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Resumo

Busca por similaridade é uma operação fundamental encontrada em serviços de mul-

timídia online. Estes serviços precisam lidar com bases de dados muito grandes, en-

quanto, ao mesmo tempo, eles tem que minimizar o tempo de resposta observado por

seus usuários. Isto é especialmente complexo porque esses serviços lidam com taxa

de consultas variáveis. Consequentemente, eles precisam se adaptar durante o tempo

de execução para minimizar o tempo de resposta a medida que a taxa de consultas

varia. Nesta dissertação, nós abordamos os desafios mencionados anteriormente com

a paralelização, em memória distribuída, da busca por vizinhos mais próximos com

quantização em produto, também conhecida como IVFADC, para máquinas híbridas

com CPU e GPU. Nosso IVFADC paralelo também implementa um mecanismo de

execução out-of-core, para permitir que a GPU processe bases de dados que não cabem

na memória, o que é crucial para realizar buscas em base de dados muito grandes. O

uso de CPU com GPU com roubo de trabalho gerou uma redução média no tempo

de resposta de 1.6× quando comparado a usar a GPU somente. Inclusive, a nossa

abordagem para adaptar o sistema para taxa de consultas variáveis, chamada de Dy-

namic Query Processing Policy (DQPP), alcançou uma redução média no tempo de

resposta de 7× vs a política gulosa. Finalmente, em todas as configurações, o sistema

se mostrou capaz de alcançar altas taxas de processamento de consultas e escalabili-

dade quase linear. Nós executamos o sistema em um ambiente com até 256 NVIDIA

V100 GPUs, e uma base de dados de 256 bilhões de vetores de características SIFT.

Palavras-chave: PQANNS, Computação Distribuída, kNN, Busca por similaridade.
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Abstract

Similarity search is a core operation found in several online multimedia services. These

services have to handle very large databases, while, at the same time, they must min-

imize the query response times observed by users. This is especially complex because

those services deal with fluctuating query workloads (rates). Consequently, they must

adapt at run-time to minimize the response times as the load varies. In this dissertation,

we address the aforementioned challenges with a distributed memory parallelization of

the product quantization nearest neighbor search, also known as IVFADC, for hybrid

CPU-GPU machines. Our parallel IVFADC also implements an out-of-core scheme

to use the GPU for databases in which the index does not fit in its memory, which

is crucial for searching in very large databases. The careful use of CPU and GPU

with work-stealing led to an average reduction of the response time of 1.6× as com-

pared to using the GPU only. Also, our approach to adapt the system to fluctuating

loads, called Dynamic Query Processing Policy (DQPP), attained an average response

time reduction of 7× vs. the greedy policy. Finally, in all settings, the system has

been shown to attain high query processing rates and near-linear scalability. We have

executed our system in an environment with up to 256 NVIDIA V100 GPUs and a

database of 256 billion SIFT features vectors.

Palavras-chave: PQANNS, Distributed Computation, kNN, Similarity Search.
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Chapter 1

Introduction

Similarity search is a core operation found in several online multimedia services. These

services have to handle very large databases while, at the same time, they must min-

imize the query response times observed by users. This is especially complex because

those services deal with fluctuating query workloads (rates). Consequently, they must

adapt at run-time to minimize the response times as the query load varies. This is a

challenging problem and we hope to address it in this dissertation. In this chapter we

expand on the presented problem: reducing response time on fluctuating query work-

loads scenarios, list our objectives and contributions, and finish with a description of

how this dissertation is structured.

1.1 Motivation

The amount of multimedia data currently available is immense and is growing at an

unprecedented rate. For instance, more than three hundred million photos are uploaded

on Facebook every day, more than five hundred hours of video are uploaded every

minute on YouTube, and more than five thousand tweets are sent every second. With

this ever-increasing amount of data available, it becomes increasingly challenging to

design efficient search tools.

One challenging aspect is how to describe data such as music, video, and images

automatically, since manually describing them would be unfeasible due to the huge

quantity of data. This problem can be addressed by representing multimedia objects

using algorithmically computed high-dimensional feature vectors or descriptors (100-

1000+ dimensions), as seen in Oliva and Torralba (2001); Sivic and Zisserman (2003);

Lowe (2004); Douze et al. (2009); Jégou et al. (2010); Babenko et al. (2014); Wan et al.

(2014); Gong et al. (2014).

1



1. Introduction 2

Searching in such databases is a fundamental operation for several multimedia

applications, such as the ones listed in Böhm et al. (2001) and Datta et al. (2008).

In this context, a similarity search corresponds to, given a query vector, find

the K closest vectors present in the database. This operation is well known as k-

NN (k nearest neighbors). While a search may include other steps, the k-NN step is

usually the most time consuming one. Doing an exact k-NN search is costly due to,

not only the large databases currently used by web applications but also due to the

high dimensionality of the vectors. An alternative to the exhaustive search would be

to employ specialized data structures, such as kd-trees (Friedman et al., 1977) and

ball trees (Uhlmann, 1991), to partition the search space and efficiently prune data

partitions during the search. However, the pruning efficiency and, consequently, the

performance of these techniques, degrades as the data dimensionality grows, due to the

well-known curse of dimensionality, described in Weber et al. (1998).

The approximate nearest neighbors (ANN) search has been proposed as a solution

for those applications in which the exact search is not strictly necessary, allowing

for accuracy to be traded off for speed. This motivated the development of several

ANN algorithms, such as the ones proposed by Indyk and Motwani (1998a); Nister

and Stewenius (2006); Silpa-Anan and Hartley (2008); Muja and Lowe (2009); Jegou

et al. (2011); Malkov and Yashunin (2018). The product quantization nearest neighbor

search (also known as IVFADC), proposed by Jegou et al. (2011), has received special

attention compared to other ANN algorithms due to its ability to minimize memory

requirements while improving speed. This is attained by representing descriptors with

small quantization codes and by using an inverted list to avoid exhaustive search in

the quantized space.

Most of the previous work on ANN has focused on optimizing ANN algorithms

for processing on a single machine. This decision does not match with the demands of

modern online content-based multimedia retrieval services, which must handle increas-

ingly large databases that would not fit in the memory of a single node. Also, while

online applications are concerned with minimizing the query response times of indi-

vidual queries, the aforementioned algorithms were developed to maximize throughput

in a batch scenario, where several queries are bundled and processed together as a

single task. The online setting presents additional challenges because these systems

experience fluctuating query arrival rates, and must adapt at run-time to minimize the

observed response times.
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1.2 Objectives

The main objective of this work is to introduce a scalable and efficient similarity

search system that works well in more realistic scenarios typically encountered by

large content-based multimedia retrieval services. To this end, we adapt the IVFADC

implementation from the Faiss library to work in a distributed scenario and develop

query processing strategies to reduce the average response time in scenarios where the

query rate fluctuates over time. We focus on the response time, rather than through-

put, as is commonly done, because it is a more important metric to the end-user of

such systems.

Furthermore, we also tackle the problem of how to combine the use of CPU and

GPU in order to improve the average response time. This is especially important in

out-of-core scenarios, where the database doesn’t fit in the GPU memory since it is

challenging to develop a solution that produces good response times at both low and

high query rates.

1.3 Main Contributions

This dissertation makes the following major contributions:

• We implement an efficient distributed memory version of the IVFADC algorithm

for hybrid CPU-GPU systems. The execution on a CPU-GPU machine can an-

swer up to 7k queries/sec on a single GPU on a dataset with 500 million SIFT

descriptors. Also, the distributed memory execution attained almost linear scala-

bility in execution with 256 V100 NVIDIA GPUs in scenarios with in-/out-of-core

in which a database with up to 256 billion SIFT descriptors was used.

