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Abstract

The objective of this work is to study the techniques developed in the theory of blocks
for finite groups and then, using the machinery of profinite groups and results from the
modular representation theory of profinite groups, to extend the fundamental results
of the theory of blocks of finite groups to profinite groups. We are thus interested in
studying the block structure of the complete group algebra k[[G]] of a profinite group

G, where k is a field of characteristic p.

Our approach is as follows. We extend the concepts and fundamental properties
of relative projectivity and vertices from profinite k[|G]]-modules to pseudocompact
k[[G]]-modules. We introduce the concept of blocks of profinite groups, characterizing
a block of a profinite group G as the inverse limit of blocks of finite groups G/N, where
N is a open normal subgroup of G. Then we introduce the concept of defect group
for a block of a profinite group, developing the basic properties and characterizations
of these groups analogous to those existing for the finite case. We demonstrate a
version of Brauer’s Correspondence Theorem for virtually pro-p groups. Finally, we
study the structure of the blocks of a profinite group with cyclic defect group. We
demonstrate that these blocks have a Brauer tree algebra structure analogous to the
finite case and we demonstrate that the Brauer trees for these blocks are all star type

trees when the cyclic defect group is Z,,.

Key words: Pseudocompact algebra, profinite group, inverse limit, block, defect

group, Brauer tree, Brauer tree algebra.



Resumo

O objetivo deste trabalho é estudar as técnicas desenvolvidas na teoria de blocos para
grupos finitos e entao, utilizando o maquinario de grupos profinitos e os resultados
da teoria das representacoes modulares para grupos profinitos, estender os resultados
fundamentais da teoria de blocos de grupos finitos para grupos profinitos. Estamos,
portanto, interessados em estudar a estrutura dos blocos da algebra de grupo completa

E[[G]] de um grupo profinito G, onde k é um corpo de caracteristica p.

Nossa abordagem foi feita como segue. Estendemos os conceitos e propriedades funda-
mentais de relatividade projetiva e vértices de k[[G]]-médulos profinitios para k[[G]]-
modulos pseudocompactos. Introduzimos o conceito de blocos de grupos profinitos,
caracterizando um bloco de um grupo profinito G como o limite inverso de blocos
de grupos finitos G/N, onde N é um subgrupo normal aberto de G. Posteriormente
introduzimos o conceito de grupo de defeito para um bloco de um grupo profinito,
desenvolvendo as propriedades bésicas e caracterizacoes destes grupos analogas as ex-
istentes para o caso finito. Demonstramos uma versao do Teorema de Correspondéncia
de Brauer para grupos virtualmente pro-p. Finalmente, estudamos a estrutura dos
blocos de um grupo profinito com grupo de defeito ciclico. Demonstramos que estes
blocos possuem uma estrutura de algebra de arvore de Brauer analoga ao caso finito
e demonstramos que as arvores de Brauer para estes blocos sao todas arvores do tipo

estrela quando o grupo de defeito é Z,,.

Palavras Chave: Algebra pseudocompacta, grupo profinito, limite inverso, bloco,

grupo de defeito, arvore de Brauer, algebra de arvore de Brauer.
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Chapter 1

Introduction

The modular representation theory of finite groups is an area of algebra in which the
basic problem is to describe what modules can arise over the group algebra k[G],
where G is a finite group and k is a field of characteristic p > 0 dividing the order of
G. The approach of this theory is not to classify the indecomposable modules in the
sense of ordinary representation theory, |G| coprime to p or p = 0, but instead to find

methods for organizing the modules over a particular group algebra.

The fact that the characteristic of k divides the order of G implies immediately that
the group algebra k[G] is not semisimple. With this, the majority of k[G]-modules are
not completely reducible, therefore not every k[G]-module is projective. Hence, we can
ask “How close to being projective is a k[G]-module?” in this regard, the beautifully

simple concepts of relative projectivity, vertex and sources are very important.

Studying the structure of the modules defined over k[G] could be a difficult task.
Considering a decomposition of k[G] into a direct product of indecomposable algebras,
called blocks, the indecomposable k[G]-modules can be treated as modules for one
of these blocks. Studying modules for the blocks might be an easier task. This work
was started by Richard Brauer in the 1930s. He studied finite group actions on vector
spaces over fields with positive characteristic. Brauer observed that each block is
associated with a special subgroup, called a defect group. Furthermore, he found that

if D is a p-subgroup of GG then there is a correspondence between the blocks of G with



defect group D and blocks of the normalizer of D in G with defect group D. This is
called the Brauer correspondence (see Theorem [2.3.1]).

While Brauer was studying the defect groups, he observed that for a defect group of
prime order, it is possible to construct a graph, called the Brauer tree, that encodes
information of the blocks [5]. Basically, this graph is a tree with a cyclic ordering
between the edges. This result was later extended to blocks with cyclic defect group
by E. C. Dade, [8]. It is possible to relate Brauer trees with the structure of blocks with
cyclic defect group. This is the notion of a Brauer tree algebra. A finite dimensional
algebra A is a Brauer tree algebra if there is a Brauer tree such that the edges of
the tree correspond to the simple modules S in such a way that the corresponding
indecomposable projective module Pg has the following description. Ps/rad(Ps) =
soc(Pg) = S and rad(Ps)/soc(Ps) is a direct sum of two (possibly zero) uniserial
modules U and V' corresponding to the two vertices u and v at the end of the edge.
The composition factors of U, V can be read off from the graph. Blocks with cyclic
defect groups are Brauer tree algebras (see Theorem .

For infinite groups in general, modular representation theory cannot be trivially re-
produced by changing finite groups to infinite groups. There are basic concepts and
properties that use strongly the finiteness of the group G. In [22] and [21], J. MacQuar-
rie transferred certain foundational results from the modular representation theory of
finite groups to the wider context of profinite groups. Profinite groups are a category
of groups where the objects can be arbitrarily large, they are usually infinite groups,

but come equipped with a strong connection with certain finite quotient groups.

If k is a finite field of characteristic p and G is a profinite group, we associate to GG the
complete group algebra which will be denoted by k[[G]]. This is a topological algebra,
and, as a topological space, k[[G]] is Hausdorff, compact and totally disconnected. If
k is an infinite discrete field, that is, £ is an infinite field with discrete topology, then
E[[G]] still makes sense. This algebra will not be compact, but it is pseudocompact
(see for example [6]). During the development of this work we note that many results
about profinite algebras and modules remain true for the case of pseudocompact

objects.



Based on the work of J. MacQuarrie for modular representations of profinite groups,
we begin a study of the blocks of k[[G]], where G is a profinite group and k is a
field of characteristic p. We define the defect group of a block of GG, prove its basic
properties and give several alternative characterizations (Theorem . We then
prove a Brauer Correspondence for blocks of virtually pro-p groups (Theorem .

We then turn to the study of blocks with cyclic defect group. When £ is algebraically
closed and B is a block of k[|G]] with cyclic defect group, Theorem describes the
structure of the block and its finitely generated indecomposable projective modules,
and encodes this information in a Brauer tree. We prove, analogously to the finite
case that blocks with cyclic defect group have the structure of Brauer tree algebra.
Furthermore, we observe in Theorem that there is only one type of Brauer tree
associated to blocks of k[[G]] with infinite cyclic defect group, that is, Brauer trees
of star type (a Brauer tree with a central vertex with all edges emanating from this

vertex).

We give here a very brief overview of each chapter, drawing attention to the main
results. In Chapter 2, we begin discussing a variety of main the definitions and
results from the block theory approach to the modular representation theory of finite
groups. In Chapter 3 we give an introduction to profinite groups. Next, the necessary
pseudocompactness machinery is introduced. In Chapter 4 we introduce the useful
tool of coinvariant modules and give several properties. This structure lets us work
with pseudocompact modules in a easier way. In Chapter 5 we introduce basic tools
to be used from the modular representation theory of profinite groups. In Chapter 4
and Chapter 5 we do not demand that the field k& be finite. So the results presented
here belong to the pseudocompact world. The results of [22] were stated only for
the case of k finite, but frequently the proofs of [22] pass through without change
to the pseudocompact world. Where more care is required we describe the necessary
modifications (for example see Lemma |4.3.1). Hence in Chapter 4 and Chapter 5,
several results from [22] that were proved for profinite algebras will be proved for
the more general class of pseudocompact algebras. In Chapter 5 we introduce the
notion of trace as a set (Definition . Analogously to the finite theory, where the



trace map is a central tool of block theory, the notion of trace introduced here will be

important too.

In Chapter 6 we introduce our main object of study, the blocks of a profinite group.
We prove several basic properties of blocks, and provide a well-behaved inverse sys-
tem (Proposition that will allow us to deduce information about a block of G
from information about blocks of the finite quotients of G. In Chapter 7 we intro-
duce the defect group of a block of a profinite group (Definition and prove its
basic properties. Furthermore, we introduce the analogous concept of Brauer homo-
morphism (Definition and we establish several characterizations of the defect

group (Theorem [7.3.4]).

Chapter 8 is dedicated to the proof of a Brauer correspondence for virtually pro-
p groups (Theorem [8.0.7). In this chapter several results proved apply arbitrary
profinite groups, but, unfortunately, there is a technical result that it was only possible

to confirm for virtually pro-p groups (Lemma [8.0.6)).

Finally, in Chapter 9 we do a detailed discussion of the structure of blocks with cyclic
defect group. We describe the structure of the finitely generated indecomposable
projective modules of blocks with cyclic defect groups (Section 9.1). Next we introduce
the concept of a Brauer tree and we prove in Theorem that blocks with cyclic
defect group have the structure of Brauer tree algebras in the same sense as in the
finite case. Furthermore, in Theorem [9.2.5| we prove that there is only one type of
Brauer tree for blocks with infinite cyclic defect group. At the end of this chapter we
present some simple examples of Brauer trees and Brauer tree algebras for blocks of

profinite groups with cyclic defect groups.

Introducao

A teoria das representacoes modulares de grupos finitos é uma area da algebra cujo
problema basico é descrever quais médulos podem surgir sobre a algebra de grupo
k|G| onde, G é um grupo finito e k é um corpo de caracteristica p > 0 dividindo a
ordem de G. A abordagem desta teoria nao é classificar os médulos indecomponiveis

no sentido da teoria das representagoes comum, |G| coprimo para p ou p = 0, em vez
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disso, o objetivo é encontrar métodos para organizar os médulos sobre uma algebra

de grupo particular.

O fato da caracteristica de k dividir a ordem de G implica de forma imediata que
a dlgebra de grupo k[G] nao é semissimples. Com isso, a maioria dos k[G]-mddulos
nao sao completamente redutiveis e portanto nem todo k[G]-médulo é projetivo. As-
sim é natural perguntar “Quéao perto de ser projetivo estd um k[G]-médulo?” Com
isto, os belos e simples conceitos de projetividade relativa, vértice e fontes sao muito

importantes.

Estudar a estrutura dos médulos definidos em k[G] pode ser uma tarefa dificil. Con-
siderando uma decomposicao de k[G] em um produto direto de &lgebras indecom-
poniveis, chamados blocos, os k[G]-médulos indecomponiveis podem ser tratados
como moédulos para um desses blocos. Estudar modulos para os blocos pode ser

uma tarefa mais facil.

Este trabalho foi iniciado por Richard Brauer na década de 1930. Ele estudou agoes de
grupos finitos em espacos vetoriais sobre corpos com caracteristicas positivas. Brauer
observou que cada bloco esta associado a um subgrupo especial, denominado grupo
de defeito. Além disso, Brauer descobriu que se D é um p-subgrupo de G, entao existe
uma correspondéncia entre os blocos de G com o grupo de defeitos D e os blocos do
normalizador de D em G com grupo de defeito D. Isso é conhecido na literatura como

a correspondéncia de Brauer (ver Teorema [2.3.1)).

Enquanto Brauer estudava os grupos de defeito, ele observou que para um grupo de
defeito de ordem primo é possivel construir um grafo, denominado arvore de Brauer,
que codifica as informagoes dos blocos [5]. Basicamente este grafo é uma arvore
com uma ordem ciclica entre as arestas. Este resultado foi posteriormente estendido
para blocos com grupo de defeitos ciclicos por E. C. Dade, [§]. E possivel relacionar
as arvores Brauer e a estrutura de blocos com grupo de defeito ciclico. Esta é a
nocao de uma algebra da arvore de Brauer. Uma algebra de dimensao finita A é
uma dalgebra de drvore de Brauer se houver uma arvore de Brauer tal que as arestas
da arvore correspondam aos médulos S simples de tal forma que o médulo projetivo
indecomponivel correspondente Pg tem a seguinte descrigao: Pgs/rad(Ps) = soc(Ps) =

S e rad(Ps)/soc(Ps) é uma soma direta de dois (com um deles podendo ser nulo)

11



modulos unisseriais U e V' correspondentes aos dois vértices u e v no final da aresta.
Os fatores de composicao de U, V podem ser lidos no grafo. Os blocos com grupos

de defeito ciclico sao dlgebras da arvore de Brauer (ver Teorema [2.4.5)).

No caso de grupos infinitos em geral a teoria das representagdes modulares nao pode
ser trivialmente reproduzida pela troca de grupos finitos por grupos infinitos uma vez
que, existem conceitos basicos e propriedades que utilizam fortemente a finitude do
grupo G. Em [22] e [2I], J. MacQuarrie transferiu certos resultados fundamentais
da teoria das representagoes modulares de grupos finitos para o contexto mais am-
plo de grupos profinitos. Grupos profinitos sao uma categoria de grupos em que os
objetos podem ser arbitrariamente grandes, geralmente sao infinitos, porém eles vem

equipados com uma forte conexao com certos grupos quocientes finitos.

Se k é um corpo finito de caracteristica p e G é um grupo profinito, associamos a
G a algebra de grupo completa que serd denotada por k[[G]]. Esta é uma &lgebra
topoldgica e como espago topolégico, k[[G]] é Hausdorff, compacto e totalmente de-
sconexo. Se k é um corpo infinito discreto, isto é, k é um corpo infinito com topologia
discreta, entdao k[[G]] ainda faz sentido. Esta édlgebra nao serd compacta, mas é
pseudocompacta (ver por exemplo [6]). Durante o desenvolvimento deste trabalho,
notamos que muitos resultados sobre algebras e modulos profinitos permanecem ver-

dadeiros para o caso de objetos pseudocompactos.

Com base no trabalho de J.MacQuarrie para representacoes modulares de grupos
profinitos, comegamos um estudo dos blocos de k[[G]], onde G é um grupo profinito
e k é um corpo da caracteristica p. Definimos o grupo de defeitos de um bloco de
(G, provamos suas propriedades bésicas e damos varias caracterizacoes alternativas

(Teorema [7.3.4). Em seguida, provamos uma Correspondéncia de Brauer para blocos
de grupos virtualmente pro-p (Teorema [8.0.7)).

Entao, passamos ao estudo de blocos com grupo de defeitos ciclicos. Quando k é
algebricamente fechado e B é um bloco de k[[G]] com grupo de defeito ciclico, o Teo-
rema descreve a estrutura do bloco e seus moédulos projetivos indecomponiveis
finitamente gerados e codifica essas informagoes em uma arvore Brauer. Provamos
analogamente ao caso finito, que blocos com grupo de defeito ciclico possuem a es-

trutura da algebra de arvore de Brauer. Além disso, observamos no Teorema [9.2.5

12



que existe apenas um tipo de arvore Brauer associada a blocos de k[|G]] com grupo
de defeitos ciclicos infinitos, ou seja, arvores Brauer do tipo estrela (uma arvore de

Brauer com um vértice central com todas as arestas emanando desse vértice).

Damos aqui uma breve descricao de cada capitulo, com énfase nos principais resulta-
dos. No Capitulo 2, comecamos discutindo uma variedade de definicoes e resultados
principais da teoria de blocos focando na teoria da representacoes modulares de grupos
finitos. No Capitulo 3, damos uma introducao aos grupos profinitos. Em seguida, o
maquinario de pseudocompacidade necessario é introduzido. No Capitulo 4, apresen-
tamos a ferramenta til dos médulos coinvariantes e fornecemos vérias propriedades.
Essa estrutura nos permite trabalhar com moédulos pseudocompactos de uma maneira
mais facil. No Capitulo 5, apresentamos as ferramentas basicas a serem usadas a
partir da teoria das representacoes modulares de grupos profinitos. No Capitulo 4
e no Capitulo 5, nao exigimos que o campo k seja finito. Portanto, os resultados
apresentados aqui pertencem ao mundo pseudocompacto. Os resultados de [22] foram
enunciados apenas para o caso de k finito, mas freqlientemente as provas de [22]
passam sem mudanca para o mundo pseudocompacto. Onde deveremos tomar mais
cuidado, descrevemos as modificagbes necessarias (por exemplo, veja Lema .
Conseqiientemente, nos Capitulos 4 e 5, vérios resultados de [22] que foram provados
para algebras profinitas serao provados para a classe mais geral de dlgebras pseu-
docompactas. No Capitulo 5, introduzimos a nocao de trago como um conjunto
(Definigao . Analogamente a teoria finita, onde o mapa de tracos é uma fer-
ramenta central da teoria de blocos, a nogao de traco introduzida aqui também sera

importante.

No Capitulo 6, apresentamos nosso principal objeto de estudo, os blocos de um grupo
profinito. Provamos varias propriedades bésicas de blocos e fornecemos um sistema
inverso bem comportado (Proposigao que nos permitird deduzir informacgoes
sobre um bloco de GG a partir de informagoes sobre blocos dos quocientes finitos de G.
No Capitulo 7, introduzimos o grupo de defeitos de um bloco de um grupo profinito
(Definigao e provamos suas propriedades basicas. Além disso, introduzimos
o conceito anédlogo de homomorfismo de Brauer (Definigao e estabelecemos
vérias caracterizagoes do grupo de defeitos (Teorema .

13



O Capitulo 8 é dedicado a prova de uma correspondéncia de Brauer para grupos
virtualmente pro-p (Teorema [8.0.7). Neste capitulo varios resultados provaram ser
aplicados para grupos profinitos arbitrarios, mas infelizmente hd um resultado técnico

que s6 foi possivel confirmar para grupos virtualmente pro-p (Lemma [8.0.6]).

Finalmente, no Capitulo 9, fazemos uma discussao detalhada da estrutura de blocos
com grupo de defeito ciclico. Descrevemos a estrutura dos modulos projetivos inde-
componiveis finitamente gerados de blocos com grupo de defeito ciclico (Segao 9.1).
A seguir introduzimos o conceito de arvore de Brauer e provamos no Teorema [9.2.3
que blocos com grupo de defeito ciclico possuem a estrutura de algebras de arvore de
Brauer no mesmo sentido que no caso finito. Além disso, no Teorema [9.2.5| provamos
que existe apenas um tipo de arvore Brauer para blocos com grupo de defeito ciclico
infinitos. No final deste capitulo, apresentamos alguns exemplos simples de arvores de
Brauer e algebras de arvores de Brauer para blocos de grupos profinitos com grupos

de defeitos ciclicos.
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Chapter 2

Block Theory for Finite Group
Algebras

In this chapter, we present a summary of the part of the modular representation
theory and the block theory of finite group algebras. The idea of this chapter is to
give a guide to the readers of the basic tools required to study the block theory for

finite groups.

The main sources to write this chapter were the books “Local Representation Theory”
by J.L. Alperin [I], “Representations and Cohomology I” by D.J. Benson [3], “A
Course in Finite Group Representation Theory” by Peter Webb [31] and “The Block
Theory of Finite Group Algebras, Volume 1 and 2” by M. Linckelmann [19],[20]. We
consider that Alperin’s book is the most accessible reference for this topic, but we
must at times be careful since this book assumes that the base field k is algebraically

closed, where in practice ours might not be.

A basic knowledge of rings, fields, algebras and modules for these objects is assumed.

Unless explicitly stated, the term “module” will refer to a left module.

2.1 Relative Projectivity

Consider a finite group G and k a field of characteristic p > 0. We want to know

what are the modules over the group algebra k[G]. If the characteristic of k divides
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the order of G, many k[G]-modules are not projective. But we can approach in the
modules that are “almost projective”, in the sense explained bellow (2.1.2)). We use
the notation 4 Xp to denote the A — B-bimodule X.

Definition 2.1.1. 1. Let H be a subgroup of G and V a left k[H]-module. The
induced k[G]-module is defined by

where the multiplication from G is given by g(x®v) = gr®u, for allge G, x €
k[G] andve V.

2. If U is a k[G]-module, the restricted k[H]|-module U | is the original k[|G]-
module U with action restricted to the subalgebra k[H]|.

