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Resumo
Na presente tese, examinamos dois tópicos da teoria de sistemas quânticos abertos. O
primeiro tópico trata da descrição da dinâmica de sistemas inicialmente correlacionados
com o ambiente. Na teoria de sistemas quânticos abertos, mapas que caracterizam a
dinâmica do sistema quântico em contato com o ambiente são usualmente considerados
completamente positivos. No entanto, isso não é necessariamente verdadeiro se o sistema e
seu ambiente forem inicialmente correlacionados, a menos que se restrinja o domínio no
qual o mapa atua, ou seja, apenas um subconjunto do conjunto de estados do sistema
é mapeado para outros estados pelo mapa dinâmico. Nós introduzimos um quadro para
a construção de mapas dinâmicos reduzidos para subsistemas de partículas fermiônicas
indistinguíveis. Nesse cenário, um mapa reduzido na representação de Kraus é possível
para alguns conjuntos de estados onde a única correlação não clássica presente é a de troca.
O segundo tema estudado está relacionado à caracterização de dinâmicas não-markovianas
com os critérios de divisibilidade e emaranhamento. Obtemos uma expressão analítica
para a decomposição de Kraus do mapa quântico de um ambiente modelado por um
hamiltoniano fermiônico quadrático arbitrário atuando em um ou dois qubits, derivamos
funções simples para verificar a não positividade do mapa intermediário. No caso particular
de um ambiente representado pelo Hamiltoniano de Ising, discutimos as duas fontes de
não-Markovianidade no modelo, uma devido ao tamanho finito da rede, e outra devido ao
tipo de interação.

Palavras-chave: sistema quântico aberto, mapa quântico, partículas indistinguíveis,
não-Makovianidade, sistemas de muitos corpos.



Abstract
In the present thesis, we examine two subjects in the theory of open quantum systems. The
first subject deals with the description of the dynamics of open systems initially correlated
with the environment. In the theory of open quantum systems, maps characterizing the
dynamics of a quantum system in contact with the environment are usually thought to be
completely positive. However, this is not necessarily true if the system and its environment
are initially correlated, unless we restrict the domain on which the map acts, in other
words, only a subset of the set of states of the system gets mapped to other states by the
dynamical map. We present a framework for the construction of reduced dynamical maps
for subsystems of indistinguishable fermionic particles. We show that in this scenario, a
reduced map in the Kraus representation is possible for some sets of states where the only
non-classical correlation present is exchange. The second subject studied is related to the
characterization of non-Markovian dynamics with the divisibility and entanglement criteria.
We obtain the analytical expression for the Kraus decomposition of the quantum map of
an environment modeled by an arbitrary quadratic fermionic Hamiltonian acting on one or
two qubits, we derive simple functions to examine the non positivity of the intermediate
map. In the particular case of an environment represented by the Ising Hamiltonian, we
discuss the two sources of non-Markovianity in the model, one due to the finite size of the
lattice, and another due to the kind of interactions.

Keywords: open quantum system, quantum map, indistinguishable particles, non-Markovianity,
many-body system.
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1 Introduction

The characterization of the dynamics of a system that may be correlated with
other systems has been subject of investigation in several areas, varying from quantum
information processing to cosmology [1,2]. A closed system, an idealization of a system
perfectly isolated from its environment, evolves unitarily according to the Schrödinger
equation. On the other hand, the dynamics of a system whose interaction with its surround-
ings cannot be negligible is not necessarily unitary. The interaction with the environment
affects properties of the system. For example, leads to the disappearance of quantum
superpositions, a phenomenon known as decoherence. The theory of open quantum systems
provides the mathematical framework to treat such systems. In this context, we speak of
system and environment, and say that the system, which is just a part of the whole, is
open. The standard characterization of an open quantum system dynamics is based on the
supposition that system and environment start in an uncorrelated global state (factorable),
since this is the case where the reduced dynamics is guaranteed to be completely positive
(CP). The interaction with the environment naturally generates correlations, therefore the
assumption of a special instant of time where there is no correlation between system and
environment, from which one starts to monitor the evolution of the open system, is not
always possible. For example, we will study a case where such time does not exist, dealing
with indistinguishable particles.

One may also be interested in how an initial correlation with the environment
can affect the system dynamics. The extension of the formalism to characterize reduced
dynamics of system-environment initially correlated is much more problematic, subject that
still generates discussion and has not yet been closed. A map characterizing the dynamics
of a system, in a context that the system is initially correlated with the environment, is in
general not completely positive, which can be seen as only a subset of the set of states
is mapped to states by the map. The problems emerging in the description of reduced
dynamics in presence of initial correlation were first explored by Pechukas and Alicki [3–5].
Pechukas introduced the idea of ‘assignment map’ (A), which characterizes initial system-
environment states (A [ρS] = ρSE) for open quantum systems, and showed that imposing
three ‘natural’ conditions, namely: (linearity) A preserves mixtures; (consistency) it is
consistent, in the sense that ρS = TrE(A [ρS]); and (positivity) A [ρS] is positive for all
positive ρS; this implies the initial state of the system and environment is factorable
(A [ρS] = ρS ⊗ ρE). In order to handle the problem, it was proposed to relax the condition
of positivity by Pechukas [3, 5] or consistency by Aliciki [4]. The two suggestions can be
reduced to a evolution with restricted domain of the assignment map. Stelmachovic et al. [6]
demonstrated the need to characterize the correlation between system and environment
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in order to describe the evolution of the system. In their work it was presented an
interesting example of two qubits (one for the system, one for the environment), with the
dynamics given by a C-NOT gate. Assuming two initial states for the composed system
(system-environment), a maximally entangled state and a maximally mixed global state,
the reduced state of the system has the same one qubit maximally mixed states, but
the dynamics leads to radically distinct states. Due to the important role of the initial
correlation, a large portion of the literature on the subject has been dedicated to study
set of correlated states that are taken to states by dynamical maps. Many authors worked
out sets of classicaly [7, 8] or quantum [9,10] correlated initial global states. In this work,
we are interested in exploring set of states presenting exchange correlations, correlations
due to indistinguishability of particles, that guarantee the definition of complete positivity
dynamics for the domain compatible with the correlation. The subject has recently regained
impetus, with many interesting discussions [10–17].

Another subject that has been of great interest in the field of open quantum systems
concerns the Markovian or non-Markovian nature of quantum dynamics [18–20]. Many
witnesses and quantifiers have been proposed in order to characterize the non-Markovianity
of a quantum processes [21]. For example, the information flow between system and
environment, quantified by the distinguishability of any two quantum states [22–24], or by
the Fisher information [25], or mutual information [26]. Another interesting quantifier is
the entanglement based measure of non-Markovianity [27], it is related to the classical
information flow between system and environment [28].The behavior of the quantifiers
depend on the kind of interactions and size of the system, as is discussed in [29]. In this work,
we will focus on the divisibility criterion [30,31] which consist in checking the non-positivity
of intermediate time quantum maps, and the entanglement [27], based on non-monotonic
decreasing of the entanglement under local completely positive maps. We explored the
system of an environment represented by the quantum one-dimensional Ising model acting
on one central qubit, which in the case of finite size lattices can be solved analytically by
means of the well known Jordan-Wigner and Bogoliubov transformations [56, 57]. The
availability of an analytical solution for this representative critical model is the reason
why this system is recurrently investigated in many instances. The study we perform here
is complementary to previous investigations and, besides its pedagogical purpose, reveals
functional dependencies among different indicators of non-Markovianity, and also stresses
that there are two sources of non-divisibility in the dynamics, one intrinsic to the kind of
interactions, and another due to the finite size of the lattice.

The thesis is organized as follows. In Chapter 2, we introduce some main notions in
quantum information theory and open quantum systems theory, we define the mathematical
framework to characterize quantum systems and their transformations, and we briefly
revise the standard description of open quantum systems. Chapter 3 deals with the
problem of describing the dynamics of open systems that are initially correlated with



Chapter 1. Introduction 12

the environment. We present the pioneering work of Pechukas and Alicki [3–5] on the
subject, we discuss the role of initial correlation with the environment in the dynamics
of the open system. In Chapter 4, we present the construction of the reduced dynamical
map for a system composed by N indistinguishable particles, in particular fermions. We
briefly discuss indistinguishable particles formalism, we identify a class of initial global
states that give rise to completely positive reduced dynamics for the compatible domain.
Finally, we illustrate the formalism with an example of two fermions under a quadratic
Hamiltonian. In Chapther 5, we introduce the concept of Markovianity in classical theory
of stochastic processes, we briefly present differences and analogies with the quantum case.
We define the divisibility criterion for measures of non-Markovianity for both, classical
and quantum cases. In Chapter 6, we deduce the quantum map and the dynamical matrix
for the intermediate map to a system of one and two qubits under the influences of a
quadratic fermionic environment. In the case of the environment mapped in the Ising
model with a transverse field, we characterize the dynamics of the open system (one or
two qubits) using the divisibility criterion [30,31], we investigate the non-Markovianity
using the most negative eigenvalue of the intermediate map as a quantifier. We also use
the increase of entanglement under local CP maps as a witness of non-Markovianity [27].
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2 Preliminaries

In this chapter, we will present some fundamental concepts in quantum information
theory and the basic notation used throughout the text. It is not intend to be a text to
introduce the formalism of quantum information theory, but rather a brief presentation of
the mathematical tools to characterize systems and their transformations. The concepts
discussed in this chapter can be found in textbooks on quantum mechanics and quantum
information [2, 32,33].

2.1 Space of interest
Physical systems in quantum mechanics are associated with the Hilbert space H, a

complex Euclidean vector space, normed and with well defined inner product. In particular,
the systems treated throughout this thesis are finite, which allows us to maintain the
discussion for Hilbert spaces with finite dimension, i.e. HN

∼= CN . It is typical to represent
a vector |ψ〉 ∈ HN as a column vector of the form

|ψ〉 =
N−1∑
j=0

ψj|j〉 =


ψ1

ψ2
...

ψN−1

 , (2.1)

where ψj ∈ C and {|j〉} is the computational base. The inner product of two vectors |φ〉,
|ψ〉 ∈ H is given by

〈φ|ψ〉 =
N−1∑
j=0

φ∗jψj, (2.2)

where 〈ψ| is an element of the dual space H∗N ∼= CN of HN , which is the space of linear
maps from HN to the complex numbers. The vector 〈ψ| ∈ H∗N can be represented as a
row vector defined by transposing its corresponding column vector in HN , Eq.(2.1), and
taking the complex conjugate of its entries. Given a vector |ψ〉 ∈ HN , the norm is defined
by the relation

‖|ψ〉‖ =
√
〈ψ|ψ〉 =

√√√√√N−1∑
j=0
|ψj|2. (2.3)

The set of linear operators mapping between two Hilbert spaces A : HM → HN

also form their own Hilbert space L(HM ,HN) named Hilbert-Schmidt space, therefore it
is equipped with inner product and norm. Given the spaces HM and HN , we can associate
with each operator A ∈ L(HM ,HN) a matrix with entries

A(j, k) = 〈j|A|k′〉, (2.4)
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where |j〉 ∈ HN and |k′〉 ∈ HM . For any choice of operator pairs A,B ∈ L(HM ,HN), one
can define an inner product as

〈A,B〉 = Tr
(
A†B

)
, (2.5)

where A† ∈ L(HN ,HM) will be called adjoint of the operator A, defined by the relation
〈k′|A†|j〉 = 〈j|A|k′〉∗, for all |j〉 ∈ HN and |k′〉 ∈ HM . Thus, it is the operator whose
matrix representation is obtained by transposing the matrix representation of A and taking
the complex conjugate of its entries. The norm for an operator A ∈ L(HM ,HN) can be
defined as

|M | =
√
〈A,A〉, (2.6)

which is known as Hilbert-Schmidt norm. Several others useful norms on operators can
be defined. In sec. (4.2) we shall discuss in more detail the so called trace norm which is
commonly used in the construction of distance measures between operators.

Some of the important classes of operators which will be mentioned in the text are:

1. Normal. An operator A ∈ L(HN ) is normal if it commutes with its adjoint [A,A†] = 0,
where L(HN) is a shorthand for L(HN ,HN) and [A,A†] = AA† − A†A. Most
of the operators that will be discussed are included in this class that have as
main characteristic to be the operators for which the spectral theorem holds. Let
A ∈ L(HN ) be a normal operator and assume that the eigenvalues of A are a1, . . . ar.
There exists an orthonormal basis {|a1〉, . . . , |ar〉} in HN such that,

A =
r∑
j=1

aj|aj〉〈aj|. (2.7)

2. Hermitian. An operator A ∈ L(HN) is Hermitian if it is equal to its adjoint, i.e.
A = A†. This class of operators is obviously a subset of normal operators with real
eigenvalues. The set of Hermitian operators acting on a given Hilbert space HN

will be denoted Herm(HN). In the theory of quantum mechanics, observables are
represented by Hermitian operators.

3. Positive semidefinite and positive definite. An operator A ∈ L(HN) is said to be
positive semidefinite if it can be defined as A = B†B for an operator B ∈ L(HN ), or
equivalently if satisfies 〈ψ|A|ψ〉 ≥ 0 for all |ψ〉 ∈ HN . The notation A ≥ 0 will be
used to mean that P is positive semidefinite. Positive semidefinite operators that
are invertible are called positive definite, or equivalently if satisfies 〈ψ|A|ψ〉 > 0 for
all |ψ〉 ∈ HN .

4. Orthogonal projections. A positive semidefinite operator P ∈ L(HN ) that satisfy the
relation P 2 = P is an orthogonal projection, hence, a Hermitian operator whose only
eigenvalues are 0 and 1. Orthogonal projectors can expand any normal operator, in
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other words, let A ∈ L(HN) be a normal operator and assume that the eigenvalues
of A are a1, . . . ar. There exists a set of orthogonal projection operators {P1, . . . Pr},
with P1 + · · ·+ Pr = IN and PjPk = 0, for j 6= k, such that

A =
r∑
j=1

ajPk. (2.8)

Note that this statement is equivalent to the spectral theorem.

5. Density. Positive semidefinite operators that have trace 1 are named density operators.
The vector space whose elements are density operators acting on a given Hilbert space
HM will hereafter be denoted D(HN). In quantum mechanics, density operators
ρ ∈ D(HN) represent quantum states of the physical system associated with the
Hilbert space HN . The space D(HN) is a convex set whose extremal points are
named pure states and can be written as

ρ = |ψ〉〈ψ|, (2.9)

where |ψ〉 ∈ HN with ‖|ψ〉‖ = 1. In opposition, a state which is not pure is called
mixed state and can be expressed as a convex combination of pure orthogonal states,

ρ =
∑
j

pj|ψj〉〈ψj|, (2.10)

with pj ≥ 0, ∀j and ∑j pj = 1.

6. Linear isometries and unitary operators. An operator V ∈ L(HM ,HN) is a linear
isometry if it preserves the norm, i.e., ‖V |ψ〉‖ = ‖|ψ〉‖, for all |ψ〉 ∈ HM , or
equivalently V †V = IM . Linear isometries mapping elements of HN to itself are called
unitary operators U : HN → HN , where U †U = UU † = IN . The space of isometries
V : HM → HN will be denoted U(HM ,HN). Unitary operators characterize the
dynamics of closed quantum systems, an idealization of a quantum systems perfectly
isolated from its environment.

