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a b s t r a c t

A continuous-time quantumwalk ismodelled using a graph. In this short paper, we provide
lower bounds on the size of a graph that would allow for some quantum phenomena to
occur. Among other things, we show that, in the adjacency matrix quantum walk model,
the number of edges is bounded below by a cubic function on the eccentricity of a periodic
vertex. This gives some idea on the shape of a graph that would admit periodicity or perfect
state transfer. We also raise some extremal type of questions in the end that could lead to
future research.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We model a network of interacting qubits in the continuous-time quantum walk XY model by a simple graph G with
adjacency matrix A, which encodes the pairs of qubits that interact. We are interested in the single-excitation subspace,
that is the case when the system is initialized with one qubit in state |1⟩ and all others in state |0⟩. This model with a time-
independent Hamiltonian evolves according to Schrödinger equation, and the main problemwe address is what happens to
the state |1⟩ as time passes. For example, if this state is observed at another vertex with probability 1 after a certain time,
we say that perfect state transfer has happened. This is equivalent to having a pair of vertices a and b and a time τ ≥ 0
such that

|exp(iτA)a,b| = 1.

When a = b in the equation above, we say that vertex a is periodic. Vertices involved in perfect state transfer are periodic
at double the time, but the converse does not hold in general.

Perfect state transfer was first considered by Bose [1] and has since been studied in a good number of papers and
in different contexts, spanning the fields of physics, mathematics and computer science. Surveys are found in Kendon
and Tamon [10] and Godsil [7]. The thesis [4] contains a detailed introduction and a more recent compilation of known
results.

Christandl et al. [3] showed that the paths on two and three vertices admit perfect state transfer between the end vertices,
and that if a graph admits perfect state transfer, then any Cartesian power of this graph also admits perfect state transfer at
the same time. The pictures below depict the Cartesian squares and cubes of paths on 2 and 3 vertices, and the vertices in
black are involved in perfect state transfer.
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Suppose a graph G admits perfect state transfer between vertices at distance d. In this paper, we are interested in
determining what is the cost in terms of the number of vertices or edges. To this day, the best known trade-off is achieved by
the Cartesian powers of P3, in which perfect state transfer between vertices at even distance d happens in a graph with 3d/2

vertices and d · 3(d/2)−1 edges. However, there is no known lower bound on the number of edges in terms of the diameter
alone other than a trivial linear bound. See [9, section E] for some discussion.

As wementioned, vertices involved in perfect state transfer must be periodic. This turns out to be the key concept needed
to bound the size of the graph. More specifically, we will derive bounds that depend on the eccentricity of a periodic vertex,
and also on the period.

2. The eccentricity of periodic vertices

In our considerations below, M is a symmetric integer matrix whose rows and columns are indexed by the vertices of a
graph, and whose an off diagonal entry is non-zero if and only if the corresponding pair of vertices is adjacent. Moreover,
we assume that the sign of all off-diagonal entries is the same. For example, M can be the adjacency, the Laplacian, or the
signless Laplacian, as well as weighted versions of these matrices, provided all weights are integers with the same sign.

We say that vertex a is periodic in G according to M if there is a positive real time τ such that exp(iτM)a,a has absolute
value equal to one.

Let θ0 > · · · > θt be the distinct eigenvalues of M . If a is a vertex of G, we denote by ea the 01-vector in Rn that is
0 everywhere except for the position corresponding to a. Because M is symmetric, it has a spectral decomposition into
orthogonal idempotents as follows.

M =

t∑
r=0

θrEr .

Let Φa denote the set of eigenvalues ofM such that θr ∈ Φa if and only if Erea ̸= 0. This is the eigenvalue support of a.

Theorem 1 (Godsil [8], Theorem 6.1). If vertex a is periodic in G according to M, then the non-zero elements in Φa are either all
integers or all quadratic integers. Moreover, there is a square-free positive integer ∆, an integer α and integers βr such that

θr ∈ Φa H⇒ θr =
1
2
(α + βr

√
∆).

In the result above, we consider ∆ = 1 for the cases where all non-zero eigenvalues are integers. We also point that if
∆ > 1, then because the rational part of the quadratic integers is constant, it must be that all βr have the same parity.

If M = L(G), note that 0 is always an eigenvalue in the eigenvalue support of any vertex. Moreover, L(G) ⪰ 0, and so no
eigenvalue of L(G) can be of the form b

√
∆ with b > 0 and ∆ > 1, as this would imply that −b

√
∆ is also an eigenvalue. As

a consequence, we have the following corollary.

Corollary 2. If M = L(G) and vertex a is periodic, then the elements in Φa are all integers.

We will also need the following result.

Theorem 3 (Coutinho [4], Theorem 2.4.4). Suppose vertex a is periodic in G according to M at time τ . Let

g = gcd

({
θ0 − θr
√

∆

}
θr∈Φa

)
.

Then τ must be an odd multiple of 2π
g
√

∆
.
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As a consequence of the theorem above, the minimum time periodicity occurs is at most 2π .
As an immediate consequence, we have the following lemma.

Lemma 4. Suppose vertex a is periodic in G according to M at minimum time τ , and let θ and θ ′ be distinct eigenvalues in Φa.
Then

|θ − θ ′
| ≥

2π
τ

.

Proof. Suppose θ and θ ′ are two elements of Φa. Then, by Theorem 3, there is an integer k such that
2π
τ

k = θ − θ ′. □

Let εa denote the eccentricity of vertex a in the graph G, that is, the maximum distance between any vertex of G and
vertex a. A standard argument in algebraic graph theory leads to a relation between εa and |Φa|.