If H is a subgroup of G the functor () 1% is left adjoint to (_) |%. The unit n:1 —
(1) 191y is given by 1y (v) = 1®wv and the counit € : () |z1%— 1 by ey(g®u) = gu.
Definition 2.1.2. A k[G]-module U is relatively H-projective if given any diagram
of k[G]-modules and k|G]-module homomorphisms of the form

U

|

V—»,B w

such that there exists a k[H|-module homomorphism U — V making the triangle
commute, then there exists a k[G|-module homomorphism U — V making the tri-

angle commute.

Observe that a projective module is the same thing as a 1-projective module. The
next result gives a useful characterization of relative projectivity. We write U | V' to

mean that the module U is isomorphic to a direct summand of the module V.

Lemma 2.1.3. Let G be a finite group and H a subgroup of G. If U is a k|G]-module

then the following are equivalent:

1. U 1is relatively H-projective.
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2. If a surjective homomorphism W — U of k|G]-modueles splits as a k[ H]-module

homomorphism, then it splits as a k[G]-module homomorphism.
3. UL (U Ln1€).
4. Ul (X 1Y) for some k[H]-module X.

An important characterization of relative projectivity is Higman’s criterion. Before

we establish this criterion we introduce one tool that will be involved.

Definition 2.1.4. If H < G and Uy, Uy are k[G]-modules, then the trace map
is the map TrS - Homym(Ur Lu,Us lg) — Homyg (U, Us) defined by o —
deg/H gag™, where G/H denotes a set of left coset representatives of H in G.

The properties of this map are discussed in [3, Lemma 3.6.3]. Now, we state Higman’s

Criterion:

Theorem 2.1.5. Let G be a finite group and let H < G. Then a k|G]-module U is
relatively H-projective if and only if idy € TrS(Homupm(U Lu, U Ln)).

Our interest is to study the indecomposable modules relatively projective to subgroups
of G. Observe that modules projective relative to small subgroups may be considered

as “closer” to being projective.

Definition 2.1.6. Let U be an indecomposable k|G|-module. A subgroup @ of G
1s called a vertex of U if it is a minimal subgroup of G such that U relatively Q-

projective.

If @ is a vertex of U, then a source of U is an indecomposable k[@Q]-module S such
that U | S 1¢.

If U be an indecomposable k[G]-module, by [3, Proposition 3.10.2], the vertices of U

are p-subgroups of G and they are conjugate in G.

Proposition 2.1.7. Let U be an indecomposable k[G]|-module with vertex Q, and P
Sylow p-subgroup of G which contains Q. Then dim(U) is divisible by |P : Q).

For a proof see [12, Theorem 9, Corollary 2].
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Example 2.1.8. Let P be a Sylow p—subgroup of G. Proposition|2.1.7 shows that P

is a vertex of the trivial k[G]-module, since it has dimension 1.

2.1.1 G-algebras and the Trace map

Let G be a finite group and A be a finite dimensional associative k-algebra. Then A
is a G-algebra over k if A can be endowed with an action G x A — A of G on A,
written (g,a) — 9a for any a € A and g € G, such that the map sending a € A to
9a is a k-algebra automorphism of A for every g € G. If A is a G-algebra over k, we
denote for every subgroup H of G by AY the subalgebra of all H-fixed points in A;
that is, Al = {ae A|"a=aV he H}.

Observe that, if H, L are subgroups of G, and if H < L, then AY < Af,

Definition 2.1.9. Let H, L be subgroups of G with H < L. The trace map is the
linear map Trk « AH —s AL defined by Trk(a) = deL/H Ya, where L/H denotes a

set of left coset representatives of H in L.

If U, W are finite dimensional k[G]-modules, Hom, (U, W) is a finite dimensional G-
algebra with action (9p)(u) = gp(g~'u). In particular, when G' = L, the notations

Tr% used in Definitions [2.1.4] and [2.1.9] are consistent for finite groups.

Lemma 2.1.10. Let G be a finite group, H, L subgroups of G and let A be a finite

dimensional G-algebra. Then

1. IfH < L, for any a € A" and b € AY, vVTrk(a) = Trk(ba) and Trk(a)b =
Trk(ab).
2. If H < L, then Tr¢ o Trk = Tr¢.
3. [Mackey’s FormulaJFor any a € A*, Tr%(a) = Y. Tri . (Ya), where H\G/L
geH\G/L

denote the set of double coset representatives of H and L in G.

For a proof of these properties of the trace map you can confer [19, Proposition 2.5.4,
2.5.5]. Observe that, by Part 1 of 2.1.10, Tr%(Af) is an ideal of AL.

18



2.2 Blocks and Defect Groups

Sometimes studying the modules over k[G] can be a hard task, but considering a
decomposition of k[G] into indecomposable direct algebra factors, called blocks, then
instead of studying the structure of modules over k[G]| we can study the modules for
the blocks of k[G], which might be easier.

Definition 2.2.1. Let A be a finite dimensional k-algebra. An element e € A is
tdempotent if e* = e. Two idempotents e, f of A are orthogonal ifef = fe =0. A
non-zero idempotent is primaitive if it cannot be written as the sum of two non-zero

orthogonal idempotents.

We denote by Z(A) the center of A. An idempotent e € A is called centrally prim-

itive if e is a primitive idempotent considered as an idempotent of Z(A).

There is a unique decomposition of 14 as 14 = e; +- - - +e¢,, where each e; is a centrally
primitive idempotent, and that decomposition corresponds to a unique decomposition
of Aas A= By x ... x By, where each B; = Ae; ([31, Proposition 3.6.1]). Each B; is
called a block of A and each e¢; is called block idempotent.

Example 2.2.2. 1. Let G be the symmetric group S5 of order 6. Observe that
G=03xCy=<ab:a®>=0b0=1, bab™! = a=' >, where Cy =< a > is the

cyclic group generated by a and Cy =< b > 1is the cyclic group generated by b.

If k is a field of characteristic 2, then the block idempotents of k[G] are e; =
1+a+a? and eg = a + a®. Furthermore, observe that k[Gle; = k[z]/(z?) and
k[G]ez = Mg(k)

If k is a field of characteristic 3, since Cs is normal in G, by [3, Proposition
6.2.2], k[G] only has one block.

2. Let G be the group S3 x S3. Note first that of H, L are finite groups, then
k[H x L] = kE[H|®k[L] by [19, Theorem 1.1.4]. If k is of characteristic 2, then
by [29, Proposition 2.3], the block idempotents of k|G| are {e;®e; : 1 < i,5 < 2}.
So k|G| = By x By x By x By = k[G](e1 ®e1) x k[G](e1 ®eq) x k[G](ea®e1) x
E[G](e2 ® e2).
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If k is a field of characteristic 3, since C3 x Cj is normal in G, then, by [3,
Proposition 6.2.2], k[G] only has one block.

3. Let k be a field of characteristic 2 and let G be the group §3 X Sg X - X S;, for

~
n-times

n > 2. In this case, the blocks of G are of the form

FG](e ®e® - ®c),

where either e; = ey or €}, = ey, for 1 <i < n.

Definition 2.2.3. Let U be an A-module and B; a block of A. Then U lies in B; if
B,U =U and B;U =0 for all j # 1.

If U is an A-module then U has a unique direct sum decomposition U = U;®...D U,
where each U; lies in the block B; (cf. [1, IV,§13, Proposition 2]).

So, suppose that k[G] has a decomposition into indecomposable direct algebra factors

K[G] = By x -+ x By,

where each block B; has the form k[G]e; for some block idempotent e;.

The next result says that the simple modules can give interesting information about
the structure of the blocks.

Proposition 2.2.4. Let S,T be simple k|G]|-modules. Then the following are equiv-

alent:
(1) S, T lie in the same block of G.

(2) There is a sequence of simple k[G]-modules S = Sy,5%,...,S, = T such that
S, Sjt1, for each j € {1,2,...,n—1}, are composition factors of an indecompos-

able projective k|G]-module.
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(3) There is a sequence of simple k|G]-modules S = Ty, Ts,...,T, = T, such that
T, T4, for each j € {1,2,...,m— 1}, are equal or there is a non-split extension

of one by the other.

For a proof see [31, Proposition 12.1.7]

2.2.1 Defect groups

The defects groups are subgroups of G that measure how long are the blocks to be
semisimple algebras. To define a defect of a block of GG, our main tool will be the
relative trace map. In this section we will consider k[G] as a G-algebra with G acting

on k[G] by conjugation.

Definition 2.2.5. Let B be a block of k[G] for a finite group G with block idempotent
e. A defect group of B is a minimal subgroup D of G such that e € Tr8(k[G]P).

Theorem 2.2.6. Let G be a finite group and B a block of G with block idempotent e.
Let D be a defect group of B.

1. The group D s a p-subgroup of G.

2. For any subgroup H of G such that e € Tr%(k[G]*) there is an element g € G
such that D € 9H = gHg™'.

3. The defect groups of B form a G-conjugacy class of p-subgroups of G.
For a proof see [19, Theorem 5.6.5].

If the order |D| = p?, then d is called the defect of B. The defect of a block B can

be characterized through the dimension of simple modules lying in B as follows:

Theorem 2.2.7. Let k be an algebraically closed field of characteristic p, let G be a
finite group of order p®m with (p,m) = 1 and let B be a block of k|G| with defect
d. Then d is the smallest integer such that p®=? divides the dimensions of all simple

modules lying in B.

For a proof see [7, §86.5].
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Proposition 2.2.8. If B is a block of G with block idempotent e, and defect group D,
then any k[G]-module lying in B is D-projective, and there is a simple k[G]|-module
T lying in B with vertex D.

For a proof see [16, Theorem 2.2].

Observe that if B is a block of the finite group G' and the trivial module k lies in

B, then, follow from Proposition and example that B has defect group a
p-Sylow subgroup of G.

Now, considering k[G] as a k[G x G]-module, with the action (g1, g2)r = g17g; ", for
all g1, g2 € G and z € k[G], we have that each block B of k[G] is the same as an inde-

composable summand of k[G] as a k[G x G]-module, with the above multiplication.

Definition 2.2.9. Let G be a finite group. The diagonal homomorphism is the
group homomorphism § : G — G x G, defined by 6(g) = (9, 9)-

Observe that if H and K are subgroups of G with §(H ) and 0(K) conjugate in G x G
then H and K are conjugate in G (cf. [1, IV ,§13, p. 96]).

So, we can frame defect groups in terms of relative projective modules.

Observe that k[G]| = k Tf(é)G as k|G x GJ]-module (cf. [19, Proposition 5.11.6]). Thus
a block B is §(G)-projective, and it has a vertex 6(Q), as a k[G x G]-module, where
Q@ is a p-subgroup of G.

Theorem 2.2.10. Let D be a subgroup of G and let B be a block of G with block

idempotent e. The following statements are equivalent.
1. D s a defect group of B.
2. §(D) is a vertex of B as k|G x G]-module.

For a proof see [31, Theorem 12.4.5].

The following theorem, due J.A. Green, describes defect group as an intersection of

two Sylow subgroups.
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Theorem 2.2.11. The defect group D of any block B of G is expressible as an

intersection PngPg™!, for some g € G, where P is a p-Sylow subgroup of G containing

D.
For a proof see [3, Proposition 6.1.1].

Corollary 2.2.12. Let GG be a finite group and B a block of G with defect group D.
Then D is the largest normal p-subgroup of Ng(D).

For a proof see [31), Corollary 12.3.4].

2.2.2 Brauer construction and defect groups

Definition 2.2.13. 1. Given a subgroup D of G, the Brauer quotient is defined

as the quotient algebra

K[GIPY = K[G1P) | Trg (K[G]9). (2.1)
QsD

2. The Brauer homomorphism s the natural projection

Brp : k[G]Y — k[G]!P),

Observe that T'rf (k[G]%) is an ideal of k[G]” for each subgroup @ of D. So, the sum
Y. Tro(k[G]?) is again an ideal.
QsD

With the help of the Brauer homomorphism is possible provide one more charac-
terization of the defect group, useful to understand the Brauer correspondence (see
2.3.1)).

Theorem 2.2.14. Let D be a p-subgroup of a finite group G and B a block of G with

block idempotent e. The following are equivalent:
1. B has a defect group D.

2. §(D) is a vertex of B as k|G x G]|-module.
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3. D 1is a mazimal p-subgroup such that Brp # 0.
4. e e Tr8(k[G]P) and Brp(e) # 0.
For a proof see [20, Theorem 6.2.1].
We finish this section with some examples of defect groups:

Example 2.2.15. 1. Let k be a field of characteristic 2 and let G be the group
Sy =< ab:a®=0b>=1, bab! = a=! >. In Ezample we saw that
k[G] has two blocks By = k[Gley and By = k[Gles, where e; = 1+ a + a* and
ey = a+a? are the respective block idempotents. Observe that Tr&(el) = ey and
Tr{(a) = e, where Cy =< b > (the cyclic group generated by b). Additionally,
since Cg(Cs) = Cy, then Bre,(e1) = 1, Bre,(es) = 0, Bri(er) = e; and
Bri(es) = ey. Then, by Theorem[2.2.1], < b > is a defect group of By and 1 is
a defect group of Bs.

If k is a field of characteristic 3, then as we noted in Example k|G] only
has one block, and by Proposition [2.2.8, Cs is a defect group of this block.

2. Let k be a field of characteristic 2 and let G be the group S3 x S3. In Example
we noted that k|G| has four blocks: k|G|(e1®eq), k[G](e1®es), k[G](e2®
e1) and k[G](e2®ez). By [29, Proposition 2.6/, k|G](e;®e;) has a defect group
D; x D;, where D; is a defect group of k[Ss]e; and D; is a defect group of k[Ss]e;,
fori,je{1,2}.

3. Let k be a field of characteristic 2 and let G be the group §3 X S3 % - % S;, for

g
n—times

n > 2. Then, the block idempotents are of the form ¢} ® €, ® --- ® e, where
either €, = ey or €, = ey, for 1 < i < n. The defect groups are of the form

[T, Di, where D; is a defect group of k[Ss]e}, for 1 <i <mn.

2.3 Brauer correspondence for finite groups

Let D be a p-subgroup of G. It is possible to establish a bijective correspondence
between the blocks of k[Ng(D)] with defect group D and the blocks of k[G]| with
defect group D.
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By [3, Lemma 6.2.1], k[G]” = k[Cq(D)] @ 3 Tr5(k[G]¢). So we consider the
QsD
Brauer map as the surjective map Brp : k[G]P? — k[Cq(D)]. If B is a block of G

with defect group D and block idempotent e, then Brp(e) turns out to be a block
idempotent of Ng(D), whose corresponding block has defect group D. This map

establishes the following correspondence:

Theorem 2.3.1 (Brauer’s Correspondence). Let G be a finite group and D be a p-

subgroup of G. The Brauer map Brp establishes a one-one correspondence between
the blocks of G with defect group D and the blocks of Ng(D) with defect group D.

For a proof see [31, Theorem 12.6.4].

2.4 Blocks with cyclic defect groups. Brauer Trees
and Brauer Tree Algebras

In this section, we give a summary of the techniques related with the study of blocks
of finite groups with cyclic defect groups. If G is a finite group, the structure of a
block of G with cyclic defect group is determined by the properties of a certain type
of graph with extra structure, called a Brauer tree. The information of the blocks can
be encoded inside this finite graph. For more details, we recommend [20, Chapter 11],
[3, Chapter 6] and [I, Chapter V].

Throughout of this section, we consider k£ to be an algebraically closed field of char-

acteristic p.

Denote by S a set of representatives of the isomorphism classes of simple modules in
B and |S| the number of elements of S.

Lemma 2.4.1. Let G be a finite group and B a block of G with non-trivial cyclic
defect group D. Then |S| divides p — 1.

Proof. By [20, Theorem 11.1.3], |S| is equal to the order of the inertial group E (cf.
[20, Definition 6.7.7]). But |E| divides p — 1 by [20, Theorem 11.1.1], so |S| divides
p— 1. O
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2.4.1 Brauer trees and Brauer tree algebras

Definition 2.4.2. A Brauer tree I is a finite, connected, undirected graph without
loops or cycles (so it is a tree) together with a circular ordering of the edges emanating
from each vertex. A Brauer tree with exceptional vertex of multiplicity m

1s a Brauer tree with a distinguished vertex, to which we attach a positive integer m.

The cyclic ordering on the edges around a vertex is given by circling the vertex in an

anti-clockwise direction. For example

S3
Sa

S1

the edge S; emanating from the vertex v has a “next” edge S,, emanating from v
and to the edge Sy emanating from a vertex v has a “next” edge S3, and the edge S5
emanating from a vertex v has a “next” edge S;. Call ~, the cyclic permutation on
the set of edges adjacent to v associating the “next edge” to any edge in the above

ordering.

Another example, consider the following Brauer tree
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Sy

v3 v2 v1
S3

U5

then to the edges emanating from the vertex vs, the ordering is Sy, S3,S2. To the
vertex vy the ordering is S, S7, and to the vertex v; the ordering is S;. To the

vertices vy, U5 the order is analogous to the case of v.

Following, we define the radical and the socle of a module before introducing the

Brauer tree algebra’s concept.
Definition 2.4.3. Let A be finite dimensional k-algebra and let U be an A-module.

1. The radical of U, denoted by rad(U), is the intersection of all maximal A-

modules.
2. The socle of U, denoted by soc(U) is the maximal semisimple submodule of U.

Observe that by [31, Theorem 7.3.8] there is one-to-one correspondence between iso-
morphism classes of indecomposdable projective A-modules and isomorphism classes
of simple A-modules given by: if P is an indecomposable projective A-module, then
P/rad(P) is isomorphic to a simple A-modulo S, and, on the other hand, if S is
a simple A-module, there is an indecomposable projective module Pg, unique until
isomorphism, such that Pg/rad(Ps) = S.

Finally, we are ready to introduce the concept of a Brauer tree algebra.

Definition 2.4.4. Given a Brauer tree I', we say that a finite dimensional k-algebra

A is the Brauer tree algebra associated to I' if

1. There is a one-to-one correspondence between the edges of the tree and the iso-

morphism classes of simple A-modules,

2. the top P/rad(P) of the indecomposable projective A-module P is isomorphic to
the socle of P,
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3. the projective cover P corresponding to the edge S is such that

rad(P)/soc(P) = U*(S)@ U™(S)
for two (possibly zero) uniserial A-modules UY(S) and U"(S), where v,w are
the vertices adjacent to the edge S,

4. if v is not the exceptional vertex and if v is adjacent to the edge S then U"(S)
has s(v) — 1 composition factors, where s(v) is the number of edges adjacent to

v,

5. if v is the exceptional vertex with multiplicity m, and if v is adjacent to S, then

U"(S) has m - s(v) — 1 composition factors,

6. if v is adjacent to S then the composition factors of UY(S) are described as

rad’ (U"(S))/rad” ™ (U*(5)) = 7["(S),

for all j as long as j is smaller than the number of composition factors of U"(S).

Some examples will help to better understand the idea of a Brauer tree algebra. The
following examples are from [I, V, §17]. Consider the following Brauer tree, with

exceptional vertex colored black with multiplicity two:

28



S1
S3 S4

So

The Brauer tree algebra A has four indecomposable projective modules, and these

modules can be represented by the following diagrams:
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Sa

S3

So

S3

S1

Pg,

soc(Ps,)

Sa

S3

S1

Sa

S3

Sa

Pg

2

soc(Ps,)

30

Pg,

Sy

S3

sce(Ps,)




Another example, Let I' be the Brauer tree with exceptional vertex v and multiplicity

m

Then the Brauer tree algebra A has exactly one simple module S, and the projective
module corresponding to the Brauer tree algebra can be represented by the following

diagram:

rad(Pg)

soc(Ps)

wn
O—-_O—O_""O

where S appears m + 1 times in total.

It is possible to show that this Brauer tree algebra is the group algebra k[G] when G
is a cyclic p-group of order p”, and in this case m = p™ — 1. The simple module S
is the trivial k[G]-module k. This example shows that the group algebra of a cyclic

p-group is a Brauer tree algebra.
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Observe that this group algebra is indecomposable so has only one block, and this
block is a Brauer tree algebra. With some conditions, we can find a relation between
the blocks of group algebras and Brauer tree algebras. The idea is that blocks with

cyclic defect groups, can be seen as Brauer tree algebras.

Theorem 2.4.5. Suppose k algebraically closed and B is a block of G with non-trivial
cyclic defect group D. Then B is a Brauer tree algebra for a tree with |S| edges and
|D|—1

multiplicity T

For a proof see [33, Theorem 5.10.37].
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Chapter 3

Inverse Limits, Profinite Groups
and Pseudocompactness

In this chapter we introduce the basic definitions and standard results required to work
with pseudocompact objects. We start by introducing the notion of inverse limits of
topological spaces and defining profinite groups. Next we introduce the concepts and
properties of pseudocompact algebras and modules. The properties presented here

are oriented to develop a block theory for profinite groups.