2.1.1 Composed systems

The characterization of open quantum systems is the key idea in this work and
at its foundation lies the concept of composite quantum system, of which we will present
some basic notions. Consider a system consisting of N subsystems S1, . . . , SN , with their
associated Hilbert spaces HS1 , . . .HSN . The Hilbert space of the composite system will
be given by the tensor product of the Hilbert spaces of each subsystem, HS1,...,SN =
HS1 ⊗ HS2 ⊗ · · · ⊗ HSN . Defining an orthonormal base {|ji〉〉} in each space HSi , the
composed system space admit the orthonormal base {|j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jN〉}, therefore a
generic element in HS1,...,SN can be written as

|ψ〉 =
∑

j1,j2,...,jN

αj1,j2,...,jN |j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jN〉, (2.11)
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where αj1,j2,...,jN ∈ C. In a similar way, given N linear operators OS1 ∈ L(HS1), . . . ,
OSN ∈ L(HSN ), we can define a linear operator acting on HS1 ⊗ · · · ⊗ HSN by taking
the tensor product OS1 ⊗ · · · ⊗OSN and a generic element of L(HS1 ⊗ · · · ⊗ HSN ) can be
defined as

OS1,...SN =
∑
k

Ok
S1 ⊗O

k
S2 ⊗ · · · ⊗O

k
SN
. (2.12)

As mentioned in the previous section, a density operator represents the state of the
quantum system. Let us continue the discussion about composite systems for elements of
the set D(HS1 ⊗ · · · ⊗ HSN ). A density operator ρ ∈ D(HS1 ⊗ · · · ⊗ HSN ) can be written
in its spectral decomposition as

ρ =
∑
j

pj|ψj〉〈ψj|, (2.13)

with pj ≥ 0, ∀j, ∑j pj = 1 and |ψj〉 has the form of Eq.(2.11) with ‖|ψj〉‖ = 1 for all j.
From the density operator of the composed system we can obtain an operator characterizing
the state of a subsystem by taking the trace over all subsystems except on the subsystem
we are interested. Suppose we want to describe S1 in the composed system S1, . . . , SN , we
should obtain the named reduced density operator of S1, defined by the partial trace

ρS1 = TrS2,...,SN (ρ) , (2.14)

where ρS1 ∈ HS1 and TrS2,...,SN stand for the trace over the subspaces S2, . . . , SN . Given
an orthonormal base {|j2〉 ⊗ · · · ⊗ |jN〉} in HS2 ⊗ · · · ⊗HSN , the partial trace in Eq.(2.14)
can be defined as

ρS1 =
∑

j2,...,jN

(〈j2| ⊗ · · · ⊗ 〈jN |) ρ (|j2〉 ⊗ · · · ⊗ |jN〉) . (2.15)

The simplest example of composite system states describes uncorrelated subsystems and
has the form:

ρ = ρS1 ⊗ ρS2 ⊗ · · · ⊗ ρSN , (2.16)

where ρSj ∈ HSj for all j. If a composed system can be written as Eq.(2.16) it is named a
product state. The convex combination of states will also be a quantum state, thus we can
generalize the notion of product states by taking the convex combination. The resulting
state is the so-called separable state,

ρ =
∑
k

pkρ
k
S1 ⊗ ρ

k
S2 ⊗ · · · ⊗ ρ

k
SN
, (2.17)

where pj ≥ 0, ∀j and ∑j pj = 1 and ρkSj ∈ HSj for all j, k. States of a composed system
that cannot be written as Eq.(2.17) are called entangled states.
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2.2 Linear maps on state space
In contrast to closed quantum systems that has the evolution given by unitary

operators, to describe the evolution of open quantum systems we will use a more general
transformation on the space of positive semidefinite operators having unit trace. In this
section, we are going to describe the mapping between states without any mention of
a temporal evolution, the link with the dynamics of the open quantum system will be
discussed in the next section. A map Φ : D(HM)→ D(HN) must satisfy some conditions
determined by the mathematical properties of the density operators:

1. Linearity. For any choice of density operator pairs ρ, σ ∈ D(HM ), and any real number
p ∈ [0, 1], the map Φ ∈ T (HM ,HN ) is linear if Φ [(1− p)ρ+ pσ] = (1−p)Φ [ρ]+pΦ [σ],
where T (HM ,HN) is the space form by the set of maps Φ : D(HM)→ D(HN). The
convex combination of quantum states is also a quantum state, the map must not
depend on the way we choose the convex combination.

2. Positivity and complete positivity. A map Φ ∈ T (HM ,HN) is positive if it preserves
the positivity of an operator, Φ [A] ≥ 0 for all A ≥ 0. As the density operator is a
positive operator, the map must maintain its positivity. Moreover, considering the
composition of systems in quantum mechanics, if the map only acts on a fraction
of the composite system it is desirable that the resulted operator must remain a
quantum state, which leads to the definition of a completely positive map. Given
a bipartite system characterized by the state ρ ∈ D(HM ⊗ HZ), the map Φ is
completely positive if Φ ⊗ IZ [ρ] ≥ 0, for any choice of ρ, where IZ is the identity
map on a space of density operators D(HZ). Completely positive maps are also
positive, however the converse is not necessarily true, for example, the transpose
map is positive but not completely positive.

3. Trace preservation. A map Φ is trace preserving if the following relation is satisfied
Tr (Φ [ρ]) = Tr (ρ) = 1. The trace preservation together with complete positivity
ensures the mapping to a valid density operator, an operator whose eigenvalues
characterizes a probability distribution.

2.2.1 Representations

There are many ways to represent quantum maps. Throughout this work, we use
three representions. We shall briefly introduce them below.

2.2.1.1 Kraus representation

Given a complety positive map Φ ∈ T (HM ,HN), there exists a set of operators
{Ej} ∈ L(HM ,HN), such that we can represent the action of the map Φ in a quantum
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state ρ ∈ D(HM) as
Φ [ρ] =

∑
j

EjρE
†
j . (2.18)

The operators Ej are known as Kraus operators. One may deduce that a map which can
be written in the form (2.18) is completely positive by considering the map acting locally
on a generic positive operator A ∈ L(HM ⊗HZ). The spectral decomposition of A can be
written as A = ∑

j aj|aj〉〈aj|, with aj ≥ 0, then we have

(Ej ⊗ IZ)A (Ej ⊗ IZ)† =
∑
k

ak (Ej ⊗ IZ) |ak〉〈ak| (Ej ⊗ IZ)† , (2.19)

defining |bj,k〉 = (Ej ⊗ IZ) |ak〉, where |bj,k〉 ∈ HN ⊗HZ , we can see that the operator in
Eq.(2.19) is positive. Therefore, the mapping of the form Φj : ρ→ EjρE

†
j is completely

positive, which is also true for the linear combination in Eq.(2.18). Finaly, the map Φ is trace
preserving for all ρ ∈ D(HM) if the Kraus operators satisfy the relation ∑j E

†
jEj = IHM ,

as can be seen by the computation

Tr (Φ[ρ]) = Tr

(∑
i

EjρE
†
j

)

= Tr

∑
j

E†jEjρ


= Tr (IMρ) = 1. (2.20)

All maps Λ ∈ T (HM ,HN), not necessarily completely positive, can be written
as Λ [ρ] = ∑

j EjρF
†
j , where Ej, Fj ∈ L(HM ,HN). Some authors assign the term Kraus

representation for this general form, however in this work we will use just for the case
Fj = Ej for each j, Eq.(2.18).

2.2.1.2 The natural representation

Now, let us define the natural representation also known as superoperator repre-
sentation. We use the idea of vectorization, a mapping between the spaces L(HM) and
HM ⊗HM . Such mapping will be given by the vec operation that can be defined as

vec [|i〉〈j|] = |i〉 ⊗ |j〉, ∀ i, j. (2.21)

Consider the map Φ ∈ T (HM ,HN ), there exists an operator K (Φ) ∈ L(HM ⊗HM ,HN ⊗
HN) such that

vec (Φ [ρ]) = K (Φ) vec [ρ] , (2.22)

where ρ ∈ D(HM). The operator K (Φ) is the natural representation of the map Φ. The
natural representation of the map Φ can be defined as

K (Φ) =
∑
i,j,k,l

〈|k〉〈l|,Φ [|i〉〈j|]〉 |i〉〈j| ⊗ |k〉〈l|. (2.23)
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We can verify Eq.(2.23) by applying the map on some generic element of a base in HA⊗HB,

K (Φ) |m〉 ⊗ |n〉 =
∑
k,l

〈|k〉〈l|,Φ [|m〉〈n|]〉|k〉 ⊗ |l〉

= vec

∑
k,l

〈|k〉〈l|,Φ [|m〉〈n|]〉|k〉〈l|


= vec (Φ [|m〉〈n|]) , (2.24)

and using linearity, which leads to relation Eq.(2.22), for all ρ. There is no direct criterion
in natural representation that shows if Φ is a CP-map. Using the following identity for
product of three matrices (ABC):

vec [ABC] =
(
A⊗ CT

)
vec [B] , (2.25)

we can rewrite the Kraus representation (Eq.2.18) as the natural representation, then with
the superoperator ∑j Ej ⊗ E∗j acting on the vector vec[ρ].:

|Φ[ρ]〉 = K (Φ) |ρ〉, K (Φ) =
∑
j

Ej ⊗ E∗j . (2.26)

where |ρ〉 ≡ vec(ρ). In order to verify the complete positivity, its relation with the
Choi-Jamiolkowski’s representation is usually used.

2.2.1.3 Choi-Jamiolkowski representation

As the natural representation, Choi-Jamiolkowski is a representation of the map
as a linear operator in an extended space. Consider the map Φ ∈ T (HM ,HN), the
Choi-Jamiolkowski representation of the map is given by

J (Φ) =
∑
i,j

Φ [|i〉〈j|]⊗ |i〉〈j|, (2.27)

where {|i〉} is an orthonormal basis of HM . The operator J (Φ) is known as Choi matrix,
or dynamical matrix. Given J (Φ), the action of the map Φ at a generic state ρ ∈ D(HM)
is given by

Φ [ρ] = TrN
[
J (Φ)

(
IN ⊗ ρT

)]
. (2.28)

The Choi-Jamiolkowski representation can be thought of as the map acting locally on an
unnormalized maximally entangled state |Φ+〉 = ∑

j |j〉 ⊗ |j〉, that is

J (Φ) = Φ⊗ IM
[
|Φ+〉〈Φ+|

]
, (2.29)

note that the operator |Φ+〉〈Φ+| ∈ D(HM ) is positive, thus the Choi-Jamiolkowski operator
J (Φ) of a given completely positive map is also positive. As for the condition of trace
preservation, if Φ is tracing preserving, then Tr (Φ(|i〉〈j|)) = δi,j which leads to

TrB (J (Φ)) =
∑
i,j

Tr (Φ[|i〉〈j|]) |i〉〈j|

=
∑
i,j

δi,j|i〉〈j| = IM . (2.30)
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For maps that can be written in the Kraus representation, that is complete positive, we
can define the Choi-matrix in terms of Kraus operators {Ej} as follows:

J (Φ) = Φ⊗ IM

∑
i,j

(|i〉 ⊗ |i〉) (〈j| ⊗ 〈j|)
 ,

=
∑
k

Ek ⊗ IM
(
vec [IM ] vec [IM ]†

)
E†k ⊗ IM

=
∑
k

vec [Ek] vec [Ek]† , (2.31)

in the last line we use the identity Eq.(2.25). In section 5.2, we will show the relation
between natural and Choi-Jamiolkowski representations.

2.3 Completely positive maps characterizing reduced dynamics of
open quantum systems
The standard approach to the dynamics of open quantum systems considers an

open system S with an associated Hilbert space HS interacting with its environment E
with associated Hilbert space HE in such way that the composed system S + E is closed
and therefore its dynamics is governed by a Hamiltonian HSE ∈ Herm(HS ⊗HE), which
can be written as

HSE(t) = HS(t)⊗ IE + IS ⊗HE(t) +Hint(t), (2.32)

where HS ∈ Herm(HS) and HE ∈ Herm(HE) are Hamiltonians of system and environment,
respectively, and Hint ∈ Herm(HS ⊗HE) is an interaction Hamiltonian. Thus, the state of
the composite system is described by the unitary evolution

ρSE(t) = USE(t, t0)ρSE(t0)USE(t, t0)†, USE(t, t0) = T exp
(
−i
∫ t

t0
dt′HSE(t′)

)
, (2.33)

where t0 is the initial time, T is the time ordering operator and ~ is assumed to be one.
The state of the open system S at time t is obtained by tracing over the environmental
degrees of freedom, according to the following quantum dynamical process

ρS(t) = TrE (ρSE(t)) = TrE
(
USE(t, t0)ρSE(t0)USE(t, t0)†

)
. (2.34)

The process described above is a mapping for ρSE(t0) to ρS(t). Moreover is a linear,
trace preserving and completely positive mapping of D(HS ⊗HE) to D(HS), since the
unitary and partial trace can be seen as maps that also satisfy the properties 1, 2 and 3
described in Sec.(2.2) . However, we are interested in a context where we only have access
to the system S, therefore it is crucial to obtain a map on the set of the open system
states Φ ∈ T (HS,HS), leading states at the initial time instant t0 to a generic time t,
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Φ(t, t0)ρS(0)→ ρS(t). If the initial state of the system and its environment is a product
state,

ρSE(t0) = ρS(t0)⊗ ρE(t0), (2.35)

then it is possible to define a linear, trace preserving and completely positive map Φ from
the state space of the open system D(HS) into itself, as follows

ρS(t) = TrE
(
USE(t, t0)ρS(t0)⊗ ρE(t0)U †SE(t, t0)

)
. (2.36)

Assuming the spectral decomposition of the environmental initial state as ρE(t0) =∑
k pk|ψk〉〈ψk|, we can write

ρS(t) =
∑
j

〈φj|USE(t, t0)ρS(t0)⊗
(∑

k

pk|ψk〉〈ψk|
)
U †SE(t, t0)|φj〉

=
∑
j,k

(√pk〈φj|USE(t, t0)|ψk〉) ρS(t0)
(√

pk〈ψk|U †SE(t, t0)|φj〉
)

=
∑
j,k

Kj,k(t, t0)ρS(t0)K†j,k(t, t0), (2.37)

where {|φj〉}, {|ψk〉} are orthonormal bases in HE and Kj,k(t, t0) = √pk〈φj|USE(t, t0)|ψk〉,
this expression corresponds to the Kraus representation of the map, hence complete
positivity is guaranteed and the trace-preserving is an immediate consequence of the
operator USE being unitary. The formalism to describe systems that are initially correlated
with the environment is much more problematic. In the next chapter, we will present some
of the important results in this line of work.
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3 Initial Correlation in Open Quantum Sys-
tems

In the previous chapter, we saw that if system and environment start in an
uncorrelated global state, factorable, then it is possible to construct a map acting on
the state space of the system, satisfying all the desirable properties, characterizing the
dynamics of the system. However, if the system is initially correlated with the environment,
the map associated with the dynamics of the system may not be completely positive or,
as we will see, is valid only for a subset of the density state space. In the last two decades,
more attention has been given to the construction of reduced dynamical maps of systems
initially correlated [6–10,34,35], mainly motivated by discussions between Pechukas and
Alicki [3–5].

