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FEDERAL UNIVERSITY OF MINAS GERAIS

Abstract
Institute of Exact Sciences
Department of Statistics

Doctor in Statistics

Imputation of Missing Data Using Gaussian Linear Cluster-Weighted Modeling

by Luis Alejandro MASMELA-CAITA

Missing data occurs when some values are not stored or observed for variables of interest.
However, most of the statistical theory assumes that data is fully observed. An alternative
to deal with incomplete databases is to fill in the spaces corresponding to the missing in-
formation based on some criteria, this technique is called imputation. We introduce a new
imputation methodology for databases with non-response units using additional informa-
tion from fully observed auxiliary variables. We assume that the non-observed variables
are continuous, and that auxiliary variables assist to improve the imputation capacity of the
model. In a fully Bayesian framework, our method uses a flexible mixture of multivariate
normal distributions to model the response and the auxiliary variables jointly. Under this
framework, we use the properties of Gaussian Cluster-Weighted modeling to construct a
predictive model to impute the missing values using the information from the covariates.
Simulations studies and a real data illustration are presented to show the method imputa-
tion capacity under a variety of scenarios and in comparison to other literature methods.

Keywords: Cluster-Weighted Modeling, Gaussian mixture models, imputation method, miss-
ing data.

Resumo
Dados ausentes ocorrem quando alguns valores não são armazenados ou observados para
variáveis de interesse. No entanto, a maior parte da teoria estatística assume que os dados
são totalmente observados. Uma alternativa para lidar com bases de dados incompletas é
preencher os espaços correspondentes às informações faltantes com base em alguns critérios,
essa técnica é chamada de imputação. Apresentamos uma nova metodologia de imputação
para bancos de dados com unidades de não resposta usando informações adicionais de var-
iáveis auxiliares totalmente observadas. Assumimos que as variáveis não observadas são
contínuas e que as variáveis auxiliares ajudam a melhorar a capacidade de imputação do
modelo. Em uma estrutura totalmente Bayesiana, nosso método usa uma mistura flexível
de distribuições normais multivariadas para modelar a resposta e as variáveis auxiliares
em conjunto. Sob essa estrutura, usamos as propriedades da modelagem Gaussian Cluster-
Weighted para construir um modelo preditivo para imputar os valores ausentes usando as
informações das covariáveis. Estudos de simulação e uma ilustração de dados reais são
apresentados para mostrar a capacidade de imputação do método sob uma variedade de
cenários e em comparação com outros métodos da literatura.

Palavras-chave: Cluster-Weighted Modeling, modelos de mistura Gaussiana, método de im-
putação, dados faltantes.
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Chapter 1

Introduction

“He was only a fox like a hundred thousand other foxes.
But I have made him my friend,

and now he is unique in all the world”

The Little Prince.

1.1 Overview

In studies with statistical data, the vast majority of inference methods start from
the assumption that the database that enters the analysis has its information com-
pletely observed and the desirable characteristics of the estimators are based on this
assumption. However, in many situations, for example, when information is col-
lected through surveys, databases with complete information cannot be guaranteed
due to multiple reasons. These reasons must be studied in depth to determine why
data is missing or how to avoid incomplete data sets in the information gathering
process. To perform statistical analysis with complete databases, the most common
solution is to remove individuals with missing information from the database (Proce-
dures Based on Completely Recorded Units). Besides the information loss, this approach
can lead to estimation biases, particularly when there are differences between the
information of those who respond and those who do not. Rubin (1976) discusses the
conditions of when the process that caused the missing observations can be ignored.
He presents the weakest conditions in the missing data process, so that it is appro-
priate to ignore this process when making inference about the data distribution.

Several methodologies have been designed to make statistical inference about
incomplete data sets. Among them is the Expectation-Maximization (EM) algorithm,
introduced by Dempster, Laird, and Rubin (1977). It is a likelihood-based procedure
that uses only observed data, inferences are made from the observed-data likelihood
function. The algorithm allowed to generate robust estimators from the applica-
tion of the Maximum Likelihood (ML) method, where the missing observations are
assumed as random variables and the imputed data are generated without the need
to adjust models. An alternative proposed in the literature to deal with incomplete
databases is to fill in the spaces corresponding to this missing information based on
some criteria, this technique is called imputation. Imputation is attractive because it
makes it easy to implement statistical methods of analysis for complete data sets.
One drawback of imputation, followed by the use of full data set analysis methods,
is that the resulting inferences can be misleading if the uncertainty due to lack of
data has not been addressed (Little and Rubin, 2019). In this regard, Rubin (1987)
introduces the concept of Multiple Imputation (MI), based on the premise that each
missing data must be replaced by various simulated values. The application of this
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technique was facilitated with the development of Bayesian simulation methods.
From that moment on, the intensive use of these algorithms was encouraged, once
routines such as ML and MI could be computationally programmed.

A complete study of the imputation techniques and their classification can be
consulted at Little and Rubin (2019). Imputation techniques are also used to gen-
erate synthetic data sets in the case of data with disclosure restrictions. Since the
synthetic values are not actual observations, they can be published for analysis (Ru-
bin, 1993; Raghunathan, Reiter, and Rubin, 2003). For information obtained through
surveys, Kim et al. (2014) propose a fully Bayesian, flexible joint modeling approach
for multiple imputation of missing or faulty data subject to linear constraints. The
procedure is based on a Dirichlet process mixture of multivariate normal distribu-
tions as an imputation engine. The missing data are imputed with values generated
from the model adjusted to the observed data. Using a similar statistical model as
an imputation engine, Paiva and Reiter (2017) propose a methodology to impute
continuous variables with missing data, where the missing data mechanism is non-
ignorable. Under a Bayesian approach, the procedure begins by fitting a mixture of
multivariate normal distributions based on the observed data. Then, from subse-
quent samples of the mixture model, an analyst can use the estimated distribution
to obtain imputed data in various scenarios.

Our interest is focused on the model used by Kim et al. (2014) and Paiva and Re-
iter (2017) as an imputation engine, we refer to the Dirichlet process mixture of mul-
tivariate normal distributions. According to the results presented by the authors, it is
a model that is characterized by great flexibility when it comes to adjusting complex
distributional forms. Although the model is implemented for both cases, item and
unit of nonresponse1, our interest is focused on the second. A question that arises
and that we want to answer throughout the development of this document is: how
to include auxiliary information in this model in such a way that it is possible to improve the
imputation process under some established criteria?

In the context of information obtained through surveys, when considering the
non-response unit pattern, for example, we could include fully observed auxiliary
variables for all individuals from other sources of information. Our proposal seeks to
include this new information based on the implementation of the Dirichlet process
mixture of multivariate normal distributions model, using a completely Bayesian
approach. The idea of implementing a regression mixture model arises naturally. In
this approach, the covariates are considered deterministic, so that they do not carry
information about which group the subject is likely to belong to. When we consider
observational data, the covariates may behave differently between groups. In this
sense, the idea would be for the model to consider the heterogeneity of the covariate
and thus use such information to be able to choose with which component to pre-
dict, or in our case to impute from (Hoshikawa, 2013).

One model that brings with it the ability to include these desired features is
Cluster-Weighted Modeling (CWM), developed by Gershenfeld (1997) in the context of
media technology. Ingrassia, Minotti, and Vittadini (2012) proposed to use the CWM

1Unit nonresponse in a survey occurs when an eligible sample member fails to respond at all whereas
item nonresponse refers to the absence of answers to specific questions in the survey.
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in a statistical environment and showed that it is a general and flexible family of mix-
ture models. In particular, under Gaussian assumptions, they specify characteristics
of their probability distribution and related statistical properties and demonstrate
links with traditional mixture models in terms of density functions and posterior
probabilities. An interesting result is that the Gaussian CWM includes the finite
mixture model and the mixture of regression model as special cases. Some recent
developments in CWMs can be found in Dang et al. (2017), Punzo and McNicholas
(2017), Berta et al. (2016), and Ingrassia et al. (2015).

In this document, we propose a new imputation methodology for databases with unit
nonresponse patterns, on which it is desired to include auxiliary information for all units and
which can be considered as helpful to improve the imputation process. We assume continu-
ous variables with a group structure in the data or where the objective is to explore
the data for that structure or where the shape of the data distribution is unknown.
We use a fully Bayesian approach to fit the Dirichlet process mixture of multivariate
normal distributions to a database that jointly considers the responses and the co-
variates. With these results, we use properties of the Cluster-Weighted Modeling in
the Gaussian case to construct a predictive model that will help us implement the
imputation process using, adaptively, the covariates that enter as additional infor-
mation in the model.

1.2 Motivating Example

As a motivational example, the pattern of missing data on which the implementa-
tion of the methodology proposed in Paiva and Reiter (2017) is based is described.
Through it, the problem that is intended to be addressed here is illustrated. The au-
thors make use of data from the 2007 United States Census of Manufacturing (CMF).
The CMF covers all manufacturing establishments in the United States. Data is col-
lected through questionnaires and processed in waves throughout the year, depend-
ing on when each establishment mails its form.2 This can result in Missing Not at
Random (MNAR) non-response units in some waves. It is assumed that the establish-
ment either sends the complete form, or does not send the form at all. The structure
of the dataset can be represented in Figure 1.1a, where the check mark (!) indicates
that the data is observed, while the tag (%) indicates that data is missing. The first es-
tablishments have all the complete information, while the last ones lack the total in-
formation. The authors present an approach to inform decisions about nonresponse
follow-up sampling. The basic idea is to create complete samples by imputing non-
respondents’ data under various assumptions about the nonresponse mechanisms.
As part of the methodology, they present a new approach for generating imputa-
tions for multivariate continuous data with nonignorable unit nonresponse. They fit
mixtures of multivariate normal distributions to the respondents’ data, and adjust
the probabilities of the mixture components to generate nonrespondents’ distribu-
tions with desired features.

Assuming that additional information can be obtained from auxiliary data sources,
the missing data pattern can take the form shown in Figure 1.1b. In this new pattern,
it is observed that new variables X1, ..., Xd appear with fully observed information
for all establishments. Our objective is to use this new information so that the im-
putations for establishments with missing values in the variables Y1, ..., Yp improve

2https://www.census.gov/

https://www.census.gov/
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under some criteria, among others, compared to the imputations obtained, under
an assumption of Missing at Random (MAR), from the model implemented by Paiva
and Reiter (2017).

(a) No auxiliary information. (b) With auxiliary information.

FIGURE 1.1: Missing data pattern from multivariate databases in the
cases of not including and including auxiliary information.

We will approach the study of the problem considered, starting from the struc-
ture of the databases in Figure 1.1 for the simplest case, i.e., assuming the value of
p = 1 and that we will call the univariate model, and then generalize to the multi-
variate case, that is, when p > 1. We will propose a model that allows the auxiliary
information to be included in the best way possible. We will analyze the results
in the imputations obtained according to the type of variable or variables that en-
ter the model. In this way, we will characterize the type of variable that enters the
model and that produces the best results. We will compare the proposed model
with other imputation methodologies that are based on a Bayesian approach and
that use prediction models to carry out the imputations. Finally, we will implement
the proposed model in real data sets to evaluate the performance of our model when
comparing it with other imputation procedures that are of interest.

1.3 Outline of the Report

The rest of the document is distributed as follows. Chapter 2 succinctly summarizes
the concepts of the required missing data literature. It defines the concepts of pat-
tern and missing data mechanism, it also establishes the imputation model that we
will follow from a Bayesian approach. Some ideas of the multiple imputation pro-
cess, as well as some imputation procedures using prediction are briefly presented.
In Chapter 3, we present the finite mixture models, the regression mixture model,
and the Cluster-Weighted Modeling specified for the Gaussian case. Some results
are presented relating the different models of interest, as well as the Bayesian im-
putation procedure that will be used. The univariate model is analyzed in Chapter
4. Studies of the results of the model are established through simulations. The per-
formance of the model is observed under the input of various types of variables.
The results of the model are also compared with other methodologies of interest.
Two sets of real data are used to implement the proposed imputation model and
observe its performance, the Faithful database and the Colombian Annual Manufac-
turing Survey. Similar to the univariate case, an analysis for the multivariate case is
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presented in Chapter 5. Simulation studies are carried out considering the type of
variables that can enter the model and the results are compared with other imputa-
tion methods based on predictions. An example with real data is illustrated using
the Iris database. Two missing data patterns are simulated on the database, one
under a MAR mechanism and the other under an MNAR mechanism. The results
obtained are analyzed and compared with other imputation procedures. In Chapter
6, we present the conclusions obtained and some final observations. Appendices, at
the end of the document, present a compendium of graphs as a complement to some
of the chapters.
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Chapter 2

Missing Data

“Where are the people?” resumed the little prince at last.
“It’s a little lonely in the desert...”

“It is lonely when you’re among people, too,” said the snake.

The Little Prince.

2.1 Overview

Standard statistical methods are generally implemented on data sets organized in
matrix form. Matrix entries are almost always real numbers that can represent con-
tinuous or categories variables (in nominal or ordinal scales). In statistics, missing
values occur when the value of data is not stored for the variable in observation.
Missing data theory deals with the analysis of data matrices when some of its inputs
are not observed. In this case, the validity and efficiency of methods based on com-
plete data cannot be guaranteed when the data is incomplete (Rubin, 1976).

Various ways of dealing with the problem of missing values are studied in the
statistical literature. One of them is the approach by likelihood-based methods that
use only the observed data, all inferences are based on the observed-data likelihood
function (Dempster, Laird, and Rubin, 1977; Rubin, 1987; McCullagh and Nelder,
1989). Sometimes the likelihood function can be complicated to handle and infer-
ences about the parameters of interest can decrease its precision due to missing
data. Another alternative proposed to deal with incomplete databases is to fill in
the spaces corresponding to this missing information based on some criteria, this
technique is called imputation. A complete study of imputation techniques and their
classification can be found at Little and Rubin (2019) and Zhang (2003). Subse-
quently, Rubin (1987) introduced the concept of multiple imputation (MI), based
on the premise that each missing data must be replaced by several simulated values.
The application of this technique was facilitated with the development of Bayesian
simulation methods. From that moment on, the intensive use of these algorithms
was encouraged, since different MI and ML routines could be programmed compu-
tationally.

The following sections summarize some topics from the theory of missing data
and that are required for the development of the work that is proposed in this doc-
ument. To delve into the various topics, bibliographical references are suggested
that can be consulted by the reader. In Section 2.2 the concept of missing data pat-
terns will be treated, specifically we will refer to two patterns of interest, unit non-
responses and item nonresponses. Section 2.3 defines the so-called missing data
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mechanisms and provides an example to illustrate them. Ways to approach statisti-
cal inferences based on incomplete data sets and the imputation model based on the
predictive conditional distribution using a Bayesian approach is presented in Sec-
tion 2.4. The multiple imputation approach to the missing data problem is briefly
discussed in Section 2.5. Section 2.6 addresses the MCMC methods to deal with
the imputation procedure, specifically we will refer to the Data Augmentation algo-
rithm. Finally, Section 2.7 summarizes the imputation methods that use prediction,
some of which will serve as a basis for comparison with our model.

2.2 Missing-Data Patterns

An aspect of special interest regarding the database with missing information has to
do with the missing-data pattern, with this term we refer to which values are observed
in the data matrix and which values are missing. Note that a missing-data pattern
simply describes the location of the "holes" in the database and does not explain
why the data is missing. Various configurations of missing data patterns can be con-
sulted in the missing data literature. For example, Van Buuren (2018) distinguishes
several types of missing data patterns: univariate and multivariate, monotone and
non-monotone (or general), connected and unconnected. Enders (2010) additionally
presents unit nonresponse, planned missing and latent variable patterns.

In survey data, missing data can be defined as unit nonresponse and item non-
response. A distinction that turns on whether there is at least one survey item for
which a valid response was obtained, or whether the entire unit is missing. Little and
Rubin (2019) and Enders (2010) refer to the missing value configuration presented
in Figure 1.1b as unit nonresponse pattern. This pattern occurs when X1, ..., Xd are
characteristics that are available for every member of the sampling frame (e.g., cen-
sus tract data) and Y1, ..., Yp are surveys that some respondents refuse to answer.
When entire units are missing from a sample, no test or correction for bias is avail-
able without obtaining additional data about the targeted respondents who did not
respond to the initial survey. Non-response bias refers to the mistake researchers ex-
pect to make in estimating a population characteristic based on a sample of survey
data in which, due to non-response, certain types of survey respondents are under-
represented (Berg, 2005). Traditionally, survey research has treated unit and item
nonresponse as two separate problems with different impacts on data quality, dif-
ferent statistical treatments and adjustments, and different underlying causes (Yan
and Curtin, 2010).

Two terms that are important to distinguish are missing data patterns and missing
data mechanisms. These are terms that researchers sometimes use interchangeably.
While missing data pattern is a term we just referred to, missing data mechanisms
describe possible relationships between the measured variables and the probability
of missing data. We will talk about the latter in the next section.

2.3 Missingness Mechanism

To deal with the problem of missing data effectively, a concept of great interest has
to do with the so-called mechanisms that lead to a lack of data and, in particular, the
question of whether the fact that the variables have missing observations is related
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to the underlying values of the variables in the data set. The crucial role of the mech-
anism in the analysis of missing data values was largely ignored until the concept
was formalized in the theory of Rubin (1976), through the simple idea of treating
missing data indicators as random variables and assigning them a distribution.

The notation used in this section to define the so-called missing data mechanisms
is set out below. This notation will also be used to describe the MCMC algorithm for
the model proposed in later sections.