• We have developed the DQPP strategy for adjusting the system at run-time

under fluctuating workloads, which decides the number of queries for concurrent

execution with the GPU according to the system load. DQPP improved the

response time vs. the greedy approach on average by 7×.

• We implemented an out-of-core GPU execution scheme that uses work-stealing

for maximizing performance on the CPU-GPU cooperation. The CPU-GPU ex-

ecution with work-stealing improved the throughput and response times vs. the

GPU-only execution, respectively, by up to 1.27× and 3.1×.
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1.4 Dissertation Roadmap

The remainder of this dissertation is organized as follows: Chapter 2 presents a liter-

ature review on the associated background topics. Chapter 3 presents our IVFADC

parallelization on distributed memory. Chapters 4 and 5 presents our response time

aware cooperative in-core and out-of-core, respectively, query processing strategies.

Finally, the experimental results are discussed in Chapter 6, and our conclusions in

Chapter 7.
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intermediate representation takes the form of one or more multidimensional vectors,

also known as descriptors. While similarity search can be applied to several types of

media, such as songs, videos, images, etc, we will focus on images in this work. In

section 2.1, we list some popular image descriptors.

In the second phase of the search, those descriptors are compared against the

descriptors stored in the database, using some distance metric (e.g., Euclidean dis-

tance) to represent the similarity between them. This problem is usually generalized

as the k nearest neighbors (kNN) problem: given a query vector, find the k vectors

that are closest (most similar) to the query. Doing an exhaustive search is almost

always too expensive, so several strategies to better explore the search space were cre-

ated. Some of them are detailed in Section 2.2. When dealing with large datasets

and high dimensional vectors, computing the exact kNN might be too expensive, so

several approximate approaches were developed, and a few of them are introduced in

Section 2.3. Among those approximate approaches, the product quantization approach

has been very successful in reducing the memory requirements of large datasets. The

original product quantization method and its subsequent improvements are discussed

in more detail in its own section, Section 2.4, since they form the basis of this work.

Usually, the similarity search is performed in a distributed setting, since a single

computing node is often not enough for the demands of modern CBMR systems that

require large datasets to be processed. Section 2.6 shows some of the previous work in

this area.

Last, we compare our work with related works in Section 2.7, and we summarize

this chapter in Section 2.8.

2.1 Image Descriptors

An image descriptor, as the name suggests, describes the contents of the image. Usually,

similar images have similar descriptors, given some similarity metric. Several image

descriptors have been evaluated in the literature. They capture different properties

of the image, such as color, texture, shape, and orientation; and are encoded into

(usually) high-dimensional feature vectors. Some of the most popular descriptors are:

SIFT (Lowe, 1999), Gist (Oliva and Torralba, 2001), Bag of Visual Words (Sivic and

Zisserman, 2003), VLAD (Jégou et al., 2010), and Deep Features (Babenko et al.,

2014).
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2.1.1 SIFT

The scale-invariant feature transform descriptor (Lowe, 1999), also known as SIFT, is

a local descriptor that describes a feature point by a “histogram” of image gradient

orientation and location (Jain, 2014). It is largely invariant to changes in scale, illumi-

nation, and local affine distortions (Lowe, 1999). It is worth noticing that it is a local

image descriptor, meaning that, from each image, a set of descriptors are extracted,

each corresponding to a keypoint of the image. Those keypoints are automatically

obtained during the SIFT feature extraction process. The extraction process works

in four steps: first, by detecting local extrema in the scale-space (in order to be scale

invariant), potential keypoints are selected. However, not all of them are useful. In a

subsequent step, keypoints that are deemed to have too low contrast or that lie along

an edge are removed. Next, each keypoint receives one or more orientation assign-

ments, in order to make them rotation invariant. Last, the keypoint descriptor itself is

computed, by measuring the local image gradients in a window around each keypoint.

They are processed in a way that tries to make the resulting descriptor invariant to

changes in illumination and local shape distortion.

2.1.2 Gist

As the name implies, this global descriptor tries to obtain a “gist” of the image, or,

in other words, a (relatively) low dimensional scene representation acquired over a

short observation time frame (Oliva and Torralba, 2001). One of the objectives of

this method is to create a biologically plausible framework. First, the input image

is filtered in a number of low-level visual “feature” channels. From the orientation

channel, employing Gabor filters at four different angles and four spatial scales, 16

feature maps are obtained. From the color channel, twelve feature maps are obtained,

and from the intensity channel, six more, giving a total of 34 feature maps. More or

less channels could be used if deemed appropriate. After that, each map is divided in

a 4x4 grid, and, for each cell, an average is computed. In this way, it is obtained a

global 544 (34x4x4) dimensional feature descriptor. The resulting vector might have

its dimensions reduced by using techniques such as PCA, ICA, etc.

2.1.3 Bag of Visual Words

Introduced by the seminal work of Sivic and Zisserman (2003), it is a method inspired

by text retrieval techniques. The idea is pretty simple: to represent an image as a

histogram of the frequency of “visual words”, in the same way that a text might be
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represented as a histogram of the frequency of words that occur within itself. The first

step is to create the visual vocabulary (codebook). In general, from local descriptors,

they are created by clustering them in K clusters, each corresponding to a visual word.

To encode the local descriptors, one simple approach is to assign each descriptor to

the nearest visual word. The last step of the process is the creation of the histogram

that will represent the image. It may be done either by sum-pooling or max-pooling.

This approach has been improved in several other works, such as Avila et al. (2011)

and Avila et al. (2013).

2.1.4 VLAD

VLAD, or vector of locally aggregated descriptors, was introduced by Jégou et al.

(2010). First, a codebook of k words is learned. Then, for each visual word in the

codebook, we compute the sum of the residuals of each local descriptor that is mapped

to this visual word and concatenate them all to form a single descriptor. Formally,

assume that the local descriptors have d dimensions and that the codebook has k

visual words. The resulting descriptor, v, would have k x d dimensions. Let ci be the

i-th visual word in the codebook, and C(i) the set of local descriptors that map to

the ci visual word. The component vi,j of the global descriptor would be obtained as

follows:

vi,j =
∑

x∈C(i)

xj − ci,j (2.1)

v is then L2-normalized.

One of the great advantages of the VLAD descriptor is that it is simple, efficient,

and produces good enough results. It has been used for video retrieval in Revaud et al.

(2013).

2.1.5 Deep Features

Deep convolutional neural networks (LeCun et al., 1990) have been very popular for

image classification tasks (Krizhevsky et al., 2012). In the work of (Babenko et al.,

2014), they explored the idea of adapting deep convolutional neural networks to the task

of image retrieval. The intuition behind their approach is that in the later layers of the

network, their output corresponds to high-level features of the image, and, therefore,

are suitable to describe the image. By extracting the results of upper layers of the deep

convolutional neural network, and applying dimensionality reduction techniques such

as PCA, they were able to produce (relatively) low dimensional image descriptors that

achieved high accuracy in several image retrieval experiments.
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2.2 Exact Similarity Search Algorithms

Given a descriptor query, the similarity search refers to finding the k nearest neighbors

(k-NN) descriptors in the database. The exact brute force algorithm for this operation

computes the distance from the query descriptor to each descriptor in the database and

selects the k closest ones. This is, however, prohibitive for online multimedia services.

