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e a famı́lia Wilmer, Alicia, Aracely e o novo integrante da famı́lia o pequeno Joaqúın,
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seminario dos Folheados, à Alan Ramos pela parceria e amizade de pesquisa, e aos meus
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RESUMO

Nesta tese de doutorado nos dedicamos ao estudo de Distribuições Holomorfas de codi-

mensão dois em P4 cujo feixe tangente e conormal é Horrocks-Mumford, isto é, um fibrado

vetorial estável, em particular não decompońıvel de posto 2. Nosso primeiro objetivo é

descrever a geometria do esquema singular dessas distribuições. Provamos que o esquema

singular é uma curva suave aritmeticamente Buchsbaum, conexa e irredut́ıvel. Mostramos

que tais distribuições não são integráveis. Finalmente, descrevemos o espaço de Moduli

dessas distribuições, provando que tal espaço é uma variedade quasi-projectiva irredut́ıvel

e calculamos sua dimensão.

Palavras-chave: Fibrado vetorial Horrocks-Mumford. Distribuições Holomorfas. Espaço

de Moduli.



ABSTRACT

This thesis is devoted to the study of Codimension two Holomorphic Distributions on P4

whose tangent and conormal sheaves are Horrocks-Mumford, that is a stable vector bundle

of rank 2, in particular non-decomposable. Our first goal is to describe the geometry of

the singular scheme of these distributions. We prove that the singular scheme is a smooth,

reduced, irreducible (hence connected) arithmetically Buchsbaum curve. We show that

such distributions are non-integrable. Finally, we describe the Moduli space of these

distributions, proving that such space is an irreducible quasi-projective variety and we

calculate its dimension.

Keywords: Horrocks-Mumford Bundle. Holomorphic Distributions. Moduli space.
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INTRODUCTION

The main goal of this thesis is to study Codimension two Holomorphic Distributions on

the projective space P4 whose normalization of the tangent and conormal sheaves are

Horrocks-Mumford.

A (saturated) distribution F of codimension k ≥ 1 on Pn is a short exact sequence of

coherent sheaves:

F : 0→ TF → TPn → NF → 0 , (1)

such that NF , called the normal sheaf of F , is a nontrivial torsion free sheaf of rank k

on Pn. It follows that the sheaf TF , called the tangent sheaf of F , is a reflexive sheaf

of rank n − k. The singular scheme of F , defined by Sing(F ) := Sing(NF ), is a closed

subscheme on Pn of codimension at least 2. A foliation is an integrable distribution, that

is a distribution whose tangent sheaf is closed under Lie brackets of vector fields, that is,

[TF , TF ] ⊂ TF .

A dual perspective can be considered. A holomorphic distribution F , of codimension

k ≥ 1 on Pn, is given by an exact sequence of coherent sheaves:

F : 0→ N∗F → Ω1
Pn → QF → 0 , (2)

where QF is a nontrivial torsion free sheaf of rank n − k on Pn. It follows that the

conormal sheaf N∗F is a reflexive sheaf of rank k.

M. Corrêa, M. Jardim and R. Vidal have shown in [4] that, for distributions of arbitrary

codimension on Pn, the tangent and conormal sheaves split as a sum of line bundles,

if and only if, the singular scheme is arithmetically Cohen-Macaualay. Subsequently,

Marcos Jardim, José Omegar and Mauŕıcio Corrêa, in [5], studied the properties of the

singular schemes and tangent sheaves of codimension 1 distributions on P3, and provided a

classification to codimension 1 distributions of degree at most 2 with locally free tangent

sheaves, and showed that codimension one distribution of arbitrary degree, with only

isolated singularities have stable tangent sheaf. In addition, they described the Moduli

space of distributions in terms of Grothendieck’s Quot scheme for the tangent bundle

and, in certain cases, they showed that Moduli space of codimension one distributions,

in the projective space, is a non-singular irreducible quasi-projective variety. Recently,

Mauŕıcio Corrêa, Marcos Jardim and Simone Marchesi in [7] classified foliations by curves

up to degree 3 whose cornormal sheaf is locally free. In addition, they provided a slightly

different dual construction more suitable to describe the Moduli Spaces of these foliations.

In 1973, G. Horrocks and D. Mumford showed the existence of a stable bundle E of rank 2

on P4, called the Horrocks-Mumford bundle [23]; this is the only known non-decomposable
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vector bundle of rank 2. Later, H. Sumihiro showed in [36] that E(a) is generated by global

sections, for every a ≥ 1. Since TP4(−1) and Ω1
P4(2) are globally generated sheaves then

E(a) ⊗ TP4(−1) = Hom(E(−a − 4), TP4) and E(a) ⊗ Ω1
P4(2) = Hom(E(−a − 7),Ω1

P4)

are also globally generated sheaves. In this work, we study holomorphic distribution on

P4 whose tangent sheaf is TF = E(−a − 4) and distributions whose conormal sheaf is

N∗F = E(−a − 7) for every a ≥ 1, so TF and N∗F are non split stable sheaves. These

distributions are induced by a Bertini-type Theorem 28 and, in consequence, the singular

scheme Z = Sing(F ) is a smooth closed subscheme of P4 with expected codimension 3.

Distributions with split tangent and conormal sheaf were studied in [4] and it is natural

to study distributions whose tangent or conormal sheaves are Horrocks-Mumford. More

precisely, we prove the following result:

Proposition 1. Let Fa is a codimension 2 holomorphic distributions (1). Let Za =

Sing(Fa) the singular scheme, for a ≥ 1 then:

1. deg(Fa) = 2a+ 5.

2. deg(Za) = 4a3 + 33a2 + 77a+ 46.

3. pa(Za) = 9a4 + 89a3 + 553
2
a2 + 573

2
a+ 45.

Proposition 2. Let Fa is a codimension 2 holomorphic distributions (2). Let Za =

Sing(Fa) the singular scheme, for a ≥ 1, then:

1. deg(Fa) = 2a+ 6.

2. deg(Za) = 4a3 + 39a2 + 113a+ 92.

3. pa(Za) = 9a4 + 107a3 + 847
2
a2 + 1261

2
a+ 260.

Proposition 3. The singular scheme Za = Sing(Fa) is reduced and irreducible.

Theorem 1 (A). Let Fa, for all a ≥ 1, is a codimension 2 holomorphic distributions (1)

on P4. Then the singular scheme Za = Sing(F ) is a smooth curve but not arithmetically

Buchsbaum nor arithmetically Cohen Macaulay, and the Rao module dimensions of the

singular scheme, for a ≥ 1, are:

1. dimCRF1 ≥ 184.

2. dimCRF2 ≥ 284.

3. dimCRF3 ≥ 369.

4. dimCRFa = 401, ∀a ≥ 4.
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Theorem 2 (B). Let Fa, for all a ≥ 1, is a codimension 2 holomorphic distributions (2)

on P4. Then the singular scheme Za = Sing(F ) is a smooth curve but not arithmetically

Buchsbaum nor arithmetically Cohen Macaulay, and the Rao module dimensions of the

singular scheme, for a ≥ 1, are:

1. dimCRF1 ≥ 184.

2. dimCRF2 ≥ 284.

3. dimCRF3 ≥ 369.

4. dimCRFa = 401, ∀a ≥ 4.

Theorem 3. The First cohomology dimension of the singular scheme of Horrocks-Mumford

distributions (1) and (2) is 27.

On the other hand, these distributions are non-integrable. In fact, if F is a foliation of

codimension 2, taking a transversal section at a generic point p ∈ Z = Sing3(F ) then the

Grothendieck residue Res(F , c31; p) = 0. For the other hand, since F is a holomorphic

foliation of codimension 2 then by Baum-Bott formula we have:

c31(det(NF )) = Resc31(F |Bp ; p) · [Z],

hence 0 < deg(det(NF )) = Resc31(F |Bp ; p) · deg(Z), thus Resc31(F |Bp ; p) 6= 0. This

is a contradiction, since the ampleness of det(NF ) implies that the cohomology class

c31(det(NF )) is non zero. Therefore:

Theorem 4 (C). Let Fa be the Horrocks-Mumford distribution (1), then Fa is non-

integrable, for a ≥ 1.

Theorem 5 (D). Let Fa be the Horrocks-Mumford distribution (2), then Fa is non-

integrable, for a ≥ 1.

Finally, the authors, in [5] and [7], provided an explicit description of the Moduli Spaces of

distributions by a forgetful morphism that associates each holomorphic distribution with

its tangent and conormal sheaf. W. Decker, in [10], provided a description of the Moduli

Space of the Horrocks-Mumford stable bundles so, by forgetful morphism, we show that

the Moduli Space of the Horrocks-Mumford holomorphic distributions is an irreducible

quasi-projective non-singular variety and calculate its dimension as a consequence of the

Theorem on the dimension of the fibers.

Theorem 6 (E). The Moduli space DistP,st(2a + 5, a2 + 3a + 6) of codimension two

holomorphic distributions (1) is an irreducible, quasi-projective variety of dimension

1

3
a4 + 7a3 +

277

6
a2 +

199

2
a+ 43



18 Introduction

for a ≥ 1.

Theorem 7 (F). The Moduli space DistP,st(2a + 6, a2 + 9a + 24) of codimension two

holomorphic distributions (2) is an irreducible, quasi-projective variety of dimension

1

3
a4 +

23

3
a3 +

343

6
a2 +

899

6
a+ 98

for a ≥ 1.



Parte I

Preliminaries



1 A BRIEF TOUR THROUGH ALGEBRAIC

GEOMETRY

In this chapter we present some definitions, properties and algebraic-geometric theorems

that will be fundamental tools during the development of this thesis. The main references

will be [16], [20], [21], [22], [25], [26], [31].

1.1 SHEAVES

1.1.1 Properties of coherent sheaves

As an important class of OX−modules, including locally free sheaves, we have the “cohe-

rent sheaves”.

Definition 1. An OX-module F is said to be a coherent sheaf if each point in X admits

a neighborhood U such that there exist an exact sequence of the form

OqU
x−→ OpU → F|U → 0, (1.1)

with p and q positive integers.

Example 1. If E and F are two coherent sheaves, then E⊕F , E⊗OX
F and HomOX

(E ,F)

are coherent.

Any OY−sheaf F on a closed complex submanifold Y ⊂ X can be considered as an

OX−sheaf on X supported on Y . More precisely, one identifies F with its direct image

i∗F under the inclusion i : Y → X. The restriction of holomorphic functions yields a

natural surjection OX → OY . This gives rise to the structure sheaf sequence of Y ⊂ X:

0→ IY → OX → OY → 0,

where IY is the ideal sheaf of all holomorphic functions vanishing on Y .

Theorem 8. If F is a coherent holomorphic sheaf over a analytic variety X, then

{x ∈ X | Fx 6= 0} is a analytic subvariety of X.

Proof. Vide [31], pag 73.
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For general holomorphic sheaves F over a analytic variety X, the closure of the set

{x ∈ X | Fx 6= 0} is called the support of the sheaf F . For a coherent holomorphic sheaf

F over a analytic variety X, the support of F is then always a analytic subvariety of X;

moreover the support of F consists exactly of those points of X over which the sheaf has

nonzero stalks.

Corollary 1. If ϕ : F → G is a homomorphism between two coherent holomorphic shea-

ves over a analytic variety X, and if ϕx : Fx → Gx is the induced homomorphism on stalks

over a point x ∈ X, then {x ∈ X | ϕx is not injective} and {x ∈ X | ϕx is not surjective}
are analytic subvarieties of X.

Definition 2. For a coherent sheaf F we set

Sing(F) = {x ∈ X | Fx is not OX,x − free},

and call it the singular set of F .

1.2 TORSION-FREE AND REFLEXIVE SHEAVES

In this section we mention some basic properties of torsion-free and reflexive sheaves. For

more information, see [21] and [27].

Definition 3. A coherent sheaf F over X is torsion free if every stalk Fx is a torsion

free OX,x−module; i.e., fa = 0 for f ∈ OX,x, a ∈ Fx always implies a = 0 or f = 0.

Example 2. Every locally free sheaf is torsion free. Any coherent subsheaf of a torsion-

free sheaf is again torsion-free.

Theorem 9. Let F be a torsion-free sheaf on X. Then

codim Sing(F) ≥ 2.

Proof. Vide [31], pag. 75.

On the other hand, there is a natural map of F to its double dual F∗∗.

Definition 4. A coherent sheaf F on X is reflexive if the natural map F → F∗∗ is an

isomorphism.

Example 3. Any locally free sheaf is reflexive, in particular vector bundles. On the other

hand, any reflexive sheaf is torsion-free.



22 1. A brief tour through Algebraic Geometry

Proposition 4. A coherent sheaf F on a noetherian scheme X is reflexive if and only if

it can be included in an exact sequence

0→ F → E → G → 0,

where E is locally free and G is torsion-free.

Proof. Vide [21], pag. 124.

Corollary 2. The dual of any coherent sheaf is reflexive.

Proof. Vide [21], pag. 124.

1.3 CHERN CLASS

In this section we introduce these topological invariants axiomatically. For more details

see [16].

Let E be a vector bundle on X. For each integer i ≥ 0 we can assign a cohomology class

ci(E) ∈ H2i(X;Z) such that c0(E) = 1. The total Chern class c(E) is the sum

c(E) = 1 + c1(E) + · · ·+ cr(E) ∈ H∗(X;Z), r = rankE.

cr(E) is called the top Chern class of E. The class c(E) is invertible in H∗(X;Z).

Theorem 10 (Axioms for Chern class). The Chern classes satisfy the following properties:

(a) (Vanishing) For all vector bundles E on X, all i > rankE,

ci(E) = 0.

(b) (Naturality) Let E be a vector bundle on X, f : X ′ → X a flat morphism. Then

c(f ∗E) = f ∗c(E) ∈ H∗(X ′,Z).

(c) (Whitney sum) For any exact sequence

0→ E → F → G→ 0,

of vector bundles on X, then

c(F ) = c(E) · c(G),

i.e,
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ck(F ) =
∑
i+j=k

ci(E) · cj(G).

(d) (Normalization) For the hyperplane bundle OPn(1) on Pn

c(OPn(1)) = 1 + h ∈ H∗(Pn;Z) ' Z[h]/hn+1,

where h denotes the canonical generator of H2(Pn;Z), the Poincaré dual of the

homology class [Pn−1].

1.3.1 Splitting Principle

For a given vector bundle E over a manifold X we can find a space Y and a flat morphism

f : Y → X such that :

1. f ∗E decomposes over Y into a direct sum of line bundles (topologically!) f ∗E '
L1 ⊕ L2 ⊕ · · · ⊕ Lr and

2. f ∗ : H∗(X;Z)→ H∗(Y ;Z) is injective.

So, any formula involving Chern classes need only be checked on sums of line bundles.

1.3.2 Applications of the Splitting Principle

If E splits into line bundles L1, ..., Lr, then the Li will be called root bundles of E and

the αi = c1(Li) the Chern roots of E. So,

c(E) =
r∏
i=1

(1 + αi).

Using the splitting principle, we can calculate the Chern class of tensor products, exterior

products and dual of locally free sheaf.

• Dual bundles: If E has Chern roots α1, ..., αr, then E∗ has Chern roots−α1, ...,−αr
and so

ci(E
∗) = (−1)ici(E).

• Tensor product: Let α1, ..., αr and β1, ..., βs be the Chern roots of vector bundles

E and F , respectively, then by the bilinearity of the tensor product it follows that

the Chern roots of E ⊗ F are αi + βj (1 ≤ i ≤ r, 1 ≤ j ≤ s). Hence
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c(E ⊗ F ) =
∏

1≤i≤r,1≤j≤s

(1 + αi + βj).

So, when F is a line bundle L with c1(L) = β, we have:

ck(E ⊗ L) =
k∑
i=0

(
r − i
k − i

)
ci(E)βk−i.

In particular, the first and top Chern classes of E ⊗ L is:

c1(E ⊗ L) = rβ + c1(E) and cr(E ⊗ L) =
r∑
i=0

cr−i(E)βi.

Example 4. Let E is a rank 2 vector bundle. Then for all k ∈ Z:

c
(
E(k)

)
= 1 +

(
c1(E) + 2k

)
· h +

(
c2(E) + k · c1(E) + k2

)
· h2. (1.2)

Example 5. Let E is a rank 3 vector bundle. Then for all k ∈ Z:

c
(
E(k)

)
= 1+

(
c1(E)+3k

)
·h+

(
c2(E)+2k·c1(E)+3k2

)
·h2+

(
c3(E)+k·c2(E)+k2c1(E)+k3

)
·h3.

• Exterior Power: The set of Chern roots of the exterior power
∧pE coincides with

the set of sums

αi1 + αi2 + ...+ αip , 1 ≤ i1 < i2 < ... < ip ≤ r.

The total Chern class of
∧pE is the given by the product

c(

p∧
E) =

∏
1≤i1<i2<...<ip≤r

(1 + αi1 + αi2 + ...+ αip).
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Example 6. Let us to calculate the Chern class of exterior power of a vector bundle E

of rank 4 with Chern classes c1, c2, c3, c4.

c1(
2∧
E(k)) = 6k + 3c1

c2(
2∧
E(k)) = 15k2 + 15kc1 + 3c21 + 2c2

c3(
2∧
E(k)) = 20k3 + 30k2c1 + 12kc21 + c31 + 8kc2 + 4c1c2

c4(
2∧
E(k)) = 15k4 + 30k3c1 + 18k2c21 + 3kc31 + 12k2c2 + 12kc1c2 + 2c21c2 + c22 + c1c3 − 4c4

c5(
2∧
E(k)) = 6k5 + 15k4c1 + 12k3c21 + 8k3c2 + 3k2c31 + 12k2c1c2 + 4kc21c2 + 2kc22 + 2kc1c3

− 8kc4 + c1c
2
2 + c21c3 − 4c1c4

c6(
2∧
E(k)) = k6 + 3k5c1 + 3k4c21 + 2k4c2 + k3c31 + 4k3c1c2 + 2k2c21c2 + k2c22 + k2c1c3

− 4k2c4 + kc1c
2
2 + kc21c3 − 4kc1c4 + c1c2c3 − c21c4 − c23.

(1.3)

c1(
3∧
E(k)) = 4k + 3c1

c2(
3∧
E(k)) = 6k2 + 9kc1 + 3c21 + c2

c3(
3∧
E(k)) = 4k3 + 9k2c1 + 6kc21 + c31 + 2kc2 + 2c1c2 − c3

c4(
3∧
E(k)) = k4 + 3k3c1 + 3k2c21 + kc31 + k2c2 + 2kc1c2 + c21c2 − kc3 − c1c3 + c4.

(1.4)

We notice that:

c1(
4∧
E(k)) = k + c1(E).

• Symmetric Power: In a similar way, it follows that the set of Chern roots of the

symmetric power Sp(E) coincides with the set of sums

αi1 + αi2 + ...+ αip , 1 ≤ i1 ≤ i2 ≤ ... ≤ ip ≤ r.

The total Chern class of Sp(E) is the given by the product

c(Sp(E)) =
∏

1≤i1≤i2≤...≤ip≤r

(1 + αi1 + αi2 + ...+ αip).



26 1. A brief tour through Algebraic Geometry

Example 7. Let us to compute the Chern classes of some symmetric powers of a vector

bundle E of rank 2 with Chern classes c1 and c2.

c1(S2(E)(k)) = 3k + 3c1

c2(S2(E)(k)) = 3k2 + 6kc1 + 2c21 + 4c2

c3(S2(E)(k)) = k3 + 3k2c1 + 2kc21 + 4kc2 + 4c1c2.

(1.5)

Proposition 5. If E, F are vector bundles of ranks e and f respectively, then

c1(E ⊗ F ) = f · c1(E) + e · c1(F ).

Proof. Vide [14], pag. 176.

If E =
⊕e

i=1 Li and F =
⊕f

i=1Mj are direct sums of line bundles, we can write

c(E) =
e∏
i=1

(1 + αi) and c(F ) =

f∏
i=1

(1 + βj),

with c1(Li) = αi and c2(Mj) = βj. Hence c1(E) = α1 + · · ·+αe and c1(F ) = β1 + · · ·+βf .

We have:

E ⊗ F =

e,f⊕
i,j=1,1

Li ⊗Mj,

thus

c(E ⊗ F ) =

e,f∏
i,j=1,1

(1 + αi + βj).

In particular, if X = P4, e = 4 and f = 2, then denoting by ci(E) = ei and c(F ) = fj, we

have:

c(E) =
4∏
i=1

(1 + αi)

= 1 + (α1 + α2 + α3 + α4)h + (α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4)h
2

+ (α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4)h
3 + (α1α2α3α4)h

4

= 1 + e1h + e2h
2 + e3h

3 + e4h
4,

and

c(F ) =
2∏
j=1

(1 + βj)

= 1 + (β1 + β2)h + (β1β2)h
2

= 1 + f1h + f2h
2.
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hence

c(E ⊗ F ) =

4,2∏
i,j=1,1

(1 + αi + βj)

= (1 + α1 + β1)(1 + α2 + β1)(1 + α3 + β1)(1 + α4 + β1)

· (1 + α1 + β2)(1 + α2 + β2)(1 + α3 + β2)(1 + α4 + β2)

=
{

1 + (α1 + α2 + α3 + α4 + 4β1)h

+ (α1α2 + α1α3 + α2α3 + α1α4 + α2α4 + α3α4 + 3α1β1 + 3α2β1 + 3α3β1 + 3α4β1 + 6β2
1)h2

+ (α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4 + 2α1α2β1 + 2α1α3β1 + 2α2α3β1 + 2α1α4β1

+ 2α2α4β1 + 2α3α4β1 + 3α1β
2
1 + 3α2β

2
1 + 3α3β

2
1 + 3α4β

2
1 + 4β3

1)h3

+
(
α1α2α3α4 + α1α2α3β1 + α1α2α4β1 + α1α3α4β1 + α2α3α4β1 + α1α2β

2
1

+ α1α3β
2
1 + α2α3β

2
1 + α1α4β

2
1 + α2α4β

2
1 + α3α4β

2
1 + α1β

3
1 + α2β

3
1 + α3β

3
1 + α4β

3
1 + β4

1

)
h4
}

·
{

1 + (α1 + α2 + α3 + α4 + 4β2)h

+ (α1α2 + α1α3 + α2α3 + α1α4 + α2α4 + α3α4 + 3α1β2 + 3α2β2 + 3α3β2 + 3α4β2 + 6β2
2)h2

+ (α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4 + 2α1α2β2 + 2α1α3β2 + 2α2α3β2 + 2α1α4β2

+ 2α2α4β2 + 2α3α4β2 + 3α1β
2
2 + 3α2β

2
2 + 3α3β

2
2 + 3α4β

2
2 + 4β3

2)h3

+
(
α1α2α3α4 + α1α2α3β2 + α1α2α4β2 + α1α3α4β2 + α2α3α4β2 + α1α2β

2
2

+ α1α3β
2
2 + α2α3β

2
2 + α1α4β

2
2 + α2α4β

2
2 + α3α4β

2
2 + α1β

3
2 + α2β

3
2 + α3β

3
2 + α4β

3
2 + β4

2

)
h4
}

= 1 + (2α1 + 2α2 + 2α3 + 2α4 + 4β1 + 4β2)h + · · ·

= 1 + (2e1 + 4f1)h + (e21 + 7e1f1 + 6f 2
1 + 2e2 + 4f2)h

2

+ (3e21f1 + 9e1f12 + 4f 3
1 + 2e1e2 + 6e2f1 + 6e1f2 + 12f1f2 + 2e3)h

3

+ (3e21f
2
1 + 5e1f

3
1 + f 4

1 + 5e1e2f1 + 7e2f
2
1 + 3e21f2 + 15e1f1f2 + 12f 2

1 f2

+ e22 + 2e1e3 + 5e3f1 + 2e2f2 + 6f 2
2 + 2e4)h

4.

Thus

c1(E ⊗ F ) = 2e1 + 4f1

c2(E ⊗ F ) = e21 + 7e1f1 + 6f 2
1 + 2e2 + 4f2

c3(E ⊗ F ) = 3e21f1 + 9e1f12 + 4f 3
1 + 2e1e2 + 6e2f1 + 6e1f2 + 12f1f2 + 2e3

c4(E ⊗ F ) = 3e21f
2
1 + 5e1f

3
1 + f 4

1 + 5e1e2f1 + 7e2f
2
1 + 3e21f2 + 15e1f1f2 + 12f 2

1 f2

+ e22 + 2e1e3 + 5e3f1 + 2e2f2 + 6f 2
2 + 2e4.

(1.6)

Next, let us to present an exact sequence that relates to the tangent bundle of Pn.

Proposition 6 (Euler Sequence). On Pn there exists a natural short exact sequence of

holomorphic vector bundles
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0→ OPn → OPn(1)⊕(n+1) → TPn → 0,

called the Euler sequence.

Let Ωp
Pn be the sheaf of germs of holomorphic p-forms on Pn, then Ω1

Pn = (TPn)∗.

After dualizing the Euler exact sequence and by taking the p-th exterior power, we obtain

the following exact sequence, see [31, pag. 3]:

0→ Ωp
Pn(p)→ O

⊕(n+1
p )

Pn → Ωp−1
Pn (p)→ 0. (1.7)

In particular, the canonical bundle of Pn is

ωPn = det Ω1
Pn = OPn(−n− 1).

The classes ci(TX), TX the tangent bundle of X, will be called Chern classes of X, and

to simplify notation we write ci(X) instead of ci(TX). So, the total Chern class of X,

c(X), is the class c(TX).

Example 8 (Chern classes of Pn). By the Euler exact sequence, the additivity formula

implies that

c(TPn) = (1 + h)n+1

= 1 +

(
n+ 1

1

)
h +

(
n+ 1

2

)
h2 + · · ·+

(
n+ 1

n

)
hn,

(1.8)

where h = [H] is the class of a hyperplane H. Hence:

ci(TPn) =

(
n+ 1

i

)
.