The main sources to write this chapter were: for the first part the books “Profinite
Groups” by L. Ribes and P. Zalesskii [25] and “Profinite Groups” by J. Wilson [32].
For the second part the books “Algebraic topology” by S. Leftschetz [I§] and the
articles [I1],[15].

Basic knowledge about topological spaces, continuity and compactness are required.

3.1 Inverse Limits and Profinite Groups

To see more details about these topics we recommend the books [25] and [32].

Definition 3.1.1. A directed set is a partially ordered set I with the additional
property that for all iy,io € I, there exists j € I such that j = i1 and j = 1.
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Definition 3.1.2. An inverse system {X;, ;;, I} of topological spaces X; is a family
of topological spaces indexed by a directed set I, together with a continuous map ;;

X; — X; wherever i < j. The maps must satisfy that the diagram

X, — X,

D

commutes whenever ¢ < j < k and that p; = idx

7,"

Definition 3.1.3. Given an inverse system {X;, ¢;;, I} and a topological space Y, a

set of continuous maps {; ' Y — X; | i € I} is said to be compatible if whenever
i < J we have @;1; = ;.

Definition 3.1.4. The inverse limit, lim X; = (X, ;), of the inverse system
iel
{Xi, wij, I} is a topological space X together with a compatible set of continuous map-

pings {@; : X —> X} having the following universal property:

Whenever Y is a topological space and {1p; : Y — X} is a compatible set of continu-
ous maps, there exists a unique continuous map v : Y — X such that p;3p = 1; for

each 1€ I.

Thus, we require that there exists a unique 1 such that the following diagrams com-

mute:

Observe that if the inverse limit exists, then it is unique. We will always demand that
a finite set have the discrete topology. If the objects in our system are finite, several
topological properties pass to the limit. Discrete spaces are Hausdorff and totally
disconnected, which passes to the limit. A finite space is compact, and this property
passes to the cartesian product by Tychonoff’s theorem. If X is an inverse limit of

an inverse system consisting of finite sets, then we say that X is a profinite space.
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In that case, if X is a profinite space, then it is a Hausdorff, compact and totally
disconnected topological space. For a proof of these assertions see [25, Chapter 1]. If
Y is a subset of a topological space X, denote by Y the topological closure of Y in
X.

Lemma 3.1.5. Let X be an inverse limit of an inverse system {X;, @;;} of topological
spaces and let Y be a subset of X. Then:

1. The pi(Y) and ;(Y) form an inverse system of subsets of X;, andY = (), i (¢i(Y)) =

For a proof see Corollary of [4, Propostion 9, p. 49].

Definition 3.1.6. A subset J of the directed set I is cofinal if, for every i€ I there
is j € J with j = 1. In this case whenever {X; : i€ I} is an inverse system indexed

by I, then {X; : i€ J} is also an inverse system and lim _ X; =~ lim_X;.
<«——jel <«—ieJ

If we add a group structure to the objects of our inverse system of finite spaces,
and if the system maps are group homomorphisms, then the inverse limit is called a

profinite group.

We use the notation H <o G to denote open subgroups of G, H <¢ G to denote
closed subgroups of GG, N <y G to denote open normal subgroups of G and N <o G

to denote closed normal subgroups of G.

Example 3.1.7. o If G is a profinite group and I is directed set of open normal
subgroups of G ordered by reverse inclusion such that (\{{N : N € I} = 1¢, then
G =limG/N.

Nel

e Consider the system of p-groups indexed by the natural numbers N and given by
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Z/pZ

Z)p*Z

77

where the maps are just the standard projection maps. This inverse system has

inverse limit the p—adic integers Z,,.

Definition 3.1.8. e A profinite group is a pro-p group it is the inverse limit of
finite p-groups
e A profinite group is virtually pro-p if it has an open pro-p subgroup.
The Z,, = LiLnn Z/p"Z is an example of a pro-p group and a virtually pro-p group. The

group GL,(Z,) of invertible n x n matrices with entries in Z, is virtually pro-p but

not pro-p.

Remark 3.1.9. Throughout this work the directed set will usually be a set of open
normal subgroups of a profinite group G, ordered by reverse inclusion. In this case,
cofinal means that for each open normal subgroup M of G, there is N in the cofinal
subset with N < M.

3.2 Pseudocompactness

In this section we collect well-known definitions, results and constructions about pseu-

docompact algebras and modules.

Unless otherwise specified, throughout this section k will denote a discrete field of

characteristic p. When the coefficient ring is unspecified it is assumed to be in £,
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so, for example, by algebra we understand k-algebra. Furthermore, throughout this

section all modules are assumed topological left modules.

Definition 3.2.1. A pseudocompact algebra is an associative, unital, Hausdorff
topological k-algebra A having a basis of 0 consisting of open ideals I with cofinite

dimension in A that intersect in 0 and such that A =lim A/I.

A pseudocompact algebra can be defined equivalently as an inverse limit of discrete
finite dimensional algebras in the category of topological algebras. An example of a
pseudocompact algebra is the complete group algebra k[[G]] of a profinite group G,
that we define as the inverse limit of the finite dimensional group algebras k|G/N] as

N runs through the open normal subgroups of G.

Definition 3.2.2. Let A be a psudocompact algebra. The Jacobson radical J(A)

of A is the intersection of the mazximal open left ideals of A.
Lemma 3.2.3. Let A be a pseudocompact algebra. Then:

1. Write A =lim {A/I, arp : A/I" — A/I} as an inverse limit of finite dimensional
quotient algebras A/I. Then

J(A) =lim J(A/T).

2. Let A, B be pseudocompact algebras and let o : A — B be a continuous surjective
algebra homomorphism. Then o(J(A)) = J(B).

For a proof of Item 1., see [15, Lemma 2.3] and for Item 2. see [15, Corollary 2.4].

Definition 3.2.4. A pseudocompact algebra A is local if it has a unique maximal left
ideal. If A is local, then the Jacobson radical J(A) is the unique maximal left ideal.

Lemma 3.2.5. Let A, B be pseudocompact algebras with A local.
1. If e is a non-zero idempotent of A, then e ¢ J(A)

2. If f : A — B is a non zero algebra homomorphism, then f(A) is a local algebra.
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Proof. 1. Write A = lim {A/I, prp}. By Lemma(3.2.3} J(A) = lim J(A/I). Since
(I = 0, there exists an open ideal Iy of A such that e ¢ Iy. Since e is idempotent
and ¢y, : A — A/l is an algebra homomorphism, then ¢, (e) is idempotent in
A/Iy. Since ¢, (J(A)) = J(A/Iy) by Lemma[3.2.3] then ¢(e) ¢ J(A/I,) by [19,
Theorem 1.10.5]. Now, working in the cofinal subsystem of A/Iy with I < I,
wi(e) ¢ J(A/I), and hence e ¢ lim J(A/I) = J(A).

2. Since A is local and f(A) ~ A/K, with K = ker(f), then K < J(A). Now,
using the one-one correspondence between ideals of A contained in K and ideals
of A/K we have that I/K < J(A)/K for all proper ideals I/K of A/K. Then
A/K =~ f(A) is local.

]

Definition 3.2.6. A pseudocompact A-module is a topological A-module U pos-
sessing a basis of 0 consisting of open submodules V' of finite codimension that intersect
in 0 and such that U = lim U/V.

Definition 3.2.7. Let {U;, ¢;;} and {Vi, 1y} be two inverse systems of pseudocompact
A-modules, indexed by I. A map of inverse systems H : {U;, pi;} — {Vi, ¥} is a set
of continuous maps {h; : U; — V; : i € I} such that if i < j, then the following

diagram commutes:

Ui

\

Vi

—

.

S

-

<.

—>

.

The maps h; are called the components of H.

Any map of inverse systems H : {U;, p;;} — {V;,¢;;} induces a unique continuous
map lim A : lim A; : im U; — lim V; (cf. 25, Ch 1,81.1]). If H : {U;, gij} — {Vi, ¥}
is such that each h; is onto, then liﬂlhi is onto and if each component h; is 1-1, then

lim h; is 1-1 (cf. [T} IV. §3, Lemma 1]).
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The notion of linearly compact modules and their properties is a useful tool, that will
be frequently used in this work to confirm that topological modules are pseudocom-

pact.

Definition 3.2.8. If V is a topological vector space, cosets of closed subspaces of V'
are called closed linear varieties. We say that V' is linearly compact if for every
family F = {W; : i€ I} of closed linear varieties with the finite intersection property,
we have that (,.; Wi # .

Lemma 3.2.9. Let A be a pseudocompact algebra and V' , U pseudocompact A-modules.
1. The module V is linearly compact.

2. If ever p : V. — U 1is a continuous homomorphism, then p(V') is linearly

compact and hence closed in U.
3. The submodule abstractly generated by a finite subset of V is closed.

4. If U is finitely generated as an A-module, then every A-module homomorphism

U — V is continuous.

For a proof of Items 1 to 3 see [15, Lemma 2.2] and for Item 4 see [28, Proposition
3.5].

Lemma 3.2.10. 1. If V is a discrete finite dimensional vector space, then V is

linearly compact space.
2. A product of linearly compact spaces is linearly compact.

3. Let {Vi,ij, I} be an inverse system of linearly compact vector spaces and let
W, be a closed linear variety in V; for each i such that p;;(W;) < W;. Then

{Wi, @i, I} forms an inverse system and its inverse limit is not empty.

4. A continuous bijective map between two linearly compact spaces is an isomor-

phism.

For a proof see [I8] 11, §6, 27.]
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Chapter 4

Complete tensor product,
Coinvariants and Homomorphisms

In this chapter we introduce the concept and properties of coinvariant modules. If £ is
an infinite discrete field of characteristic p, then the completed algebra k[[G]] will not
be compact but, it is pseudocompact. Coinvariant modules are a useful tool that let
us handle easier the pseudocompact k[[G]]-modules. This such tool was used in [22]
§2] for profinite algebras. Many results about profinite algebras and modules remain

true in the case of pseudocompact objects.

We start this chapter introducing basic definitions and standard results related with
the notion of tensor products of pseudocompact modules. Next we introduce the
concept and properties of coinvariant modules that we required for develop the block

theory for profinite groups.

4.1 Complete tensor product

Several times in this section we will give results for pseudocompact algebras and
pseudocompact modules but we will cite a proof for the profinite case. When we do
this, the proof in the given reference passes without change to the pseudocompact

case.
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Let A be a pseudocompact k-algebra, U a pseudocompact right A-module, V' pseu-
docompact left A-modules and W a k-vector space. A continuous linear map ¢ :
U xV — W is said to be A-middle linear if, for all u,u;,us € U, v,v1,v9 € V and

A € A, we have

p(ur +ug,v) = @(ur,v) + p(uz,v),
QD(’LL, v + UQ) = QD(’LL, Ul) + 90(u7 UQ)
p(ur,v) = p(u, \v)

Definition 4.1.1. Let U be a right A-module and V' a left A-module, then the com-
plete tensor product of U and V over A is a pseudocompact k-vector space UR AV

and a middle linear map ¢ : U x V. — ULV with the following universal property:

Given any pseudocompact k-vector space W and continuous A-middle linear map 1) :
U x V — W, there exists a unique continuous linear transformation ¢’ : U®AV — W
such that ' = 1.

Observe that the universal property is analogous to the universal property of the
abstract tensor product. There is an obvious and useful description of the complete

tensor product as an inverse limit:

Lemma 4.1.2. Let A be a pseudocompact k-algebra. The completed tensor product
URAV of the pseudocompact right A-module U = lim U; and the pseudocompact left
A-module V' =1im V; is defined by

U®4V = ImU; ®4V;

i?j

The equivalence of these statement for profinite modules is given in [25, Lemma 5.5.1],

but the proof works for pseudocompact modules .

Remark 4.1.3. Observe that the completed tensor product URAV is a topological
completion of the abstract tensor product U®4 V. Then U ®4 V is dense in UR4V .
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This can be interpreted as the statement that U®4V is topologically generated by the

set of elements of the form u®@v withue U andve V.

Next, we state some general properties of the completed tensor product that are in

direct analogy with those of the abstract tensor product.

Proposition 4.1.4. Lat A be a pseudocompact k-algebra. Let U,U;,Us be pseudo-
compact A-modules and V, V1,V be pseudocompact left A-modules. Then:

1. X®u __and _ R4V are right exact covariant functors.

L URAVI® V) = URAVI @ URAV;

Lo

. (Ul @® Uz)@AV = U1®AV@ U2®AV-
CARAV =V and URLA ~ U.

[T

. If either U or 'V is finitely presented as an A-module, or if both U,V are finitely
generated as A-modules, then U @4V = ULV

For a proof of Item 1 to 4 see [25, Proposition 5.5.3] and for Item 5 see [24, Proposition
2.9.

Proposition 4.1.5. Let A, B be pseudocompact k-algebras. Let U be a pseudocompact
right B-module, V' be a pseudocompact B — A-bimodule, and W be a pseudocompact
left A-module. Then

1. V&AW s a left B-module with multiplication \(v®w) = \w®w, for A€ B, v e
Vand weW.

2. URgV is a right A-module with multiplication (u®@v)B = u®up, for fe A, ve
VandueU.

3. URp(VRAW) = (URBV)®AW.

The proof is exactly the same as for the finite case, you can see [I3, Chapter IV,
Theorem 5.8].
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4.1.1 Induction and restriction

Let G be a profinite group and H a closed subgroup of G. If V' is a pseudocompact
k[[H]]-module, then the induced k[[G]]-module is defined by

V1= k[[Gll@xg V.

with action from G on the left factor.

If U is a k[[G]]-module, then the restricted k[[H]]-module U | is the original
module U with coefficients restricted to the subalgebra k[[H]|.

Remark 4.1.6. Observe that induction is left (but not right) adjoint to restriction.
For more details see [2]), §2.2].

Lemma 4.1.7. Let G be a profinite group, H <c G and U a pseudocompact k[[G]]-
module. Then there is an isomorphism of left k[|G]]-modules

IGN@wmU = kG/H]|@U,

where the action of k[[G]] on k[[Gl|®ugugU is via left multiplication on k[[G]], and
its action on k[[G/H]|&U is the diagonal action.

Proof. Following, step-by-step, the proof of [25, Proposition 5.8.1], we can define
continuous homomorphisms ® : k[[G|®@kgugU — k[[G/H]|&U, given by g@u —>
gH®qu, and ¥ : k:[[G/H]]@kU — k[[G]]@k[[H]]U, given by ¢gH®u — ¢®g¢ 'w.

Observe that ® and ¥ are mutually inverse:

(U (gHRu)) D(g®g ) = gHRgg *u = gHRu.
U(D(gRu)) = V(gH®gu) = gRg 'gu = g&®u.
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Lemma 4.1.8. Let G be a profinite group, H <¢ G and U = lim Un a pseudocom-
pact k[[G]]-module. Then U | 1= lim Uy lante.

Proof. This follows from [25, Lemma 5.5.2, Proposition 5.2.2, Proposition 5.8.1]. [

4.2 Coinvariants

In this section we introduce the notion of coinvariant modules. These objects will
provide us with a tool to control the behaviour of the inverse systems of k[[G]]-

modules.

Definition 4.2.1. Let U be a pseudocompact k[[G]|-module and N a closed normal
subgroup of G. The module of N-cotnvariant Uy is defined as k@k[[N]]U ~ U/INU,
where k is considered as the trivial k[[H]|-module and Iy denotes the augmentation

ideal of k[[N]] (that is, the kernel of the map k[[N]] — k given by n — 1).
The action of G on Uy is given by g(A®u) = A\Qgu.

Observe that N acts trivially on Uy, since an element n € N acts on a generator of

Uy as follows:

n(AQu) = A\@nu = In®u = AQu.

Thus we can consider Uy to be a k[G/N]-module if we choose.

The module Uy with the canonical quotient map ¢y : U — Uy, satisfies the following

universal property (cf. [22, Lemma 2.5]):

Every continuous k[|G]]|-module homomorphism p from U to a pseudocompact k[[G]]-
module X on which N acts trivially factors uniquely through the canonical projection
map oy : U —> Uyx. That is, there is a unique continuous homomorphism p' :

Uy — X such that p = p'pn.

We collect here several technical properties of coinvariant modules:
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Lemma 4.2.2. Let G be a profinite group, N, M closed normal subgroups of G' with
N < M and H a closed subgroup of G. Let U, W be pseudocompact k[[G]]-modules
and let V' be a k[[H]|]-module. Then

1. (Un)u is naturally isomorphic to Uyy.
2. (U@W)N = UN@WN.
3. Vunan is naturally a k[[HN /N]|-module.

- (V19N = Vigan 198,

[T

- Un lunvynv= (U lan)w.

For a proof of this Lemma it is sufficient follow, step-by-step, the proof of [22, Lemma
2.6].

The properties of the completed tensor product imply that () is a right exact func-
tor from the category of finitely generated k[[G]]-modules to the category of finitely
generated k[[G/N]]-modules.

Lemma 4.2.3. IfU is a finitely generated pseudocompact k[|G]]-module and N <o G,

then Uy is a finite dimensional pseudocompact module.

Proof. If U is generated by n elements 1, o, ..., T, then so is Uy by 1&z1, 1®z, ..., 1&Qz,,.
But Uy is a module for the finite dimensional group algebra k[G/N]. So dimy(Uy) <
|G/N|". O

Proposition 4.2.4. If U is a pseudocompact k[|G]]-module, then {Uy : N <o G}
together with the set of canonical quotient maps forms a surjective inverse system with

mverse limit U.

For a proof of this Proposition it is sufficient to follow, step-by-step, the proof of [22],
Proposition 2.7].

Remark 4.2.5. Throughout this text, whenever N < M are closed normal subgroups

of the profinite group G, the notation vy n will be reserved exclusively for the canonical

maps Uy — Uyy,.
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In the special case of U = k[[G]] we have k[|G]|y = k[[G/N]] and the corresponding

maps ©n, Yun are in fact algebra homomorphisms.

Lemma 4.2.6. Let U be a pseudocompact k[[G]]-module and V' a closed submodule of

U. Suppose that for each N <o G, Ux has a submodule Wy such that on(V') € Wy,

oun(Wyx) € Wiy whenever N < M, and im Wy =V. Then U/V =limUy/Wy.
N

Proof. For each N, let my : Uy — Uy /Wy be the canonical projection. If N < M,

Tueun (W) © my(Wy) = 0. So there is a surjective map @,y : Un/Wy —

Uni /W, given by u+ Wy —— @y (u) + Wy, Since {Uy, ppn} is an inverse system,

then {Un/Wnx, Py} form an inverse system. We assert that U/V = lim {Un/Wn, Dy }-

Let 7 : U — U/V be the canonical projection map. For each N <o G, mypn(V) S
mn (W) = 0, so there is a map 7y : U/V — Uy /Wy, given by u+V — @y (u) +Wi.
Observe that if N < M, @yymy = 7). Then we have a map of inverse systems
{m} - {U/V,id} — {Uy/Wn, @y} with surjective components. By [I1, IV. §3,
Lemma 1], the induced map 7' : U/V — lim Uy/Wy, given by u +V — (i (u))n,

is a continuous surjective map.

But, 7’ is injective, since

T(u+V)=0 < oyu)+Wy=Wy, VN
QON(’U,) S WN, VN
< ue ﬂ wn (Wy)

N

< uelV.

0

Hence 7" is a continuous bijective map from U/V to lim  Un/Wy. By Lemma|3.2.10|
U/V =lim  Uy/Wy.

]

46



4.3 Homomorphisms

Let U and W be pseudocompact k[[G]]-modules, then Homygey(U, W) denotes the
topological k-vector space of continuous k[[G]]-module homomorphisms from U to W
with the compact-open topology. If W' = lim W, then Homy (U, W) = lim . Homy e (U, W),

where we make {Homygey (U, W;)} into an inverse system via the maps

nijiHomk[[G]](U; W;) — Homk[[g]](U, W;)
;P

where ¢;; : W; — W, is the map from the inverse system of W. Furthermore, for
each ¢ the maps Homypey (U, W) — Homy ey (U, W;) are given by oo — @;cr, where
©; is the standard projection from W to W;.

In particular, when U is finitely generated, Homyey (U, W) is a pseudocompact k[[G]]-

module. For more details you can confer [24] §2.2].

Lemma 4.3.1. Let U, W be pseudocompact k[[G]]-modules. Then Homypey(U, W) =
LiLnNgoG’ HOmkﬂg]] (UN, WN) .

Proof. Write U = LiLnN Uy and W = LiLnN Wiy. It is sufficient to confirm that for
each N <o G, Homyjay(Un, W) = Homygep (U, W).