In order to reduce the cost of the exact k-NN, several data structures, such as

kd-trees (Friedman et al., 1977) and ball trees (Uhlmann, 1991), were used to divide

the database of descriptors into partitions according to their spatial location. This

organization is intended to prune partitions during the search phase and, consequently,

speed it up. However, because of the well known “curse of dimensionality” (Böhm

et al., 2001; Weber et al., 1998), the sparsity of the data quickly increases as the data

dimensionality grows. This reduces the pruning efficiency of those data structures and,

as a consequence, their performance improvements vs. the brute force search.

2.2.1 KD-Tree

The kd-tree, as proposed by (Bentley, 1975), can be seen as a generalization of the

binary search tree, for data with k keys. At each level of the tree, one of its dimensions

is chosen as the discriminator, which will be the key used to decide on whether a new

node will be added to the left or right subtree, in a similar manner to a binary search

tree: values smaller than the discriminator of the parent node are added to the left

subtree, and values higher are added to the right subtree. When searching, the node

keys are compared against the corresponding discriminator for each level. A terminal

node might correspond to a single element of the dataset or to a list of elements.

Furthermore, the nodes themselves don’t need to correspond to entries of the dataset.

There are many ways to decide which key will be the discriminator of a specific node,

and which value to use. Some are proposed in Bentley (1975) and Friedman et al.

(1977). Figure 2.2 shows an example of a 3-dimensional kd-tree.

The work of Friedman et al. (1977) shows one way in which to use kd-trees to

speed up kNN searches. At every node, first, we search in the subregion (subtree)

corresponding to the query. If necessary, we search in the opposite subregion. To

verify whether it is necessary, a ball is created, centered in the query, with a radius

equal to the distance of the query to the kth closest element found so far, and seeing

if this ball intersects the corresponding opposite subregion. If it doesn’t, we know that

we don’t need to look into that subregion. By doing this, we can reduce the search

space and improve search performance. However, it suffers in high dimensional spaces,
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high dimensions, due to the curse of dimensionality.

This method has been extended in the work of Dolatshah et al. (2015) with a

modified space partitioning scheme that considers the distribution of the data points

in order to produce better trees.

2.3 Approximate Similarity Search Algorithms

Due to the high cost of computing the exact k-NN, the approximate nearest neighbors

(ANN) search has been proposed for applications in which the exact solution is not

essential. The approximation, in this case, may be bound by the number of missing

correct descriptors or their distance to the query (Indyk and Motwani, 1998b). Even on

the ANN case, efficiently searching large databases remains a very challenging problem.

Several ANN methods have been proposed, such as: LSH (Indyk and Motwani,

1998a), Randomized KD-Trees (Silpa-Anan and Hartley, 2008), Hierarchical K-means

Tree (Nister and Stewenius, 2006), FLANN (Muja and Lowe, 2009), Hierarchical Nav-

igable Small World Graphs (Malkov and Yashunin, 2018), and Product Quantiza-

tion (Jegou et al., 2011).

2.3.1 LSH

Locality Sensitive Hashing (LSH) is a technique proposed by Indyk and Motwani

(1998a), which uses locality sensitive hashing functions to index data into multiple

hash tables. Descriptors in a hash’s entry, or bucket, are expected to be close in the

multi-dimensional space. The search visits buckets to which the query is hashed, the

distances to descriptors on those buckets are computed, and the nearest neighbors from

that subset will compose the query answer. The tuning of LSH parameters leads to

several hash tables, which poses a scalability challenge with large databases due to

high memory demands. Also, modern machines have a low random memory access

performance (Teodoro et al., 2014a), which is a major pattern in LSH during hash

table buckets visits.

2.3.2 Randomized KD-Trees

In Silpa-Anan and Hartley (2008), an improvement to the kd-tree based search was pro-

posed, trading exactness for performance. The idea is to search in multiple randomized

kd-trees, each constructed using a different rotation of the dataset. The trees share

a priority queue containing unexplored branches, ordered by distance to the query.
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In this approach, the dimensions in which the data is split at each level is decided

randomly, among the D dimensions that offer the greatest variance. Muja and Lowe

(2009) argues that using D = 5 performs well for a variety of datasets. The precision

of the search can be controlled by choosing the number of terminal nodes that will be

visited.

2.3.3 Hierarchical K-means Tree

In this approach, the data at each level is divided into K distinct regions by using

k-means clustering. Then, recursively, each region is subdivided into regions, until it

has less than K elements. This results in a tree that can be searched effectively. When

searching, the branches whose center are closer to the query are visited, and then,

once the transversal has ended, it is restarted from a new branch. In Muja and Lowe

(2009), they propose the best bin approach, where unexplored branches are added to a

priority queue, ordered by distance to the query. When the search restarts, the branch

in the priority queue closest to the query is used as a starting point. Again, the search

precision can be controlled by changing the number of terminal nodes visited.

2.3.4 FLANN

The fast library for approximate nearest neighbors (FLANN) is a popular open-source

project for ANN search. It implements multiple approximate kNN algorithms and

selects the most appropriate along with its parameters for a given dataset. This alle-

viates the hard and error-prone task of choosing from the several indexing approaches

available. The user can specify, for instance, the desired precision, the importance of

minimizing memory, build time, etc. It also shows that there is no one-size-fits-all

solution for ANN search (Muja and Lowe, 2009). Because of its efficiency, FLANN is

typically used as a baseline for performance comparisons.

2.3.5 Hierarchical Navigable Small World

The Hierarchical Navigable Small World (HSNW), introduced by Malkov and Yashunin

(2018), is a graph-based approach that can be thought of as a multi-layer and multi-

resolution variant of a proximity graph (Li et al., 2019). In it, points are distributed

across several layers, starting from 0, which contains every point. The points are added

in an arbitrary order to the structure, and, for each element, a maximum layer m is

determined randomly through an exponentially decaying probability distribution. The

point is added to every layer that is numbered less than or equal to m.
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The insertion process can be divided in two phases: in the first, from the top

layer to the m+1 layer, a variation of the greedy transversal is done to find the closest

element to the query in that layer. Then, the search is restarted in the next layer,

starting from the point found in the previous layer. In the second phase, from the

layer m down to layer 0, a similar procedure is done, however instead of finding only

the closest point, the ef closest are found. The point is inserted in that layer, and

then, from the ef points chosen, M are chosen to be linked with the inserted element

at that layer, using some heuristic (eg. the M closest ones). If at some point, a point

has more than Mmax links, some links are dropped, according to the same heuristic.

The construction process continues in the next layer, starting from the ef points found

in the last layer. By changing the ef parameter, the search quality of the obtained

structure can be controlled.

The searching process is very similar to the insertion process of a point that was

inserted with a maximum layer equal to 0. However, the closest neighbors found at

layer 0 are, instead, returned as the query result.

Figure 2.4 illustrates both the searching process and the layered structure. As we

go from the top to the bottom layer, the average distance between the points decreases

(as the number of points increase). So, in a sense, at each layer we go through, we

increase the zoom level at which we are searching.

While the HSNW produces very good performance results in practice, it consumes

more memory than the traditional product quantization methods, and also is harder

to do in a distributed setting.

2.4 Product Quantization for Approximate Nearest

Neighbor Search

In this section we will describe the product quantization based approach for approx-

imate k nearest neighbor search, as introduced by Jegou et al. (2011). Since we use

product quantization directly in our work, we will describe it in greater detail.

