As a matter of fact, combining these assertions and observing that𝐴𝜆∞ has the same distribution

as the open cluster of 𝑥1 under the Bernoulli site-percolation measure on 𝐺 with parameter

𝜆 > 𝑝site𝑐 (𝐺), it follows that

𝜇 ( |𝐴∞ | = ∞) = 𝑃 ( |𝐴∗∞ | = ∞) ≥ 𝑃 ( |𝐴𝜆∞ | = ∞) = 𝑃𝜆 ( |C(𝑥1) | = ∞) > 0.
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To establish i, we show that if 𝜇 (𝑆𝑡 = 𝜎𝑡 , . . . , 𝑆1 = 𝜎1) > 0 for some sequence 𝜎1, . . . , 𝜎𝑡 , then

𝑃 (𝑆∗𝑡 = 𝜎𝑡 , . . . , 𝑆∗1 = 𝜎1) = 𝜇 (𝑆𝑡 = 𝜎𝑡 , . . . , 𝑆1 = 𝜎1). (3.14)

We proceed by induction on 𝑡 ∈ ℕ. For 𝑡 = 1 and 𝜎1 = ({𝑥1}, ∅),

𝑃 (𝑆∗1 = 𝜎1) = 𝑃 (𝑈 (𝑥1) ≤ 𝜇 (𝑍 (𝑥1) = 1)) = 𝜇 (𝑍 (𝑥1) = 1) = 𝜇 (𝑆1 = 𝜎1),

and the same also holds for 𝜎1 = (∅, {𝑥1}). Now, suppose (3.14) holds for some 𝑡 ≥ 1, let

𝜌̂ (S∗, 𝑡) = 𝜇 (𝑍 (𝑥𝑡+1) = 1|𝑆𝑡 = 𝑆∗𝑡 , . . . , 𝑆1 = 𝑆
∗
1) and 𝜎𝑡+1 = (𝐴∗𝑡 ∪ {𝑥𝑡+1}, 𝐵∗𝑡 ). Thus,

𝑃 (𝑆∗𝑡+1 = 𝜎𝑡+1, . . . , 𝑆∗1 = 𝜎1) = 𝑃 (𝑈 (𝑥𝑡+1) ≤ 𝜌̂ (S∗, 𝑡), 𝑆∗𝑡 = 𝜎𝑡 , . . . , 𝑆∗1 = 𝜎1)

= 𝑃 (𝑈 (𝑥𝑡+1) ≤ 𝜌̂ (S∗, 𝑡) |𝑆∗𝑡 = 𝜎𝑡 , . . . , 𝑆∗1 = 𝜎1)𝑃 (𝑆∗𝑡 = 𝜎𝑡 , . . . , 𝑆∗1 = 𝜎1)

= 𝜇 (𝑍 (𝑥𝑡+1) = 1|𝑆𝑡 = 𝜎𝑡 , . . . , 𝑆1 = 𝜎1)𝜇 (𝑆𝑡 = 𝜎𝑡 , . . . , 𝑆1 = 𝜎1)

= 𝜇 (𝑆𝑡+1 = 𝜎𝑡+1, . . . , 𝑆1 = 𝜎1),

and the same result holds for 𝜎𝑡+1 = (𝐴∗𝑡 , 𝐵∗𝑡 ∪ {𝑥𝑡+1}).

Assertion ii is a consequence of the fact that condition (3.13) implies that every vertex of

𝐵∗∞ is 𝜆-closed, therefore 𝐴𝜆∞ ∩ 𝐵∗∞ = ∅ and 𝐴𝜆∞ ⊂ 𝐴∗∞. □

We stress that an analogous result also holds if we introduce an orientation to the edges of

𝐺 . This is particularly important in our case, since the renormalized graph we shall consider in

the sequel is an oriented one.

3.4 Proof of Theorem 3.1: The renormalization process

To prove Theorem 3.1, it suffices to show that, for any 𝑝 < 𝑝𝑐 (𝑑), 𝜂 > 0 and𝑞 = 𝑞𝑐 (𝑝)+𝜂/2, there

exists 𝑁 ∈ ℕ such that, with positive probability, the origin lies in an infinite (𝑝 +𝜂/2, 𝑞 +𝜂/2)-

open cluster within ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2. As already mentioned, we rely on the classical

approach of Grimmett and Marstrand [13] to show that the restriction of the inhomogeneous

process with parameters 𝑝 + 𝜂/2 and 𝑞 + 𝜂/2 to the slab ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2 stochastically

dominates a supercritical percolation process on the graph 𝐺 = (𝑉 , 𝐸), with vertex set 𝑉 =

{𝑥 ∈ ℤ+ × ℤ : 𝑥1 + 𝑥2 is even} and edge set 𝐸 = {{𝑥, 𝑥 + (1,±1)} : 𝑥 ∈ 𝑉 }. The orientation

of the edges is to be taken from 𝑥 to 𝑥 + (1,±1), for every 𝑥 ∈ 𝑉 . The stochastic domination
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occurs in the sense that if the cluster of the origin of the latter is infinite, then the cluster of

the origin of the former is infinite as well.