Consider the continuous map I'y : Homypay(Un, Wx) — Homypey (U, Wy ) given by
a —> apy, where @y is the canonical projection U — Upy. Observe that I'y is
injective since o € ker(I'y) if, and only if, a(pn(u)) = 0 for all w € U. This is
equivalent to a = 0. On the other hand, by the universal property of coinvariant

modules, I'y is surjective. So Homyay(Un, W) = Homygep(U, Wi ).

Now, Homygep(U, W) = @N Homy ey (U, Wy ) = lim Homy ey (Un, Wi ). O

Lemma 4.3.2. If U is a finitely generated pseudocompact A-module, then E =
Ends(U) is a pseudocompact A-algebra.
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For a proof see [24, Lemma 2.3].

In particular, when U is an indecomposable finitely generated k[[G]]-module, Endggey (U)
is a local ring. To see this we use the notion of algebraic compactness and its prop-

erties.

Proposition 4.3.3. Let G be a profinite group and let U be an indecomposable finitely
generated k[[G]]-module. Then U has local endomorphism ring.

Proof. Since U is pseudocompact, it is linearly compact by Item 1 from Lemma|3.2.9]
But, linearly compact modules are algebraically compact (cf. [9, Proposition 4.11]).
It hence follows from [9, Proposition 4.10] that the abstract endomorphism ring of U

is local.

Since U is finitely generated, by Item 2 of Lemma the rings of abstract and

continuous endomorphisms coincide. O

Lemma 4.3.4. Let U /W be pseudocompact k[|G]]-modules with U finitely generated.
If 7 : W — U s a surjective k[|G]]-homomorphism such that nn : Wy —> Uy is

split for each N <o G, then 7 is a split homomorphism.

Proof. Write W = LiLnN{WN, eun}and U = liglN{UN,gpMN}. Since y : Wy — Uy

splits for each N < G, then there is ¢ty : Uy — Wy such that myiy = idy,, .

Let Xy < Homypep(Un, Wa) be the non-emtpy set of splitting maps of my. For

N < M, the map Xy — X given by a@ — ay makes Xy into an inverse system.

We claim that each X is a closed linear variety. For each N <o G, consider the
continuous linear map vy : Homypep(Un, Wy) — Endigep(Uy) given by o — mya.
Then vx'(idy, ) = Xn. Moreover, a simple verification shows that the set Xy is the
same as {« + ker(yy)}, for some a € Xy. Then Xy = a + ker(vy) is a closed linear
variety. Now, by Item 3 of Lemma lim Xy # . An element ¢ € lim Xy is
a splitting of .

]
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4.4 Radicals and socles of pseudocompact k[[G]|-
modules and coinvariants

In this section we introduce the notion of radical and socle of a pseudocompact mod-
ule, and we developed the relation with coinvariant modules. Radical and socles of

pseudocompact modules will be key tools to study the structure of blocks of k[[G]].

Definition 4.4.1. Let A be a pseudocompact k-algebra and let U be a pseudocompact
A-module. The radical of U, denoted by rad(U), is the intersection of the maximal

open submodules of U.

Lemma 4.4.2. Let U be pseudocompact k[[G]|-module with U = lim {Un,omn}.
Then
1. rad(U) = limrad(Uy), and the inverse system {rad(Uy), ppn} is surjective.
N
2. For any i > 1, rad'(U) = lim  rad'(Uy), where rad’(U) = rad(rad’~"(U)) and

the inverse system is surjective.
5. U/rad(U) = lim  Uy/rad(Uy).
4. For any j €N, rad(U)/rad’*'(U) = lim  rad(Uy)/rad’** (Uy).

Proof. 1. Given open subgroups N, M with N < M, oyny : Uy — Uy is a
surjective homomorphism. Then, by [2, Proposition 9.15], ¢yn(rad(Uy)) =
rad(Uyr). Thus, the restriction of the inverse system of Uy to their radicals
yields an inverse system with inverse limit lim rad(Uy) < U. Furthermore,
rad(U) is sent to rad(Uy), for each N, so that rad(U) < lim  rad(Uy). On the
other hand, let u ¢ rad(U). Then there is a maximal open submodule W of U
such that u ¢ W. Then, there is N’ <o G such that IyyU <€ W and u ¢ o (W).
But, by The Correspondence Theorem, for modules (cf. [10, §10.2, Theorem 4])
en' (W) is maximal in Uy, so rad(Un/) € on(W) and hence o/ (u) ¢ rad(Un:).
Then ¢y (u) ¢ rad(Uy) for all N < N’. Hence, u ¢ lim o, rad(Uy). Then,
lim rad(Uyx) € rad(U).

2. This is a particular case of Item 1.
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3. The result follows by applying Lemma with V' = rad(U) and Wy =
rad(Uy).

4. This is a particular case of Item 3.
m
Definition 4.4.3. Let A be a pseudocompact algebra and U a pseudocompact A-

module. We say that U is semisimple is for every closed submodule W of U, there
is a closed submodule W' of U such that U =W @ W',

Lemma 4.4.4. Let A be a pseudocompact algebra and U a pseudocompact A-module.

The following are equivalent:
1. U is a direct product of simple modules.
2. U 1is semisimple.
3. Fvery open submodule of U has a complement.

For a proof see [14, Lemma 3.9].

Observe that if N < M are open subgroups of GG, and X is a simple module of Uy,

then yn(X) is simple or zero. Hence oy (soc(Uy)) < soc(Uyy).

Lemma 4.4.5. Let G be a profinite group and U a finitely generated pseudocompact
k[[G]l-module with U = lim {Uy, pun}. Then lim {soc(Uy), oun} is the mazimal

closed semisimple submodule of U.

Proof. First we confirm that L = lim _{soc(Ux), pmn} is a semisimple submodule of
U. Let W be an open submodule of L. Then L/W is finite dimensional. Consider the
canonical projection ¢ : L — L/W. By Lemma m, it is sufficient to confirm that ¢
splits.

Since (_)y is a right exact functor, for each N <o G, we have surjective maps qy :
Ly — (L/W)y. Since Ly < soc(Un), and soc(Uy) is a semisimple submodule of Uy,
then ¢y splits, for each N <o G. So, by Lemma |4.3.4] the map q is split, as required.
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To finish we confirm that every closed semisimple submodule of U is contained in L.
Let V be a closed semisimple submodule of U. By Lemma[£.4.4] V is a direct product
of simple modules. It is thus sufficient to confirm that every simple submodule S of
V' is contained in L. Let S be a simple submodule of V. Then, px(S) € soc(Uy), for
each N. so S ¢ lim  Soc(Uy) = L. Hence, V < L. O

Remark 4.4.6. Observe that the inverse system of {soc(Un), opn} need not be sur-
jective, and it can happen that soc(U) = 0.

Definition 4.4.7. The socle of U, denoted by soc(U), is the mazimal closed semisim-

ple submodule of U.

Lemma 4.4.8. Let G be a profinite group and U a finitely generated pseudocompact
k[[G]l-module with U = lim {Un, omn}. Then U/soc(U) = lim  Uy/soc(Uy).

Proof. The result follows by applying Lemma with V' = soc(U) and Wy =
soc(Uy).
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Chapter 5

Tools of the Modular
Representation Theory of Profinite
Groups

In this chapter we introduce the basic definitions and results of the modular repre-
sentation theory for profinite groups required in the next chapters. Furthermore, we
introduce analogous notions of the trace map for pseudocompact algebras. In the
finite theory the trace map is a central piece in the study of the block theory of finite
groups, and the analogous notion introduced here will have an equivalent importance

in the block theory of profinite groups.

5.1 Relative Projectivity

Between the years 2005 and 2011, some results of the modular representation theory
of finite groups were extended to the category of profinite groups. In [22], [21], were
extended the notions of relative projectivity and vertex of the modules defined over
finite group algebras to modules over completed group algebras defined over finite

field of characteristic p.

Recall that if k is an infinite discrete field of characteristic p, then k[[G]] is a pseudo-
compact algebra. Asin Chapters 3 and 4, many results presented here, about profinite

algebra and modules, remain true in case of pseudocompact objects.
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Definition 5.1.1. Let H be a closed subgroup of G. A pseudocompact k[|G]|-module
U is relatively H-projective if given any diagram of pseudocompact k[[G]]-modules
and k[|G]]-module homomorphisms of the form

U

)

V—»/8 w

such that there exists a continuous k[[H]]-module homomorphism U — V making
the triangle commute, then there exists a continuous k[[G]]-module homomorphism

U — V making the triangle commute.

Observe that a projective module is the same thing as a 1-projective module. Many

familiar characterizations of relatively projective modules follow exactly as finite case:

Lemma 5.1.2. Let G be a profinite group, H a closed subgroup of G and U be a
pseudocompact k||G]]-module. The following are equivalent:

1. U 1is relatively H-projective.

2. If a continuous k[[G]]-module epimorphism V. — U splits as a k[[H]]-module

homomorphism, then it splits as a k[[G]]-module homomorphism.
3. U is isomorphic to a direct summand of U | x1€.
4. The natural projection 7 : U | g1¢— U sending ¢®u — gu splits.

5. U is a direct summand of a module induced from some pseudocompact k|[H]|-

module.

Proof. 1. < 2. < 3. < 5. can be proved in a similar way to the finite case (cf. Lemma
2.1.3) and 4. = 3. is obvious.

It remains to confirm 3. = 4. Observe that 7 is component at U of the counit of
the induction-restriction adjuction (see Remark [4.1.6)). So, if a: U — U |51 and
B :U |g1%— U are the split homomorphisms coming from 3., then, by properties
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of adjoint functors, § = 7my 1g, for some endomorphism v : U |g— U |g. Then

idy = Ba = (17 1%)a = m(y i ). Hence 7 is split. O

Remark 5.1.3. Here and elsewhere, when U,V are k[[G]]-modules, we write U|V" to

mean that U is isomorphic to a continuous direct summand of V.

The fact of U being a pseudocompact k[|G]]-module and being able to write U as
inverse limit of its coinvariant modules Uy (cf. Proposition [4.2.4) let us find new

characterizations of relative projectivity of U.

Proposition 5.1.4. Let U be a finitely generated pseudocompact k[[G]|-module, and
H <c G. Then U is relatively H-projective if and only if U is relatively H N -projective
for every N <o G.

Proof. Assume that U is relatively H N-projective for every N <o G. Then, by
Lemma , the natural projection 7y : U | gn1¢— U splits. Denote by Iy the
non-empty set of splittings of my. Observe that Iy is a closed linear variety, since Iy
is the inverse image of idy by the continuous map py : Homk[[(;]](U, U LHNTG) —

Endyey(U) given by o — mya.

Now, the proof of [22, Proposition 3.3] can be followed step-by-step, since lim NvIN# D
by Item 3 of Lemma [3.2.10 O

Proposition 5.1.5. Let U be a finitely generated pseudocompact k[[G]|-module, and
H <¢ G. Then U is relatively H-projective if, and only if, Uyx is relatively HN -

projective for every N <o G.

Proof. We essentially follow the proof of [22) Proposition 3.5]. Fix M <o G and
consider the cofinal system of open normal subgroups N of G contained in M (see
Remmark [3.1.9). The module Uy is relatively HM-projective, so by Lemmal[5.1.2] the
canonical projection 7y : Uy | ma 19— Uy splits. But Uy |ga19> (U Lgn!9)ny by
Lemma [£.2.2] Then, by Lemma [£.3.4], U is relatively HM-projective. Now, following
the proof of [22, Proposition 2.13], the result follow. O
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Next, we define the trace map, and with this finally we state our characterization of

finitely generated relatively H-projective k[[G]]-modules:

Definition 5.1.6. If H <o G and U, W are k[[G]]-modules, then the trace map

Trl : Homypuy(U L, W i) — Homygey (U, W),

1s defined by o — ZseG/H sas™!, where G/H denotes a set of left coset representatives

of H in G.
The following theorem collect all characterization for relatively projective modules.

Theorem 5.1.7. Let G be a profinite group, let H <o G, and let U be a finitely

generated pseudocompact k[[G]]-module. Then the following are equivalent:
1. U 1is relatively H-projective.

2. If ever a continuous k[[G]]-epimorphism V. — U splits as a k[[H]]-module

homomorphism, then it splits as a k[[G]|]-module homomorphism.
3. U is isomorphic to a direct summand of U | g1C.
4. The natural projection 7 : U | y1¢— U sending ¢®u — gu splits.

5. U 1s isomorphic to a direct summand of a module induced from some pseudo-
compact k|| H]]-module.

6. U is relatively HN -projective for every N <o G.
7. Uy 1s relatively HN -projective for every N <o G.

8. For every N <o G there exists a continuous k[[HN]|-endomorphism ay of U
such that idy = Tr$y(ay).

The last item can be proved mimicking the finite case.

5.1.1 Vertices

Thanks to the pass from profinite modules to pseudocompact modules, mentioned in

the previous section, the theory of vertices and sources developed in [22] for profinite

95



modules can be transferred to the pseudocompact case. In this section, we collect the

more relevant results about vertices.

Mostly proofs of the following results can be done by mimicking in the proofs of the

profinite case, we refer the reader interested in the proofs to [22].

Definition 5.1.8. If U a finitely generated indecomposable pseudocompact k[[G]]-
module, a vertex of U is a minimal closed subgroup @) such that U s relatively

projective to ().

The following results were proved for profinite k[[G]]-modules in [22 §4], however,

they proofs are valid in a more general context as pseudocompact k[[G]]-modules.

Lemma 5.1.9. If U is an indecomposable finitely generated pseudocompact k[[G]]-

module, then a vertex of U exists.

Theorem 5.1.10. Let G be a profinite group, U an indecomposable finitely generated
k(|G]]-module, and let Q, R be vertices of U. Then there exists x € G such that
Q= xRx™t.

Lemma 5.1.11. If U is a finitely generated indecomposable k[|G]]-module, then any

vertexr of U is a pro-p group.

Example 5.1.12. Let G be a profinite group with Sylow p-subgroup P. Then P is a
vertex of the trivial k[[G]]-module k.

If k had a vertex Q) properly contained in P, then for some N <o G we have that
QN/N s properly contained in PN/N. But then the module ky = k would be
relatively QN /N -projective, which contradicts the fact that any vertex of the trivial
k|G/N]-module is a p-Sylow subgroup of G/N by [1, III, §9, p.67].

Lemma 5.1.13. Let G be a profinite group, N <c G and U a finitely generated
indecomposable k[|G]]-module on which N acts trivially. If U has vertex Q, then U
has vertex QN /N as k[G/N]-module.

Proof. Since N act trivially on U, then U = Uy. So U has vertex R/N as a k|G/N]-
module for some N < R < QN. Furthermore, N acts trivially on U |z1¢, since for
geG, ne Nand ueU,
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n(g@Ru) — ng®pru = gn'@pu = ¢Rrn'u = gRRu.

So, by Lemma [4.2.2]

U lrt9= (U |p1% N = Un Loy 1N= U [tV .

Hence U | U |19 as a k[[G]]-module. Thus U is R-projective, so that 9Q < R, for

some g € G.

But, (Q)N < R if and only if YQN < R, since N is normal in G. So we have that
IQN < R < QN. Hence R = QN. m

The next result is a version of [12, Theorem 9] for profinite groups.

Proposition 5.1.14. Let U be an indecomposable finite dimensional k[[G]]-module
with vertex Q. If P is a p-Sylow subgroup of G containing Q, then Q) is open in P.

Proof. Since P, () are closed subgroups of GG, to see that () is open in P it is sufficient
to confirm that the index of ) in P is finite.

Since U is finite dimensional, there is a cofinal system of open normal subgroups N
of G such that U =~ Uy. Then, by Lemma [5.1.13] U has vertex QN/N as k[G/N]-
module. Furthermore, by [32, Proposition 2.2.3], PN/N is a p-Sylow subgroup of
G/N, for each N in the cofinal system. Since @) < P, then QN/N < PN/N.

By Proposition [2.1.7, |PN/N : QN /N| divides dim(U), for each N in the cofinal
system. Then, for each N in the cofinal system, |[PN/N : QN/N]| is bounded above
by dim(U). Thus |P: Q| < . O

5.2 Relative traces

In the modular representation theory of finite groups, the trace map is a tool frequently
used. For modular representations of profinite groups and block theory it will be a

useful tool as in the finite case. In this section we introduce the trace map for profinite
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groups and open subgroups analogously as the finite case. Furthermore, for closed
subgroups we introduce a trace from a closed subgroup as a subset. This new notion

will be a key tool to be used in the next chapters.

Definition 5.2.1. Let G be a profinite group and A a pseudocompact k-algebra. We
say that A is a pseudocompact G-algebra if A is endowed with a continuous action
G x A— A of G on A, written (g,a) — 9a for alla € A and g € G, such that the

continuous map sending a € A to Ya is a k-algebra automorphism.

Definition 5.2.2. If A, B are pseudocompact G-algebras, a continuous k-algebra ho-
momorphism f : A — B is a homomorphism of G-algebras if f(%a) = 9f(a)
forallae A and g € G.

Definition 5.2.3. If H is a closed subgroup of G, the subalgebra of fixed elements
of A by H is defined by A" ={a : "a=a, ¥V he H}.

Observe that A is closed in A, since, for each h € H, we can consider the continuous

map p : A —> A x A given by a —> (a,"a), so A" = (.01 ({(a,a) : ae A}).

Given g € G, we have that

AT HI — 9(ATy = (9g 1 a e AT},

Observe that if L, H are closed subgroups of G with L < H, then A¥ < A%,

Example 5.2.4. The complete group algebra k[[G]] can be considered as a G-algebra
with action of G given by conjugation, that is, 9v = grg~', for each g € G and
z € k[[G]].

Definition 5.2.5. Let A be a pseudocompact G-algebra and H, L subgroups of G with

H <o L. The corresponding trace map is the continuous map



where L/H denote a set of left coset representatives of H in L.

The next result is a version of [19, Proposition 2.5.4, 2.5.5] for pseudocompact G-

algebra.

Lemma 5.2.6. Let G be a profinite group and let A be a pseudocompact G-algebra.
Then

1. If H is an open subgroup of G, for any a € A" and be A%, bTr$§(a) = Tr%(ba)
and Tr%(a)b = Tr&(ab).
2. If H,L are open subgroups of G with L < H, then Tr$§ o TrH = Tr¢.

3. [Mackey’s Formula/If H is a closed subgroup and L an open subgroup of G.

Then, for any a€ AL, Tr¢(a) = >, Tri .. (%a).
geH\G/L

These properties of the trace map carry through just as for finite groups.

If H is a closed subgroup and N, M are open normal subgroups of G with N < M,
by Item 2 of Lemma [5.2.6] we have that

Trin (A™) = Trigy (Trigy (A"Y)) < Trig, (ATY).

Definition 5.2.7. Let A be a pseudocompact G-algebra. If H is a closed subgroup of
G, define the trace of H as Tri(A") = Ny, q Triin(A™Y).

The following result is a useful tool that relates the set trace of H with the trace map

for finite groups.

Lemma 5.2.8. Let G be a profinite group and D be a closed pro-p subgroup of

G. Considering k[[G]] as G-algebra with multiplication given by conjugation, then
. G

Tr§(k[[G1)P) < lim,, Triv (k[G/NPVY).

Proof. We first make {Trgévj\;N(k[G/N]DN/N)} into an inverse system via the maps

Cary  Trigyn (KIG/NIPNNY — Tyl (K[G/M]PM/M) given by the canonical
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projection oy y @ k[G/N| — k[G/M] restricted to TréY (K[G/N]PN/NY | when-

DN/N
ever N < M. Let y e Tfrgév]\;N(k[G/N]DN/N), so there is a € k[G/N]PN/N such
that y = Trgévj\;N(a) = ZgNec/DNgNa. It is sufficient to show that @un(y) €

Trg%M( [G/M]PM/M) " Observe that oy (a) € k[G/M]PM/M,

Since DN < DM < (G, we can consider a set X of left coset representatives of DN
in DM. On the other hand, we can consider a set Z of left coset representatives of
DM in G. So ZX = {zx:ze Z,x € X} is a set of left coset representatives of DN in

3 — zZT
G. Now, we can write y as y = >, .+ **a. Then

Can(y) = pun(y) = earv(Trighyy(a))

_ SOMN( Z sza)

zxeZ X

_ Z Z g0]\4]\[(sza)

zeZ xeX

= Z Z @MN(ZNWMN(GCN)SOMN(CL)

2€Z xeX

:Z%

2€7 DN

DM
| Trona (e (@)

e Triphy(K[G/M]PMAT),

L'DMN(ZN)SOMN(@)

Thus we have lim {Trgévj\;N( [G/N]PN/N) @y n} with compatible maps

@y Lim,, Tr 5 (K[G/NTPVY) — Trlg, (KIG/NTPYY) given by @ — (@)
Now, let y € Trg(k[[G]]¢). We must confirm that y € lim TTQN/N( [G/N]@N/NY).