3.1 Pechukas’ theorem
Pechukas introduced the idea of ‘assignment map’ A : HS → HSE, which character-

izes initial system-environment states for open quantum systems, i.e. A [ρS(t0)] = ρSE(t0).
In his work, the dynamic map could be understood as the composition of three maps

Φ(t, t0) [ρS(t0)] = TrE
(
USE(t, t0)A [ρS(t0)]U †SE(t, t0)

)
, (3.1)

the partial trace TrE : HSE → HS, an unitary USE : HSE → HSE, both satisfying
properties 1, 2 and 3 (2.2), and the assignment map A. The trace preservation, linearity
and the complete positivity of the dynamical map relies on the features of the assignment
map. Imposing desirable requirements for the assignment map, compiled by Alicki in three
conditions:

(i) Linearity. The assignment map A preserves mixtures, A
[∑

j pjρj
]

= ∑
j pjA [ρj].

(ii) Consistency. The assignment map A is consistent, in the sense that ρS = TrE(A [ρS]).

(iii) Positivity. The assignment map is positive if A [ρS] ≥ 0 for all positive ρS.

Pechukas demonstrated that, when these three conditions are satisfied simultaneously,
then the initial state of the system and environment is factorable, i.e. A [ρS] = ρS ⊗ ρE.
In Pechukas’ original work these ideas were presented to a single-qubit open quantum
system, later Rodríguez-Rosario et al. [35], generalized its arguments to high dimension
open systems. Assuming a set of linearly independent projectors {Pj} that span the space
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of the open system S, we can define a general assignment map A by its action on the
projectors Pi, as follows

A (Pj) = Pj ⊗ τj, (3.2)

where τj ∈ L(HE) is Hermitian τj = τ †j and have unit trace Tr (τj) = 1 for all j, which
are requirements to ensure that A is a trace and Hermitian preserving map. Any element
of D(S) can be expanded by the projectors as ρS = ∑

j ajPj, with real coefficients aj,
not necessarily positive and satisfy ∑j aj = 1. The assignment map (3.2) satisfies the
linearity, A

[∑
j ajPj

]
= ∑

j ajA (Pj), and consistency condition since τj has unit trace.
The Pechucas’ theorem tells us that the assignment (3.2) is positive for all ρS if and only if
τj are the same, τj = ρE, for all j. First we start with the “only if” part, suppose τj = ρE

for all j, it is easy to see that A (ρS) ≥ 0,

A [ρS] = A
∑

j

ajPj

 =
∑
j

ajPj ⊗ ρE = ρS ⊗ ρE ≥ 0, (3.3)

note that ρS ≥ 0, ρE ≥ 0 and the composition of positive operators produces a positive
operator. Now, let us show the “if” part, consider the positivity of the assignment map,
A [ρS] ≥ 0, for all states ρS ∈ D(HS) and knowing that τj = ρE, ∀ j, is a possible solution,
we just need to demonstrate that for at least one state in D(HS) this is the only valid
solution. Defining a generic pure state σS, the assignment map A acting on σS provides a
factorable state A [σS] = σS ⊗ ρE, since the reduced state of a correlated state is mixed.
The set of projectors {Pj} can expand any operator on the space of the open quantum
system HS, therefore we can write σS = ∑

j cjPj and consequently,

A [σS] =
∑
j

cjPj ⊗ ρE. (3.4)

But by acting the assignment map after the expansion σS = ∑
j cjPj and using the

definition Eq.(3.2), we can also define

A [σS] =
∑
j

cjPj ⊗ τj. (3.5)

The Eqs.(3.4) and (3.5) imply in the relations A (Pj) = Pj ⊗ ρE and A (Pj) = Pj ⊗ τj,
respectively, comparing these two relations and taking the trace with respect to the system
gives that ρE = τj, ∀j, finishing the proof.

To deal with the problem of characterizing reduced dynamics of initial correlated
systems, Pechukas [3,5] suggested to giving up positivity. On the other hand, Aliciki [4]
argued to giving up consistency. In the end, it can be concluded that, one way or another,
the domain of validity of the assignment map must be restricted to the set of states that
lead to positivity for the first case and consistency for the second.
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3.2 The role of initial correlation in the dynamics of open quantum
systems
Shortly after the exchanges between Pechukas and Aliciki, Stelmachovic et al. [6]

studied the influence of initial correlations between system and environment in the dynamics
of the system, making clear that taking into account such correlations is paramount to
the correct description of the evolution. They showed an instructive example with two
qubits (one for the system S, one for the environment E), evolving under a C-NOT gate:
both a maximally entangled state and a maximally mixed global state have the same
one-qubit local maximally mixed states, but the evolution is radically different. Assume
two qubits S and E, with their associated Hilbert spaces HS

∼= H2 and HE
∼= H2. The

dynamics of the joint systems SE is given by the unitary USE = exp (−iHSEt) governed
by the Hamiltonian

HSE = 1
2 (I2 − σz)⊗ σx + 1

2 (I2 + σz)⊗ I2, (3.6)

where {σi}i = {x, y, z} are the well known Pauli operators, which together with the identity
operator I2 form a base that can expand any operator on space L(H2). The unitary USE
at time t = π/2 implements the controlled C-NOT, with qubit S being the control, while
qubit E is the target. Consider two initial conditions ρ(1)

SE(0) and ρ(2)
SE(0) for the two-qubit

state,

ρ
(1)
SE(0) = (α|00〉+ β|11〉) (α∗〈00|+ β∗〈11|) ,

ρ
(2)
SE(0) = |α|2|00〉〈00|+ |β|2|11〉〈11|, (3.7)

where |jj〉 is a shorthand to |j〉 ⊗ |j〉. Applying the partial trace it is easy to see that the
reduced state for the two initial conditions are the same, i.e.,

ρ
(1,2)
S (0) = TrE

(
ρ

(1,2)
SE (0)

)
= |α|2|0〉〈0|+ |β|2|1〉〈1|,

ρ
(1,2)
E (0) = TrS

(
ρ

(1,2)
SE (0)

)
= |α|2|0〉〈0|+ |β|2|1〉〈1|. (3.8)

Even though the reduced states of the system S and the environment E at the initial time
are the same for both cases, the reduced state S in each case will evolve to different states
due to the difference in the initial correlation. One can also rapidly show that the density
operators of the composed system SE for both conditions (3.7) at time t = π/2 are given
by

ρ
(1)
SE(π/2) = USA(π/2)ρ(2)

SE(0)U †SA(π/2) = (α|00〉+ β|10〉) (α∗〈00|+ β∗〈10|) ,

ρ
(2)
SE(π/2) = USA(π/2)ρ(1)

SE(0)U †SA(π/2) = |α|2|00〉〈00|+ |β|2|10〉〈10|, (3.9)

and the reduced density matrix of qubit S in each case is:

ρ
(1)
S (π/2) = TrE

(
ρ

(1)
SE(π/2)

)
= (α|0〉+ β|1〉) (α∗〈0|+ β∗〈1|) ,

ρ
(2)
S (π/2) = TrE

(
ρ

(2)
SE(π/2)

)
= |α|2|0〉〈0|+ |β|2|1〉〈1|. (3.10)
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Moreover, in ref. [6] was presented the definition of a map acting on the space of a
N -dimensional open system in the presence of initial correlation, showing that the charac-
terization of the initial correlation is necessary in obtaining the map. Let us assume as the
Hilbert spaces associated with the open system HS

∼= HN and the environment HE
∼= HM .

Any operator for the composite system SE can be written in terms of the operator set
{IS ⊗ IE, σi ⊗ IE, IS ⊗ τj, σi ⊗ τj}, with i = 1, . . . , N2 − 1; j = 1, . . . ,M2 − 1 and where
σi ∈ L(HS) and τj ∈ L(HE) are the orthogonal generators of SU(N) and SU(M) that
satisfy the relations

σi = σ†i , T rS (σi) = 0, T rS (σiσi′) = 2δi,i′ ,

τj = τ †j , T rE (τj) = 0, T rE (τjτj′) = 2δj,j′ . (3.11)

The Pauli operators are an example of such operators for the two-dimensional case. We
can define a generic state of the composite system ρSE ∈ HSE as

ρSE = 1
NM

IS ⊗ IE +
∑
i

αiσi ⊗ IE +
∑
j

βiIS ⊗ τj +
∑
i,j

γijσi ⊗ τj

 , (3.12)

where αi, βi and γij are real coefficients, conditioned that the operator ρSE characterizes
a quantum system state of SE, i.e., it is a density operator. Tracing over the degrees of
freedom of the environment, we obtain the density operator of the open system ρS,

ρS = TrE (ρSE) = 1
N

(
IS +

∑
i

αiσi

)
, (3.13)

and similarly one can get the state of the environment ρE by tracing over the open system

ρE = TrS (ρSE) = 1
M

(
IE +

∑
i

βiτi

)
. (3.14)

Now, from the respectives open system and environment states defined in Eqs.(3.13) and
(3.14), we can write the composed system state Eq.(3.12) as

ρSE = ρS ⊗ ρE +
∑
i,j

γ′ijσi ⊗ τj, γ′ij = γij − αiβj
NM

. (3.15)

The parameters γ′ij characterize the initial system-environment correlations, γ′ij = 〈σi ⊗
τj〉 − 〈σi〉〈τj〉 where 〈·〉 = Tr(·ρ) is the mean value. Adopt (3.15) as the state of the
composed system SE at initial time t0 = 0 and its dynamics given by action of a unitary
operator USE(t), we can describe the process that leads to the reduced state of S for any
time t as

ρS(t) = TrE

USE(t)
ρS(0)⊗ ρE(0) +

∑
i,j

γ′ijσi ⊗ τj

U †SE


= TrE
(
USE(t)ρS(0)⊗ ρE(0)U †SE

)
+ TrE

USE(t)
∑
i,j

γ′ijσi ⊗ τjU
†
SE

 .(3.16)



Chapter 3. Initial Correlation in Open Quantum Systems 26

The first term on the right side of equality was discussed in Eq.(2.36), corresponding to
the Kraus representation generated in the scenario where initially there is no correlation
between the system S and the environment. Consider the spectral decomposition of the
environmental initial state as ρE(t0) = ∑

m pm|ψm〉〈ψm|, we obtain

ρS(t) =
∑
n,m

Knm(t)ρS(0)K†nm(t) +
∑
n,i,j

γ′ij〈φn|USE(t)σi ⊗ τjU †SE(t)|φn〉, (3.17)

where {|φn〉} is a base in the environment space HE and Kn,m(t) = √pk〈φn|USE(t)|ψm〉.
For fixed parameters βj and γ′ij characterizing the state of the environment and the
initial correlation, respectively, Eq.(3.17) defines a map describing the evolution of S,
Φ : ρS(0)→ ρS(t). However for non-null initial correlation, γ′ij 6= 0 for any i, j, the map
Φ is in general not positive and only a set of the states ρS ∈ D(HS) will be taken to
quantum states. To illustrate this statement, imagine the case where the fixed parameter
γ′ij represents system and environment sharing a maximally entangled state, e.g. the
first condition in Eq.(3.7), in this scenario the reduced initial state of S is always the
normalized identity operator, ρS = 1

N
IS, applying the map to any other state could generate

an operator outside the density operator set, because it would be equivalent to choosing a
set {αi, βj, γ′ij} that does not represent the density operator of SE in the dynamic process
described in Eq (3.16). A remark is that depending on the form of the unitary operator USA
we may have 〈φn|USE(t)σi⊗ τjU †SE(t)|φn〉 = 0, making the contribution of γ′ij negligible in
the dynamics, for exemple, in a comment to [6], Salgado et al. [36] showed for two qubits
that, whatever the initial correlations, the system dynamics has the Kraus representation
form for all states, and is consequently completely positive, whenever the global dynamics
is locally unitary, USE = US ⊗ UE, this was then proved for bipartite global systems of
arbitrary dimension by Hayashi et al. [34]. As said in the Introduction (1), a great attention
has been devoted to study general class of correlated initial states that lead to completely
positive map for its compatible domain, the set of states of the open quantum system that
are compatible with its initial correlation with the environment and are mapped to other
states, many authors worked out sets of classicaly [7,8] or quantum [9,10] initial global
states. In our work, we studied the reduced dynamics of initial states presenting exchange
correlation in a framework to be presented in the next chapter.
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4 Completely Positive Maps for Reduced
States of Indistinguishable Fermions

The subtle notion of quantum correlations of indistinguishable particles has been
investigated by many authors, with introduction of seminal ideas, as entanglement of
modes [37], or entanglement of particles [38–46]. Our own group has scrutinized the concepts
like entanglement of particles [41,42] and ‘quantumness of correlations’ of indistinguishable
particles [47, 48], performing interesting applications where general properties of many
particle systems were obtained from the reduced state of one particle [49]. Despite that,
the role of initial exchange correlations in the reduced dynamics was still unexplored. In
this chapter, we present our results on the topic [Phys. Rev. A 98, 052135 (2018)]. We
propose a framework to construct maps representing the dynamics of indistinguishable
particles reduced state, in particular fermions, which are always correlated, and for which
the usual tensor product structure between ‘system’ and ‘environment’ is absent.

4.1 Indistinguishable particles
In classical systems it is feasible, in principle, to keep track of individual particles,

even the particles being identical. We can always label them and follow their paths
at each instant of time. In quantum mechanics, however, identical particles are truly
indistinguishable. This is because quantum systems are characterized by vectors in a
complex vector space, from which we can only obtain expectation values of observables,
then there exists an intrinsic uncertainty about the position of the particles at each instant
of time, which makes unfeasible to label the particles and follow their trajectories. For
simplicity, let us assume two particles, 1 and 2, with the corresponding Hilbert spaces H1

and H2, respectively. Consider orthonormal basis {|α〉1} and {|β〉j} in each space H1 and
H2. We can write a generic pure state for the composite system as

|ψ〉 =
∑
α,β

cα,β|α〉1 ⊗ |β〉2. (4.1)

Now, define the permutation operator P12 that represents particle exchange in quantum
mechanics and is given by the relation P12 (|α〉1 ⊗ |β〉2) = |β〉1 ⊗ |α〉2. Its action in a
two-particle state is

|ψ′〉 =
∑
α,β

cα,β|β〉1 ⊗ |α〉2, (4.2)

note that P12|ψ′〉 = |ψ〉. Therefore, P12 is its own inverse, Hermitian and unitary, that is

P−1
12 = P12, P †12 = P12, P †12P12 = P12P

†
12 = I. (4.3)
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A pair of states that differ only by the exchange of indistinguished particles cannot be
distinguished by any observation. Then, any observable O must obey:

〈ψ|O|ψ〉 = 〈ψ′|O|ψ′〉 = 〈ψ|P12OP
†
12|ψ〉. (4.4)

From the unitarity and hermiticity of P12, Eq.(4.3), it is easy to show that observables on
the space of the indistinguishable particles have to commute with the permutation operator,
[P12, O] = 0, that is, all observables must be permutation-invariant. Obviously this is
also true for Hamiltonians, which tells us that P12 is a constant of motion. Since P12 has
eigenvalues±1, a direct consequence of relations Eq.(4.3), states that are initially symmetric
or anti-symmetric stays in their symmetric(HS

1,2) or anti-symmetric(HA
1,2) subspaces at all

times. The projectors in the symmetric and anti symmetric spaces, respectively, can be
defined as:

S = I + P12

2 , A = I− P12

2 , (4.5)

where S = S† = S2, A = A† = A2 and SA = AS = 0. Ultimately, states of indistin-
guishable particles, which are physically realizable, are either symmetric or anti-symmetric
under permutations. Projecting the state in Eq.(4.1) in such spaces and normalizing, we
can write

S|ψ〉 = |ψ〉S = 1√
2
∑
α,β

cα,β (|α〉1 ⊗ |β〉2 + |β〉1 ⊗ |α〉2) ,

A|ψ〉 = |ψ〉A = 1√
2
∑
α,β

cα,β (|α〉1 ⊗ |β〉2 − |β〉1 ⊗ |α〉2) . (4.6)

The states from the subspaces HS
1,2 and HA

1,2 describe two different types of particles:
bosons and fermions, respectively. Note that the antisymmetric state agrees with Pauli’s
exclusion principle, which states that indistinguishable fermions cannot be found in the
same state. In this work, our main focus is to study the reduced dynamics of fermionic
systems. The antisymmetrization of the fermionic state imposes correlations between the
fermions, the well know exchange contributions from the Hartree-Fock theory, which leads
to constraints on the reduced dynamic map construction, as discussed in the Sec.(3.2).