Let Y denote the n ⇥ p matrix that contains the complete set of data on p vari-
ables for all n units. Let R be the response indicator matrix with the same size as
matrix Y . The elements of Y and R are denoted by yij and rij, respectively, where
i = 1, ..., n and j = 1, ..., p. If yij is observed, then rij = 0, and if yij is missing, then
rij = 1. An additional notation of quite interest is the partition of the complete data
set Y into two sets, the observed data being collectively denoted Yobs and the miss-
ing data collectively denoted Ymis. In this way, the complete data set can be written
as Y = (Yobs,Ymis). It is important to note that here R is assumed to be fully known
and that it indicates what we really see, and Y contains values that are all defined.

The missing data mechanism is characterized by the conditional distribution of
R given Y , say p(R|Y ,'). If the missing data does not depend on the values of the
data Y , missing or observed, that is, if

p(R|Y ,') = p(R|') for all Y ,', (2.1)

the data is called Missing Completely At Random (MCAR). Keep in mind that this
assumption does not mean that the mechanism itself is random, but that the lack of
information does not depend on the data values. A less restrictive assumption than
MCAR is that the missingness depends only on the component Yobs and not on the
missing component. This means that,

p(R|Y ,') = p(R|Yobs,') for all Ymis,'. (2.2)

The mechanism defined in (2.2) is called Missing At Random (MAR). Finally, the
mechanism is called Missing Not At Random (MNAR) if the distribution of R de-
pends on the missing values in the Y data matrix.

Example 2.3.1 (Simulation of missingness mechanism). Van Buuren (2018) illus-
trates through a simulation process the three missing data mechanisms, MCAR, MAR and
MNAR using R software (R Core Team, 2020). The data Y = (Y1, Y2) are drawn from a
standard bivariate normal distribution with a correlation between Y1 and Y2 equal to 0.5.
The response indicator is given by R = (R1, R2). Missing data are created in Y2 using the
missing data model,

P(R2 = 1) = j0 +
exp Y1

1 + exp Y1
j1 +

exp Y2

1 + exp Y2
j2, (2.3)

with different parameters settings for ' = (j0, j1, j2). For MCAR we set 'MCAR =
(0.5, 0, 0), for MAR 'MAR = (0, 1, 0) and for MNAR 'MNAR = (0, 0, 1). Figure 2.1
displays the distribution of Yobs and Ymis under the three missing data models. As expected,
they are similar under MCAR, but become progressively more distinct as we move to the
MNAR model.
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Ymis

Yobs

Ymis

Yobs

Ymis

Yobs

−3 −2 −1 0 1 2 3

MCAR

MAR

MNAR

FIGURE 2.1: Distribution of Yobs and Ymis under three missing data
mechanism.

It can be seen that, to generate the MNAR mechanism, the expression in (2.3) can
be written as,

P(R2 = 1) = logit�1(Y2)

where logit(p) = log[p/(1 � p)] for p 2 (0, 1), is the logit function, and logit�1 is
its inverse function. This transformation will be used later to simulate missing data
mechanisms.

2.4 Imputation Model from a Bayesian Framework

To make statistical inference about a population based on a data set, you need the
probability model p(Y |✓). In the case of incomplete data, the joint probability model
takes the form p(Yobs,Ymis,R|✓,') where Ymis is unknown, so the likelihood func-
tion of this distribution cannot be evaluated. It is then necessary to evaluate the likeli-
hood function of the observed-data defined as the function proportional to the marginal
distribution of the joint distribution integrated over Ymis, that is,

L(✓,'|Yobs,R) µ p(Yobs,R|✓,') (2.4)

where,

p(Yobs,R|✓,') =
Z

p(Yobs,Ymis,R|✓,')dYmis

=
Z

p(R|Yobs,Ymis,')p(Yobs,Ymis|✓)dYmis.
(2.5)

Under the definitions of the missing data mechanisms MCAR and MAR, (2.5) be-
comes,

p(Yobs,R|✓,') =
⇢

p(R|')p(Yobs|✓) if MCAR,
p(R|Yobs,')p(Yobs|✓) if MAR. (2.6)
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From a Bayesian approach, the two parameter vectors ✓ and ' are considered dis-
tinct if the prior joint distribution of (✓,') can be factored into the prior marginal
distributions for ✓ and ', (Rubin, 1976; Rubin, 1987).

So, based on the expression (2.6), if ✓ and ' are distinct, inferences about ✓ can be
made based only in p(Yobs|✓), without considering p(R|') or p(R|Yobs,'), that is,
ignoring the missing data mechanism. Therefore, for the parameter ✓, the observed-
data likelihood function ignoring the missingness mechanism can be defined as fol-
lows,

L(✓|Yobs) µ p(Yobs|✓).

Likewise, the Bayesian inference in ✓ can be based on the observed-data posterior dis-
tribution defined as follows,

p(✓|Yobs) µ L(✓|Yobs)⇥ p✓(✓), (2.7)

where p✓(✓) is the prior distribution of ✓.

These inferences use only the observed data Yobs, and are valid as long as the
missing data mechanism is ignorable. However, the precision of the inference is
lower if a large amount of information is missing (Zhang, 2003).

An alternative proposed in the literature to deal with incomplete databases is to
fill in the spaces corresponding to this missing information based on some criteria,
this technique is called imputation. The idea is to impute the missing data Ymis and
then use standard statistical methods on the complete-data to make inference about
✓. For this objective, interest falls on the conditional distribution of Ymis given Yobs
that can be obtained by integrating under the parameter space ✓, that is,

p(Ymis|Yobs) =
Z

p(Ymis|Yobs,✓)p(✓|Yobs)d✓, (2.8)

where p(Ymis|Yobs,✓) is the conditional predictive distribution of Ymis given Yobs and ✓,
and p(✓|Yobs) is the observed-data posterior distribution of ✓. The conditional dis-
tribution in (2.8) is called the predictive posterior distribution of Ymis given Yobs (Rubin,
1987). The two expressions in (2.7) and (2.8) are key to establishing the MCMC sam-
pling algorithm that will be discussed later.

2.5 Multiple Imputation

When doing Multiple Imputation (MI), the goal is to generate multiple possible
values for each missing observation in order to obtain two or more complete data
sets. Using standard analysis procedures, the researcher can analyze each complete
database and then combine these results to obtain the MI estimates.

The set of possible values for missing observations are based on the distribution
of the data. The objective is to obtain estimates of the missing values. Estimates of
missing values are obtained by simulating random draws from the distribution of
the missing variables given the observed variables. Distributions of the data are de-
rived from Bayesian theory, so that the researcher samples values from the posterior
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probability distribution of the missing values given the observed variables. The pos-
terior probability distribution of the missing variables given the observed variables
is complex, and requires a two-step algorithm, referred to as Data Augmentation
(Tanner and Wong, 1987).

MI was proposed in Rubin (1976) and Rubin (1987) as a possible solution to the
problem of survey non-response. Following Zhang (2003), MI is a method based on
three steps:

1. Generate M > 1 complete data sets, filling each missing value using the in-
dependent selections of an appropriate imputation model, given the observed
values. The imputation model should be constructed to reflect the true distri-
bution of the relationship between the missing values and the observed values.

2. The M imputed complete data sets are analyzed using standard procedures for
complete data.

3. The results of the analysis of the M complete databases obtained after imputa-
tion are combined in a simple and adequate way.

The analysis of a data set obtained from MI is simple. First, each complete set of
data after the imputation process is analyzed using the same method for complete
data that would be used in the absence of non-response.

For m = 1, ..., M, let q̂m be the estimate for the parameter q, and Wm the respective
associated variance for the estimated parameter q, calculated from each individual
imputed data set m.
The combined estimator for q is

q̄M =
1
M

M

Â
m=1

q̂m.

The variability associated with this estimator has two components: the within impu-
tation variance,

W̄M =
1
M

M

Â
m=1

Wm,

and the between imputation variance,

BM =
1

M � 1

M

Â
m=1

(q̂m � q̄M)2.

The total variability associated with q̄M is:

TM = W̄M +
M + 1

M
BM,

where (1 + 1/M) is a adjustment for M finite. Therefore,

ĝ =
M + 1

M
BM

TM

is an estimate of the fraction of information about q that is missing due to non-
response. For large sample sizes and scalar q, the reference distribution for interval
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estimates and significance tests is a t�distribution,

(q � q̄M)T(�1/2)
M ⇠ tv,

where degrees of freedom,

v = (M � 1)
✓

1 +
1

M + 1
W̄M

BM

◆2

,

are based on the Satterthwaite approach (Rubin, 1987).

2.6 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods comprise a class of algorithms for
sampling from a probability distribution. The MCMC method to impute missing
data is applied by Schafer (1997) by implementing the Data Augmentation algo-
rithm developed by Tanner and Wong (1987). The target distribution for our case is
the conditional distribution of Ymis and ✓ given Yobs, that is p(Ymis,✓|Yobs).

The procedure starts by replacing the missing data Ymis with some initial val-
ues, so ✓ can be simulated from the posterior distribution of the complete-data
p(✓|Yobs,Ymis). Consider the following iterative sampling scheme:

1. Given an updated value ✓(t) of parameter, draw a value of missing data from
the conditional predictive distribution of Ymis given Yobs and ✓(t), i.e.,

Y
(t+1)

mis ⇠ p(Ymis|Yobs,✓(t)). (2.9)

2. By conditioning on Y
(t+1)

mis , the next simulated value of ✓ can be draw from its
complete-data posterior distribution,

✓(t+1) ⇠ p(✓|Yobs,Y
(t+1)

mis ). (2.10)

Repeating steps (1) and (2) from an initial value ✓(0) generates a Markov chain
{(✓(t),Y (t)

mis) : t = 1, 2, ...}. The stationary distribution of the chain is the joint dis-
tribution p(✓,Ymis|Yobs). The marginal stationary distributions of the subsequences
{✓(t) : t = 1, 2, ...} and {Y (t)

mis : t = 1, 2, ...} are the posterior distribution of the
observed-data p(✓|Yobs) and the posterior predictive distribution p(Ymis|Yobs) re-
spectively.

The random selection in (2.9) imputes the missing data Ymis, while the random
selection in (2.10) simulates the unknown parameter ✓. Therefore, (2.9) and (2.10) are
known as the imputation step (I-step) and the posterior step (P-step), respectively.
The steps of the Data Augmentation algorithm are specified in the Algorithm 1.
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Algorithm 1: Data Augmentation

Result: Imputed database and parameter estimation
1 initialization: ✓(0);
2 for t = 1, ..., T do

3 I-step: generate y
(t)
mis from p(Ymis|Yobs,✓(t�1));

4 P-step: generate ✓(t) from p(✓|Yobs,y
(t)
mis);

5 end

Ideally, the imputations of the missing data should be independent of the ob-
served data. One way to obtain the appropriate multiple imputations is to have a
largely separate subsample from a single string. For example, select iterations ev-
ery l steps after some burn-in time say t0, with l large enough that the dependency
between the imputed values is negligible.

2.7 Synopsis of Imputation Methods Using Prediction

The description below is taken directly from Van Buuren (2018). The author illus-
trates four ways to create imputations for a single incomplete continuous target
variable. Assume Y is the output variable for the univariate case denoted by y.
Furthermore, using the notation X = (X1, ...,Xd) for the matrix of the set of input
variables, let Xobs be the subset of n1 rows of X for which y is observed, and Xmis
the complementary subset of n0 rows of X for which y is missing. The vector con-
taining the n1 observed data in y is denoted by yobs, and the vector of n0 imputed
values in y is indicated by ẏ.

2.7.1 Predict method

Regression imputation incorporates knowledge of other variables with the idea of
producing smarter imputations. The first step is to build a model from the observed
data. The predictions for the incomplete cases are then computed under the fit-
ted model and serve as replacements for the missing data. Therefore, the idea is
to calculate the regression line and take the imputation of the regression line, i.e.,
ẏ = b̂0 +Xobs b̂1 where b̂0 and b̂1 are least squares estimates calculated from the
observed data.

2.7.2 Predict + noise method

We can improve upon the prediction method by adding an appropriate amount of
random noise to the predicted value. Let us assume that the observed data are nor-
mally distributed around the regression line. The idea now is to draw a random
value from a normal distribution with a mean of zero and a estimated standard
deviation ŝ, and add this value to the predicted value. Therefore the imputation
is obtained as ẏ = b̂0 +Xobs b̂1 + ė where ė is randomly drawn from the normal
distribution as ė ⇠ N (0, 1). This imputation method is called stochastic regression
imputation.
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2.7.3 Predict + noise + parameter uncertainty

The method in the previous subsection requires that the intercept, the slope and the
standard deviation of the residuals are known. However, the values of these pa-
rameters are typically unknown, and hence must be estimated from the data. If we
had drawn a different sample from the same population, then our estimates for the
intercept, slope and standard deviation would be different, perhaps slightly. The
amount of extra variability is strongly related to the sample size, with smaller sam-
ples yielding more variable estimates. The parameter uncertainty also needs to be
included in the imputations. Therefore, the imputed values are obtained for this case
as ẏ = ḃ0 +Xobs ḃ1 + ė where ė is randomly drawn from the normal distribution as
ė ⇠ N (0, 1) and ḃ0, ḃ1 and ṡ are random draws from their posterior distribution,
given the data. In this case, the method is called Bayesian multiple imputation. If ḃ0, ḃ1
and ṡ are the least squares estimates calculated from a bootstrap sample taken from
the observed data, the method is called Bootstrap multiple imputation. Since we will
use the Bayesian multiple imputation method later to compare with our proposed
model, we go a little deeper into this procedure.

Bayesian multiple imputation

Bayesian sampling draws ḃ0, ḃ1 and ṡ from their respective posterior distributions.
The method draws imputations under the normal linear model using standard non-
informative priors for each of the parameters. Specifically, in this Bayesian approach,
a prior distribution p(b, s2) µ s�2 is assumed for the conditional model (Rubin,
1987). Algorithm 2 specifies the steps to implement the Bayesian multiple imputa-
tion procedure.

Algorithm 2: Bayesian multiple imputation

Input: yobs, Xobs, Xmis
Output: ẏ

1 calculate the cross-product matrix S = X 0
obsXobs

2 calculate V = (S + diag(S)k)�1, with some small ridge parameter k

3 calculate regression weights b̂ = V X 0
obsyobs

4 draw a random variable ġ ⇠ c2
n with n = n1 � q

5 calculate ṡ2 = (yobs �Xobs�̂)0(yobs �Xobs�̂)/ġ
6 draw q independent N (0, 1) variates in vector ż1

7 calculate V 1/2 by Cholesky descomposition
8 calculate �̇ = �̂+ ṡż1V 1/2

9 draw n0 independent N (0, 1) variates in vector ż2
10 calculate the n0 values ẏ = Xmis�̇+ ż2ṡ

2.7.4 Drawing from the observed data

An alternative method of creating imputations consists of finding the predicted val-
ues proceeding in the same way as in the previous section, but selecting a small
number of candidate donors from the observed data. The selection is made so that
the predicted values of the donors are close to the predicted values of the individ-
uals to be imputed. We then randomly select a donor from the candidates and use
the observed value that belongs to that donor as a synthetic value. This method is
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known as predictive mean matching (Little, 1988), and always finds values that have
been actually observed in the data.

Predictive mean matching

Predictive mean matching is an easy-to-use and versatile method. It is fairly robust
to transformations of the target variable. Imputations are based on values observed
elsewhere, so they are realistic. Imputations outside the observed data range will
not occur, thus evading problems with meaningless imputations (e.g., negative body
height). The model is implicit, which means that there is no need to define an ex-
plicit model for the distribution of the missing values. Various metrics are possible
to define the distance between the cases. The predictive mean matching metric was
proposed by Little (1988). This metric is particularly useful for missing data applica-
tions because it is optimized for each target variable separately. The predicted value
only needs to be a convenient one-number summary of the important information
that relates the covariates to the target. Calculation is straightforward, and it is easy
to include nominal and ordinal variables. Algorithm 3 provides the steps used in
predictive mean matching using Bayesian parameter draws for �.

Algorithm 3: Predictive mean matching imputation

Input: yobs, Xobs, Xmis
Output: ẏ

1 calculate the cross-product matrix S = X 0
obsXobs

2 calculate V = (S + diag(S)k)�1, with some small ridge parameter k

3 calculate regression weights �̂ = V X 0
obsyobs

4 draw a random variable ġ ⇠ c2
n with n = n1 � q

5 calculate ṡ2 = (yobs �Xobs�̂)0(yobs �Xobs�̂)/ġ
6 draw q independent N (0, 1) variates in vector ż1

7 calculate V 1/2 by Cholesky descomposition
8 calculate �̇ = �̂+ ṡż1V 1/2

9 calculate ḣ(i, j) = |Xobs,[i]�̂�Xmis,[j]�̇| with i = 1, ..., n1 and j = 1, ..., n0

10 construct n0 sets Zj, each containing d candidate donors, from yobs such that
Âd ḣ(i, j) is minimum for all j = 1, ..., n0. Break ties randomly

11 draw one donor ij from Zj randomly for j = 1, ..., n0

12 calculate imputations ẏj = yij for j = 1, ..., n0

Additional imputation methods can be consulted in the statistical literature. The
methods mentioned in the previous sections are of special interest for comparison
and diagnosis issues of our proposed methodology. For the implementation of the
same, the MICE package (Van Buuren and Groothuis-Oudshoorn, 2011) will be used
on R software.
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Chapter 3

Cluster Weighted Modeling

“Well, I must endure the presence of a few caterpillars
if I wish to become acquainted with the butterflies.”

The Little Prince.