The above idea is carried out with the aid of the following renormalization scheme: we

construct a (dependent) oriented site percolation process on𝐺 , defined in terms of some special

events lying in the space ( [0, 1]𝔼𝑑

, 𝑃), where 𝑃 denotes the probability measure associated with

the family {𝑈 (𝑒) : 𝑒 ∈ 𝔼𝑑} of i.i.d. random variables having uniform distribution in [0, 1]. We

do this by specifying a collection of random variables {𝑍 (𝑥) ∈ {0, 1} : 𝑥 ∈ 𝑉 }, which encode

information about the existence of large (𝑝+𝜂/2, 𝑞+𝜂/2)-open paths inℤ2×{−𝑁, . . . , 𝑁 }𝑑−2. In

particular, when considering the cluster-growth process of the origin with respect to (𝑍 (𝑥))𝑥∈𝑉 ,

we will require that

i. property (3.13) holds for some 𝜆 ∈ (𝑝 site
𝑐 (𝐺), 1), so that |𝐴∞ | is infinite with positive

probability by Lemma 3.7;

ii. if |𝐴∞ | = ∞, then the origin percolates inℤ2×{−𝑁, . . . , 𝑁 }𝑑−2 through a (𝑝+𝜂/2, 𝑞+𝜂/2)-

open path.

It is clear that these two conditions combined immediately imply the desired conclusion.

Thus, we proceed to the construction of the process (𝑍 (𝑥))𝑥∈𝑉 .

Having fixed 𝑝 < 𝑝𝑐 (𝑑), let 𝜂 > 0 be small and define

𝑞 = 𝑞𝑐 (𝑝) + 𝜂/2 𝛿 =
1
16𝜂, 𝜀 =

1
150

(︁
1 − 𝑝 site

𝑐 (𝐺)
)︁
. (3.15)

Also, consider 𝛼1 = 𝛼2 = 𝛼3 = 𝛼 = 1/100 and 𝛽1 = 𝛽2/2 = 𝛽3/(2+𝛼 +𝛼2) = 1. Since 𝜃 (𝑝, 𝑞) > 0,

Lemma 3.6 guarantees the existence of𝑚,𝑛 ∈ ℕ such that 𝑃 (𝐸𝑛 |𝐹𝑛) > 1 − 𝜀 for each given pair

(𝛼𝑖, 𝛽𝑖).

For a vertex 𝑥 ∈ 𝑉 and a subset 𝐴 ⊂ 𝑉 , let 𝑥 +𝐴 ≔ {𝑥 + 𝑎 : 𝑎 ∈ 𝐴}. Also, let 𝑢1, . . . , 𝑢𝑑 be

the canonical basis of ℝ𝑑 and, for 𝑁 = 6𝑛, let Λ(𝑁 ) = 𝐵𝑁 ∪ (2𝑁𝑢2 + 𝐵𝑁 ). The fundamental

blocks of the renormalized lattice are the site-blocks

Λ𝑥 = Λ𝑥 (𝑁 ) ≔ 4𝑁𝑥 + Λ(𝑁 ), 𝑥 ∈ 𝑉 ,

which can be written as the union of a “lower” and an “upper” translate of 𝐵𝑁 , namely

Λ𝑙𝑥 = Λ𝑙𝑥 (𝑁 ) ≔ 4𝑁𝑥 + 𝐵𝑁 ,

Λ𝑢𝑥 = Λ𝑢𝑥 (𝑁 ) ≔ 2𝑁𝑢2 + Λ𝑙𝑥 (𝑁 ).
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The adjacency relation between site-blocks is the one inherited from 𝐺 = (𝑉 , 𝐸). That is, for

𝑥,𝑦 ∈ 𝑉 , the boxes Λ𝑥 and Λ𝑦 are adjacent if and only if {𝑥,𝑦} ∈ 𝐸. The long-range connections

in ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2 we are going to build will occur between adjacent site-blocks, using

its edges and the edges within the passage-blocks

Π𝑥 = Π𝑥 (𝑁 ) ≔ [Λ𝑥 + 2𝑁 (𝑢1 + 𝑢2)] ∪ [Λ𝑥 + 2𝑁 (𝑢1 − 𝑢2)], 𝑥 ∈ 𝑉 .

Having set up the renormalization structure, we are now in a position to define the random

variables 𝑍 (𝑥), 𝑥 ∈ 𝑉 . We will specify them recursively, considering the first coordinate of each

𝑥 = (𝑥1, 𝑥2) ∈ 𝑉 . The idea is to make 𝑍 (𝑥) encode information about connections between

seeds inside the site-blocks Λ𝑥 , Λ𝑥+(1,1) and Λ𝑥+(1,−1) . These open paths will be contained in

Λ𝑥 ∪ Π𝑥 ∪ Λ𝑙𝑥+(1,1) ∪ Λ
𝑢
𝑥+(1,−1) and possess connectivity features such that requirements i. and

ii. are fulfilled for 𝜆 = [1 + 𝑝 site
𝑐 (𝐺)]/2.

We begin by determining the event {𝑍 (𝑜) = 1}. This will be achieved through the applica-

tion of a sequential algorithm, which constructs an increasing sequence 𝐸1, 𝐸2, . . . of edge-sets

by making repeated use of Lemma 3.6. At each step 𝑘 of the algorithm, we acquire information

about the values of𝑈 (𝑒) for certain 𝑒 ∈ 𝔼𝑑 , and record this information into suitable functions

𝛾𝑘 , 𝜁𝑘 : 𝔼𝑑 → [0, 1], in such a way that every 𝑒 ∈ 𝔼𝑑 is 𝛾𝑘 (𝑒)-closed and 𝜁𝑘 (𝑒)-open and

𝛾𝑘 (𝑒) ≤ 𝛾𝑘+1(𝑒), 𝜁𝑘 (𝑒) ≥ 𝜁𝑘+1(𝑒).