In particular, c1(TPn) = (n+ 1) · h. Furthermore, since Ω1
Pn = (TPn)∗ then

ci(Ω
1
Pn) = (−1)i

(
n+ 1

i

)
.

In particular, c1(Ω
1
Pn) = −(n+ 1).

For any vector bundle E on Pn, the Chern classes ci(E) ∈ H2i(Pn,Z) ' Z will be regarded

as integers.

The Chern character. Let E be a vector bundles of rank r on a variety X of dimension

n and let c(E) =
∏r

i=1(1 + αih). Then we define the exponential Chern character

ch(E) =
r∑
i=1

eαi .

Using these definitions and denoting by ci = ci(E), we can show that:



1.4. Stable Reflexive Sheaves 29

ch(E) = rank(E)+c1+
1

2
(c21−2c2)+

1

6
(c31−3c1c2+3c3)+

1

24
(c41−4c21c2+4c1c3+2c22−4c4)+· · · .

The Todd class:

We define the Todd class of E to be

td(E) =
r∏
i=1

αi
1− e−αi

.

Then,

td(E) = 1 +
1

2
c1 +

1

12
(c21 + c2) +

1

24
c1c2 −

1

720
(c41 − 4c21c2 − 3c22 − c1c3 + c4) + · · · .

Observation: Let X be a smooth projective variety and F a coherent sheaf of X, then

we can resolve F by locally free sheaves; that is, we can find an exact sequence

0→ En → · · · → E1 → E0 → F → 0,

in that all the sheaves Ei are locally free. We can use this to extend the definitions of

Chern classes and Character class to all coherent sheaves. We define the Chern class of

F by:

c(F) =
n∏
i=0

c(Ei)(−1)
i

.

1.4 STABLE REFLEXIVE SHEAVES

Vector bundles are divided into two quite distinct types, stable and unstable.

Definition 5. Let E a torsion-free sheaf on Pn and let L = OPn(1) be very ample line

bundle. The slope of E with respect to L, denoted µ(E), is given by

µ(E) :=
c1(E) · Ln−1

rankE
.

Definition 6 (Mumford-Takemoto). A reflexive coherent sheaf E on Pn is stable (resp.

semistable) if for every coherent subsheaf F of E, with 0 < rankF < rankE,

µ(F ) < µ(E),

(resp. ≤).

Definition 7. The normalization Eη of a torsion-free sheaf E of rank 2 on Pn is defined

by:
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Eη =

E
(
− c1(E)

2

)
, if c1(E) even

E
(
− (c1(E)+1)

2

)
, if c1(E) odd.

Let us to give a stability criterion for reflexive sheaves of rank 2 over Pn.

Lemma 1. Let E be a rank 2 reflexive sheaf on Pn. Then E is stable if and only if Eη

has no sections:

H0(Pn, Eη) = 0.

Proof. Vide [31], pag. 84.

Now, let us give the relationship between stability and simplicity.

Definition 8. A holomorphic vector bundle E is called simple if h0(Pn, E∗ ⊗ E) = 1.

Since E∗ ⊗ E = HomOPn (E,E) = End(E), a bundle is simple if and only if its only

endomorphisms are homotheties. So:

Theorem 11. Stable bundles are simple.

Proof. Vide [31], pag. 87.

For holomorphic vector bundles of rank 2 over Pn we also have the converse of the theorem:

Theorem 12. Every simple rank two vector bundle over Pn is stable.

Proof. Vide [31], pag. 87.

Definition 9. A holomorphic vector bundle E on Pn is decomposable if it is isomorphic

to a direct sum F ⊕G, where F and G are two proper sub-bundles F,G ⊂ E. Otherwise,

E is called indecomposable.

If E is decomposable then it has non-trivial endomorphisms, given by different homothe-

ties on both factors. Thus simple bundles are always indecomposable.

We say that a holomorphic vector bundle on Pn of rank r splits when it can be represented

as a direct sum of r holomorphic line bundles

E = OPn(a1)⊕ · · · ⊕ OPn(ar).

Therefore, a rank 2 stable vector bundle on Pn is non split.
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1.5 SHEAF COHOMOLOGY

Cohomology was invented, partly, to solve various problems, for example:

• If X is a variety, dimH0(X,OX) is the number of connected components of X.

• If X is a curve on Pn, dimH0(Pn,IX(q)) is the number of (independent) degree q

hypersurfaces containing X (we make an analysis of this shortly).

In this work we do not develop the general theory on cohomology and Cech cohomology,

for more details see [20, Chapter III]. We recall some important properties that will be

useful for the purposes of it.

For a sheaf F we associate its i-th cohomology group, denoted by H i(X,F), defined for

i ≥ 0 and such that H0(X,F) is the space of global sections of F .

Their most important property is that, given an exact sequence of sheaves

0→ E → F → G → 0,

there is a long exact sequence:

0 H0(X, E) H0(X,F) H0(X,G)

H1(X, E) H1(X,F) H1(X,G)

H2(X, E) H2(X,F) H2(X,G)

Hn(X, E) Hn(X,F) Hn(X,G).

δ0

δ1

In addition, it follows from the definition of Čech cohomology [20] that it commutes with

direct sums, i.e.,

Hp(X,
⊕
i∈I

Fi) =
⊕
i∈I

Hp(X,Fi).

The usefulness of cohomology, and particularly the long exact sequence, depends largely on

our ability to prove that certain cohomology groups vanish, obtaining group isomorphisms,

that will allow us to study geometrical properties of schemes. Next, let us to enunciate

some vanishing results.

Theorem 13 (Vanishing Theorem of Grothendieck). Let X be a noetherian topological

space of dimension n. Then for all i > n and all sheaves of abelian groups F on X, we

have H i(X,F) = 0.

Proof. Vide [20], pag. 208.
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On the other hand, duality is an indispensable tool both computationally and conceptu-

ally. Next, let us to enunciate the following result about duality for vector bundles. See

[31, pag. 4].

Proposition 7 (Serre’s duality). If X is an n-dimensional variety with canonical line

bundle ωX , then we have for any holomorphic vector bundle E over X:

Hq(X,E)∗ ∼= Hn−q(X,E∗ ⊗ ωX).

If X = Pn, the cohomology ring H∗(Pn,Z) is isomorphic to the ring Z[h]/hn+1, where h

is the Poincaré dual of a hyperplane, and hi(Pn, E) := dimCH
i(Pn, E) for a vector bundle

E on Pn.

Serre’s duality implies that:

hq(Pn,Ωp
Pn(k)) = hn−q(Pn,Ωn−p

Pn (−k)).

The values of hq(Pn,Ωp
Pn(k)) are given by the Bott’s formula. For more details see [31,

pag. 4]:

hq(Pn,Ωp
Pn(k)) =



(
k+n−p

k

)(
k−1
p

)
for q = 0, 0 ≤ p ≤ n, k > p

1 for k = 0, 0 ≤ p = q ≤ n(−k+p
−k

)(−k−1
n−p

)
for q = n, 0 ≤ p ≤ n, k < p− n

0 otherwise.

(1.9)

On the other hand, as for submanifolds, one has for any closed subvariety Y ⊂ Pn a short

exact sequence

0→ IY → OPn → OY → 0.

Twist by OPn(q), where q ∈ Z, we get the exact sequence:

0→ IY (q)→ OPn(q)→ OY (q)→ 0.

Hence, applying cohomology we have:

0→ H0(Pn,IY (q))→ H0(Pn,OPn(q))→ H0(X,OY (q)),

is exact, as OY (q) has support Y . Now since

H0(Pn,OPn(q)) =

(0) if q < 0

C(n+q
q ) i.e., all forms of degree q, if q ≥ 0,

then we deduce that:
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H0(Pn,IY (q)) = {all polynomials of degree q vanishing on Y} ∪ {0},

that is, all hypersurfaces V ⊆ Pn such that Y ⊆ V (and 0).

Therefore, to give ξ ∈ H0(Pn,IY (q)) is to give a hypersurface of Pn containing Y . So,

H0(Pn,IY (q)) = (0) if and only if no hypersurface of degree q contains Y .

1.5.1 Hirzebruch-Riemann–Roch

Definition 10. Let X ⊆ Pn be a projective variety and F be a coherent sheaf on X. Then

χ(F) =
n∑
i=0

(−1)ihi(X,F), (1.10)

is the Euler characteristic of F .

In addition, given an exact sequence of sheaves

0→ E → F → G → 0,

then

χ(F) = χ(E) + χ(G).

Example 9. Let Y ⊂ Pn be a irreducible projective curve. If d = h0(OY ) then

χ(OY (t)) = dt+ χ(OY )

i.e, is a polynomial of degree 1 in t.

Theorem 14 (Hirzebruch-Riemann–Roch). If X is a smooth projective variety of dimen-

sion n and F a coherent sheaf on X, then:

χ(F) =

∫
X

(ch(F) · td(X))n. (1.11)

Proof. Vide [20], pag. 432.

Consequently,

Theorem 15. Let F be a coherent sheaf of rank r on P4 with Chern class c1, c2, c3, c4.

Then:

χ(F) = r +

(
c1 + 4

4

)
+

1

12
c22 −

35

12
c2 −

1

6
c21c2 −

5

4
c1c2 +

1

6
c1c3 +

5

4
c3 −

1

6
c4 − 1. (1.12)

We define the following geometric invariant.
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Definition 11. Let X be a scheme of codimension k on Pn. We call positive integer

pa(X) = (−1)k(χ(OX)− 1) the arithmetic genus of X. In particular, if X is a curve, we

have:

pa(X) = h1(X,OX).

Definition 12. Let F be a coherent sheaf and

PF(t) := χ(F(t)), (1.13)

for all t ∈ Z. We say that PF(t) is Hilbert’s polynomial of F .

Proposition 8. Let X ⊆ Pn be a projective variety and F be a coherent sheaf on X.

Then PF is a polynomial function in t of degree dimF .

For more details, see [26, pag. 10].

In particular, PF can be uniquely written in the form

PF(t) =
dimF∑
i=0

αi(F) · t
i

i!

with rational coefficients αi(F), for i = 0, ..., dimF . Furthermore, if F 6= 0 the leading

coefficient αdimF(F), called the multiplicity, is always positive. Note that αdimX(OX) is

the degree of X with respect to O(1).

Definition 13. If F is a coherent sheaf of dimension d = dimX, then

rank(F) =
αd(F)

αd(OX)
, (1.14)

is called rank of F .

Example 10. Let Y be a curve. Note that rank(IY ) = 1. From the exact sequence

0→ IY → OPn → OY → 0,

hence PIY
(t) = POPn (t)− POY

(t). So:

PIY
(t) =

(
t+ n

n

)
− (deg(Y )t+ χ(OY ))

=

tn + · · ·+
(
n! ·
∑n

k=1
1
k

)
t+ n!

n!
−
(

deg(Y )t+ χ(OY )
)

= 1
tn

n!
+ · · ·+

( n∑
k=1

1

k
− deg(Y )

)
t+ 1− χ(OY ).

Then, by Proposition 8, we have dim IY = n. So, by definition 13:

rank(IY ) =
αn(IY )

αn(OPn)
=

1

1
= 1. (1.15)
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Theorem 16 (Grothendieck-Riemann-Roch). Let f : X → X ′ be a smooth projective

morphism of non-singular projective varieties and Tf the relative tangent bundle of f .

Then for any α ∈ K(X) the following relation holds in A(X ′)⊗Q:

ch(f!α) = f∗(ch(α) · td(Tf )),

where K(X) is the Grothendieck group.

Proof. Vide [20], pag. 436.

The degree deg(α) of a k-cycle α ∈ Ak(X) is defined as the integer

deg(α) =

∫
X

c1(OX(1))k ∩ α.

As a consequence of the Grothendieck-Riemann-Roch Theorem, we have:

Proposition 9. Let X be a smooth quasi-projective algebraic variety and Y a closed

subvariety of X of codimension k . Let Ak(Y ) denotes the group of cycles of codimension

k on Y modulo rational equivalence. Then:

1. cj(OY ) = 0, for 0 < j < k.

2. ck(OY ) = (−1)k−1(k − 1)! · [Y ],

where [Y ] ∈ Ak(Y ).

Proof. Vide [28], pag. 157.

Under the same hypotheses and using the exact sequence:

0→ IY → OX → OY → 0,

we can relate the k-th Chern class of ideal sheaf IY and its fundamental class.

Corollary 3. Let X be a projective variety of dimension n, Y be a non-singular variety

of codimension k and i : Y → X, a closed imbedding. Then for any [Y ] ∈ Ak(Y ) holds:

ck(IY ) = (−1)k(k − 1)! · [Y ].

1.6 SHEAVES GENERATED BY GLOBAL SECTIONS

Definition 14. A coherent analytic sheaf F is said to be generated by global sections if

the canonical homomorphism of sheaves

ϕ : H0(Pn,F)⊗C OPn → F , ϕx(s⊗ h) = hsx,

is surjective.
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Example 11. OP4(1), TP4(−1), Ω1
P4(2).

In effect:

• Consider the Euler exact sequence:

0→ OP4 → OP4(1)⊕5 → TP4 → 0,

twisting by OP4(−1) we have:

0→ OP4(−1)→ O⊕5P4 → TP4(−1)→ 0,

with long exact sequence of cohomology:

0→ H0(P4,OP4(−1))→ H0(P4,OP4)⊕5 → H0(P4, TP4(−1))→ H1(P4,OP4(−1))→ · · · .

Since H i(OP4(−1)) ' 0 for all i then H0(P4, TP4(−1)) ' H0(P4,OP4)⊕5 hence:

ϕ : H0(P4, TP4(−1))⊗C OPn → TP4(−1),

is a surjective map.

• Since the dual and tensor product of two sheaves generated by global sections is

generated by global sections, then:

(TP4(−1))∗ ⊗OP4(1) = Ω1
P4(1)⊗OP4(1) = Ω1

P4(2),

is generated by global sections too.

1.7 DEGENERACY LOCI OF MAPS

In this section we recall some basic results on an important type of determinantal variety,

the degeneracy loci of morphisms. For more details see [32].

1.7.1 Degeneracy loci of maps of vector bundles

Let E,F be vector bundle on the variety X such that rankE = e and rankF = f . Let

ϕ : E → F be a morphism.

Definition 15.

Dk(ϕ) := {x ∈ X ; rank(ϕx) ≤ k}

is called the k-th degeneracy locus of ϕ.
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Dk(ϕ) has a natural subscheme structure of X defined by the ideal generated by the

(k + 1)× (k + 1) minors of a matrix representation of ϕ.

Definition 16. If codimX Dk(ϕ) = (e − k)(f − k) we say that Dk(ϕ) has the expected

codimension.

If k = min{e, f}−1 thenDk(ϕ) := Sing(ϕ) is maximal degeneracy loci and codimX Sing(ϕ) =

f − e+ 1 is the expected codimension.

Theorem 17 (Bertini type). Let E, F be vector bundles on a variety X such that

rankE = m, rankF = n. Let E∗ ⊗ F be generated by the global sections. If ϕ : E → F

is a generic morphism, then one of the following holds:

• Dk(ϕ) is empty.

• Dk(ϕ) has the expected codimension (m− k)(n− k) and Sing(Dk(ϕ)) ⊂ Dk−1(ϕ).

In particular if dimX < (m− k + 1)(n− k + 1) then Dk(ϕ) is empty or smooth when ϕ

is generic.

Proof. Vide [32], pag. 16.

Theorem 18. Let X be an irreducible complex projective variety of dimension n and let

ϕ : E → F be a homomorphism of vector bundles on X of ranks e and f . Assume that

the vector bundle E∗ ⊗ F = Hom(E,F ) is ample. Then:

• Dk(ϕ) is non-empty if n ≥ (e− k)(f − k).

• Dk(ϕ) is connected when n > (e− k)(f − k).

Proof. Vide [17], pag. 273.

1.7.2 The Eagon-Northcott resolution

Let E and G be locally free sheaves on X of rank e and g respectively and ϕ : E → G a

generically surjective morphism. By taking maximum exterior power on both sides, we

obtain a map:
∧g ϕ :

∧g E → detG. It corresponds to a global section

ωϕ ∈ H0(X,

g∧
(E∗)⊗ detG).

Definition 17. The degeneracy scheme Sing(ϕ) of the map ϕ : E → G is the zero scheme

of the associated global section ωϕ ∈ H0(X,
∧g(E∗)⊗ detG).
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Note also that ωϕ can be considered as a map
∧g E ⊗ det(G)∗ → OX ; the image of such

map is the ideal sheaf of Sing(ϕ).

Suppose that Y = Sing(ϕ) ⊂ X has pure expected dimension, i.e., Y has pure codimension

equal to e−g+1. Then the ideal sheaf of Y admits a special resolution, called the Eagon-

Northcott resolution:

0→
e∧
E ⊗ Se−g(G∗)⊗ det(G∗)→

e−1∧
E ⊗ Se−g−1(G∗)⊗ det(G∗)→ · · ·

· · · →
g+1∧
E ⊗ G∗ ⊗ det(G∗)→

g∧
E ⊗ det(G∗)→ IY → 0.

(1.16)

For more details, see [13].

1.8 ACM AND AB SCHEMES

In this section we define the arithmetically Cohen-Macaulay and arithmetically Buchs-

baum schemes. For more details on Buchsbaum and Cohen-Macaulay rings, see [2] and

[37].

Definition 18. A closed subscheme X ⊂ Pn is arithmetically Cohen-Macaulay (aCM for

short) if its homogeneous coordinate ring S(X) = k[x0, ..., xn]/I(X) (where I(X) is the

satured ideal of X) is a Cohen-Macaulay ring. This is equivalent to saying H i
∗(OX) = 0

for 1 ≤ i ≤ dimX − 1 and H1
∗ (IX) = 0.

For any coherent sheaf F we are using the notation H i
∗(F) as the sum

⊕
k∈ZH

i(F(k))

and as usual IX will denote as the sheaf of ideals associated to the variety X.

Definition 19. A closed subscheme X on Pn is arithmetically Buchsbaum (aB for short)

if its homogeneous coordinate ring is a Buchsbaum ring. Every aCM scheme is aB, but

the converse is not true.

In this work we use the following cohomological characterization of arithmetically Buchs-

baum schemes. For more details, see: [37].

Proposition 10 (Stückrad, Vogel). If X ⊂ Pn is closed subscheme such that:

1. The multiplication map Hp(IX(i))
x−→ Hp(IX(i + 1)) is zero for every section

x ∈ H0(OPn(1)), i ∈ Z and 1 ≤ p ≤ dimX;

2. hp(IX(i)), hq(IX(j)) 6= 0 for 1 ≤ p < q ≤ dimX, implies (p + i) − (q + j) 6= 1;

then X is arithmetically Buchsbaum.
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2 THE HORROCKS-MUMFORD BUNDLE

2.1 HOLOMORPHIC VECTOR BUNDLES ON Pn

It is know that given cohomology class (a, b) ∈ H2(P4,Z) ⊕ H4(P4,Z), there exits a

rank 2 topological complex E with Chern class c(E) = 1 + ah + bh2, if and only if the

Schwarzenberger’s condition

S2
4 : b · (b+ 1− 3a− 2a2) ≡ 0 mod (12)

is satisfied.

The problem lies in the existence of a holomorphic structure in a given topological vector

bundle E.

In order to present the Horrocks-Mumford bundle, we recall some known results about

the existence of vector bundles on Pn. For more details, see: [24, pag. 139].

2.1.1 The projective line P1

On the projective line all holomorphic vector bundles split as a sum of line bundles.

Theorem 19 (Grothendieck’s). Every holomorphic r-bundle E on P1 is of the form:

E = OP1(a1)⊕ · · · ⊕ OP1(ar),

with uniquely determined numbers a1, ..., ar ∈ Z with a1 ≥ a2 ≥ · · · ≥ ar.

2.1.2 The projective plane P2

Topological C2-bundles over P2 were classified by Wu:

Theorem 20. There is a bijection between the isomorphism classes of topological C2-

bundles on P2 and Z2 given by associating to each vector bundle E its Chern classes

(c1(E), c2(E)).

Do these vector bundles admit a holomorphic structure?. A positive answer was given by

Schwarzenberger.

Theorem 21. Every topological C2-bundle on P2, and hence every complex topological

vector bundle on P2 admits a holomorphic structure.

As a consequence of this result, there are many bundles of rank 2 on P2.
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2.1.3 Projective space P3

Here the situation is similar to P2. The topological C2-bundles on P3 were classified by

Atiyah and Rees who also proved the following.

Theorem 22. Every topological C2-bundle on P3 admits an holomorphic structure.

This was generalized by Vogelaar to higher rank.

Theorem 23. Every topological C3-bundle on P3, and hence every complex topological

bundle on P3, carries at least one holomorphic structure.

2.1.4 Higher dimensional projective spaces Pn, n ≥ 5

If the characteristic of the base field is different from 2, then no indecomposable rank

2 bundles on Pn, n ≥ 5 are known. (Horrocks constructed one indecomposable rank 2

bundle on P5 in characteristic 2).

There are two conjectures concerning the non-existence of rank 2 bundles on Pn, n ≥ 4:

Conjecture 1 (Grauert-Schneider). Every unstable rank 2 bundle on Pn, n ≥ 4, is the

sum of two line bundles.

Conjecture 2 (Hartshorne). Every rank 2 vector bundle on Pn, n ≥ 6, split as a sum of

line bundles.

The latter conjecture was originally formulated in terms of complete intersections.

2.1.5 Projective space P4

In 1972, G. Horrocks and D. Mumford proved in [23] the existence of a indecomposable

vector bundle of rank 2 on P4, namely the Horrocks-Mumford bundle E, which comes

from an abelian surface of degree 10. This is essentially the only known indecomposable

2-bundle on P4. The Chern classes of this bundle are:

c1(E) = 5, c2(E) = 10. (2.1)

Hence, E∗ = E(−5) and detE = OP4(5).

2.2 HORROCKS-MUMFORD BUNDLE

There are several methods to build the Horrocks-Mumford bundle. In this thesis we go

to adopt a construction using monads. For more details about monads, see: [31], [34].
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Definition 20. A monad is a complex of holomorphic vector bundles

0→ A
α−→ B

β−→ C → 0,

which is exact except possibly at B.

The sheaf F = Ker β/ Imα is a holomorphic vector bundle, called the cohomology of the

monad, with rankF = rankB − rankA− rankC and Chern class

c(F ) = c(B) · c(A)−1 · c(C)−1.

The Horrocks-Mumford bundle is given by the monad:

0→ OP4(−1)⊕5
α−→ Ω2

P4(2)⊕2
β−→ O⊕5P4 → 0, (2.2)

such that the cohomology of monad 2.2 is:

Eη = Ker β/ Imα,

where F := Eη = E(−3) is the normalized of Horrocks-Mumford bundle, such that

c(F ) = 1− h + 4h2.

With associated display:

0 0

0 OP4(−1)⊕5 K Eη 0

0 OP4(−1)⊕5 Ω2
P4(2)⊕2 Q 0

O⊕5P4 O⊕5P4

0 0
(2.3)

where K := Ker β and Q := Cokerα.
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2.2.1 Properties of Horrocks-Mumford bundle

• The Horrocks-Mumford bundle E is a stable sheaf. In fact, since Eη = E(−3)

then it follows of the cohomology table (1) that h0(P4, E(−3)) = 0, i.e., Eη has no

sections, therefore by Lemma 1 we have E is a stable vector bundle. Similarly E(k)

are stable, for all k ∈ Z.

• This is essentially the only known indecomposable rank 2 vector bundle on P4, [11].

Certainly this is not entirely true, we can twist E by a linear bundle or may pull E

back under a finite morphism π : P4 → P4.

• In addition, since E is stable then E is simple, so holds that h0(Pn, E∗ ⊗ E) = 1.

• In particular, the Horrocks-Mumford bundle E is non-split.

The following result will be useful in this work to describe our study problem.

Proposition 11 (H. Sumihiro - 1998). E(1) is generated by global sections and it is

1-ample in the sense of A. Sommese. Hence E(a) is very ample if and only if a ≥ 2.

Proof. Vide [36], pag. 427.

In particular E(a), for a ≥ 1, is a vector bundle generated by global sections.

2.2.2 Horrocks-Mumford bundle cohomologies

The dimensions of the cohomology groups of the Horrocks-Mumford bundle are described

in Table (1).

Table 1 – Table of dimH i(E(k))

k H0 H1 H2 H3 H4

k ≥ 1 ((k+5)2−1)((k+5)2−24)
12

0 0 0 0
0 4 2 0 0 0
-1 0 10 0 0 0
-2 0 10 0 0 0
-3 0 5 0 0 0
-4 0 0 0 0 0
-5 0 0 2 0 0
-6 0 0 0 0 0
-7 0 0 0 5 0
-8 0 0 0 10 0
-9 0 0 0 10 0
-10 0 0 0 2 4

k ≤ −11 0 0 0 0 ((k+5)2−1)((k+5)2−24)
12
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Hence, by Hirzebruch–Riemann–Roch theorem:

χ
(
E(k)

)
=

1

12

(
(k + 5)2 − 1

)(
(k + 5)2 − 24

)
, k ∈ Z. (2.4)

For more details, see [23, pag. 74].

2.2.3 The Moduli space of the Horrocks-Mumford bundle

Let MP4(−1, 4) be the Moduli space that describes the Horrocks-Mumford bundle.

H1(P4,Hom(F, F )) is isomorphic to the Zariski tangent space of MP4(−1, 4) in the point

F defined by [F ] and from H2(P4,Hom(F, F )) = 0 follows MP4(−1, 4) is smooth in [F ].