3.1 Overview

Finite mixture models are increasingly exploited due to their convenient way to
model unknown distributions and their applications where the data to be analyzed
has a group structure or where the objective is to explore the data for said structure.
These applications support a variety of techniques in various areas of statistics, in-
cluding cluster and latent class analysis, discriminant analysis, image analysis, and
survival analysis, in addition to its more direct role in inference and data analysis
by providing descriptive models for distributions where a single component distri-
bution is apparently inadequate (McLachlan, Lee, and Rathnayake, 2019). Of spe-
cial interest in this work, the Cluster-Weighted Modeling, proposed by Gershenfeld
(1999) under linear and Gaussian assumptions, and its relationship with the finite
mixture models is presented. A Bayesian-type approach to the estimation process is
also described.

In Section 3.2 finite mixture models are presented, specifically the mixture of dis-
tributions and the mixture of regressions in the Gaussian case. Section 3.3 presents
the Cluster Weighted-Modeling, in particular the Gaussian linear case. Three re-
sults that relate the distribution model, the regression model and the linear Cluster
Weighted-Modeling are stated and discussed in the Gaussian context. In Section 3.4
we generalize the linear Gaussian CWM for the multivariate case. Finally, Section 3.5
presents a Bayesian approach through which the estimation and imputation process
are implemented from the Linear Gaussian CWM. The results obtained in Sections
3.3 and 3.4 allow to establish the theoretical basis for the algorithm proposed in this
last section.

3.2 Finite Mixture Model

3.2.1 Gaussian mixture model

Finite mixture models (FMM) are used to treat heterogeneous data in various experi-
mental situations. Such data arise in practical problems when measurements of the
random variable are taken in two or more different conditions. They can be inter-
preted as if the information came from subpopulations that are called components.
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Obtaining these components leads to the estimation of the parameters of the mix-
ture. Several textbooks and documents on studies of the theory of finite mixtures
of distributions can be consulted (Frühwirth-Schnatter, 2006; McLachlan and Peel,
2004; Nguyen, 2015).

Consider a population composed of G subgroups, randomly mixed according
to the proportions a1, ..., aG. Suppose the interest is in some random heterogeneous
characteristic Y, but homogeneous within subgroups. However, due to heterogene-
ity, Y has a different probability distribution in each group, but it is generally as-
sumed to come from the same parametric family p(y|✓), with parameter ✓ that dif-
fers between groups. Groups can be labeled using a discrete indicator variable Z
that takes values in the set {1, ..., G}.

When such a population is randomly sampled, it is possible to record the variable
of interest Y together with the indicator for group Z. The sampling probability of
the group marked with Z is equal to aZ, whereas, since Z is known, Y is a random
variable that follows the distribution p(y|✓Z) with ✓Z the parameter in the group Z.
The joint density p(y, Z) is given by,

p(y, Z) = p(y|Z)p(Z)
= p(y|✓Z)aZ.

(3.1)

FMM arises if it is not possible to know the group indicator Z; what is observed is
only the random variable Y. The marginal density p(y) is given by the mixture of
densities,

p(y) =
G

Â
Z=1

p(y, Z)

=
G

Â
Z=1

p(y|✓Z)aZ.

(3.2)

When the distribution function p(y|✓Z) in the expression (3.2) corresponds to a nor-
mal distribution in which the parameter ✓Z = (µZ, s2

Z), it is called a Gaussian FMM.
In the case where Y is a random vector and ✓Z = (µZ, SZ) where µ is a vector of
means and SZ a matrix of variances and covariances, it is known as multivariate
Gaussian FMM.

3.2.2 Gaussian mixture of regression model

In data analysis, it is often of more interest to explore the relationship of some ran-
dom variable Y and a vector of covariates X , than to simply explore the distribution
of Y alone. Regression analysis is the process of modeling such relationships through
the density function for the variable Y|X = x, which can be written as p(y|x). These
types of density functions are called regression models. Like density estimation in
general, regression analysis is most commonly performed using parametric models,
such that p(y|x) = p(y|x,✓), where ✓ is the vector of parameters.

Like the general FMM discussed in Section 3.2.1, assume that there is some dis-
crete indicator variable Z, where the sampling probability of the group marked with
Z is equal to aZ. Since Z is known, suppose that Y|X , Z has by density p(y|x,✓Z),
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then we have a mixture of regression model (MRM) if

p(y|x) =
G

Â
Z=1

p(y|x,✓Z)aZ. (3.3)

If the density p(y|x,✓Z) coincides with the univariate normal density f1(y; b0Zx+
bZ,0, s2

Z), in which the parameter ✓Z = (�0
Z, s2

Z) with �Z = (b0Z, bZ,0)0, bZ 2 Rd, and
bZ,0 2 R, the expression in (3.3) is called Gaussian MRM.

The model in (3.3) could be extended to the case where Y is a p�dimensional
random vector and thus, p(y|x,✓Z) will coincide with the p�variate normal density
fp(y; B0

Zx+ bZ,0, SZ), where the parameter ✓Z = (BZ, SZ) with BZ = (B0
Z, bZ,0)0.

Here BZ 2 Rd⇥p is a matrix of coefficients and bZ,0 2 Rp for each value of Z. The
i�th column of the matrix BZ corresponds to the relationship between the com-
ponent vector yi and the vector of covariates x. This model is called multivariate
Gaussian MRM.

3.3 Cluster-Weighted Modeling

The Cluster-Weighted Modeling (CWM) is a procedure that seeks to model the joint
probability of data that comes from a heterogeneous population. It is a flexible ap-
proach for the statistical modeling of a wide variety of random phenomena, charac-
terized by unobserved heterogeneity. In the context of Sections 3.2.1 and 3.2.2, the
CWM seeks to model the densities of the variable Y and the covariates X jointly.
CWM was initially introduced by Gershenfeld (1997) for modeling time series data
related to musical instrument parameters. Within the framework of the Gaussian
MRM, Ingrassia, Minotti, and Vittadini (2012) propose the CWM in a statistical en-
vironment, and show that it is a general and flexible family of mixture models.

In a general context, the CWM decomposes the joint probability p(x, y) as fol-
lows,

p(x, y) =
G

Â
Z=1

p(y|x, Z)p(x|Z)aZ, (3.4)

where p(y|x, Z) is the conditional density of the response variable Y given the pre-
dictor vector X in the component indicated by the group Z, p(x|Z) is the probability
density of the variable X in the group Z, and aZ is the sampling probability of the
group marked with Z. Therefore, the joint density of (X , Y) can be seen as a mix-
ture of local models p(y|x, Z) weighted (in a broader sense) by both, local densities
p(x|Z) and mixing weights aZ.

For applications whose purposes are classification, the interest is focused on the
posterior probability p(Z|x, y) that the observation (x, y) belongs to the component
Z given by,

p(Z|x, y) =
p(y|x, Z)p(x|Z)aZ

ÂG
Z=1 p(y|x, Z)p(x|Z)aZ

, (3.5)
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that is, the classification of each observation depends on both the marginal and con-
ditional densities. Furthermore, with some simple calculations, it can also be ob-
tained that,

p(Z|x, y) =
p(y|x, Z)p(Z|x)

ÂG
Z=1 p(y|x, Z)p(Z|x)

,

with,

p(Z|x) = p(x|Z)aZ

ÂG
Z=1 p(x|Z)aZ

, (3.6)

where p(Z|x) is the posterior probability that the observation x belongs to the com-
ponent Z.

3.3.1 Gaussian Linear CWM

The basic model presented by Ingrassia, Minotti, and Vittadini (2012) is based on
considering the marginal and conditional distributions as normal distributions. Thus,
p(x|Z) = fd(x;µZ, SZ), while p(y|x, Z) = f1(y; µ(x,�Z), s2

Z), where the condi-
tional density is based on linear mappings, i.e. µ(x,�Z) = b0Zx + bZ,0, for some
�Z = (b0Z, bZ,0)0, with bZ 2 Rd and bZ,0 2 R. Under these conditions, the expression
in (3.4) takes the form,

p(x, y) =
G

Â
Z=1

f1(y; b0Zx+ bZ,0, s2
Z)fd(x;µZ, SZ)aZ. (3.7)

The density in (3.7) is called Gaussian Linear CWM (LCWM). For this case and in
the context of the Gaussian LCWM, the posterior probability in (3.5) can be written
as

p(Z|x, y) =
f1(y; b0Zx+ bZ,0, s2

Z)fd(x;µZ, SZ)aZ

ÂG
Z=1 f1(y; b0Zx+ bZ,0, s2

Z)fd(x;µZ, SZ)aZ
, (3.8)

while, the expression in (3.6) takes the form

p(Z|x) = fd(x;µZ, SZ)aZ

ÂG
Z=1 fd(x;µZ, SZ)aZ

. (3.9)

3.3.2 Some relationships between FMM, MRM, and LCWM in the Gaus-

sian case

In this section, three results are presented that relate FMM, MRM and LCWM in the
Gaussian case. The results that are included for these models have to do with the
probability distribution functions and the posterior probabilities.

Let W be a random vector that takes values in Rd+1 with joint probability dis-
tribution p(w). Assume that the density p(w) of W corresponds to an FMM, that
is,

p(w) =
G

Â
Z=1

p(w|Z)aZ,

where p(w|Z) is the probability density of W |Z, and aZ = p(Z) is the mixing weight
of the component marked with Z 2 {1, ..., G}. In the case of coinciding with a Gaus-
sian FMM, let µ(w)

Z and S(w)
Z be the vector of means and the covariance matrix of
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W |Z, respectively.

Suppose that W = (X 0, Y)0, where X is a random vector taking values in Rd

and Y is a random variable. Then,

µ
(w)
Z =

 
µ
(x)
Z

µ
(y)
Z

!
and S(w)

Z =

 
S(xx)

Z S(xy)
Z

S(yx)
Z s

2(y)
Z

!
.

A first interesting result indicates that the CWM contains the FMM and, specif-
ically, in the Gaussian context, restricting the CWM to the case LCWM, FMM and
LCWM are equivalent. The proofs of the three results presented below can be con-
sulted at Ingrassia, Minotti, and Vittadini (2012) and Nguyen (2015), here only the
propositions are stated.

Proposition 3.3.1. Let W be a random vector that takes values in a subset of Rd+1, and
suppose that W |Z ⇠ Nd+1

⇣
µ
(w)
Z , S(w)

Z

⌘
with Z 2 {1, ..., G}. In particular, the density

p(w) of W is a Gaussian FMM:

p(w) =
G

Â
Z=1

fd+1

⇣
w;µ(w)

Z , S(w)
Z

⌘
aZ.

So, p(w) can be written similarly to (3.7), that is, a Gaussian LCWM.

From the proof of Proposition 3.3.1 presented in Ingrassia, Minotti, and Vittadini
(2012), it is worth highlighting how the density p(w) is written to bring it to the
structure of a Gaussian LCWM. So,

p(w) =
G

Â
Z=1

f1

⇣
y|x; µ

(y|x)
Z , s

2(y|x)
Z

⌘
fd

⇣
x;µ(x)

Z , S(xx)
Z

⌘
aZ,

where

µ
(y|x)
Z = µ

(y)
Z + S(yx)

Z S(xx)
Z

�1 ⇣
x�µ

(x)
Z

⌘

=


µ
(y)
Z � S(yx)

Z S(xx)
Z

�1
µ
(x)
Z

�
+


S(yx)

Z S(xx)
Z

�1
�
x

= bZ,0 + bZx,

and,

s
2(y|x)
Z = s

2(y)
Z � S(yx)

Z S(xx)
Z

�1
S(xy)

Z

= s2
Z.

Using arguments similar to those used in the proof of Proposition 3.3.1, it can be
concluded that FMM and LCWM have the same posterior probability distribution.

The second result involves the MRM in the Gaussian case given in a general way
by (3.3) and that, for the Gaussian case, is specified by

p(y|x) =
G

Â
Z=1

f1(y; b0Zx+ bZ,0, s2
Z)aZ, (3.10)
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and for which, the posterior probability p(Z|x, y) is given by the expression

p(Z|x, y) =
f1(y; b0Zx+ bZ,0, s2

Z)aZ

ÂG
Z=1 f1(y; b0Zx+ bZ,0, s2

Z)aZ
. (3.11)

Proposition 3.3.2. Consider the Gaussian LCWM given in (3.7), with X |Z ⇠ Nd(µZ, SZ)
and Z 2 {1, ..., G}. If the probability density of X |Z does not depend on the component,
that is, fd(x;µZ, SZ) = fd(x;µ, S) for all Z 2 {1, ..., G}, then it follows that,

p(x, y) = fd(x;µ, S)p(y|x), (3.12)

where p(y|x) is the Gaussian MRM given in (3.10).

Proposition 3.3.2 establishes an expression that relates, in the Gaussian context,
the LCWM and the MRM when the covariate x has the same behavior between com-
ponents.

Finally, a result is presented as a corollary that states, assuming that the covariate
x has the same behavior between components, that the posterior probabilities for
LCWM and MRM in the Gaussian case coincide.

Corollary 3.3.1. If the probability density of X |Z does not depend on the component, i.e.,
fd(x;µZ, SZ) = fd(x;µ, S) for all Z 2 {1, ..., G}, then the posterior probability in (3.8)
coincides with (3.11).

Additionally, it can be concluded that from the conditions of the Corollary 3.3.1,
the posterior probabilities in (3.9) simplify to p(Z|x) = aZ.

3.4 Multivariate Gaussian Linear CWM

In the previous sections, the univariate model was discussed in such a way that it
was considered an output random variable Y 2 R. This idea can be generalized to
an output random vector Y 2 Rp. Next, the same results are established that relate
the FMM, MRM and LCWM models in the multivariate Gaussian case, a discussion
similar to that made in Section 3.3.2 for the univariate case. The propositions and
the corollary are presented including their proofs.

Let W be a random vector that takes values in Rd+p with joint probability dis-
tribution p(w). Assume that the density p(w) of W corresponds to a FMM, that
is,

p(w) =
G

Â
Z=1

p(w|Z)aZ,

where p(w|Z) is the probability density of W |Z, and aZ = p(Z) is the mixing weight
of the component marked with Z 2 {1, ..., G}. In the case of coinciding with a Gaus-
sian FMM, let µ(w)

Z and S(w)
Z be the vector of means and the covariance matrix of

W |Z, respectively.

Suppose that W = (X 0,Y 0)0, where X is a random vector taking values in Rd,
and Y is a random vector in Rp. Then,

µ
(w)
Z =

 
µ
(x)
Z

µ
(y)
Z

!
and S(w)

Z =

 
S(xx)

Z S(xy)
Z

S(yx)
Z S(yy)

Z

!
.
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Proposition 3.4.1 indicates that the CWM contains the FMM, and in the Gaussian
context, restricting the CWM to the case LCWM, FMM and LCWM are equivalent.

Proposition 3.4.1. Let W be a random vector that takes values in a subset of Rd+p, and
suppose that W |Z ⇠ Nd+p

⇣
µ
(w)
Z , S(w)

Z

⌘
with Z 2 {1, ..., G}. In particular, the density

p(w) of W is a Gaussian FMM:

p(w) =
G

Â
Z=1

fd+p

⇣
w;µ(w)

Z , S(w)
Z

⌘
aZ. (3.13)

So, p(w) can be written similarly to

p(x,y) =
G

Â
Z=1

fp(y; B0
Zx+ bZ,0, eSZ)fd(x;µZ, SZ)aZ, (3.14)

that is, a Gaussian LCWM.

Proof. Let us set W = (X 0,Y 0)0, where X is a d�dimensional random vector and
Y is a p�dimensional random vector. Using properties of the multivariate normal
distribution (e.g. Johnson, Wichern, et al., 2002),

p(w) =
G

Â
Z=1

fd+p

⇣
(x,y);µ(w)

Z , S(w)
Z

⌘
aZ

=
G

Â
Z=1

fp

⇣
y;µ(y|x)

Z , S(y|x)
Z

⌘
fd

⇣
x;µ(x)

Z , S(x)
Z

⌘
aZ,

where,

µ
(y|x)
Z = µ

(y)
Z + S(yx)

Z S(xx)
Z

�1 ⇣
x�µ

(x)
Z

⌘

=


S(yx)

Z S(xx)
Z

�1
�
x+


µ
(y)
Z � S(yx)

Z S(xx)
Z

�1
µ
(x)
Z

�

= B0
Zx+ bZ,0

and

S(y|x)
Z = S(yy)

Z � S(yx)
Z S(xx)

Z
�1

S(xy)
Z

= eSZ.

Then, (3.13) can be written as (3.14).

The expressions used in the proof of Proposition 3.4.1 are used in the program-
ming process of the method that we propose here. Similar to the univariate case, the
proposition below establishes an expression that relates the LCWM and the MRM,
when the covariate x has the same behavior between components.

Proposition 3.4.2. Consider the Gaussian LCWM given in (3.14), with X |Z ⇠ Nd(µZ, SZ)
and Z 2 {1, ..., G}. If the probability density of X |Z does not depend on the component,
that is, fd(x;µZ, SZ) = fd(x;µ, S) for all Z 2 {1, ..., G}, then it follows that

p(x,y) = fd(µ, S)p(y|x), (3.15)
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where p(y|x) is the Gaussian MRM given by the expression

p(y|x) =
G

Â
Z=1

fp(y; B0
Zx+ bZ,0, eSZ)aZ. (3.16)

Proof. Assume that fd(x;µZ, SZ) = fd(x;µ, S) for all Z 2 {1, ..., G}, then from the
expression in (3.14)

p(x,y) =
G

Â
Z=1

fp(y; B0
Zx+ bZ,0, eSZ)fd(x;µZ, SZ)aZ

= fd(x;µ, S)
G

Â
Z=1

fp(y; B0
Zx+ bZ,0, eSZ)aZ

= fd(x;µ, S)p(y|x)

where p(y|x) is the Gaussian MRM given in (3.16).