2.4.1 Vector Quantization

Quantization is the process in which a continuous (or almost continuous) set of values

are mapped to a discrete set. Quantization is used in nearest neighbor search with the

intent of reducing the cardinality of the search space, decreasing both time and space

costs of the search. The tradeoff is that the search accuracy suffers. Formally, a vector
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Figure 2.5. This image illustrates the Voronoi cells associated with each centroid,
represented as points in the image. Vectors in the same cell are reconstructed as
the same centroid. The image was adapted from Jégou et al. (2011).

• the centroid of the Voronoi cell corresponds to the expected value of the vectors

within the same Voronoi cell:

ci =
∫

Vi

p(x)dx (2.5)

There are many ways to compute the centroids. One that works well is the Lloyd

quantizer, which corresponds to the kmeans clustering algorithm. It produces only a

local optimum in terms of quantization error, but works well enough in practice.

2.4.2 Product Quantization

One limitation of the naive quantization approach is that it requires a large code-

book (Jegou et al., 2011) to achieve reasonable quantization errors. For instance, if

we quantized 128 dimensional SIFT vectors, with each dimension corresponding to a

32-bit float, into 64-bit codes (ie. a reduction of 64 times in the space requirements),

we would require 264 centroids, which is not viable.

To address this, Jégou et al. (2011) proposed the product quantization approach

for nearest neighbor search. The idea is that, instead of quantizing the entire vector

at once, each part of the vector is quantized independently by a subquantizer, and the

resulting centroid is the concatenation of the centroids from each subquantizer. More

formally, the d-dimensional input vector x is split into m subdimensions. Associated

with each subdimension is a subquantizer (qi).

Let ui be the projection function such that:

ui(x) = x(i−1) d
m
+1, ..., xi d

m
(2.6)
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which, in essence, picks the ith slice of d
m

components of the vector x.

Then, the product quantizer qp, can be defined as follows:

qp(x) = q1(u1(x)), ..., qm(um(x)) (2.7)

The resulting codebook will correspond to the cartesian product of the individual

codebooks:

C = C1 × ...× Cm (2.8)

where Ci is the codebook associated with the subquantizer qi.

Assuming that each subquantizer has the same number of reproduction values

associated with it (k∗), the total number of centroids would be:

k = (k∗)m (2.9)

When m = 1, we obtain the naive vector quantization, as described previously.

Instead of storing the codebook explicitly, the codebooks associated with each

subquantizer are stored, reducing space requirements. Vectors in the dataset are stored

as a tuple of the indexes of the respective centroids (one for each subquantizer).

2.4.3 Distance Computation

There are two basic methods to compute the distance between a query vector x and

the database vector y, of which we have access only to its quantized version qp(y):

• Symmetric distance computation (SDC): in this case, the query vector is

also quantized, and the distance is approximated by:

d(x, y) ≈ d(qp(x), qp(y)) =
√

∑

j

d(qj(uj(x)), qj(uj(y)))) (2.10)

where d(qj(uj(x)), qj(uj(y))) is read from a lookup table, precomputed in an

offline phase.

• Asymmetric distance computation (ADC): in this case, the query vector is

not quantized, and the distance is approximated by:

d(x, y) ≈ d(x, qp(y)) =
√

∑

j

d(uj(x), qj(uj(y)))) (2.11)
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where d(uj(x), qj(uj(y)) is read from a lookup table, precomputed for each query

vector x in a preliminar (but online) step.

Figure 2.6 illustrates both scenarios.

Figure 2.6. This image contrasts the symmetric and asymmetric distance com-
putations. The image was adapted from Jégou et al. (2011).

Both methods have the same execution complexity, but ADC produces less dis-

tance distortion. The advantage of the SDC approach is that it uses less memory to

store the queries, however, this is irrelevant in most cases, and the ADC approach

should be preferred.

2.4.4 IVFADC

While the product quantization approach is very effective in reducing the memory

usage, it still is an exhaustive approach, which doesn’t scale well. One improvement

proposed by Jégou et al. (2011) is to combine the ADC approach with an inverted file,

resulting in the IVFADC approach. In this way, only a fraction of the database needs

to be visited, improving performance drastically.

Each index in the inverted file corresponds to a centroid obtained from a coarse

quantizer, which is independent from the product quantizer. And, instead of encoding

the raw database vectors, the residual vectors (with respect to the coarse centroid) are

encoded. In this way there is less distance distortion and the performance increases,

at the cost of a few bytes per descriptor.

Let qc be the coarse quantizer. The database vector y is approximated by:

y ≈ qc(y) + qp(y − qc(y)) (2.12)

and, the distance between query vector x and database vector y is approximated

by:
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d(x, y) ≈ d(x− qc(y), qp(y − qc(y))) (2.13)

which can be expanded to:

d(x, y) ≈
∑

j

d(uj(x− qc(y)), qj(uj(y − qc(y)))) (2.14)

Again, the distances to the centroids are precomputed for each query vector x.

While it would be more precise to have a different product quantizer for each

Voronoi cell, it would be much more expensive to compute, and it would need much

more memory to store the codebook. Therefore, they chose instead to train a unique

product quantizer for all voronoi cells.

When searching, instead of visiting all elements of the database, only the entries

that are associated with centroids close to the query vector are visited. For each query,

w indexes on the inverted file are visited, the wth closest to the query.

Figure 2.7 illustrates the database indexing and query processing phases of the

IVFADC algorithm.

The indexing and query processing steps of the IVFADC are presented formally

in Algorithm 1.

Algorithm 1: Indexing and Searching with IVFADC

1: function Indexing(y)
2: k’ ← qc(y)
3: ry ← y - Cc[k’]
4: code ← qp(ry)
5: index[k’].append(y.id, code)

6: end
7: function Searching(x, w, k)
8: nnc ← kNN(Cc, x, w)
9: for i ∈ 1 . . . w do
10: k’ ← qc(x)
11: rx ← x - Cc[ncc[i]]
12: distList ← dist(index[ncc[i]], rx))
13: ann ← kNN(ann, distList)

14: end
15: return ann

16: end

During the indexing, each feature vector y is quantized using the coarse centroids

to find the list (k′) in the inverted file in which it should be inserted (line 2). Further-

more, in lines 3 and 4, the residual value (ry) of y to its coarse quantizer centroid is
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Figure 2.7. Overview of the database indexing and query processing phases of
the IVFADC. The image was taken from Jégou et al. (2011).

computed, and ry is quantized using the product quantizer qp with the m subvectors

and corresponding centroid sets. Finally, the identifier of the multimedia object de-

scribed along with the product quantizer index (code) are inserted in the Lk′ inverted

list in line 5.

The query processing procedure is presented in lines 7-16. It receives as input the

query descriptor x, the number w of lists in the inverted file that should be searched,

and the number of neighbors to return (k). The searched lists are those associated

with the w nearest neighbors of x in the coarse codebook (Cc) as computed in line 8.

Furthermore, for each of the w lists, the residual (rx) of x to the coarse centroid

associated to that list (Cc[nnc[i]]) is computed (line 11). The respective list in the

inverted file is then accessed to compute the distance from rx to the residual value

of elements it stores (line 12). The elements with the k smallest distance values are

selected and merged with nearest neighbors (ann) already found (line 13). After visiting
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w lists, ann contains the final results and is returned.

2.5 Product Quantization Improvements

In this section we explore several subsequent improvements to the initial product

quantization approach: inverted multi-index (Babenko and Lempitsky, 2015), opti-

mized product quantization (Ge et al., 2013), locally optimized product quantiza-

tion (Kalantidis and Avrithis, 2014), polysemous codes (Douze et al., 2016), and GPU

IVFADC (Johnson et al., 2019).