The following results are provided in [10, pag. 104] and [11, pag. 218]:

Theorem 24 (W. Decker, 1984). Let F be the Horrocks-Mumford bundle. Then:

• h1(P4,Hom(F, F )) = 24, h1(P4,Hom(F, F )) = 5, h1(P4,Hom(F, F )(k)) = 0 for

k ≤ −2 and

h2(P4,Hom(F, F )) = 2.

• MP4(−1, 4) is smooth in [F ] with dimension 24.



3 HOLOMORPHIC DISTRIBUTIONS AND

FOLIATIONS

3.1 HOLOMORPHIC DISTRIBUTIONS AND FOLIATIONS

In this section we will recall some definitions about holomorphic distributions and folia-

tions.

Definition 21. Let X be a complex manifold of complex dimension n = k+s. A saturated

codimension k singular holomorphic distribution on X is given by a short exact sequence

of analytic coherent sheaves

F : 0→ TF
ϕ−→ TX

π−→ NF → 0, (3.1)

where TF is a coherent sheaf of rank r := dim(X) − k, and NF is a non-trivial torsion

free sheaf of rank k on X.

The sheaves TF and NF are called the tangent and the normal sheaves of F , respectively.

Note that by Proposition 4 TF must be reflexive.

By taking maximum exterior power of the map ϕ : TF → TX, we have:

n−k∧
ϕ :

n−k∧
TF →

n−k∧
TX,

i.e.,

n−k∧
ϕ : det(TF )→

n−k∧
TX.

This induces a global section ω ∈ H0(X,
∧n−k TX ⊗ det(TF )∗).

Since

n−k∧
TX ' Ωk

X ⊗ det(TX),

then

PH0(X,
n−k∧

TX ⊗det(TF )∗) ' PH0(X,Ωk
X ⊗det(TX)⊗det(TF )∗) = PH0(X,Ωk

X ⊗L),

where L = det(TX) ⊗ det(TF )∗ = det(NF ). Therefore, the space of the holomorphic

distributions of codimension k in X may be identified by a class of sections
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[ω] ∈ PH0(X,Ωk
X(c1(NF ))).

Let us now define the singular scheme of F . In order to do this, by taking the maximal

exterior power of the dual morphism ϕ∨ : Ω1
X → T ∗F we obtain the morphism:

ψ =
∧n−k ϕ∗ : Ωn−k

X → det(TF )∗. The image of such morphism is the ideal sheaf IZ with

support on a closed subscheme Z ⊂ X twisted by det(TF )∗, i.e.:

ψ : Ωn−k
X → Im(ψ) = IZ ⊗ det(TF )∗ ⊂ OX ⊗ (det(TF )∗).

Definition 22. Sing(F ) := Z ⊂ X the singular scheme of F .

A distribution F is said to be locally free if TF is a locally free sheaf. Note that if the

tangent sheaf TF is locally free, then Z coincides, as a set, with the singular set of the

normal sheaf. In fact [31]:

Sing(NF ) :=

dim(X)−1⋃
p=1

Supp(Extp(NF ,OX)),

where by Supp(−) we mean the set-theoretical support of a sheaf. If TF is locally free,

then Extp(NF ,OX) = 0 for p ≥ 2, therefore:

Sing(NF ) = Supp
(
Ext1(NF ,OX)

)
= {x ∈ X | ϕ(x) is not injective}

= {x ∈ X|(NF )x is not free Ox - module}

= Supp(OZ)

= Z.

Since NF is a coherent sheaf on a projective complex manifold, then the singular scheme

Sing(F ) of the distribution F is a closed analytic subvariety of X. Moreover, since NF

is a torsion free sheaf then by Theorem 9 we have codim(Sing(F )) ≥ 2.

Next, let define the notion of integrability. A foliation is an integrable distribution, i.e, a

distribution:

F : 0→ TF
ϕ−→ TX → NF → 0,

whose tangent sheaf is closed under the Lie bracket of vector fields, i.e.,

[ϕ(TF ), ϕ(TF )] ⊂ ϕ(TF ).

A codimension k holomorphic foliation on X may be represented by a class of sections

[ω] ∈ PH0(X,Ωk
X ⊗ det(TX)⊗ det(TF )∗), such that the singular set

Sing(ω) = {p ∈ X | ω(p) = 0} has codim(Sing(ω)) ≥ 2.
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The integrability condition can also be defined as follows. Let U ⊂ X a open set and

ω ∈ Ωk
X(U). For any p ∈ U \ Sing(ω) there exist a neighborhood V of p, V ⊂ U , and

1-forms ω1, ..., ωk ∈ Ω1
X(V ) such that:

ω |V = ω1 ∧ · · · ∧ ωk.

We say that ω satisfies the integrability condition if and only if, dωj ∧ ω1 ∧ · · · ∧ ωk = 0,

∀j = 1, ..., k.

Alternatively, a foliation F , of codimension k, can be induced by a exact sequence

0→ N∗F → Ω1
X → QF → 0,

where QF is a torsion free sheaf of rank n − k and the sheaf N∗F is called the conormal

sheaf of F . Moreover, the singular set of F is Sing(QF ). We say that this foliation is

induced by the cotangent sheaf.

In particular to the caseX = Pn, a singular holomorphic foliation F on Pn, of codimension

k ≥ 1, is given by a locally decomposable and integrable twisted k-form

ω ∈ H0(Pn,Ωk
Pn ⊗ L),

where L = det(NF ).

Next, we define the main invariant of a distribution, the degree of F . The degree of F ,

denoted by deg(F ), is by definition the degree of the zero locus of i∗ω, where i : Pk ↪→ Pn

is a linear embedding of a generic k-plane. Since Ωk
Pk = OPn(−k− 1) so it follows at once

that L = OPn(deg(F ) + k + 1). In particular L is ample. Thus:

Definition 23. The degree of the foliation F , denoted by deg(F ), is defined by

deg(F ) = c1(NF )− codim(F )− 1.

On the other hand, the vector space H0(Pn,OPn(deg(F ) + k + 1)) can be canonically

identified by the vector space of k-forms on Cn+1 with homogeneous coefficients of degree

d+ 1, whose contraction iRω = 0 with the radial vector field R =
∑n

i=0 xi ·
∂
∂xi

.

Since F is a holomorphic foliation of codimension k of degree d = deg(F ) then F is

induced by a k-form ω ∈ H0(Ωk
Pn(d+ k + 1)). Now, it follows from the Euler sequence:

0→ Ωk
Pn(k)→ O⊕(n+1

k )
Pn → Ωk−1

Pn (k)→ 0,

twisting by OPn(d+ 1):

0→ Ωk
Pn(d+ k + 1)→ OPn(d+ 1)⊕(n+1

k ) → Ωk−1
Pn (d+ k + 1)→ 0,

hence by long exact sequence of cohomology and using Bott’s formula, we have:
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0→ H0(Pn,Ωk
Pn(d+ k+ 1))→ H0(Pn,OPn(d+ 1))⊕(n+1

k ) → H0(Pn,Ωk−1
Pn (d+ k+ 1))→ 0,

i.e, a section ω of Ωk
Pn(d+ k + 1) can be thought of as a polynomial k-form on Cn+1

ω(z) =
∑
i1,...,ik

ai1···ik(z)dz1 ∧ · · · ∧ dzk,

with homogeneous coefficients of degree deg(ai1···ik(z)) = d+1. Since Za = {ai1···ik(z) = 0}
then Za is contained in a hypersurface of degree d+ 1.

3.2 RELATIONS BETWEEN THE SINGULAR SCHEME AND THE

TANGENT SHEAF

L. Giraldo and A. Pan-Collantes characterized when the tangent sheaf, of a codimension

one holomorphic foliation in P3, is locally free or split (as a sum of linear bundles) in

terms of the geometry of their Singular scheme.

Theorem 25 (L. Giraldo, A. Pan-Collantes - 2009). The tangent sheaf TF is locally free

if and only if Z = Sing(F ) is a curve.

Proof. Vide [19], pag. 848.

Theorem 26 (L. Giraldo, A. Pan-Collantes - 2009). Suppose deg(F ) > 1. Then TF

splits if and only if Z is an arithmetically Cohen-Macaulay curve.

Proof. Vide [19], pag. 849.

Shortly after, M. Corrêa, M. Jardim and R. Vidal generalized these facts for distributions

in Pn whose tangent sheaf splits as a sum of linear bundles.

Theorem 27 (M. Corrêa, M. Jardim, R. Vidal - 2015). Let F be a distribution on Pn of

codimension k, such that the tangent sheaf TF is locally free, and whose singular locus

has the expected dimension n−k−1. If TF splits as a sum of line bundles, then Sing(F )

is arithmetically Cohen-Macaulay. Conversaly, if k = 1 and Sing(F ) is arithmetically

Cohen-Macaulay, then TF splits as a sum of line bundles.

Proof. Vide [8], pag. 2.

Remark: The goal of this thesis is to consider codimension two holomorphic distributions

on P4 whose tangent and conormal sheaf are Horrocks-Mumford, that is, the tangent and

conormal sheaf of the distribution is a stable vector bundle of rank 2, non-split. We are

going to study the geometry of its singular scheme and its Moduli space.
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3.3 A BERTINI TYPE THEOREM FOR REFLEXIVE SHEAVES

In [6], the authors gave a generalization of a Bertini-type Theorem for reflexive sheaves

in order to construct new distributions.

Theorem 28 (O. Calvo Andrade, M. Corrêa, M. Jardim - 2018). Let G be a globally

generated reflexive sheaf on a projective variety X such that rankG ≤ dimX − 1 ≥ 2. If

T X ⊗ L is globally generated, for some line bundle L, then G∗ ⊗ L∗ is the tangent sheaf

of a distribution on X of codimension n− rankG.

Proof. Vide [6], pag. 61.

From now on we only consider codimension two distributions on X = P4.
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4 GEOMETRIC PROPERTIES OF THE

SINGULAR SCHEME

In this chapter, we study the geometry of the singular scheme of Horrocks-Mumford

holomorphic distributions. We establish relationships between the numerical invariants

of the tangent and conormal sheaves and the numerical invariants of the singular scheme.

We determine the genus and degree of the singular scheme and we show that the singular

scheme of these distributions of high degree is an arithmetically Buschbaum, smooth,

reduced and irreducible curve; and hence without isolated singularities. The techniques

used are based on the study of the long exact cohomology sequence of (4.18) and (4.30)

together with the knowledge of cohomologies of the Horrocks-Mumford bundle.

4.1 VANISHING LEMMAS

The following Vanishing Lemmas are consequences of having considered the Euler’s exact

sequence twisted by a convenient sheaf and its long exact sequence of Cohomology. Using

the Cohomologies table (1) of the Horrocks-Mumford bundle and in some cases using

Macaulay2 (see script in the Appendix 8), we obtain:

Lemma 2. Let E be the Horrocks-Mumford bundle. Then for j = 1, 2, 3 and k ∈ Z we

have:

1. h0(Ωj
P4 ⊗ E(k)) = 0 for k ≤ j.

2. h1(Ωj
P4 ⊗ E(k)) = 0 for k ≤ j − 4 or k ≥ j + 1.

3. h2(Ωj
P4 ⊗ E(k)) = 0 for k ≤ j − 6 or k ≥ j − 3.

4. h3(Ωj
P4 ⊗ E(k)) = 0 for k ≤ j − 10 or k ≥ j − 5.

5. h4(Ωj
P4 ⊗ E(k)) = 0 for k ≥ j − 9.

Proof. Let us consider the Euler exact sequence:

0→ Ω1
P4(1)→ O⊕5P4 → OP4(1)→ 0.

Then, twisting by E(k − 1) we have:

0→ Ω1
P4 ⊗ E(k)→ E(k − 1)⊕5 → E(k)→ 0. (4.1)

Now, taking long exact sequence of cohomology, we have:
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0→ H0(P4,Ω1
P4 ⊗ E(k))→ H0(P4, E(k − 1))⊕5 → H0(P4, E(k))→ · · ·

and by cohomology table 1 of the Horrocks-Mumford bundle, we have: h0(P4, E(k−1)) = 0

for k ≤ 0 then there is an isomorphism such that h0(P4,Ω1
P4 ⊗ E(k)) = 0 for k ≤ 0, and

by Macaulay2, see Appendix 8, this sheaf is null for k = 1, so:

h0(P4,Ω1
P4 ⊗ E(k)) = 0 for k ≤ 1.

Let us consider the long sequence of cohomology of sequence (4.1), we have:

· · · → H0(E(k−1))⊕5 → H0(P4, E(k))→ H1(P4,Ω1
P4⊗E(k))→ H1(P4, E(k−1))⊕5 → · · · .

Since h0(E(k − 1)) = 0 = h1(E(k − 1)) for k ≤ −3, then h1(Ω1
P4 ⊗ E(k)) = h0(E(k)) for

k ≤ −3. But h0(E(k)) = 0 for k ≤ −1, then

h1(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −3,

and by Macaulay2 this sheaf is also null for k ≥ 2, thus:

h1(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −3 or k ≥ 2.

Let us consider the long sequence of cohomology of sequence (4.1), we have:

· · · → H1(P4, E(k))→ H2(P4,Ω1
P4⊗E(k))→ H2(P4, E(k−1))⊕5 → H2(P4, E(k))→ · · · .

It follows from the cohomology table 1 that: h1(P4, E(k)) = 0 = h2(P4, E(k)) since

k ≤ −6 or k = −4 or k ≥ 1, hence there is a isomorphism

H2(P4,Ω1
P4 ⊗ E(k)) ' H2(P4, E(k − 1))⊕5,

for k ≤ −6 or k = −4 or k ≥ 1, i.e., h2(P4,Ω1
P4 ⊗E(k)) = 5 · h2(P4, E(k − 1)) for k ≤ −6

or k = −4 or k ≥ 1. And since h2(E(k − 1)) = 0 for k ≤ −5 or k ≥ −3, we have:

h2(P4,Ω1
P4 ⊗ E(k)) = 0 for k ≤ −6 or k ≥ 1. (4.2)

On the other hand, considering the sequence:

· · · → H1(P4, E(k−1))⊕5 → H1(P4, E(k))→ H2(P4,Ω1
P4⊗E(k))→ H2(P4, E(k−1))⊕5 → · · ·

Since h1(E(k − 1)) = 0 = h2(E(k − 1)) for k ≤ −5 or k = −3 or k ≥ 2, then

h2(Ω1
P4 ⊗ E(k)) = h1(E(k)) for k ≤ −5 or k = −3 or k ≥ 2.
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But h1(E(k)) = 0 for k ≤ −4 or h ≥ 1, thus:

h2(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −5 or k ≥ 2. (4.3)

From (4.2) and (4.3), we have:

h2(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −5 or k ≥ 1.

And using Macaulay2 this sheaf is also null for k = −2,−1, 0, thus:

h2(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −5 or k ≥ −2.

Let us consider the long exact sequence of cohomology of sequence (4.1), we have:

· · · → H2(P4, E(k))→ H3(P4,Ω1
P4⊗E(k))→ H3(P4, E(k−1))⊕5 → H3(P4, E(k))→ · · · .

It follows from the cohomology table 1 that: h2(P4, E(k)) = 0 = h3(P4, E(k)) since

k ≤ −11 or k = −6 or k ≥ −4, then there is a isomorphism

H3(P4,Ω1
P4 ⊗ E(k)) ' H3(P4, E(k − 1))⊕5,

for k ≤ −11 or k = −6 or k ≥ −4, i.e., h3(P4,Ω1
P4 ⊗ E(k)) = 5 · h3(P4, E(k − 1)) for

k ≤ −11 or k = −6 or k ≥ −4. And since h3(E(k − 1)) = 0 for k ≤ −10 or k ≥ −5, we

have:

h3(P4,Ω1
P4 ⊗ E(k)) = 0 for k ≤ −11 or k ≥ −4. (4.4)

On the other hand, considering the sequence:

· · · → H2(P4, E(k−1))⊕5 → H2(P4, E(k))→ H3(P4,Ω1
P4⊗E(k))→ H3(P4, E(k−1))⊕5 → · · · .

Since h2(E(k − 1)) = 0 = h3(E(k − 1)) for k ≤ −10 or k = −5 or k ≥ −3, then

h3(Ω1
P4 ⊗ E(k)) = h2(E(k)) for k ≤ −10 or k = −5 or k ≥ −3. But h2(E(k)) = 0 for

k ≤ −6 or h ≥ −4, thus:

h3(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −10 or k ≥ −3. (4.5)

From (4.4) and (4.5) we have:

h3(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −10 or k ≥ −4.

And using Macaulay2 this sheaf is also null for k = −9, thus:

h3(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −9 or k ≥ −4.
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Let us consider the long exact sequence of cohomology of sequence (4.1), we have:

· · · → H3(P4, E(k))→ H4(P4,Ω1
P4⊗E(k))→ H4(P4, E(k−1))⊕5 → H4(P4, E(k))→ · · · .

From the cohomology table 1 we have: h3(P4, E(k)) = 0 = h4(P4, E(k)) when k ≥ −6,

then there is a isomorphism H4(P4,Ω1
P4 ⊗ E(k)) ' H4(P4, E(k − 1))⊕5 for k ≥ −6, i.e.,

h4(P4,Ω1
P4 ⊗E(k)) = 5 · h4(P4, E(k− 1)) for k ≥ −6. Since h4(E(k− 1)) = 0 for k ≥ −8,

we have:

h4(P4,Ω1
P4 ⊗ E(k)) = 0 for k ≥ −6.

And using Macaulay2 this sheaf is also null for k = −7,−8, thus:

h4(P4,Ω1
P4 ⊗ E(k)) = 0 for k ≥ −8. (4.6)

Let us consider the Euler exact sequence:

0→ Ω2
P4(2)→ O⊕10P4 → Ω1

P4(2)→ 0,

and twisting by E(k − 2), we have:

0→ Ω2
P4 ⊗ E(k)→ E(k − 2)⊕10 → Ω1

P4 ⊗ E(k)→ 0. (4.7)

Now, let us consider the long exact sequence of cohomology of sequence (4.7), we have:

0→ H0(P4,Ω2
P4 ⊗ E(k))→ H0(P4, E(k − 2))⊕10 → H0(P4,Ω1

P4 ⊗ E(k))→ · · · ,

since h0(Ω1
P4 ⊗ E(k)) = 0 for k ≤ 1 then there is an isomorphism such that

h0(Ω2
P4 ⊗ E(k)) = 10 · h0(E(k − 2)),

for k ≤ 1. But by cohomology table 1, we have h0(E(k − 2)) = 0 for k ≤ 1. Thus

h0(Ω2
P4 ⊗ E(k)) = 0 for k ≤ 1.

And using Macaulay2 this sheaf is also null for k = 2, thus:

h0(Ω2
P4 ⊗ E(k)) = 0 for k ≤ 2.

Taking the long exact sequence of cohomology of sequence (4.7), we have:

· · · → H0(E(k−2))⊕10 → H0(Ω1
P4⊗E(k))→ H1(Ω2

P4⊗E(k))→ H1(E(k−2))⊕10 → · · · .

Since h0(k − 2) = 0 = h1(k − 2) for k ≤ −2, then h1(Ω2
P4 ⊗ E(k)) = h0(Ω1

P4 ⊗ E(k)) for

k ≤ −2. But h0(Ω1
P4 ⊗ E(k)) = 0 for k ≤ 1, thus:
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h1(Ω2
P4 ⊗ E(k)) = 0 for k ≤ −2.

And using Macaulay2 this sheaf is also null for k ≥ 3, thus:

h1(Ω2
P4 ⊗ E(k)) = 0 for k ≤ −2 or k ≥ 3.

Considering the long exact sequence of cohomology of sequence (4.7), we have:

· · · → H1(E(k−2))⊕10 → H1(Ω1
P4⊗E(k))→ H2(Ω2

P4⊗E(k))→ H2(E(k−2))⊕10 → · · · .

Since h1(k − 2) = 0 = h2(k − 2) for k ≤ −4 or k = −2 or k ≥ 3, then

h2(Ω2
P4 ⊗ E(k)) = h1(Ω1

P4 ⊗ E(k)),

for k ≤ −4 or k = −2 or k ≥ 3. But h1(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −3 or k ≥ 2, then:

h2(Ω2
P4 ⊗ E(k)) = 0 for k ≤ −4 or k ≥ 3.

And using Macaulay2 this sheaf is also null for k = −1, 0, 1, 2, thus:

h2(Ω2
P4 ⊗ E(k)) = 0 for k ≤ −4 or k ≥ −1.

Considering the long exact sequence of cohomology of sequence (4.7), we have:

· · · → H2(E(k−2))⊕10 → H2(Ω1
P4⊗E(k))→ H3(Ω2

P4⊗E(k))→ H3(E(k−2))⊕10 → · · · .

Since h2(E(k − 2)) = 0 = h3(E(k − 2)) for k ≤ −9 or k = −4 or k ≥ −2, then

h3(Ω2
P4⊗E(k)) = h2(Ω1

P4⊗E(k)) for k ≤ −9 or k = −4 or k ≥ −2. But h2(Ω1
P4⊗E(k)) = 0

for k ≤ −5 or k ≥ −2. Then:

h3(Ω2
P4 ⊗ E(k)) = 0 for k ≤ −9 or k ≥ −2.

And using Macaulay2 this sheaf is also null for k = −8,−3, thus:

h3(Ω2
P4 ⊗ E(k)) = 0 for k ≤ −8 or k ≥ −3.

Considering the long exact sequence of cohomology of sequence (4.7), we have:

· · · → H3(E(k−2))⊕10 → H3(Ω1
P4⊗E(k))→ H4(Ω2

P4⊗E(k))→ H4(E(k−2))⊕10 → · · · .

Since h3(E(k − 2)) = 0 = h4(E(k − 2)) for k ≥ −4, then

h4(Ω2
P4 ⊗ E(k)) = h3(Ω1

P4 ⊗ E(k)),
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for k ≥ −4. But h3(Ω1
P4 ⊗ E(k)) = 0 for k ≤ −9 or k ≥ −4. Thus:

h4(Ω2
P4 ⊗ E(k)) = 0 for k ≥ −4.

And using Macaulay2 this sheaf is also null for k = −7,−6,−5, thus:

h4(Ω2
P4 ⊗ E(k)) = 0 for k ≥ −7.

Let us consider the Euler exact sequence:

0→ OP4(−1)→ O⊕5P4 → Ω3
P4(4)→ 0,

and twisting by E(k − 4), we have:

0→ E(k − 5)→ E(k − 4)⊕5 → Ω3
P4 ⊗ E(k)→ 0. (4.8)

Now, let us consider the long exact sequence of cohomology of sequence (4.8), obtaining:

0→ H0(E(k − 5))→ H0(E(k − 4))⊕5 → H0(Ω3
P4 ⊗ E(k))→ H1(E(k − 5))→ · · · .

Since h0(E(k− 5)) = 0 = h1(E(k− 5)) for k ≤ 1, then h0(Ω3
P4 ⊗E(k)) = 5 · h0(E(k− 4))

for k ≤ 1. But h0(E(k − 4)) = 0 for k ≤ 3. Then:

h0(Ω3
P4 ⊗ E(k)) = 0 for k ≤ 1.

By Macaulay2 this sheaf is also null for k = 2, 3, thus:

h0(Ω3
P4 ⊗ E(k)) = 0 for k ≤ 3.

Taking the long exact sequence of cohomology of sequence (4.8), we have:

· · · → H1(E(k − 5))→ H1(E(k − 4))⊕5 → H1(Ω3
P4 ⊗ E(k))→ H2(E(k − 5))→ · · · .

Since h1(E(k − 5)) = 0 = h2(E(k − 5)) for k ≤ −1 or k = 1 or k ≥ 6, then there is an

isomorphism such that h1(Ω3
P4 ⊗ E(k)) = 5 · h1(E(k − 4)) for k ≤ −1 or k = 1 or k ≥ 6.

But h1(E(k − 4) = 0 for k ≤ 0 or k ≥ 5, thus:

h1(Ω3
P4 ⊗ E(k)) = 0 for k ≤ −1 or k ≥ 6. (4.9)

On the other hand, considering the sequence:

· · · → H1(E(k − 4))⊕5 → H1(Ω3
P4 ⊗ E(k))→ H2(E(k − 5))→ H2(E(k − 4))⊕5 → · · · .

Since h1(E(k − 4)) = 0 = h2(E(k − 4)) for k ≤ −2 or k = 0 or k ≥ 5, then

h1(Ω3
P4 ⊗ E(k)) = h2(E(k − 5)) for k ≤ −2 or k = 0 or k ≥ 5.
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But h2(E(k − 5)) = 0 for k ≤ −1 or k ≥ 1. Thus

h1(Ω3
P4 ⊗ E(k)) = 0 for k ≤ −2 or k ≥ 5. (4.10)

Now, from (4.9) and (4.10), we have:

h1(Ω3
P4 ⊗ E(k)) = 0 for k ≤ −1 or k ≥ 5.

And using Macaulay2 this sheaf is also null for k = 4, thus:

h1(Ω3
P4 ⊗ E(k)) = 0 for k ≤ −1 or k ≥ 4.

Taking the long exact sequence of cohomology of sequence (4.8), obtaining:

· · · → H2(E(k − 5))→ H2(E(k − 4))⊕5 → H2(Ω3
P4 ⊗ E(k))→ H3(E(k − 5))→ · · · .

Since h2(E(k − 5)) = 0 = h3(E(k − 5)) for k ≤ −6 or k = −1 or k ≥ 1, then there is an

isomorphism such that h2(Ω3
P4 ⊗E(k)) = 5 · h2(E(k− 4)) for k ≤ −6 or k = −1 or k ≥ 1.