In this context, we respectively regard 𝛾𝑘 and 𝜁𝑘 as the acquired “negative” and “positive”

information about the states of the edges of 𝔼𝑑 up to step 𝑘 . At the end of each step, the

𝜁𝑘-open cluster of the origin within ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2 will have grown larger and closer

to the site-blocks Λ(1,1) and Λ(1,−1) , as we use Lemma 3.6 to reach new open seeds from the

previouly open ones in a coordinated manner.

In our process, a single attempt of growing the cluster of the origin in the setting of

Lemma 3.6 will be called a step of the exploration. The determination of 𝑍 (𝑜) = 1 is constituted

by a (finite) sequence of successful steps, specified in the sequel. To make the construction

clear, we gather some particular subsequences of steps together, according to the “direction of

growth” of the cluster, and call them phases of the exploration. A picture of a configuration

such that 𝑍 (𝑜) = 1 is illustrated in Figure 3.5. This event occurs if we succeed in each of the

following phases:
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Phase 1: Let 𝐸1 = E𝐵𝐻𝑚 . This phase is successful if every edge in 𝐸1 is 𝑞-open. In this case, we

set
𝛾1(𝑒) = 0, for all 𝑒 ∈ 𝔼𝑑 ,

𝜁1(𝑒) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞, if 𝑒 ∈ 𝐸1,

1, otherwise,

so that every edge 𝑒 ∈ 𝔼𝑑 is 𝛾1(𝑒)-closed and 𝜁1(𝑒)-open.

Phase 2: Provided that Phase 1 is successful, we attempt to connect the seed 𝐵𝐻𝑚 to another

𝑞-open𝑚-seed lying in the passage-block Π𝑜 by using Lemma 3.6 in the first series of steps in

the same direction.

Let P be the collection of all paths in ℤ𝑑 and denote the edge-boundary of a subset

𝐸′ ⊂ 𝔼𝑑 by Δ𝐸′ ≔ {𝑓 ∈ 𝔼𝑑 \ 𝐸′ : ∃𝑒 ∈ 𝐸′ such that |𝑓 ∩ 𝑒 | = 1}. Given 𝑉 ′ ⊂ ℤ𝑑 , 𝐸′ ⊂ 𝔼𝑑 with

(𝐸′ ∪ Δ𝐸′) ⊂ E𝑉 ′ , and 𝛾 : 𝔼𝑑 → [0, 1], define

P(𝑉 ′, 𝐸′, 𝛾)≔
{︁
𝜋 = {𝑥1, . . . , 𝑥𝑘} ∈ P : 𝜋 ⊂ 𝑉 ′, {𝑥1, 𝑥2} ∈ Δ𝐸′ and is 𝛾 ({𝑥1, 𝑥2})-open,

{𝑥𝑖, 𝑥𝑖+1} ∈ (𝐸′ ∪ Δ𝐸′)𝑐 and is (𝑝, 𝑞)-open ∀𝑖 = 2, . . . , 𝑘 − 1
}︁
,

V(𝑉 ′, 𝐸′, 𝛾)≔
⋃︂

𝜋∈P(𝑉 ′,𝐸 ′,𝛾)
𝜋.

Now, set 𝐷1 = 𝐵𝑛+𝛼𝑛 and let 𝐸2 = 𝐸1 ∪ ˜︁𝐸2, where ˜︁𝐸2 is the set of all edges with both vertices in

V(𝐷1, 𝐸1, 𝛾1 + 𝛿). This step is successful if there exists an edge in 𝐸2 having an endvertex in

𝐾𝛼,1𝑚,𝑛 =
{︁
𝑥 ∈ 𝑇 𝛼,1𝑛 : ∃𝑦 ∈ 𝐹𝛼,1𝑛 such that {𝑥,𝑦} ∈ 𝐸 and is (𝑝, 𝑞)-open,

𝑦 is in a 𝑞-open𝑚-seed in 𝐹𝛼,1𝑛

}︁
.

Conditioned that Phase 1 is successful, Lemma 3.6 implies that this step is successful with

probability at least 1 − 𝜀. In this case, let

𝛾2(𝑒) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾1(𝑒), if 𝑒 ∉ E𝐷1,

𝛾1(𝑒) + 𝛿, if 𝑒 ∈ Δ𝐸1 \ 𝐸2,

𝑞, if 𝑒 ∈ (Δ𝐸2 \ Δ𝐸1) ∩ E𝐷1 ∩ E𝐻 ,

𝑝, if 𝑒 ∈ (Δ𝐸2 \ Δ𝐸1) ∩ E𝐷1 ∩ E𝑐𝐻 ,

0, otherwise,
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𝜁2(𝑒) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜁1(𝑒), if 𝑒 ∈ 𝐸1,

𝛾1(𝑒) + 𝛿, if 𝑒 ∈ Δ𝐸1 ∩ 𝐸2,

𝑞, if 𝑒 ∈ 𝐸2 \ (𝐸1 ∪ Δ𝐸1) ∩ E𝐷1 ∩ E𝐻 ,

𝑝, if 𝑒 ∈ 𝐸2 \ (𝐸1 ∪ Δ𝐸1) ∩ E𝐷1 ∩ E𝑐𝐻 ,

1, otherwise.

Figure 3.1 illustrates a successful realization of the first step of this phase.