But, by [4], II. §5, Proposition 9],

lim Trg 5 (R[G/NTOVN) = (1) oM (Trg o (RIG/NTONN)).
N N<=oG

So we must confirm that y € ﬂNﬂoG ON (Trgfvj\;N(k[G/N]QN/N))_

60



By definition m, y € Trgy(E[[G]]?Y), for each N <o G. Fix N <o G. Then
y = Tr§y(a) = Ygecion ‘@, for some a € E[[G]|“N. Tt is sufficient to show that
v (y) & Trgn (K[G/NJPVN)). So,

On(y) = enly) = on( DY) ‘a)
9cG/QN

= Z ¢n(Ya)

9eG/QN

_ Z WN(Q)('ON(G)

9eG/QN

= Y Noy(a) e Trgy ) (KG/N]OVNY).
9eG/QN
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Chapter 6

Blocks of Profinite Groups and
Modules

In this chapter we arrive at the core of this work, the development of a systematic
block theory for completed group algebras. We will begin by addressing basic notions
related to the block decomposition of a group algebra and the behavior of the modules

defined on an algebra that admits such a decomposition.

Throughout this chapter, k is an infinite discrete field of characteristic p and A a
pseudocompact k-algebra. We have the following definitions equal as in the finite
case (cf. Definition [2.2.1]).

Definition 6.0.1. An element e € A is idempotent if e> = e. Two idempotents
e, f of A are orthogonal if ef = fe = 0. A non-zero idempotent is primitive if it

cannot be written as a sum of two non-zero orthogonal idempotents.
We denote by Z(A) the center of A.

Definition 6.0.2. An idempotent e € A is called centrally primitive if e is a

primitive idempotent of Z(A).

Lemma 6.0.3. Let A be a pseudocompact k-algebra. There is a unique set of pairwise

orthogonal centrally primitive idempotents E = {e; : 1 € I} in A such that
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i€l el
Proof. By [11, IV. §3, Corollaries 1,2| applied to Z(A) there is a set of pairwise
orthogonal centrally primitive idempotents E = {e; : i € I} in A such that

el el
Note if there is another set of pairwise orthogonal centrally primitive idempotents
F = {f;: i€ I} with the same property as E, by [27, II, Theorem 6.6.64], there is an
invertible element x € A such that ze; = f;x for every i € I. But since ¢;, f; € Z(A)

then ze; = xf;. So e; = f; for every i € I. Hence ' = F. O

Each B; is called block of A (or A-block), each ¢; is called a block idempotent
and F is called the complete set of centrally primitive orthogonal idempotents of A.
The decomposition of A like (6.1)) is called The block decomposition.

Lemma 6.0.4. Let A be a pseudocompact algebra and let e € A be an idempotent. If

X is a not necessarily closed ideal of A, then eXe = eXe.

Proof. First, we confirm that eXe is closed in eAe. Observe that eXe = X n eAe,
since if y € X N eAe, we have that y = eae, for some a € A and y € X. Then
y = eae = e(eae)e = eye € eXe. On the other hand, if eye € eXe, then eye € eAe
and eye € X, since X is an ideal of A. Thus eXe is closed in eAe. It now follows by

the definition of closure that eXe < eXe.

Let f : A — eAe be the continuous map given by a — eae. Then f(X) < f(X).
That is eXe < eXe. Hence eXe = eXe. ]

Lemma 6.0.5. Let A be a pseudocompact k-algebra and e be a primitive idempotent
of A. Then

1. eAe is a local algebra.
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2. (Rosenberg’s Lemma) If J is a set of closed ideals of A and e € Y, I, then

there is some I € J such that e € 1.

Proof. 1. By [30, Theorem 29.15], eAe is a linearly compact algebra, hence a pseu-
docompact algebra, with unity e. On the other hand, by [11, IV. §3, Corollary
1], Ae is an indecomposable projective pseudocompact A-module. Then, by
Lemma [4.3.2] End(Ae) is pseudocompact, and by Proposition [4.3.3) End 4(Ae)
is a local pseudocompact algebra. Now, arguing as the finite case (cf. [3, Lemma
1.3.3]) we obtain that eAe =~ Enda(Ae)°: Define the maps

p:Enda(Ae)?” — ede |, v :eAe —> Endy(Ae)®

f— fle) , x+—7(z)(ae) = aex.

Observe that f(e) € ede since f(e) € Ae and f(e) = f(ee) = ef(e) € eAe.
Furthermore, vy(z) € Enda(Ae) since v(z)(ae)e = aexe = aex € Ae, for some

ae € Ae.

We confirm that v and p are algebra homomorphisms. Let f1, fo € Enda(Ae),
then p(fif2) = (fif2)(e) = f2(fi(e)) = fa(fi(e)e) = file)f2(e) = p(f1)p(f2)-

Let z,y € eAe and ae € Ae, then y(zy)(ae) = aexy = v(y)(aex) = v(y)(v(z)(ae)) =
V(@) (y)(ae).

It remains to confirm that p and v are mutually inverse. Let x € eAe, then
py(xz) = v(z)(e) = ex = x. Since x € eAe is arbitrary, then py = idgnacae). On
the other hand, let f € Enda(Ae) and ae € Ae, then vp(f)(ae) = v(f(e))(ae) =
aef(e) = f(aee) = f(ae). Again, since f € Ends(Ae) and ae € Ae is arbitrary,
VP = idepe.

2. By Lemma [6.0.4, e(3,c, e = e(Xcr e = D ele. So,if e € X5, ;I then
e € ez ele. Since the algebra eAe is local by Item 1, then each ideal ele, with

I € 7, is either contained in the Jacobson radical of eAe or equal to eAe. Thus
there is at least one [ € J such that ele = eAe. Soee I.
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Definition 6.0.6. Let U be a pseudocompact A-module. We say that U lies in a
block B of A if BU = U and B'U =0 for all B' # B.

If B is a pseudocompact algebra with unity e, then U lies in B; if, and only if, eU = U

and e'U = 0 for all ¢ € E distinct from e.

If U is a pseudocompact A-module lying in some block B of A, and V is a closed
submodule of U, then V and U/V lie in B. If Uy, U, are A-modules lying in B then
U, ® U, lies in B.

The next result is a pseudocompact version of [I, IV, §13, Proposition 2].

Proposition 6.0.7. Let A = [[..; B; be the block decomposition of A and let U be

a pseudocompact A-module. Then U has a unique decomposition of the form [[U;,

il
where U; lies in the block B;. -

Proof. Let e; be the block idempotent of B;. Define U; = ¢;U, a A-module lying
in B;. Observe that, by Lemma [3.2.9) and Lemma [3.2.10, [ [U; is a pseudocompact

iel
A-module.

Define for each ¢ € I the continuous homomorphism p; : U — U; given by u — e;u.

Now, for each finite subset K of I, define the continuous homomorphism pg : U —
[T Ui by pr(u) = (pi(w))iek -

€K
The homomorphisms pg induce a continuous surjective homomorphism p : U —

[ T U:, which is an injective since ker(p) = (] ker(p;) and if u € ker(p), then u = u-1 =
i€l i€l

(€i)ieru = (e;u)ier = (pi(u))ier = 0.

So p is a continuous bijective homomorphism, and since U is pseudocompact, by

Lemma (3.2.10f U = [ U;.

el

The uniqueness of the decomposition follows from the uniqueness of the complete set

of centrally primitive orthogonal idempotents. O]

Observe that, in particular, indecomposable pseudocompact modules lie in a unique

block. Furthermore, if B is a block of A, there is a simple A-module lying in B: The
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left A-module B lies in B, so if V' is a maximal submodule of B, then B/V is a simple

module lying in B.

6.0.1 Finite dimensional modules in k[[G]]-blocks

Recall our convention that the symbols ¢ and ¢, are reserved for the canonical

projections between coinvariant modules.

Remark 6.0.8. By [23, Proposition 6.4/, the complete set of centrally primitive or-
thogonal idempotents E in k[[G]] is a discrete set and can be obtained as the direct
limit of the corresponding complete sets En of k|G/N]. We make the direct system

explicit, as we will use in future:

If N < M are open normal subgroups of G, define vyn : Eyy — En by send-
ing ¢ € Ey to the unique centrally primitive idempotent d of k|G/N] such that
oun(d)e # 0. Since ¢ is primitive as a central idempotent, this is equivalent to

saying that pyn(d)c = c.

Lemma 6.0.9. Let U,V be finite dimensional k[[G]]-modules lying in the same block
of G. Then there is No <o G acting trivially on U, V and such that U,V lie in the
same block of G/Nj.

Proof. Since U,V are finite dimensional, it is sufficient to prove the lemma supposing
that both are indecomposable k[[G]]-modules. Let e be the block idempotent such
that eU = U,eV =V and €U =0 = €'V for all ¢’ € E'\ {e}.

Since U has finite dimension, the automorphism group Aut(U) of U has the discrete
topology. Then the kernel K of the continuous group homomorphism o : G —
Aut(U) is an open normal subgroup of G acting trivially on U. Analogously for V'
we have an open normal subgroup K’ of G acting trivially on V. Since M = K n K’
acts trivially on U and V, then U and V' can be treated as k[G/M]-modules.

Since M acts trivially on U and V, then - U = ¢y (x) - U and -V = pp(z) - V for
all z € k[[G]]. In particular, U =e-U = pp(e)-Uand V =e¢-V = pp(e) - V.
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Using the notation in Remark if f, g are the block idempotents of the k[G/M]-
modules U,V respectively, then, since py(e)f = f and ¢p(e)g = g, we have that

Yu(f) =vumlg) = e

Now, by construction of the direct limit there is Ny < M such that ¥y, (f) =
YN, (9) = en,. Thus U,V lie in the same k[G/Ny]-block with block idempotent

ENg- O

The following results show a relation between simple modules lying in the same block
of G. The statement presented is analogous to the finite case presented by Webb [31],
Proposition 12.1.7].

Proposition 6.0.10. Let S, T be simple k[[G]]-modules. Then the following are equiv-

alent:
(1) S, T lie in the same block of G.

(2) There is a sequence of simple k[[G]|]-modules S = Sy, 53, ...,S, =T such that
S;,Sji1, for each j € {1,2,...,n—1}, are composition factors of an indecompos-

able projective pseudocompact k[|G]]-module.

(3) There is a sequence of simple k|[G]]-modules S = T\, T, ..., T, = T, such that
T, Tji1, for each j e {1,2,...,m—1}, are equal or there is a non-split extension

of one by the other.

Proof. Ttem (2) says that each pair of simple modules S;, S;41 are composition factors
of an indecomposable projective module P;, 1 < i < n, where S; = S and S, = T.

The following diagram represents this relation

Sp—1 Sh-

N N N

Pnfl

The edges point at which simple modules are composition factors of which projective
modules. Since each P; (1 < i < n) is indecomposable, it only lies in one k[[G]]-block.

Hence each composition factor of P; lies in the same block. In particular each .S; lie
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in the same k[[G]]-block as P; and P,;;. Then all the P; lie in the same k[[G]]—block,
hence S, T lie in the same k[[G]]-block. So we have proved (2) = (1).

Assume that (1) is true, that is, S,T lie in the same block of G. Then, by Lemma
, S, T lie in the same block of G/N, for some N <y G acting trivially on S and
T. By [31, Proposition 12.1.7], there is a sequence of simple k[G/N]-modules S =
S1,52,...,5, = T such that S;,S;;, are composition factors of an indecomposable
projective k[G/N]-module P;, for each j € {1,2,...m — 1}. By [11} IV. §3, Corollaries
1,2], k[[G]] = 11,c; P/ a product of indecomposable projective k[|G]]-modules. Then
k|[G/N]| = [ Lie;(P))n. In particular, P; is isomorphic to a direct summand of the
projective k|G/N]-module (P)x. Since the homomorphism ¢y : k[[G]] — k[G/N],
defined in Remark , is surjective, then S;,S;41 are composition factors of P/
too. Hence the sequence of k[[G]]-modules S = Si,Ss,...,S5, = T has the property
required, proving (1) = (2). This argument can be represented with the following
diagram

S So e Sn_1 T >

NN S N
P, I . P

1 n

Assume that (3) is true, then there is a sequence of simple k[[G]]-modules S =
Ty,T,,...,T,, = T, such that there is a non-split extension of T; by T;,; for every
1 <7 < m. Then for each 1 < i < m, there is an indecomposable module U; such
that the following sequence 0 — T; — U; —> T;11 —> 0 (or 0 — T} — U; —

T; — 0) is exact. So, T;,T;,1 are composition factors of U; for all i € {1, ..., m}.

We can express this relation with the following diagram:

Un,

SN L

68



Since each U;, 1 < i < m, is indecomposable, then it can be lie only in one block of G.

Thus each T} lies in one block of G and hence S, T lie in the same block of G proving
(3) = (1).

Assume that (1) is true. By Lemmal6.0.9] there is N <o G acting trivially on S and
T such that S, T lie in the same block of G/N. By [31, Proposition 12.1.7], there is a
sequence of simple k|G/N]-modules S = T, Ts, ..., T,, = T, with a non-split extension
of T; by T;4q, for every 1 < i < m. The non-split of sequence k[G/N]-modules from

finite version are non-split sequence of k[[G]]-modules in the obvious way proving
(1) = (3). O

6.1 Blocks of G as inverse limits of finite dimen-
sional blocks.

Consider k[[G]] as a module for the complete group algebra k[[G x G]] with the fol-

lowing continuous multiplication:

K[G = G < K[[G]] — K[[G]]
((91,92),) — quwgy ',

where g1, g2 € G and z € k[[G]]. The canonical projections gy : k[G/N| — k[G/M]
and oy : k[[G]] — k[G/N] defined in Remark are k[[G x G]]-module homomor-

phisms.

Each block of k[[G]] is equal to an indecomposable summand of k[[G]] as a k[[G x G]]-
module. Furthermore, the blocks of k[[G]] are pairwise non-isomorphic as k[[G x G]]-

modules, since the annihilators of the blocks in k[[G x 1]] are pairwise non-equal (cf.
[L, p. 96]).

Let B be a block of G, considered as k[[G x G]]-module, and N <o G. Define By

as the coinvariant module By y. Observe that Byxy = Bnx1, since given x € By«

and n,m € N, there is m’ € N such that
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(n,m)x = nzm™* = nm'z = (nm/, 1)z = z,
so that NV x N acts trivially on Byxi. By Proposition f.2.4, B = LiLHN{BN,SOMN},
where, whenever N < M, ¢y n : By — By is the canonical quotient map.
Define the diagonal map ¢ : G — G x G as §(g) = (g, g), for each g € G.

Lemma 6.1.1. k[[G]] as a k[[G x G]]-module is isomorphic to the induced module

GxG
k T6(G) )

Proof. We essentially follow the proof of the finite case [19, Proposition 5.11.6].

Consider the continuous maps p : k[[G]] — k T?(E)G, defined by g — (g,1)®1, for
each g € G. Note that (g, 1)®1 = (1,7 ')®1, since

(g, D®1 = (1,97 (g, 9)®1 = (1, H®(g,9)1 = (1,9 H®glg™' = (1,7 H&®1.

~

Then, if 2,y € G, then (z,y)p(g) = (2,9)(9,1)®1 = (xg,y)®1 = (zgy ", N1 =
p((z,y)g). Hence p is a k[[G x G]]-module homomorphism.

On the other hand, let v : k TéG(é)G»—> k[[GT] be defined by (g, h)@X —> gAh~', for
each g,h € H and XA € k. Observe that v are well defined, since if g, h,z € G and
A € k, then

(92, h2)®N) = gzdz Th™ = gzz'h™'A = gh ™'\ = gAh .

Furthermore, if x,y € G, then (z,y)7((g,h)®\) = (z,y)g \h™t = zg \h "yt =
Y((x,y)(g, R)®N). Hence 7 is a k[[G x G]]-module homomorphism.

Now, we confirm that v and p are mutually inverse.

p((g:®1) = plghh™")) = (gh™", 1)&®1) = (g, )&1.
v0(9) = v((9:1)®1) = g.



]

Proposition 6.1.2. Let B be a block of G. There is an open normal subgroup Ny of
G such that B is the inverse limit of blocks of G/N associated to the cofinal system

of open normal subgroups N of G contained in Nj.

Proof. Let E be the set of blocks idempotents in k[[G]]. We use the direct system
{En,¥an} of sets of blocks idempotents of G/N that was described in Remark [6.0.8]

If e € E is the block idempotent of B, there is Ny <p G and eg € Ey, such that
e = 1, (e9). Consider the cofinal system A of open normal subgroups N of G with
N < N,.

For each N < Ny, let ey = ¥n,n(€p) the unique centrally primitive idempotent
of k[G/N] such that ¢y,n(en)eg = eo. Observe that, whenever N < M < Ny,
emn(en)en = enr. So, for each N < Ny, the block Xy of G/N, with block idempotent
en, is a direct summand of By as a k[[G x G]]-module, then there are k[[G x G]]-
homomorphisms ¢ty : Xy — By inclusion, and 7y : By — X multiplication by
enx with myey = idx,. Now we can form a new inverse system of blocks Xy via the
maps yyn : Xy — Xy given by oy — mypunin(zy), whenever N < M. In

particular, vy n(en) = epr, since

”YMN(eN) = 7TMSOMNLN(eN) = SOMN(GN)eM = €M,

where the last equality is a consequence of e); being a primitive idempotent. Then
yun(xzy) € Xy, for each xy € Xy. Furthermore, ),y is a surjective homomorphism,
since if yep, € Xy with y € k[G/M], then there is z € k[G/N] such that y = oy (),

SO
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Yem = PMN

Furthermore, if N < M < K, and zey € Xy, then

VKMVMN(IGN) = (WKSOKMLM)(WMSOMNLN)(ISN)
= QOKMLM(SOMN(I(BN) : €M) "CK
= SDKMLM(SOMN(QU)SDMN(@N) : GM) T EK
= ormim(emn(T)en) - ex
= wrm(pun(T)en) - ex
= prml(eun(@))ermen) - ex
= wrn(T) - ex
= prn(T)ern(en) - ex
= (WKiﬂKNLN)(ﬂCGN)

= ")/KN($€N).

Thus Ykmymn = Yen- Hence { Xy, vanv} form an inverse system. Denote by X the

inverse limit of the inverse system of Xy.

Now, observe that the split homomorphisms 7y are components of a map of inverse
systems from {By, oun} to {Xn,vmn}. Then, by Lemma [4.3.4) the induced con-
tinuous map 7 = lim 7y is a split k[[G x G]|-homomorphism. Hence X is a direct

summand of B. But B is indecomposable as a k[[G x G]]-module, thus

B =X =lim Xy.
N
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Remark 6.1.3. For the rest of this chapter,given a block B of G with block idempo-
tent e, the notation {Xn,vun, N € N} will refer to a fived inverse system of finite
dimensional blocks of G/N as constructed in Proposition [6.1.9

Note that this inverse system is not unique, due to the choice of Ny and the block
idempotent ey of G/ Ny, but it will be important that once these choices are made, the

maps Yyn are canonical.

Example 6.1.4. Let k be a field of characteristic 2 and let G be the profinite group
[1ic; S3, the infinite direct product of copies of the group Sz =< a,b | a® = by =
1,bab™t = a=! >. Considering the directed set of finite subsets J < I, the complete
group algebra k[[G]] is the inverse limit of an inverse system {k[][..;Ss], oxs} of
finite group algebras, where if K, J < I are finite subsets of I with K < J, then
org @ k[ Licy 53] — K[ i 53] is the map induced from the canonical projection
[Tics S5 = Tlick Ss-

By erample [2.2.3-1, we know that e; = 1 + a + a* and e3 = a + a* are the block
idempotents of k[Ss|. We assert that given a finite subset Jo of I, the block idempotent
e of k[|G]] is characterized by the property that for each finite subset J of I, ¢ (e) =

!/ / N N - !/
X, €, where € = ey if j € Jo, otherwise € = e;.

To prove the assertion, fix a finite subset J of I and some i€ I —J for which e}, = es,

it is sufficient to confirm that in this case, @ (e) = 0.

Let J' = Ju {i}. Then the projection @y : k[ Ss] — k[[ ] Ss] sends the finite ten-
jeJ’ jed

sor product Q). €; 10 2:(K)je s €5) = 0. So, pi(€) = prrpr(e) = 017(Qjer €;) =0,

proving the assertion.

Now, using Proposition[6.1.3, if B is a block of G with block idempotent e and Jo < I is
the finite subset of I for which e = ey for each j € Jo, then B = LiLnJocj Xy, where X
is the block of the finite group HjEJ S3 with block idempotent ®jEJ e}, where € = e
for j € Jy and €} = e, otherwise.