But h2(E(k − 4) = 0 for k ≤ −2 or k ≥ 0, thus:

h2(Ω3
P4 ⊗ E(k)) = 0 for k ≤ −6 or k ≥ 1. (4.11)

On the other hand, considering the sequence:

· · · → H2(E(k − 4))⊕5 → H2(Ω3
P4 ⊗ E(k))→ H3(E(k − 5))→ H3(E(k − 4))⊕5 → · · · .

Since h2(E(k − 4)) = 0 = h3(E(k − 4)) for k ≤ −7 or k = −2 or k ≥ 0, then

h2(Ω3
P4 ⊗ E(k)) = h3(E(k − 5)) for k ≤ −7 or k = −2 or k ≥ 0.

But h3(E(k − 5)) = 0 for k ≤ −6 or k ≥ −1. Thus

h2(Ω3
P4 ⊗ E(k)) = 0 for k ≤ −7 or k ≥ 0. (4.12)

Now, from (4.11) and (4.12), we have:

h2(Ω3
P4 ⊗ E(k)) = 0 for k ≤ −6 or k ≥ 0.

And using Macaulay2 this sheaf is also null for k = −5,−4,−3, thus:

h2(Ω3
P4 ⊗ E(k)) = 0 for k ≤ −3 or k ≥ 0.

Considering the long exact sequence of cohomology of sequence (4.8), obtaining:

· · · → H3(E(k − 4))⊕5 → H3(Ω3
P4 ⊗ E(k))→ H4(E(k − 5))→ H4(E(k − 4))⊕5 → · · · .
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Since h3(E(k − 4)) = 0 = h4(E(k − 4)) for k ≥ −2, then h3(Ω3
P4 ⊗ E(k)) = h4(E(k − 5))

for k ≥ −2. But h4(E(k − 5)) = 0 for k ≥ −4. Thus

h3(Ω3
P4 ⊗ E(k)) = 0 for k ≥ −2.

And using Macaulay2 this sheaf is also null for k ≤ −7, thus:

h3(Ω3
P4 ⊗ E(k)) = 0 for k ≥ −2 or k ≤ −7.

Taking the long exact sequence of cohomology of sequence (4.8), obtaining:

· · · → H4(E(k − 5))→ H4(E(k − 4))⊕5 → H4(Ω3
P4 ⊗ E(k))→ 0.

Since h4(E(k − 5)) = 0 for k ≥ −4, then h4(Ω3
P4 ⊗ E(k)) = 5 · h4(E(k − 4)) for k ≥ −4.

But h4(E(k − 5)) = 0 for k ≥ −5. Then:

h4(Ω3
P4 ⊗ E(k)) = 0 for k ≥ −4.

And by Macaulay2 this sheaf is also null for k = −6,−5, thus:

h4(Ω3
P4 ⊗ E(k)) = 0 for k ≥ −6.

Lemma 3. Let E be the Horrocks-Mumford bundle and K be the sheaf in the display 2.3.

Then for k ∈ Z we have:

1. h0(K ⊗ E(k)) = 0 for k ≤ −1.

2. h1(K ⊗ E(k)) = 0 for k ≤ −4.

3. h2(K ⊗ E(k)) = 0 for k ≤ −6 or k ≥ 1.

4. h3(K ⊗ E(k)) = 0 for k ≤ −10 or k ≥ −4.

5. h4(K ⊗ E(k)) = 0 for k ≥ −6.

Proof. Taking the exact sequence of the display 2.3

0→ K → Ω2
P4(2)⊕2 → O⊕5P4 → 0,

and twisting by E(k), we have:

0→ K⊗ E(k)→
(
Ω2

P4 ⊗ E(k + 2)
)⊕2 → E(k)⊕5 → 0. (4.13)

Now, let us consider the long exact sequence of cohomology of sequence (4.13):



58 4. Geometric properties of the singular scheme

0→ H0(K ⊗ E(k))→ H0(Ω2
P4 ⊗ E(k + 2))⊕2 → H0(E(k))⊕5 → · · · .

Since h0(E(k + 2)⊗ Ω2
P4) = 0 for k ≤ 0 then

h0(K ⊗ E(k)) = 0 for k ≤ 0.

From the long exact sequence of cohomology of sequence (4.13):

· · · → H0(Ω2
P4⊗E(k+2))⊕2 → H0(E(k))⊕5 → H1(K⊗E(k))→ H1(Ω2

P4⊗E(k+2))⊕2 → · · · .

Since h0(Ω2
P4⊗E(k+2)) = 0 = h1(Ω2

P4⊗E(k+2)) for k ≤ −4 then there is an isomorphism

such that h1(K ⊗ E(k)) = 5 · h0(E(k)) for k ≤ −4. But h0(E(k)) = 0 for k ≤ −1. Thus

h1(K ⊗ E(k)) = 0 for k ≤ −4.

From the long exact sequence of cohomology of sequence (4.13):

· · · → H1(Ω2
P4⊗E(k+2))⊕2 → H1(E(k))⊕5 → H2(K⊗E(k))→ H2(Ω2

P4⊗E(k+2))⊕2 → · · · .

Since h1(Ω2
P4 ⊗ E(k + 2)) = 0 = h2(Ω2

P4 ⊗ E(k + 2)) for k ≤ −6 or k ≥ 1 then there

is an isomorphism such that h2(K ⊗ E(k)) = 5 · h1(E(k)) for k ≤ −6 or k ≥ 1. But

h1(E(k)) = 0 for k ≤ −4 or k ≥ 1. Thus

h2(K ⊗ E(k)) = 0 for k ≤ −6 or k ≥ 1.

Regarding the long exact sequence of cohomology of sequence (4.13):

· · · → H2(E(k))⊕5 → H3(K ⊗ E(k))→ H3(Ω2
P4 ⊗ E(k + 2))⊕2 → H3(E(k))⊕5 → · · · .

Since h2(E(k)) = 0 = h3(E(k)) for k ≤ −11 or k = −6 or k ≥ −4 then there is an

isomorphism such that h3(K ⊗ E(k)) = 2 · h3(Ω2
P4 ⊗ E(k + 2)) for k ≤ −11 or k = −6 or

k ≥ −4. But h3(Ω2
P4 ⊗ E(k + 2)) = 0 for k ≤ −10 or k ≥ −5. Thus

h3(K ⊗ E(k)) = 0 for k ≤ −10 or k ≥ −4. (4.14)

We note also that if we consider the long exact sequence:

· · · → H2(Ω2
P4⊗E(k+2))⊕2 → H2(E(k))⊕5 → H3(K⊗E(k))→ H3(Ω2

P4⊗E(k+2))⊕2 → · · · .
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Since h2(Ω2
P4 ⊗ E(k + 2)) = 0 = h3(Ω2

P4 ⊗ E(k + 2)) for k ≤ −10 or k ≥ −3 then there

is an isomorphism such that h3(K ⊗ E(k)) = 5 · h2(E(k)) for k ≤ −10 or k ≥ −3. But

h2(E(k)) = 0 for k ≤ −6 or k ≥ −4. Thus

h3(K ⊗ E(k)) = 0 for k ≤ −10 or k ≥ −3. (4.15)

From (4.14) and (4.15), we have:

h3(K ⊗ E(k)) = 0 for k ≤ −10 or k ≥ −4.

Concerning the long exact sequence of cohomology of sequence (4.13):

· · · → H3(E(k))⊕5 → H4(K ⊗ E(k))→ H4(Ω2
P4 ⊗ E(k + 2))⊕2 → H4(E(k))⊕5 → · · · .

Since h3(E(k)) = 0 = h4(E(k)) for k ≥ −6 then there is an isomorphism such that

h4(K⊗E(k)) = 2 ·h4(Ω2
P4⊗E(k+2)) for k ≥ −6. But h4(Ω2

P4⊗E(k+2)) = 0 for k ≥ −9.

Thus

h4(K ⊗ E(k)) = 0 for k ≥ −6.

Lemma 4. Let E be the Horrocks-Mumford bundle and k ∈ Z, then:

1. h0(E ⊗ E(k)) = 0 for k ≤ −6.

2. h1(E ⊗ E(k)) = 0 for k ≤ −7 or k ≥ 1.

3. h2(E ⊗ E(k)) = 0 for k ≤ −11 or k ≥ −4.

4. h3(E ⊗ E(k)) = 0 for k ≤ −16 or k ≥ −8.

5. h4(E ⊗ E(k)) = 0 for k ≥ −9.

Proof. Let the short exact sequence of the display 2.3:

0→ OP4(−1)⊕5 → K → E(−3)→ 0.

Twisting by E(k + 3), we have:

0→ E(k + 2)⊕5 → K⊗ E(k + 3)→ E ⊗ E(k)→ 0. (4.16)

Now, let us consider the long exact sequence of cohomology of sequence (4.16):

0→ H0(E(k + 2))⊕5 → H0(K ⊗ E(k + 3))→ H0(E ⊗ E(k))→ H1(E(k + 2))⊕5 → · · · .
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Since h0(E(k+2)) = 0 = h1(E(k+2)) for k ≤ −6, then h0(E⊗E(k)) = h0(K⊗E(k+3))

for k ≤ −6. But h0(K ⊗ E(k + 3)) = 0 for k ≤ −4. Thus:

h0(E ⊗ E(k)) = 0 for k ≤ −6.

From the long exact sequence of cohomology of sequence (4.16):

· · · → H1(E(k+ 2))⊕5 → H1(K⊗E(k+ 3))→ H1(E ⊗E(k))→ H2(E(k+ 2))⊕5 → · · · .

Since h1(E(k + 2)) = 0 = h2(E(k + 2)) for k ≤ −8 or k = −6 or k ≥ −1, then

h1(E⊗E(k)) = h1(K⊗E(k+3)) for k ≤ −8 or k = −6 or k ≥ −1. But h1(K⊗E(k+3)) = 0

for k ≤ −7, then:

h1(E ⊗ E(k)) = 0 for k ≤ −8.

And using Macaulay2 this sheaf is also null for k = −7 or k ≥ 1, thus:

h1(E ⊗ E(k)) = 0 for k ≤ −7 or k ≥ 1.

Now, let us consider the long exact sequence of cohomology of sequence (4.16):

· · · → H2(E(k+ 2))⊕5 → H2(K⊗E(k+ 3))→ H2(E ⊗E(k))→ H3(E(k+ 2))⊕5 → · · · .

Since h2(E(k + 2)) = 0 = h3(E(k + 2)) for k ≤ −13 or k = −8 or k ≥ −6, then

h2(E ⊗ E(k)) = h2(K ⊗ E(k + 3)),

for k ≤ −13 or k = −8 or k ≥ −6. But h2(K ⊗ E(k + 3)) = 0 for k ≤ −9 or k ≥ −2,

then:

h2(E ⊗ E(k)) = 0 for k ≤ −13 or k ≥ −2.

And using Macaulay2 this sheaf is also null for k = −4,−3, thus:

h2(E ⊗ E(k)) = 0 for k ≤ −11 or k ≥ −4.

By Serre’s duality we have h3(E ⊗ E(k)) = h1(E ⊗ E(−k − 15)) = 0 for k ≤ −16 or

k ≥ −8. Thus:

h3(E ⊗ E(k)) = 0 for k ≤ −16 or k ≥ −8.

Finally, using Serre’s duality, we have to: h4(E ⊗ E(k)) = h0(E ⊗ E(−k − 15)) = 0 for

k ≥ −9. Thus:

h4(E ⊗ E(k)) = 0 for k ≥ −9.



4.2. Horrocks-Mumford Holomorphic Distributions as subsheaves of Tangent Bundle 61

Table 2 – Table of dimH i(E ⊗ E(k))

k H0 H1 H2 H3 H4

k ≥ 1 k4+30k3+290k2+975k+624
6

0 0 0 0
0 136 32 0 0 0
-1 70 85 0 0 0
-2 35 100 0 0 0
-3 15 85 0 0 0
-4 5 55 0 0 0
-5 1 24 2 0 0
-6 0 5 10 0 0
-7 0 0 20 0 0
-8 0 0 20 0 0
-9 0 0 10 5 0
-10 0 0 2 24 1
-11 0 0 0 55 5
-12 0 0 0 85 15
-13 0 0 0 100 35
-14 0 0 0 85 70
-15 0 0 0 32 136

k ≤ −16 0 0 0 0 k4+30k3+290k2+975k+624
6

In addition, using Serre’s duality and Theorem 24, we build the table (2).

Hence, by Hirzebruch–Riemann–Roch Theorem, we have:

χ
(
E ⊗ E(k)

)
=

1

6
(k4 + 30k3 + 290k2 + 975k + 624), k ∈ Z. (4.17)

4.2 HORROCKS-MUMFORD HOLOMORPHIC DISTRIBUTIONS

AS SUBSHEAVES OF TANGENT BUNDLE

In this section, we study codimension 2 holomorphic distributions induced by a Bertini-

type Theorem 28. We determine the genus, degree and the Rao module of the singular

scheme and we show that the singular scheme of these distributions of high degree is

a smooth, reduced and irreducible curve; and hence without isolated singularities. The

techniques used are based on the study of the long exact cohomology sequence of (4.18)

together with the knowledge of cohomologies of the Horrocks-Mumford bundle.

By Proposition [36], E(a), for a ≥ 1, is a vector bundle generated by global sections.

Since TP4(−1) is globally generated then by Bertini type Theorem 28 such that G = E(a),

a ≥ 1, and L = OP4(−1), we have

TF a = E(−a− 4), (a ≥ 1)
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is the tangent sheaf of a codimension 2 holomorphic distribution on P4:

Fa : 0→ E(−a− 4)
ϕ−→ TP4 → NFa → 0, (a ≥ 1). (4.18)

of degree da := deg(Fa) = 2a+ 5.

In addition, since E(a) ⊗ TP4(−1) = Hom(E(−a − 4)), TP4) is globally generated then

by Theorem 17 the generic morphism ϕ : E(−a−4)→ TP4 satisfies Sing(Fa) := Sing(ϕ)

is a closed analytical subvariety on P4 of expected codimension codim(Sing(Fa)) = 3.

We begin by calculating the Chern classes of the ideal sheaf and calculate the degree of

these distributions.

Proposition 12. Let Fa be the holomorphic distributions family (4.18) above. Then, for

a ≥ 1 we have:

1. The Chern classes of the normal sheaf are:

• c1(NFa) = 2a+ 8.

• c2(NFa) = 3a2 + 19a+ 28.

• c3(NFa) = 4a3 + 33a2 + 77a+ 46.

• c4(NFa) = 5a4 + 50a3 + 150a2 + 125a− 25.

2. The Chern classes of ideals sheaf of the singular scheme Za = Sing(Fa) are:

• c1(IZa) = 0.

• c2(IZa) = 0.

• c3(IZa) = −8a3 − 66a2 − 154a− 92.

• c4(IZa) = −54a4 − 594a3 − 2154a2 − 2874a− 954.

3. The degree of the distribution Fa is deg(Fa) = 2a+ 5.

Proof. Let qi = ci(NFa), it follows from c(TP4) = c(E(−a− 4)) · c(NFa) that:

1+5h+10h2+10h3+5h4 = (1+(−2a−3)h+(a2+3a+6)h2)·(1+q1h+q2h
2+q3h

3+q4h
4).

Then:

c(NFa) = 1 + (2a+ 8)h + (3a2 + 19a+ 28)h2 + (4a3 + 33a2 + 77a+ 46)h3

+(5a4 + 50a3 + 150a2 + 125a− 25)h4.

Let ϕ : E(−a − 4) → TP4 be the map that induces the distribution (4.18). Then, the

Eagon-Northcott resolution associated with the dual map ϕ∨ : Ω1
P4 → E(a− 1) is:

0→ S2(E(−4− a))(−2a− 8)→ Ω3
P4 ⊗E(−7− 3a)→ Ω2

P4(−3− 2a)→ IZa → 0. (4.19)
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Using this resolution of ideal sheaf IZa by locally free sheaves, let us calculate its Chern

class:

c(IZa) = c(S2(E(−4− a))(−2a− 8)) · c(Ω3
P4 ⊗ E(−7− 3a))−1 · c(Ω2

P4(−3− 2a)).

Now, by the Chern class formulas of the tensor product, exterior product and symmetric

product in Examples 4, 6, and 7 , respect., and by equations (1.6), we have:

c(S2(E(−4− a))(−2a− 8)) = 1 + (−12a− 33)h + (48a2 + 264a+ 378)h2

+ (−64a3 − 528a2 − 1521a− 1496)h3,

c(Ω2
P4(−3− 2a)) = 1 + (−12a− 33)h + (60a2 + 330a+ 455)h2

+ (−160a3 − 1320a2 − 3640a− 3355)h3

+ (240a4 + 2640a3 + 10920a2 + 20130a+ 13950)h4,

c(Ω3
P4 ⊗ E(−7− 3a)) = 1 + (−24a− 66)h + (252a2 + 1386a+ 1922)h2

+ (−160a3 − 1320a2 − 3640a− 3355)h3

+ (240a4 + 2640a3 + 10920a2 + 20130a+ 13950)h4,

then:

c(IZa) = 1+(−8a3−66a2−154a−92)h3+(−54a4−594a3−2154a2−2874a−954)h4, (4.20)

for a ≥ 1.

Finally, since c1(NFa) = 2a+ 8 and F is a codimension 2 holomorphic distribution, then

by Definition 23 we have:

deg(Fa) = (2a+ 8)− 2− 1 = 2a+ 5.

Now, let us determine the numerical invariants of the singular scheme through the sheaf

of ideals.

Proposition 13 (Numerical invariants of the singular locus). Let Za = Sing(Fa) the

singular scheme, then for a ≥ 1 we have:

1. deg(Za) = 4a3 + 33a2 + 77a+ 46.

2. pa(Za) = 9a4 + 89a3 + 553
2
a2 + 573

2
a+ 45.
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Proof. By (4.20) we have c3(IZa) = −8a3−66a2−154a−92, since Za is a pure codimension

3 projective curve then by Corollary 3 we have:

−8a3 − 66a2 − 154a− 92 = −2 · deg(Za),

hence deg(Za) = 4a3 + 33a2 + 77a+ 46.

On the other hand, since Za ⊂ P4 is a projective curve of pure dimension 1 and rank(IZa) =

1, then by Proposition 9 and Theorem 14 we have:

χ(IZa) =

∫
P4

(
ch(IZa) · td(P4)

)
4

= 1 +
5

4
c3(IZa)− 1

6
c4(IZa)

= 1 +
5

4
(−8a3 − 66a2 − 154a− 92)− 1

6
(−54a4 − 594a3 − 2154a2 − 2874a− 954)

= 9a4 + 89a3 +
553

2
a2 +

573

2
a+ 45.

Now, consider the exact sequence:

0→ IZa → OP4 → OZa → 0. (4.21)

Hence:

χ(OZa) = χ(OP4)− χ(IZa).

Then,

pa(Za) = 1− χ(OZa)

= 1− χ(OP4) + χ(IZa)

= χ(IZa)

= 9a4 + 89a3 +
553

2
a2 +

573

2
a+ 45.

Proposition 14. The singular scheme Za = Sing(Fa) is reduced and irreducible.

Proof. We claim that Za is connected. In fact, since Za has pure expected codimension 3

then the ideal sheaf admits the Eagon-Northcott resolution (1.16). Consider this complex

associated to the morphism ϕ∨ : Ω1
P4 → E(a− 1):

0→ S2(E(−a− 4))(−2a− 8)→ Ω3
P4 ⊗E(−3a− 7)→ Ω2

P4(−2a− 3)
α−→ IZa → 0. (4.22)

breaking into short exact sequences and passing to cohomology

0→ S2(E(−a− 4))(−2a− 8)→ Ω3
P4 ⊗ E(−3a− 7)→ K → 0 (4.23)
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and

0→ K → Ω2
P4(−2a− 3)→ IZa → 0 (4.24)

where K = Kerα.

From exact sequence (4.23) passing to cohomology

· · · → H i(S2(E(−a− 4))(−2a− 8))→ H i(Ω3
P4 ⊗ E(−3a− 7))→ H i(K)→ · · · .

By Lemma 2 and since a ≥ 1 we have

H2(K) ' H3(S2(E(−a− 4))(−2a− 8)).

On the other hand, if V is a vector space over C then V ⊗CV = S2(V )⊕
∧2(V ), i.e, every

2-tensor may be written uniquely as a sum of a symmetric and an alternating tensor,

therefore the second tensor power of a vector bundle decomposes as the direct sum of the

symmetric and alternating squares as vector bundles. So, twisting by OP4(−2a − 8) we

have:

E ⊗ E(−4a− 16) ' S2(E(−a− 4))(−2a− 8)⊕OP4(−4a− 11),

thus

hi(E ⊗ E(−4a− 16)) = hi(S2(E(−a− 4))(−2a− 8)) + hi(OP4(−4a− 11)), i = 0, ..., 4.

Hence, since a ≥ 1 then using Lemma 4 and by Bott’s formula [31, pag. 4] we have

h3(S2(E(−a− 4))(−2a− 8)) = h2(K) = 0.

From exact sequence (4.24) passing to cohomology

· · · → H i(Ω2
P4(−2a− 3))→ H i(IZa)→ H i+1(K)→ H i+1(Ω2

P4(−2a− 3))→ · · ·

Since a ≥ 1 using Bott’s formula,

H2(K) ' H1(IZa),

hence h1(IZa) = 0. From exact sequence

0→ IZa → OP4 → OZa → 0

passing to cohomology, we have:

0→ H0(IZa)→ H0(OP4)→ H0(OZa)→ H1(IZa)→ · · ·
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since hi(IZa) = 0 for i = 0, 1 hence h0(OP4) = h0(OZa) = 1. Therefore Za is connected.

Furthermore by Theorem 17 Za is a smooth scheme then Za is regular and hence normal

scheme. In particular, Za is a reduced scheme.

Finally, since Za is smooth and connected then is a irreducible scheme.

4.2.1 Rao Module dimension of Singular scheme

Let F be a holomorphic distribution on P4. Consider the following graded module

RF := H1
∗ (IZ) =

⊕
l∈Z

H1(IZ(l));

called the Rao module.

Since F is locally free then RF is finite dimensional and MF is always finite dimensional.

For more details, see [7].

Next, we will determine the Rao Module dimensions for the Horrocks-Mumford distribu-

tions.

Let Fa is a Horrocks-Mumford distribution

Fa : 0→ E(−a− 4)
ϕ−→ TP4 → NFa → 0.

Consider the Eagon-Northcott complex associated to the morphism

ϕ∨ : Ω1
P4 → E(a− 1)

0→ S2(E(−a− 4))(−2a− 8)→ Ω3
P4 ⊗ E(−3a− 7)→ Ω2

P4(−2a− 3)→ IZa → 0.

Twisting by OP4(q)

0→ S2(E(−a− 4))(q− 2a− 8)→ Ω3
P4 ⊗E(q− 3a− 7)→ Ω2

P4(q− 2a− 3)→ IZa(q)→ 0.

(4.25)

In order to calculate h1(IZa(q)) in 4.25, for all q ∈ Z and a ≥ 1, we have the following

Lemmas:

Lemma 5.

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 16)) 6= 0

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 3} ∩ {q ≤ 3a or q ≥ 3a+ 7} ∩ {4a < q < 4a+ 8}.
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Proof. In fact, by breaking complex 4.25 in the exact sequences:

0→ S2(E(−a− 4))(q − 2a− 8)→ Ω3
P4 ⊗ E(q − 3a− 7)→ K(q)→ 0, (4.26)

0→ K(q)→ Ω2
P4(q − 2a− 3)→ IZa(q)→ 0. (4.27)

with exact long sequences of cohomology, respectively:

0→ H0(S2(E(−a− 4))(q − 2a− 8))→ H0(Ω3
P4 ⊗ E(q − 3a− 7))→ H0(K(q))→

→ H1(S2(E(−a− 4))(q − 2a− 8))→ H1(Ω3
P4 ⊗ E(q − 3a− 7))→ H1(K(q))→

→ H2(S2(E(−a− 4))(q − 2a− 8))→ H2(Ω3
P4 ⊗ E(q − 3a− 7))→ H2(K(q))→

→ H3(S2(E(−a− 4))(q − 2a− 8))→ H3(Ω3
P4 ⊗ E(q − 3a− 7))→ H3(K(q))→

→ H4(S2(E(−a− 4))(q − 2a− 8))→ H4(Ω3
P4 ⊗ E(q − 3a− 7))→ H4(K(q))→ 0

and

0→ H0(K(q))→ H0(Ω2
P4(q − 2a− 3))→ H0(IZa(q))→

→ H1(K(q))→ H1(Ω2
P4(q − 2a− 3))→ H1(IZa(q))→

→ H2(K(q))→ H2(Ω2
P4(q − 2a− 3))→ H2(IZa(q))→

→ H3(K(q))→ H3(Ω2
P4(q − 2a− 3))→ H3(IZa(q))→

→ H4(K(q))→ H4(Ω2
P4(q − 2a− 3))→ H4(IZa(q))→ 0

Let us study the long exact sequence of cohomology of sequence (4.39):

· · · → H1(Ω2
P4(q − 2a− 3))→ H1(IZa(q))→ H2(K(q))→ H2(Ω2

P4(q − 2a− 3))→ · · · ,

and by Bott’s formula: h1(Ω2
P4(q− 2a− 3)) = 0 = h2(Ω2

P4(q− 2a− 3)) for q 6= 2a+ 3, then

h1(IZa(q)) = h2(K(q)) for q 6= 2a+ 3 and a ≥ 1. (4.28)

Now, from

· · · → H2(Ω3
P4 ⊗ E(q − 3a− 7))→ H2(K(q))→

→ H3(S2(E(−a− 4))(q − 2a− 8))→ H3(Ω3
P4 ⊗ E(q − 3a− 7))→ · · ·

by Lemma 2 we have:

h2(Ω3
P4 ⊗ E(q − 3a− 7)) = 0 = h3(Ω3

P4 ⊗ E(q − 3a− 7))
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for all q ∈ Z such that q ∈ Z such that

{q ≤ 3a+ 4 or q ≥ 3a+ 7} ∩ {q ≤ 3a or q ≥ 3a+ 5}

i.e., for all q ∈ Z such that {q ≤ 3a or q ≥ 3a+ 7} hence

h2(K(q)) = h3(S2(E(−a− 4))(q − 2a− 8))

for all q ∈ Z such that {q ≤ 3a or q ≥ 3a+ 7}.
Thus

h1(IZa(q)) = h3(S2(E(−a− 4))(q − 2a− 8))

for all q ∈ Z such that {q 6= 2a+ 3} ∩ {q ≤ 3a or q ≥ 3a+ 7}.
By decomposition of tensor product:

E(−a− 4)⊗ E(−a− 4) ' S2(E(−a− 4))⊕
2∧
E(−a− 4),

i.e,

E ⊗ E(−2a− 8) ' S2(E(−a− 4))⊕OP4(−2a− 3),

twisting by OP4(q − 2a− 8) we have:

E ⊗ E(q − 4a− 16) ' S2(E(−a− 4))(q − 2a− 8)⊕OP4(q − 4a− 11),

so

hi(E⊗E(q−4a−16)) = hi(S2(E(−a−4))(q−2a−8))+hi(OP4(q−4a−11)), i = 0, ..., 4.