𝐵𝐻𝑚

𝐵𝑛

𝐵𝑛+𝛼𝑛

𝐹
𝛼,1
𝑛

Figure 3.1: A successful realization of the first step, projected onto ℤ2 × {0}𝑑−2. The black
squares represent the 𝑞-open 𝑚-seeds, connected by a 𝜁2-open path indicated by the black
curve, whose edges are contained in the dotted box 𝐵𝑛+𝛼𝑛 . The gray region represents the set
𝐹
𝛼,1
𝑛 , where the new seed is found.

Having succeeded with the first step, let 𝑏2 ∈ ℤ𝑠 × {0}𝑑−𝑠 be the center of the earliest seed

in 𝐹𝛼,1𝑛 (in some ordering of all centers) connected to 𝐵𝐻𝑚 and let

𝐷2 = 𝑏2 + 𝐵𝑛+𝛼𝑛 .

In this second step, we proceed to link the seed 𝑏2 + 𝐵𝐻𝑚 to a new seed 𝑏3 + 𝐵𝐻𝑚 inside 𝐷2, in

such a way that if we denote 𝑏𝑘 = (𝑏𝑘,1, . . . , 𝑏𝑘,𝑑), we have

𝑏3,1 − 𝑏2,1 ∈ [𝑛, 𝑛 + 𝛼𝑛],

|𝑏3,𝑖 | ≤ 𝑛 + 𝛼𝑛, ∀𝑖 = 2, . . . , 𝑠,

𝑏3,𝑖 = 0, ∀𝑖 = 𝑠 + 1, . . . , 𝑑 .

Observe that the first condition imposes a direction for the cluster of the origin to grow and

the second condition constrains it to some adequate boundaries. The third condition is the

requirement 𝑏3 + 𝐵𝐻𝑚 ⊂ 𝐻 . They can be achieved through a steering argument analogous to the
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one in [13]: for a vertex 𝑣 = (𝑣1, . . . , 𝑣𝑑) ∈ ℤ𝑑 , let 𝜎𝑣 : ℤ𝑑 → ℤ𝑑 be the application given by

[𝜎𝑣 (𝑥)]𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− sgn(𝑣𝑖)𝑥𝑖, if 𝑖 = 2, . . . , 𝑠,

𝑥𝑖, if 𝑖 = 1 or 𝑖 = 𝑠 + 1, . . . , 𝑑 .
(3.16)

We regard 𝜎𝑣 as the steering function, which, in the present Phase, is given by (3.16). Its

definition will be modified for the subsequent Phases, whenever necessary.

Let 𝐸3 = 𝐸2 ∪ ˜︁𝐸3, where ˜︁𝐸3 is the set of all edges with both vertices in V(𝐷2, 𝐸2, 𝛾2 + 𝛿).

This step is successful if there exists an edge in 𝐸3 having an endvertex in

𝑏2 + 𝜎𝑏2𝐾
𝛼,1
𝑚,𝑛 ≔

{︁
𝑥 ∈ 𝑏2 + 𝜎𝑏2𝑇

𝛼,1
𝑛 : ∃𝑦 ∈ 𝑏2 + 𝜎𝑏2𝐹

𝛼,1
𝑛 such that {𝑥,𝑦} ∈ 𝐸,

{𝑥,𝑦} is (𝑝, 𝑞)-open and 𝑦 is in a 𝑞-open𝑚-seed in 𝑏2 + 𝜎𝑏2𝐹
𝛼,1
𝑛

}︁
.

Just as before, in case of success, we update the values of the random variables𝑈 (𝑒), 𝑒 ∈ 𝔼𝑑 ,

recording them into the functions 𝛾3, 𝜁3 : 𝔼𝑑 → [0, 1]. Note that, by Lemma 3.6, conditioned

that Phase 1 and the previous step are successful, this step is successful with probability greater

than 1 − 𝜀.

The above procedure illustrates how we should proceed with the sequential algorithm

in order to find our suitable seed in Π𝑜 : from the 𝜁𝑘-open cluster of 𝑏𝑘 + 𝐵𝐻𝑚 inside the box

𝐷𝑘 = 𝑏𝑘 + 𝐵𝑛+𝛼𝑛 , we give a small increase 𝛿 > 0 on the parameter of the edges in its external

boundary in order to open some of them. In turn, from the endpoints of these newly open

edges, we try to find a (𝑝, 𝑞)-open path to a new 𝑞-open𝑚-seed 𝑏𝑘+1 + 𝐵𝐻𝑚 , satisfying

𝑏𝑘+1,1 − 𝑏𝑘,1 ∈ [𝑛, 𝑛 + 𝛼𝑛],

|𝑏𝑘+1,𝑖 | ≤ 𝑛 + 𝛼𝑛, ∀𝑖 = 2, . . . , 𝑠

𝑏𝑘+1,𝑖 = 0, ∀𝑖 = 𝑠 + 1, . . . , 𝑑 .

(3.17)

Given that the previous steps are successful, this happens with probability at least 1−𝜀, since in

each application of Lemma 3.6, the already explored region 𝑅 together with its external vertex

boundary, Δ𝑣𝑅, never intersects 𝑏𝑘 + 𝜎𝑏𝑘𝑇
𝛼,1
𝑛 . In this case, the updated values of the random

variables𝑈 (𝑒), 𝑒 ∈ 𝔼𝑑 , are recorded into functions 𝛾𝑘+1, 𝜁𝑘+1 : 𝔼𝑑 → [0, 1] accordingly.