2.5.1 Inverted Multi-Index

In Babenko and Lempitsky (2015), a new indexing structure was proposed: the inverted

multi-index. The idea is to apply product quantization to the inverted indices of

the traditional IVFADC algorithm. So, if using a k-order inverted multi-index, the

input query would be divided in k equal pieces, and each one would be quantized

independently to obtain the corresponding index in the inverted file. The index would

be, then, a tuple with k elements. The classical inverted index can be thought of as a

first order inverted multi-index. In this way, they achieve a denser subdivision of the

search space, while still being very memory efficient. They claim they obtained shorter

candidate lists at the same recall level.

When doing product quantization, usually more than one entry of the inverted

file is visited, ordered by the distance of the respective coarse centroids to the query.

However, in the multi-index case, since the number of possible indices (tuples) is much

larger, computing the distance of the query to all tuples is unfeasible in practice. To deal

with this, they introduced the multi-sequence algorithm: let this be a n-order multi-

index. Then, the centroids associated with each of the n subdimensions are ordered

with respect to the distance to the query. Let ci,j represent the i-th centroid closest to

the query on the j subdimension. A priority queue of index tuples is created, ordered

by the distance to the query, and initialized with the tuple (c1,1, ..., c1,n). At each step

of the algorithm, the top tuple is popped (ie. the closest to the query) and more

tuples are added to the priority queue. All of the “successors” of the popped tuple are

considered for inclusion, but only those which all “predecessors” were already included

are included. A tuple (ca1,1, ..., can,n) is a predecessor of the tuple (cb1,1, ..., cbn,n) if, and

only if, for some i, ai + 1 = bi, and, for all v 6= i, av = bv. If a tuple A is a predecessor

of tuple B, then tuple B is a successor of tuple A. In this way, the tuples are visited
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according to their distance to the query, while avoiding the need of precomputing and

sorting the distance of all tuples to the query.

They tested the second and fourth-order inverted multi-index, and found out that

the second-order would be a better choice in most situations.

2.5.2 Optimized Product Quantization

In the original Product Quantization approach, contiguous dimensions were quantized

together. However, this is not the optimal approach. In Ge et al. (2013), they explored

how to reduce quantization error by doing a better space decomposition scheme. They

model the problem as an optimization problem over quantization error with the fol-

lowing free variables: a rotation matrix R, that represents the space decomposition,

and the sub-codebooks for each subspace. They propose two approximate solutions: a

non-parametric one, where they split the problem into optimizing for sub-codebooks,

and optimizing for the R matrix, and optimize for each subproblem alternatively, and

a parametric solution, which assumes that the data follows a parametric Gaussian dis-

tribution. They called their solution Optimized Product Quantization (OPQ). When

encoding the database descriptors, we only need to multiply the descriptors by the R

matrix, and then proceed with the product quantization as usual.

2.5.3 Locally Optimized Product Quantization

One of the limitations of the product quantization approaches described previously is

that a lot of centroids might end up not having data associated with them in some

multimodal distributions. Figure 2.8 illustrates this.

As can be seen, various centroids in the PQ and OPQ approaches ended up

without support data. To address this, Kalantidis and Avrithis (2014) proposed the

Locally Optimized Product Quantization (LOPQ) approach. In it, an individual prod-

uct quantizer is optimized per coarse quantizer. Within a single coarse quantizer, the

data distribution is largely unimodal, and, therefore, more suitable to be used with

the OPQ approach (or alternatives). This results in less quantization distortion, but

it has a large overhead both at offline (training) and online (query processing) phases.

However, while large, it is constant in regards to the data size, which, when considered

against large databases, is not significant. This approach can be combined with both

the traditional inverted index and the multi-index.
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2.6 Distributed Similarity Search Algorithms

Although most of the ANN research has focused on optimizing the speed and qual-

ity of sequential algorithms, this is changing because of current demands for indexing

very large databases. Multiple works have evaluated multi-core CPUs, GPUs, and dis-

tributed memory machines to perform large-scale multimedia similarity search: Bah-

mani et al. (2012); Stupar et al. (2010); Moise et al. (2013); Johnson et al. (2019);

Cayton (2012); Kruliš et al. (2012); Wieschollek et al. (2016); Muja and Lowe (2014);

Pan and Manocha (2011); Teodoro et al. (2014b); Andrade et al. (2019).

2.6.1 Distributed LSH

Distributed memory implementations of LSH were developed on top of MapRe-

duce (Bahmani et al., 2012; Stupar et al., 2010). The approach of Stupar et al. (2010)

stores the data into a distributed file system. Because LSH may require several hash

tables, the data is replicated in each of the tables. This increases the query latency

and reduces efficiency, making this solution impractical for large databases (Stupar

et al., 2010). Bahmani et al. (2012) implemented a variant of the LSH using an Active

Distributed Hash Table (DHT) to store the database in memory, and it assumes that

a single LSH hash table is instantiated. In this case, multiple queries to the LSH table

are required to attain the desired search quality as performed by multi-probe LSH (Lv

et al., 2007), but it is not evaluated. In another relevant work, Moise et al. (2013)

discussed the deployment of the Index Tree on top of MapReduce. This work has

implemented a full search engine in a distributed memory system and discussed the

technical challenges in this process. Similarly to the previous works, this solution is

optimized for batch processing only.

2.6.2 Distributed FLANN

Muja and Lowe (2014) proposed a distributed memory parallelization of FLANN, using

MPI (Message Passing Interface). They use a similar approach to MapReduce. Each

node contains an equal fraction of the database. Once a query arrives at the master

node, it is broadcasted to every other node. Each node process the query against its

partition of the database, and then sends its results to the master node, which will

aggregate all the results into a final result, doing essentially a reduce operation. Their

approach, as discussed in Muja and Lowe (2014), suffers from high memory demands

due to the algorithms implemented, limiting the scalability for large datasets.



2. Literature Review 26

2.6.3 Distributed IVFADC

In a previous work by Andrade et al. (2019), a distributed memory IVFADC was pre-

sented that executes on CPU-only machines. It works in a similar way to distributed

FLANN, however, instead of having just one master node with the dual role of broad-

casting queries and aggregating local results, it separates the two roles, and allows for

more than one node to deal with each role. You could have, for instance, 8 nodes

aggregating final results.

In that work, they adapted the system dynamically to the fluctuating query rate.

In particular, they changed dynamically three parameters: inner parallelism, outer

parallelism, and task granularity. Inner parallelism refers to how many computing

cores are used to process each query individually. Outer parallelism refers to how many

queries are computed concurrently. The product of the inner and outer parallelism is

the number of available computing cores or threads. Task granularity refers to the

number of queries that are sent to be computed at once, as a package. By changing

those three parameters dynamically, they substantially reduced the average response

time, when compared to the best static configuration.

2.7 Our work in context

The work in this dissertation is most related to the work of Andrade et al. (2019). In

particular, our work extends that work in several new directions:

• we explore the use of GPUs, which have much higher performance on IVFADC

compared to CPUs. GPUs have very different characteristics from CPUs, in

particular, in regard to how to minimize the response time.

• we propose an approach to use, cooperatively, the GPU and CPU in this task.

• we tackle the problem of minimizing the response time in an environment where

the query arrival rate fluctuates over time.

• we study how to handle databases that don’t fit in the GPU memory and propose

an optimized out-of-core execution scheme that takes into account response time

when the query arrival rate fluctuates over time.