Now, by Bott’s formula (1.9) we have that h3(OP4(q − 4a− 11)) = 0 thus:

h3(E ⊗ E(q − 4a− 16)) = h3(S2(E(−a− 4))(q − 2a− 8)),

So

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 16))

for all q ∈ Z such that {q 6= 2a+ 3} ∩ {q ≤ 3a or q ≥ 3a+ 7}.
By table 2, h3(E ⊗ E(q − 4a− 16) 6= 0 for all q ∈ Z such that 4a < q < 4a+ 8, thus

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 16)) 6= 0

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 3} ∩ {q ≤ 3a or q ≥ 3a+ 7} ∩ {4a < q < 4a+ 8}.
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Lemma 6.

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 16)) = 0,

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 3} ∩ {q ≤ 3a or q ≥ 3a+ 7} ∩ {q ≤ 4a or q ≥ 4a+ 8}.

Proof. In fact, by table 2 we have h3(E ⊗ E(q − 4a − 16)) = 0 for q ∈ Z such that

{q ≤ 4a or q ≥ 4a+ 8} then

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 16)) = 0,

for all q ∈ Z such that {q 6= 2a+ 3}∩{q ≤ 3a or q ≥ 3a+ 7}∩{q ≤ 4a or q ≥ 4a+ 8}.

Lemma 7.

h1(IZa(q)) = h1(Ω2
P4(q − 2a− 3)) = 0,

for all q ∈ Z such that

{q ≤ 4a or q ≥ 4a+ 8} ∩ {q ≤ 3a+ 4 or q ≥ 3a+ 11}.

Proof. In fact, from

· · · → H1(K(q))→ H1(Ω2
P4(q − 2a− 3))→ H1(IZa(q))→ H2(K(q))→ · · ·

we have:

h1(IZa(q)) = h1(Ω2
P4(q − 2a− 3))

if and only if h1(K(q)) = 0 = h2(K(q)), and from

· · · → H1(S2(E(−a− 4))(q − 2a− 8))→ H1(Ω3
P4 ⊗ E(q − 3a− 7))→ H1(K(q))→

→ H2(S2(E(−a− 4))(q − 2a− 8))→ H2(Ω3
P4 ⊗ E(q − 3a− 7))→ H2(K(q))→

→ H3(S2(E(−a− 4))(q − 2a− 8))→ H3(Ω3
P4 ⊗ E(q − 3a− 7))→ H3(K(q))→ · · ·

we have

h1(K(q)) = 0 = h2(K(q))

if and only if hi(S2(E(−a− 4))(q − 2a− 8)) = 0 for all i = 1, 2, 3 and

hi(Ω3
P4 ⊗ E(q − 3a− 7)) = 0 for all i = 1, 2.

By table 2 we have that hi(S2(E(−a− 4))(q− 2a− 8)) = hi(E ⊗E(q− 4a− 16)) = 0 for

all i = 1, 2, 3 and q ∈ Z such that {q ≤ 4a or q ≥ 4a+ 8}.
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By Lemma 2 we have that hi(Ω3
P4 ⊗ E(q − 3a − 7)) = 0 for all i = 1, 2 and q ∈ Z such

that {q ≤ 3a + 6 or q ≥ 3a + 11} ∩ {q ≤ 3a + 4 or q ≥ 3a + 7}, i.e., q ∈ Z such that

{q ≤ 3a+ 4 or q ≥ 3a+ 11}.
So

h1(IZa(q)) = h1(Ω2
P4(q − 2a− 3))

for all q ∈ Z such that {q ≤ 4a or q ≥ 4a+ 8} ∩ {q ≤ 3a+ 4 or q ≥ 3a+ 11}.
By Bott’s formula, h1(Ω2

P4(q − 2a− 3)) = 0, therefore

h1(IZa(q)) = 0

for all q ∈ Z and a ≥ 1 such that

{q ≤ 4a or q ≥ 4a+ 8} ∩ {q ≤ 3a+ 4 or q ≥ 3a+ 11}.

Lemma 8.

h1(IZa(q)) = 0

for all q ∈ Z and a ≥ 1 such that{
{q 6= 2a+ 3} ∩ {q ≤ 3a or q ≥ 3a+ 7} ∩ {q ≤ 4a or q ≥ 4a+ 8}

}
∪
{
{q ≤ 3a+ 4 or q ≥ 3a+ 11} ∩ {q ≤ 4a or q ≥ 4a+ 8}

}
.

Proof. Putting together Lemmas 6 and 7, we have:

h1(IZa(q)) = 0

for all q ∈ Z and a ≥ 1 such that

{{q 6= 2a+ 3} ∩ {q ≤ 3a or q ≥ 3a+ 7} ∩ {q ≤ 4a or q ≥ 4a+ 8}}

∪
{
{q ≤ 3a+ 4 or q ≥ 3a+ 11} ∩ {q ≤ 4a or q ≥ 4a+ 8}

}
.

Lemma 9.

h1(IZa(q)) = h2(Ω3
P4 ⊗ E(q − 3a− 7)) + h3(E ⊗ E(q − 4a− 16))

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 3} ∩ {q ≤ 3a or q ≥ 3a+ 5} ∩ {q ≤ 4a+ 5 or q ≥ 4a+ 12}.
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Proof. By equation 4.28 we have h1(IZa(q)) = h2(K(q)) for q 6= 2a+ 3.

Now, from

· · · → H2(S2(E(−a− 4))(q − 2a− 8))→ H2(Ω3
P4 ⊗ E(q − 3a− 7))→ H2(K(q))→

→ H3(S2(E(−a− 4))(q − 2a− 8))→ H3(Ω3
P4 ⊗ E(q − 3a− 7))→ · · ·

We note that:

h2(K(q)) = h2(Ω3
P4 ⊗ E(q − 3a− 7)) + h3(S2(E(−a− 4)(q − 2a− 8)))

if and only if h2(S2(E(−a− 4))(q − 2a− 8)) = 0 and h3(Ω3
P4 ⊗ E(q − 3a− 7)) = 0.

On the one hand, by table 2 we have

h2(S2(E(−a− 4)(q − 2a− 8))) = h2(E ⊗ E(q − 4a− 16)) = 0

if and only if q ≤ 4a+ 5 or q ≥ 4a+ 12.

On the other hand, by Lemma 3 we have

h3(Ω3
P4 ⊗ E(q − 3a− 7)) = 0

if and only if q ≤ 3a or q ≥ 3a+ 5.

From here, putting these last equations together, we have:

h1(IZa(q)) = h2(Ω3
P4 ⊗ E(q − 3a− 7)) + h3(S2(E(−a− 4)(q − 2a− 8)))

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 3} ∩ {q ≤ 3a or q ≥ 3a+ 5} ∩ {q ≤ 4a+ 5 or q ≥ 4a+ 12}.

Lemma 10.

h1(IZa(q)) = h2(Ω3
P4 ⊗ E(q − 3a− 7)),

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 3} ∩ {q ≤ 4a or q ≥ 4a+ 12}.

Proof. By equation 4.28 we have h1(IZa(q)) = h2(K(q)) for q 6= 2a+ 3.

Now, from

· · · → H2(S2(E(−a− 4))(q − 2a− 8))→ H2(Ω3
P4 ⊗ E(q − 3a− 7))→

→ H2(K(q))→ H3(S2(E(−a− 4))(q − 2a− 8))→ · · ·
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We note that:

h2(K(q)) = h2(Ω3
P4 ⊗ E(q − 3a− 7))

if and only if hi(S2(E(−a− 4)(q − 2a− 8))) = hi(E ⊗ E(q − 4a− 16)) = 0 for i = 2, 3.

By table 2 we have

h2(E ⊗ E(q − 4a− 16)) = 0 = h3(E ⊗ E(q − 4a− 16))

if and only if q ≤ 4a or q ≥ 4a+ 12.

Hence, h1(IZa(q)) = h2(Ω3
P4 ⊗ E(q − 3a − 7)) for all q ∈ Z and a ≥ 1 such that {q 6=

2a+ 3} ∩ {q ≤ 4a or q ≥ 4a+ 12}.

Theorem 29. Let Fa is a codimension 2 holomorphic distributions (4.18) on P4. Then:

1. dimCRF1 = h1(IZ1(5)) + h1(IZ1(6)) + h1(IZ1(7)) + 184.

2. dimCRF2 = h1(IZ2(9)) + h1(IZ2(10)) + 284.

3. dimCRF3 = h1(IZ3(13)) + 369.

4. dimCRFa = 401, ∀a ≥ 4.

Proof. For a = 1.

By Lemma 8 we have h1(IZ1(q)) = 0 for all q ∈ Z such that q ≤ 4 or q ≥ 12.

By Lemma 9 we have h1(IZ1(q)) = h2(Ω3
P4 ⊗E(q− 10)) + h3(E⊗E(q− 20)) for q = 8, 9.

Hence

h1(IZ1(8)) = h2(Ω3
P4 ⊗ E(−2)) + h3(E ⊗ E(−12)).

Now, by Lemma 2 we have hi(Ω3
P ⊗ E(−2)) = 0 for all i = 0, 1, 3, 4, so

χ(Ω3
P ⊗ E(−2)) = h2(Ω3

P ⊗ E(−2))

since

c(Ω3
P ⊗ E(−2)) = 1− 26h + 312h2 − 2238h3 + 10455h4

then by Riemann-Roch Theorem we have χ(Ω3
P ⊗ E(−2)) = 5, so

h2(Ω3
P ⊗ E(−2)) = 5.

By table 2 we have h3(E ⊗ E(−12)) = 85. Thus:

h1(IZ4(17)) = h2(Ω3
P4 ⊗ E(−2)) + h3(E ⊗ E(−12))

= 5 + 85

= 90.
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Similarly, by Lemma 2 we have hi(Ω3
P ⊗ E(−1)) = 0 for all i = 0, 1, 3, 4, so

χ(Ω3
P ⊗ E(−1)) = h2(Ω3

P ⊗ E(−1))

since

c(Ω3
P ⊗ E(−1)) = 1− 18h + 158h2 − 856h3 + 3105h4

then by Riemann-Roch Theorem we have χ(Ω3
P ⊗ E(−1)) = 10, so

h2(Ω3
P ⊗ E(−1)) = 10.

By table 2 we have h3(E ⊗ E(−11)) = 55. Thus:

h1(IZ1(9)) = h2(Ω3
P4 ⊗ E(−1)) + h3(E ⊗ E(−11))

= 10 + 55

= 65.

By Lemma 5 we have h1(IZ1(q)) = h3(E ⊗ E(q − 20)) 6= 0 for all q ∈ Z such that

10 ≤ q < 12. So, by table 2 we have:

h1(IZ1(10)) = h3(E ⊗ E(−10))

= 24.

h1(IZ1(11)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF1 = dim
⊕
l∈Z

H1(IZ1(l))

=
11∑
l=5

h1(IZ1(l))

= h1(IZ1(5)) + h1(IZ1(6)) + h1(IZ1(7)) + 90 + 65 + 24 + 5

= h1(IZ1(5)) + h1(IZ1(6)) + h1(IZ1(7)) + 184.

For a = 2.

By Lemma 8 we have h1(IZ2(q)) = 0 for all q ∈ Z such that q ≤ 8 or q ≥ 16.

By Lemma 9 we have h1(IZ2(q)) = h2(Ω3
P4⊗E(q−13))+h3(E⊗E(q−24)) for q = 11, 12.

Hence
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h1(IZ2(11)) = h2(Ω3
P4 ⊗ E(−2)) + h3(E ⊗ E(−13))

= 5 + 100

= 105.

similarly,

h1(IZ2(12)) = h2(Ω3
P4 ⊗ E(−1)) + h3(E ⊗ E(−12))

= 10 + 85

= 95.

By Lemma 5 we have h1(IZ2(q)) = h3(E ⊗ E(q − 24)) 6= 0 for all q ∈ Z such that

13 ≤ q < 16. So, by table 2 we have:

h1(IZ2(13)) = h3(E ⊗ E(−11))

= 55.

h1(IZ2(14)) = h3(E ⊗ E(−10))

= 24.

h1(IZ2(15)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF2 = dim
⊕
l∈Z

H1(IZ2(l))

=
15∑
l=9

h1(IZ2(l))

= h1(IZ2(9)) + h1(IZ2(10)) + 105 + 95 + 55 + 24 + 5

= h1(IZ2(9)) + h1(IZ2(10)) + 284.

For a = 3.

By Lemma 8 we have h1(IZ3(q)) = 0 for all q ∈ Z such that q ≤ 12 or q ≥ 20.

By Lemma 9 we have h1(IZ3(q)) = h2(Ω3
P4 ⊗ E(q − 16)) + h3(S2(E(−7)(q − 14))) for

q = 14, 15. Hence
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h1(IZ3(14)) = h2(Ω3
P4 ⊗ E(−2)) + h3(E ⊗ E(−14))

= 5 + 85

= 90.

similarly,

h1(IZ3(15)) = h2(Ω3
P4 ⊗ E(−1)) + h3(E ⊗ E(−13))

= 10 + 100

= 110.

By Lemma 5 we have h1(IZ3(q)) = h3(E ⊗ E(q − 28)) 6= 0 for all q ∈ Z such that

16 ≤ q < 20. So, by table 2 we have:

h1(IZ3(16)) = h3(E ⊗ E(−12))

= 85.

h1(IZ3(17)) = h3(E ⊗ E(−11))

= 55.

h1(IZ3(18)) = h3(E ⊗ E(−10))

= 24.

h1(IZ3(19)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF3 = dim
⊕
l∈Z

H1(IZ3(l))

=
19∑
l=13

h1(IZ3(l))

= h1(IZ3(13)) + 90 + 110 + 85 + 55 + 24 + 5

= h1(IZ3(13)) + 369.

For a = 4.

By Lemma 8 we have h1(IZ4(q)) = 0 for all q ∈ Z such that q ≤ 16 or q ≥ 24.
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By Lemma 9 we have h1(IZ4(q)) = h2(Ω3
P4 ⊗ E(q − 19)) + h3(S2(E(−8)(q − 16))) for

q = 17, 18. Hence

h1(IZ4(17)) = h2(Ω3
P4 ⊗ E(−2)) + h3(E ⊗ E(−15))

= 5 + 32

= 37.

similarly,

h1(IZ4(18)) = h2(Ω3
P4 ⊗ E(−1)) + h3(E ⊗ E(−14))

= 10 + 85

= 95.

By Lemma 5 we have h1(IZ4(q)) = h3(E ⊗ E(q − 32)) 6= 0 for all q ∈ Z such that

19 ≤ q < 24. So, by table 2 we have:

h1(IZ4(19)) = h3(E ⊗ E(−13))

= 100.

h1(IZ4(20)) = h3(E ⊗ E(−12))

= 85.

h1(IZ4(21)) = h3(E ⊗ E(−11))

= 55.

h1(IZ4(22)) = h3(E ⊗ E(−10))

= 24.

h1(IZ4(23)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF4 = dim
⊕
l∈Z

H1(IZ4(l))

=
23∑
l=17

h1(IZ4(l))

= 37 + 95 + 100 + 85 + 55 + 24 + 5

= 401.
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For a = 5.

By Lemma 8 we have h1(IZ5(q)) = 0 for all q ∈ Z such that q ≤ 19 or q ≥ 28.

By Lemma 9 we have h1(IZ5(q)) = h2(Ω3
P4⊗E(q−22))+h3(E⊗E(q−36))) for q = 20, 21.

Hence

h1(IZ5(20)) = h2(Ω3
P4 ⊗ E(−2)) + h3(E ⊗ E(−16)))

= 5 + 0

= 5.

and

h1(IZ5(21)) = h2(Ω3
P4 ⊗ E(−1)) + h3(E ⊗ E(−15)))

= 10 + 32

= 42.

By Lemma 5 we have h1(IZ5(q)) = h3(E ⊗ E(q − 36)) 6= 0 for all q ∈ Z such that

22 ≤ q < 28. So, by table 2 we have:

h1(IZ5(22)) = h3(E ⊗ E(−14))

= 85.

h1(IZ5(23)) = h3(E ⊗ E(−13))

= 100.

h1(IZ5(24)) = h3(E ⊗ E(−12))

= 85.

h1(IZ5(25)) = h3(E ⊗ E(−11))

= 55.

h1(IZ5(26)) = h3(E ⊗ E(−10))

= 24.

h1(IZ5(27)) = h3(E ⊗ E(−9))

= 5.
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Therefore

dimCRF5 = dim
⊕
l∈Z

H1(IZ5(l))

=
27∑
l=20

h1(IZ5(l))

= 5 + 42 + 85 + 100 + 85 + 55 + 24 + 5

= 401.

For a = 6.

By Lemma 8 we have h1(IZ6(q)) = 0 for all q ∈ Z such that q ≤ 22 or q ≥ 32.

By Lemma 10 we have h1(IZ6(q)) = h2(Ω3
P4 ⊗ E(q − 25)) for q = 23, 24. Hence

h1(IZ6(23)) = h2(Ω3
P4 ⊗ E(−2))

= 5.

and

h1(IZ6(24)) = h2(Ω3
P4 ⊗ E(−1))

= 10.

By Lemma 5 we have h1(IZ6(q)) = h3(E ⊗ E(q − 40)) 6= 0 for all q ∈ Z such that

25 ≤ q < 32. So, by table 2 we have:

h1(IZ6(25)) = h3(E ⊗ E(−15))

= 32.

h1(IZ6(26)) = h3(E ⊗ E(−14))

= 85.

h1(IZ6(27)) = h3(E ⊗ E(−13))

= 100.

h1(IZ6(28)) = h3(E ⊗ E(−12))

= 85.

h1(IZ6(29)) = h3(E ⊗ E(−11))

= 55.
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h1(IZ6(30)) = h3(E ⊗ E(−10))

= 24.

h1(IZ6(31)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF6 = dim
⊕
l∈Z

H1(IZ6(l))

=
31∑
l=23

h1(IZ6(l))

= 5 + 10 + 32 + 85 + 100 + 85 + 55 + 24 + 5

= 401.

For a = 7.

By Lemma 8 we have h1(IZ7(q)) = 0 for all q ∈ Z such that q ≤ 25 or q = 28 or q ≥ 36.

By Lemma 10 we have h1(IZ7(q)) = h2(Ω3
P4 ⊗ E(q − 28)) for q = 26, 27. Hence

h1(IZ7(26)) = h2(Ω3
P4 ⊗ E(−2))

= 5.

and

h1(IZ7(27)) = h2(Ω3
P4 ⊗ E(−1))

= 10.

By Lemma 5 we have h1(IZ7(q)) = h3(E ⊗ E(q − 44)) 6= 0 for all q ∈ Z such that

28 < q < 36. So, by table 2 we have:

h1(IZ7(29)) = h3(E ⊗ E(−15))

= 32.

h1(IZ7(30)) = h3(E ⊗ E(−14))

= 85.

h1(IZ7(31)) = h3(E ⊗ E(−13))

= 100.



80 4. Geometric properties of the singular scheme

h1(IZ7(32)) = h3(E ⊗ E(−12))

= 85.

h1(IZ7(33)) = h3(E ⊗ E(−11))

= 55.

h1(IZ7(34)) = h3(E ⊗ E(−10))

= 24.

h1(IZ7(35)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF7 = dim
⊕
l∈Z

H1(IZ7(l))

=
35∑
l=26

h1(IZ7(l))

= 5 + 10 + 0 + 32 + 85 + 100 + 85 + 55 + 24 + 5

= 401.

For a ≥ 7.

By Lemma 8 we have h1(IZa(q)) = 0 for all q ∈ Z such that q ≤ 3a+4 or 3a+7 ≤ q ≤ 4a

or q ≥ 4a+ 8.

By Lemma 10 we have h1(IZa(q)) = h2(Ω3
P4 ⊗ E(q − 3a − 7)) for all q ∈ Z such that

{q 6= 2a+ 3} ∩ {q ≤ 4a or q ≥ 4a+ 12}, in particular for q = 3a+ 5, 3a+ 6.

Hence

h1(IZa(3a+ 5)) = h2(Ω3
P4 ⊗ E(3a+ 5− 3a− 7))

= h2(Ω3
P4 ⊗ E(−2))

= 5.

and

h1(IZa(3a+ 6)) = h2(Ω3
P4 ⊗ E(3a+ 6− 7 + 3a))

= h2(Ω3
P4 ⊗ E(−1))

= 10.
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By Lemma 5 we have h1(IZa(q)) = h3(E ⊗ E(q − 4a − 16)) 6= 0 for all q ∈ Z such that

4a < q < 4a+ 8. So, by table 2 we have:

h1(IZa(4a+ 1)) = h3(E ⊗ E(4a+ 1− 4a− 16))

= h3(E ⊗ E(−15))

= 32.

h1(IZa(4a+ 2)) = h3(E ⊗ E(4a+ 2− 4a− 16))

= h3(E ⊗ E(−14))

= 85.

h1(IZa(4a+ 3)) = h3(E ⊗ E(4a+ 3− 4a− 16))

= h3(E ⊗ E(−13))

= 100.

h1(IZa(4a+ 4)) = h3(E ⊗ E(4a+ 4− 4a− 16))

= h3(E ⊗ E(−12))

= 85.

h1(IZa(4a+ 5)) = h3(E ⊗ E(4a+ 5− 4a− 16))

= h3(E ⊗ E(−11))

= 55.

h1(IZa(4a+ 6)) = h3(E ⊗ E(4a+ 6− 4a− 16))

= h3(E ⊗ E(−10))

= 24.

h1(IZa(4a+ 7)) = h3(E ⊗ E(4a+ 7− 4a− 16))

= h3(E ⊗ E(−9))

= 5.

Therefore
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dimCRFa = dim
⊕
l∈Z

H1(IZa(l))

=
4a+7∑
l=3a+5

h1(IZa(l))

=
3a+6∑
l=3a+5

h1(IZa(l)) + 0 + · · ·+ 0 +
4a+7∑
l=4a+1

h1(IZa(l))

= 5 + 10 + 0 + · · ·+ 0 + 32 + 85 + 100 + 85 + 55 + 24 + 5

= 401.

4.2.2 First cohomology dimension:

Let F be a holomorphic distribution on P4. Consider the following graded module

MF := H1
∗ (TF ) =

⊕
l∈Z

H1(TF (l));

called the first cohomology module of F as a sub-sheaf of the tangent sheaf.

Since F is locally free then MF is always finite dimensional. For more details, see [7].

We are going to calculate the first cohomology dimension for Horrocks-Mumford distri-

butions as subsheaves of tangent.

Since TFa = E(−a − 4) then H1(TFa(l)) = H1(E(−a − 4 + l)). By table 1 we have

h1(TFa(l)) = h1(E(−a− 4 + l)) 6= 0 if, and only if, a+ 1 ≤ l ≤ a+ 4. Hence:

dimCMFa = dim
⊕
l∈Z

H1(E(−a− 4 + l))

=
a+4∑
l=a+1

h1(E(−a− 4 + l))

= h1(E(−3)) + h1(E(−2)) + h1(E(−1)) + h1(E)

= 5 + 10 + 10 + 2

= 27.

Next, we describe the cohomology of the normal sheaf of these distributions.

Proposition 15. Let Fa is a codimension 2 holomorphic distributions family (4.18) on

P4. Then:

1. h0(NFa(q)) = 0 for q ≤ −2.
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2. h1(NFa(q)) = 0 for q ≤ a− 2 or q ≥ a.

3. h2(NFa(q)) = 0

• If a = 1 and q ≤ −6 or q ≥ −1.

• If a = 2 and q ≤ −5 or q ≥ 0.

• If a ≥ 3 and q < −5 or −5 < q ≤ a− 7 or q ≥ a− 2.

4. h3(NFa(q)) = 0 for q ≥ a− 5.

5. h4(NFa(q)) = 0 for q ≥ a− 5.

Proof. From the Fa distribution (4.18):

0→ E(−4− a)→ TP4 → NFa → 0,

twisting by OP4(q), we have:

0→ E(q − 4− a)→ TP4(q)→ NFa(q)→ 0.

Let us consider the long exact sequence of cohomology:

· · · → H0(TP4(q))→ H0(NFa(q))→ H1(E(q − 4− a))→ H1(TP4(q))→ · · · .