The exploration process stops when we finally find a 𝑞-open𝑚-seed (𝑐2 + 𝐵𝐻𝑚) ⊂ Π𝑜 , such
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that
𝑐2,1 ∈ [9𝑛, 10𝑛 + 𝛼𝑛],

|𝑐2,𝑖 | ≤ 𝑛 + 𝛼𝑛, ∀𝑖 = 2, . . . , 𝑠

𝑐2,𝑖 = 0, ∀𝑖 = 𝑠 + 1, . . . , 𝑑,

and we say that Phase 2 is successful if such a seed is reached. Since (3.17) implies that

𝑏𝑘+1,1 ≥ 𝑏𝑘,1 + 𝑛 and our initial seed is 𝑜 + 𝐵𝐻𝑚 , this is possible after the application of at most

nine of the described steps. Therefore, conditioned that Phase 1 is successful, we have

𝑃 (Phase 2 successful|Phase 1 successful) ≥ (1 − 𝜀)9,

and every edge 𝑒 ∈ 𝔼𝑑 is 𝛾10(𝑒)-closed and 𝜁10(𝑒)-open at the end of the procedure. Figure 3.2

represents a successful connection between 𝐵𝐻𝑚 and 𝑐2 + 𝐵𝐻𝑚 .

𝑥1

𝐷1

𝐷2

𝐷3

𝐷4

𝐷5 𝐷6
𝐷7

𝐷8

𝐷9

𝑜

𝑐2

Figure 3.2: A successful realization of Phase 1, linking 𝐵𝐻𝑚 to 𝑐2 + 𝐵𝐻𝑚 . Each black square
represents the open seed obtained at the end of each step. They are linked by paths indicated
by the black curves, obtained through successive applications of Lemma 3.6. Each application
of the lemma considers a box 𝐷𝑘 = 𝑏𝑘 + 𝐵𝑛+𝛼𝑛 , 𝑘 = 1, . . . , 9, depicted by the dotted boxes. The
gray regions represent the sets 𝑏𝑘 + 𝜎𝑏𝑘𝐹

𝛼,1
𝑛 , where seed 𝑏𝑘+1 + 𝐵𝐻𝑚 is found at the end of the

𝑘-th step. The dashed line is the reference by which the steering occurs, relative to the 𝑥1-axis.

Phase 3: So far, the sequential algorithm has been applied following the restrictions imposed

by (3.17), which can be interpreted as requiring the cluster of the origin to “grow along the

𝑥1-axis in the positive direction, keeping its coordinates bounded in the other directions”.

Having reached seed 𝑐2 + 𝐵𝐻𝑚 ⊂ Π𝑜 , we continue the exploration process in order to find a path

in Π𝑜 ∪ Λ𝑙(1,1) ∪ Λ𝑢(1,−1) to open seeds in the site-blocks Λ𝑙(1,1) and Λ𝑢(1,−1) , which means that

a change of direction is necessary. As a condition for applying Lemma 3.6, this needs to be

done in such a way that we do not analyze previously explored edges in the region where we

intend to place the next seeds. Hence, we branch out the cluster of 𝑐2 + 𝐵𝐻𝑚 into an upper and

a lower component by inspecting, in two steps, the edges inside boxes of sizes 2𝑛 + 𝛼𝑛 and

2𝑛 + 2𝛼𝑛 + 𝛼2𝑛, both centered in 𝑐2.
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To put it rigorously, let L : ℝ𝑑 → ℝ𝑑 be the linear mapping given by

L(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑑) = (𝑥2,−𝑥1, 𝑥3, . . . , 𝑥𝑑),

and define the steering function 𝜎𝑣 : ℤ𝑑 → ℤ𝑑 , 𝑣 ∈ ℤ𝑑 , by

[𝜎𝑣 (𝑥)]𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− sgn(𝑣𝑖)𝑥𝑖, if 𝑖 = 3, . . . , 𝑠,

𝑥𝑖, if 𝑖 = 1, 2 or 𝑖 = 𝑠 + 1, . . . , 𝑑 .

The applicationL is a rotation of the 𝑥1𝑥2-plane by −𝜋/2 and introduces the change of direction

of the exploration process from being parallel to the 𝑥1-axis to being parallel to the 𝑥2-axis. As

before, 𝜎𝑣 will act to keep the other 𝑑 − 2 coordinates bounded. Let

𝐷10 = 𝑐2 + 𝐵2𝑛+𝛼𝑛

and 𝐸11 = 𝐸10 ∪ ˜︁𝐸11, where ˜︁𝐸11 is the set of all edges with both vertices inV(𝐷10, 𝐸10, 𝛾10 + 𝛿).

This step is successful if there exists an edge in 𝐸11 having an endvertex in

𝑐2 + L𝜎𝑐2𝐾
𝛼,2
𝑚,𝑛 ≔

{︁
𝑥 ∈ 𝑐2 + L𝜎𝑐2𝑇

𝛼,2
𝑛 : ∃𝑦 ∈ 𝑐2 + L𝜎𝑐2𝐹

𝛼,2
𝑛 such that {𝑥,𝑦} ∈ 𝐸,

{𝑥,𝑦} is (𝑝, 𝑞)-open and 𝑦 is in a 𝑞-open𝑚-seed in 𝑐2 + L𝜎𝑐2𝐹
𝛼,2
𝑛

}︁
.