We begin by characterizing states where the only correlation present is exchange,
for example, a two-fermion state represented by a single Slater determinant |φ〉 =

1√
2 (|α〉1 ⊗ |β〉2 − |β〉1 ⊗ |α〉2), or as we will see in second quatization description |φ〉 =

a†αa
†
β|0〉, where a

†
j is the typical fermionic creation operator. In a composition of distin-

guishable quantum systems with associated Hilbert space H1,··· ,N = HL1
1 ⊗ · · · ⊗ HLN

N ,
where N is the number of subsystems and Li is the dimension of i’th subsystem, the tensor
product structure between the subsystems plays an important role for the characterization
of correlations as entanglement [50] and quantumness [51, 52]. However, as discussed
earlier, the state space of N indistinguishable fermions is described by the antisymmetrized
composed Hilbert space FLN = A(HL

1 ⊗ · · · ⊗ HL
N), Fig. 1, where N is the number of
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Figure 1 – Pictorial view of Hilbert space with (a) tensor product structure (H⊗H⊗H),
and (b) antisymmetric space without tensor product structure, where the parti-
cle states overlap. A partial trace over a subsystem in the antisymmetric space
has information about the whole system, since the particles are indistinguish-
able.

fermions and L is the number of accessible modes. Note that this space does not support a
tensor product structure and have a more suitable description in the second quantization
formalism. A base in this subspace can be constructed out of fermionic operators {ak}Lk=1,
satisfying the usual anti-commutation relations:

{al, a†k} = δk,l, {ak, al} = {a†k, a
†
l} = 0, (4.7)

where ak and a†k are annihilation and creation operators for the k’th mode, respectively. A
single particle orthonormal basis is formed by the set of states {a†k|0〉}Lk=1, where |0〉 is the
vacuum state in the fermionic Fock space 1 defined as the absence of particles, aj|0〉 = 0
for all j.

As previously mentioned, the correlation of indistinguishable particles, mostly
entanglement, was study by many groups [38–46], giving rise to many definitions that
agree with each other in the fermionic case, in the sense that the exchange correlations
generated by mere antisymmetrization of the state, due to indistinguishability of their
fermions, does not result in entanglement [38–46], that is, the set of unentangled states
can be written as a convex sum of Slater determinants. More generally, with studies in
quantumness [47, 48], we can define states where the only non-classical correlation present
is exchange. A fermionic state ω ∈ D

(
FLN

)
has no quantumness of correlation if it can be

decomposed as a convex combination of orthogonal Slater determinants, namely,

ω =
∑
~k

p~ka
†
~k
|0〉〈0|a~k, (4.8)

where ~k = (k1, . . . , kN), with ki = 1, ..., L, denotes the modes occupied by the fermions,
a†~k|0〉 ≡ a†k1 · · · a

†
kN
|0〉, and p is a probability distributions, with ∑~k p~k = 1. Since, we are

interested in exploring the role of initial exchange correlations in the reduced dynamics
1 Given a system with L modes its fermionic Fock space is FL = |0〉〈0| ⊕ HL

1 ⊕FL
2 · · · FL

L , where ⊕ is
the direct sum and FL

j = A
(
HL

1 ⊗ · · · ⊗ HL
j

)
.
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Figure 2 – Schematic diagram characterizing the dynamics of indistinguishable fermions.
Suppose an initial N -fermion state ρ(0) evolving under the unitary Ut. The
reduced one-fermion state ρr(0) = TrN−1(ρ(0)) evolves under the dynamical
map Φt.

of fermionic systems, we will choose the initial global fermionic state in the set with no
quantumnes.

4.2 Dynamical Maps for Reduced States of Fermionic Systems
In this section we introduce the formalism to describe the dynamics of a single

fermion in a closed system of N fermions. More precisely, given a system of N indistin-
guishable fermions in the state ρ(0), evolving under the unitary Ut, which preserves the
total number of particles, we want to obtain the dynamical map Φt, which evolves the
one-particle reduced state ρr = TrN−1 (ρ(0)), see Fig.2. Since the fermionic states are
restricted to the antisymmetric sector of the Hilbert space, it is not possible to start with
initial states in the tensor product form. In section (3.2), we discussed that one way to
deal with the problem of obtaining completely positive maps characterizing the dynamics
of states initially correlated with an external system, is to restrict the domain of the map.
Using the fact that the Kraus representation assures completely positivity (Sec.(2.18)), we
will show that for some sets of initial states with no quantumness of correlations, we can
construct completely positive maps for the reduced state.

The construction of the single-fermion dynamical map, in the simplest scenario of
a closed system of two fermions initially in a pure state, ρ(0) = |ψ〉〈ψ|, gives us a good
grasp on the general features of the formalism, and includes all the technical problems
of the general case. The generalisation to N -fermion mixed states is straightforward and
performed in Appendix A. Let us consider a set of states in the antisymmetric space of 2
fermions and L+ 1 modes, that can be written in a given basis of Slater determinants as:

Dµ,pure2 ≡
{
a†µa

†
k|0〉〈0|akaµ

}L
k=0

, (4.9)

where µ is a fixed mode. Note that µ labels a reference mode, and different values of µ
lead to distinct sets. We can compute the one-particle reduced state by tracing out one
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fermion from Eq.(4.9). Assuming that {f †k}Lk=0 is an orthonormal basis of fermionic creation
operators for the space of a single fermion (FL+1

1 ), thus f †k = ∑
l Vkla

†
l , V is a unitary

matrix of dimension L+1. The partial trace over one particle is given by ρr = 1
2
∑L
k=0 fkρf

†
k .

The explicit calculation of the matrix element (ρr)i,j goes as follows:

(ρr)i,j = 〈0|fj
(

1
2
∑L
k=0 fkρf

†
k

)
f †i |0〉

= 1
2
∑L
k=0 〈0|fk

(
fjρf

†
i

)
f †k |0〉

= 1
2Tr(f

†
i fjρ), (4.10)

where we used the fermionic anti-commutation relations and the cyclicality of the trace.
Now we can write the set of single-fermion reduced states of Eq.(4.9):

Dµ,purer(2) = Tr1 (Dµ,pure2 )

=
{1

2a
†
k|0〉〈0|ak + 1

2a
†
µ|0〉〈0|aµ

}L
k=0

, (4.11)

with µ a fixed mode. Assuming the dynamics of ρ(0) ∈ Dµ,pure2 is given by the unitary
Ut, we can define a CP map Φµ

t for the dynamics of the single-fermion reduced state
ρr(0) ∈ Dµ,purer(2) , i.e., a CP map Φµ

t : Dµ,purer(2) → D(FL+1
1 ) as follows:

Definition 1. A dynamical map Φµ
t for the single-fermion reduced state ρr(0) ∈ Dµ,purer(2) , of

a 2-fermion pure state initially with no quantumness of correlations, ρ(0) ∈ Dµ,pure2 , evolving
under the global unitary Ut, has the operator sum representation Φµ

t [ρr] = ∑L
j=0K

µ
j ρrK

†µ
j ,

with the Kraus operators
Kµ
l = flUta

†
µ. (4.12)

Proof. If the 2-fermion state evolves according to ρ(t) = Utρ(0)U †t , the reduced density
matrix is:

ρr(t) = Tr1(Uta†µa
†
k|0〉〈0|akaµU

†
t )

=
L∑
l=0

flUta
†
µ

(1
2a
†
k|0〉〈0|ak

)
aµU

†
t f
†
l , (4.13)

where in the last equation we used the definition of fermionic partial trace, Eq.(4.10),
and the anti-commutation relations. Using the fact that we cannot create more than one
fermion in the same mode, Pauli exclusion principle, we can add a second null term in
Eq.(4.13), in order to recover the reduced state in the form of Eq.(4.11),

ρr(t) =
L∑
l=0

flUta
†
µ

(1
2a
†
k|0〉〈0|ak

)
aµU

†
t f
†
l

+
L∑
l=0

flUta
†
µ

(1
2a
†
µ|0〉〈0|aµ

)
aµU

†
t f
†
l , (4.14)
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which can be written as,

ρr(t) =
L∑
l=0

flUta
†
µ (ρr(0)) aµU †t f †l

=
L∑
l=0

Kµ
l ρr(0)Kµ†

l , (4.15)

with Kµ
l = flUta

†
µ.

Due to the restriction of the map domain, Eq.(4.11), the relation between Kraus
operators and trace preservation can be written as∑

l

Kµ†
l K

µ
l = diag (λ0, λ1, ..., λL) , (4.16)

with λi 6=µ = 2 and λµ = 0, one can see that

Tr (ρr(t)) = Tr [diag (λ0, λ1, ..., λL) ρr(0)] = 1, (4.17)

where ρr(0) ∈ Dµ,purer(2) . This can be checked by computing the matrix elements of∑lK
µ†
l K

µ
l ,

in the basis {a†k|0〉}Lk=0, namely:
L∑
l=0

(
Kµ†
l K

µ
l

)
i,j

= 〈0|ai
L∑
l=0

Kµ†
l

(
L∑
k=0

a†k|0〉〈0|ak
)
Kµ
l a
†
j|0〉

= 〈0|aiaµU †t

∑
k,l

f †l a
†
k|0〉〈0|akfl


×Uta†µa

†
j|0〉,

(4.18)

where we used in the first line the identity ∑k a
†
k|0〉〈0|ak = IFL+1

1
. Since {ai} and {fi} are

both orthonormal bases, there exists a unitary V , of dimension L+ 1, which performs the
single particle transformation f †l = ∑

m Vlma
†
m, we can simplify the term∑

k,l

f †l a
†
k|0〉〈0|akfl

 =

=
 ∑
k,l,m,n

Vm,lV
∗
n,la
†
ma
†
k|0〉〈0|akan


=
∑
k,m

a†ma
†
k|0〉〈0|akam

 = 2IFL+1
2

, (4.19)

therefore,we have:
L∑
l=0

(
Kµ†
l K

µ
l

)
i,j

= 2〈0|aiaµa†µa
†
j|0〉

=

 2, if i = j, i 6= µ, j 6= µ

0, otherwise
. (4.20)
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As mentioned before, fixing different values of the reference mode µ, generates
distinct maps Φµ

t with domain Dµ,purer(2) . Now let us compare these distinct maps. We know
that given two sets Dµ,pure2 and Dν,pure2 , with fixed modes µ and ν, there exists a unitary
V ∈ U(FL+1

2 ) such that a†νa
†
k|0〉 = V a†µa

†
k|0〉. Therefore, any pair of maps Φµ

t and Φν
t have

the Kraus operators {Kµ
j = fjUta

†
µ}j and {Eν

j = fjUtV a
†
µ}j , respectively. We can compute

an upper bound to the norm difference of the (Choi-Jamiolkowski) dynamical matrices
DΦµt and DΦνt , associated with the maps, which is proved in Appendix B.1 :

‖DΦµt −DΦνt ‖1 ≤

d2L2 sup
a†
~k
|0〉〈0|a~k′∈F

L+1
2

‖
(
a†~k|0〉〈0|a~k′ − V

Ta†~k|0〉〈0|a~k′V
∗
)
‖1, (4.21)

where d is the dimension of FL+1
2 and ‖ · ‖1 is the well know trace norm given by the

relation, ‖A‖1 = Tr
(√

A†A
)
for all operators A. It is illustrative to compare this bound

with its counterpart in the case of distinguishable particles, where we have initially
uncorrelated system S and environment E forming a closed global system, whose dynamics
is described by a unitary USE. Assuming two dynamical maps, Φt and Λt, constructed
from different initial states of the environment, we have the two sets of Kraus operators
{Ka = 〈a|USE|0〉}a and {Ea = 〈a|USE(IS ⊗ VE)|0〉}a, respectively. Then the following
inequality, which is proved in Appendix B.2, holds:

‖DΦ −DΛ‖1 ≤ d2
S‖|0〉〈0| − VE|0〉〈0|V

†
E‖1, (4.22)

where dS is the dimension of the Hilbert space of the system S. It is important to emphasize
that the two frameworks are completely different. A tensor product structure between
system and environment is absent in our context of indistinguishable fermions. Another
remark is that the two maps in the distinguishable particles case have the same domain,
which in general is not true in the case of indistinguishable fermions.

4.3 Examples of One-Particle Dynamical Maps of Indistinguishable
Fermions
In this section we illustrate our formalism, deriving the Kraus operators for the

dynamics of one-fermion reduced state of two distinct two-particle Hamiltonians. To
simplify the discussion, we assume initial pure global state, such that the Kraus operators
{Kµ

l = flUta
†
µ} have domain given by Eq.(4.11).

4.3.1 Non-interacting Hamiltonian

Our first example, consisting of a non-interacting Hamiltonian, shows the consis-
tency of our formalism. As no correlation can be created, and the initial global state is
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pure, it is expected the one-particle evolution be unitary. The Hamiltonian can be written
in terms of fermionic operators as H = ∑

i,jMi,ja
†
iaj , and has the following diagonal form:

H = ∑
k λkb

†
kbk, where

b†k =
∑
i

Vk,ia
†
i , (4.23)

a†j =
∑
k

V ∗k,jb
†
k, (4.24)

λk are the single particle energy excitations and V is the unitary that diagonalizes M . The
dynamical evolution is given by the unitary Ut = exp

(
−it∑k λkb

†
kbk
)
. Now, we form the

Kraus operators using Eq.(4.12), with the choice {f †k}Lk=0 = {bk}Lk=0, namely: Kµ
l = blUtaµ.

The matrix elements of the Kraus operator are explicitly:

(Kµ
l )m,n = 〈0|bmblUta†µb†n|0〉

= 〈0|bmblUt
(∑

k

V ∗k,µb
†
k

)
b†n|0〉

=
∑
k

V ∗k,µe
−it(λk+λn) (δl,kδm,n − δm,kδl,n) ,

(4.25)

thus
Kµ
l =

∑
m

e−it(λl+λm)
(
V ∗l,µb

†
m|0〉〈0|bm − V ∗m,µb†m|0〉〈0|bl

)
.