Lemma 5. Let M be as defined in the beginning of this section. Let Φa be the eigenvalue support of vertex a according to M. Then
εa < |Φa|.

Proof. Consider the subspace of Rn defined as

Wa = ⟨{M iea}i≥0⟩.

It follows that

Wa = ⟨{Erea}θr∈Φa⟩,

hence dimWa = |Φa|. Because the non-zero off-diagonal entries ofM correspond to adjacent vertices and have all the same
sign, it follows that the vectors {M iea}εai=0 are all independent, and thus

εa + 1 ≤ |Φa|. □

We will now proceed to establish bounds on the size of the graph that depend solely on the eccentricity of a periodic
vertex.

Theorem 6. Let G be a graph with m edges that, according to the quantum walk model defined by the adjacency matrix, contains
a periodic vertex a with period τ . Let εa be the eccentricity of a. Then(εa

3

)3
< 2m.

Proof. Let θ0, . . . , θn−1 denote the eigenvalues of A, possibly with repetition, and assume that they are ordered in such a
way that θ2

0 ≥ θ2
1 ≥ · · · ≥ θ2

n−1. Because the diagonal entries of A2 contain the degrees of each vertex, it follows that

tr A2
= 2m =

n−1∑
j=0

θ2
j .

As a consequence

θ2
j ≤

2m
j + 1

.

Let k = ⌊
3√2m⌋. Note that k ≤ n − 1. From Lemma 4, the separation between any two distinct eigenvalues in Φa is at least

2π/τ . Thus, in the worst case where all eigenvalues θ0, . . . , θk−1 belong to Φa, we can still say that
2π
τ

(|Φa| − k − 1) ≤ 2|θk|.

Hence

|Φa| ≤
τ

π

√
2m

k + 1
+ k + 1 (1)

<
3√2m

( τ

π
+ 1

)
+ 1 (2)

≤ 3 3√2m + 1. (3)

where the last inequality follows from τ ≤ 2π (Theorem 3). We know from Lemma 5 that εa + 1 ≤ |Φa|, thus(εa

3

)3
< 2m. □
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It is immediate from the theorem above that the number of vertices cannot be bound above by a linear function on εa.
Adapting the proof tomatricesM as defined in the beginning of this section can lead to similar bounds in other quantumwalk
models. However, the specificities of the matrix could make the bound stronger or weaker. For instance, with the Laplacian
matrix, the same technique allows only for a quadratic bound.

In particular, we know that all eigenvalues 0 = λn−1 ≤ · · · ≤ λ0 are non-negative and that
n−1∑
j=0

λj = 2m.

So we have the following.

Theorem 7. Let G be a graph with m edges that, according to the quantum walk model defined by the Laplacian matrix, contains
a periodic vertex a with period τ . Let εa be the eccentricity of a. Then(εa

3

)2
< m.

Proof. We have

λj ≤
2m
j + 1

.

Let k = ⌊
√
m⌋. From Lemma 4, the separation between two distinct eigenvalues in Φa is at least 2π/τ . Thus, in the worst

case where all eigenvalues λ0, . . . , λk−1 belong to Φa, we can still say that
2π
τ

(|Φa| − k − 1) ≤ λk.

Hence

|Φa| ≤
τ

π
·

m
k + 1

+ k + 1 (4)

<
√
m
( τ

π
+ 1

)
+ 1 (5)

≤ 3
√
m + 1. (6)

where the last inequality follows from τ ≤ 2π (Theorem 3). We know from Lemma 5 that εa + 1 ≤ |Φa|, thus(εa

3

)2
< m. □

3. Discussion and questions

The task of finding vertices admitting perfect state transfer at arbitrarily large distances has been studied now for at least
10 years. As far as I know, this paper provides the first non-trivial lower bounds on the size of an unweighted graph that
would admit perfect state transfer relative to its diameter. This is because any vertex involved in perfect state transfer must
be periodic, and the eccentricity of any vertex is at least half the diameter of the graph. One of the reasons that make this
work relevant is that the size of the graph can be seen as the cost to construct the quantum system.

Our cubic (or quadratic, depending on themodel) lower bound frustrates the expectation that it would be possible to add
few vertices and edges to arbitrarily long paths and obtain families of graphs admitting perfect state transfer. It also shows
that some trees do not admit perfect state transfer, providing some support to the conjecture that, in the adjacency matrix
model, no tree other than P2 or P3 does (see [6]).

The dual line of investigation to what we expose here is to find families of relatively small graphs admitting perfect state
transfer at arbitrarily large distances. As we pointed in the introduction, the best trade-off is achieved by Cartesian powers
of P3. In [5, Section 5], some strategy on how to perturb these powers to reduce the size of the graph are briefly discussed,
but we were not able to obtain a relevant asymptotic improvement.

We end with a list of questions related to our work.

1. If there is a periodic vertex at time 2π/λ, provide a lower bound on the size of the graph that depends on λ better
than the cubic bound we have. I am guessing this could be an exponential in λ. Note that the only examples we know
of perfect state transfer happening at arbitrarily small times are coming from graphs which are very large (see [2]).

2. Improve our polynomial bounds to exponential, or find a family of graphs admitting perfect state transfer at arbitrarily
large distances and size bounded above by a polynomial in their diameter.
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