After succeeding, we record the updated values of the random variables𝑈 (𝑒) into the functions

𝛾11, 𝜁11 : 𝔼𝑑 → [0, 1] and repeat the same step using a slightly bigger box than 𝐷10,

𝐷11 = 𝑐2 + 𝐵2𝑛+2𝛼𝑛+𝛼2𝑛,

this time to find an edge in 𝐸12 having an endvertex in 𝑐2−L𝜎𝑐2𝐾
𝛼,2+𝛼+𝛼2
𝑚,𝑛 . The size 𝐷11 is bigger

to ensure that the edges incident to 𝑐2 − L𝜎𝑐2𝑇
𝛼,2+𝛼+𝛼2
𝑛 have not been explored before. If we

succeed, we call the “lower” and the “upper” seeds 𝑐𝑙3 + 𝐵𝐻𝑚 and 𝑐𝑢3 + 𝐵𝐻𝑚 , respectively. Thus,

𝑃 (Phase 3 successful|Phases 1 and 2 successful) ≥ (1 − 𝜀)2,

and every edge 𝑒 ∈ 𝔼𝑑 is 𝛾12(𝑒)-closed and 𝜁12(𝑒)-open in this case. Figure 3.3 illustrates a

successful connection at Phase 3.

One can notice that Lemma 3.6 is not applicable if, instead of using the box 𝑐2 + 𝐵2𝑛+𝛼𝑛,
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𝑥1

𝑐2 + 𝐵𝐻𝑚

𝑐𝑙3 + 𝐵𝐻𝑚

𝑐𝑢3 + 𝐵𝐻𝑚

𝐷10

𝐷11

Figure 3.3: A successful connection at Phase 3, projected onto ℤ2 × {0}𝑑−2. The connections
between seeds occur in the same way as described in Figure 3.2.

we had considered 𝐷10 = 𝑐2 + 𝐵𝑛+𝛼𝑛. In this situation, as shown in Figure 3.4, we have 𝐷9 ∩

(𝑐2 + L𝜎𝑐2𝑇
𝛼,1
𝑛 ) ≠ ∅, which implies that the vertices of this region may have been revealed in

the previous step. Therefore, the requiremets for the subset 𝑅 in the statement of Lemma 3.6

are not satisfied under this setting. This fact also explains why the renormalization scheme of

Grimmett and Marstrand [13] cannot be adapted in a straightforward manner, using only one

size of box, as mentioned in Remark 2.

𝑥1

𝑐2 + 𝐵𝐻𝑚

𝐷9

𝐷10

Figure 3.4: An illustration of the issue that appears if we consider 𝐷10 = 𝑐2 + 𝐵𝑛+𝛼𝑛 . Once
seed 𝑐2 + 𝐵𝐻𝑚 is reached from the open paths obtained at previous steps (indicated by the black
curves), we should make a change of direction, as explained in Phase 3. However, if we attempt
to make such a change using 𝐷10 as a translate of 𝐵𝑛+𝛼𝑛, then a portion of the region where
seed 𝑐𝑙3 + 𝐵𝐻𝑚 (or 𝑐𝑟3 + 𝐵𝐻𝑚 , depending on the position of 𝐷9) is supposed to be found may have
already been explored. As the hatched region indicates, this might be the case when we applied
Lemma 3.6 using the box 𝐷9.

Phase 4: From now on, all the subsequent phases will consist of explorations analogous to

the ones in Phases 2 and 3, hence we will only give a brief explanation on how the cluster

grows and mention the number of steps necessary for the accomplishment of each phase.
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At Phase 4, we attempt to link 𝑐𝑙3 + 𝐵𝐻𝑚 to a 𝑞-open𝑚-seed (𝑐4 + 𝐵𝐻𝑚) ⊂ Π𝑜 , such that

𝑐4,1 ∈ [9𝑛, 15𝑛],

𝑐4,2 ∈ [−9𝑛,−10𝑛 − 𝛼𝑛]

|𝑐4,𝑖 | ≤ 3𝑛, ∀𝑖 = 3, . . . , 𝑠

𝑐4,𝑖 = 0, ∀𝑖 = 𝑠 + 1, . . . , 𝑑 .

This phase is analogous to Phase 2, with the difference that, in the present case, we grow the

cluster along the 𝑥2-axis in the negative direction and use the plane 𝑥1 = 12𝑛 as the reference

for steering the first coordinate. The steering reference for the other 𝑠 − 2 coordinates do not

change. Since 𝑐𝑙3,2 ≤ 𝑛 and 𝑐4,2 ∈ [−9𝑛,−10𝑛−𝛼𝑛], it takes at most 12 applications of Lemma 3.6

to reach a seed as mentioned above. Therefore, Phase 4 is successful with probability at least

(1 − 𝜀)12, conditioned on the event that we succeed at the previous phases.

Phase 5: Here we prepare another change of direction in the explored open cluster, analogous

to the step used in Phase 3. We attempt to link 𝑐4 + 𝐵𝐻𝑚 to a 𝑞-open𝑚-seed (𝑐5 + 𝐵𝐻𝑚) ⊂ 𝜎𝑐4𝐹
𝛼,2
𝑛 ,

where 𝜎𝑣 : ℤ𝑑 → ℤ𝑑 , 𝑣 ∈ ℤ𝑑 is the steering function

[𝜎𝑣 (𝑥)]𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−𝑥2, if 𝑖 = 2,

− sgn(𝑣𝑖)𝑥𝑖, if 𝑖 = 3, . . . , 𝑠,

𝑥𝑖, if 𝑖 = 1 or 𝑖 = 𝑠 + 1, . . . , 𝑑 .