As the last result in this section, Corollary 3.4.1 states, assuming that the covariate
x has the same behavior between components, that the posterior probabilities for
LCWM and MRM in the Gaussian case coincide.

Corollary 3.4.1. If the probability density of X |Z does not depend on the component, that
is, fd(x;µZ, SZ) = fd(x;µ, S) for all Z 2 {1, ..., G}, then the posterior probability given
by

p(Z|x, y) =
fp(y; B0

Zx+ bZ,0, eSZ)fd(x;µZ, SZ)aZ

ÂG
Z=1 fp(y; B0

Zx+ bZ,0, eSZ)fd(x;µZ, SZ)aZ
, (3.17)

coincides with

p(Z|x, y) =
fp(y; B0

Zx+ bZ,0, eSZ)aZ

ÂG
Z=1 fp(y; B0

Zx+ bZ,0, eSZ)aZ
. (3.18)

Proof. Assume that fd(x;µZ, SZ) = fd(x;µ, S) for all Z 2 {1, ..., G}, from the ex-
pression in (3.17) we get,

p(Z|x, y) =
fp(y; B0

Zx+ bZ,0, eSZ)fd(x;µZ, SZ)aZ

ÂG
Z=1 fp(y; B0

Zx+ bZ,0, eSZ)fd(x;µZ, SZ)aZ

=
fd(x;µ, S)fp(y; B0

Zx+ bZ,0, eSZ)aZ

fd(x;µ, S)ÂG
Z=1 fp(y; B0

Zx+ bZ,0, eSZ)aZ

=
fp(y; B0

Zx+ bZ,0, eSZ)aZ

ÂG
Z=1 fp(y; B0

Zx+ bZ,0, eSZ)aZ
,

for Z 2 {1, ..., G}.

3.5 Bayesian Estimation and Imputation

Since the Propositions 3.3.1 and 3.4.1 establish a mapping between the parameter
vectors of the FMM and the LCWM in the Gaussian context, the interest initially lies
in the estimation of the FMM parameters. For this purpose, a Bayesian approach
is implemented, using for the prior distribution of the mixing weights the stick-
breaking representation of a truncated Dirichlet process (Ferguson, 1973; Sethura-
man, 1994), since it has been shown that this class of models allows greater flexibility
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and better estimation of density (Müller and Mitra, 2013). Below is a brief descrip-
tion of the process.

Each individual in the data set belongs to one of G mixture components, that
is, Zi 2 {1, ..., G} so that Z = (Z1, ..., Zn). The mixing probabilities are given by
↵ = (a1, ..., aG) with ag = P(Zi = g) where i = 1, ..., n and g = 1, ..., G.
If µ = (µ1, ...,µG) and S = (S1, ..., SG) then,

wi|Zi,µ, S ⇠ Np(µZi , SZi),
Ui|↵ ⇠ Multinomial(↵),

where Zi = G0Ui with G0 = (1, ..., G).

The prior distribution for ↵ is a stick-breaking representation of a truncated
Dirichlet process (Ferguson, 1973; Sethuraman, 1994),

ag = ng ’
k<g

(1 � nk) for g = 1, ..., G,

ng ⇠ Beta(1, h) for g = 1, ..., G � 1; nG = 1,
h ⇠ Gamma(ah , bh).

Following Kim et al. (2014), we use values of ah = bh = .25, which represents a small
prior sample size and hence vague specification for Gamma distributions. This en-
sures that the information from the data dominates the posterior distribution. The
specification of prior distributions encourages ag to decrease stochastically with g.
When h is very small, most of the probability in ↵ is allocated to the first few com-
ponents, thus reducing the risks of over-fitting the data as well as increasing com-
putational efficiency.

For the prior specification of (µ, S),

µg|Sg ⇠ Np(µ0, h�1Sg),
Sg ⇠ Inverse Wishart( f , D).

Here, f is the prior degrees of freedom, and D = diag(d1, ..., dp) is a diagonal matrix
of size p ⇥ p with dj ⇠ Gamma(ad, bd) for j = 1, ..., p. We use a prior mean of µ0
equal to the mean of the data set, using f = p + 1 degrees of freedom to ensure
a proper distribution without overly constraining S, and setting h = 1 mostly for
convenience. We use ad = bd = .25, a modest value but not too small, so as to allow
substantial prior mass at modest-sized variances (Paiva, 2014; Kim et al., 2014).
Once the estimates for µg and Sg have been obtained, using the W = (X 0,Y 0)0

notation and the results of Proposition 3.4.1 we have

µ
(w)
g =

 
µ
(x)
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µ
(y)
g

!
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the estimates for the parameters of the conditional model are obtained as
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It is important to mention that, throughout the document, values for G are used
in two senses. The first when implementing the code for the imputation and estima-
tion procedure (I-step and P-step in Algorithm 1). The second is when the code is
used in the process of estimating the distribution mixture model in order to evalu-
ate the imputation procedure, in such a way that, assuming the value of G for a set
of data, we fit the distribution to original data (or simulated data) and to imputed
data and we compare the two distributions using some kind of measure. In the first
of the senses, by specifying initial values, it is possible to use the standard Gibbs
sampler algorithm to estimate the posterior distribution. For the number of com-
ponents G, Kim et al. (2015) recommend starting with a somewhat large value, for
example eG = 30. At each iteration of the Gibbs sampler, the number of nonempty
components is counted. If this count reaches the value assigned to eG, it is prudent
to increase eG and readjust the model with more components. When the count of
nonempty components is less than eG, then the value of eG is reasonable.

Because the proposed imputation model is based on Algorithm 1, the previous
paragraphs describe the P-step of the procedure in detail. Basically, an indepen-
dent Bayesian analysis is presented that describes the estimation of the posterior
distributions of the model parameters. The computational implementation uses a
Gibbs sampler algorithm on which an additional imputation step is included. I-step
uses the marginal and conditional distributions of the Gaussian LCWM to classify
individuals with missing information and impute incomplete variables using the
observed variables. The steps of the implemented procedure are presented in Al-
gorithm 4, and are based on the Gibbs sampler for the Gaussian FMM (Kim et al.,
2014).

Algorithm 4: Gaussian Linear CWM imputation

Input: yobs, Xobs, Xmis
Output: ymis, ↵̂, µ̂, Ŝ

1 initialization: y(0)
mis, ↵

(0), µ(0), S(0)

2 for j = 1, ..., J do

3 generate u(j) from p(u|yobs,Xobs,Xmis,y
(j�1)
mis ,↵(j�1),µ(j�1), S(j�1))

4 compute z(j) = f (u(j))

5 generate ⌫(j) from p(⌫|z(j))

6 compute ↵(j) = f̃ (⌫(j))
7 for i = 1, ..., G do

8 generate S(j)
i from p(Si|yobs,Xobs,Xmis,y

(j�1)
mis , z(j))

9 generate µ
(j)
i from p(µi|S

(j)
i ,yobs,Xobs,Xmis,y

(j�1)
mis , z(j))

10 end

11 generate u
(j)
mis from p(umis|Xmis,↵(j),µ(j), S(j))

12 compute z
(j)
mis = f (u(j)

mis)

13 generate y
(j)
mis from p(ymis|Xmis, z

(j)
mis,µ

(j), S(j))

14 sort ↵(j) in decreasing order
15 reorder z(j), z(j)

mis, µ
(j), S(j) based on the order of ↵(j)

16 end

Result: Imputed database and parameters estimation

The output variable can be partitioned in the form, y = (yobs,ymis), where yobs
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denotes, as before, the observed part, and ymis denotes the missing part. For clas-
sification purposes, the notation z is used for the variable that classifies the obser-
vations in the parameter model estimation process, while zmis is used to classify the
observations with missing information for the imputation process. Two steps are
incorporated into the algorithm to establish the imputation procedure, the first one
updates the variable zmis and the second one updates the imputations ymis.

Algorithm 4 arises from the imputation procedure implemented in Paiva and
Reiter (2017), on which it is intended to enter auxiliary information to improve the
imputation process of the variables with missing data. Since the diagnosis of our
model starts from the comparison with the imputation engine used by Paiva and
Reiter (2017), Algorithm 5 describes the steps used in the imputation procedure used
there. It is worth mentioning that from our model it is possible to obtain the proce-
dure used by Paiva and Reiter (2017) as a particular case. Thus, by not considering
auxiliary information, Algorithm 4, which specifies a form of regression model, be-
comes a intercept-only model or naïve model, hence the name we give to Algorithm
5 of mean imputation. On the other hand, our model also contains a version of the
Bayesian multiple imputation method studied in Section 2.7.3. Algorithm 2 can be
approximated considering in our model G = 1 as the number of clusters. The differ-
ence arises in the non-informative prior distribution used for each case.

Algorithm 5: mean imputation

Input: yobs
Output: ymis, ↵̂, µ̂, Ŝ

1 initialization: y(0)
mis, ↵

(0), µ(0), S(0)

2 for j = 1, ..., J do

3 generate u(j) from p(u|yobs,y
(j�1)
mis ,↵(j�1),µ(j�1), S(j�1))

4 compute z(j) = f (u(j))

5 generate ⌫(j) from p(⌫|z(j))

6 compute ↵(j) = f̃ (⌫(j))
7 for i = 1, ..., G do

8 generate S(j)
i from p(Si|yobs,y

(j�1)
mis , z(j))

9 generate µ
(j)
i from p(µi|S

(j)
i ,yobs,y

(j�1)
mis , z(j))

10 end

11 generate u
(j)
mis from p(umis|↵(j))

12 compute z
(j)
mis = f (u(j)

mis)

13 generate y
(j)
mis from p(ymis|z(j)

mis,µ
(j), S(j))

14 sort ↵(j) in decreasing order
15 reorder z(j), z(j)

mis, µ
(j), S(j) based on the order of ↵(j)

16 end

Result: Imputed database and parameters estimation
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Chapter 4

Univariate Gaussian LCWM

“People have forgotten this truth,” the fox said.
“But you mustn’t forget it.

You become responsible forever for what you’ve tamed.
You’re responsible for your rose.”

The Little Prince.

4.1 Overview

In this chapter we present a first implementation of the imputation procedure using
the Gaussian LCWM in the simplest case. We will call it the univariate case. Since
the objective is explained through the situation presented in the introduction to this
document by means of Figure 1.1, we consider as a first approximation that case
where p = 1 and which is illustrated in Figure 4.1. It is about considering a pattern of
unit nonresponse that will be represented by the only output variable Y, which will
be imputed making use of auxiliary information represented by the input variables
X1, ..., Xd. In other words, we start from the pattern of missing data in Figure 4.1a,
where the imputation process does not make use of auxiliary information, and we
seek some way to include auxiliary information from fully observed variables to
impute units nonresponse, see Figure 4.1b.

(a) No auxiliary information. (b) With auxiliary information.

FIGURE 4.1: Missing data pattern from univariate databases in the
cases of not including and including auxiliary information.

Our proposal starts from the Gaussian FMM used in the process of imputation of
the pattern of missing data in Figure 4.1a to consider including auxiliary variables
with fully observed information, see Figure 4.1b. For this new pattern of missing
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data, considering the new variables as observational and non-deterministic, we can
use them adaptively in the imputation procedure. Thus, we propose the use of the
Gaussian LCWM as the imputation model, which takes advantage of the flexibility
of FMMs to model unknown distribution forms, as well as group structures in the
data. We will analyze the performance of the imputation process by entering dif-
ferent types of variables into the model, and we will compare the results with other
imputation methods.

Section 4.2 presents simulation studies to evaluate the performance of our model
in two ways. The first one seeks to analyze the influence that the variables that enter
the model have on the imputation process; the second compares our imputation
model with other procedures. Section 4.3 presents two sets of real data on which
missing data patterns are simulated to evaluate our imputation model, these are the
Faithful database and the data from the Annual Manufacturing Survey of Colombia
in 1994.

4.2 Simulation Studies

4.2.1 Model performance when new information is included

To carry out an analysis of the proposed imputation process, a data set was sim-
ulated from a mixture of three-dimensional normal distributions with two compo-
nents. One of the variables was considered as an output variable, while the other
two were considered as input variables. The database contains n = 1000 observa-
tions of the form (x1, x2, y). The mixing probabilities are a1 = 0.6 and a2 = 0.4, the
mean vectors µ1 = (1.0, 9.0, 7.0) and µ2 = (1.0, 3.0, 3.0), and the covariance matrices
are:

S1 =

0

@
1.00 0.50 0.50
0.50 1.00 0.50
0.50 0.50 1.00

1

A and S2 =

0

@
1.00 0.50 �0.50
0.50 1.00 �0.50

�0.50 �0.50 1.00

1

A .

Initially, for cluster 1, 50% of the data was randomly selected and considered miss-
ing, while 10% was selected for cluster 2. A summary of how the data was gener-
ated is presented in Table 4.1. Scatter plots of the observed and missing data are
illustrated in Figure 4.2, with the projection of the plane X1 ⇥ Y in Figure 4.2a and
the projection of the plane X2 ⇥ Y in Figure 4.2b. Since the probability of missing
is the same within each of the components, considering the variable Y as the one
with missing information and the variables X1 and X2 as fully observed, the missing
data mechanism can be assumed as Missing at Random (MAR) (Van Buuren, 2018;
Rubin, 1976).

observed missing complete

cluster 1 281 (48.9%) 294 (51.1%) 575 (100%)
(42.7%) (86.0%) (57.5%)

cluster 2 377 (88.7%) 48 (11.3%) 425 (100%)
(57.3%) (14.0%) (42.5%)

total 658 (68.3%) 342 (31.7%) 1000 (100%)
(100%) (100%) (100%)

TABLE 4.1: Distribution of observed, missing and complete data by
cluster for the simulated database in the univariate case.
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Two scenarios are analyzed from the simulated data. In both, the variable Y will
be treated as the output variable and the one with missing information. The vari-
ables X1 and X2 will be considered as fully observed input variables and provide
auxiliary information for the imputation processes. In the first scenario (Scenario 1),
Figure 4.2a, the model imputes the variable Y with the information from the variable
X1. The information provided by X1 does not allow to conclude with which of the
two components to impute. For the second scenario (Scenario 2), the variable Y is
imputed with information from the variable X2. Figure 4.2b allows us to conclude
that, knowing information on this variable, it is possible to decide correctly which
component to impute from.

The histograms at the bottom of the two graphs in Figure 4.2, and which refer
to the distributions of the input variables in each case, allow us to observe the dif-
ference in their behavior. In the case of the histogram on the right side, where two
totally separate groups are observed for the distribution of X2, it will indicate that
the input variable is distributed separately among components, this is an ideal behavior
for the imputation process.
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(a) Projection X1 ⇥ Y.
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(b) Projection X2 ⇥ Y.

FIGURE 4.2: Scatter plots for observed and missing data for the sim-
ulated database.

Analysis of the imputation process in the simulated scenarios

In all simulated scenarios, the imputation program was run on R software maintain-
ing similar conditions with burn-in=10000 and a sample size adjusted for autocor-
relation, effectiveSize=1500, implemented using coda package (Plummer et al.,
2006). The number of components was established at the fixed value of G=10. In all
cases, only the first two components were occupied in the fitted models. The trace
plots performed well, guaranteeing the convergence of the chains. To summarize
the imputation process, following the idea of Fraley and Raftery (2007), the iteration
that maximizes the density a posteriori (MAP) is chosen. Thus, all the graphs, the esti-
mates, and the general descriptions provided here are based on the results obtained
with this iteration. It should be noted that although we have analyzed our method-
ology using a single imputed database, the suggestion is to use this imputation pro-
cedure that we propose following the MI guidelines. For the graphs corresponding
to the posterior probabilities that the observation x belongs to the component Z,
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the notation aZ(x) = p(Z|x) is used, following the idea of the notation for mixing
probabilities, aZ = p(Z).

Scenario 1: A variable with low performance in the model

In the first scenario, the imputation model is implemented, seeking to complete the
missing information for the output variable Y, using the input variable X1 as auxil-
iary information. Since the input variable does not provide information about which
component an observation belongs to, special interest is in the behavior of the esti-
mates of the mixing probabilities. For cluster 1, ba1 = 0.418, while for cluster 2,
ba2 = 0.582. These estimates are strongly influenced by the proportion of data ob-
served in each cluster, and determine the proportion of data imputed in each group,
(40.9% of the data were imputed in cluster 1, while 59.1% were imputed in cluster
2). Likewise, it can be observed how these proportions of the imputed values per
component are considerably different from the proportions of missing data (86.0%
for cluster 1 and 14.0% for cluster 2), as seen in Table 4.1.
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FIGURE 4.3: Construction of the imputation model in the case of aux-
iliary information given by the variable X1.

Figure 4.3 shows how the imputation model was built and how the missing data
was imputed. Figure 4.3a presents a scatter diagram where the imputed data is plot-
ted, as well as the data considered missing. Although the data is imputed around
the centers of each component, the proportion in each differs from the proportion
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in which they were generated. Figure 4.3b illustrates how the imputation model
was built, and presents the observed data that are the basis for the construction of
the regression lines. Together with these points, quantile ellipses of 95% allow each
of the components to be distinguished; this same graph shows the imputed values
around the line. In particular, the regression lines are the result of the so-called con-
ditional distributions, and are used as predictive models in the imputation process.
The marginal distributions are used for the classification process and are the basis
for the construction of the curves in Figure 4.3c. The graphs of the posterior prob-
abilities dependent on the input variable x1 and defined by the expression (3.9) are
shown. For values of x1 close to the estimates of the means in the two components
(µ̂(x1)

1 = 0.897, µ̂(x1)
2 = 1.109), the posterior probabilities are strongly influenced by

the proportion of observed data.