By Serre’s duality and Bott’s formula we have h0(TP4(q)) = 0 = h1(TP4(q)) if and only

if h4(Ω1
P4(−q−5)) = 0 = h3(Ω1

P4(−q−5)) for q ≤ −2, thus h0(NFa(q)) = h1(E(q−4−a))

for q ≤ −2. But h1(E(q − 4− a)) = 0 for q ≤ a or q ≥ a + 5. Therefore h0(NFa(q)) = 0

for q ≤ −2.

Let us consider the long exact sequence of cohomology:

· · · → H1(TP4(q))→ H1(NFa(q))→ H2(E(q − 4− a))→ H2(TP4(q))→ · · · .

By Serre’s duality and Bott’s formula we have h1(TP4(q)) = 0 = h2(TP4(q)) if and only

if h3(Ω1
P4(−q − 5)) = 0 = h2(Ω1

P4(−q − 5)) for q ∈ Z, thus h1(NFa(q)) = h2(E(q − 4− a))

for q ∈ Z. But h2(E(q− 4− a)) = 0 for q ≤ a− 2 or q ≥ a. Therefore h1(NFa(q)) = 0 for

q ≤ a− 2 or q ≥ a.

Let us consider the long exact sequence of cohomology:

· · · → H2(TP4(q))→ H2(NFa(q))→ H3(E(q − 4− a))→ H3(TP4(q))→ · · · .

By Serre’s duality and Bott’s formula we have h2(TP4(q)) = 0 = h3(TP4(q)) if and only

if h2(Ω1
P4(−q−5)) = 0 = h1(Ω1

P4(−q−5)) for q 6= −5, thus h2(NFa(q)) = h3(E(q−4−a))

for q 6= −5. But h3(E(q − 4 − a)) = 0 for q ≤ a − 7 or q ≥ a − 2. Therefore for a = 1

we have h2(NFa(q)) = 0 for q ≤ −6 or q ≥ −1. For a = 2 we have h2(NFa(q)) = 0 for
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q < −5 or q ≥ 0. For a ≥ 3 we have h2(NFa(q)) = 0 for q < −5 or −5 < q ≤ a − 7 or

q ≥ a− 2.

Let us consider the long sequence of cohomology:

· · · → H3(TP4(q))→ H3(NFa(q))→ H4(E(q − 4− a))→ H4(TP4(q))→ · · · .

By Serre’s duality and Bott’s formula we have h3(TP4(q)) = 0 = h4(TP4(q)) if and only

if h1(Ω1
P4(−q − 5)) = 0 = h0(Ω1

P4(−q − 5)) for −6 ≤ q < −5 or −5 < q, thus

h3(NFa(q)) = h4(E(q − 4− a)) for − 6 ≤ q < −5 or − 5 < q.

But h4(E(q − 5)) = 0 for q ≥ a− 5. Therefore h3(NFa(q)) = 0 for q ≥ a− 5.

Let us consider the long exact sequence of cohomology:

· · · → H4(E(q − 4− a))→ H4(TP4(q))→ H4(NFa(q))→ 0.

Since h4(E(q − 5)) = 0 for q ≥ a− 5 then h4(NFa(q)) = h4(TP4(q)) for q ≥ a− 5. Now,

by Serre’s duality and Bott’s formula, we have h4(TP4(q)) = h0(Ω1
P4(−q − 5)) = 0 for

q ≥ −6. Therefore h4(NFa(q)) = 0 for q ≥ a− 5.

In particular, for a = 1 we have:

Corollary 4. Let F is a distribution

F : 0→ E(−5)→ TP4 → NF → 0, (4.29)

and Z = Sing(F ). Then:

1. The Chern classes of the normal bundle are:

c1(NF ) = 10 , c2(NF ) = 50 , c3(NF ) = 160 , c4(NF ) = 305.

2. The degree of distribution F is deg(F ) = 7.

3. The Chern classes of ideals sheaf of the singular scheme are:

c1(IZ) = 0 , c2(IZ) = 0 , c3(IZ) = −320 , c4(IZ) = −6630.

4. deg(Z) = 160.

5. pa(Z) = 706 .

Corollary 5. Let F is a codimension 2 holomorphic distribution (4.29) on P4. Then the

singular scheme Z = Sing(F ) is reduced and irreducible.

Corollary 6. Let Fa is a codimension 2 holomorphic distributions (4.29) on P4. Then:
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1. The singular scheme Z is not a arithmetically Cohen-Macaulay nor arithmetically

Buchsbaum curve.

2. dimCRF1 ≥ 184.

Corollary 7. Let F is a codimension 2 holomorphic distribution (4.29) on P4. Then:

1. h0(NF (q)) = 0 for q ≤ −2.

2. h1(NF (q)) = 0 for q ≤ −1 or q ≥ 1.

3. h2(NF (q)) = 0 for q ≤ −6 or q ≥ −1.

4. h3(NF (q)) = 0 for q ≥ −4.

5. h4(NF (q)) = 0 for q ≥ −4.

4.3 HORROCKS-MUMFORD HOLOMORPHIC DISTRIBUTIONS

AS SUBSHEAVES OF COTANGENT BUNDLE

In this section, we study codimension 2 holomorphic distributions induced by a Bertini-

type Theorem. The conormal sheaf of these distributions are Horrocks-Mumford bundles,

that is, stable and non-split bundles as the sum of line bundles.

From Proposition 11 we know that E(a) is a globally generated rank 2 bundle on P4,

for all a ≥ 1. Since Ω1
P4(2) is a sheaf generated by global sections then by Bertini type

Theorem 28 such that G = E(a) and L = OP4(2), we have that

N∗Fa
= E(−a− 7), (a ≥ 1)

is the conormal sheaf of a codimension 2 holomorphic distribution on P4:

Fa : 0→ E(−a− 7)
ϕ−→ Ω1

P4 → QFa → 0, (a ≥ 1). (4.30)

In this work we will denote these distributions by Horrocks-Mumford distributions induced

by the cotangent bundle.

In addition, since E(a) ⊗ Ω1
P4(2) = Hom(E(−a − 7)),Ω1

P4) is a sheaf generated by glo-

bal sections then by Theorem 17 the generic morphism ϕ : E(−a − 7) → Ω1
P4 satisfies

Sing(Fa) := Sing(ϕ) is a smooth scheme of expected codimension codim(Sing(Fa)) = 3.

Next, we calculate the Chern classes of the ideal sheaf and calculate the degree of these

distributions.

Proposition 16. Let Fa be the distribution (4.30) above. We have:
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1. The Chern classes of the conormal sheaf are:

• c1(N
∗
Fa

) = −2a− 9.

• c2(N
∗
Fa

) = a2 + 9a+ 24.

2. The Chern classes of ideals sheaf of the singular scheme are:

• c1(IZa) = 0.

• c2(IZa) = 0.

• c3(IZa) = −8a3 − 78a2 − 226a− 184.

• c4(IZa) = −54a4 − 702a3 − 3126a2 − 5478a− 2934.

3. The degree of the holomorphic distributions family Fa is deg(Fa) = 2a+ 6.

Proof. Since N∗Fa
= E(−a− 7), a ≥ 1, then

c(N∗Fa
) = 1 + (−2a− 9)h + (a2 + 9a+ 24)h2

Let ϕ : E(−a − 7) → Ω1
P4 be the map that induces the distribution (4.30). Then, the

Eagon-Northcott resolution associated with the dual map ϕ∨ : TP4 → E(a+ 2) is:

0→ S2(E(−a− 7))(−2a− 4)→
3∧
TP4⊗E(−3a− 16)→

2∧
TP4(−2a− 9)→ IZa → 0.

And since:
∧3 TP4 = Ω1

P4(5) and
∧2 TP4 = Ω2

P4(5), then replacing, we have:

0→ S2(E(−a−7))(−2a−4)→ Ω1
P4⊗E(−3a−11)→ Ω2

P4(−2a−4)→ IZa → 0. (4.31)

Using this resolution of ideal sheaf IZa by locally free sheaves, let us calculate its Chern

class:

c(IZa) = c(S2(E(−7− a))(−2a− 4)) · c(Ω1
P4 ⊗ E(−3a− 11))−1 · c(Ω2

P4(−2a− 4)).

Hence, by the Chern class formulas of the tensor product, exterior product and symmetric

product in Examples 4, 6 and 7, respectively, we have:

c(S2(E(−a− 7))(−2a− 4)) = 1 + (−12a− 39)h + (48a2 + 312a+ 522)h2

+ (−64a3 − 624a2 − 2088a− 2392)h3,

c(Ω1
P4 ⊗ E(−3a− 11)) = 1 + (−24a− 78)h + (252a2 + 1638a+ 2678)h2

+ (−1512a3 − 14742a2 − 48204a− 52856)h3

+ (5670a4 + 73710a3 + 361530a2 + 792840a+ 655905)h4,
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c(Ω2
P4(−2a− 4)) = 1 + (−12a− 39)h + (60a2 + 390a+ 635)h2

+ (−160a3 − 1560a2 − 5080a− 5525)h3

+ (240a4 + 3120a3 + 15240a2 + 33150a+ 27090)h4,

then:

c(IZa) = 1 + (−8a3−78a2−226a−184)h3 + (−54a4−702a3−3126a2−5478a−2934)h4,

(4.32)

for a ≥ 1.

Finally, since c1(N
∗
F ) = −2a − 9 and Fa is a codimension 2 holomorphic distributions

family, then by Definition 23:

deg(Fa) = −(−2a− 9)− 2− 1 = 2a+ 6.

Let us determine the numerical invariants of the singular scheme.

Proposition 17 (Numerical invariants of the singular locus). Let Za = Sing(Fa) the

singular scheme, for a ≥ 1, then:

1. deg(Za) = 4a3 + 39a2 + 113a+ 92.

2. pa(Za) = 9a4 + 107a3 + 847
2
a2 + 1261

2
a+ 260.

Proof. By (4.32) we have c3(IZa) = −8a3 − 78a2 − 226a − 184, since Za is a pure codi-

mension 3 projective curve then by Corollary 3 we have:

−8a3 − 78a2 − 226a− 184 = −2 · deg(Za),

hence deg(Za) = 4a3 + 39a2 + 113a+ 92.

Since Za ⊂ P4 is a pure dimension 1 projective and rank(IZa) = 1, then by Proposition

9 and by Hirzebruch-Riemann-Roch Theorem 14 we have:

χ(IZa) =

∫
P4

(
ch(IZa) · td(P4)

)
4

= 1 +
5

4
c3(IZa)− 1

6
c4(IZa)

= 1 +
5

4
(−8a3 − 78a2 − 226a− 184)− 1

6
(−54a4 − 702a3 − 3126a2 − 5478a− 2934)

= 9a4 + 107a3 +
847

2
a2 +

1261

2
a+ 260.
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Now, consider the exact sequence:

0→ IZa → OP4 → OZa → 0. (4.33)

Hence:

χ(OZa) = χ(OP4)− χ(IZa).

Then,

pa(Za) = 1− χ(OZa)

= 1− χ(OP4) + χ(IZa)

= χ(IZa)

= 9a4 + 107a3 +
847

2
a2 +

1261

2
a+ 260.

Proposition 18. The singular scheme Za = Sing(Fa) is reduced and irreducible.

Proof. We claim that Za is connected. Let ϕ : E(−a− 7)→ Ω1
P4 be the map that induces

the distribution (4.30). Then, the Eagon-Northcott resolution associated with the dual

map ϕ∨ : TP4 → E(a+ 2) is:

0→ S2(E(−a− 7))(−2a− 4)→
3∧
TP4⊗E(−3a− 16)→

2∧
TP4(−2a− 9)→ IZa → 0.

And since:
∧3 TP4 = Ω1

P4(5) and
∧2 TP4 = Ω2

P4(5), then replacing, we have:

0→ S2(E(−a−7))(−2a−4)→ Ω1
P4⊗E(−3a−11)→ Ω2

P4(−2a−4)
α−→ IZa → 0. (4.34)

Breaking it down into the short exact sequences

0→ S2(E(−a− 7))(−2a− 4)→ Ω1
P4 ⊗ E(−3a− 11)→ K → 0, (4.35)

and

0→ K → Ω2
P4(−2a− 4)→ IZa → 0. (4.36)

where K = Kerα.

From exact sequence 4.35 passing to cohomology

· · · → H i(S2(E(−a− 7))(−2a− 4))→ H i(Ω1
P4 ⊗ E(−3a− 11))→ H i(K)→ · · · .
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By Lemma 2 and since a ≥ 1 we have

H2(K) ' H3(S2(E(−a− 7))(−2a− 4)).

By decomposition of tensor product:

E(−a− 7)⊗ E(−a− 7) ' S2(E(−a− 7))⊕
2∧
E(−a− 7),

i.e,

E ⊗ E(−2a− 14) ' S2(E(−a− 7))⊕OP4(−2a− 9),

twisting by OP4(−2a− 4) we have:

E ⊗ E(−4a− 18) ' S2(E(−a− 7))(−2a− 4)⊕OP4(−4a− 13),

so

hi(E ⊗ E(−4a− 18)) = hi(S2(E(−a− 7))(−2a− 4)) + hi(OP4(−4a− 13)), i = 0, ..., 4.

Hence, since a ≥ 1 then using Lemma 4 and Bott’s formula we have

h3(S2(E(−a− 7))(−2a− 4)) = h2(K) = 0.

From exact sequence 4.36 passing to cohomology

· · · → H i(Ω2
P4(−2a− 4))→ H i(IZa)→ H i+1(K)→ H i+1(Ω2

P4(−2a− 4))→ · · · .

by Bott’s formula

H2(K) ' H1(IZa)

So h1(IZa) = 0.

From exact sequence

0→ IZa → OP4 → OZa → 0

passing to cohomology, we have:

0→ H0(IZa)→ H0(OP4)→ H0(OZa)→ H1(IZa)→ · · ·

since hi(IZa) = 0 for i = 0, 1 hence h0(OP4) = h0(OZa) = 1. Therefore Za is connected.

Since Za is a smooth scheme then is a reduced scheme.

To conclude, since Za is smooth and connected then is a irreducible scheme.
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4.3.1 Rao Module dimension of Singular scheme:

Let Fa is a Horrocks-Mumford distribution

Fa : 0→ E(−a− 7)
ϕ−→ Ω1

P4 → QFa → 0.

Let us consider the Eagon-Northcott complex associated to the morphism

ϕ∨ : TP4 → E(a+ 2)

0→ S2(E(−a− 7))(−2a− 4)→ Ω1
P4 ⊗ E(−3a− 11)→ Ω2

P4(−2a− 4)→ IZa → 0.

Twist by OP4(q) and break it down into the short exact sequences

0→ S2(E(−a−7))(q−2a−4)→ Ω1
P4⊗E(q−3a−11)→ Ω2

P4(q−2a−4)→ IZa(q)→ 0.

(4.37)

In order to calculate h1(IZa(q)) in 4.37, for all q ∈ Z and a ≥ 1, we have the following

Lemmas:

Lemma 11.

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 18)) 6= 0

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 9} ∩ {4a+ 2 < q < 4a+ 10}.

Proof. In fact, by breaking complex 4.37 in the exact sequences:

0→ S2(E(−a− 7))(q − 2a− 4)→ Ω1
P4 ⊗ E(q − 3a− 11)→ K(q)→ 0, (4.38)

0→ K(q)→ Ω2
P4(q − 2a− 4)→ IZa(q)→ 0. (4.39)

with exact long sequences of cohomology, respectively:

0→ H0(S2(E(−a− 7))(q − 2a− 4))→ H0(Ω1
P4 ⊗ E(q − 3a− 11))→ H0(K(q))→

→ H1(S2(E(−a− 7))(q − 2a− 4))→ H1(Ω1
P4 ⊗ E(q − 3a− 11))→ H1(K(q))→

→ H2(S2(E(−a− 7))(q − 2a− 4))→ H2(Ω1
P4 ⊗ E(q − 3a− 11))→ H2(K(q))→

→ H3(S2(E(−a− 7))(q − 2a− 4))→ H3(Ω1
P4 ⊗ E(q − 3a− 11))→ H3(K(q))→

→ H4(S2(E(−a− 7))(q − 2a− 4))→ H4(Ω1
P4 ⊗ E(q − 3a− 11))→ H4(K(q))→ 0

and
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0→ H0(K(q))→ H0(Ω2
P4(q − 2a− 4))→ H0(IZa(q))→

→ H1(K(q))→ H1(Ω2
P4(q − 2a− 4))→ H1(IZa(q))→

→ H2(K(q))→ H2(Ω2
P4(q − 2a− 4))→ H2(IZa(q))→

→ H3(K(q))→ H3(Ω2
P4(q − 2a− 4))→ H3(IZa(q))→

→ H4(K(q))→ H4(Ω2
P4(q − 2a− 4))→ H4(IZa(q))→ 0

Let us study the long exact sequence of cohomology of sequence (4.39):

· · · → H1(Ω2
P4(q − 2a− 4))→ H1(IZa(q))→ H2(K(q))→ H2(Ω2

P4(q − 2a− 4))→ · · · ,

and by Bott’s formula: h1(Ω2
P4(q− 2a− 4)) = 0 = h2(Ω2

P4(q− 2a− 4)) for q 6= 2a+ 4, then

h1(IZa(q)) = h2(K(q)) for q 6= 2a+ 4 and a ≥ 1. (4.40)

Now, from

· · · → H2(Ω1
P4 ⊗ E(q − 3a− 11))→ H2(K(q))→

→ H3(S2(E(−a− 7))(q − 2a− 4))→ H3(Ω3
P4 ⊗ E(q − 3a− 11))→ · · ·

by Lemma 2 we have:

h2(Ω1
P4 ⊗ E(q − 3a− 11)) = 0 = h3(Ω1

P4 ⊗ E(q − 3a− 11))

for all q ∈ Z such that

{q ≤ 3a+ 6 or q ≥ 3a+ 9} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 7}

i.e., for all q ∈ Z such that {q ≤ 3a+ 2 or q ≥ 3a+ 9} hence

h2(K(q)) = h3(S2(E(−a− 7))(q − 2a− 4))

for all q ∈ Z such that {q ≤ 3a+ 2 or q ≥ 3a+ 9}.
Thus

h1(IZa(q)) = h3(S2(E(−a− 7))(q − 2a− 4))

for all q ∈ Z such that {q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 9}.
Now, by decomposing the tensor product, we have:

E(−a− 7)⊗ E(−a− 7) ' S2(E(−a− 7))⊕
2∧
E(−a− 7),

i.e,

E ⊗ E(−2a− 14) ' S2(E(−a− 7))⊕OP4(−2a− 9),
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twisting by OP4(q − 2a− 4) we have:

E ⊗ E(q − 4a− 18) ' S2(E(−a− 7))(q − 2a− 4)⊕OP4(q − 4a− 13),

so

hi(E⊗E(q−4a−18)) = hi(S2(E(−a−7))(q−2a−4))+hi(OP4(q−4a−13)), i = 0, ..., 4.

Now, by Bott’s formula (1.9) we have that h3(OP4(q − 4a− 13)) = 0 thus:

h3(E ⊗ E(q − 4a− 18)) = h3(S2(E(−a− 7))(q − 2a− 4)),

So

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 18))

for all q ∈ Z such that {q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 9}.
By table 2, h3(E ⊗E(q− 4a− 18) 6= 0 for all q ∈ Z such that 4a+ 2 < q < 4a+ 10, thus

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 18)) 6= 0

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 9} ∩ {4a+ 2 < q < 4a+ 10}.

Lemma 12.

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 18)) = 0,

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 9} ∩ {q ≤ 4a+ 2 or q ≥ 4a+ 10}.

Proof. In fact, by table 2 we have h3(E ⊗ E(q − 4a − 18)) = 0 for q ∈ Z such that

{q ≤ 4a+ 2 or q ≥ 4a+ 10} then

h1(IZa(q)) = h3(E ⊗ E(q − 4a− 18)) = 0,

for all q ∈ Z such that {q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 9} ∩ {q ≤ 4a+ 2 or q ≥
4a+ 10}.

Lemma 13.

h1(IZa(q)) = h1(Ω2
P4(q − 2a− 4)) = 0,

for all q ∈ Z and a ≥ 1 such that

{q ≤ 4a+ 2 or q ≥ 4a+ 10} ∩ {q ≤ 3a+ 6 or q ≥ 3a+ 13}.
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Proof. In fact, from

· · · → H1(K(q))→ H1(Ω2
P4(q − 2a− 4))→ H1(IZa(q))→ H2(K(q))→ · · ·

we have:

h1(IZa(q)) = h1(Ω2
P4(q − 2a− 4))

if and only if h1(K(q)) = 0 = h2(K(q)).

From

· · · → H1(S2(E(−a− 7))(q − 2a− 4))→ H1(Ω1
P4 ⊗ E(q − 3a− 11))→ H1(K(q))→

→ H2(S2(E(−a− 7))(q − 2a− 4))→ H2(Ω1
P4 ⊗ E(q − 3a− 11))→ H2(K(q))→

→ H3(S2(E(−a− 7))(q − 2a− 4))→ H3(Ω1
P4 ⊗ E(q − 3a− 11))→ H3(K(q))→ · · ·

we have

h1(K(q)) = 0 = h2(K(q))

if and only if hi(S2(E(−a− 7))(q − 2a− 4)) = 0 for all i = 1, 2, 3 and

hi(Ω1
P4 ⊗ E(q − 3a− 11)) = 0 for all i = 1, 2.

By table 2 we have that hi(S2(E(−a− 7))(q− 2a− 4)) = hi(E ⊗E(q− 4a− 18)) = 0 for

all i = 1, 2, 3 and q ∈ Z such that {q ≤ 4a+ 2 or q ≥ 4a+ 10}.
By Lemma 2 we have that hi(Ω1

P4 ⊗ E(q − 3a − 11)) = 0 for all i = 1, 2 and q ∈ Z such

that {q ≤ 3a + 8 or q ≥ 3a + 13} ∩ {q ≤ 3a + 6 or q ≥ 3a + 9}, i.e., q ∈ Z such that

{q ≤ 3a+ 6 or q ≥ 3a+ 13}.
So

h1(IZa(q)) = h1(Ω2
P4(q − 2a− 4))

for all q ∈ Z such that {q ≤ 4a+ 2 or q ≥ 4a+ 10} ∩ {q ≤ 3a+ 6 or q ≥ 3a+ 13}.
By Bott’s formula, h1(Ω2

P4(q − 2a− 4)) = 0, therefore

h1(IZa(q)) = 0

for all q ∈ Z and a ≥ 1 such that

{q ≤ 4a+ 2 or q ≥ 4a+ 10} ∩ {q ≤ 3a+ 6 or q ≥ 3a+ 13}.

Lemma 14.

h1(IZa(q)) = 0

for all q ∈ Z and a ≥ 1 such that{
{q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 9} ∩ {q ≤ 4a+ 2 or q ≥ 4a+ 10}

}
∪
{
{q ≤ 4a+ 2 or q ≥ 4a+ 10} ∩ {q ≤ 3a+ 6 or q ≥ 3a+ 13}

}
.
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Proof. Putting together Lemmas 12 and 13, we have:

h1(IZa(q)) = 0

for all q ∈ Z and a ≥ 1 such that

{
{q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 9} ∩ {q ≤ 4a+ 2 or q ≥ 4a+ 10}

}
∪
{
q ≤ 4a+ 2 or q ≥ 4a+ 10} ∩ {q ≤ 3a+ 6 or q ≥ 3a+ 13}

}
.

Lemma 15.

h1(IZa(q)) = h2(Ω1
P4 ⊗ E(q − 3a− 11)) + h3(E ⊗ E(q − 4a− 18))

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 7} ∩ {q ≤ 4a+ 7 or q ≥ 4a+ 14}.

Proof. By equation 4.40 we have h1(IZa(q)) = h2(K(q)) for q 6= 2a+ 4.

Now, from

· · · → H2(S2(E(−a− 7))(q − 2a− 4))→ H2(Ω1
P4 ⊗ E(q − 3a− 11))→ H2(K(q))→

→ H3(S2(E(−a− 7))(q − 2a− 4))→ H3(Ω1
P4 ⊗ E(q − 3a− 11))→ · · ·

We note that:

h2(K(q)) = h2(Ω1
P4 ⊗ E(q − 3a− 11)) + h3(S2(E(−a− 7)(q − 2a− 4)))

if and only if h2(S2(E(−a− 7))(q − 2a− 4)) = 0 and h3(Ω1
P4 ⊗ E(q − 3a− 11)) = 0.

On the one hand, by table 2 we have

h2(S2(E(−a− 7)(q − 2a− 4))) = h2(E ⊗ E(q − 4a− 18)) = 0

if and only if q ≤ 4a+ 7 or q ≥ 4a+ 14.

On the other hand, by Lemma 2 we have

h3(Ω1
P4 ⊗ E(q − 3a− 11)) = 0

if and only if q ≤ 3a+ 2 or q ≥ 3a+ 7.

From here, putting these last equations together, we have:

h1(IZa(q)) = h2(Ω1
P4 ⊗ E(q − 3a− 11)) + h3(S2(E(−a− 7)(q − 2a− 4)))

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 4} ∩ {q ≤ 3a+ 2 or q ≥ 3a+ 7} ∩ {q ≤ 4a+ 7 or q ≥ 4a+ 14}.
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Lemma 16.

h1(IZa(q)) = h2(Ω1
P4 ⊗ E(q − 3a− 11)),

for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 4} ∩ {q ≤ 4a+ 2 or q ≥ 4a+ 14}.

Proof. By equation 4.40 we have h1(IZa(q)) = h2(K(q)) for q 6= 2a+ 4.

Now, from

· · · → H2(S2(E(−a− 7))(q − 2a− 4))→ H2(Ω1
P4 ⊗ E(q − 3a− 11))→

→ H2(K(q))→ H3(S2(E(−a− 7))(q − 2a− 4))→ · · ·

We note that:

h2(K(q)) = h2(Ω1
P4 ⊗ E(q − 3a− 11))

if and only if hi(S2(E(−a− 7)(q − 2a− 4))) = hi(E ⊗ E(q − 4a− 18)) = 0 for i = 2, 3.