This phase is successful with probability at least 1 − 𝜀, conditioned on the previous phases

being successful as well.

Phase 6: Here we complete the exploration of the lower branch of the cluster of the origin.

We attempt to link 𝑐5 +𝐵𝐻𝑚 to a seed (s𝑜 +𝐵𝐻𝑚) ⊂ Λ𝑢(1,−1) , with s𝑜 = (s𝑜,1, . . . , s𝑜,𝑑) ∈ ℤ
𝑑 satisfying

s𝑜,1 ∈ [24𝑛, 25𝑛 + 𝛼𝑛],

s𝑜,2 ∈ [−9𝑛,−15𝑛]

|s𝑜,𝑖 | ≤ 3𝑛, ∀𝑖 = 3, . . . , 𝑠

s𝑜,𝑖 = 0, ∀𝑖 = 𝑠 + 1, . . . , 𝑑 .
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We perform a process similar to that of Phases 2 and 4, growing the cluster of 𝑐5 + 𝐵𝐻𝑚 along

the 𝑥1-axis in the positive direction, using the plane 𝑥2 = −12𝑛 as the reference for steering the

second coordinate and keeping the steering rule for the remaining coordinates the same as

before. As usual, we use a translate of 𝐵𝑛+𝛼𝑛 in each application of Lemma 3.6. If such a seed

is reached, we declare Phase 6 successful. Since 𝑐5,1 ≥ 11𝑛 and s𝑜,1 ∈ [24𝑛, 25𝑛 + 𝛼𝑛], this is

achieved within at most 13 applications of Lemma 3.6, hence the probability of success is at

least (1 − 𝜀)13.

Λ𝑜 Π𝑜

Λ𝑙(1,1)

Λ𝑢(1,−1)

𝑜 𝑐2

𝑐𝑙3

𝑐4
𝑐5

s𝑜

𝑐𝑢3

𝑐7
𝑐8 S𝑜

Figure 3.5: A configuration in the event {𝑍 (𝑜) = 1}, projected ontoℤ2× {0}𝑑−2. Each tiny black
square represents the open seed obtained at the end of each phase. They are linked by paths
represented by the black curves, obtained through successive applications of Lemma 3.6. The
dashed lines represent the reference by which the steering occurs, relative to the 𝑥1𝑥2-plane.
As a consequence of adopting this reference and the parameters (𝛼𝑖, 𝛽𝑖), 𝑖 = 1, 2, 3, every open
seed found in the exploration process lies inside the gray region, within a distance of 3𝑛 from
the dashed lines.

Phases 7, 8 and 9: These are essentially reproductions of Phases 4, 5 and 6, respectively.

This time, we apply the sequential algorithm to the “upper” branch of the cluster of the origin,

attempting to link (𝑐𝑢3 + 𝐵𝐻𝑚) ⊂ Π𝑜 to an open seed (S𝑜 + 𝐵𝐻𝑚) ⊂ Λ𝑙(1,1) . The only relevant

difference occurs at Phase 7, where Lemma 3.6 must be applied at most 24 times, instead of 12

times as in Phase 4. This is so because the box 2𝑁𝑢1 +Λ𝑢𝑜 ⊂ Π𝑜 necessarily needs to be entirely

crossed during the exploration process along the 𝑥2-axis in the positive direction.
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If we succeed at all these phases, we declare 𝑍 (𝑜) = 1. A configuration of this kind is

illustrated in Figure 3.5. During this process, we have used Lemma 3.6 at most 75 times,

therefore (3.15) implies that

𝑃

(︂
𝑍 (𝑜) = 1

|︁|︁𝐵𝐻𝑚 is a seed
)︂
≥ (1 − 𝜀)75 ≥ 1 − 75𝜀 ≥ 1

2
(︁
1 + 𝑝 site

𝑐 (𝐺)
)︁
. (3.18)

We should also have updated the functions 𝛾𝑘 and 𝜁𝑘 to the same extent. Thus, if 𝑘max ∈ ℕ is

the maximum number of steps used in the determination of 𝑍 (𝑜), it follows that 𝑘max ≤ 75.

Moreover, we claim that

𝛾𝑘max (𝑒) ≤ 𝜁𝑘max (𝑒) ≤ 𝑞1E𝐻 (𝑒) + 𝑝1E𝑐𝐻 (𝑒) + 8𝛿 ∀𝑒 ∈ 𝐸𝑘max, (3.19)

which implies that every edge of 𝐸𝑘max is (𝑝 + 𝜂/2, 𝑞 + 𝜂/2)-open, since 8𝛿 ≤ 𝜂/2 by (3.15).