• we propose the use of work-stealing, to minimize the load imbalance between

CPU and GPU in the out-of-core scenario.
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• we use a much better implementation of the PQANNS algorithm, from Faiss,

which brings new challenges. For instance, since our processing time is much

smaller, we have much less headroom to make elaborate heuristics to reduce

response time.

2.8 Summary

In this chapter, we introduced the concept of “similarity search”, looked at one real-

world example from “Google’s Image Search”, and gave a high-level view of how it

works. Then, we looked at several popular image descriptors: SIFT, Gist, Bag of

Visual Words, VLAD and Deep Features. We also explored several exact (Kd-Tree

and Ball Tree based) and approximate (LSH, Randomized KD-Trees, Hierarquical K-

means Tree, FLANN, Hierarchical Navigable Small World, Product Quantization) k-

NN approaches. Since Product Quantization is the focus of our work, we looked at it

in-depth, including some further advances in the area: inverted multi-index, optimized

product quantization, locally optimized product quantization, polysemous codes and

GPU based IVFADC. Furthermore, we discussed several distributed versions of ap-

proximate kNN algorithms, in particular: distributed LSH, distributed FLANN and

distributed IVFADC. Last, we showed how our work relates and improves upon the

work of Andrade et al. (2019).

In the next chapter, we will introduce and discuss our distributed architecture.



Chapter 3

Distributed PQANNS

In this chapter we explain the motivation and challenges behind creating a distributed

version of the IVFADC, we introduce our overall distributed architecture, and then we

explore each of its components individually: the offline phase, the query loader, the

local index, and the global aggregator.

3.1 Overview

As mentioned earlier, the growth on the demand for multimedia search has been in-

creasing dramatically over the past few years. As a consequence, a single machine

usually does not have enough memory to handle such demands, even with the current

strategy of using GPUs as processing accelerators, if we consider the limited memory

sizes on typical GPUs. For instance, an NVIDIA P100 GPU has only 16GB of memory.

Even if a single machine had enough memory, the response time would suffer, since, as

the dataset size grows, the processing time also grows.

One simple solution to deal with this problem is to store the data in more than

one computing node. In this way, we can either reduce the average response time or

increase the amount of data that we are able to handle. Of course, this also brings

new challenges and questions. First, we need to decide how to divide the data among

the computing nodes. The simple solution is to divide the database into equal pieces

and let each node have one piece. However, there is also the approach of replicating

the database across all nodes, if the objective is to simply reduce the average response

time. Another aspect that needs consideration is how the queries are going to be

sent to the computing nodes, and how the local results produced by those computing

nodes would be merged into a final result. Another fundamental aspect is deciding

which underlying approximate k nearest neighbors algorithm to utilize. Some can be
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more easily distributed than others. For instance, it is not trivial to create an efficient

distributed version of the HSNW algorithm. Last, if each computing node is composed

of more than one computing device, for instance, has more than one GPU, it might

be necessary to create an intra-node parallelization strategy that will have to be well

integrated with the overall distributed strategy.

Given the previous considerations, we will introduce our distributed architecture

in the next section.

3.2 Distributed Architecture

We chose the IVFADC algorithm as the underlying approximate k nearest neighbors

algorithm because it is one of the most efficient approaches memory-wise, which is

necessary to deal with very large datasets, and also because it has a great GPU imple-

mentation, which helps in reducing the average response time. Another advantage of

the IVFADC is that creating a distributed version is very straightforward, and suffers

little overhead.

Regarding how to split the dataset, we chose to divide it into equal parts, which

are scattered among the distributed nodes. This decision is motivated, again, by the

desire to allow the processing of larger datasets. Every node will contain every entry of

the inverted file, however, the elements within each entry will be distributed among the

computing nodes. This is done to reduce potential load imbalances among the different

nodes since every node will have to do roughly the same number of computations for

every query.

With respect to the intra-node parallelization, we implemented both approaches:

replicating the data and splitting the data. They will be explored in Chapters 4 and 5,

respectively.

Our approach is very simple: the queries arriving at the system are forwarded

to all distributed nodes storing partitions of the database, which are responsible for

computing their local k-NN using the regular IVFADC algorithm and forwarding them

to an aggregator node, which will aggregate the local k-NN results into a global k-NN

result.

The architecture of the distributed IVFADC is presented in Figure 3.1. As shown,

there are three stages or processes involved in the system: Query Loader (QL), Local

Index (LI), and Global Aggregator (GA). Our design is scalable and allows the use of

multiple instances of all stages.
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The QL stage is implemented in a way to allow for more than one instance to be

run at the same time, in order to increase the scalability of the system. Queries are

sent to each QL instance in a round-robin fashion. The ith query will be sent to the

i % X QL instance, where X is the number of QL instances. Each QL instance works

independently of the other instances.

3.2.3 Local Index

Once an LI instance receives a query, it visits its local index, retrieves the local k-NN

feature vectors, and sends its results to the GA process responsible for aggregating the

results of that specific query. If the LI instance has more than one computing device

(more than one GPU for instance), it might be necessary to divide the arriving queries

among the different devices and to combine the results of each device into a final local

result.

The queries are processed by calling the IVFADC implementation available on

the Faiss library.

In order to allow for multiple GA instances, all LIs must direct messages related

to a given query to the same GA instance. This routing is performed using a labeled

communication channel between LI and GA (Teodoro et al., 2008). It employs a hash

function to map a label (query_id in our case) to the GA instance that should receive

the message. This function must return a value from 1 . . . Z, where Z is the number

of GA instances, to be used in the message routing. Because each LI can take this

decision independently, this is performed without any synchronization.

3.2.4 Global Aggregator

The GA receives the local results from the LI instances and merges them into a global

k-NN output. To merge the local results, a priority queue is used, ordered by the

distance to the query. There is one priority queue for every query. Again, multiple GA

instances might be used to improve the scalability of the system. The results about

each specific query are sent to a specific GA instance, as described in the previous

subsection.

3.3 Summary

When dealing with huge datasets and high demand, a single machine is often not

enough. Therefore, it is necessary to develop a distributed strategy of computation.
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We chose to use the IVFADC algorithm as the basis of our system, since previous

work has shown that it scales very well. The approach that we took to distribute the

IVFADC algorithm was to divide the database into partitions of equal size, and let

each local index node handle a partition. When processing a query, the query loader

broadcasts the query to all local index nodes, which will compute a local result. Then,

they send their local results to a global aggregator, which will aggregate the local

results into a global one, and send it to the user. Each of the previous steps might be

handled by one or more nodes.

One thing that was not touched in this chapter was how each local index will

process the arriving queries. This is an important topic because a bad processing

strategy might result in increased response times, specially when handling heteroge-

neous systems with GPUs and CPU. This topic will be addressed in detail in the next

two chapters.



Chapter 4

In-Core Response Time Aware

Distributed PQANNS

In this chapter we study how the block size (number of queries processed concurrently

in the GPU) relates with the response time and query arrival rate, we introduce our Dy-

namic Query Processing Policy (DQPP), which tries to minimize the observed response

time, and we explore how to use the CPU together with the GPU in this context.

4.1 Response Time

While throughput is important for online CBMR services that answer a large number

of queries, their users are mainly concerned with the response time they experience

with each submitted query. This represents a major challenge with these services, as

improving throughput and reducing response times may be conflicting goals. Also,

these systems deal with query arrival rates or workloads that vary during execution

and, as such, must adapt to those changes at run-time.