By table 2 we have

h2(E ⊗ E(q − 4a− 18)) = 0 = h3(E ⊗ E(q − 4a− 18))

if and only if q ≤ 4a+ 2 or q ≥ 4a+ 14.

Hence, h1(IZa(q)) = h2(Ω1
P4 ⊗ E(q − 3a − 11)) for all q ∈ Z and a ≥ 1 such that

{q 6= 2a+ 4} ∩ {q ≤ 4a+ 2 or q ≥ 4a+ 14}.

We state our second main result that describes the geometry of the singular scheme whose

conormal sheaf is Horrocks-Mumford.

Theorem 30. Let Fa is a codimension 2 holomorphic distributions (4.30) on P4. Then:

1. dimCRF1 = h1(IZ1(7)) + h1(IZ1(8)) + h1(IZ1(9)) + 184.

2. dimCRF2 = h1(IZ2(11)) + h1(IZ2(12)) + 284.

3. dimCRF3 = h1(IZ3(15)) + 369.

4. dimCRFa = 401, ∀a ≥ 4.

Proof. For a = 1.

By Lemma 14 we have h1(IZ1(q)) = 0 for all q ∈ Z such that q ≤ 6 or q ≥ 14.

By Lemma 15 we have h1(IZ1(q)) = h2(Ω1
P4⊗E(q−14))+h3(E⊗E(q−22)) for q = 10, 11.

Hence

h1(IZ1(10)) = h2(Ω1
P4 ⊗ E(−4)) + h3(E ⊗ E(−12)).
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Now, by Lemma 2 we have hi(Ω1
P ⊗ E(−4)) = 0 for all i = 0, 1, 3, 4, so

χ(Ω1
P4 ⊗ E(−4)) = h2(Ω1

P4 ⊗ E(−4))

since

c(Ω1
P4 ⊗ E(−4)) = 1− 22h + 228h2 − 1434h3 + 5955h4

then by Riemann-Roch Theorem we have χ(Ω1
P4 ⊗ E(−4)) = 10, so

h2(Ω1
P4 ⊗ E(−4)) = 10.

By table 2 we have h3(E ⊗ E(−12)) = 85. Thus:

h1(IZ1(10)) = h2(Ω1
P4 ⊗ E(−4)) + h3(E ⊗ E(−12))

= 10 + 85

= 95.

Similarly, by Lemma 2 we have hi(Ω1
P ⊗ E(−3)) = 0 for all i = 0, 1, 3, 4, so

χ(Ω1
P4 ⊗ E(−3)) = h2(Ω1

P4 ⊗ E(−3))

since

c(Ω1
P4 ⊗ E(−3)) = 1− 14h + 102h2 − 472h3 + 1505h4

then by Riemann-Roch Theorem we have χ(Ω1
P ⊗ E(−3)) = 5, so

h2(Ω1
P4 ⊗ E(−3)) = 5.

By table 2 we have h3(E ⊗ E(−11)) = 55. Thus:

h1(IZ1(11)) = h2(Ω1
P4 ⊗ E(−3)) + h3(E ⊗ E(−11))

= 5 + 55

= 60.

By Lemma 11 we have h1(IZ1(q)) = h3(E ⊗ E(q − 22)) 6= 0 for all q ∈ Z such that

12 ≤ q < 14. So, by table 2 we have:

h1(IZ1(12)) = h3(E ⊗ E(−10))

= 24.

h1(IZ1(13)) = h3(E ⊗ E(−9))

= 5.
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Therefore

dimCRF1 = dim
⊕
l∈Z

H1(IZ1(l))

=
13∑
l=7

h1(IZ1(l))

= h1(IZ1(7)) + h1(IZ1(8)) + h1(IZ1(9)) + 95 + 60 + 24 + 5

= h1(IZ1(7)) + h1(IZ1(8)) + h1(IZ1(9)) + 184.

For a = 2.

By Lemma 14 we have h1(IZ2(q)) = 0 for all q ∈ Z such that q ≤ 10 or q ≥ 18.

By Lemma 15 we have h1(IZ2(q)) = h2(Ω1
P4⊗E(q−17))+h3(E⊗E(q−26)) for q = 13, 14.

Hence

h1(IZ2(13)) = h2(Ω1
P4 ⊗ E(−4)) + h3(E ⊗ E(−13))

= 10 + 100

= 110.

similarly,

h1(IZ2(14)) = h2(Ω1
P4 ⊗ E(−3)) + h3(E ⊗ E(−12))

= 5 + 85

= 90.

By Lemma 11 we have h1(IZ2(q)) = h3(E ⊗ E(q − 26)) 6= 0 for all q ∈ Z such that

15 ≤ q < 18. So, by table 2 we have:

h1(IZ2(15)) = h3(E ⊗ E(−11))

= 55.

h1(IZ2(16)) = h3(E ⊗ E(−10))

= 24.

h1(IZ2(17)) = h3(E ⊗ E(−9))

= 5.

Therefore
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dimCRF2 = dim
⊕
l∈Z

H1(IZ2(l))

=
17∑
l=11

h1(IZ2(l))

= h1(IZ2(11)) + h1(IZ2(12)) + 110 + 90 + 55 + 24 + 5

= h1(IZ2(9)) + h1(IZ2(10)) + 284.

For a = 3.

By Lemma 14 we have h1(IZ3(q)) = 0 for all q ∈ Z such that q ≤ 14 or q ≥ 22.

By Lemma 15 we have h1(IZ3(q)) = h2(Ω1
P4⊗E(q−20))+h3(E⊗E(q−30)) for q = 16, 17.

Hence

h1(IZ3(16)) = h2(Ω1
P4 ⊗ E(−4)) + h3(E ⊗ E(−14))

= 10 + 85

= 95.

similarly,

h1(IZ3(17)) = h2(Ω1
P4 ⊗ E(−3)) + h3(E ⊗ E(−13))

= 5 + 100

= 110.

By Lemma 11 we have h1(IZ3(q)) = h3(E ⊗ E(q − 30)) 6= 0 for all q ∈ Z such that

18 ≤ q < 22. So, by table 2 we have:

h1(IZ3(18)) = h3(E ⊗ E(−12))

= 85.

h1(IZ3(19)) = h3(E ⊗ E(−11))

= 55.

h1(IZ3(20)) = h3(E ⊗ E(−10))

= 24.

h1(IZ3(21)) = h3(E ⊗ E(−9))

= 5.
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Therefore

dimCRF3 = dim
⊕
l∈Z

H1(IZ3(l))

=
21∑
l=15

h1(IZ3(l))

= h1(IZ3(15)) + 95 + 105 + 85 + 55 + 24 + 5

= h1(IZ3(13)) + 369.

For a = 4.

By Lemma 14 we have h1(IZ4(q)) = 0 for all q ∈ Z such that q ≤ 18 or q ≥ 26.

By Lemma 15 we have h1(IZ4(q)) = h2(Ω1
P4⊗E(q−23))+h3(E⊗E(q−34)) for q = 19, 20.

Hence

h1(IZ4(19)) = h2(Ω1
P4 ⊗ E(−4)) + h3(E ⊗ E(−15))

= 10 + 32

= 42.

similarly,

h1(IZ4(20)) = h2(Ω1
P4 ⊗ E(−3)) + h3(E ⊗ E(−14))

= 5 + 85

= 90.

By Lemma 11 we have h1(IZ4(q)) = h3(E ⊗ E(q − 34)) 6= 0 for all q ∈ Z such that

21 ≤ q < 26. So, by table 2 we have:

h1(IZ4(21)) = h3(E ⊗ E(−13))

= 100.

h1(IZ4(22)) = h3(E ⊗ E(−12))

= 85.

h1(IZ4(23)) = h3(E ⊗ E(−11))

= 55.

h1(IZ4(24)) = h3(E ⊗ E(−10))

= 24.
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h1(IZ4(25)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF4 = dim
⊕
l∈Z

H1(IZ4(l))

=
25∑
l=19

h1(IZ4(l))

= 42 + 90 + 100 + 85 + 55 + 24 + 5

= 401.

For a = 5.

By Lemma 14 we have h1(IZ5(q)) = 0 for all q ∈ Z such that q ≤ 21 or q ≥ 30.

By Lemma 15 we have h1(IZ5(q)) = h2(Ω1
P4 ⊗ E(q − 26)) + h3(E ⊗ E(q − 38))) for

q = 22, 23. Hence

h1(IZ5(22)) = h2(Ω1
P4 ⊗ E(−4)) + h3(E ⊗ E(−16)))

= 10 + 0

= 10.

and

h1(IZ5(23)) = h2(Ω1
P4 ⊗ E(−3)) + h3(E ⊗ E(−15)))

= 5 + 32

= 37.

By Lemma 5 we have h1(IZ4(q)) = h3(E ⊗ E(q − 38)) 6= 0 for all q ∈ Z such that

24 ≤ q < 30. So, by table 2 we have:

h1(IZ5(24)) = h3(E ⊗ E(−14))

= 85.

h1(IZ5(25)) = h3(E ⊗ E(−13))

= 100.

h1(IZ5(26)) = h3(E ⊗ E(−12))

= 85.
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h1(IZ5(27)) = h3(E ⊗ E(−11))

= 55.

h1(IZ5(28)) = h3(E ⊗ E(−10))

= 24.

h1(IZ5(29)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF5 = dim
⊕
l∈Z

H1(IZ5(l))

=
29∑
l=22

h1(IZ5(l))

= 10 + 37 + 85 + 100 + 85 + 55 + 24 + 5

= 401.

For a = 6.

By Lemma 14 we have h1(IZ6(q)) = 0 for all q ∈ Z such that q ≤ 24 or q ≥ 34.

By Lemma 16 we have h1(IZ6(q)) = h2(Ω1
P4 ⊗ E(q − 29)) for q = 25, 26. Hence

h1(IZ6(25)) = h2(Ω1
P4 ⊗ E(−4))

= 10.

and

h1(IZ6(26)) = h2(Ω1
P4 ⊗ E(−3))

= 5.

By Lemma 11 we have h1(IZ4(q)) = h3(E ⊗ E(q − 42)) 6= 0 for all q ∈ Z such that

27 ≤ q < 34. So, by table 2 we have:

h1(IZ6(27)) = h3(E ⊗ E(−15))

= 32.

h1(IZ6(28)) = h3(E ⊗ E(−14))

= 85.
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h1(IZ6(29)) = h3(E ⊗ E(−13))

= 100.

h1(IZ6(30)) = h3(E ⊗ E(−12))

= 85.

h1(IZ6(31)) = h3(E ⊗ E(−11))

= 55.

h1(IZ6(32)) = h3(E ⊗ E(−10))

= 24.

h1(IZ6(33)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF6 = dim
⊕
l∈Z

H1(IZ6(l))

=
33∑
l=25

h1(IZ6(l))

= 10 + 5 + 32 + 85 + 100 + 85 + 55 + 24 + 5

= 401.

For a = 7.

By Lemma 14 we have h1(IZ7(q)) = 0 for all q ∈ Z such that q ≤ 27 or q = 30 or q ≥ 38.

By Lemma 16 we have h1(IZ7(q)) = h2(Ω1
P4 ⊗ E(q − 32)) for q = 28, 29. Hence

h1(IZ7(28)) = h2(Ω1
P4 ⊗ E(−4))

= 10.

and

h1(IZ7(29)) = h2(Ω1
P4 ⊗ E(−3))

= 5.
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By Lemma 11 we have h1(IZ7(q)) = h3(E ⊗ E(q − 46)) 6= 0 for all q ∈ Z such that

30 < q < 38. So, by table 2 we have:

h1(IZ7(31)) = h3(E ⊗ E(−15))

= 32.

h1(IZ7(32)) = h3(E ⊗ E(−14))

= 85.

h1(IZ7(33)) = h3(E ⊗ E(−13))

= 100.

h1(IZ7(34)) = h3(E ⊗ E(−12))

= 85.

h1(IZ7(35)) = h3(E ⊗ E(−11))

= 55.

h1(IZ7(36)) = h3(E ⊗ E(−10))

= 24.

h1(IZ7(37)) = h3(E ⊗ E(−9))

= 5.

Therefore

dimCRF7 = dim
⊕
l∈Z

H1(IZ7(l))

=
37∑
l=28

h1(IZ7(l))

= 10 + 5 + 0 + 32 + 85 + 100 + 85 + 55 + 24 + 5

= 401.

For a ≥ 7.

By Lemma 14 we have h1(IZ7(q)) = 0 for all q ∈ Z such that q ≤ 3a+ 6 or 3a+ 9 ≤ q ≤
4a+ 2 or q ≥ 4a+ 10.
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By Lemma 16 we have h1(IZ7(q)) = h2(Ω1
P4 ⊗ E(q − 3a − 11)) for all q ∈ Z such that

{q 6= 2a+ 4} ∩ {q ≤ 4a+ 2 or q ≥ 4a+ 14}, in particular for q = 3a+ 7, 3a+ 8.

Hence

h1(IZa(3a+ 7)) = h2(Ω1
P4 ⊗ E(3a+ 7− 3a− 11))

= h2(Ω3
P4 ⊗ E(−4))

= 10.

and

h1(IZa(3a+ 8)) = h2(Ω1
P4 ⊗ E(3a+ 8− 3a− 11))

= h2(Ω3
P4 ⊗ E(−3))

= 5.

By Lemma 11 we have h1(IZa(q)) = h3(E ⊗ E(q − 4a− 18)) 6= 0 for all q ∈ Z such that

4a+ 2 < q < 4a+ 10. So, by table 2 we have:

h1(IZa(4a+ 3)) = h3(E ⊗ E(4a+ 3− 4a− 18))

= h3(E ⊗ E(−15))

= 32.

h1(IZa(4a+ 4)) = h3(E ⊗ E(4a+ 4− 4a− 18))

= h3(E ⊗ E(−14))

= 85.

h1(IZa(4a+ 5)) = h3(E ⊗ E(4a+ 5− 4a− 18))

= h3(E ⊗ E(−13))

= 100.

h1(IZa(4a+ 6)) = h3(E ⊗ E(4a+ 6− 4a− 18))

= h3(E ⊗ E(−12))

= 85.

h1(IZa(4a+ 7)) = h3(E ⊗ E(4a+ 7− 4a− 18))

= h3(E ⊗ E(−11))

= 55.
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h1(IZa(4a+ 8)) = h3(E ⊗ E(4a+ 8− 4a− 18))

= h3(E ⊗ E(−10))

= 24.

h1(IZa(4a+ 9)) = h3(E ⊗ E(4a+ 9− 4a− 18))

= h3(E ⊗ E(−9))

= 5.

Therefore

dimCRFa = dim
⊕
l∈Z

H1(IZa(l))

=
4a+9∑
l=3a+7

h1(IZa(l))

=
3a+8∑
l=3a+7

h1(IZa(l)) + 0 + · · ·+ 0 +
4a+9∑
l=4a+3

h1(IZa(l))

= 10 + 5 + 0 + · · ·+ 0 + 32 + 85 + 100 + 85 + 55 + 24 + 5

= 401.

4.3.2 First cohomology dimension:

Let F be a holomorphic distribution on P4. Consider the following graded module

M o
F := H1

∗ (N
∗
F ) =

⊕
l∈Z

H1(N∗F (l));

called the first cohomology module of F as a sub-sheaf of the cotangent.

Since N∗Fa
= E(−a − 7) then H1(N∗Fa

(l)) = H1(E(−a − 7 + l)). By table 1 we have

h1(N∗Fa
(l)) = h1(E(−a− 7 + l)) 6= 0 if, and only if, a+ 4 ≤ l ≤ a+ 7. Hence:

dimCM
o
Fa

= dim
⊕
l∈Z

H1(E(−a− 7 + l))

=
a+7∑
l=a+4

h1(E(−a− 7 + l))

= h1(E(−3)) + h1(E(−2)) + h1(E(−1)) + h1(E)

= 5 + 10 + 10 + 2

= 27.
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Next, let us describe the cohomologies of the normal sheaf.

Proposition 19. Let Fa be codimension 2 holomorphic distributions family (4.30) on

P4. Then:

1. h0(N∗Fa
(q)) = 0 for q ≤ a+ 6.

2. h1(N∗Fa
(q)) = 0 for q ≤ a+ 3 or q ≥ a+ 8.

3. h2(N∗Fa
(q)) = 0 for q ≤ a+ 1 or q ≥ a+ 3.

4. h3(N∗Fa
(q)) = 0 for q ≤ a− 4 or q ≥ a+ 1.

5. h4(N∗Fa
(q)) = 0 for q ≥ a− 2.

Proof. From the Fa distribution (4.30):

0→ E(−a− 7)→ Ω1
P4 → QFa → 0,

twisting by OP4(q), we have:

0→ E(q − a− 7)→ Ω1
P4(q)→ QFa(q)→ 0.

Hence N∗Fa
(q) = E(−a − 7 + q). Therefore H i(N∗Fa

(q)) = H i(E(−a − 7 + q)), for all

i = 0, ..., 4.

Since h0(N∗Fa
(q)) = h0(E(−a − 7 + q)) then by table 1 we have h0(N∗Fa

(q)) = 0 if and

only if q ≤ a+ 6.

Similarly with the other cases.

In particular, for a = 1 we have:

Corollary 8. Let F is a distribution

F : 0→ E(−8)
ϕ−→ Ω1

P4 → QF → 0, (4.41)

and Z = Sing(F ). Then

1. The Chern classes of the conormal sheaf are:

c1(N
∗
F ) = −11 , c2(N

∗
F ) = 35.

2. The Chern classes of ideals sheaf of the singular scheme are:

c1(IZ) = 0 , c2(IZ) = 0 , c3(IZ) = −496 , c4(IZ) = −12294.

3. The degree of distribution F is deg(F ) = 3.
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4. deg(Z) = 248.

5. pa(Z) = 1430.

Corollary 9. Let F is a codimension 2 holomorphic distribution (4.41) on P4. The

singular scheme Z = Sing(F ) is reduced and irreducible.

Theorem 31. Let F is a codimension 2 distribution (4.41) on P4. Then:

1. dimCRF1 ≥ 184.

2. The singular scheme Z = Sing(F ) is not a arithmetically Buchsbaum nor arithme-

tically Cohen Macaulay curve.

Corollary 10. Let F is a codimension 2 distribution holomorphic (4.41) on P4. Then:

1. h0(N∗Fa
(q)) = 0 for q ≤ 7.

2. h1(N∗Fa
(q)) = 0 for q ≤ 4 or q ≥ 9.

3. h2(N∗Fa
(q)) = 0 for q ≤ 2 or q ≥ 4.

4. h3(N∗Fa
(q)) = 0 for q ≤ −3 or q ≥ 2.

5. h4(N∗Fa
(q)) = 0 for q ≥ −1.



5 ON THE NON-INTEGRABILITY OF DIS-

TRIBUTIONS

This section is devoted to the study of the non-integrability of the Horrocks-Mumford

distributions. The argument is based on the study of the Baum-Bott residue, in terms of

the Grothendieck residue, and of the ampleness of the normal sheaf.

Let us denote by Singk+1(F ) the subset of Sing(F ) composed by analytic subsets of

codimension k + 1. It is called the singular set of F with expected codimension. In [9,

Theorem 1.2], the authors determine Baum-Bott residues for F with respect to homo-

geneous symmetric polynomials of degree k + 1 in terms of the Grothendieck residue

of an one-dimensional foliation on a (k + 1)-dimensional disc transversal to a (k + 1)-

codimensional component of the singular set of F . More precisely:

Theorem 32 (M. Corrêa; F. Lourenço - 2019). Let F be a singular holomorphic foliation

of codimension k on a compact complex manifold X such that codim(Sing(F )) ≥ k + 1

and Z be an irreducible component of Singk+1(F ), the singular set of F with expected

codimension. Then

Res(F , ϕ;Z) = Resϕ(F |Bp ; p) · [Z],

where Resϕ(F |Bp ; p) represents the Grothendieck residue at p of the one dimensional

foliation F |Bp on a (k + 1)−dimensional transversal ball Bp.

In order to show the non-integrability of the Horrocks-Mumford distributions, we have

the following result:

Lemma 17. Let F be a holomorphic foliation of codimension k ≥ 2 on a complex mani-

fold X, such that codim(Sing(F )) ≥ k + 1. If the conormal sheaf N∗F is locally free and

det(NF ) is ample, then Singk+1(F ) can not be irreducible.

Proof. Suppose by contradiction that Singk+1(F ) := Z is irreducible and take p ∈ Z

be a generic point, i.e., p is a point where Z is smooth. Since the conormal sheaf N∗F is

locally free then F is given by a locally decomposable holomorphic twisted and integrable

k-form ω ∈ H0(X,Ωk
X ⊗ det(NF )). Take a neighborhood U of p ∈ Z then there exist

holomorphic 1-forms ω1, ..., ωk ∈ H0(U,Ω1
U) such that

ω|U = ω1 ∧ · · · ∧ ωk

and

dωi ∧ ω1 ∧ · · · ∧ ωk = 0, ∀i = 1, ..., k.
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Since codim(Sing(F )) ≥ 3 then by Malgrange’s Theorem, [29] and [30], there are f1, ..., fk ∈
On and h ∈ O∗n such that

ω = h · df1 ∧ · · · ∧ dfk,

Hence dω = dh ∧ df1 ∧ · · · ∧ dfk = dh
h
∧
(
h.df1 ∧ · · · ∧ dfk

)
= θ ∧ ω, where θ = dh

h
is the

trace of the Bott connection.

Consider Bp a ball centered at p, of dimension k + 1 sufficiently small and transversal

to Z in p. Then we can integrate the De Rham’s class over an oriented (k + 1)-sphere

Lp ⊂ B∗p positively linked with S(Bp). It follows from [3] and [9] that:

Res(F , ck+1
1 , Z) = Resck+1

1
(F |Bp ; p) · [Z] =

1

(2πi)k+1

∫
Lp

θ ∧ (dθ)k · [Z],

is the Baum-Bott residue for F along Z with respect to ck+1
1 .

Since h ∈ O∗n then θ = dh
h

is a holomorphic 1-form, hence
∫
Lp
θ ∧ (dθ)k = 0, so

Resck+1
1

(F |Bp ; p) = 0.

On the other hand, since F is a holomorphic foliation of codimension k then by Baum-

Bott formula, [3], we have:

ck+1
1 (det(NF )) = Resck+1

1
(F |Bp ; p) · [Z],

where [Z] ∈ H2k+2(X,C) is the fundamental class of the irreducible component Z of

Singk+1(F ), and the sum is done over all irreducible components of Singk+1(F ). Now,

taking product both sides by hn−k−1, taking degree and since det(NF ) is ample sheaf, we

have: ∫
X

ck+1
1 (det(NF )) · hn−k−1 = Resck+1

1
(F |Bp ; p) ·

∫
X

[Z] · hn−k−1,

thus:

0 < deg(det(NF )) = Resck+1
1

(F |Bp ; p) · deg(Z).

Hence Resck+1
1

(F |Bp ; p) 6= 0. But this is a contradiction, since the ampleness of det(NF )

implies that the cohomology class ck+1
1 (det(NF )) is non zero.

With this in mind, we have the following result.

Theorem 33. Let Fa be the Horrocks-Mumford distribution (4.18), then Fa is non-

integrable, for a ≥ 1.

Proof. Suppose by contradiction that Fa is a codimension two holomorphic foliation

and let Sing3(Fa) is a irreducible component of codimension 3. By Proposition 14 and

Theorem 17 we have that Sing(Fa) is a reduced, irreducible scheme of pure codimension

3, hence Sing(Fa) = Sing3(Fa). Since

c1(det(NFa)) = (2a+ 8) > 0,
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for all a ≥ 1, then det(NF ) is ample sheaf, hence by Lemma 17 the Singular scheme

Sing(Fa) is not irreducible, but this contradicts Proposition 14.

Figure 1 – Transversal section.

Similarly we have:

Theorem 34 (D). Let Fa be the Horrocks-Mumford distribution (4.30), then Fa is non-

integrable, for a ≥ 1.

Proof. Suppose Fa is a codimension two holomorphic foliation. Since c1(det(NFa)) =

(2a + 9) > 0, for all a ≥ 1, then by Lemma 17 we have that Za cannot be irreducible,

for all a ≥ 1, but it is a contradiction since Za = Sing3(Fa) is smooth, irreducible, pure

codimension 3.
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6 MODULI SPACES OF HORROCKS-

MUMFORD DISTRIBUTIONS

Moduli spaces arose to give a solution to the classification problems, specifically in alge-

braic geometry. In this chapter we study the problem of classifying the Horrocks-Mumford

distributions, fixing numerical invariants as data. This is the idea of constructing the mo-

duli space of holomorphic distribution, meaning an algebraic variety that parametrizes

the holomorphic distributions.

For more details on the general theory of Moduli spaces, see: [6], [7], [10], [22], [26] and

[31].

6.1 MODULI SPACES OF DISTRIBUTIONS

In [6], the authors described the Moduli Space of holomorphic distributions of codimension

one on P3, in terms of Grothendieck’s Quot-scheme for the tangent bundle, and determined

under what conditions this variety is smooth, irreducible and they calculated its dimension

as a consequence of the Theorem on the dimension of the fibers.

Lemma 18 (O. Calvo Andrade, M. Corrêa, M. Jardim - 2018). Let M P,r,st denote

the open subset of M P consisting of stable reflexive sheaves. Assume that the forget-

ful morphism $ : DistP,st → M P,r,st is surjective, and that M P,r,st is irreducible. If

dim Hom(F, TX) is constant for all [F ] ∈M P,r,st, then DistP,st is irreducible and

dim DistP,st = dim M P,r,st + dim Hom(F, TX)− 1.