As a matter of fact, note that the general rule for updating the edges of ℤ𝑑 is

𝛾𝑘+1(𝑒) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾𝑘 (𝑒), if 𝑒 ∉ E𝐷𝑘
,

𝛾𝑘 (𝑒) + 𝛿, if 𝑒 ∈ Δ𝐸𝑘 \ 𝐸𝑘+1,

𝑞, if 𝑒 ∈ (Δ𝐸𝑘+1 \ Δ𝐸𝑘) ∩ E𝐷𝑘
∩ E𝐻 ,

𝑝, if 𝑒 ∈ (Δ𝐸𝑘+1 \ Δ𝐸𝑘) ∩ E𝐷𝑘
∩ E𝑐

𝐻
,

0, otherwise,

𝜁𝑘+1(𝑒) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜁𝑘 (𝑒), if 𝑒 ∈ 𝐸𝑘 ,

𝛾𝑘 (𝑒) + 𝛿, if 𝑒 ∈ Δ𝐸𝑘 ∩ 𝐸𝑘+1,

𝑞, if 𝑒 ∈ 𝐸𝑘+1 \ (𝐸𝑘 ∪ Δ𝐸𝑘) ∩ E𝐷𝑘
∩ E𝐻 ,

𝑝, if 𝑒 ∈ 𝐸𝑘+1 \ (𝐸𝑘 ∪ Δ𝐸𝑘) ∩ E𝐷𝑘
∩ E𝑐

𝐻
,

1, otherwise.

This means that any edge 𝑒 ∈ ℤ𝑑 such that 𝜁𝑘+1(𝑒) = 𝛾𝑘 (𝑒) + 𝛿 or 𝛾𝑘+1(𝑒) = 𝛾𝑘 (𝑒) + 𝛿 belongs

to Δ𝐸𝑘 . By definition of the exploration process, this inspected edge must be contained in

the box 𝐷𝑘 . Since a box 𝐷𝑘 , 𝑘 = 1, . . . , 𝑘max, intersects at most 8 other boxes (this is the case

of boxes 𝐷10 and 𝐷11 used at Phase 3), such an edge is inspected at most 8 times. Therefore,

𝜁𝑘max (𝑒) ≤ 𝑞1E𝐻 (𝑒) + 𝑝1E𝑐𝐻 (𝑒) + 8𝛿 for every 𝑒 ∈ 𝐸𝑘max .
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If 𝑍 (𝑜) = 1, we continue to apply the exploration process described, in order to determine

the states of the random variables 𝑍 (1,−1) and 𝑍 (1, 1). For each random variable, the process

goes the same way as for 𝑍 (𝑜): we start with (s𝑜 + 𝐵𝐻𝑚) ⊂ Λ(1,−1) and (S𝑜 + 𝐵𝐻𝑚) ⊂ Λ(1,1) as

the initial 𝑞-open𝑚-seeds, respectively, and apply Lemma 3.6 at most 75 times, reproducing

Phases 2-9 in the relevant site and passage blocks. This involves augmenting the set of explored

edges 𝐸𝑘max by successive applications of Lemma 3.6. By the observations made in the previous

paragraph, it follows that every edge in the augmented set is (𝑝 + 𝜂/2, 𝑞 + 𝜂/2)-open.

In general, for 𝑥 ∈ 𝑉 ⊂ ℤ2, we say that𝑍 (𝑥) = 1 if Phases 2-9 can be successfully performed

in the region Λ𝑥 ∪Π𝑥 ∪Λ𝑙𝑥+(1,1) ∪Λ
𝑢
𝑥+(1,−1) , using (s𝑥−(1,−1) +𝐵𝐻𝑚) ⊂ Λ𝑙𝑥 , if it exists, as the initial

𝑞-open 𝑚-seed, or using (S𝑥−(1,1) + 𝐵𝐻𝑚) ⊂ Λ𝑢𝑥 , if such a seed exists and the former do not.

Otherwise, we say that 𝑍 (𝑥) = 0.

The definition of 𝑍 (𝑥) together with the choice of 𝑁 = 6𝑛 imply that, for any 𝑙 ∈ ℕ, given

that the variables 𝑍 ((𝑥1, 𝑥2)) with 𝑥1 < 𝑙 have been determined, the states of the variables

𝑍 ((𝑥1, 𝑥2)) with 𝑥1 = 𝑙 are independent of each other, since the set of edges used in the

exploration of the corresponding boxes are all disjoint. We use this fact to conclude the proof of

Theorem 3.1 in the following manner: for 𝑥,𝑦 ∈ 𝑉 , we say that 𝑥 ≤ 𝑦 if 𝑥1 < 𝑦1 or 𝑥1 = 𝑦1 and

𝑥2 ≤ 𝑦2. This naturally defines an ordering of the sites of 𝑉 . If we consider the cluster-growth

of 𝑜 ∈ 𝑉 with respect to (𝑍 (𝑥))𝑥∈𝑉 according to this ordering, it follows that, at each stage,

conditioned on the past exploration, the chance of augmenting the open cluster by one vertex

is at least (1 + 𝑝 site
𝑐 (𝐺))/2 by (3.18), so that (3.13) is satisfied. By Lemma 3.7, it follows that

there is a positive probability of the cluster of the origin on 𝐺 = (𝑉 , 𝐸) induced by (𝑍 (𝑥))𝑥∈𝑉
to be infinite. On this event, there exists an infinite (𝑝 + 𝜂/2, 𝑞 + 𝜂/2)-open path of ℤ𝑑 within

the slab ℤ2 × {−𝑁, . . . , 𝑁 }𝑑−2. □

Figure 3.6 shows a cluster-growth process with all possible types of open and closed site-

blocks.
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Figure 3.6: A cluster-growth process of 𝑜 ∈ 𝑉 with respect to (𝑍 (𝑥))𝑥∈𝑉 . The gray site-blocks
indicate 𝑍 (𝑥) = 1 and the white ones indicate 𝑍 (𝑥) = 0. Successful paths between adjacent
site-blocks are indicated by the black curves and unsuccessful paths are omitted. Every possible
combination between the placement of seeds and the value of 𝑍 (𝑥) is represented above.
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