Scenario 2: A variable with high performance in the model

In the second case, where the input variable X2 is distributed separated by compo-
nents, after the imputation process, the model returns proportions of imputed data
similar to how the missing data was generated. The estimates for the mixing prob-
abilities are â1 = 0.583 and â2 = 0.417. The fact that the input variable completely
separates the components allows the information provided by it to precisely deter-
mine the component which to impute from. The proportion of imputed data in each
group was 14.0% for component 1 and 86.0% for component 2, the same values pre-
sented in Table 4.1 for missing data.

Figure 4.4 shows, for scenario 2, how the data was imputed. For example, Fig-
ure 4.4a shows the data that was considered missing and the imputations made by
the model. It is evidenced that, in addition to the imputations being made close to
the missing data, the proportions in the two components corresponding to missing
data and imputed data are the same. Similar to Scenario 1, Figure 4.4b presents
how the model was built based on the observed data set and illustrates the distri-
bution of the imputed data. Specifically, the conditional and marginal distributions
are responsible for carrying out the imputation and classification processes. The
result of the conditional distributions are the regression lines, these are plotted for
each component and show, together with the imputed data, the pattern followed to
carry out the imputation. We show the 95% confidence ellipses for each component.
As product of the marginal distributions together with the mixing probabilities, the
posterior probability curves are illustrated in the graph of Figure 4.4c. This graph
reflects an ideal behavior regarding the classification process. Punctually, it makes
the correct decision regarding which component to impute from, given the value of
the input variable. For values of the input variable less than six, the model imputes
with probability one in component 1. Likewise, from some value greater than six,
the observation is classified in component 2 and imputed with the estimated model
for this case. For the values of the input variable around six, there is a transition in
the probabilities, in such a way that in the limit, the probabilities to classify in one
or another component coincide with the value 0.5.

The scenarios presented attempt to illustrate two extreme cases. The first case,
which shows that the input variable does not provide any information to select the
component which to impute from, such that the classification remains in the hands
of estimating the proportion of data observed in each component, that is, of the mix-
ture probability aZ as can be deduced from Corollary 3.3.1. The second case is an
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ideal scenario for the implementation of the model, where the information provided
by the input variable allows us to determine, in a correct way, with which compo-
nent to impute from.
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FIGURE 4.4: Construction of the imputation model in the case of aux-
iliary information given by the variable X2.

An additional scenario is presented without discussion in this section. It con-
siders the imputation process under the joint information of the two input variables
treated in the previous scenarios. In this situation, the two variables are integrated
into an input vector of the form X = (X1, X2). This vector allows to consider its dis-
tribution as separate between components like the case of Scenario 2, and the results
can be consulted in Appendix A. This case is very similar to the case considered in
the second scenario.

Results of the imputation processes

Figure 4.5 presents box plots for the output variables in the cases of its complete
information (Ycom), when only the observed information is considered (Yobs) and
after the imputation processes (Y(·)). Within each boxplot, the point inside represents
the value of the sample mean for each data set.

In the case of the imputation process using the variable X1 (Scenario 1), since the
variable does not provide any information about which component to impute from,
the model selects said component based on the estimated mixing probabilities. That
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is the reason for the similarity between the distribution of Yobs and the imputed out-
put variable YX1 . When we use the X2 variable as an input variable in the model
(Scenario 2), since the information it provides allows us to identify the component
to which an observation belongs, with the imputed output variable YX2 we have a
closer proximity to the distribution of the original complete variable Ycom. Some-
thing similar happens with the output variable imputed from the information of the
vector (X1, X2), denoted as Y(X1,X2).

Ycom Yobs YX1 YX2 Y(X1,X2)

0
2

4
6

8
10

FIGURE 4.5: Box plots for complete, observed, and the imputed vari-
ables with information from the input variables X1, X2, and (X1, X2).

Diagnosis of the imputation process: Kullback-Leibler divergence

Due to the need for a quantitative diagnosis of the imputation process, we used the
Kullback-Liebler divergence, a non-symmetric measure of the difference between
two probability functions (Kullback and Leibler, 1951). For two density functions
f (·) and g(·), in the one-dimensional continuous case, the Kullback-Liebler diver-
gence is defined by the integral

KL( f , g) :=
Z •

�•
f (x) log

f (x)
g(x)

dx. (4.1)

The divergence KL( f , g) can be interpreted as the amount of information lost
when we want to approximate the f distribution using the g distribution. Unfortu-
nately, for the case where f (·) and g(·) are Gaussian FMM, the expression in (4.1) is
intractable. Hershey and Olsen (2007) and Durrieu, Thiran, and Kelly (2012) present
several approximations, as well as bounds for the divergence in this case.

To implement the calculation of the KL divergence, the integrate function is
used in the R software, which allows to approximate integrals of one-dimensional
functions over infinite intervals. In this case, it will be used to approximate the
integral in (4.1) and will be denoted as KLint. To measure the quality of the impu-
tation process, we calculated a 95% quantile interval based on the KL divergences
calculated from N=10000 replicates of the complete data set, obtained randomly from
the original distribution. For this simulation process we use the mixsmsn package
(Prates, R., and Lachos, 2013). Any value of KL of a variable that is within the inter-
val will allow to conclude that said variable recovers the original distribution. The
interval obtained and the KL divergences for the different imputation processes are
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presented in Table 4.2. The table also presents the relative distances to the extreme
right of the interval, which gives an idea of how far the distribution of interest is from
the original distribution. If the value of the KL divergence falls within the interval,
it is noted with WI (withing the interval). In the expression (4.1) the function f will re-
fer to the original distribution, i.e., the one with which the database was generated,
while the function g will refer to the distribution estimated from the data set Y(·), we
will use the notation gY(·) . To give us an idea of how the imputation model performs
when the real distribution is not known, specifically in the case of the examples with
real data, Appendix B presents tables of KL divergence values calculated having the
estimated distribution based on complete data as reference distribution, that is, it
assumes the role of the function f in expression (4.1).

Approach method

KLint Relative distance
Qu.int. 95.0% (0, 0.0056) -

gYcom 0.0029 WI
gYobs 0.0679 12.25
gYX1

0.0665 12.00
gYX2

0.0034 WI
gY(X1,X2)

0.0036 WI

TABLE 4.2: KL divergences and relative distances for the imputed
variables with information from the input variables X1, X2, and

(X1, X2).

For Ycom, it is observed that the KL value is within the quantile interval of 95%.
For the distribution of the observed data, Yobs, a distance of about twelve units from
the original distribution is observed. The variables YX2 and Y(X1,X2) have the best
behaviors in terms of proximity to the target distribution, they recover the original
distribution. In the case of the imputation process with the vector (X1, X2), includ-
ing in it a variable that is distributed separately among components, as is the case of
the input variable X2, allows obtaining a vector that is distributed separately among
components1.

The same estimates obtained from the imputed variables and used to calculate
the KL divergences are used to obtain the graphs of the estimated densities shown
in Figure 4.6. A histogram is presented illustrating the distribution of the complete
variable, Ycom. The solid black and gray curves represent the estimated densities for
Ycom and Yobs, respectively. Once again, the good performance of the imputation
process can be confirmed with information from the input variable X2 and the input
vector (X1, X2). The blue dotted curve and the green dashdot curve corresponding
to these two estimated densities, respectively, are closest to the estimated density
of the variable Ycom. This is not the case with the red dashed curve and that corre-
sponds to the variable YX1 .

In conclusion, the presented imputation methodology makes use of the informa-
tion provided by the input variables. This information can move between two situa-
tions: the input variable does not provide any information about which component

1A similar performance, when the imputation processes are compared using information from the
different auxiliary variables, can be concluded from Table B.1 in Appendix B.
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FIGURE 4.6: Histogram of the variable Ycom and estimated densities
for the imputed variables with information from the input variables

X1, X2, and (X1, X2).

the observation belongs to; or the input variable is capable of correctly determining
the component to which said observation belongs. Information from several input
variables can be taken into account together in the classification process. Therefore,
to provide an adequate imputation, it is necessary to have inputs that accurately
separate the imputation region. If the user does not know which input that is, we
suggest the inclusion of an input vector. As shown by our simulations, the perfor-
mance of the imputation method is not affected by the non-informative inputs, thus
continuing to offer an appropriate imputation for the data.

4.2.2 A scenario with missing data from a MNAR mechanism

On the same data set studied in this section, an MNAR mechanism of missing data
was simulated to observe how the imputation model behaves. For this case, 20%
of data with values of Y greater than 6.5 were randomly selected and considered as
missing. This procedure generated 75 missing data points, all belonging to cluster
1. The distribution of the observed and missing data projected on the planes X1 ⇥ Y
and X2 ⇥ Y can be seen in Figures 4.7a and 4.8a. The missing data is grouped at the
top of the point cloud corresponding to cluster 1.

Similar to Scenario 1 presented above, the imputation model was implemented
using the input variable X1 as auxiliary information. Since this variable does not
offer any information on which component to impute from, the classification pro-
cedure is carried out based on the estimates made with the mixing probabilities,
â1 = 0.526 and â2 = 0.474. Thus, 39 observations are imputed for component 1,
while 36 observations are imputed for component 2, as it is seen in Figure 4.7b. Fur-
thermore, using Figure 4.7c as a complement, it can be observed that the imputed
data in component 1 tries to cover the width of the cluster conditioned by the values
of X1. Implementing the model with information from the input variable X2 leads
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FIGURE 4.7: Simulation of an MNAR mechanism and imputation us-
ing the variable X1 in the univariate case .

to estimates of the mixing probabilities equal to â1 = 0.565 and â2 = 0.435. How-
ever, since the input variable X2 provides precise information on which component
to impute from, all observations are imputed in component 1 as shown in Figure
4.8b. Of utmost importance, it should be noted that, although the model imputes
fairly accurately in the correct component, the way it does so is far from how the
missing data were generated within the component, see Figure 4.8c. It could be con-
cluded that, although the missing data were generated from a MNAR mechanism,
the model imputes within the component assuming MAR.

4.2.3 Gaussian LCWM performance relative to other imputation methods

To compare the proposed imputation model with other methods, the package repos-
itory was consulted to treat missing data with the R software2. MICE package (Van
Buuren and Groothuis-Oudshoorn, 2011) is one of the commonly used package by
R users. Two methods included in the MICE package were of special interest in
this process, predictive mean matching (Little, 1988), implemented using the function
mice.impute.pmm(), and Bayesian multiple imputation (Rubin, 1987), implemented by
the function mice.impute.norm(). Both methods were described in Chapter 2 in
more detail, and the main interest is that they are two predictive methods and use a

2https://CRAN.R-project.org/view=MissingData

https://CRAN.R-project.org/view=MissingData
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FIGURE 4.8: Simulation of an MNAR mechanism and imputation us-
ing the variable X2 in the univariate case.

Bayesian approach.

We were able to observe that the Bayesian multiple imputation method imple-
mented in MICE could be approximated by our model considering the value of G = 1
for the number of components. Theoretically, the difference in the two procedures
lies in the priori distributions used in each case. To implement the method, we will
use our R code and to refer to it we will use the norm notation. In the case of predic-
tive mean matching, we will use the MICE package and to refer to it we will use the
pmm notation. For comparison purposes, we also include as a method of interest the
procedure implemented in Paiva and Reiter (2017) and that does not use auxiliary
information; to refer to this methodology we will use the mean notation. Finally, we
will refer to our model using the cwm notation.

The KL divergence values presented in Table 4.3 were obtained by implement-
ing the imputation methods mean, pmm, and norm on the simulated data set in Sec-
tion 4.2.1. From the results obtained, a first objective proposed in this work was
to include, on the mean methodology that does not incorporate auxiliary informa-
tion, fully observed additional variables that would improve the performance of the
imputation process. In the first column of Table 4.3, we can see the results corre-
sponding to our model together with a row on which the KL divergence is shown
for the imputation procedure without auxiliary information, gYmean . Even from the
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imputation process with the X1 variable, we can see less loss of information with our
methodology. With the variable X2 and the vector (X1, X2), our model was able to
recover the true distribution.

Observing the information in the complete Table 4.3, a better performance of the
methods cwm and pmm compared to norm can be concluded. The procedure pmm has
similar results to ours in the case of using variables that are distributed separately
among components; in the case of using information from variable X1, the loss of
information is much greater than in the case of our model. Graphs that illustrate the
imputation process using the mean, pmm, and norm methodologies can be consulted
in Appendix C. Also, in Appendix B, Table B.2 is presented, which includes the val-
ues of the KL divergence, assuming that the true distribution is unknown and from
which similar conclusions can be obtained.

cwm pmm norm
KLint Relative distance KLint Relative distance KLint Relative distance

Qu.int. 95.0% (0,0.0055) - (0,0.0055) - (0,0.0055) -
gYcom 0.0029 WI 0.0029 WI 0.0029 WI
gYobs 0.0679 12.25 0.0679 12.25 0.0679 12.25
gYmean 0.0854 15.42 - - - -
gYX1

0.0665 12.00 0.1130 20.39 0.2093 37.79
gYX2

0.0034 WI 0.0022 WI 0.0193 3.48
gY(X1,X2)

0.0036 WI 0.0040 WI 0.0128 2.31

TABLE 4.3: Performance of the mean, cwm, pmm and norm methods by
calculating the KL divergence for the first simulated data set.

A scenario with better performance of cwm versus pmm

In this section, a data set is simulated with a pattern of missing data where our
methodology performs better than the pmm procedure. The database contains n=1000
observations of the form (x, y). The mixing probabilities are a1 = 0.6 and a2 = 0.4,
the mean vectors µ1 = (4.0, 10.0) and µ2 = (7.0, 4.0), and the covariance matrices
are:

S1 =

✓
0.50 0.35
0.35 0.50

◆
and S2 =

✓
0.50 �0.64

�0.64 1.00

◆
.

The missing data pattern was generated in such a way that all observations with
values of the variable X greater than 5 belonging to cluster 1 were considered as
missing. A summary of how the data was generated is presented in Table 4.4.

observed missing complete

cluster 1 441 (76.7%) 134 (23.3%) 575 (100%)
(50.9%) (100.0%) (57.5%)

cluster 2 425 (100.0%) 0 (0.0%) 425 (100%)
(49.1%) (0.0%) (42.5%)

total 866 (86.3%) 134 (13.4%) 1000 (100%)
(100%) (100%) (100%)

TABLE 4.4: Distribution of observed, missing and complete data by
cluster. A scenario with censored data.
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The imputation process was implemented using the four methodologies of in-
terest: mean, cwm, pmm, and norm. Scatter plots for observed, missing, and imputed
data by the four methods are shown in Figure 4.9. A scenario with censored data in
cluster 1 is presented. The panels in the figure illustrate the results of the different
imputation processes when the four methods are implemented on the database.

The panel in the upper left of Figure 4.9 shows the results of the imputation pro-
cess with the mean method. Since the methodology does not use information from
the variable X, the procedure imputes in each cluster proportional to the number of
data observed in each case, and imputes around the mean value of each group. For
the cwm imputation procedure, we can see that the imputed values manage to cover
a large part of the region where the missing data was generated, except for some
imputations that occur in cluster 2. Regarding the pmm method, although some im-
puted values appear in the region of the missing data, they do not cover the region
properly and a considerable number of aligned points are observed, which means
that the method imputes with the same observed value many times. This situation
occurs when there is little or no information observed in the specific region of im-
putation (Van Buuren, 2018). Additionally, a considerable amount of points were
incorrectly imputed in cluster 2. The panel at the bottom right hand side shows the
results of the imputation process with the norm method. The procedure erroneously
imputes the vast majority of observations, specifically it does so in a region where
there is no missingness.

From the analysis presented, it can be concluded that the best performance in
terms of the imputation process was the cwm methodology. The mean, pmm, and norm
methods perform unfavorably in this scenario. A quantitative evaluation of the im-
putation processes can be carried out from the KL divergence. Table 4.5 presents this
measure for the different methods to be compared. The 95% quantile interval for the
KL divergence of databases generated with the described specifications is shown in
the first line. We assume that a KL divergence value that is within the interval allows
us to conclude that the original distribution has been recovered, this will be noted in
the relative distance column with WI (within the interval).

Approach method

KLint Relative distance
Qu.int. 95.0% (0, 0.0271) -

gYcom 0.0028 WI
gYobs 0.0611 2.25
gYmean 0.3100 11.44
gYcwm 0.0198 WI
gYpmm 0.0559 2.06
gYnorm 0.2174 8.02

TABLE 4.5: KL divergences and relative distances for the imputation
methods in the case of censored missing data.

The values in Table 4.5 allow us to confirm the analysis previously performed.
We see that the imputation carried out with cwm allows us to recover the original dis-
tribution, from here we can conclude its better performance over the other methods.
The procedure mean shows the worst performance followed by the procedure norm
among the compared methods. Once again, despite the fact that the method pmm has
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FIGURE 4.9: Scatter plots for the mean, cwm, pmm, and norm methods in
the case of censored missing data.

a poor performance compared to ours, compared to the procedures mean and norm
it has a lower loss of information when the objective is to recover the original distri-
bution. Similar conclusions are obtained when considering the true distribution as
unknown and taking as a reference the distribution of complete data in the calcula-
tion of the KL divergence (see Table B.3 in Appendix B).

As a conclusion, an extreme scenario was presented where the pattern of miss-
ing data was generated considering censored data and where the distribution of the
variables is separated between components. The two clusters were generated from
opposite correlations, one group with positive correlation and the other negative.
In this situation, the mean, norm, and pmm imputation methods show disadvantages
compared to our methodology. Building good imputation models requires analyt-
ical skills, and since there is no foolproof method, it is important to do a thorough
analysis of the strengths and weaknesses of such models.