The map acts on its domain (Eq.(4.11)) as the unitary Ut:

ρr(t) = 1
2
∑
m,n

(
V ∗m,kVn,k + V ∗m,µVn,µ

)
×e−it(λm−λn)b†m|0〉〈0|bn

= Utρr(0)Ut†. (4.26)

4.3.2 Four Level Interacting System

Consider two spin-1/2 fermions, in a lattice of two sites, whose dynamics is given
by the following Hamiltonian:

H = −
∑
σ=↑↓

(
a†1σa2σ + h.c

)
+ u

2∑
j=1

nj↑nj↓ + vn1n2, (4.27)

where a†jσ and ajσ are creation and annihilation operators, respectively, of a fermion at site
j with spin σ, njσ = a†jσajσ and nj = nj↑ + nj↓ are the number operators. The first term
of the Hamiltonian characterizes hopping (tunnelling) between sites, while the second and
third terms characterize the on-site and intersite interactions, parametrized by u and v,
respectively. In the basis a†~k|0〉 ∈ F

4
2 , where ~k = (k1, k2) has six possible configurations,

~k ∈ {(1↑, 1↓) , (1↑, 2↑) , (1↑, 2↓) , (1↓, 2↑) ,

(1↓, 2↑) , (2↑, 2↓)} , (4.28)
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we obtain the following matrix representation for the Hamiltonian:

H =



u 0 −1 1 0 0
0 v 0 0 0 0
−1 0 v 0 0 −1
1 0 0 v 0 1
0 v 0 0 v 0
0 0 −1 1 0 u


. (4.29)

Now we form the Kraus operators Kµ
j = ajUta

†
µ, with the choice {f †k}Lk=0 = {a†k}Lk=0.

If the unitary V diagonalizes the Hamiltonian, D = V HV †, we can write Ut as:

Ut =
∑
~l

e−iD~l,~lt
∑
~k,~k′

V~l,~kV
∗
~l,~k′
a†~k|0〉〈0|a~k′ . (4.30)

According to Eq.4.12 we have:

Kµ
j = ajUta

†
µ

=
∑
~l

e−iD~l,~lt
∑

k1,k2,k′1,k
′
2

V~l,k1k2
V ∗~l,k′1k′2

×

aja
†
k1a
†
k2|0〉〈0|ak′2ak′1a

†
µ. (4.31)

Using the anti-commutation relations, the last line of Eq.(4.31) reduces to:

aja
†
k1a
†
k2|0〉〈0|ak′2ak′1a

†
µ =

=
(
δj,k1a

†
k2 − δj,k2a

†
k1

)
|0〉〈0|

(
ak′2δk′1,µ − ak′1δk′2,µ

)
, (4.32)

and finally,

Kµ
j =

∑
~l

e−iD~l,~lt
∑
k,k′

[
V~l,jk

(
V ∗~l,k′µ − V

∗
~l,µk′

)
+

V~l,kj

(
V ∗~l,kj − V

∗
~l,µk′

)]
a†k|0〉〈0|ak′ . (4.33)

The unitary V can now be written explicitly as

V =



− 1√
2 0 0 0 0 1√

2
0 0 0 0 1 0
0 0 1√

2
1√
2 0 0

0 1 0 0 0 0
a(u, v) 0 b(u, v) −b(u, v) 0 a(u, v)
b(u, v) 0 −a(u, v) a(u, v) 0 b(u, v)


, (4.34)

while the explicit form of D is:

D = diag
(
u, v, v, v,

1
2

[
(u+ v)−

√
∆(u, v)2 + 16

]
,

1
2

[
(u+ v) +

√
∆(u, v)2 + 16

])
, (4.35)
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with ∆(u, v) = v − u,

a(u, v) =
∆(u, v) +

√
∆(u, v)2 + 16√√√√2

[(
∆(u, v) +

√
∆(u, v)2 + 16

)2
+ 16

] ,

and
b(u, v) = 4√√√√2

[(
∆(u, v) +

√
∆(u, v)2 + 16

)2
+ 16

] .

In summary, we recognized conditions for the validity of quantum subsystems
dynamics in the presence of exchange correlation. More specifically, we show that it is
possible to write maps characterizing the dynamics of one or a few fermions that are part
of a system of N indistinguishable particles whose dynamics is given by a unitary evolution.
These results adds another class of states in recent discussions about describing the
dynamics of initially correlated systems associated with the important problem of clarifying
the boundary between completely positive and not completely positive maps [3–10,34, 35].
It is worth mentioning that a possible unfolding of the formalism to be investigated would
be the possibility of computations gains with its use. Since it is well know that many
properties of many-body Hamiltonian can be deduced from the single particle reduced
state. As an example, we can study the dynamical map of one particle obtained from the
initial state of the N fermions in the ground state of a Hamiltonian without interaction,
consequently a state of one slater determinant that can be obtained analytically, undergoing
an adiabatic evolution leading to the ground state of the target Hamiltonian, with ground
state presenting phase transition of interest.
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5 Non-Markovianity of open quantum sys-
tems

The need to fight decoherence, to guarantee the proper working of the quantum
enhanced technologies of information and computation [2], has renovated the motivation
for the in-depth study of system-environment interaction dynamics. In particular, the
Markovian or non-Markovian nature of the dynamics is of great interest [53]. Several
witnesses and quantifiers have been proposed in order to characterize the non-Markovianity
of a quantum processes [18, 19,21]. For instance, the information flow between system and
environment, quantified by the distinguishability of any two quantum states [22–24,54],
or by the Fisher information [25], or mutual information [26]. The entanglement based
measure of non-Markovianity [27], grounded on the principle that entanglement cannot be
produced by a local CP map. In this chapter, we shall present the notion of Markovianity.
We first introduce this concept in the classical theory of stochastic processes showing
analogies and differences with the quantum case. We define the divisibility criterion for
measures of non-Markovianity.

5.1 Markovianity in classical stochastic processes
The supposition of Markovianity can be translated directly into a rigorous mathe-

matical definition for classical stochastic processes. Consider a stochastic process defined
as a family of random variables {X(t)|t ∈ [t0, tf ] ∈ R+}, where the parameter t represents
time, taking values in a discrete set {x0(t0), x1(t1), . . . , xn(tn)} with ordered set of times
t0 ≤ t1 ≤ · · · ≤ tn, we may describe this dynamical process through joint distributions
of the form p (xn, tn|xn−1, tn−1; . . . ;x0, t0). In general, the probability that the random
variable X acquire a value xn at an arbitrary time tn is conditioned to the entire history
of the dynamics, as can be seen from Bayes’ theorem,

p (xn, tn|xn−1, tn−1; . . . ;x0, t0) = p (xn, tn;xn−1, tn−1; . . . ;x0, t0)
p (xn−1, tn−1; . . . ;x0, t0) . (5.1)

However, if the process is Markovian we just need to provide that it took the value xn−1

at some previous time tn−1 < tn to uniquely determine the condition probability, and
does not have the influence of the values of X for previous times to tn−1, which can be
formulated in terms of conditional probabilities as

p (xn, tn|xn−1, tn−1; . . . ;x0, t0) = p (xn, tn|xn−1, tn−1) . (5.2)

In the sense described above, Markovian process is said to lack memory. The quantum
analogues of random variables of classical processes are operators characterizing system
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observables, therefore the definition of Markovianity given by Eq.(5.2) has no satisfactory
direct parallel to quantum mechanics because quantum theory is based on noncommutative
algebras. A different approach, known as the divisibility criterion, focused on the study of
dynamical maps acting on single-time probabilities p(x0, t0), gives a sufficient condition for
a classical stochastic process to be non-Markovian. Similarly, we can define the divisibility
criterion for the quantum case, now investigating the dynamical map on quantum states.

Consider a classical stochastic process, such that the single-time probability distri-
bution at time t is a probability vector p(t), with elements p(j, t) satisfying p(j, t) ≥ 0 for
all j and ∑j p(j, t) = 1. Consider a linear map Λ(t, t0) that performs the time evolution of
the probability vector p(t0):

p(t) = Λ(t, t0)p(t0). (5.3)

The map Λ that associates probability vectors to probability vectors satisfy the following
conditions:

N∑
j=1

(Λ)jk = 1 ∀k, (5.4)

(Λ)jk ≥ 0 ∀j, k.

A map that respects the properties described in Eq.(5.4) is named stochastic matrix. For
a stochastic process, not necessary Markovian, we can define the relation

p (k, t) =
∑
j

p (k, t|j, t0) p (j, t0) , (5.5)

obtained from the definition of the probability condition Eq.(5.1). Each element of the
probability vector defined in Eq.(5.3) can be written as p (i, t) = ∑

j (Λ(t, t0))ij p (j, t0),
comparing with the expression Eq.(5.5), we can conclude that (Λ(t, t0))ij = p(i, t|j, t0).
However, this is not necessarily true for an intermediate time t1 > t0, that is, we may have
(Λ(t, t1))ij 6= p(i, t|j, t1). In general the conditional probability p(i, t|j, t1) is not uniquely
defined due to the dependency of the initial condition, i.e. p(i, t|j, t1; k, t0) can be distinct
of p(i, t|j, t1; k′, t0) to k 6= k′, an exception to this fact would be Makovian processes
that satisfy Eq.(5.2), and therefore the relation (Λ(t, t1))ij = p(i, t|j, t1) is valid. The
Markov condition Eq.(5.2) implies that the conditional probability p (x, t|x0, t0) satisfies
the discrete version of the so-called Chapman-Kolmogorov equation

p (x, t|x0, t0) =
∑
x1

p (x, t|x1, t1) p (x1, t1|x0, t0) , t0 < t1 < t. (5.6)

One can see this by applying the definition of conditional probability Eq.(5.1), and
the Markovian condition Eq.(5.2) on a joint probability for the three consecutive times,
p(x, t;x1, t1;x0, t0) = p(x, t|x1, t1)p(x1, t1|x0, t0)p(x0, t0), dividing both sides by p(x0, t0)
and summing over x1.
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Provided that the map Λ(t, t0) is invertible for all t > t0, we can compute maps for
intermediate times as follows:

Λ(t, t1) = Λ(t, t0)Λ(t1, t0)−1, (5.7)

where t > t1 > t0. The map Λ(t, t1) is not necessarily stochastic, i.e., it does not satisfy
the relations in Eq.(5.4). The class of maps that has stochastic intermediate maps for
any t > t1 > t0 is called P-divisible. Intermediate map Λ(t, t1) violates P-divisibility
only in the case of non-Markovian processes, this gives a sufficient condition to detect
non-Markovianity.

5.2 Quantum Dynamical Maps and the Divisibility Criterion
The standard description of the evolution of an open quantum system can be

written in the well known operator sum representation [2, 33] (see section 2.3):

ρ(t) =
∑
j

Kj (t, t0) ρ(t0)K†j (t, t0) ,
∑
j

K†jKj = I, (5.8)

where theKj are the Kraus operators and ρ(t0) is the state of the open system at initial time
t0. We can conveniently rewrite the dynamic process (Eq.5.8) in the natural representation
as (Eq.2.26):

|ρ(t)〉 = Φ (t, t0) |ρ(t0)〉, Φ (t, t0) =
∑
j

Kj (t, t0)⊗K∗j (t, t0) , (5.9)

where |ρ〉 ≡ vec(ρ). Consider the evolution of the system from an initial time t0 to a final
time tf ,

|ρ(tf )〉 = Φ(tf , t0)|ρ(t0)〉. (5.10)

Suppose this evolution is broken in two steps with an intermediate time, tf > tm > t0,
namely:

|ρ(tf )〉 = Φ(tf , tm)Φ(tm, t0)|ρ(t0)〉. (5.11)

Whereas Φ(tf , t0) is a completely positive (CP) map for arbitrary tf [33], the map corre-
sponding to the intermediate step, Φ(tf , tm), may be non-CP for some tm. As realizable
maps are always CP, Φ(tf , tm) being non-CP for the particular time tm witnesses the
fact that such a division is not possible. A trivial case in which any intermediate division
is possible corresponds to unitary evolution. Markovian evolutions also admit arbitrary
intermediate steps. The intermediate map may fail to be CP only in the case of non-
Markovian evolution. This divisibility criterion [27] is therefore a sufficient condition to
detect non-Markovianity.

In order the check the complete positivity of a map, we use the well known duality
between CP maps and positive operators, expressed by the Choi’s theorem [33,55]. First
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we define the unique dynamical matrix associated to the map:

Dmn
µν = Φmµ

nν = 〈mµ|Φ|nν〉, (5.12)

where Latin and Greek indices correspond to system and environment Hilbert spaces,
respectively. The Choi’s theorem states that the map (Φ) is CP if and only if its dynamical
matrix (D) is a positive semi-definite operator. Finally, to check the complete positivity of
the intermediate map, we form the matrix of its super-operator by means of the product:

Φ(tf , tm) = Φ(tf , t0)Φ−1(tm, t0). (5.13)

Note that Φ(t, t0) is the matrix representation of the map that evolves the system from
the initial time t0 to any time t. Φ−1(tm, t0) is the pseudo-inverse of Φ(tm, t0), and thus
evolves the system from tm to t0. Therefore the matrix product in Eq.5.13 defines a
matrix representation for the intermediate map. While the dynamical matrix (D(t, t0))
corresponding to Φ(t, t0) is always positive semi-definite, the one (D(tf , tm)) related to
Φ(tf , tm) may happen to be non-positive, and in this case it witnesses a non-Markovian
evolution.
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6 Non-Markovian Dynamics of One and Two
Qubits in an Ising Model Environment

In this chapter, we present our results on the topic of non-Markovianity [Eur. Phys.
J. D 71, 119 (2017)]. We obtained explicitly the Choi representation of the quantum
map of an arbitrary quadratic fermionic Hamiltonian acting on qubits, and performed a
comparative exploration of its dynamics from the point of view of (non-)divisibility [30,31].
After obtaining the analytical expression of the dynamical matrix, we specialized to the
case of an environment represented by the quantum one-dimensional Ising model acting
on one central qubit, which in the case of finite size lattices can be solved analytically by
means of the well known Jordan-Wigner and Bogoliubov transformations [56, 57]. The
divisibility criterion consists in checking if an intermediate quantum map is not Complete
Positive (CP) for some time instant, which amounts to checking the non-positivity of
the corresponding dynamical matrix [33]. We showed that the non-positivity of the
dynamical matrix, measured by its eigenvalues, in this case is a simple function of the
Loschmidt echo [58], a quantity that indicates decoherence induced by perturbations. We
also investigated the action of a trivial extension of the map on the decay of entanglement
of the system coupled to an ancilla. We saw that the intermediate map is not contractive,
and entanglement is again a function of the Loschmidt echo which is not monotonically
decreasing, signaling non-Markovianity and information flux from the environment to
the system [28]. Finally, we wished to know if the number of particles in the system has
some influence on the dynamics of the environment. Thus we derived the map acting on a
system composed of two qubits, concluding that the results do not have any change.