Corollary 6.1.5. Let B be a block of G with block idempotent e. Let S be a finite

dimensional k||G]]-module lying in B. Then there is an open normal subgroup Ny of
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G acting trivially on S such that S lies in the block Xy, of G/Ny. Furthermore, S

lies in Xy for each N <o G contained in Ny.

Proof. Write B = LiLnN{XN,yMN,N € N}, where Xy is block of G/N with block
idempotent ey as described in Remark[6.1.3] Fix M € N. There is a simple k[G/M]-
module 7" lying in X,;. Then T lies in B. If N < M, then T is a k[G/N]-module
with multiplication T = @y n(x)T, for = € k[G/N]. Furthermore T lies in X, since
enT = pyn(en)T =eyT =T.

Since S, T are finite dimensional k[[G]]-modules lying in the same block B, by Lemma
[6.0.9, there is Ny <o G with Ny < M, such that S, T lie in the same k[G/Ny]-block.

But T lies in Xy, hence so does S.
m
Proposition 6.1.6. Let G be a profinite group, R a closed subgroup of G and B a

block of G considered as a k[|G x G]|-module. Then B is §(R)-projective if, and only
if, Xn is 0(R)(N x N)-projective for each N <o G.

Proof. (=) If B is (R)-projective, then By = Byxy is (R)(N x N)-projective for
each N <p G by Theorem |5.1.7} Since Xy | By, then Xy is 6(R)(N x N)-projective
for each N = G.

(<) Assume that Xy is §(R)(N x N)-projective for each N < G.

We use the isomorphism of Lemma to write

By sy xm 162 k[[G x G/6(R)(N x N)]|®Bx.

Since Xy | By, for each N <S¢ G, there are canonical maps my : By — Xy and
ty @ Xy —> By such that mytny = idx,. Note that {my} is a map of inverse systems,
cf. the proof of Proposition [6.1.2l Then, for each N < G, define the continuous
k(|G x G]]-homomorphisms
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qn ]C[[G X G/é(R)(N X N)]]@kBN - XN
2@ — wn(b).

We assert that gy splits as a k[[G x G]]-homomorphism: gy is the composition of the
split homomorphisms k[[G x G/6(R)(N x N)||®xBx — E[[G x G/6(R)(N x N)[|&rXn
and the canonical projection Xy lg(R)(NxN)TGXG Xy — Xpy. But since Xy is
§(R)(N x N)-projective for each N <o G, by Theorem [5.1.7] the canonical projection

is split, so ¢y is the composition of two split maps.

Using that mx are components of a map of inverse systems between {By} — {Xn},
it can be checked that gy are the components of a map of inverse systems. So, by

Lemma m, the induced map ¢ : k[[G x G/§(R)[|&B — lim Xy = B is split.

75



Chapter 7

Defect GGroups

In this chapter we introduce the concept and properties of the defects groups in
analogy with the theory developed for blocks of finite groups. Throughout this chapter

we will observe that defect groups are central pieces in the study of blocks.

From now on we will suppose that k is algebraically closed. While this is often not

necessary, it simplifies several arguments.

7.1 Definition and basic properties

Recall that we treat k[|G]] as a G-algebra with action given by conjugation. Whenever
we treat a subalgebra or quotient algebra of k[[G]] as a G-algebra, the action from G

is induced from this one.

Note that the center Z(k[[G]]) of k[[G]] is the same as k[[G]]®. So every block
idempotent of k[[G]] belongs to k[[G]].

Definition 7.1.1. Let B be a block of a profinite group G with block idempotent e.
A defect group of B is a closed subgroup D of G such that e € Tr&(k[[G]]P) and

manimal with this property.

Theorem 7.1.2. Let B be a block of G. A defect group of B exists.
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Proof. Let e be the block idempotent of B and consider D = {H <¢c G:e €
Tr%(K[[G]))}. Make D into a partial order, ordering by inclusion. Observe that

D # ¢, since G € D. Let C be a chain of elements of D. We assert that L = (| H €
HeC
D.

Fix N <o G. Since LN is open in G, LN = HN for some H € C. Hence e €
Tréy(K[G]JFY) for all N <o G. So L € D and by the definition of Tr¢(k[[G]]¥)
(cf. Definition it is a lower bound for C. By Zorn’s Lemma, there is a minimal
element D in D. O

Analogous to the finite case (cf. Proposition [2.2.8]) we have the following result:

Proposition 7.1.3. If B is a block of G with block idempotent e, and defect group
D, then any finitely generated k||G]]-module lying in B is D-projective.

Proof. Let U be a finitely generated k[[G]]-module lying in B. By Theorem |5.1.7]
it is sufficient to confirm that for each N <o G, there exists a continuous k[[DN]]-

endomorphism ay of U such that idy = Tr$y (an).

Fix N <o G. Since D is a defect group of B, then e € Tr%, (k[[G]|PY). So there
is oy € k[[G]]PY such that e = Tr&, (zy). Now consider the continuous map ay :
U — U defined by u — zyu. Then ay € Endypny(U), and idy = Tréy(ay),

since for each u € U,

Triy(an)(w) = > gon(g 'u)
9eG/DN

= > ganlg ')

geG/DN

= > (gzng

9eG/DN
= TrgN(:BN)u
= eu

= Uu.
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So, by Theorem [5.1.7, U is D-projective. O

The next result is a version profinite of [I, IV, §13, Proposition 3.

Proposition 7.1.4. Let B be a block of G. Then B has a vertex 6(H), as a k[[G x G]]-
module, where H is a pro-p subgroup of G.

Proof. By Lemma [6.1.1, K[[G]] = k 155 as k[[G x G]l-module. Then B is §(G)-
projective. Now, by Lemma [5.1.11] B as k[[G x G]]-module has a vertex a closed
pro-p subgroup of G x G contained in 6(G), that is, a subgroup of the form §(H),

where H is a pro-p subgroup of G. n

The next result is a version for profinite groups of [31, Lemma 12.4.4] and will be
used to the proof of Proposition [7.1.6]

Proposition 7.1.5. Let H be a closed subgroup of G and B a block of G with block
idempotent e. Then e € Tr%(k[[G]|Y) if, and only if, B is 6(H)-projective as a
k(|G x G]]-module.

Proof. (=) Suppose that e € Tr&(k[[G]|7). So for each N <o G, there is xy €
E[[G]J"YN such that e = Tr$y(xy). Note that writing k[[G]] = B@®B', Tr$y(BHN)
B and Tr$(B"N) < B'. Hence we may suppose that zy € BHY. We assert that
B |sc)y(vxny is 0(H)(IN x N)-projective. Consider the continuous map ay : B — B
given by y — zyy. This map is a k[[6(H)(N x N)]]-homomorphism since

an((hni, hng)y) = zyhniy(hng) ™
= hny((hny) ™ anhng )y (hng) ™
= hnliUNy(hnz)fl
= (hng, hng)an(y).
Now, observe that if R is a set of left coset representatives of HN in G, then
{(r,r) : 7€ R} is a set of left coset representatives of §(H)(N x N) in 6(G)(N x N).
So
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Ty v (o) (e) = > (r,r)an((r~t,r 1e)
(r.r)e8(G) (N x N)/5(H)(N x N)
= Z ray(r~ter))r
(r,r)e8(G) (N x N)/5(H)(N x N)
= Z rxNT_leTr_l
(r,r)e8(G) (N x N)/5(H)(N x N)
= Tr%y(zy)e
= ee

= €

Thus Trggg))((%ix))(ajv) is the identity map on B and, by Theorem [5.1.7, B |5)(nvxn)

is 0(H)(N x N)-projective. Let Z be a k[[6(H)(N x N)]|]-module such that

B lscyinxny| Z 100N

Since B is 6(G)(N x N)-projective for each N <o G, by Theorem [5.1.7, we have that

B ‘ B lé(G)(NXN)TGXG’ 7 Té(G’)(NXN)TGXG

So, for each N <o G, B is §(H)(N x N)-projective. By Theorem [5.1.7, B is §(H)-

projective.

(<) Now, assume that B is §(H)-projective as a k[[G x G]|-module. Then B is
(G x HN)-projective for each N <o G. By Theorem for each N <o G there
is a continuous k[[G' x H N]]-endomorphism ay of B such that idg = Tr5x5 \ (an).
Now, arguing as in the finite case (cf. [20, Propodition 6.2.3]), ay is in particular
a left k[[G]]-endomorphism of B as a left B-module. Then ay is given by a right

multiplication, that is, for some x € B, an(y) = yz for all y € B.

On the other hand, ax(yh) = ay(y)h for all h € HN. So yhx = yxh for all y € B
and all h e HN. Considering, y = e we have ehz = exh. But since e acts trivially on

elements of B, we have that hx = xh. So, heth™" = x and hence z € B#N < k[[G]]"V.
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Now, if [ runs over a set of left coset representatives of HN in G, then (1,[) runs

over a set of representatives of G x HN in G x G. So, idg = Tr&<% (ay) =
Z(LI)EG%JGN (1,0)an(1,171). Then, for all y € B,

y=idp(y) = Trgigy(an)(y)

_ S (1 Dan((1,07)y)

(1,)eGxG/Gx HN

= > lay(1yl)i—

(1,)eGxG/Gx HN

= 2 ylal™!

(1,)eGxG/Gx HN

=y Z lzl™!

leG/HN
= yTTle(iv )-

But the unique possibility for y = yTr$y(x) for all y € B is for Tr&(z) be the
unity of B, that is, e = Tr%(z) € Tr%(k[[G]]TY). So, for every N <o G, e €
Triin(K[IGII"™™). Then e € Ny Trign (RIGN"™Y) = Tri (K[G]7).

The next result is a version of [31], Theorem 12.4.5] for profinite groups:

Proposition 7.1.6. Let D be a closed subgroup of G and let B be a block of G with

block idempotent e. The following statements are equivalent.
1. D is a defect group of B.

2. §(D) is a vertex of B as k[[G x G]]-module.
Proof. This follows from Proposition [7.1.5] O

Proposition 7.1.7. Let G be a profinite group and B a block of G. Then the defect

groups of B are a conjugacy class of pro-p subgroups of G.
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Proof. Since vertices are pro-p subgroups of G by Proposition [7.1.4] so are defect
groups by Proposition It remains to check conjugacy. Let @), D be defect
groups of B. By Proposition [7.1.6, §(Q),d(D) are vertices of B as a k[[G x G}
module. Additionally, by Theorem [5.1.10] and Lemma [5.1.11] there is z,y € G such
that (z,y)(d,d)(z7 ,y™') = (¢,q) € 6(G), for de D,qe Q. Then xdx™! = ydy~! and

SO

0(q) = (z,y)(d.d)(a™"y™") = (eda™ ydy™")
= (wdx ' zdr™t)
= 6(x)6(d)d(x71).

Then, §(Q) = 6(z)d(D)d(x~1) and so Q = xDx .
O

Proposition 7.1.8. Let B be a block of G with defect group D and let P be a p-Sylow
subgroup of G containing D. Then D is open in P.

Proof. Let S be a simple k[[G]]-module lying in B with vertex @) contained in D, as

we may by Proposition [7.1.3] By Proposition [5.1.14] @ is open in P, and hence D is
open in P. O

7.2 Blocks and vertices

In this section we show that defect groups are well-behaved with respect to the inverse

system of finite dimensional blocks of Remark

The following result, due to Green in the finite case [I2, Theorem 12], is rarely men-
tioned for finite groups, but becomes incredibly useful for profinite groups because

simple modules are finite dimensional:

Proposition 7.2.1. Let G be a profinite group and B a block of G with defect group
D. There is a simple module T lying in B with vertex D.
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Proof. Write B = lim Xy as in Remark Let S be the set of all simple modules
lying in B. There is T' € S with the following property: dim(T") = p"a, with p{ a and

r as small as possible among all simple k[|G]]-modules in B.

Using Corollary [6.1.5] fix a cofinal system N of N <o G acting trivially on T such
that T lies in Xy. By Proposition [7.1.3] T has a vertex @ contained in D. We want
to show that () = D, then it is sufficient to confirm that D < Q).

Let P be a Sylow subgroup of G containing (). By [32, Proposition 2.2.3], PN/N is
a p-Sylow subgroup of G/N, and Q < P, then QN/N < PN/N. So, by Proposition
R.1.7, |PN/N : QN/N| divides dim(T). So it follows from Theorem that Xy
has defect group QN/N.

Now, by Proposition[7.1.6] Xy has vertex §(QN/N) as a k[G/N x G/N]-module. But,
5(4) ~ % (through the isomorphism (¢, q)(N x N) — (¢N,gN)), so Xy is
5(Q)(N x N)-projective for each N € N. By Proposition [6.1.6] B is 6(Q)-projective.

Then 6(D) < 6(Q), and thus D < Q. Hence Q = D. O

Corollary 7.2.2. Let B be a block of G with defect group D. There is Ny <o G
such that Xy has defect group DN /N for every open normal subgroup N of G with
N < Ny.

Proof. By Proposition [7.2.1] we can consider a simple module T lying in B with
vertex D. By Corollary [6.1.5] there is Ny <o G such that T lies in Xy,. Consider
an open normal subgroup N of G contained in Ny. Then, by Lemma |5.1.13, 7" has
vertex DN/N as a k[G/N]-module.

By Proposition [2.2.8 there is a defect group D) of Xy such that 2 < Do gy,

N N
since B is relatively §(D)-projective as a k[[G x G]]-module, then Xy is 6(DN/N)-
projective as a k[G/N x G/N]-module. So, DN/N = Dy)/N, as required. O

Example 7.2.3. Let k be a field of characteristic 2 and let G be the profinite group
[1ic; Sa, the infinite direct product of copies of the group Sz =< a,b | a® = by =
1,bab™' = a=! >. Consider the block of G with block idempotent e. As we saw in
Example if Jo is the finite subset of I with e, = ey, then B = Liiljogj Xy, where
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each Xy is a block of the finite group ||
e} = ey if j € Jo, otherwise € = e;. Then B has a defect group D = |]
D; =1 ifieJy, otherwise D; =< b >.

jer Ss with block idempotent ®j€J e, where

i1 Di, where

Furthermore, observe that D has index 21701 in the 2-Sylow subgroup [Lie; <0 >,

where |Jo| denote the size of Jy. In particular, D is open in [ [,., <b>.

Now, as in the finite case (cf. Theorem [2.2.11]), we can give the important property

that any defect group is the intersection of two Sylow subgroups.

Theorem 7.2.4. Let G be a profinite group and B a block of G with defect group D.
Then D is expressible as an intersection P n gPg™', for some g € Ca(D), where P is

a Sylow pro-p subgroup of G containing D.

Proof. Write B = lim Xy as in Remark [6.1.3l By Corollary [7.2.2) we can take a
cofinal system of open normal subgroups N of G such that each Xy has defect group
DN/N.

Let P be a Sylow pro-p subgroup of G containing D. By [32, Proposition 2.2.3], PN /N

is a Sylow p-subgroup of GN, and by Theorem , there is gN € Cq/n(DN/N),
such that DN/N = PN/Nn 9PN /N. Denote by Cy the set py' ({gN € Ce/n(DN/N) :
DN/N = PN/N n 9NPN/N}) € p5' (Ca(DN/N)), where py is the continuous pro-
jection from G to G/N.

We thus have a collection of closed, non-empty sets {Cy : N <o G}. We wish to
show that their intersection is non-empty. Since G is compact it suffices to confirm

that any intersection of finitely many of them is non-empty.

Let Ny, ..., N,, be open normal subgroups of G. Then M = Ny n...n N, <o G and
so by the previous argument C); # . This means that there exists x € G such
that DM /M = (PM/M) ~ *M(PM/M). Then, for each i € {1,2,....,n}, DN;/N; =
(PN;/N;) n *M(PN;/N;). So Cpy € Cn, ... n Cy, and thus Cy, N ... n Cy, # .

Then, there is z € (y Cy Sy Px (Con(DN/N)) = Cg(D), such that DN/N =
PN/N ~*N PN/N for each N <o G. Then,
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D = (Yol (ON/N)

- ﬂp (PN/N) n "™(PN/N))

= ﬂp (PN/N) 0 pi' ("M (PN/N))

= Pm tp.
O

For a profinite group G, we denote by O,(G) the largest normal pro-p subgroup of
G. Observe that O,(G) is the intersection of the Sylow p-subgroups of G, since the
Sylow p-subgroups are closed under conjugation, and O,(G) is contained in some
Sylow p-subgroup P of G. Then 9(0,(G)) = O,(G) < 9P for every g € G. But, by
Sylow’s Theorem (cf. [32], Proposition 2.2.2]), 9P is a Sylow p-subgroup, so Op(G) is

contained in their intersection.
The next result is a version of [31], Corollary 12.3.4] for profinite groups:

Corollary 7.2.5. Let G be a profinite group and B a block of G with defect group D.
Then D = Oy(Na(D)).

Proof. Let P be a p-Sylow subgroup of G containing a p-Sylow subgroup @ of Ng(D).
Then P n Ng(D) = Q. By Theorem [7.2.4) D = P n 9P for some g € Cg(D). In
particular, g € Ng(D). Then 9(P n Ng(D)) = 9P n Ng(D) is a Sylow p-subgroup of
N¢(D) by [32, Theorem 2.2.2]. Thus, by Theorem [7.2.4] D = (P n Ng(D)) n (P n
Ng(D). Then O,(Ng(D))) < D. On the other hand, D is a closed normal pro-p
subgroup of Ng(D), so D < O,(Ng(D)). Hence D = O,(Ng(D)). O

7.3 Brauer homomorphism and defect group

We wish to give two characterizations of defect groups of blocks of G through the
Brauer homomorphism (Definition [7.3.1)).
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Consider k[[G]] as a G-algebra with action given by conjugation. Let D be a closed
pro-p subgroup of G. Observe that, for each proper open subgroup @ of D (denoted
Q@ o D), Trg(k[[G]]®) is an ideal of k[[G]]” by Item 1 of Lemma m Thus

>, TrH(A%) is an abstract ideal of k[[G]|” and its closure is a closed ideal of
QRzoD
E[[GT)P [30, Theorem 4.2].

The next definition is motivated by [26] §3]:

Definition 7.3.1. 1. Let G be a profinite group and let A be a pseudocompact G-
algebra. For a closed pro-p subgroup D of G, the Brauer quotient is defined as

the quotient algebra

APE— AP/ N TrB(AQ). (7.1)
QsoD

2. The Brauer homomorphism is the natural projection

BT’D . AD I A[D]

Analogous to [3, Lemma 6.2.4] we have the following characterization for the defect

groups:

Theorem 7.3.2. Let B be a block of a profinite group G with block idempotent e.
Then B has defect group D if, and only if, e € Tr%(K[[G]]P) and Brp(e) # 0.

Proof. (=) Assume that B has defect group D. Then e € Tr&(k[[G]]P). It remains
to confirm that Brp(e) # 0. To do this, we suppose that Brp(e) = 0 and argue to a

contradiction.

Since Brp(e) = 0, thene € 3,_ , Trg (K[[G]]?). So, by Lemma[6.0.5, e € 7 (K[[G]]?)
for some @) <o D. Fix an open normal subgroup M of G such that DM /M is a de-
fect group of X, (by Corollary [7.2.2)) and such that QM /M has the same index in

DM/M as Q in D. Then pyr(e) € Troyyy (K[G/M]9M/M) and Brpya(ar(e)) = 0
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since Brpy/ar is an algebra homomorphism. This contradicts the finite version of the
result (cf. [3, Lemma 6.2.4]), since X, has defect group DM /M.

(<) Now, assume that e € Tr$(k[[G]]”) and Brp(e) # 0. Then B has a defect group
R contained in D by definition of defect group. By Proposition [5.1.14] R is open in
D. So there is M <o G such that RM n D = R. So RM < DM.

Since R is a defect group of B, then e € Tr%,,(k[[G]]*M). So, there is a € k[[G]]*M
such that e = Tr%,,(a). Applying Mackey’s formula (Lemma [5.2.6) we have that
€= deD\G/RM Trparm(a).

Observe that, for each g € D\G/RM, D n9RM <o D, since otherwise,

Dn9RM =D D <9RM
RM < DM <‘RM
gGNg(RM)

DnRM =D nRM < D,

U

a contradiction.

It follows that if R is proper in D, then e € ker(Brp) = Yo pTrg(k[G]]9),
contrary to our hypothesis. Hence R = D proving the theorem. O

We wish to collect together the characterizations of a defect group proved throughout
this chapter, and provide one further characterization that will help with the Brauer
Correspondence for virtually pro-p groups (cf. Theorem. First we need a version
of [31, Lemma 12.5.1] for profinite groups.

Lemma 7.3.3. Let H,D be closed pro-p subgroups of G. If, for each N <o G,
Brp(Tr%x(a)) # 0, for some a € k[[G]|*Y, then D is conjugate to a subgroup H of
G.