The query response time observed by the user can be expressed by the following

equation: query response time = queue waiting time + processing time. The queue

waiting time refers to the time between the query being sent by the user and its

processing beginning. While its processing doesn’t start, it waits on a first-in-first-out

queue. The processing time is, as the name suggests, the time it took for the query to

be processed, once its turn comes.

Ideally, we want to minimize both. Minimizing the processing time is simple,

just process one query at a time. Minimizing the queue waiting time, however, is not

so simple. Simply processing every queue as soon as it arrives, while ideal, might not

be possible if the throughput of the system is not enough to handle the rate at which
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4.2 Dynamic Query Processing Policy

In order to adapt the GPU processing block size at runtime, we propose a strategy

called Dynamic Query Processing Policy (DQPP). It decides which block size to use

based on the size Q of the input query queue (IQQ), the observed query arrival rate

(QAR), and the expected GPU processing time (TPT) for a given block size. The

QAR is computed dividing the number of queries arriving at the system by the time

interval between subsequent calls to the GPU. The GPU processing times for different

block sizes are obtained in an off-line benchmark and are stored in the TPT table.

Algorithm 2: Dynamic Query Processing Policy (DQPP)

1: while True do
2: IQQ.waitUntilNotEmpty()
3: Q ← IQQ.length
4: if Q ≥ Bg then
5: process(IQQ, Bg)
6: else
7: TTB ← (Bg - Q) / QAR
8: TFL ← TPT[Q] - TTB
9: if TTB × Q > (Bg - Q) × TFL then
10: process(IQQ, Q)
11: else
12: IQQ.wait(TTB, Bg)
13: process(IQQ, min(IQQ.length, Bg))

14: end

15: end

16: end

Algorithm 2 presents the DQPP strategy. The main loop of the algorithm is

executed by the GPU manager thread while there is work to do. It will block if IQQ is

empty, as shown in line 2. If there are queries to be processed, it may process a block

of queries already received or wait for more queries to arrive. If the number of queries

ready is sufficient to execute with the block size configuration that leads to the best

throughput (Bg), the algorithm dispatches Bg queries for the GPU execution. Please

note that making a call with a larger number of queries is suboptimal as it would

increase the query processing time of the queries in that block without improving the

throughput.

When the number of queries Q in IQQ is smaller than Bg, it decides whether

waiting for more queries to arrive to execute a larger number of queries in a GPU call

is more efficient than dispatching the currently available queries for execution now. To
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decide whether it is worthwhile waiting, DQPP estimates the weighted query waiting

time increase in each case (wait or execute now), and selects the smallest one. Line 7

of Algorithm 2 computes the time estimate to have Bg queries ready for execution that

is the configuration with the best efficiency. This is done by dividing the number of

queries that should be received in this case (Bg-Q) by the query arrival rate (QAR).

This is the additional waiting time that the Q queries ready to execute would pay to

wait.

On the other hand, if the GPU executes now with the Q queries available, the

ones arriving in the interval between the GPU call and its return will sit waiting in the

queue. Then DQPP has to decide which waiting time weighted by the number of queries

in each case is smaller. It then computes TFL that is the time interval between the

Bg-Q queries received (TTB) and the time the GPU would finish if the Q queries ready

to execute were processed (TPT[Q]) as shown in line 8 of Algorithm 2. Please notice

that if TFL is smaller than zero, it means that the execution of the Q queries will end

before Bg-Q are received. Thus, it is obvious that the Q queries should be dispatched

for execution now. Further, having computed the waiting time of the Q queries (TTB)

and the one of the Bg-Q queries (TFL), they are multiplied by the number of queries

to select the configuration smallest weighted waiting time (line 9). If processing the

currently queued queries is the best option line 10 is executed. Otherwise, the system

will wait for TBB units of time or until IQQ.length (Q) ≥ Bg, whatever occurs first,

and process the queries queued, even if it is smaller than Bg. Setting this timer (TTB)

avoids the algorithm from letting the GPU sit idle more than expected, which could

be significant when the system is transitioning from high to low load scenarios.

4.3 Using the CPU together with the GPU

While the performance of the IVFADC on the CPU is relatively small compared to the

GPU, it is not negligible. By using the CPU together with the GPU, we can increase

the system throughput, and decrease the average response time, especially when the

query rate is low. There are two basic approaches:

• Mirror the data: in this approach, the CPU holds a copy of the data in the

GPU, and every query must be processed either on the CPU or on the GPU.

• Shard the data: in this approach, the local index is divided between CPU and

GPU, and every query must be processed in both.
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In the “Mirror the data” approach, we have to decide for every query whether to

execute it on the GPU or on the CPU. We choose to divide the queries among CPU

and GPU according to their respective throughput, measured in an offline phase. In

this way, we expect that the time spent computing queries in the CPU and in the GPU

to be roughly equal, and, therefore, the throughput maximized. While we are not

explicitly minimizing the response time, our experiments showed that this approach

produces a significant reduction in the average response time. How the CPU and GPU

process their individual queries can be decided individually, without communication

between them. For instance, in the GPU we simply use the DQPP method, while in

the CPU we chose to use a greedy approach: whenever the CPU is idle, process all the

queries waiting in the query queue at once.

In the “Shard the data” approach, every query will be processed in both CPU

and GPU. Since the CPU is much slower than the GPU for product quantization,

this means that the throughput and response time will suffer considerably. Therefore,

the “Mirror the data” approach is usually preferable. However, by using the “Shard

the data” approach, it is possible to handle datasets that would not fit in the total

available GPU memory. Since CPU memory is much cheaper and more easily available

than GPU memory, this is a scenario worth of consideration. In the next chapter, we

will explore this scenario further.

4.4 Summary

How we process the arriving queries has a huge impact on the observed response time.

For instance, if the query rate is high, processing one query at a time probably would

result in a congestion in the query queue due to low throughput, which would affect

negatively the observed response times. On the other hand, if the query rate is suf-

ficiently low, processing one query at a time would achieve the best response times.

Furthermore, since the query rate might vary over time, we can’t simply use a static

solution. In order to deal with those challenges, we introduced our Dynamic Query

Processing Policy (DQPP) strategy. By looking at the near past to predict how many

queries will arrive in the system, and by benchmarking how much time it takes to

compute a block of queries of varying sizes, we estimate whether it is better to execute

the queries that we currently have or to wait a little more. Furthermore, we explored

how to use the CPU together with the GPU, in the case where the dataset fits in the

available GPU memory.

In the next chapter, we will explore the case in which the dataset doesn’t fit in
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the available GPU memory, which brings its own set of challenges and optimization

opportunities.



Chapter 5

Out-of-Core Response Time Aware

Distributed PQANNS

In this chapter, we consider the scenario where the dataset does not fit in the available

GPU memory. We compare several approaches to handle this, discuss their shortcom-

ings, and propose a new solution that addresses those shortcomings.

5.1 Motivation

Given the large amount of data used by our target application, restricting the use of

the GPU only to cases in which the device’s memory is sufficient to store the whole

index may be inefficient.

The simple solution would be, since the dataset does not fit in the GPU memory,

to not use it, and use only the CPU, which is much cheaper memory-wise. However,

the CPU has a much higher processing time than the GPU in this task, which leads to

unacceptable response times.

The next logical improvement would be to put as much as possible of the dataset

in the GPU, and put the rest in the CPU. While this drastically increases the perfor-

mance of the system, it still is bottlenecked by its CPU component. In fact, at a 50%

- 50% division of the dataset, the processing time would be reduced by, at most, half,

which, while a huge improvement, is not enough to produce acceptable response times.