6.1 Dynamical Matrix for a General Fermionic Quadratic Hamilto-
nian
In previous chapters, we reviewed the formalism of quantum maps and the divisibil-

ity criterion. We now apply such formalism to environments described by general fermionic
quadratic Hamiltonians, interacting with a qubit. We will show how to obtain the exact
expression for the Kraus decomposition of the dynamical matrix. Let us then consider a
general fermionic quadratic Hamiltonian, namely,

Hg =
L∑

m,n=1
(xm,na†man + ym,na

†
ma
†
n + h.c.). (6.1)
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where L is the lattice size, and xm,n, ym,n are arbitrary complex numbers. a†j(aj) is the
creation (annihilation) operator, satisfying the usual anti-commutation relations:

{ai, a†j} = δij, {ai, aj} = 0. (6.2)

For the interaction of the qubit with this environment, we consider the following Hamilto-
nian:

Hint = −δ|e〉〈e| ⊗ Ve, (6.3)

where |g〉 and |e〉 are the qubit ground and excited states, respectively, and Ve is a
fermionic quadratic Hamiltonian. We consider that the qubit and environment are initially
uncorrelated, and they are in an arbitrary pure initial state,

|ψ(0)〉 = |χ(0)〉 ⊗ |ϕ(0)〉 = (cg|g〉+ ce|e〉)⊗ |ϕ(0)〉, (6.4)

where |χ(0)〉 = cg|g〉+ ce|e〉, with |cg|2 + |ce|2 = 1, is the initial qubit state. The evolution
under the total Hamiltonian,

H = Hg +Hint, (6.5)

is given by:
|ψ(t)〉 = e−iHt/~|χ(0)〉 ⊗ |ϕ(0)〉, (6.6)

|ψ(t)〉 = cg|g〉 ⊗ e−iHgt/~|ϕ(0)〉︸ ︷︷ ︸
|ϕg(t)〉

+ce|e〉 ⊗ e−iHet/~|ϕ(0)〉︸ ︷︷ ︸
|ϕe(t)〉

, (6.7)

where
He = Hg − δVe. (6.8)

Such Hamiltonians, He and Hg, can be easily diagonalized by a Bogoliubov transformation
[56], where we introduce to the problem new fermionic operators B±k and A±k, constructed
as a linear combination of operators a±k,

B±k ≡ cos
(
θkg
2

)
a±k ∓ i sin

(
θkg
2

)
a†∓k, (6.9)

A±k ≡ cos
(
θke
2

)
a±k ∓ i sin

(
θke
2

)
a†∓k. (6.10)

The index k is associated with the reciprocal space arising from a Fourier transformation.
The θkg and θke parameters are dependent on the Hamiltonian parameters, in the next
section we will define them explicitly for the Ising model [56, 57]. These new fermionic
operators are related according to

B±k = cos(αk)A±k ∓ i sin(αk)A†∓k, (6.11)

where αk = (θkg − θke )/2. The Hamiltonians in diagonal form read:

Hg =
∑
k

εkg(B
†
kBk + Cg), He =

∑
k

εke(A
†
kAk + Ce), (6.12)
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where Cg and Ce are both real constants, and εkg(e) are the single-particle eigenvalues. The
ground states of Hg (Gg) and He (Ge) are related by:

|Gg〉 =
∏
k>0

[
cos(αk) + i sin(αk)A†kA

†
−k

]
|Ge〉. (6.13)

Now we derive the Kraus decomposition of the map super-operator (Φ). The Kraus
operators of the evolution are:

Ki = (IS ⊗ 〈i|) e−iHt/~ (IS ⊗ |ϕ(0)〉), (6.14)

with IS = |g〉〈g|+ |e〉〈e|. Assuming, without loss of generality (the map does not depend
on the initial states of the qubit-environment), that the environment is initially in its
ground state , |ϕ(0)〉 = |Gg〉, and using Eq.(6.7), we obtain:

Ki = IS ⊗ 〈i| [|g〉〈g| ⊗ |ϕg(t)〉+ |e〉〈e| ⊗ |ϕe(t)〉] . (6.15)

The environment states |ϕg(t)〉 and |ϕe(t)〉 are given by:

|ϕg(t)〉 = e−iHgt/~|Gg〉 = e−iEgt/~|Gg〉 = (6.16)

e−iEgt/~
∏
k>0

[
cos(αk) + i sin(αk)A†kA

†
−k

]
|Ge〉,

where Eg is the ground state energy of Hg. Likewise, using Eq.(6.13), we obtain:

|ϕe(t)〉 = e−iHet/~× (6.17)∏
k>0

[
cos(αk) + i sin(αk)A†kA

†
−k

]
|Ge〉 =

∏
k>0

[
cos(αk) + e−i(ε

k
e+ε−ke )t/~i sin(αk)A†kA

†
−k

]
×

e−iEet/~|Ge〉.

In order to obtain the Kraus operators, it is enough to calculate the overlaps 〈i|ϕg(t)〉 and
〈i|ϕe(t)〉, for a given environment basis {|i〉}, as shown in Eq.(6.15). A convenient basis is
formed by the eigenstates of He, namely:

{|i〉} = {|Ge〉, A†~kN |Ge〉}, (6.18)

where ~kN = (k1, k2, ..., kN) is the vector representing the momentum of the N(= 1, . . . , L)
excitations, and A†~k = A†k1A

†
k2 ...A

†
kN
. It is easy to see that the only non null elements for

“〈i|ϕg(t)〉”, using Eq.(6.16), are given by,

〈Ge|ϕg(t)〉 = e−iEgt/~(
∏
k>0

cos(αk)), (6.19)

and

a~kN (t) ≡ 〈Ge|A−~kNA~kN |ϕg(t)〉 = (6.20)

e−iEgt/~
∏

k∈~kN
(i sin(αk))(

∏
k>0, k /∈~kN

cos(αk)),
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where N varies from 1 to L/2. Analogously, the non null terms for “〈i|ϕe(t)〉”, using
Eq.(6.17), are given by,

b~kN (t) ≡ 〈Ge|A−~kNA~kN |ϕe(t)〉 = (6.21)

e−iEet/~
∏

k∈~kN

[
i sin(αk) exp(−i(εke + ε−ke )t/~)

]
×

( ∏
k>0, k /∈~kN

cos(αk)).

It is easy to check the following relation:

b~kN (t) = a~kN (t)f~kN (t), (6.22)

where
f~kN (t) ≡ e−i(Ee−Eg)t/~ exp(−i

N∑
k∈~kN

(εke + ε−ke )t/~). (6.23)

Finally, we reach the first result of this work, obtaining a simple expression for the Kraus
operators of the quantum map,

K~kN
= a~kN (t)(|g〉〈g|+ f~kN (t)|e〉〈e|). (6.24)

Note that
∣∣∣a~kN (t)

∣∣∣2 is not a time dependent variable, and

∑
{~kN}

∣∣∣a~kN (t)
∣∣∣2 = Tr(|ϕg(t)〉〈ϕg(t)|) = 1. (6.25)

By using this fact, we can then write the quantum map in terms of the Kraus operators
as follows,

Φ(t, 0) =
∑
{~kN}

K~kN
⊗K∗~kN

= |g〉〈g| ⊗ |g〉〈g|+ |e〉〈e| ⊗ |e〉〈e|+

|g〉〈g| ⊗ |e〉〈e|
∑
{~kN}

∣∣∣a~kN (t)
∣∣∣2 f~kN (t)∗ + (6.26)

|e〉〈e| ⊗ |g〉〈g|
∑
{~kN}

∣∣∣a~kN (t)
∣∣∣2 f~kN (t).

If we define the following variable,

x(t) ≡
∑
{~kN}

∣∣∣a~kN (t)
∣∣∣2 f~kN (t), (6.27)

the quantum map can be rewritten as,

Φ(t, 0) = [|g〉〈g| ⊗ |g〉〈g|+ |e〉〈e| ⊗ |e〉〈e|+

|g〉〈g| ⊗ |e〉〈e|x(t)∗ + |e〉〈e| ⊗ |g〉〈g|x(t)] . (6.28)
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As expected, the quantum map consists in a decoherence channel, and thus we can identify
the variable “x(t)” with the known Loschmidt echo L(t) [24,54,59],

L(t) = |x(t)|2 = |〈ϕg(t)|ϕe(t)〉|2. (6.29)

The above relation follows just by noticing that the qubit reduced state, ρS(t) = TrE(|ψ(t)〉〈ψ(t)|),
taking the partial trace of Eq.(6.4), is given by ρS(t) = |cg|2|g〉〈g|+|ce|2|e〉〈e|+c∗gceµ(t)|e〉〈g|+
H.c., where µ(t) = 〈ϕg(t)|ϕe(t)〉 is the decoherence factor. The quantum map corresponding
to such an evolution is the decoherence channel, as described before.

From Eq.(5.13), we have the following expression for the intermediate map:

Φ(tf , tm) = [|g〉〈g| ⊗ |g〉〈g|+ |e〉〈e| ⊗ |e〉〈e|+

|g〉〈g| ⊗ |e〉〈e|y(tf , tm)∗ + (6.30)

|e〉〈e| ⊗ |g〉〈g|y(tf , tm)] ,

where
y(tf , tm) ≡ x(tf )

x(tm) . (6.31)

The dynamical matrix of this quantum map is

DΦ(tf ,tm) =



1 0 0 y(tf , tm)∗

0 0 0 0

0 0 0 0

y(tf , tm) 0 0 1



. (6.32)

Computing the minimum eigenvalue, we arrive at the following simple sufficient condition
for the positive-semi-definiteness of the dynamical matrix:

1− |y(tf , tm)| ≥ 0. (6.33)

Therefore we have obtained a simple function capable to witness the non-Markovianity of
the dynamics, i.e., Φ is non-Markovian if |y(tf , tm)| > 1.

6.2 Ising model as an environment for a system of one qubit
In the previous section, we derived the dynamical matrix for an arbitrary quadratic

fermionic Hamiltonian. In this section we focus on an environment described by the Ising
Hamiltonian in a transverse field (Hising), with periodic boundary conditions (L+ 1 = 1).
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Figure 3 – Schematic view of spins forming a ring array, representing the environment
governed by the Ising Hamiltonian (Eq.(6.34)). The central spin is the qubit
interacting with the environment according to Eq.(6.35).

The interaction with the environment (Hint) is by means of the transverse magnetic field
in the Z direction (see Fig.3), more precisely,

HIsing = −J
L∑
j=1

(σxj σxj+1 + λσzj ), (6.34)

Hint = −δ|e〉〈e| ⊗
L∑
j=1

σzj . (6.35)

In order to employ the previous section’s results, we first do the identification:

He = Hising − δ
L∑
j=1

σzj , (6.36)

Hg = Hising. (6.37)

We now diagonalize the Ising Hamiltonian [57]. First we use the usual Jordan-Wigner
transformation,

σ+
j = exp (iπ

∑
l<j

a†lal) =
∏
l<j

(1− 2a†lal)aj, (6.38)

aj = (
∏
l<j

σzl )σ+
j . (6.39)

The Ising Hamiltonian can then be rewritten in terms of quadratic fermionic operators:

Hising = J

− L−1∑
j=1

(a†jaj+1 + a†ja
†
j+1 + h.c.)

+e(iπ)N̂(a†La1 + a†La
†
1 + h.c.) + 2λN̂ − λL

]
, (6.40)

where N̂ = ∑
j a
†
jaj. The Hamiltonian conserves the parity,

[
H, e(iπ)N̂

]
= 0. Thus we can

analyze its odd/even subspaces separately. The gap between the ground state energy of
these two subspaces closes in the thermodynamic limit. For simplicity, we shall proceed
the analysis in the even sector, which leads to a simple quadratic Hamiltonian with
anti-periodic boundary conditions. Using the momentum eigenstates,

ak = 1√
L

∑
j

e(−ikj)aj, (6.41)
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with k = 2π
L
q, q = ±1/2,±3/2, ...,±(L− 1)/2, for L even, and the Bogoliubov transfor-

mation (Eq.(6.10)), with phases

θke (δ) = arctan
[

− sin(k)
cos(k)− (λ+ δ)

]
, (6.42)

the Hamiltonian assumes the desired diagonal form:

He =
∑
k

εke (A†kAk − 1/2), (6.43)

with eigenvalues given by:

εke(δ) = J
√

1 + (λ+ δ)2 − 2(λ+ δ) cos(k). (6.44)

6.3 Ising model as an environment for a system of two qubits
Now we determine the exact expression for the quantum map(Φ), in the case of

two qubits interacting with an environment described by an arbitrary quadratic fermionic
Hamiltonian Hg (Eq.(6.1)). The motivation is to investigate how the number of particles in
the system affects the environment. We assume the two qubits described by the Hamiltonian

HS = −JS [σz1σz2 + λS (σz1 + σz2)] , (6.45)

where σz = |g〉〈g| − |e〉〈e|, with |g〉 and |e〉 being the qubit ground and excited states. For
the interaction with the environment, we consider the following Hamiltonian:

Hint = − [δ1|gg〉〈gg|+ δ2 (|ge〉〈ge|

+|eg〉〈eg|)]⊗ V, (6.46)

where V is a fermionic quadratic Hamiltonian. We assume that the two qubits and the
environment are initially uncorrelated, and they are in an arbitrary pure initial state,

|ψ(0)〉 = |χ(0)〉 ⊗ |ϕ(0)〉,

where |χ(0)〉 = cgg|gg〉+ cge|ge〉+ ceg|eg〉+ cee|ee〉 ( |cgg|2 + |cge|2 + |ceg|2 + |cee|2 = 1) is
the initial two-qubit state. Therefore, the state of the composite system, at an arbitrary
time t, can be written as:

|Ψ(t)〉 = e−i(Hg+Hint+HS)t/~|χ(0)〉 ⊗ |ϕ(0)〉

= e−iJSt/} (cge|ge〉+ ceg|eg〉) |ϕ2(t)〉+

cgge
iJS(1+2λ)t/}|gg〉|ϕ1(t)〉+

ceee
iJS(1−2λ)t/}|ee〉|ϕ0(t)〉, (6.47)
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where |ϕa(t)〉 = e−iHat/}|ϕ(0)〉, with Hamiltonian Ha = H0 − δaVe, a = (0, 1, 2), and
δ0 = 0. With this notation, we have H0 ≡ Hg. The Hamiltonian Ha(a = (0, 1, 2)) can be
diagonalized by a Bogoliubov transformation,

η±ka = cos
(
θka
2

)
a±k ∓ i sin

(
θka
2

)
a†∓k. (6.48)

These fermionic operators are related by:

η±ka = cos
(
αka,b

)
η±kb ∓ i sin

(
αka,b

)
η∓k†b , (6.49)

where αka,b = (θka − θkb )/2. The Hamiltonian in diagonal form reads:

Ha =
∑
k

εka
(
ηk†a η

k
a + Ca

)
, (6.50)

where C0, C1 and C2 are real constants, εk0, εk1 and εk2 are the single-particle eigenvalues.
The ground states of H0 (G0), H1 (G1) and H2 (G2) are related according to:

|Ga〉 =
∏
k>0

[
cos

(
αka,b

)
+ i sin

(
αka,b

)
ηk†b η

−k†
b

]
|Gb〉. (6.51)

Using the definition of Kraus operators in Eq.(6.14), and the Eq.(6.47), we can write:

Ki = 〈i|ϕ2〉e−iJt/} (|ge〉〈ge|+ |eg〉〈eg|) +

〈i|ϕ1〉eiJ(1+2λ)t/}|gg〉〈gg|+

〈i|ϕ0〉eiJ(1−2λ)t/}|ee〉〈ee|, (6.52)

where {|i〉} is an environment basis. Finally we obtain the quantum map:

Φ (t, 0) =
∑
i

Ki ⊗K∗i

= [|gg〉〈gg| ⊗ |gg〉〈gg|+ |ee〉〈ee| ⊗ |ee〉〈ee|+

|ge〉〈ge| ⊗ |ge〉〈ge|+ |eg〉〈eg| ⊗ |eg〉〈eg|+

|ge〉〈ge| ⊗ |eg〉〈eg|+ |eg〉〈eg| ⊗ |ge〉〈ge|+

(|ee〉〈ee| ⊗ |eg〉〈eg|+ |ee〉〈ee| ⊗ |ge〉〈ge|)×

x0,2(t)∗eiφ−t +

(|eg〉〈eg| ⊗ |ee〉〈ee|+ |ge〉〈ge| ⊗ |ee〉〈ee|)×

x0,2(t)e−iφ−t +

(|gg〉〈gg| ⊗ |eg〉〈eg|+ |gg〉〈gg| ⊗ |ge〉〈ge|)

x1,2(t)∗eiφ+t +

(|eg〉〈eg| ⊗ |gg〉〈gg|+ |ge〉〈ge| ⊗ |gg〉〈gg|)

x1,2(t)e−iφ+t +

|ee〉〈ee| ⊗ |gg〉〈gg|x0,1(t)∗e−iφ0t +

|gg〉〈gg| ⊗ |ee〉〈ee|x0,1(t)eiφ0t
]
,

(6.53)
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with, φ± = 2JS(1 ± λS)/} and φ0 = 4JSλS/}, and xa,b(t) = 〈ϕb|ϕa〉. Choosing the
environment in its initial ground state, |ϕ(0)〉 = |G0〉, and using equations (6.49-6.51), we
have:

xa,b(t) = 〈ϕb|ϕa〉

=
∏
k>0

{
cos

(
αk0,a

)
cos

(
αk0,b

)
cos

(
αka,b

)
+

[
cos

(
αk0,a

)
sin

(
αk0,b

)
ei(ε

k
b+ε−k

b
)t/~ −

cos
(
αk0,b

)
sin

(
αk0,a

)
e−i(ε

k
a+ε−ka )t/~

]
×

sin
(
αka,b

)
+ sin

(
αk0,a

)
sin

(
αk0,b

)
cos

(
αka,b

)
×

e−i[(εka+ε−ka )−(εkb+ε−k
b

)]t/~
}
e−i(Ea−Eb)t/~, (6.54)

where Ea is the ground state energy of Ha. Finally, we obtain the dynamical matrix of the
intermediate map, namely:

DΦ(tf ,tm) = [|gg〉〈gg| ⊗ |gg〉〈gg|+ |ee〉〈ee| ⊗ |ee〉〈ee|+

|ge〉〈ge| ⊗ |ge〉〈ge|+ |eg〉〈eg| ⊗ |eg〉〈eg|+

|ge〉〈eg| ⊗ |ge〉〈eg|+ |eg〉〈ge| ⊗ |eg〉〈ge|+

(|ee〉〈eg| ⊗ |ee〉〈eg|+ |ee〉〈ge| ⊗ |ee〉〈ge|)×

y0,2(tf , tm)∗eiφ−(tf−tm) +

(|eg〉〈ee| ⊗ |eg〉〈ee|+ |ge〉〈ee| ⊗ |ge〉〈ee|)×

y0,2(tf , tm)e−iφ−(tf−tm) +

(|gg〉〈eg| ⊗ |gg〉〈eg|+ |gg〉〈ge| ⊗ |gg〉〈ge|)×

y1,2(tf , tm)∗eiφ+(tf−tm) +

(|eg〉〈gg| ⊗ |eg〉〈gg|+ |ge〉〈gg| ⊗ |ge〉〈gg|)×

y1,2(tf , tm)e−iφ+(tf−tm) +

|ee〉〈gg| ⊗ |ee〉〈gg|y0,1(tf , tm)∗e−iφ0(tf−tm) +

|gg〉〈ee| ⊗ |gg〉〈ee|y0,1(tf , tm)eiφ0(tf−tm)
]
,

(6.55)

where
ya,b(tf , tm) = xa,b(tf )

xa,b(tm) . (6.56)

Unlike the case of one qubit, where we presented a very simple expression for the
minimum eigenvalue of the dynamical matrix (Eq.(6.33)), directly related to the well know
Loschmidt echo, in the case of two qubits the minimum eigenvalue is a non-trivial function
of the parameters ya,b(tf , tm). However, working numerically we learn that the two-qubit
case does not present any new characteristic that would result in a different behavior of
the non-Markovianity in relation to the one-qubit case.
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Figure 4 – Manifestation of the non-Markovianity by means of the most negative eigenvalue
of the intermediate quantum map DΦ(tf ,tm) (greyscale), as a function of tf and
tm, for a lattice with parameters L = 10 , λ = 0.5 and δ = 0.5.

6.4 Witnessing the non-Markovianity in the Ising Model: Finite size
effects
Now we are equipped to characterize the dynamics of a qubit interacting with an

environment governed by the Ising model (Fig.3). We consider lattices up to L = 5× 105

sites, and investigate the non-Markovianity in the vicinity of the critical point of the
quantum Ising model, which is well known to be equal to λ∗ ≡ λ+ δ = 1. Let us define a
measure (η) of non-Markovianity as the minimum of the eigenvalues for the intermediate
quantum dynamical matrix DΦ(tt,tm) over all final times tf and over all time partitions tm,
precisely:

η = min
{tf}

min
{tm<tf}

eig{DΦ(tt,tm)}, (6.57)

where eig is the set of eigenvalues of the intermediate dynamical matrix DΦ(tf ,tm). In order
to exemplify such a non-Markovianity measure, we plot, in Fig.4, the smallest eigenvalue
of the intermediate map as a function of the final (tf) and intermediate (tm) times, at
the critical point of the Ising model, for a lattice with L = 10 sites. As the values of
tm and tf are swept, the non-Markovian regions of the dynamics are revealed. Notice
that the previously defined non-Markovianity measure is only based on the minimum
eigenvalue of the dynamical matrix. One might expect, however, that the number of
negative eigenvalues could influence the strength of the non-Markovianity. For our models
under analysis, however, it seems not play any relevant effect: i) in the case of a single qubit
it becomes trivial, since one can only have a single negative eigenvalue for the dynamical
matrix; ii) and in the case of two-qubits we found that indeed there are cases where the
dynamical matrix presents more than one negative eigenvalue, but its absolute value is
always at least two orders of magnitude smaller than the absolute value of the minimum
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Figure 5 – The non-Markovianity measure η (Eq. (6.57)) in function of the transverse field
λ, for δ = 0.01, and for different lattice sizes (L), in the vicinity of the Ising
model critical point.
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Figure 6 – The Loschmidt echo L (Eq. (37)) as a function of the time, at the critical point
λ∗ = λ+ δ = 1, with δ = 10−2, for different lattice sizes.

eigenvalue, and thus could be neglected. In Fig. 5, the non-Markovianity, quantified by η
(Eq.(6.57)), is plotted against the transverse field (λ), in the vicinity of the Ising model
critical point, for a fixed interaction coupling constant δ = 0.01. We see that the larger the
lattice, the larger the non-Markovianity. The most interesting feature shown in this figure
is the maximum of non-Markovianity occurring precisely at the Ising model critical point.
The behavior of this measure for larger lattice sizes, and in the thermodynamic limit,
for the particular model studied in this section could also be inferred by the Loschmidt
echo [24, 54, 59], from Eqs.(6.29) and (6.33). Note, however, that this equivalence between
η and the Loschmidt echo is not necessarily true in general. In Fig. 6 ,we see the behavior
of the Loschmidt echo, for different lattice sizes, at the critical point (λ∗ = 1). We
highlight some of its features: (i) the Loschmidt echo has an abrupt decay followed by
a revival, with a time period “τ”, which is proportional to the lattice size, τ ∝ L; (ii)
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Figure 7 – Finite size scaling analysis: ln(−η) as a function of L, for L = 100 to L = 105

sites, at the critical point λ∗ = 1, with δ = 10−2. The linear fit reveals an
exponential divergence of the non-Markovianity with the lattice size.

the difference between the minimum value of the decay (which we shall denote by Ldec)
and the maximal of the revival (Lrev) becomes higher as we increase the lattice size. In
this way, the non-Markovianity measure is simply given by η = Lrev/Ldec. Performing
a finite-size scaling analysis, we see, in Fig. 7, that such a measure grows exponentially
with lattice size, η(λ∗) ∝ exp(α∗L), with α∗ ∼ 2.36× 10−3. Notice however that, despite
such exponentially increasing behavior, at the thermodynamic limit the period τ diverges,
and there is no revival of the function, consequently, the non-Markovianity pointed by
this measure must be null: η(λ∗) = 0 for L → ∞. It should be clear by now, that the
non-Markovianity we have observed so far is due to the finite size of the lattice and the
periodical dynamical revivals thereof. The behavior of the Loschmidt echo outside of the
critical point is plotted in Fig. 8. We highlight some of its features: (i) due to finite size
effects, we see that after a certain time (Γ), which increases with the lattice size (Γ ∝ L),
the function has a chaotic behavior; (ii) the “shape” of the function before the chaotic
behavior is invariant with the lattice size, only its amplitude is changed. Performing
then a finite-size scaling analysis, we see, in Fig. 9, that the non-Markovianity measure
grows exponentially with lattice size, η(λ∗ − 0.1) ∝ exp(βlL), with βl ∼ 1.43× 10−5, and
η(λ∗ + 0.1) ∝ exp(βrL), with βr ∼ 1.29× 10−5. Notice that although the measure also has
an exponential scaling, as in the critical point, its exponential factors are much smaller,
namely, βl(r)/α∗ ∼ 10−2. In summary, we see that the non-Markovianity measure, for finite
size systems, reaches its maximal at the critical point, whereas in the thermodynamic
limit it is zero exactly at the critical point, and it diverges outside of the critical point.
Assuming the environment described by the Ising Hamiltonian, the measure (η) (Eq.6.57)
and the witness (N ) (Eq.6.60) for the non-Markovian dynamics for the two qubits have
exactly the same behavior of the non-Markovian dynamics for one qubit. Here we will just
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sites, outside of the critical point, more precisely, for λ = λ∗±0.1, and δ = 10−2.
The linear fit reveals an exponential divergence of the non-Markovianity with
the lattice size, (−η) ∝ eβL.

highlight that the results do not depend on the parameters JS and λS, and the choice of a
Hamiltonian HS for the open system (two spins) just adds a relative phase in its initial
state, |χ(0)〉, do not affecting (η) nor (N ).

6.5 Entanglement as a witness of non-Markovianity in the Ising
model: Beyond finite size effects
In the previous section, we characterized the non-Markovianity by means of the

non-positivity of the dynamical matrix expressed as a simple function of the Loschmidt
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echo. Now we will further explore the dynamics using a witness of non-Markovianity.
Different non-Markovianity witnesses based on entanglement, or on bipartite correlations,
have recently appeared in the literature [60–62]. We based our witness on the entanglement
between the central qubit coupled to an ancilla. Our main concern shall be to detect the
non-Markovianity that is not due to the finite lattice size. To see how this works, we
assume a system S, with dynamics described by a map Φ, and a static ancillary system A.
The system-ancilla evolution is given by,

ρSA(tf ) = Φ(tf , t0)⊗ IA [ρSA(t0)] . (6.58)

Note that we have trivially extended the map to a separable one, with no local action over
the ancilla. Entanglement cannot be generated by a local CP map. Assuming that the
map (Φ(tf , t0)) is divisible, in the sense discussed in section II, i.e., the intermediate map
(Φ(tf , tm)) is CP, tf > tm > t0, we have:

E [ρSA(tf )] = E [(Φ(tf , tm)Φ(tm, t0)⊗ IA [ρSA(t0)]]

= E [(Φ(tf , tm)⊗ IA [ρSA(tm)]]

≤ E [ρSA(tm)] , (6.59)

where E [ρSA(t)] is some quantifier of bipartite entanglement. The above equation expresses
the fact that entanglement is monotonically decreasing under local CP maps. In order
to simplify notation, from now on we shall write E [ρSA(t)] = ESA(t). From Eq.(6.59)
we have that a local CP divisible map leads to a monotonic decrease

(
d
dt
ESA(t) ≤ 0

)
of an entanglement measure of the system and ancilla. Therefore any violation of this
monotonicity

(
d
dt
ESA(t) > 0

)
is a sufficient criterion to witness non-Markovianity. Based

on this idea, we can consider a witness (N ) of non-Markovianity in the form [60]:

N =
∫

(d/dt)ESA>0

d

dt
ESA(t), (6.60)

such that N > 0 for non-Markovian dynamics. Now consider system and ancilla as two
qubits in an initial maximally entangled state, |φ+〉 = (|gg〉+ |ee〉) /

√
2. The system is

under the action of the map given by Eq.(6.28), and the ancilla is let alone. We resume
the study of our problem (Fig.3) under this new perspective. In Fig.6, we saw that at the
critical point λ∗ = 1, the revival of the Loschmidt echo, i.e. the revival of the coherence
(recoherence), occurs in a time τ proportional to the lattice size. This non-Markovianity,
due to the finite size of the lattice, allows for the open system to regain coherence and
information from the environment. It is shown in Fig.10, where the entanglement measure
(ESA ) is the negativity, for different lattice sizes at the critical point. The period of time
in which the negativity increases is proportional to the lattice size, as expected. However,
looking at outside of the critical point, in a time before the detection of non-Markovianity
due to the size effect, we can witness non-Markovianity related to the characteristic features
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Figure 10 – The entanglement measure ESA, quantified by the negativity as a function of
time, at the critical point λ∗ = λ+ δ = 1, and δ = 10−2, for different lattice
sizes.

of the environment. This fact was observed before by means of the distinguishability of two
quantum states [24,54]. In Fig.11, we plot the negativity, for different lattice sizes, outside
of the critical point, with fixed interaction coupling constant δ = 0.01, in a time interval
excluding the finite size effect. We see that even for different lattice sizes the negativity
presents the same behavior, i.e. the period of time in which ESA monotonically increases
is the same. The degree of non-Markovianity, quantified by N (Eq.(6.60)), becomes higher
as we increase the lattice size, N = ∑

n (ESA(τmaxn )− ESA(τminn )), where ESA(τmaxn ) and
ESA(τminn ) are the set of local maximum and minimum values of ESA(t). At this point
one can note that the behavior of the negativity is similar to the Loschmidt echo, more
precisely, in this specific case we have the interesting result:

ESA =
√
L. (6.61)

The above equation follows from the definition of negativity, ESA = ∑
i (|pi| − pi), where

the pi are the four eigenvalues 1
2(−|x(t)|, |x(t)|, 1, 1) of ρΓ

SA(t), which is the partial trace of
ρSA(t) = Φ(t, 0)⊗ IA [|φ+〉〈φ+|] = (|g〉〈g| ⊗ |g〉〈g|+ |e〉〈e| ⊗ |e〉〈e|+ |g〉〈e| ⊗ |g〉〈e|x(t)∗ +
|e〉〈g| ⊗ |e〉〈g|x(t))/2. In Fig.12, we see the witness of non-Markovianity, against the
effective transverse field (λef = λ+ δ), for two different lattice sizes, in an interval that
avoids finite size effects. Increasing the field from small values, the witness decreases, until
it gets close to the critical point, where it starts to increase, and suddenly drops to zero,
exactly at the critical point (N (λ∗) = 0). This is a very nice result to conclude this section,
for the dynamics is known to be Markovian at the critical point.
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Figure 11 – The negativity ESA as a function of time, outside of the critical point, for
λ = λ∗ − 0.1, and δ = 10−2, for different lattice sizes.
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λef = λ+ δ, for δ = 0.01, and in a time window excluding finite size effects.
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7 Conclusion

In this thesis, we investigated subjects in two main topics of the theory of open
quantum systems: we characterized the reduced dynamics of an initially correlated systems
composed of indistinguishable fermions, we explored the concept of non-Markovianity in
an open system (one or two qubits) under the influence of an environment modeled by the
Ising model with transverse field.