Proof. Fix some N <o G and a such that Brp(Tr%y(a)) # 0. Applying Mackey’s

formula,
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TT}CL;IN(G) = Z Trignap(®a).
geD\G/HN

Since Brp(Tréy(a)) # 0, there is g € G, such that YHN n D = D. So D < 9HN.

Let Cy be the set of all g € G such that D < YHN. Observe that Cy is a closed
subset of G since each Cy is a union of set of the form DgH N for some set of g € G.
But such sets are unions of cosets of HN, and there are only a finitely number of

these cosets. So Cly is a finite union of closed sets, hence Cy is closed.

Consider the collection of closed, non-empty sets {Cn:N <o G}. We assert that
(y Cn # . Since G is compact, it is enough to show that any finite intersection of

objects of the collection is non-empty.

Let Ny, ..., N, be open normal subgroups of GG, then Ny n---n N, is an open normal
subgroup of G. So Cnyn...nn, # &, by previous argument. then there is g € G' such
that DN € gH(Ny n---n N,)g ' € gHNyg ' n---ngHN,g'. So Cnjn..nn, S
Cn, n---nCly,. Hence Cy, n---nCy, # .

Then since (), Cn # &, there is x € G such that D < “HN for every N <o G.

Hence

D:E
DLE

IN

HN, YN <o G

(HN

N

D* < H (by [32, Proposition 0.3.3])
“H.

IN

N

-
IN

Now we can give our complete characterization of defect groups for a block of G:

Theorem 7.3.4. Let G be a profinite group, B a block of G with block idempotent e.
The following are equivalent for a closed subgroup D of G:
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1. B has a defect group D.
2. §(D) is a vertex of B as a k[[G x G]]-module.
3. ee Tr%(k[[G]]P) and Brp(e) # 0

4. D is a mazimal pro-p subgroup of G such that Brp(e) # 0.

Proof. 1. < 2. follow from Proposition [7.1.6] 1. < 3. follow from Theorem [7.3.2

3. = 4. Assume that D is a subgroup of G such that e € Tr%(k[[G]|P) and Brp(e) # 0.
Let @ be a pro-p subgroup of G for which Brg(e) # 0. Then, by Lemma(7.3.3] Q is a
subgroup of a conjugate of D. Thus D is a maximal subgroup of G with Brp(e) # 0.

4. = 1. Assume that D is a maximal pro-p subgroup of G such that Brp(e) # 0.
Let H be a defect group of B. Then, e € Tr§ (k[[G]]*) and Brg(e) # 0. By Lemma

3.3 D is conjugate to a subgroup of H. So, by Lemma [7.3.3] we may assume that
H contains D. But D is by hypothesis maximal with Brp(e) # 0 and hence D = H,

as required.
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Chapter 8

Brauer Correspondence for
Virtually pro-p Groups

The Brauer correspondence for finite groups describes a relationship between the
blocks of the finite group G with defect group D and the blocks of the normalizer
in G of D with defect group D. In this chapter we demonstrate a version of Brauer
correspondence for blocks of virtually pro-p groups, using the results obtained in the

previous chapters. We follow the approaches given in [3, §6.2], and [31], §12.6].

Remark 8.0.1. Observe that k[[G]|P is a Ng(D)-algebra, since if g € Ng(D) and
x € k[[G]|P, then d(gzg=1)d™t = g(gtdg)x(g7'd " g)g~! = gxg™!, for every d € D.
So grg~' € k[[G])P.

In particular, k[[G]|P! is a Ng(D)-algebra and Brp is a Ng(D)-algebra homomor-

phism.
Lemma 8.0.2. Let G be a profinite group and D a closed pro-p subgroup of G. Then
KIGT™! = K[[Ca(D)]].

Proof. 1f we consider G' as G-space with action given by conjugation, then Cg (D) =
GP ={ge G : dgd™ = g,¥d e D}. Then, by [26, Lemma 3.4], k[[G]|I"! = k[[GP]] =
k[[Ca(D)]].

U
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It will be convenient for us to consider Brp as taking values in k[[Cq(D)]]. Thus we

will regard Brp as

Brp : k[[G]]” — k[GT™! — K[[Ca(D)]], (8.1)

where the second arrow is the inverse of the isomorphism of Lemma [8.0.2]
The next result is a pseudocompact version of [3, Proposition 6.2.2].

Lemma 8.0.3. Let G be a profinite group and D a closed normal pro-p subgroup of
G. Then every idempotent in Z(k[[G]]) lies in k[[Ca(D)]].

Proof. Fix an idempotent e € Z(k[[G]]). For each N <o G, DN/N is a normal p-
subgroup of G/N and ¢y (e) is a central idempotent of k[G/N]. Then, by [3, Proposi-
tion 6.2.2], pn(e) € k[Ca/n(DN/N)] for each N <o G. So e € lim k[Cq/n(DN/N)| =
k[[Ca(D)]]

O

Lemma 8.0.4. Let G be a profinite group, D a closed pro-p subgroup of G and H a
closed subgroup of G such that DCq(D) < H < Ng(D). Let b be a block of H with
block idempotent f and defect group D. There is a unique block B of G with block
idempotent e such that f = f- Brp(e).

Proof. By hyphotesis DC¢(D) < H < Ng(D), so D is normal in H. By Lemma[8.0.3]
f € k[[Cr(D)]]. But, again by hypothesis, Cy (D) = Cg(D). So f € k[[Ca(D)]].

On the other hand, Brp : k[[G]]P — k[[Cq(D)]] is a surjective algebra homomor-
phism, then Brp(1) = 1 and so there is a block idempotent e such that f = Brp(e)f.
If ¢’ is another block idempotent with this property, then f = Brp(e;)fBrp(e’)f =
Brp(e;)Brp(e')f = Brp(e; - €')f. So e; = € since distinct block idempotents are

orthogonal. O
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Definition 8.0.5. Let G be a profinite group, D a closed pro-p subgroup of G and
H a closed subgroup of G with DCq(D) < H < Ng(D). If b is a block of H with
block idempotent f, define the Brauer correspondent b® of b to be the unique block of
G with block idempotent e such that f = f - Brp(e).

The following Lemma corresponds to Lemma [3, Lemma 6.2.5]. This is a central piece
to establish a Brauer correspondence and it will proved for G being a virtually pro-p.
The reason to the restriction for virtually pro-p groups is that when G is virtually

pro-p, D is open in G and hence Tr$ is defined as in the finite case.

Lemma 8.0.6. Let G be a virtually pro-p group and let D be an open subgroup. Then

the diagram

TrG(k[[G))P) ——— Trp¢ P (K[[Ce(D)])

Brp

commutes. In particular the lower map is surjective.

Proof. Since D is open in G, then Tr% is a map just like it was defined for finite

groups. So the proof is similar to the finite case.

Let z € k[[G]]”. Then,

Tr(x) = Z Trb ,(9x) (by Lemma Mackey’s formula)

geD\G/D

= 2 Trgng(gx) + Z TTZD)GQD(gx)
geD\G/D, geD\G/D,
Dn9DsD DAID=D

= 2 Trpop(fx) + Z Iz.
geD\G/D, geD\G/D,
Dn9DsD DA9D=D

Observe that, if g € G is such that D n 9D = D, then g € Ng(D). Thus,
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Brp(Tr$(z)) = Brp( Z Trb . p(0x) + 2 Ix)
geD\G/D, geD\G/D,
DAIDED DAID=D

= Brp( 2 Trb . (9x)) + Brp( Z Ix)
geD\G/D, geD\G/D,
Dn9DsD DAID=D

= Brp( 2 9x) ( By Definition of Brp)

geD\G/D,
DA9D=D

= Brp( 2 Ix)

9eNa(D)/D

= Z Brp(Yx)

9eNG(D)/D

= Z IBrp(z)
geNG(D)/D

= Try P (Brp(a)).

The penultimate equality follows from fact that Brp is an Ng(D)-algebra homomor-
phism. So Brp o Tr§ = TrgG(D) o Brp. Since the top map and right map are

surjective, then the bottom map is also surjective.

O

In this point, we can establish and prove a version of the Brauer Correspondence for

virtually pro-p groups:

Theorem 8.0.7. Let G be a virtually pro-p group and D an open pro-p subgroup of
G. The map ® sending a block b of Ng(D) to its Brauer correspondent b induces a
bijection between the blocks of Ng(D) with defect group D and the blocks of G with
defect group D.

Proof. Since D <¢ N¢(D), by Lemma 8.0.3] each block idempotent in k[[Ng(D)]] lies
in k[[Cng(py(D)]]. But, Cn,p)(D) = Ca(D), so each block idempotent in k[[Ng(D)]]
lies in k[[Cq(D)]].

92



Let b be a block of Ng(D) with block idempotent f and defect group D, and let b%
be the Brauer correspondent of b with block idempotent e. By Theorem [7.3.4] there
is a defect group R of b% containing D. We assert that R = D.

By Lemma [5.2.6/1, TG (k[[G])P) is an ideal of Z(k[[G]]). So, we may consider the
ideal eTrG(k[[G]]P) of eZ(k[[G]]). By Lemma and since Brp is an algebra

homomorphism, then

Brp(eTr§([G]”)) = Bro(e) Bro(Tri(k[GN)) = Bro(e)Trp"” (M[Ca(D)])),

which contains f. Note that f ¢ J(k[[Cs(D)]]), since otherwise, pn(f) would be a
non-zero idempotent in J(k[[Cq(D)]|n), for some N, which is impossible since the
radical of a finite dimensional algebra is nilpotent. Then, Brp(eTr$(k[[G]]P)) ¢
J(k[[Ca(D)]]). So eTrG(K[[GN)P) & J(eZ(k[[G]])). Now, since e is a primitive
idempotent of Z(k[[G]]), by Lemma [6.0.5, eZ(k[[G]]) is a local algebra and hence
eTr$§(K[[G])P) = eZ(k[[G]]). By Lemma [5.2.6]

ceelrp(klIG]") = eTrgTri(k[G])7)
= TTR(GTTD(I‘?[[G]]D))
= TrgTri(ek[[GT7)
= Tr(ek[GT7).

Then e € Tr&(k[[G]]P). But, since b¢ has defect group R, then R is the smallest
subgroup such that e € Tr%(k[[G]]®). So R < D. Hence D = R.

The argument above shows that ® is well-defined, so it remains to check that it is

bijective.

Injectivity: Since eTr$G(K[[G]]P) = eZ(K[[G]]) is a local algebra and Brp is a ho-
momorphism, then Brp(eTr$(k[[G ]] )) is a local algebra. So f is the only block
idempotent in Brp(eTr$(k[[G]]P)).
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Let by, by are two blocks of Ng(D) with defect group D and block idempotents f;
and f, respectively. If ®(b;) = ®(by), then b = bS has defect group D and block
idempotent e. Since fy, f> lie in the local algebra Brp(eTr$(k[[G]]P)), then f; = fa.

So by = by and hence ® is injective.

Surjectivity: Let B be a block of G with defect group D and block idempotent e. Then,
by Theorem [7.3.4] D is such that Brp(e) # 0 and e € Tr§(k[[G]]P). Furthermore,
by Lemma [8.0.6] Brp(Tr&(k[[G]|P)) = Tra¢ P (k[[Ca(D)]]). So Brp(e) is a central
idempotent of k[[C(D)]] in Tr¢ ™ (k[[Ca(D)])).

Let b be a block of Ng(D) with block idempotent f such that f = fBrp(e). If b has
defect group D, then ®(b) = B. It remain to confirm that b has defect group D.

We have that, f € TrgG(D)(k;[[CG(D)]]), since, writing Brp(e) = TrgG(D)(a) for some
a € k[[Ca(D)]], we have

f = fBrple)

= fTry¢P(a)

= TrgG(D)(fa) (by Lemma [5.2.6))
Trp? P (K[[Ca(D)])).

m

Since f € TTgG(D)(k?[[Cg(D)]D, there is a defect group R of b contained in D. On the
other hand, by Theorem [7.2.4] R = Q n 9Q for a Sylow p-subgroup @ of N¢(D) and
some g € C,(p)(R). But, by Corollary [7.2.5, D = O,(Ng(D)) is the intersection of
all Sylow p-subgroups of Ng (D), then D < R. Hence R = D. Thus, B = ®(b). O

Remark 8.0.8. Note that[8.0.7 is false when we replace the word “open” in its state-

ment with the word “closed”.

Let G be the free pro-p group of rank 2, freely generated by x and y. Let D be a closed
mazximal cyclic subgroup of G. By [17, Theorem 5.1], Ng(D) is a closed cyclic group
of G, but D is mazimal cyclic subgroup of G, then D = Ng(D).
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There is of course a block of k[[Na(D)]] with defect group D (namely k[[Ng(D)]|
itself ), but there is not a block of k[[G]] with defect group D ( k[[G]] has only one
block and its defect group is G).

95



Chapter 9

Blocks with Cyclic Defect Group -
Brauer Tree Algebras

As we have seen through of all this work, inside of the block theory, the research is
focused on the study of the behaviour of defect groups. In both cases, finite groups
and profinite groups, the behaviour of these special subgroups gives information of
the block decomposition of k[|G]]. In particular, for finite group algebras, when the
defect groups are cyclic subgroups, it is possible to encode the information of the
blocks in special graphs, called Brauer trees. In this chapter we will move from finite
group algebras to complete group algebras, and we will show that it is possible realize

pseudocompact blocks with cyclic defect group as Brauer tree algebras.

9.1 Blocks with cyclic defect groups

Remark 9.1.1. Throughout our discussion in this section k will be an algebraically
closed field of characteristic p, G a profinite group and B a block of G with non-trivial
cyclic defect group D, that is, D is a profinite group possessing a dense cyclic abstract
subgroup. We consider P = {P; : i €L} a set of representatives of the isomorphism
classes of indecomposable projective modules in B and S = {S; :== P;/rad(P;) : i€ 1}

a set of representatives of the isomorphism classes of the simple modules in B.

Write B = liLnNeN Xy, where N is a cofinal system of open mnormal subgroups of G

such that Xy is a block with cyclic defect group DN /N, as in Remark ,
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Lemma 9.1.2. Let B be a block of a profinite group G with cyclic defect group D.
Then S and P are finite sets.

Proof. Since for each i € Z, S; = P;/rad(P;) € S, where P; € P, to prove that S and

P are finite sets, it is sufficient to confirm that S is a finite set.

For each N, the number |Sy/| of isomorphism classes of simple modules in Xy divides
p— 1 by Lemma [2.4.1] Hence |Sy| < p — 1, for each N € V.

Assume for contradiction that |S| = p and fix a set {S,...,5,} of distinct simples
in §. By Corollary [6.1.5, there is N € A such that {Si,...,.S,} are distinct simple
modules in X . But this contradicts the paragraph above. O

Remark 9.1.3. Since S is a finite set by Lemma from now on we assume in
addition that for each N € N';, N acts trivially on every simple module in B.

Proposition 9.1.4. Let P, € P. For each N € N, P;,, is non-zero and indecompos-
able.

Proof. Let m : P; — S; be the canonical projection. Since (_)y is right exact, then
n ¢ Py — Siy # 0 is surjective. Then P,, # 0 for all N € N. Furthermore,
INP; € rad(F;) for every N, and hence P, /rad(P;,) = P;/rad(P;) = S;. Hence P,

is indecomposable. O

An interesting property of blocks B with cyclic defect groups is that we can find a
cofinal set of N <y G such that By is no longer a direct product of blocks, but just
a block.

Lemma 9.1.5. Let B be a block of G with cyclic defect group D. There is Ng <o G
acting trivially on each S; € S and such that By is a block for each N < Nj.

Proof. By Lemma [9.1.2] S is finite. So we have the same number of simple modules

in each By.
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But by Corollary there is N € N such that every S; € S lies in Xy, for each
N < Nj. Since each block of By has a simple module and every simple module lies
in XN, then XNIBN. ]

Lemma 9.1.6. Let P, € P. Then the multiplicity of P; is equal to dimy(S;)

Proof. Since P;, is indecomposable for each N € A/ by Proposition and P, is
the projective cover of S; as a k[G/N]-module, by [3I, Theorem 7.3.9], dimy(S;) is
the multiplicity of P;, for each N € N. Since the multiplicity of P; in k[[G]] is equal
to the multiplicity of P;, in k[G/N], then the multiplicity of P; is dimy(.S;). O

Lemma 9.1.7. Let P; be a non-simple indecomposable projective module. Then
rad(P;)/soc(P;) = lim  rad(F;,)/soc(P;).

Proof. Since P; is not simple, there is N € N such that P, is indecomposable and
not simple. For this N', soc(P;,,) < rad(F;,,). We work in the cofinal system of open
normal subgroups N of G with N < N’. The result follows by applying Lemma [4.2.6]
with U = rad(P;), V = soc(P;) and Wy = soc(FP;,). O

9.1.1 Indecomposable projective modules of blocks with cyclic
defect group

We maintain the notation fixed in Remark [9.1.1 The objective of this section is to

give a pseudocompact version of [20, Theorem 11.1.8].

Remark 9.1.8. Throughout this section fix a cofinal system M of open normal sub-
groups N of G such that By is a block with cyclic defect group DN /N and with each
N € M, acting trivially on the S; € S. It follow from our conditions on N that the
set S of representatives of the isomorphism classes of the simple modules in B can be
canonically identified with a set Sy of representatives of the isomorphism classes of

the simple modules in By, via the map S; — S;, .

Definition 9.1.9. Let A be a pseudocompact k-algebra.
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1. A composition series for a finite dimensional A-module U is a finite series of

submodules

{0y =UycUyc..cU,=U

with U; mazimal in Uy for 0 < i < n— 1. The simple factors U;11/U; are

called composition factors of U and the integer [(U) = n is called its length.

2. A finite dimensional A-module U is uniserial if it has a unique composition

series.

3. A pseudocompact A-module U is pro-uniserial if it can be expressed as the inverse

limit of finite dimensional uniserial A-modules.

4. The simple module S is a composition factor of the pseudocompact module U if

it a composition factor of some finite dimensional quotient of U.

Lemma 9.1.10. Fiz P, € P. Then rad(P;)/rad*(P;) = T, ® T}, where T;, T, are

non-isomorphic simple modules or zero.

Proof. If P; is a simple module, the we have nothing to do, so assume that P; is a
non-simple module. Since By is a block with cyclic defect group DN /N, for each
N € M and P, is indecomposable by Proposition , then, by [19, Theorem 11.1.8],
there are two unique uniserial submodules X;,,Y;, of P, such that rad(P;,) =

iN
Xiy +Yiy, soc(P) = X;y nYiy.

N

We will analyze two cases. In the first case, at least one of the modules X;,,Y;, is
simple for every N. Assume without loss of generality that Y;, is simple for each
N. Since Y;, = soc(Y;y) = soc(P;,) = soc(X;,) € Xiy, then Y;, < X;.. So
rad(P,,) = Xi, + Yy, = Xi\ and rad*(P;,) = rad(X;, +Y;,) = rad(X;,). Then
rad(P;,)/rad*(P;,) = X;, /rad(X;,) = T;, for some simple module T;,. Then since
rad(P;)/rad*(P;) = lim rad(P;,)/rad*(P;y) = lim A T;, by Lemma W, then these

T;, are all isomorphic and rad(P;)/rad?(P;) is simple as required.

For the second case, assume that X,
N. Then soc(P;,) < rad(X;,), rad(Y;,). Let my : X;, — X, /rad(X;,), 7y : Yiy, —

IN

Y;, are non-simple submodules of P;,, for some
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Y;/rad(Y;,) be the canonical projections, and consider the map vy : X;, + Y, —
Xiy/rad(X;,) ®Y:,/rad(Yi,) given by z + y — (nn(z), 7 (y)) for x € X;, and
y € Y;,. The simple modules X, /rad(X,,), Yi,/rad(Y;,) are non-isomorphic by [20]
Theorem 11.1.8]. We confirm that vy is well-defined: Let x +y = 2" +y' € X, + Yi,,
then z = x — 2/ = y—y € X;, nYi, = soc(P,) € rad(X;,), rad(Y;,). Then
In(z =) =y —y) = 0. So

=
=

We assert that ker(yn) = rad(X;,) + rad(Y;,). Now, a simple confirmation shows
that rad(U;,) + rad(V;,) < ker(yy). On the other hand, x + y € ker(yy) if, and
only if, x € rad(X;,) and y € rad(Y;,). Then = + y € rad(X;,) + rad(Y;,). Hence,
ker(yn) = rad(X;,) + rad(Y;,).

It follows that (X;, + Yi,)/(rad(X;,) + rad(Y;,)) is the direct sum of two simple
modules T;, = X, /rad(X;,) and T} . = Y;, /rad(Y;, ). Next we check that rad(X;, +
Yi) = rad(X;,) + rad(Y;,).