4.3 Illustrative Examples with Real Data

4.3.1 Data Set: Faithful

The proposed methodology will be implemented on the database called Faithful, it is
a classic data set on geyser eruptions (Härdle et al., 1991). The base contains the wait-
ing times between eruptions and the durations of the Old Faithful geyser eruptions
in Yellowstone National Park, Wyoming, United States. In the database, each row
represents an observed eruption of the Old Faithful Geyser. The Faithful data set
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is found in the datasets R package, and consists of 272 observations on 2 variables,
eruptions (represents the duration of the eruption in minutes) and waiting (repre-
sents the duration in minutes until the next eruption). The use of G = 2 components
to fit a Gaussian mixture model is reasonable and will be considered here (see, e.g.,
Benaglia et al., 2009; Prates, R., and Lachos, 2013). Figure 4.10 shows in the left-hand
panel a scatter diagram of the data where the waiting variable will be assumed as
the input variable, while eruptions as the output variable. The right-hand graph
shows a cluster classification obtained using the Gaussian LCWM implemented by
us.
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FIGURE 4.10: Scatter plot of the Faithful database together with
classification in two clusters.

Similar to how missing data patterns were generated in previous cases, the ex-
pression in 4.2 was used to simulate the missing data set considering an MNAR
mechanism. Values of b0 = �4.23 and b1 = 1.02 were used allowing larger values
of the eruptions variable to have a greater probability of being missing. This scheme
generated 95 missing data points, out of the 272 that the database has. Figure 4.11
describes the missing data structure through scatter plots, and it also presents the
probability graph to generate the missing data. The largest proportion of missing
data is concentrated in cluster 1 located in the upper right part of the graph. The
observations with the highest values of the variables are located in this region.

We proceed to impute the Faithful database, specifically the eruptions variable
using the information from the fully observed waiting variable. Our model is com-
pared to the mean, pmm, and norm procedures. Figure 4.12 presents scatter plots with
the observed, missing, and imputed data for the four procedures. We can see that
our model better covers the region of missing data. Some observations imputed with
pmm are far from the missing data, while a considerable amount of data imputed with
norm is imputed in the middle of the two components, in a region where there is no
missing data nor observed. Graphically, we can see that of the four procedures pre-
sented, the one corresponding to cwm shows better performance, closely followed by
pmm. Although visually the scatter diagram for the mean method presents the worst
behavior, we must remember that this procedure does not use the information from
the variable waiting, however it recognizes the existence of the two components
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and imputes, although in wrong proportion, in each one of them.
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FIGURE 4.11: Construction of the missing data pattern for the
Faithful data base.

Approach method

KLint Relative distance
eruptionscom - -
eruptionsobs 0.0297 1.00
eruptionsmean 0.0429 1.44
eruptionscwm 0.0018 0.06
eruptionspmm 0.0070 0.24
eruptionsnorm 0.0518 1.74

TABLE 4.6: KL divergences in relation to the complete data distribu-
tion and its relative distances for the Fainthful dataset.

The graphical analysis carried out previously can be quantitatively corroborated
using the KL divergence. Table 4.6 presents the KL divergence values with respect
to the complete-data distribution. This table includes the divergence value for the
procedure mean that does not use auxiliary information as a reference. The relative
distance is taken based on the KL divergence for the variable eruptions with only
observed data. A value less than one allows us to conclude that the distribution of
the imputed variable loses less information than that with only observed data, in
such a way that we can conclude the process has a good performance.

The values in Table 4.6 allow us to conclude that the procedures mean and norm
had the worst performances, while the procedures cwm and pmm, having values lower
than one, show the best results. Among these two, our model is the one that presents
the lowest KL divergence value, which means that out of the compared methods, the
one that loses less information when trying to recover the distribution of the variable
with complete data is ours.
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FIGURE 4.12: Fainthful dataset imputed using mean, cwm, pmm, and
norm methods.

4.3.2 Data Set: Annual Manufacturing Survey from Colombia

The imputation process is illustrated with data from the Annual Manufacturing Sur-
vey (EAM)3 from Colombia in 1994. The database contains 580 variables on 7488
companies. To illustrate the application in the univariate case, we selected the vari-
ables Fixed Assets (AF), which correspond to the assets of the establishment for the
development of its industrial activity, and Employed Personnel Expenses (GPO), which
refers to the sum of the wages and salaries of the personnel hired directly by the
establishment. These variables will be considered as output and input variables,
respectively. Since the missing data will be simulated, the companies that origi-
nally provided incomplete information are removed from the database. This pro-
cess leaves a base with 7419 companies, that is, less than 1% of companies were
eliminated. Due to the right-skewed pattern presented in the distribution of the
variables, their values are log-transformed and standardized.

To generate missing data assuming a MNAR mechanism, an indicator variable
Ri ⇠ Bern(qi) is simulated with missingness probability qi for the i-th observation.
This probability is obtained from the expression

qi = logit�1(b0 + b1yi) for i = 1, ..., n. (4.2)

The value of qi is specified in such a way that individuals with the highest val-
ues of the output variable yi have higher probabilities of not responding. Choosing
b0 = �3.06 and b1 = 1.53 provides a pattern where values of y close to �2 have a

3https://www.dane.gov.co/

https://www.dane.gov.co/
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probability to be missing around 0.002, while values of y close to 2 have a probability
to be missing around 0.5. This schema generated 729 missing data points for the out-
put variable AF. Figure 4.13a illustrates how the missing data is distributed within
the complete data scatter plot, while Figure 4.13b shows the curve that generates the
pattern of missing data given by the expression in (4.2).
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FIGURE 4.13: Construction of the missing data pattern for the EAM
dataset.

To specify the number of components G to use within the imputation process
cmw, we follow the specifications of Kim et al. (2015). They propose to consider large
values for G and, at each iteration of the Gibbs sampler, count the number of compo-
nents that include at least one observation. If this count reaches the value set for G,
it is prudent to increase its value, that is, to readjust the number of components G.
When the count of occupied components is less than G, that is, some components in
each iteration remain empty, then the choice of G is reasonable. Considering the pair
of variables from the EAM data, a value of G = 20 was fixed and, after monitoring
the number of occupied components, we present an analysis for the first five clusters.
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FIGURE 4.14: Imputation model for the Colombian EAM dataset,
based on the MAP iteration.
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Similar to the simulation studies in Section 4.2, to summarize the classification
process and the MCMC results, we selected the iteration that maximizes the den-
sity a posteriori (MAP), following the idea of Fraley and Raftery (2007). Figure 4.14a
shows how the model imputes the missing data set; the imputed data set (red dots)
attempts to cover the region where the missing data (black dots) are located. Figure
4.14b shows, using 95% quantile ellipses, how the first five components were consti-
tuted for the imputation process of the missing data. Table 4.7 presents the clusters’
centers and the mixture weights for each of the first five components, which together
cover 99.9% of the total weight. It should be noted that the last component has the
greatest variability and coincides with the the smallest mixture probability.

cluster µGPO µAF ↵
1 -0.1130 -0.1307 0.3922
2 1.1661 0.9876 0.2777
3 -0.7558 -0.4606 0.1892
4 -0.9695 -1.1355 0.1158
5 -0.4937 -0.9735 0.0250

TABLE 4.7: Centers and mixing weights by cluster of the imputation
model for the EAM dataset.

Appendix D presents graphs that illustrate the construction of the imputation
model. It discriminates by component both the 95% quantile ellipse and the regres-
sion line, each as a result of the marginal and conditional models, respectively. A
graph is also presented with the posterior probabilities dependent on the output
variable GPO.

Since our objective is to establish a methodology that allows the inclusion of aux-
iliary information to the imputation model specified in Paiva and Reiter (2017), we
will also use an imputed variable that makes use of the methodology proposed by
them. This variable is denoted with AFmean, and will serve as the basis for the diag-
nosis of the imputation procedure that we present.

The boxplots of Figure 4.15 allow us to compare the distributions of the output
variable AF, imputed under different procedures. These correspond to the variable
with complete data (AFcom), the one with observed data (AFobs), the one imputed
with the mean procedure (AFmean), and the one imputed with information from the
GPO variable using the cwm procedure (AFcwm).

This first analysis of Figure 4.15 allows us to observe a greater proximity in the
distributions of the variable AFobs and the imputed AFmean, both in light gray. Sim-
ilarity can also be observed between the distributions of the variables AFcom and
AFcwm represented in dark gray. This proximity shows a better performance of the
imputation process with auxiliary information compared to that without informa-
tion, when the objective is to recover the distribution of the complete data, AFcom.

Figure 4.16 shows overlapping histograms for observed, missing, and imputed
data for the variables AFmean and AFcwm. The panel on the left side shows, for the
variable AFmean, that the distribution of the imputed data is strongly influenced by
the distribution of the observed data and does not return the distribution of the miss-
ing data. For the case of the variable AFcwm on the rigth-hand side plot, the auxiliary



48 Chapter 4. Univariate Gaussian LCWM
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FIGURE 4.15: Boxplots for the cases of the variable AF with complete
and observed data, as well as when it was imputed using the mean

and cwm procedures.

information allows the imputed data distribution to recover the missing data distri-
bution. Assuming that a good imputation procedure recovers the distribution of the
missing data through the imputed data, the right-hand side histograms show better
behavior for the imputed variable AFcwm, compared to those corresponding to the
variable AFmean on the left-hand side.

Diagnosis of the imputation process of the EAM database

In order to evaluate the imputation procedure, a first decision is to select the model
that best fits the original data set. In our case, the choice of the Gaussian LCWM
depends on an appropriate choice of the number G of components. Once the num-
ber of components has been established, with the imputed database, the Gaussian
LCWM is fitted in each case and then evaluated.

Several criteria can be used for model selection among a finite set of models.
Watanabe and Opper (2010) define the Watanabe-Akaike information criteria (WAIC).
The WAIC is characterized by being a completely Bayesian procedure, in addition,
compared to AIC and DIC, WAIC has the desirable property of averaging over the
posterior distribution instead of conditioning it to a point estimate (Gelman, Hwang,
and Vehtari, 2014). This will be the criterion that we will take into account here.

The model estimation procedure was executed for values of G = 2, ..., 10. For
each of the estimates obtained, the WAIC was calculated. The results are presented
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FIGURE 4.16: Histograms of observed, missing, and imputed data for
the variables imputed by the two procedures of interest, AFmean and

AFcwm.

in Table 4.8, where the last column refers to the number of occupied clusters, exam-
ining the occupancy rate between MCMC iterations. With these results and using
the parsimony principle, we decided to select a model with G = 5 clusters.

G WAIC # Occupied clusters G WAIC # Occupied clusters

2 32519.4 2 7 31801.6 7
3 31960.7 3 8 31800.3 6
4 31853.6 4 9 31801.6 6
5 31799.3 5 10 31800.9 5
6 31802.9 6

TABLE 4.8: WAIC for different models according to the number of
components for the EAM database.

The estimates obtained for each of the imputed databases allow us to calculate
the KL divergence to compare the different imputation models. The amount of in-
formation lost when the distribution of AFcom is approximated by the distributions
of AFobs, AFmean and AFcwm is calculated. These values are shown in Table 4.9 cal-
culated using the integrate function from the R software. A column is also shown
with the relative distance, calculated taking as a reference the KL divergence for the
observed data.

The values of Table 4.9 show that the distribution estimated with AFcwm is the one
that loses the least information when used to approximate the distribution with the
complete data, AFcom. The amount of information lost by using AFobs and AFmean
was similar. The use of the KL divergence shows a better performance of the imputa-
tion model using the information of the variable GPO with the procedure proposed.

As a complement, in Figure 4.17 we can see the comparison of the estimated den-
sities of the imputed variable with auxiliary information (AFcwm) and that imputed
without any information (AFmean). The histogram corresponds to the distribution of
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Approach method

KLint Relative distance
AFcom - -
AFobs 0.02002 1.00
AFmean 0.01817 0.91
AFcwm 0.00116 0.06

TABLE 4.9: KL divergence and relative distance for the EAM imputed
database using mean and cwm methods.

the variable AFcom, while the curves refer to the estimated densities with informa-
tion from the variables AFcom, AFobs, AFmean and AFcwm. The graph shows that the
density of the variable AFmean (blue dotted line) is closer to that of the variable AFobs
(solid gray line), while the density of the variable AFcwm (red dashed line) is closer to
that corresponding to the variable AFcom (solid black line).
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FIGURE 4.17: Estimated densities of observed, missing, and imputed
data for the variables imputed by the two procedures of interest,

AFmean and AFcwm.

In summary, the implementation of our model, which includes auxiliary infor-
mation, compared to that which does not include it, managed to improve the im-
putation process. The improvement criterion was based on measuring the amount
of information lost when the objective was to approximate the distribution of com-
plete data. We are based on a graphical analysis complemented with a quantitative
measure such as the KL divergence.
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Chapter 5

Multivariate Gaussian LCWM

“It is madness to hate all roses
because you got scratched with one thorn.

To give up on your dreams
because one didn’t come true.”

The Little Prince.

5.1 Overview

For this chapter, the primary interest is to generalize our proposed model to the mul-
tivariate case. As has been emphasized throughout the document, our interest stems
from the model implemented by Paiva and Reiter (2017). The authors present in
their work a new approach for generating imputations for multivariate continuous
data with nonignorable unit nonresponse. The versatility of their model lies mainly
in two characteristics: one, the Gaussian FMM is flexible concerning the modeling
of unknown distributional forms; and two, for the case of imputation of databases
with a non-ignorable response unit, it facilitates the use of pattern-mixture models
by manipulating the mixture probabilities that the FMM initially estimates. In our
case, the interest lies in the use of its applications where there is a group structure in
the data or where the objective is to explore the data for said structure, or when the
data have unknown distributional shapes (McLachlan, Lee, and Rathnayake, 2019).
By including additional information through fully observed variables for all indi-
viduals, and by assuming such variables as observational, the model is expected to
use such information adaptively to decide with which component to impute from,
and to do so assuming a MAR missingness mechanism.

The different structures addressed throughout the study can be illustrated in Fig-
ure 5.1. The simplest particular case can be represented in Figure 5.1a, and we refer
to this as the univariate case that does not include auxiliary information. Starting
from this, we include auxiliary information in such a way that our pattern of interest
takes the form presented in Figure 5.1b. A detailed study of this case is made in
Chapter 4. The most general case, represented by Figure 5.1c, will be the object of
study below, and we will refer to it as multivariate Gaussian LCWM.

The last section of Chapter 3 presents the theoretical results regarding the multi-
variate model. In this section, three results are established in two propositions, and
a corollary summarizes the relationships for the FMM, MRM and LCWM models in
the Gaussian context. In addition, expressions for the mixing probabilities, marginal
and conditional distributions corresponding to the Gaussian LCWM are presented
and are the basis for the development of this chapter.
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(a) No auxiliary information:
univariate case

(b) With auxiliary information:
univariate case

(c) With auxiliary information:
multivariate case

FIGURE 5.1: Structure of the missing data patterns addressed
throughout the study until reaching the Multivariate Gaussian

LCWM.

Section 5.2 presents simulation studies for the multivariate model. It explores
the behavior of the model from two variables, one that does not give any infor-
mation about which component to impute from and another where the variable is
distributed separately among components. As in the univariate case, a vector is con-
structed from the two variables that enter the model as auxiliary information and
the results obtained are analyzed. These three scenarios are implemented using two
additional imputation models used in the context of missing data: predictive mean
matching (Little, 1988) and Bayesian multiple imputation (Rubin, 1987). The perfor-
mance of the two methodologies is compared with our model and the results ob-
tained when the database is imputed are also included without using additional in-
formation. Finally, Section 5.3 implements the proposed model on the iris database.
Two missing data patterns are simulated on this database, one under the MAR mech-
anism and the other under an MNAR mechanism, and the results are analyzed.

5.2 Simulation Studies

For the multivariate case, a data set was simulated from a mixture of normal distri-
butions in four dimensions with two components. Two of the variables were consid-
ered output variables (p = 2), while the other two were considered input variables
(d = 2). The database contains n = 1000 observations of the form (x1, x2, y1, y2). The
mixing probabilities are a1 = 0.6 and a2 = 0.4, the mean vectors µ1 = (1.0, 3.0, 4.0, 2.0)
and µ2 = (1.0, 9.0, 7.0, 6.0), and the covariance matrices are:

S1 =

0

BB@

1.00 0.50 0.50 0.50
0.50 1.00 0.50 0.50
0.50 0.50 1.00 0.50
0.50 0.50 0.50 1.00

1

CCA S2 =

0

BB@

1.00 �0.50 �0.50 0.50
�0.50 1.00 0.50 �0.50
�0.50 0.50 1.00 �0.50

0.50 �0.50 �0.50 1.00

1

CCA

Missing data following a MAR mechanism is generated for the data set, considering
the variables Y1 and Y2 as the ones with missing information, and the variables X1
and X2 as fully observed. For cluster 1, 10% of the data was randomly selected and
considered missing, while 50% was selected for cluster 2. A summary of how the
data was generated is presented in Table 5.1.
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observed missing complete

cluster 1 516 (89.7%) 59 (10.3%) 575 (100%)
(69.9%) (22.5%) (57.5%)

cluster 2 222 (52.2%) 203 (47.8%) 425 (100%)
(30.1%) (77.5%) (42.5%)

total 738 (68.3%) 262 (31.7%) 1000 (100%)
(100%) (100%) (100%)

TABLE 5.1: Distribution of simulated data and pattern of missing data
under a MAR mechanism for the multivariate case.