In systems of indistinguishable fermions, antisymmetrization eliminates the notion
of separability, and the very concept of correlation, which is an important ingredient in
obtaining CP maps for open systems, becomes subtle. We showed that it is possible to write
a CP map for a single fermion, which is part of a system on N indistinguishable particles,
for sets of initial global states with no quantumness of correlation. We also illustrated our
formalism with examples of maps corresponding to a non-interacting and an interacting
Hamiltonian of two fermions. The extension of our formalism to subsystems with more
than one indistinguishable particle, and for the case of bosons, presents no difficulty. As
many properties of many-body Hamiltonians can be inferred from the single particle
reduced state, an interesting investigation would be if any computational gain could be
obtained by the employment of the formalism developed in chapter 4. As an example, in
order to study the phase transition of a given model we may explore the dynamical map
of one particle obtained from the initial state of the N fermions in the ground state of a
Hamiltonian without interaction, consequently a state of one slater determinant that can
be obtained analytically, undergoing an adiabatic evolution leading to the ground state of
the target Hamiltonian, with ground state presenting phase transition of interest.

We derived the analytical expression for the Kraus representation of the map
corresponding to the evolution of one and two qubits interacting with an environment
represented by a general quadratic fermionic Hamiltonian. We concluded that the non-
Markovian dynamics of two qubits interacting with the Ising environment does not present
any new feature in relation to the dynamics of one qubit. We introduced simple functions
to check the non-Markovianity of the dynamics. For the particular case of the Ising
environment, we investigated the dynamics of one qubit interacting with lattices up to 105

sites. We quantified the non-Markovianity by the most negative eigenvalue (η - Eq.6.57) of
the dynamical matrix, and obtained that, for finite size systems, it reaches its maximum
at the critical point, whereas in the thermodynamic limit it is zero exactly at the critical
point, diverging outside of the critical point. We also quantified the non-Markovianity
using an entanglement based approach (N - Eq.6.60 ). We showed, in the case of one
qubit interacting with Ising model, that the non-Markovianity measures we introduced
are simple functions of the Loschmidt echo. Finally, we clearly identified two kinds of



Chapter 7. Conclusion 58

non-Markovianity, one due to the finite size of the environment, and another intrinsic of
the Ising Hamiltonian, and we were able to quantify both.
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APPENDIX A – Dynamical Map for
Single-Fermion Reduced State - General Case

with Initial Mixed States

A.1 System of Two Fermions
Consider a set of mixed quantum states in the antisymmetric space of L+ 1 modes

and two fermions, ρ(0) ∈ D(FL+1
2 ), written in a basis of Slater determinants:

Dp2 =ρ(0) =
∑

µ∈Σ,k∈Γ
pµqka

†
µa
†
k|0〉〈0|aµak

∣∣∣ p fixed

 , (A.1)

where ∑µ∈Σ pµ = ∑
k∈Γ qk = 1, with both Σ and Γ finite, and disjoint, Σ ∩ Γ = ∅. Let

|Σ| = d, |Γ| = L+ 1− d, and ZL+1 = {0, 1, . . . , L}, we took the d elements of Σ from ZL+1,
and the set Γ as Zd \Σ. Tracing out one fermion from Dp2, we obtain a set of single-fermion
reduced state,

Dpr(2) =ρr(0) = 1
2
∑
k∈Γ

qka
†
k|0〉〈0|ak + 1

2
∑
µ∈Σ

pµa
†
µ|0〉〈0|aµ

∣∣∣
p fixed} . (A.2)

Definition 2. A CP map Φp
t , describing the dynamics of the single particle reduced state

ρr(0) ∈ Dpr(2), can be written in Kraus representation as:

Φp
t [ρr(0)] =

L∑
j=0

∑
µ∈Σ

Kp
j,µρr(0)Kp†

j,µ, (A.3)

with the Kraus operators:

Kp
l,µ = flUtaµ

†√pµ
∏
m∈Σ

(
1− a†mam

)
, (A.4)
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Proof. The one-particle reduced dynamics can be expressed as ρr(t) = Tr1(Utρ(0)U †t ):

ρr(t) =

= 1
2

L∑
k=0

flUt

 ∑
µ∈Σ,k∈Γ

pµqka
†
µa
†
k|0〉〈0|aµak

U †t f †l

=
L∑
l=0

∑
µ∈Σ

√
pµflUta

†
µ

1
2
∑
k∈Γ

qka
†
k|0〉〈0|ak

×
√
pµaµU

†
t f
†
l . (A.5)

Defining an operator ∏m∈Σ

(
1− a†mam

)
that annihilates fermions in Σ, and leaves states

unchanged otherwise, we can write

ρr(t) =

=
L∑
l=0

∑
µ∈Σ

√
pµflUta

†
µ

∏
m∈Σ

(
1− a†mam

)
×

1
2
∑
k∈Γ

qka
†
k|0〉〈0|ak

 ∏
m∈Σ

(
1− a†mam

)
aµU

†
t f
†
l

√
pµ.

(A.6)

Note that ∏
m∈Σ

(
1− a†mam

)1
2
∑
j∈Σ

pja
†
j|0〉〈0|aj

 = 0. (A.7)

Adding Eq.(A.7) to Eq.(A.6), Definition 2 is proven:

ρr(t) =
L∑
l=0

∑
µ∈Σ

flUta
†
µ

√
pµ

∏
m∈Σ

(
1− a†mam

)

×

1
2
∑
k∈Γ

qka
†
k|0〉〈0|ak + 1

2
∑
j∈Σ

pja
†
j|0〉〈0|aj


×
∏
m∈Σ

(
1− a†mam

)√
pµaµU

†
t f
†
l

=
L∑
l=0

∑
µ∈Σ

Kp
l,µρr(0)K†pl,µ. (A.8)
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A.2 System of N -Fermions
Consider a set of states ρ ∈ D(FL+1

N ), with no quantumness,

DpN =ρ(0) =
∑
~µ∈~Σ

∑
k∈Γ

p~µqk

×a~µak|0〉〈0|aka~µ
∣∣∣ p fixed

}
, (A.9)

where ~µ = (µ1, . . . , µN−1), ~Σ = (Σ1, . . . ,ΣN−1) are N − 1-tuples, and p~µ, qk are probability
distributions. The sets Σj and Γ are finite, and disjoint Σj∩Γ = ∅ ∀j. With

∣∣∣~Σ = ∪N−1
i=1 Σi

∣∣∣ =
d, |Γ| = L+ 1− d, and ZL+1 = {0, 1, . . . , L}, we took the d elements of ∪N−1

i=1 Σi from ZL+1,
and the set Γ as Zd \ ∪N−1

i=1 Σi. Note that d is the number of accessible modes for N − 1
fermions, thus d ≥ N − 1.

Tracing N − 1 fermions out from (A.9), we obtain the set of single-fermion reduced
states {ρr(0)}:

Dpr(N) =

ρr(0) = 1
N

∑
k∈Γ

qka
†
k|0〉〈0|ak+

1
N

N−1∑
j=1

∑
µj∈Σj

pµja
†
µj
|0〉〈0|aµj

∣∣∣
p fixed} , (A.10)

where pµj = ∑
~µ\µj p~µ is the marginal distribution.

Definition 3. A CP map Φp
t describing the dynamics of the single particle reduced state

ρr(0) ∈ Spr(N), can be written in Kraus representation as:

Φp
t [ρr(0)] =

L∑
~l,~µ

Kp
~l,~µ
ρr(0)Kp†

~l,~µ
, (A.11)

with the Kraus operators:

Kp
~l,~µ

=

= √pµf~l Ua
†
~µ

∏
m∈∪N−1

i=1 Σi

(
1− a†mam

)
. (A.12)

The proof of Definition 3 is mutatis mutandis the same performed for Definition 2.
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APPENDIX B – Norm Bound

B.1 Fermionic System
Theorem 1. Consider two maps Φ and Λ, with Kraus operators Kj = fjUaµ and
Ej = fjUV aµ, respectively. Then the following inequality holds:

‖DΦ −DΛ‖1 ≤

d2L2 sup
a†
~k
|0〉〈0|a~k′∈F

L+1
2

‖
(
a†~k|0〉〈0|a~k′ − V

Ta†~k|0〉〈0|a~k′V
∗
)
‖1, (B.1)

where d is the dimension of FL+1
2 , ~k = (k1, k2) is a 2-tuple indicating the modes occupied

by a pair of fermions, with ki = 0, · · · , L, and V is a unitary operator, V : D(FL+1
2 )→

D(FL+1
2 ).

Proof. Writing the dynamical matrix of a map Φ in terms of the Kraus operators {Kj}:

DΦ =
∑
j

vec(Kj) vec(Kj)† , (B.2)

where the vec operation is defined by vec(|x〉〈y|) = |x〉 ⊗ |y〉, we obtain:

‖DΦ −DΛ‖1 =

= ‖
∑
j

(
vec(Kj) vec(Kj)† − vec(Ej) vec(Ej)†

)
‖1

= ‖
∑
j

(
vec(fjUaµ) vec(fjUaµ)†−

vec(ajUV aµ) vec(fjUV aµ)†
)
‖1. (B.3)

Using the following identity for matrices:

vec(ABC) =
(
A⊗ CT

)
vec(B) , (B.4)

we have,

‖DΦ −DΛ‖1 =

= ‖
∑
j

(
fj ⊗ a∗µvec(U) vec(U)† f †j ⊗ aTµ−

fj ⊗ a∗µV Tvec(U) vec(U)† f †j ⊗ V ∗aTµ
)
‖1. (B.5)



APPENDIX B. Norm Bound 68

With the unitary operator U written as,

U =
∑
~k,~k′

u~k,~k′a
†
~k
|0〉〈0|a~k′ (B.6)

where ~k = (k1, k2), Eq.(B.5) becomes:

‖DΦ −DΛ‖1 =

= ‖
∑
j

∑
~k,~k′~l,~l′

u~k,~k′u
∗
~l,~l′

[(
fja
†
~k
|0〉 ⊗ a∗µa

†
~k′
|0〉
)
×

(
〈0|a~lf

†
j ⊗ 〈0|a~l′a

T
µ

)
−
(
fja
†
~k
|0〉 ⊗ a∗µV Ta†~k′|0〉

)
×(

〈0|a~lf
†
j ⊗ 〈0|a~l′V

∗aTµ
)]
‖1

= ‖
∑
~k,~k′~l,~l′

u~k,~k′u
∗
~l,~l′

∑
j

(
fja
†
~k
|0〉〈0|a~lf

†
j

)
⊗

(
a∗µa

†
~k′
|0〉〈0|a~l′a

T
µ − a∗µV Ta†~k′ |0〉〈0|a~l′V

∗aTµ
)]
‖1. (B.7)

Using some norm properties, as triangle inequality (‖A + B‖ ≤ ‖A‖ + ‖B‖), positive
scalability (‖αA‖ = |α|‖A‖, α ∈ C), and tensor product (‖A1 ⊗ A2‖ = ‖A1‖‖A2‖) and
the definition of fermionic partial trace of one particle, we can write:

‖DΦ −DΛ‖1 ≤∑
~k,~k′~l,~l′

∣∣∣u~k,~k′u∗~l,~l′ ∣∣∣ ‖Tr1
(
a†~k|0〉〈0|a~l

)
‖1×

‖a∗µ
(
a†~k′ |0〉〈0|a~l′ − V

Ta†~k′ |0〉〈0|a~l′V
∗
)
aTµ‖1. (B.8)

As the trace norm is non-increasing under partial trace (‖TrHA2
(A) ‖1 ≤ ‖A‖1), is sub-

multiplicative (‖AB‖1 ≤ ‖A‖1‖B‖1), and we also have ‖A‖1 = ‖A†‖1 = ‖AT‖1 = ‖A∗‖1:

‖DΦ −DΛ‖1 ≤ (B.9)∑
~k,~k′~l,~l′

∣∣∣u~k,~k′u∗~l,~l′ ∣∣∣ ‖a†~k|0〉〈0|a~l‖1×

‖
(
a†~k′|0〉〈0|a~l′ − V

Ta†~k′|0〉〈0|a~l′V
∗
)
‖1‖aµ‖2

1. (B.10)

As ‖a†~k|0〉〈0|a~l‖1 = Tr
√
a†~l |0〉〈0|a~l = 1, and ‖aµ‖1 = Tr

√
nµ = L is the number of states

{a†~k|0〉} with occupied mode µ:

‖DΦ −DΛ‖1 ≤

L2 ∑
~k,~k′~l,~l′

√
u~k,~k′u

∗
~l,~l′
u∗~k,~k′u~l,~l′×

‖
(
a†~k′ |0〉〈0|a~l′ − V

Ta†~k′|0〉〈0|a~l′V
∗
)
‖1. (B.11)



APPENDIX B. Norm Bound 69

From the definition of unitary operators we have, ∑k u
∗
i,kuj,k = ∑

k u
∗
k,iuk,j = δi,j , therefore:

‖DΦ −DΛ‖1 ≤

L2∑
~k′~l′

‖
(
a†~k′ |0〉〈0|a~l′ − V

Ta†~k′ |0〉〈0|a~l′V
∗
)
‖1. (B.12)

Finally,

‖DΦ −DΛ‖1 ≤

d2L2 sup
a†
~k
|0〉〈0|a~k′∈F

L+1
2

‖
(
a†~k|0〉〈0|a~k′ − V

Ta†~k|0〉〈0|a~k′V
∗
)
‖1. (B.13)

B.2 System of Distinguishable Particles
Theorem 2. Assume two maps Φ and Λ, with Kraus operators {Ka = 〈a|USE|0〉}a and
{Ea = 〈a|USE(IS ⊗ VE)|0〉}a, respectively. Then the following inequality holds:

‖DΦ −DΛ‖1 ≤ d2
S‖|0〉〈0| − VE|0〉〈0|V

†
E‖1, (B.14)

where dS is the dimension of the Hilbert space of the system S.

Proof. Writing the dynamical matrix of a map Φ in the Choi representation:

DΦ =
dS∑
i,j=1

Φ(|i〉〈j|)⊗ |i〉〈j|, (B.15)

we obtain:

‖DΦ −DΛ‖1 =

= 1
d2
S

‖
dS∑
i,j=1

Φ(|i〉〈j|)⊗ |i〉〈j| −
dS∑
i,j=1

Λ(|i〉〈j|)⊗ |i〉〈j|‖1

= ‖
dS∑
i,j=1

{∑
a

Ka|i〉〈j|K†a − Ea|i〉〈j|E†a

}
⊗ |i〉〈j|‖1

≤
dS∑
i,j=1
‖
{∑

a

Ka|i〉〈j|K†a − Ea|i〉〈j|E†a

}
⊗ |i〉〈j|‖1. (B.16)

Thus, by the definition of Kraus operators above:

Ka|i〉〈j|K†a − Ea|i〉〈j|E†a =

= 〈a|E
{
USE|i〉〈j|S ⊗ (|0〉〈0|E − V |0〉〈0|EV †)U †SE

}
|a〉E, (B.17)
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substituting in Eq.(B.16), and using ‖A⊗B‖ = ‖A‖‖B‖:

‖DΦ −DΛ‖1 ≤

d2
S‖
{∑

a

〈a|
[
USE|i〉〈j| ⊗ (|0〉〈0| − V |0〉〈0|V †)U †SE

]
|a〉
}
‖1

= d2
S‖
{[
USE|i〉〈j| ⊗ (|0〉〈0| − V |0〉〈0|V †)U †SE

]}
‖1, (B.18)

where we used that ∑a〈a|A|a〉 = TrE(A). Finally, as trace distance is invariant under
unitary operations, the statement is proved:

‖DΦ −DΛ‖1 ≤ d2
S‖(|0〉〈0| − V |0〉〈0|V †)‖1. (B.19)
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