If, in addition, Ext2(TF , TF ) = 0 for every [F ] ∈ DistP,st, then DistP,st is nonsingular

and

dim DistP,st = dim Ext1(TF , TF ) + dim Hom(TF , TF )− 1.

Proof. Vide [6], pag. 12.

In [7] the authors studied foliations by curves on P3 with locally free conormal sheaf

and describe their moduli spaces. We adapt this general theory to describe the Moduli

spaces of the Horrocks-Mumford distributions as subsheaves of the tangent and cotangent

bundle.
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6.2 MODULI SPACES OF THE HORROCKS-MUMFORD DIS-

TRIBUTIONS AS SUBSHEAVES OF THE TANGENT BUN-

DLE

Having identified the tangent sheaf TFa = E(−a − 4) of the Horrocks-Mumford holo-

morphic distributions

Fa : 0→ E(−a− 4)→ TP4 → NF → 0 , a ≥ 1,

we study the variety that parameterizes them, the associated Moduli space.

Let P = PFa(t) = χ(TFa(t)) be the Hilbert polynomial of the stable bundle TFa =

E(−a− 4), and let da = deg(Fa) and c = c2(TFa) = c2(E(−a− 4)), for a ≥ 1. Then by

Riemann-Roch Theorem for rank 2 vector bundle E(−a− 4 + t) we write:

P := PFa(t)

= 2 +
25

12
(2− da + 2t) +

35

24

(
(2− da + 2t)2 − 2(c− 2at+ t2 − 3t)

)
+

5

12

(
(2− da + 2t)3 − 3(2− da + 2t)(c− 2at+ t2 − 3t)

)
+

1

24

(
(2− da + 2t)4 − 4(2− da + 2t)2(c− 2at+ t2 − 3t) + 2(c− 2at+ t2 − 3t)2

)
.

We are going to denoted by

DistP (da, c) := DistP (2a+ 5, a2 + 3a+ 6)

the Moduli spaces of Horrocks-Munford Holomorphic Distribution as subsheaves of tan-

gent bundle, with Hilbert polynomial P and degree da = deg(Fa), and by

MP4(2− da, c) := MP4(−2a− 3, a2 + 3a+ 6)

denote the Moduli space of the stable tangent sheaves of the Horrocks-Mumford distri-

butions (4.18), with Chern classes c1 = 2− da and c2 = c.

Let us consider the forgetful morphism

$a : DistP (da, c) −→MP4(2− da, c)

[Fa] 7−→ [E(−a− 4)]

Twisting byOP4(a+1) we obtain the isomorphism MP4(−3−2a, a2+3a+6) 'MP4(−1, 4).

By Theorem 24 MP4(−1, 4) is a Zariski open then MP4(2−da, c) is an irreducible, nonsin-

gular variety of dimension 24. In addition, by Bertini type Theorem 28 each E(−a − 4)
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is the tangent sheaf of a distribution Fa, therefore $ is surjective, for all a ≥ 1. Thus

the image Im$ = MP4(−1, 4) is irreducible.

Theorem 35 (E). The Moduli space DistP (2a + 5, a2 + 3a + 6) of codimension two

holomorphic distributions (4.18) is an irreducible quasi-projective variety of dimension

1

3
a4 + 7a3 +

277

6
a2 +

199

2
a+ 43

for a ≥ 1.

Proof. The fibers of $a over a point [E(−a−4)] ∈MP4(2−da, c) is the set Dist(E(−a−4))

of all distributions whose tangent sheaf is Horrocks-Mumford:

Dist(E(−a−4)) := {ϕ ∈ PHom(E(−a−4), TP4); kerϕ = 0 and Cokerϕ is torsion free}.

That is an open subset of PHom(E(−a− 4), TP4), see [6, Section 2.3]. Hence

dim Dist(E(−a− 4)) = dim Hom(E(−a− 4), TP4)− 1.

We claim that dim Hom(E(−a− 4), TP4) = h0(E(a− 1)⊗ TP4) is constant.

Indeed, for this purpose, let us consider the Euler exact sequence:

0→ OP4 → OP4(1)⊕5 → TP4 → 0,

twisting by E(a− 1) we have:

0→ E(a− 1)→ E(a)⊕5 → E(a− 1)⊗ TP4 → 0,

with long exact sequence of cohomology :

0→ H0(E(a− 1))→ H0(E(a))⊕5 → H0(E(a− 1)⊗ TP4)→ · · ·

· · · → H4(E(a− 1))→ H4(E(a))⊕5 → H4(E(a− 1)⊗ TP4)→ 0.

Since hi(E(a)) = 0 for i = 1, 2, 3, 4 and hi(E(a− 1)) = 0 for i = 2, 3, 4, then

hi(E(a− 1)⊗ TP4) = 0,

for i = 1, 2, 3, 4, therefore:

5χ(E(a)) = χ(E(a− 1)) + χ(E(a− 1)⊗ TP4)

= χ(E(a− 1)) + h0(E(a− 1)⊗ TP4).

So by (2.4) we have:
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h0(E(a− 1)⊗ TP4) = 5 · χ(E(a))− χ(E(a− 1))

= 5 · 1

12

(
(a+ 5)2 − 1

)(
(a+ 5)2 − 24

)
− 1

12

(
(a+ 4)2 − 1

)(
(a+ 4)2 − 24

)
=

1

3
a4 + 7a3 +

277

6
a2 +

199

2
a+ 20,

for a ≥ 1.

So, all the fiber in Dist(E(−a−4)) has the same dimension. Since Im$a = MP4(2−da, c)
is irreducible then by Theorem on the dimension of fibers (see [35, pag. 77]), we have

that DistP (da, c) is a irreducible variety.

Finally, by Theorem on the dimension of fibers (see [35, pag. 76]), Lemma 18 and Theorem

24, we have:

dim DistP,st(da, c) = dim MP4(2− da, c) + dim Dist(E(−a− 4))

= dim MP4(2− da, c) + dim Hom(E(−a− 4), TP4)− 1

= 24 + h0(E(a− 1)⊗ TP4)− 1

=
1

3
a4 + 7a3 +

277

6
a2 +

199

2
a+ 43,

for a ≥ 1.

In particular, for a = 1 we have:

Corollary 11. The Moduli space DistP,st(7, 10) of codimension two holomorphic distri-

bution (4.29) is an irreducible, non-singular quasi-projective variety of dimension 196.

6.3 MODULI SPACES OF THE HORROCKS-MUMFORD DIS-

TRIBUTIONS AS SUBSHEAVES OF COTANGENT BUNDLE

Similarly to the previous case, and having identified the stable conormal sheaf N∗Fa
=

E(−a− 7) of the Horrocks-Mumford distributions (4.30), in this section we analyze their

Moduli spaces.

Consider the Horrocks-Mumford distribution induced by the cotangent bundle:

Fa : 0→ E(−a− 7)→ Ω1
P4 → QF → 0 , a ≥ 1.

Let P = PFa(t) = χ(N∗Fa
(t)) the Hilbert polynomial of N∗Fa

= E(−a − 7), and let

da = deg(Fa) and let c = c2(N
∗
Fa

) = c2(E(−a− 7)), for a ≥ 1. By Theorem 15 for rank

2 vector bundle E(−a− 7 + t) we write:
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P := PFa(t)

= 2 +
25

12
(−da − 3 + 2t) +

35

24

(
(−da − 3 + 2t)2 − 2(c− 2at+ t2 − 9t)

)
+

5

12

(
(−da − 3 + 2t)3 − 3(−da − 3 + 2t)(c− 2at+ t2 − 9t)

)
+

1

24

(
(−da − 3 + 2t)4 − 4(−da − 3 + 2t)2(c− 2at+ t2 − 9t) + 2(c− 2at+ t2 − 9t)2

)
.

Let DistP (da, c) its Moduli spaces with Hilbert polynomial P and degree da = deg(Fa),

i.e,

DistP (da, c) := DistP (2a+ 6, a2 + 9a+ 24)

and let MP4(−da− 3, c) denote the Moduli space of stable conormal sheaves of Horrocks-

Mumford distributions 4.30, with Chern classes c1 = −da − 3 and c2 = c, i.e,

MP4(−da − 3, c) = MP4(−2a− 9, a2 + 9a+ 24).

For all a ≥ 1, let us consider the forgetful morphism

$o
a : DistP (da, c) −→MP4(−da − 3, c)

[Fa] 7−→ [E(−a− 7)].

Twisting by OP4(a+4) we have MP4(−2a−9, a2+9a+24) 'MP4(−1, 4). By Theorem 24

MP4(−1, 4) is a Zariski open then MP4(−da − 3, c) is an irreducible, nonsingular variety

of dimension 24. In addition, by Bertini type Theorem 28 each E(−a−7) is the conormal

sheaf of a distribution Fa, therefore $ is surjective, for all a ≥ 1.

Theorem 36 (F). The Moduli space DistP (2a + 6, a2 + 9a + 24) of codimension two

holomorphic distributions (4.30) is an irreducible quasi-projective variety of dimension

1

3
a4 +

23

3
a3 +

343

6
a2 +

899

6
a+ 98,

for a ≥ 1.

Proof. The fibres over a point [E(−a− 7)] ∈MP4(−da− 3, c) is the set Dist(E(−a− 7))

of all distributions whose conormal sheaf is Horrocks-Mumford:

Dist(E(−a−7)) := {ϕ ∈ PHom(E(−a−7),Ω1
P4); kerϕ = 0 and Cokerϕ is torsion free},

that is an open subset of PHom(E(−a− 7),Ω1
P4), hence

dim Dist(E(−a− 7)) = dim Hom(E(−a− 7),Ω1
P4)− 1.
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We claim that dim Hom(E(−a− 7),Ω1
P4) is constant.

Indeed, for this purpose, let us consider the Euler exact sequence:

0→ Ω1
P4 → OP4(−1)⊕5 → OP4 → 0,

twisting by E(a+ 2) we have:

0→ E(a+ 2)⊗ Ω1
P4 → E(a+ 1)⊕5 → E(a+ 2)→ 0,

with long exact sequence of cohomology :

0→ H0(E(a+ 2)⊗ Ω1
P4)→ H0(E(a+ 1))⊕5 → H0(E(a+ 2))→ · · ·

· · · → H4(E(a+ 2)⊗ Ω1
P4)→ H4(E(a+ 1))⊕5 → H4(E(a+ 2))→ 0.

Since hi(E(a + 1)) = 0 for i = 1, 2, 3, 4 and hi(E(a + 2)) = 0 for i = 1, 2, 3, 4, then

hi(E(a+ 2)⊗ Ω1
P4) = 0 for i = 2, 3, 4 and h1(E(a+ 2)⊗ Ω1

P4) = 0 for a ≤ −5 and a ≥ 0,

therefore for all a ≥ 1 we have:

5χ(E(a+ 1)) = χ(E(a+ 2)⊗ Ω1
P4) + χ(E(a+ 2))

= h0(E(a+ 2)⊗ Ω1
P4) + h0(E(a+ 2)).

So, by (2.4):

h0(E(a+ 2)⊗ Ω1
P4) = 5χ(E(a+ 1))− χ(E(a+ 2))

= 5 · 1

12

(
(a+ 6)2 − 1

)(
(a+ 6)2 − 24

)
− 1

12

(
(a+ 7)2 − 1

)(
(a+ 7)2 − 24

)
=

1

3
a4 +

23

3
a3 +

343

6
a2 +

899

6
a+ 75,

for a ≥ 1.

So, all the fiber Dist(E(−a−7)) for [E(−a−7)] ∈MP4(−da−3, c) has the same dimension.

Since MP4(−da − 3, c) is irreducible then by Theorem of dimension of the fibers we have

that DistP,st(da, c) is a irreducible variety.

Finally, by Lemma 18 and Theorem 24 we have:

dim DistP,st(da, c) = dim MP4(−da − 3, c) + Dist(E(−a− 7))

= dim MP4(−da − 3, c) + dim Hom(E(−a− 7),Ω1
P4)− 1

= 24 + h0(E(a+ 2)⊗ Ω1
P4)− 1

=
1

3
a4 +

23

3
a3 +

343

6
a2 +

899

6
a+ 98,

for a ≥ 1.
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In particular, for a = 1 we have:

Corollary 12. The Moduli space DistP,st(8, 34) of codimension two holomorphic distri-

bution (4.41) is an irreducible, non-singular quasi-projective variety of dimension 313.



Parte III

Final considerations
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7 THE a = 0 CASE

7.1 ON THE INJECTIVITY

By Lemma 2, we note that dim Hom(E(−a − 4), TP4) = h0(E(a − 1) ⊗ TP4) = 0

for a ≤ −1. On the other hand, twisting Euler’s sequence by E(−1) and considering

the long exact sequence in cohomology, then by Serre’s duality and Lemma 2 we have

dim Hom(E(−4), TP4) = h0(E(−1) ⊗ TP4) = 20. So, it is natural to ask: are there

distributions when a = 0 ?, i.e., let:

F : 0→ E(−4)
ϕ−→ TP4 → NF → 0.

Question: Is F a distribution?

Lemma 19. Let E be the Horrocks-Mumford bundle. Then there are morphisms such

that ϕ : E(−4)→ TP4 is injective.

Proof. Let ϕ ∈ Hom(E(−4), TP4) be a non trivial morphism ϕ : E(−4) → TP4. If ϕ is

not injective then Kerϕ 6= 0, i.e, we have:

Kerϕ ↪→ E(−4)→ TP4,

hence rank(Kerϕ) = 1, so Kerϕ is a reflexive sheaf, hence a line bundle Kerϕ = OP4(k),

obtaining the following commutative diagram:

OP4(k) // E(−4)

&&

ϕ
// TP4

IZ(−k − 3)

τ

88

Since τ induces a non-trivial section in H0(P4, TP4(k + 3)), then by Bott’s formula 1.9

we have h0(TP4(k + 3)) = h4(Ω1
P4(−8 − k)) 6= 0 if, and only if, k ≥ −4. On the other

hand, since E is stable then h0(Eη) = h0(E(−3)) = 0, i.e, E(−3) has no global section,

so there is no injective map OP4 ↪→ E(−3) hence OP4(k) ↪→ E(−4) for k ≤ −2. Therefore

k ∈ {−4,−3,−2}.

• If k = −4 and by h0(E) = 4 6= 0 then the map ϕ : E(−4)→ P4 has Kerϕ 6= 0.

• If k = −3 or −2 then h0(E(k)) = 0 hence Kerϕ = 0 thus ϕ is injective.
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Now, set

I1 = {ϕ ∈ Hom(E(−4), TP4), such that Kerϕ = 0},

then dim I1 = h0(E(−1)⊗TP4)−h0(E) = 20−4 = 16. So, there are injective morphisms

ϕ : E(−4)→ TP4.

Similarly, by Lemma 2 we have:

dim Hom(E(−a− 7),Ω1
P4) = h0(E(a+ 2)⊗ Ω1

P4) = 0,

for a ≤ −1. However for a = 0, twisting Euler’s sequence by E(2) and considering the

long exact sequence in cohomology, then by Lemma 2 we have dim Hom(E(−7),Ω1
P4) =

h0(E(2)⊗ Ω1
P4) = 75. So, it is natural to ask: are there distributions when a = 0 ? , i.e.,

let:

F : 0→ E(−7)
ϕ−→ Ω1

P4 → NF → 0.

Question: Is F a distribution?

Lemma 20. Let E be the Horrocks-Mumford bundle. Then there are morphisms such

that ϕ : E(−7)→ Ω1
P4 is injective.

Proof. Let ϕ ∈ Hom(E(−7),Ω1
P4) be a non trivial morphism ϕ : E(−7) → Ω1

P4 . If ϕ is

not injective, then Kerϕ 6= 0, i.e, we have:

Kerϕ ↪→ E(−7)→ Ω1
P4 ,

then rank(Kerϕ) = 1, so Kerϕ is a reflexive sheaf, hence a line bundle Kerϕ = OP4(k),

obtaining the following commutative diagram:

OP4(k) // E(−7)

&&

ϕ
// Ω1

P4

IZ(−k − 9)

τ

99

Since τ induces a non-trivial section in H0(P4,Ω1
P4(k+ 9)), then by Bott’s formula 1.9 we

have h0(Ω1
P4(k+9)) 6= 0 if, and only if, k ≥ −7. On the other hand, since E is stable then

h0(Eη) = h0(E(−3)) = 0, i.e, E(−3) has no global section, so there is no injective map

OP4 ↪→ E(−3) that induces OP4(k) ↪→ E(−7) for k ≤ −5. Therefore k ∈ {−7,−6,−5}.

• If k = −7 and by h0(E) = 4 6= 0 then the map ϕ : E(−7)→ Ω1
P4 has Kerϕ 6= 0.

• If k = −6 or −5 then h0(E(k)) = 0 hence Kerϕ = 0 thus ϕ is injective.
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Now, set

I2 = {ϕ ∈ Hom(E(−7),Ω1
P4), such that Kerϕ = 0},

then dim I2 = h0(E(−1)⊗Ω1
P4)−h0(E) = 75−4 = 71. So, there are injective morphisms

ϕ : E(−7)→ Ω1
P4 .

7.2 ON THE SATURATED DISTRIBUTION

Let ϕ ∈ I1, i.e, ϕ : E(−4)→ TP4 is a injective morphism, suppose that K := Cokerϕ is

not torsion free. Let P be the maximal torsion subsheaf of K, then K/P is torsion free.

We affirm that P has codimension one. Let ψ be the composed epimorphism TP4 →
K → K/P and let G = Kerψ, then we have

0→ G → TP4 ψ−→ K/P → 0, (7.1)

hence, since TP4 is locally free and K/P is torsion free sheaf then by Proposition 4 we

have that G is a reflexive sheaf. So, by the Snake Lemma

Ker τ 0 P

0 E(−4) TP4 K 0

0 G TP4 K/P 0

Coker τ 0 Cokerα

ϕ

τ ' α

ψ

∂

we have:

0→ Ker τ → 0→ P ∂−→ Coker τ → 0

hence Ker τ = 0 and P ' Coker τ , so we obtain a exact sequence:

0→ E(−4)
τ−→ G → P → 0.

If codimP ≥ 2 then P∗ = 0 so G∗ ' (E(−4))∗, hence

E(−4) ' (E(−4))∗∗ ' G∗∗ ' G,
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because G is reflexive sheaf. Then since P = 0 hence K/P = K, i.e, K will be a torsion

free sheaf, but this contradicts our hypothesis, therefore codimP = 1. Since P is a torsion

sheaf then deg(P) > 0, so c1(P) > 0. Thus from

0→ E(−4)→ G → P → 0,

then c1(G) = c1(E(−4)) + c1(P), hence c1(G) > −3.

Additionally,

G : 0→ G → TP4 → K/P → 0,

is a codimension 2 saturated distribution of F , with tangent sheaf G, then

deg(G ) = d < 5 = deg(F ).

Now, from:

0 E(−4) TP4 K 0

0 G TP4 K/P 0

ϕ

τ

ψ

since P ' Coker τ is a torsion sheaf, we obtain the injective map

0→ Hom(G, TP3)
◦τ−→ Hom(E(−k), TP3)→ · · ·

given by composition with τ . Hence h0(G∗ ⊗ TP4) ≤ h0(E(−1)⊗ TP4) = 20, i.e.,

h0(G∗ ⊗ TP4) ≤ 20.

• If h0(G∗ ⊗ TP4) = 20 then Hom(G, TP4) ' Hom(E(−4), TP4), i.e, every injective

morphism ϕ : E(−4) → TP4 factors through τ , hence Cokerϕ cannot be torsion

free because it contains Cokerϕ as a subsheaf.

• If h0(G∗⊗TP4) < 20 then Hom(G, TP4) 6= Hom(E(−4), TP4), i.e, there is morphism

ϕ ∈ Hom(E(−4), TP4) which does not factor through G. By Lemma 19 we can

choose ϕ to be injective. Now, if Cokerϕ is not torsion free, we would get in

contradiction with the existence of the sequence (7.1).

Observation: So, to finish this analysis, we need to determine the tangent sheaf G, that

is, we need to classify codimension 2 holomorphic distributions of low degree whose tan-

gent sheaf is locally free.

Using the same argument as in the previous case, if ϕ ∈ I2, i.e, ϕ : E(−7) → Ω1
P4 is a

injective morphism, suppose that K := Cokerϕ is not torsion free. Let P be the maximal

torsion subsheaf of K, then K/P is torsion free.
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We affirm that P has codimension one. Let ψ be the composed epimorphism Ω1
P4 → K →

K/P and let G = Kerψ, then we have

0→ G → Ω1
P4

ψ−→ K/P → 0, (7.2)

hence, since Ω1
P4 is locally free and P is torsion free sheaf then by Proposition 4 we have

that G is a reflexive sheaf. So, by the Snake Lemma

Ker τ 0 P

0 E(−7) Ω1
P4 K 0

0 G Ω1
P4 K/P 0

Coker τ 0 Cokerα

ϕ

τ ' α

ψ

∂

we have:

0→ Ker τ → 0→ P ∂−→ Coker τ → 0

hence Ker τ = 0 and P ' Coker τ , so we obtain a exact sequence:

0→ E(−7)
τ−→ G → P → 0.

If codimP ≥ 2 then P∗ = 0 so G∗ ' (E(−7))∗, hence

E(−7) ' (E(−7))∗∗ ' G∗∗ ' G,

because G is reflexive sheaf. Then since P = 0 hence K/P = K, i.e, K will be a torsion

free sheaf, but this contradicts our hypothesis, therefore codimP = 1. Since P is a torsion

sheaf then deg(P) > 0, so c1(P) > 0. Thus from

0→ E(−7)→ G → P → 0,

then c1(G) = c1(E(−7)) + c1(P), hence c1(G) > −9.

Additionally,

G : 0→ G → Ω1
P4 → K/P → 0,

is a dimension 2 saturated distribution of F , with the conormal sheaf G, then

deg(G ) = d < 6 = deg(F ).

Now, from:
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0 E(−7) Ω1
P4 K 0

0 G Ω1
P4 K/P 0

ϕ

τ

ψ

since Coker τ is a torsion sheaf, we obtain the injective map

0→ Hom(G,Ω1
P4)

◦τ−→ Hom(E(−7),Ω1
P4)→ · · ·

given by composition with τ . Hence h0(G∗ ⊗ Ω1
P4) ≤ h0(E(2)⊗ Ω1

P4) = 75, so

h0(G∗ ⊗ Ω1
P4) ≤ 75.

• If h0(G∗ ⊗ Ω1
P4) = 75 then Hom(G,Ω1

P4) ' Hom(E(−7),Ω1
P4), i.e, every injective

morphism ϕ : E(−7)→ Ω1
P4 factors through τ , hence Cokerϕ cannot be torsion free

because it contains Cokerϕ as a subsheaf.

• If h0(G∗ ⊗ Ω1
P4) < 75 then Hom(G,Ω1

P4) 6= Hom(E(−7),Ω1
P4), i.e, there is morphism

ϕ ∈ Hom(E(−7),Ω1
P4) which does not factor through G. By Lemma 20 we can

choose ϕ to be injective. Now, if Cokerϕ is not torsion free, we would get in

contradiction with the existence of the sequence (7.2).

Observation: Then, we need to determine the conormal sheaf G, that is, we need to

classify dimension 2 holomorphic distributions of low degree whose conormal sheaf is

locally free.
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Here, we present scripts for the software Macaulay2, which can found in https://faculty.

math.illinois.edu/Macaulay2/doc/Macaulay2-1.12/share/doc/Macaulay2/Schubert2/

html/___The_sp__Horrocks-__Mumford_spbundle.html, to perform some tensor pro-

duct cohomology calculations with Horrocks-Mumford bundle. You may open a session

in http://habanero.math.cornell.edu:3690/ and perform the computations just by

cut&paste.

8.0.1 Some calculations of Cohomology of tensor products

Example 12. By Macaulay2 we have h0(E(1)⊗ Ω1
P4) = 0.

R = QQ[x_0..x_4];

a = {1,0,0,0,0}

b = {0,1,0,0,1}

c = {0,0,1,1,0}

M1 = matrix table(5,5, (i,j)-> x_((i+j)%5)*a_((i-j)%5))

M2 = matrix table(5,5, (i,j)-> x_((i+j)%5)*b_((i-j)%5))

M3 = matrix table(5,5, (i,j)-> x_((i+j)%5)*c_((i-j)%5))

M = M1 | M2 | M3;

betti (C=res coker M)

N = transpose submatrix(C.dd_3,{10..28},{2..36});

betti (D=res coker N)

Pfour = Proj(R)

F = sheaf(coker D.dd_3);

E=F(2);

X=Proj R

T=tangentSheaf X ;

C=cotangentSheaf X;

C2=exteriorPower(2,C);

https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.12/share/doc/Macaulay2/Schubert2/html/___The_sp__Horrocks-__Mumford_spbundle.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.12/share/doc/Macaulay2/Schubert2/html/___The_sp__Horrocks-__Mumford_spbundle.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.12/share/doc/Macaulay2/Schubert2/html/___The_sp__Horrocks-__Mumford_spbundle.html
http://habanero.math.cornell.edu:3690/
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C3=exteriorPower(3,C);

HH^0(E(1)**C)
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[3] M. Corrêa; A. Fernández-Pérez. Absolutely k-convex domains and holomorphic folia-

tions on homogeneous manifolds. J. Math. Soc. Japan 69 (2017), no. 3, 1235–1246.
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[32] G. Ottaviani. Varietá proiettive de codimension picola. Quaderni INDAM, Aracne,

Roma, (1995).

[33] S. X. Descamps. Using intersection theory. Sociedad Matemática Mexicana, 1996.
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