To complement, the scatter plots matrix of the observed and missing data are
illustrated in Figure 5.2. In the graphs, the behavior of the input variables can be
observed through projections of the 4-dimensional data set. Two types of behavior
are considered similar to the univariate case, an input variable X1 that does not give
information on which component to impute from, and a second input variable X2
distributed separately among components (see the projections X1 ⇥Y1, X1 ⇥Y2, X2 ⇥
Y1, and X2 ⇥ Y2 in the planes in the lower left corner of Figure 5.2).
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FIGURE 5.2: Pairwise plots of the variables in the simulated database.
Observed and missing data generated under a MAR mechanism for

the multivariate case.
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5.2.1 Model performance when new information is included

For this section, the objective is to analyze the type of information that can be entered
into the model through the input variables. Based on the simulated data set, we will
consider three scenarios. In the first scenario, the variable that enters the model does
not provide information on which component to impute from. In the second sce-
nario, the input variable is distributed separately among components, which allows
the model to decide in a correct way with which component to impute from. Finally,
in the third scenario, an input vector is constructed with the two previous variables,
containing a variable that has a separate distribution between components, and the
vector inherits this characteristic and its distribution is separated between compo-
nents.

Figure 5.3 shows how the imputation models are built with the information ob-
tained through the three mentioned situations. Figure 5.3a illustrates the construc-
tion of the imputation model when the auxiliary information that is entered into the
model is done through the variable X1. This variable does not provide information
on which component to impute from. The decision remains in the hands of the esti-
mates of the mixing probabilities, strongly influenced by the number of observations
in each cluster. The left-hand panels correspond to the projection plane X1 ⇥ Y1 and
X1 ⇥ Y2. In them, we observe 95% quantile ellipses for each component and the re-
spective regression lines. We can see that the imputations made by the model are
located around the regression lines. The panels on the right hand side illustrate the
projections in the planes involving the variable X2 and allow us to conclude that
many imputed observations are made far from the observed data regions.

For the case in which we include information from the X2 variable, Figure 5.3b
illustrates the construction of the model. Similar to the previous case, the 95% quan-
tile ellipses and the regression lines are shown. Observing the four panels together,
we can conclude that although it is imputed with only the information of the vari-
able X2, in all the projection planes, the imputed data is generated from regions with
observed information, which seems to indicate the quality of the information that
the input variable X2 delivers to the model. As in the previous case, the imputations
are made around the regression lines. Figure 5.3c shows how the Gaussian LCWM
proceeds when the auxiliary information considers an input vector made up of the
variables X1 and X2. It shows a behavior similar to the case where we consider
auxiliary information of the input variable X2. Imputed values are generated from
regions with observed information and around the regression lines. It should be
noted that, in this case, we have regression planes and quantile ellipsoids for each of
the output variables. The figures illustrate their projections on the planes of interest.

Figure 5.4 presents pairwise plots that illustrate different imputation processes
to be compared. The observed, missing and imputed data are plotted on each plane
of the scatter plot matrix. We start with the analysis of the imputation process using
the input variable X1. Figure 5.4a shows how the imputations (red dots) behaved
with respect to the missing data pattern (black dots). We can see that the procedure
incorrectly imputes with respect to the proportion made in each cluster. Cluster 1
has the smallest proportion of missing data, however the method imputes the largest
proportion of data here. As we mentioned, this variable does not provide informa-
tion on which component to make the imputation from. The imputation procedure
is established from the estimates of the probabilities of mixtures, which are strongly
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FIGURE 5.3: Construction of the imputation process through the
Gaussian LCWM using information from different types of variables.
Observed and imputed data in the different projection planes. 95%

quantile ellipses and regression lines.

influenced by the proportion of data observed in each component. The projection
planes X2 ⇥ Y1 and X2 ⇥ Y2 allow us to observe regions with incorrectly imputed
observations, regions that do not coincide with either observed data or missing data.
These projections allow us to clearly see the error made in the imputation process,
which is evident on the Y1 ⇥ Y2 plane through the difference in the proportions of
imputed and missing data in each component.

For the two situations that follow, we can observe a better performance of our
model. When we use as auxiliary information a variable or vector that is distributed
separately among components, the marginal distribution in the Gaussian LCWM
can determine with which component to impute from precisely. Figure 5.4b illus-
trates the way in which our model imputes using information from the variable X2.
This variable is distributed separately among components, and we observe how the
imputations cover the regions corresponding to the missing data in the same propor-
tions in which they appear. Figure 5.4c refers to our model using the input vector
(X1, X2). A behavior similar to the previous one is shown with respect to the results
of the imputation procedure. It is of special interest to refer here to the idea that
we mentioned in Chapter 4, regarding an input vector with separate distribution
between components. This idea can be reinforced using the multivariate model. We
can see in the panel in Figure 5.4c, corresponding to the projection X1 ⇥ X2, that two
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separate groups in the scatter diagram allow us to establish that the distribution of
the input vector (X1, X2) is separated between components. In the univariate case,
we try to illustrate this idea with the bimodal histogram at the bottom of Figure 4.2b.
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FIGURE 5.4: Pairwise plots of the simulated multivariate database
imputed by Gaussian LCWM with information on different types of

variables.

Finally, heat maps for the output variables of the imputed databases using the
Gaussian LCWM under the different types of input variables are presented in Figure
5.5. We consider heat maps for imputed values only, in the cases of including as
auxiliary information in our model the variables X1, X2 and the vector (X1, X2).
We compare these maps with the one that refers to the data generated as missing
to analyze the performance of each type of variable, see Figure 5.5a. Here we can
observe the similarity between the maps that correspond to the original missing
data and those imputed with information from the variable X2 and with the vector
(X1, X2). On the other hand, the map obtained from the database imputed with X1
differs from the one corresponding to missing data, which allows us to conclude the
poor performance of the model with the characteristics of this variable. The heat
maps in Figure 5.5b refer to the same cases but for the complete output variables. A
greater similarity is observed in the heat maps for complete and imputed data with
the variable X2 and the vector (X1, X2). For the case of the data imputed with the
variable X1, a slight difference is observed specifically for the values corresponding
to cluster 2.
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FIGURE 5.5: Bivariate distribution heatmaps of database imputed us-
ing Gaussian LCWM with information on the variables X1, X2 and

the vector (X1, X2).

5.2.2 Gaussian LCWM performance relative to other imputation methods

For this section, we consider comparing our imputation model, the Gaussian LCWM
(cwm), with various procedures of interest. Among these, is the model that does not
include information and we call it the mean method (mean), and two methods whose
interest is centered on the fact that they are based on a Bayesian approach and on
values predicted by a regression model, we refer to these procedures as predictive
mean matching (pmm) and Bayesian multiple imputation (norm). For these last two proce-
dures that use auxiliary information, we will consider the information coming from
the same input variables that we used in the previous section to analyze the perfor-
mance of our model, we refer to the variables X1, X2 and the vector (X1, X2).

A graphical analysis of the different imputation processes to be compared can
be done from the pairwise plots for the procedures that interest us. Graphs for the
procedure mean, and for pmm and norm in the case of information of the variables X1,
X2 and the vector (X1, X2) are shown in Appendix C.2.

As a starting point, the procedure mean had similar results to the case of our
model with information from the variable X1. The procedure imputed observations
in regions where missing data was not generated, and the proportions of imputed
data in each component appear to have been influenced by the data observed in
each component. Within each procedure, the performance of the input variables
had a behavior similar to the case of the Gaussian LCWM. The variable X1 had the
worst performance, while the variable X2 and the vector (X1, X2) allowed us to ob-
serve the best behaviors.

Although for each of the methods a similar behavior occurs when the different in-
put variables are used, something that seems to be advantageous for our methodol-
ogy is that the values are imputed within the regions established from the observed
data, and very close to the missing values. The procedure norm performs some im-
putations outside the regions defined by the clusters, even if the input variable is
separated between components. In addition, the imputations that are made within
one of the components do not maintain the trend of the data within it. The pmm pro-
cedure maintains a better performance in the imputations made, closely following
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the behavior of the cwm methodology.

The analysis carried out can be complemented by using a quantitative measure
that allows us to evaluate the different imputation processes. As in the univariate
case, the Kullback-Leibler divergence will be used as a metric to compare perfor-
mance when different types of variables are used as auxiliary information in the
proposed model. We will also use it when our objective is to compare with other
methods of interest.

5.2.3 Quantitative diagnosis of imputation processes

The use of the Kullback-Leibler divergence aims to compare the estimated distri-
butions for the imputed databases under the different paradigms with the original
distribution. Recall that here we seek to measure the amount of information lost
when we approximate the true distribution using the distributions estimated from
the bases imputed by the different procedures.

The procedure we use to calculate this measure starts from completing the data
set from the imputations using the different methods. After this, we estimate the
parameters of the model and take the information corresponding to the output vari-
ables, means and covariance matrices, together with the estimates of the mixing
probabilities. Since there is no closed expression for the calculation of the KL di-
vergence in the case of the Gaussian FMM, we use an approximation by means of
Monte Carlo methods (Hershey and Olsen, 2007; Durrieu, Thiran, and Kelly, 2012).
To refer to this approximation, we will use the notation KLmc. The results obtained
are shown in Table 5.2. At the top of the table, a 95% quantile interval is presented
for values of the KL divergence. The calculation is obtained from N = 10000 sam-
pled databases of size n = 1000 corresponding to the true distribution of the output
variables (Y1, Y2). Their parameters are estimated using the mixsmsn package and
calculating their KL divergence for each base. We assume that any KL divergence
value that falls within the interval allows us to conclude that the original distribution
was recovered, this will be noted with WI in the relative distance column. The values
in this column are obtained by calculating the distance between the corresponding
KL divergence value and the right limit of the quantile interval.

cwm pmm norm
KLmc Relative distance KLmc Relative distance KLmc Relative distance

Qu.int. 95.0% (0,0.0107) - (0,0.0107) - (0,0.0107) -
g(Y1,Y2)com 0.0081 WI 0.0081 WI 0.0081 WI
g(Y1,Y2)obs

0.0358 3.36 0.0358 3.36 0.0358 3.36
g(Y1,Y2)mean 0.3140 29.46 - - - -
g(Y1,Y2)X1

0.0342 3.22 0.3092 29.00 0.3114 29.21
g(Y1,Y2)X2

0.0149 1.40 0.0181 1.75 0.0620 5.81
g(Y1,Y2)(X1,X2)

0.0112 1.05 0.0247 2.31 0.0505 4.74

TABLE 5.2: KL divergence and relative distance for the estimated dis-
tributions of the complete, observed and imputed databases in the
three cases of interest and the four models to be compared in the mul-

tivariate case.

The results of the column corresponding to cwm in Table 5.2 allow quantitative
confirmation of the analyzes carried out from the graphs of Section 5.2.1. The dis-
tributions that lose the least information when trying to approximate the original
distribution are those that were imputed using the information from the variable X2
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and the vector (X1, X2). Indeed, those are the ones that use information from vari-
ables or vectors that are distributed separately among components. Similar to the
univariate case, the imputation process with the variable X1 has a poor performance.
However, constructing an input vector with at least one variable that is distributed
separately between components, allows to obtain a vector with separated distribu-
tion between components and the imputation process with such vector has a good
performance. This happened by integrating the variables X1 and X2 into a vector
and using it as the input vector in our model.

Section 5.2.2 aimed to compare the different imputation methods with the Gaus-
sian LCWM. A first comparison can be carried out using the KL divergence when
confronting our model with the procedure that does not include auxiliary informa-
tion, we refer to that as the mean imputation method. We observe that, even using the
variable X1, our model achieved a better performance. The columns labeled pmm and
norm in Table 5.2 present the KL divergence values for similar cases implemented for
our model, i.e., imputation of the output variables (Y1, Y2) with information from X1,
X2 and (X1, X2). Results similar to those analyzed for the cwm method were obtained
within each methodology. When comparing the three procedures, we observe a bet-
ter performance of our model in the three specific situations that are presented. In
the case of the use of auxiliary information from the variable X1, the three proce-
dures show the worst performance, however our imputation model shows by far
the smallest loss of information. Similar conclusions can be obtained from Table B.4
of Appendix B where the KL divergence values are calculated with respect to the
distribution obtained from complete data.

5.3 Ilustrative Example with Real Data

5.3.1 Data Set: Iris

The Iris flower data set is a multivariate data set collected by Anderson (1935) and
first analyzed by Fisher (1936). The data set consists of 50 samples from each of
three species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four features were
measured from each sample: the length and the width of the sepals and petals, in
centimeters. Several authors, including McLachlan and Peel (2004) and Frühwirth-
Schnatter (2006), have made use of the iris database in the framework of the imple-
mentation of models related to the Gaussian FMM.

The database variables were divided into two groups, one in which its variables
were considered output variables (Sepal.Length and Petal.Width) and on which
the missing data pattern was simulated. The second set of variables was consid-
ered as input variables and they are assumed to be fully observed (Sepal.Width and
Petal.Length). Each of the three species was considered as a cluster in the data set,
in such a way that, for the diagnosis of the imputation processes, G = 3 will be as-
sumed as the true number of components.

The way in which the variables of the iris database are distributed is presented
in Figure 5.6. The behavior of the input variables approximates the scenarios pre-
sented in the case of simulated data. Petal.Length variable is characterized by hav-
ing a distribution that is separated into two groups; the versicolor and virginica
species appear next to each other, visually forming a single group. The variable
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Petal.Length does not give any information on which component to allocate with.
Since the missing values will be imputed with the information provided by both
variables, the input vector inherits the characteristic of separate distribution between
components of the variable Petal.Length.
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FIGURE 5.6: Pairwise plot of the variables in the iris database dis-
criminated by species. At the top left and bottom right, scatter plots
of the input variables and output variables are shown respectively. In

the lower left corner, the crosses of these variables are displayed.

Two missing data scenarios were simulated, one using a MAR mechanism, while
the second used a MNAR mechanism. The databases were imputed using our model
together with the three methodologies considered throughout the document.

Simulation of missing data under MAR mechanism

To generate a set of data missing under the MAR mechanism, different probabili-
ties of missingness were established for each species. In this way, 30% of missing
data was simulated for the setosa species, 20% for the versicolor species, and 10%
for the virginica species. With these proportions thus defined, 20% of missing data
is expected in the complete database. The distribution of observed, missing, and
complete data obtained by species is shown in Table 5.3.

The database was imputed using the methods presented here. Specifically, the
variables Sepal.Length and Petal.Width are imputed with information from the
fully observed variables Sepal.Width and Petal.Length. For the mean, cwm, and
norm imputation procedures, the code designed by us for the Gaussian LCWM was
used. In the case of the mean method, the option to impute without auxiliary infor-
mation is specified on the program; for the case of the norm procedure, it is imple-
mented by specifying the condition of the number of clusters as G = 1, together
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observed missing complete

setosa 36 (72.0%) 14 (28.0%) 50 (100%)
(30.5%) (43.8%) (33.3%)

versicolor 37 (74.0%) 13 (26.0%) 50 (100%)
(31.4%) (40.6%) (33.3%)

virginica 45 (90.0%) 5 (10.0%) 50 (100%)
(38.1%) (15.6%) (33.3%)

total 118 (78.7%) 32 (21.3%) 150 (100%)
(100%) (100%) (100%)

TABLE 5.3: Distribution of simulated missing data for the iris
database under the MAR mechanism.

with the use of auxiliary information. For our cwm methodology, we specify a value
of G = 10 clusters, as well as the use of auxiliary information. In the case of the pmm
method, the mice package is used to implement it.

We present the pairwise plot for the variables of the imputed database using the
Gaussian LCWM (see Figure 5.7). Each panel illustrates the observed, missing, and
imputed values. The panels show that the regions where missing data appear are
well represented by the imputed data. In the panel in the upper left part, the input
variables are crossed, since in the imputation procedure this is considered as known
information, the points in red appear superimposed on the points in black. In the
lower right panel, the output variables are crossed, those with missing information.
Here the imputations made by the model can be observed. The four panels in the
lower left corner cross the input and output variables and show how the imputation
process was conducted.

Pairwise plots similar for each imputation procedure are shown in Appendix E.
From these graphs, it can be seen that the norm and pmm procedures visually present
close results. The regions where missing data was generated are covered by imputed
data in similar proportions. Although for the component corresponding to the se-
tosa species, the mean procedure shows a slightly greater dispersion in the imputed
data.

A quantitative analysis is presented using the KL divergence values presented in
Table 5.4. In all cases, the adjustment of a Gaussian FMM with G = 3 components
was considered. For them, the complete database was used, the one with observed
data, while in the case of the imputation procedures to be compared, databases im-
puted by each of the methods of interest were used. We run our code for the estima-
tion procedure with values of burn-in = 10000 and effectiveSize = 1000. With
values of the estimates of the mixture probabilities, mean vectors and covariance
matrices, and using a procedure based on Monte Carlo methods, the values of the
KL divergence were approximate (Hershey and Olsen, 2007; Durrieu, Thiran, and
Kelly, 2012).

For this case, we take as a reference the value of the KL divergence for observed
data. Thus, the relative distance between the distribution of complete and observed
data, based on the KL divergence, will be taken as unity. For imputation procedures
with distances less than one, the methodology will be considered good in the sense
that less information is lost when using the estimated distribution of the imputed
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FIGURE 5.7: Pairwise plot of the imputed iris database using the
Gaussian LCWM. Each panel presents the crossing of two of the vari-
ables specifying observed values, missing values and imputed val-

ues. Missing data generated using a MAR mechanism.

base to approximate the distribution of complete data, compared to the estimated
distribution of observed data. Based on this criterion, the results in Table 5.4 show
that the worst performance corresponded to the imputation process without auxil-
iary information, as expected. Of the methods that used auxiliary information, the
one that had the best performance was ours, followed by the pmm methodology. The
norm procedure maintained a loss of information similar to the distribution with only
observed data.