By [19, Theorem 11.1.8], every submodule of P, is equal to X}, + Yy for some sub-
module X of X;, and some submodule Y} of Y;,. Hence the maximal submodules
of X;, +Y;, have the form X, + Yy with Y maximal in Y;, and X} + Y;, with
ins Yiy are uniserial, they have only one maxi-
mal submodule, rad(X;,) for X;, and rad(Y;,) for Y;

iv- Then rad(X;, + Yi,) =
(rad(X;,) + Yiy) n (Xiy + rad(Yyy,)) = rad(X;,) + rad(Y;,,).

X} maximal in X;,. But, since X

So, rad(P;,)/rad*(P;y) = (Xiy+Yiy)/rad(Xiy+Yiy) = T;, @1} . Since rad(P;)/rad?(F;)
= lim  rad(P,,)/rad*(P;

modules. O

), then rad(P;)/rad?(P;) is also a direct sum of two simple

N
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Proposition 9.1.11. Fiz P, € P. There are unique pro-uniserial submodules X;, Y;

of P; satisfying the following properties:
1. X;nY; = soc(P;).

2. X;+ Y, =rad(P;).

rad(P) X, Y; X Y; 47
5. o) = o5y D woe(myr Where iy sae(my have no common composition fac-

tors.

Proof. By Lemma , rad*(P;) is open in P;. So, consider the cofinal system of
N € M such that IyP; € rad®(P;). By Lemma[9.1.10 rad(P)/rad*(P) = T, ® T},
where T;, T/ are non-isomorphic simple modules or zero. If one of them is 0, let it be
T!. In this case, set X;, to be rad(P;,) and Y;, to be soc(P,,). If T;, T are both
non-zero, then for each N in the cofinal system, let X;, be the uniserial maximal
submodule of rad(P;,) such that X, /rad(X;,) = T; and let Y;, be the uniserial
maximal submodule of rad(P;,) such that Y, /rad(Y;,) = T;. By [20, Theorem
11.1.8], X;, and Y;, are the unique submodules with this property.

Since ¢y sends rad(P;,) onto rad(P;,,), then oyn(Xiy) = Xi,, and oun(Yiy) S
Yiy- So, define X; = lim {X; , oun} and Y; = lim {Y; . onmn}.

Next, we confirm that X; and Y; satisfy the properties 1,2 and 3 of the statement:

d rad(P;y)

soc(Piy)

By [20, Theorem 11.1.8], X;, nY;, = soc(P,), Xiy +Yiy = rad(P;,) an
X Y; Xin Yiy

N
soc(P; ) 52 soc(Piy )’ where s0c(Pyy )7 soc(Piy)

By Lemma , rad(P;) = LiLnN{rad(PiN), CMN} = LiLnN{XiN—I—YiN, ount = X;+Y,
so property 2 follows.

Now, by Lemma [4.4.5, soc(F;) = lim {soc(Py), pmn}. Since X; = lim X;, =
Ny en (pn(Xy)) and ¥Y; = lim | Vi, = (y @y (o (Y7)), then,

have no common composition factors.
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XinY; = (ﬂwﬁ(w(&))) 3 (QW(W(E)))
= ﬂsON (e (Xi) N oy (on(Y7)
= ﬂsoN (pn(X3) N on(Y)
_ ﬂw Xiy 0 Yiy)

= ﬂ(p]_\f SOC iN)
N

= soc(P;)

so property 1 follows.

It remains to confirm that X; and Y; satisfy property 3. Applying Lemma [4.2.6
with U = X;, V' = soc(P;) and Wy = soc(P;,,) we have that ~ lim o

N soc(Pl) =N soc(P; )"

Analogously, Applying Lemma with U = Y;, V = soc(P;) and Wy = soc(P;,)

Y; ~ X Y; ~ Xin Yin
we have that SOC(Pz) th SOC(PZN) Then, soc(P;) S soc(P;) — LinN soc(P; ) soc(Piy)"
Now, it remains to confirm that rad(P, ?) ~ D . For each N € M, rad(Piy)

soc(P;) — soc(P) soc( soc( lN)

Xiy Yiy rad(P;) rad( Piy)
s0c(Piy) @ soc(Pig)? and, by Lemma [9.1.7] SOC( ) lim lim  Somy Then,

X &) ~ lim Niy S
soc(P;) ~ soc(P;) — <y soc(Piy)

=

Then soig})) &) Sof(lp) >~ Zif((?)) The uniqueness of X; and Y;, follows from the unique-
ness of V;, X;, for each N. n

IN

Note that Proposition 9.1.11] implies that for n € N, the modules P;/rad™(FP;) are
finite dimensional and hence that each rad™(P;) is open in P;. Note that from the

above proof the maps X;, — X;,, are surjective whenever N < M and hence the

; X

N M . .
socPy)  seaPiy) Are surjective. The maps Y;, — Y;,, are surjective except
Y

soc(PiN) = SOC(}]{M) = 0, so the map

maps

perhaps when Y;, = soc(P;,). But in this case
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i Yiy
soc(P; ) - soc(Pyy,
the rest of the Chapter.

) is surjective anyway. We will use that these maps are surjective in

When G is finite, the block B has more structure. Namely there are permutations
p,o of § and the uniserial submodules of each P, can be named U; and V; in a such
way that the distinct composition factors of U; are given by the p-orbit of S; as we
descend the (unique) composition series of U;, and similarly the distinct composition

factors of V; are given by the g-orbit of S;. We lift this structure to profinite groups.

If ever W is a pseudocompact B-module, denote by Fact(W) < S the set of distinct

representatives of the isomorphism classes of composition factors of W.
The next Lemma is a pseudocompact version of [20, Theorem 11.1.8]:

Lemma 9.1.12. There are two permutations p, o of S and the submodules X;,Y; of

9.1.11], can be renamed U;,V; in a such way that for each 1,

e the first |S?| composition factors of U; from the top are

U; rad(U;)

L S R Y A i G
rad(U;) rad?(U;) rad St (U;)

= p(8) = S,

Il
lle

e the first |S?| composition factors of V; from the top are

Vi < rad(V;)

0(S;), —rt rad*TH V) _ sy
rad(V;) 7 rad?(Vy) -

) s oIS = 8,
rad571(V;) o (Si)

= O'Q(Si), ceey

lIe

where |S?|, |S?| are the sizes of the p-orbit S¥ of S; and the o-orbit ST of S;.

Proof. We maintain the notations from the proof of Proposition [9.1.11, Since S
is finite, we can find Ny € M such that Fact(X;) = Fact(X;, ) and Fact(Y;) =
Fact(Y;,, ) for each i.

Since By, is a block of G/Ny with cyclic defect group DNy/ Ny, by the finite version of

this result |20, Theorem 11.1.8], there are permutations py,, on, of S = Sy, satisfying

103



the conclusions of the Lemma with respect to an appropriate renaming of X;, and
Yiy, as Uiy, and V; . By how we chose X;,Y; in Proposition|9.1.11} oy (X;) = Xing -
Rename X; by U; if XZ-N0 = UiNO and by V; if XZ-N(J = ‘/iNO' Rename Y; to be the other
one. This renaming is unambiguous unless X; = Y; = soc(F;), in which case one may

rename arbitrarily.

Define p := pn, and o := oy,. For each i, the condition that Fact(U;) = Fact(UiNO)
implies that Iy,U; < rad!|(U;), since otherwise not every isomorphism class of com-
position factor of U; would appear as a composition factor of U, , and similarly with

V;. Hence, the first |S?| composition factors of U; are

U, rad(U;) ) rad® 11 (U;) 7]
— = p(5), —HTy = i)y s = P (5) = S,
rad(U;) PLS:) rad?(U;) P rad %1 (U;) pS)
and similarly with V;, as required. O

For each N € M, we define the permutations py := p and oy := 0 of Sy = S. By
construction, py and oy satisfy [20, Theorem 11.1.8] with respect to the block By of
G/N.

9.2 Brauer trees and Brauer tree algebras

In this section we give a pseudocompact version of the notion of a Brauer tree for a
block of G with cyclic defect group [20, Theorem 11.1.9] and we give a pseudocompact
version of [33, Theorem 5.10.37]. Additionally we give a description of the Brauer trees
for blocks of k[[G]].

We maintain the notation fixed in Remark[9.1.1 Now, fix a cofinal system M’ of open
normal subgroups N of G such that By is a block with cyclic defect group DN /N, each
N € M’ acts trivially on each S; € S, Fact(U;) = Fact(U;,), Fact(V;) = Fact(V;,)
for every i € Z and, if D is a finite, then |D| = |DN/N| for every N € M.

Using the canonical identification S = Sy, pny := p and oy := o for each N € M’ as
in Lemma [9.1.12} denote by I'(By) the Brauer tree of By, meaning:

104



['(By) is a tree with vertices the p-orbits S? and the o-orbits S7 of S, the edges
are the elements of §, and the edge S; joins the p-orbit of S; and the g-orbit of S;.
Unless [DN/N| = p and |S| = p — 1, there is a unique exceptional vertex, to which
we attribute the number my = % (cf. 20, Theorem 11.1.9]).

There is a cyclic ordering , of the edges around the vertex v = S? given by:

p<SZ)7 p2(SZ>’ ey plsﬂ_l(sz)u p‘sﬂ(sz) = Sz

Similarly, there is a cyclic ordering v, of the edges around the vertex v = SY given
by:

U<Si)7 02(873)7 s 0-|Sg|_1(si)7 p'Sﬂ(Sz) = Sz

By [33, Theorem 5.10.37], By is the Brauer tree algebra of I'( By ), meaning that:

1. There is a one-to-one correspondence between the edges of the tree and the

elements of Sy,

2. the top P, /rad(P;,) of the indecomposable projective module P;, in By is

isomorphic to the socle of P,

3. the projective cover P;, of the simple module corresponding to the edge S; is
such that

rad(P;y)/soc(Piy) = UR(Si) @ Uy(5i)
for two (possibly zero) uniserial modules U}, (.S;) and UN(S;) in By, where v, w
are the vertices adjacent to the edge 5;,

4. if v is not the exceptional vertex and if v is adjacent to the edge S; then U (S;)
has s(v) — 1 composition factors, where s(v) is the number of edges adjacent to

v,
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5. if v is the exceptional vertex with multiplicity my and if v is adjacent to S;,

then U (S;) has my - s(v) — 1 composition factors.

6. if v is adjacent to S; then the composition factors of U}, (S;) are described as

rad’ (Uy(Si)/rad” (UX(5:) = %7 (S:),

v

for all j as long as j is smaller than the number of composition factors of U (S;).

Lemma 9.2.1. Via the canonical identification S = Sy, the Brauer trees I'(By) are

equal for each N € M, except for the multiplicity my.

Proof. Since (apart from the multiplicity) I'(By) is completely determined by py =
p,on = 0,8y =8, for each N € M’; then the Brauer trees I'(By) are equal for each
N e M’. By our conditions on M’; either no I'(By) has an exceptional vertex, in
which case there is nothing to check, or they all do. In this case, consider N < M
in M’ and let v be the exceptional vertex of I'(By). By [33, Theorem 5.10.37],
the modules U}, (S;) are the only modules having strictly more than the size of the
corresponding orbit composition factors. But since U}, (.S;) surjects onto U}, (S;), then
UX(S;) also has strictly more than the size of the corresponding orbit composition

factors, and hence v is also the exceptional vertex of I'( By ). ]

Definition 9.2.2. Define the Brauer tree of B to be I'(B) := T'(By), for any N € M/,
except for the multiplicity m of the exceptional vertex, which is |ZT“57|1 if D is finite, or
oo if D s infinite.

The next theorem is a pseudocompact version of [33, Theorem 5.10.37]:

Theorem 9.2.3. Let B be a block of a profinite group G with cyclic defect group D.
Then B is the Brauer tree algebra of the Brauer tree I'(B) in the following sense:

1. There is a one-to-one correspondence between the edges of I'(B) and the elements

of S.

2. the projective cover P; of the simple module corresponding to the edge S; is such
that
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rad(P;)/soc(P;) = U"(S;) @ UY(S;)
for two (possibly zero) pro-uniserial modules U"(S;) and U (S;), where v,w are
the vertices adjacent to the edge S;,

. if v is not the exceptional vertex and if v is adjacent to the edge S; then U"(S;)
has s(v) — 1 composition factors, where s(v) is the number of edges adjacent to

v,

. if v is the exceptional vertex with multiplicity m, and if v is adjacent to S;, then
U"(S;) has m - s(v) — 1 composition factors if m is finite, or infinitely many if

m = Q0.

. if v is adjacent to S; then the composition factors of UY(S;) are described as

rad? (UY(S;))/rad’™ ™ (U"(S;)) = ~I71(S;),

v

for all j as long as j is smaller than the number of composition factors of U(S;).

. The socle of P; is zero if, and only if, S; is adjacent to a vertex of infinite

multiplicity. Otherwise, soc(P;) = S;.

Proof. Recall that we work with the notation fixed in Remark Property 1
follows by the construction of I'( B). Property 2 follows from the construction of I'(B)
and Proposition [9.1.11]

Let v be a not exceptional vertex of I'(B). Since by [33, Theorem 5.10.37], By is a

Brauer tree algebra with Brauer tree I'(By), and the Brauer trees I'(By) are equal

for every N € M’ by construction, then, for each N € M’, the number of composition
factors of U¥(S;) is s(v) — 1. Since for each N € M', Fact(U"(S;)) = Fact(U%(S;)),

and since each element of Fact(UX(S;)) appear only once as a composition factor of

UX(S;), then, U"(S;) has s(v) — 1 composition factors. Hence Property 3 follows.

If v is the exceptional vertex of I'(B), and the multiplicity m is finite, then there is
N’ e M’ such that InU"(S;) < rad™(U"(S;)), where n = m - s(v). Since for each
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N < N’; the module U (S;) has m - s(v) — 1 composition factors, then U"(S;) has

m - s(v) — 1 composition factors.

If m is infinite, for each n € N, there is N € M’ such that my - s(v) — 1 > n. Since
U"(S;) surjects onto Uy (.S;), it follows that U”(S;) has at least n composition factors
for every n, and hence it has infinitely many composition factors. Hence Property 4

follows.

Assume that U?(S;) has a finite number n of composition factors. Since rad™(U"(S;))
is open in U"(S;) by Propostition [9.1.11] there is N € M’ such that InU"(S;) <
rad™(U"(S;)). Since for each N < N’ rad(U%(S;))/rad? ™ (U%(S;)) = v71(S;), then

v

rad (U"(S;))/rad’ (U (S;)) = lim rad’ (UY(S;))/rad’ ™ (U (S;)) = +21H(S,),

v
N<N’

for all j as long as j is smaller than n.

If v is an exceptional vertex with infinite multiplicity, then, by Item 4., U"(S;) has
infinitely many composition factors. So for each n € N there is N € M’ with my -
s(v) =1 > n. Then rad’ (U (S;))/rad’ T (U (S;)) = ~I*1(S;), for all j as long as j is

v

smaller than my - s(v) — 1. So

rad’ (U*(S;))/rad’ ™ (UY(S;)) = lim rad (U (S:))/rad’ (U (S;)) = %+ (S),

v
NN/

for all j € N. Hence Property 5 follows.

If neither of the vertices adjacent to S; has infinite multiplicity, then P; is finite
dimensional, since it has a finite number of composition factors. So P; is isomorphic
to P, for some N € M'. Then P,/rad(P;) = P, /rad(P;,) = soc(P;,) = soc(P;).

If some vertex adjacent to .S; has infinite multiplicity, then for N < M € M’ the
map @y : soc(P;,) — soc(P;,,) is the zero map whenever |[DN/N| > |[DM/M]|. So
soc(P;) = lim  soc(P;,) = 0. Hence Property 6. follows. O
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Theorem 9.2.4. Let B be a block of a profinite group G with cyclic defect group D.
Then D 1is a finite group if and only if dim(B) < 0.

Proof. By Theorem [9.2.3] B is a Brauer tree algebra with Brauer tree I'(B) with |S|
_ ID|=1
sl

infinite. But, dim(B) < oo if, and only if, every indecomposable projective module
has finite dimension, since, by Lemma P is a finite set and each P, € P has
multiplicity dimy(S;) in B by Lemma 9.1.6] This is equivalent to B being a Brauer

tree algebra with Brauer tree I'(B) whose exceptional vertex has multiplicity m € N.

edges and exceptional vertex with multiplicity m if D is finite or oo is D is

So, dim(B) < oo if, and only if, D is a finite group. O

The next result shows that a block with infinite cyclic defect group has a Brauer tree
of star type: That is, a Brauer tree with exceptional vertex of infinite multiplicity

with all edges emanating from this vertex, as in the following diagram:

Theorem 9.2.5. Let B be a block of a profinite group G with infinite cyclic defect
group D. Then T'(B) is of star type.

Proof. By Theorem m B is a Brauer tree algebra with Brauer tree I'(B) with
exceptional vertex of multiplicity m = o00. Assume that I'(B) is not star type. Then
I'(B) has a subgraph of the form
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where n could be 0 but [ is at least 1.

For each M € M, denote by X},, X}/ the uniserial submodules of the projective cover
Py of S corresponding to the vertices v, w respectively, so that X}, + X}, = rad(Py)
and X}, n X}, = soc(Py). Fix M € M'. Since m = oo, there exists N € M’ contained

in M such that the projection pyn @ X3 — X3, is not an isomorphism.

Since ker(pnmn) N X% # 0, it follows that ¢y must map soc(X§) = soc(Py) to
0. But on the other hand ¢y : Xy — Xj; is an isomorphism. This can be
seen as follow: The modules X}, X}, are isomorphic uniserial modules, which are
not simple by hypothesis, since they have at least S and L; as composition fac-
tors. Hence soc(X}W) = soc(Py) € rad(Xy) and similarly with M. The surjective
map Xy /soc(Py) — X}3;/soc(Pyr) induced by ¢un thus induces a surjective map
XV /rad(Xy) — X3y /rad(Xyy). So, by [19, Proposition 4.5.1], oy : Xy — X} is

surjective, and hence an isomorphism.

It follow that soc(XY) = soc(Py) is not sent to 0 under ¢ysy, which yields a contra-
diction. O

9.2.1 Examples:

(1) Let G be an infinite cyclic pro-p group, k[[G]] is the inverse limit of finite group
algebras k[G/N] of the finite cyclic p-groups G/N. Each k[G/N] is a Brauer tree
algebra with Brauer tree I'y with two vertices, one exceptional, and one edge,
where the exceptional vertex has multiplicity my = |[DN/N| -1 = |G/N|—1
(cf. [I V, §17]).
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E[[G]] is indecomposable as an algebra, since each k[G/N] is indecomposable.
So, Ek[[G]] has only one block, B, and this block has cyclic defect group G.
Then B is a Brauer tree algebra with Brauer tree I' having two vertices, one
exceptional, and one edge, where the exceptional vertex has infinite multiplicity.
So the Brauer tree of k[[(]] is the tree below,

The unique indecomposable projective module P, corresponding to the unique

edge of the Brauer tree can be represented by the following diagram:

(2) Let k be a field of characteristic 5. For each n > 1, let G,, =< a,b | a®" = b? =
1,bab = a! > be the dihedral group of order 2 - 5" and let Cs-» be the cyclic
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subgroup of order 5" generated by a. Observe that C5. is normal in G, and
Ca, (Csn) = Csn, so, by [3, Proposition 6.2.2], k[G,] has only one block, with
defect group Cs.. By k[G,] is a Brauer tree algebra for a Brauer tree
with |S,,| edges and multiplicity % Its Brauer tree I'(k[G,]) has 2 edges,
because, by [20, Theorem 11.1.3], |S,| = |E.| = |Ng, (Cs0)/Cq, (Csn)| = 2,
where E, is the inertial quotient of the block k[G,] (cf. [20, Definition 6.7.7]).
The exceptional vertex has multiplicity m,, = % By [1, V, §17, p.123] the

Brauer tree is star type since Cis» is a cyclic normal 5-Sylow subgroup in G,,.

S

The simple modules S, T corresponding to the edges are 1 dimensional. One of
them is the trivial module S = k and the other T' =<t > is a simple module
with the action of k[G,,] given by a-t =t and b -t = —t.

Now, let G =lim G, and C = lim Csn = Zs. Consider k[[G]] = lim k[G,], an

indecomposable algebra with cyclic defect group C. Then k[[G]] is a Brauer tree
algebra of Brauer tree star type, with 2 edges S, T and exceptional vertex with
infinite multiplicity. The indecomposable projective modules corresponding to

S an T can be represented by the following diagram:
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Pg
®

rad(Pg)
[ J

rad? (P
It (Ps)

cm - e—— - - - @

con oo = o @
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