Simulation of missing data under MNAR mechanism

A second scenario that was simulated for the missing data set was based on an
MNAR mechanism. For this, the missing data set was generated in such a way

Approach method

KLmc Relative distance
(PW,SL)com - -
(PW,SL)obs 0.0431 1.00
(PW,SL)mean 0.1280 2.97
(PW,SL)cwm 0.0252 0.58
(PW,SL)pmm 0.0396 0.92
(PW,SL)norm 0.0429 1.00

TABLE 5.4: KL divergences for the imputed iris database. Rela-
tive distances taken with reference to the estimated distribution of

observed data. Missing data generated from a MAR mechanism.
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that they were related to their values. In our case, the missing data was simulated in
such a way that the larger values of the Sepal.Length and Petal.Width output vari-
ables had a higher probability of missing. To simulate this missing data mechanism,
the expression in (4.2) was used with specific values of b0 and b1. The distribution
of missing data within the database is summarized in Table 5.5 and establishes the
amount of observed, missing, and complete data for each species. Since the highest
values of the output variables are found in the virginica species, then the versicolor
species and the lowest values in the setosa species, the largest amount of missing
data is generated in the virginica category (22), then in the group corresponding to
versicolor (7) and finally in the setosa species (2).

observed missing complete

setosa 48 (96.0%) 2 (4.0%) 50 (100%)
(40.3%) (6.4%) (33.3%)

versicolor 43 (86.0%) 7 (14.0%) 50 (100%)
(36.1%) (22.6%) (33.3%)

virginica 28 (56.0%) 22 (44.0%) 50 (100%)
(23.5%) (71.0%) (33.3%)

total 119 (80.0%) 31 (20.0%) 150 (100%)
(100%) (100%) (100%)

TABLE 5.5: Distribution of simulated missing data for the iris
database under the MNAR mechanism.

As in the case of missing data under MAR in the previous section, the output
variables Sepal.Length and Petal.Width are imputed with information from the
fully observed variables Sepal.Width and Petal.Length. The conditions to imple-
ment the imputation procedures through our programming code on the R software
follow the same structure mentioned above, as well as the use of the MICE package
for the pmm procedure.

Figure 5.8 shows pairwise plots for the imputed database in the case of our cwm
methodology. We can see that our model imputes in the different regions with the
same proportions with which the missing data was generated. Where the values of
the variables are higher, more imputations appear according to the number of ob-
servations that were missing. In the region where the lowest values of the variable
are found, a pair of missing values was generated and the model imputed the same.
Our imputation process allowed us to cover all the regions where missing data was
generated, something that does not seem to have happened with the norm and pmm
methods. In a part of the region occupied by the virginica species, the data disap-
peared completely and this resulted in the two procedures not imputing data there.
Van Buuren (2018) affirms that, although the pmm procedure is robust, this last situ-
ation that we have just described causes the pmm method to impute with the same
observations and this becomes a problem when it is imputed with this methodol-
ogy. This was confirmed by us in the simulation studies in Chapter 4. The pairwise
graphs for the other imputation procedures can be consulted in Appendix E.

Once again, the analyzes made from the graphs can be supported by the KL
divergence values presented in Table 5.6. In this case, we could observe that the
only procedure that presented a good performance compared to the information
provided by the set of observed data was ours. The value of the KL divergence for
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FIGURE 5.8: Pairwise plot of the imputed iris database using the
Gaussian LCWM. Each panel presents the crossing of two of the vari-
ables specifying observed values, missing values and imputed val-

ues. Missing data generated using a MNAR mechanism.

the imputation methodology pmm matched that for observed data. The mean and norm
procedures performed the worst.

Approach method

KLmc Relative distance
(PW,SL)com - -
(PW,SL)obs 0.1405 1.00
(PW,SL)mean 0.2061 1.46
(PW,SL)cwm 0.0762 0.54
(PW,SL)pmm 0.1410 1.00
(PW,SL)norm 0.2186 1.56

TABLE 5.6: KL divergences for the imputed iris database. Rela-
tive distances taken with reference to the estimated distribution of

observed data. Missing data generated from a MNAR mechanism.

To conclude, two missing data patterns were simulated on the iris database. A
first pattern was generated under a MAR mechanism, while the second was made
under an MNAR mechanism. In both cases, our imputation model performed better.
Initially, when it was compared with the methodology that did not use auxiliary
information, and later it performed in a similar way when it was compared with
methods of interest that also made use of auxiliary information from fully observed
variables. It is important to note that, although the missing data was simulated from
MAR and MNAR mechanisms, there is no underlying structure in our model that
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considers non-ignorable response mechanisms. Its good performance in the face of
missing data under a MNAR mechanism characterizes it as a robust method.
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Chapter 6

Conclusions and Final

Observations

“One day, I watched the sun setting
forty-four times...

You know... when one is so terribly sad,
one loves sunsets.”

The Little Prince.

We present a new methodology called Gaussian Linear Cluster-Weighted Modeling
for the process of imputation of continuous multivariate data in the case in which the
data set has a group-structure or where the objective is to explore the data for such
structure or when the data have unknown distributional shapes. Uses the results
of the Finite Mixture Models (McLachlan, Lee, and Rathnayake, 2019; Frühwirth-
Schnatter, 2006) and the Cluster-Weighted Modeling (Gershenfeld, 1997; Ingrassia,
Minotti, and Vittadini, 2012), both restricted to Gaussian distributions. We use a
fully Bayesian approach that jointly models and imputes data with missing values
using a flexible Dirichlet process mixture of multivariate normal distributions. The
imputation model is designed on a non-response unit pattern where variables with
missing information are called output variables. For all individuals we assume that
it is possible to find auxiliary information from other sources, these fully observed
variables are called input variables. Under the assumption of considering the input
information as observational, we jointly model input and output variables in such a
way that the model uses the input information adaptively to characterize the com-
ponents. Likewise, the model uses this information to decide with which component
to impute.

It is possible to include input variables that move between two extreme scenar-
ios. First, we have variables that do not provide information on which component to
impute from, these variables have a similar distribution among the components de-
tected by the model. On the other hand, we have input variables that are distributed
separately among the components. These are variables with an ideal behavior, which
with the information they provide correctly indicate to the model from which com-
ponent to impute. Furthermore, including in the input vector at least one variable
that is distributed separately among components, allows the vector to inherit this
property, and its distribution has this same desirable characteristic for the informa-
tion that is entered into the model. The performance of the type of input variable that
enters the imputation model was able to be evaluated through simulated databases
where the pattern of missing data was also simulated. A descriptive and graphi-
cal analysis was performed, complemented by a quantitative evaluation using the
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Kullback-Leibler divergence, a non-symmetric measure of the similarity or differ-
ence between two probability distribution functions. For our case, these are the true
distribution and the estimated distribution using the imputed database.

Our study was carried out first for the univariate case, and then generalized for
the multivariate case. Initially, it was possible, starting from the model that does not
consider additional information, to build a model that includes this information and
that improves the imputation procedure. This is done under the possibility of select-
ing input variables with a high correlation with respect to the output variables and
that are characterized to be distributed separately among components. Next, we
compare the performance of the proposed model with other procedures that were
of interest due to their Bayesian approach, and because they use prediction mod-
els to obtain the required imputations. These were the predictive mean matching and
Bayesian multiple imputation procedures. The simulated scenarios showed a better
performance of our model in the case of databases with group structure, as was the
case of the simulated scenarios for univariate and multivariate data. We observed
in the predictive mean matching methodology a robust procedure. In the different sce-
narios simulated by us, it always showed results very close to our model. However,
when we simulated an extreme scenario, where the missing data pattern considered
censored data and with a group structure, we could observe the poor performance
of this procedure compared to ours. In this regard, Van Buuren (2018) states that
the danger when using the imputation procedure pmm is the duplication of the same
donor value many times. Also, this problem is more likely to occur if the sample is
small or if much more data is missing than the observed data in a particular region
of the predicted value.

The Gaussian LCWM imputation procedure in the univariate case was imple-
mented on two real databases in which missing data patterns were simulated. For
the Annual Survey of Manufacturing in Colombia dataset, a pattern of missing data
was simulated under a MNAR mechanism. Our model allowed entering auxiliary
information, achieving a better performance in the imputation process compared to
that procedure that did not use additional information. Furthermore, although our
model imputes assuming a MAR mechanism, we were able to observe that includ-
ing appropriate auxiliary information improves the quality of imputations, even if
the missing values had been generated from a MNAR mechanism. This allows us to
conclude that our model is robust to the type of missing data mechanism. Also, for
the univariate case, we implement our model using the Faithful database, which is
characterized by having a group-structure. A pattern of missing data was simulated
on it under a MNAR mechanism. The variable eruption was considered as the out-
put variable, while waiting was assumed as the input variable. The missing data
was imputed using our model together with three more procedures, the one that
does not use auxiliary information, predictive mean matching, and Bayesian multiple
imputation. Once again, the Gaussian LCWM imputation procedure showed the best
performance with respect to the presented methods. The group-structure of the data
set gives our model advantages over the others, as does the use of the input variable
waiting which has a separate distribution between the two groups.

The theoretical results for the multivariate model were established, generaliz-
ing the results presented by Gershenfeld (1997) and Ingrassia, Minotti, and Vittadini
(2012) for the univariate case. With these results and following a procedure similar
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to the univariate case, a set of simulated data was considered on which the perfor-
mance of different types of input variables for the imputation model was analyzed.
Similar characteristics were obtained to the univariate case regarding the perfor-
mance of different types of input variables. These variables move between two ex-
treme scenarios, variables that do not provide information on which component to
impute from and those that are characterized by being distributed separately among
components. Due to its performance, this last type of variable is considered desirable
to be included as auxiliary information in the proposed imputation model. On the
same simulated scenarios, the Gaussian LCWM was compared with the aforemen-
tioned imputation procedures, obtaining favorable results for our model. Similarly,
our methodology was implemented on the Iris database. On this data set, two input
variables and two output variables were considered, in addition, two missing data
patterns on MAR and MNAR mechanisms were simulated. The three procedures of
interest were implemented for comparison. Once again, our model showed a better
performance compared to the other procedures and in both scenarios.

Our imputation procedure was implemented with programming in R software.
Several scripts were developed, and at the moment we are debugging them so that
they can be shared in a virtual space so that those who are interested in adapting the
methodology on databases with missing information have access to them. A direct
future work of this study is to extend the methodology to the case of finite mixture
models where the considered distributions are other than the normal distribution.
For example, Skew Normal or t�Mixture Models, among others. It would also be
of interest to develop criteria for the selection of meaningful variables that can be
used as auxiliaries, as that allows to make the best possible imputation. Another
possible extension is to create a cwm-pmm hybrid method, that takes advantage of both
methodologies and check if it would improve the imputation performance. Finally,
in some situations, according to the researcher’s knowledge, it might be of interest
to allow imputation to be carried in a particular region of the data set. Therefore, an
extension to properly having a model that allows for explicit MNAR imputation is
of interest.
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Appendix A

Univariate simulation with

information from an input vector

In the simulation studies in Section 4.2, where we evaluate the performance of the
variables that enter the imputation procedure under the Gaussian LCWM, we dis-
cuss the case of auxiliary information from an input vector. The vector is made up of
the two variables that were considered in the analysis, that is, X = (X1, X2). Here
are the graphs that illustrate this scenario.
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FIGURE A.1: Construction of the univariate imputation model for
simulated data considering the vector (X1, X2) as auxiliary informa-

tion.
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Appendix B

KL divergence tables for simulated

data

To give us an idea of how the performance of the imputation model is when the real
distribution is not known, specifically in the case of the examples with real data, be-
low are tables of KL divergence values calculated taking the estimated distribution
based on complete data as reference distribution.

Approach method

KLint Relative distance
gYcom - -
gYobs 0.0512 1.00
gYX1

0.0592 1.15
gYX2

0.0007 0.01
gY(X1,X2)

0.0007 0.01

TABLE B.1: KL divergences and relative distances for the imputed
variables taking the estimated distribution based on complete data as
reference distribution and with information from the input variables

X1, X2, and (X1, X2).

cwm pmm norm
KLint Relative distance KLint Relative distance KLint Relative distance

gYcom - - - - - -
gYobs 0.0512 1.00 0.0512 1.00 0.0512 1.00
gYmean 0.0715 1.40 - - - -
gYX1

0.0592 1.15 0.1179 2.30 0.1600 3.12
gYX2

0.0007 0.01 0.0004 0.01 0.0297 0.58
gY(X1,X2)

0.0007 0.01 0.0021 0.04 0.0209 0.41

TABLE B.2: Performance of the mean, cwm, pmm and norm methods by
calculating the KL divergence taking the estimated distribution based
on complete data as reference distribution for the univariate simu-

lated data set.
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Approach method

KLint Relative distance
gYcom - -
gYobs 0.0387 1.00
gYmean 0.2870 7.42
gYcwm 0.0094 0.24
gYpmm 0.0388 1.00
gYnorm 0.1905 4.93

TABLE B.3: KL divergences and relative distances taking the esti-
mated distribution based on complete data as reference distribution
and for each of the imputation methods in the case of censored miss-

ing data.

cwm pmm norm
KLmc Relative distance KLmc Relative distance KLmc Relative distance

g(Y1,Y2)com - - - - - -
g(Y1,Y2)obs

0.0532 1.00 0.0532 1.00 0.0532 1.00
g(Y1,Y2)mean 0.3509 6.59 - - - -
g(Y1,Y2)X1

0.0490 0.92 0.3465 6.51 0.3451 6.49
g(Y1,Y2)X2

0.0080 0.14 0.0099 0.18 0.0663 1.24
g(Y1,Y2)(X1,X2)

0.0050 0.09 0.0227 0.43 0.0552 1.04

TABLE B.4: KL divergence and relative distance for the estimated
distributions of the observed and imputed databases taking the es-
timated distribution based on complete data as reference distribution
and considering the four models to be compared in the multivariate

case.
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Appendix C

mean, norm, and pmm imputation

procedures.

In the case of the analysis made on the different variables that enter the imputation
procedure under the Gaussian LCWM in Sections 4.2 and 5.2, a comparison is made
with respect to various imputation methodologies considering the same scenarios.
The graphs that illustrate the results of the imputation process are presented below
for the univariate and multivariate cases. The average methodology that does not
consider the use of variables with auxiliary information is included.

C.1 Imputation with mean, norm, and pmm for the univariate

case
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FIGURE C.1: Pair graphs of the univariate database: Simulation 1.
Imputed with mean.



76 Appendix C. mean, norm, and pmm imputation procedures.

−2 −1 0 1 2 3 4

−2
−1

0
1

2
3

4

X_1

0
2

4
6

8
10

12

−2 −1 0 1 2 3 4

0
2

4
6

8
10

X_2

0 2 4 6 8 10 12 0 2 4 6 8 10

0
2

4
6

8
10

Y

Imputed with pmm−X1
observed
missing
imputed

FIGURE C.2: Pair graphs of the univariate database: Simulation 1.
Imputed with pmm and information from X1.
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FIGURE C.6: Pair graphs of the univariate database: Simulation 1.
Imputed with pmm and information from (X1, X2).
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C.2 Imputation with mean, norm and pmm for the multivariate

case
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FIGURE C.8: Pair graphs of the multivariate database. Imputed with
mean.
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Appendix D

EAM database imputation

In Section 4.3, we present applications with real data for the Gaussian LCWM in
the univariate case. Regarding the application for the data of the Annual Manufac-
turing Survey in Colombia, the following graphs illustrate the construction of the
model discriminated by clusters. In each graph the observed, missing and imputed
data, the 95% quantile ellipse and the regression line are presented. The last graph
illustrates the curves for the mixture weights dependent on the input variable GPO.
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FIGURE D.1: Construction of the imputation model for EAM
database: Graphics for clusters 1 and 2.
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Appendix E

Iris database imputation

Section 5.3 presents the application of the Gaussian LCWM in the multivariate case.
For that, the Iris database is used and with it, it was simulated two missing data pat-
terns, one under the MAR mechanism and the other under the MNAR mechanism.
Pairwise graphs for the mean, norm and pmm imputation procedures are presented
below in the two cases of simulated missing data patterns.

E.1 Iris database imputation with missing data MAR mech-

anism
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FIGURE E.1: Pairwise plot of the imputed iris database using mean
method. Each panel presents the crossing of two of the variables spec-
ifying observed values, missing values and imputed values. Missing

data generated using a MAR mechanism.
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FIGURE E.2: Pairwise plot of the imputed iris database using norm
method. Each panel presents the crossing of two of the variables spec-
ifying observed values, missing values and imputed values. Missing

data generated using a MAR mechanism.
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method. Each panel presents the crossing of two of the variables spec-
ifying observed values, missing values and imputed values. Missing
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E.2 Iris database imputation with missing data MNAR mech-

anism
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FIGURE E.4: Pairwise plot of the imputed iris database using mean
method. Each panel presents the crossing of two of the variables spec-
ifying observed values, missing values and imputed values. Missing

data generated using a MNAR mechanism.

2.0 2.5 3.0 3.5 4.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Width

1
2

3
4

5
6

7
4.

5
5.

5
6.

5
7.

5

2.0 2.5 3.0 3.5 4.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

1 2 3 4 5 6 7

Sepal.Length

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.00.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Width

Imputed with norm
observed
missing
imputed

FIGURE E.5: Pairwise plot of the imputed iris database using norm
method. Each panel presents the crossing of two of the variables spec-
ifying observed values, missing values and imputed values. Missing

data generated using a MNAR mechanism.
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