Another approach would be to ignore the CPU altogether and use only the GPU.

In this approach, since the dataset doesn’t fit entirely in the GPU memory, the par-

tition on the GPU would need to be switched with one from the CPU from time to

time. While this approach reduces the response time substantially at high loads when
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compared to the CPU-GPU fixed division approach, it suffers at low query rates, since

every query will have to pay the fixed cost of the (partial) dataset transfer to the GPU.

In order to address the problem with the GPU only approach, and create a

solution that works well at both low query rates and high query rates, we propose in

the next section an out-of-core approach that uses the CPU and GPU and allows the

GPU to steal some partitions from the CPU when deemed profitable.

5.2 Out-of-Core CPU-GPU with Work Stealing

In our proposed approach, the index partition assigned to an LI stage instance is

subdivided into smaller, non-overlapping subpartitions. Queries are processed against

each subpartition, and the k-NN results from each subpartition are merged. This

strategy is similar to that used in the distributed-memory parallelization, where each

node holds a partition of the database, and the kNN results of each node are merged

to form the final result for each query. In other words, we perform a hierarchical

parallelization with multi-level partitioning, which adapts to the computing system at

each level: distributed memory and local node.

In our approach, there is a queue of input queries to be processed and a list

holding k-NN results already computed for each subpartition. Once a subpartition

is assigned to the CPU or GPU, it then calls the IVFADC implementation (from

Faiss) to process a block of queries from a subpartition. The CPU-GPU cooperative

execution is interesting in this context because of the relative performance of CPU vs.

GPU (or speedup attained by the GPU) may vary according to the system load (i.e.

queries available for processing) and the number of subpartitions the GPU can hold

simultaneously. For instance, the larger the number of queries to be evaluated on a

subpartition, the higher tends to be the GPU efficiency of that task. Consequently,

performing a static division of the subpartitions to be processed by each device would

be suboptimal in this case.

We address this problem with an initial work partitioning between CPU and

GPU in which the GPU is assigned the maximum number of subpartitions it can store,

because, as observed experimentally, the GPU is much more efficient than the CPU,

and fully utilizing it results in the best performance. The subpartitions assigned to

the devices are stored either in the workTasks.GPU or workTasks.CPU lists and the

GPU will preferably process queries related to a partition it owns to avoid unnecessary

data transfers.

To reduce imbalances during execution that may result from this initial work
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partitioning, the GPU sometimes steals subpartitions assigned to the CPU. Since the

cost of stealing a subpartition is high, due to the fact that we need to transfer the

subpartition from the CPU memory to the GPU memory, it should only be done when

there are enough queries waiting to be processed to make it worthwhile.

Algorithm 3: GPU Manager Thread Control Flow

1: function GPU_Thread(workTasks)
2: while True do
3: for task ∈ workTasks.gpu do
4: processGpu(task)

5: end
6: if workTasks.gpu.largest() != 0 then
7: continue
8: end
9: if workTasks.cpu.largest() ≥ threshold then
10: workTasks.swapTasks(CPU2GPU)

11: end

12: end

13: end

The overall execution scheme is shown in Algorithm 3. First, from lines 3 to 5,

the GPU manager thread will iterate over all subpartitions assigned to the GPU and

process them. Once it has finished, it checks whether new queries have arrived for

one of the subpartitions it owns. If no work is available for the GPU, it checks if it is

worthwhile stealing a subpartition currently attributed to the CPU.

The stealing condition is shown in line 9, and, when it is true, we swap one of

the GPU subpartitions with one of the subpartitions owned by the CPU (line 10). We

choose the one that has the largest amount of queries waiting to be processed.

The CPU manager control flow is not presented, but it would consist of processing

subpartitions assigned to the CPU only. It is also important to highlight that we assume

that the entire index (subpartitions) is stored in the CPU memory for simplicity and

efficiency. In this case, releasing space in the GPU for a new subpartition is efficient,

as it would not require copying data back to the CPU memory, which is expensive.

Determining the right value for the threshold value is not trivial. In fact, a bad

choice on the threshold value might lead to a decrease in performance, since it might

lead to excessive data transfers from the CPU memory to the GPU memory. The

optimal threshold value clearly depends on the CPU throughput and on the time it

takes to transfer a partition of the dataset from the CPU memory to the GPU memory.
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In the next section, we will explore, from a mathematical perspective, what would be

the ideal threshold value.

5.3 Work Stealing Threshold

Stealing a subpartition from the CPU has a high overhead since it is necessary to

transfer that subpartition to the GPU. Therefore, it is profitable only when we have

a large number of queries ready to be executed on that subpartition. The variable

threshold represents the minimum number of queries required for the stealing to be

worthwhile.

Stealing will occur when the GPU is idle, and the number of queries to be executed

in the CPU is sufficiently high.

It would be worthwhile to steal that subpartition if it resulted in a reduction in

the queries’ average response time. Thus, we need to derive the response times with

and without the GPU stealing a partition to understand when it would be beneficial. If

all queries (Q) available were processed by the CPU using a block size with maximum

throughput (Bc), which takes time Tc to be processed in the CPU, the average response

time in the CPU (Rc) would be:

Rc =
1

Q

Q

Bc
∑

i=1

Bc ∗ Tc ∗ i (5.1)

Basically, the ith block of Bc queries will finish in time i ∗ Tc, since it will have

to wait (i − 1)th blocks to finish (in (i − 1) ∗ Tc time), and itself will take Tc time to

be processed. Equation (5.1) can be simplified to:

Rc =
1

2

(

Q

C
+ Tc

)

(5.2)

where C = Bc/Tc is the CPU maximum throughput. If, instead, the GPU steals a

subpartition from the CPU, the response time (Rg) would be:

Rg = L+
1

2

(

Q

G
+ Tg

)

(5.3)

where L is the time it takes to transfer the subpartition to the GPU, Bg the block size

such that the GPU throughput is maximum, Tg the time it takes to execute Bg queries

in the GPU, and G = Bg/Tg the maximum GPU throughput. Thus, it would be worth

performing the stealing when:
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Rg < Rc (5.4)

By substituting (5.2) and (5.3) into (5.4), and manipulating the resulting expres-

sion, we obtain:

Q >
2 ∗ C ∗G

G− C
∗

[

L−
1

2
∗ (Tc − Tg)

]

(5.5)

In other words:

threshold =
2 ∗ C ∗G

G− C
∗

[

L−
1

2
∗ (Tc − Tg)

]

(5.6)

Note that we assume that G − C > 0, i.e. the GPU throughput is higher than

the CPU throughput.

While we use that exact threshold expression in our algorithm, it can be simplified

to lead to a better understanding of its meaning. In practice, Tc and Tg are very small

when compared to L (the data transfer time). By making the following approximation:

L−
1

2
∗ (Tc − Tg) ≈ L (5.7)

we can simplify the threshold expression to:

threshold ≈
2 ∗ C ∗G ∗ L

G− C
(5.8)

The resulting expression coincides with our intuition about the conditions nec-

essary for the stealing to be profitable: the higher the CPU throughput, the more

queries waiting for processing in a subpartition are necessary. Also, the more time it

takes to transfer the subpartition from the CPU to the GPU (L), the higher is the

number of queries that need to be ready to be processed. Furthermore, it is inter-

esting to note that if the GPU throughput is much higher than the CPU throughput

(G >> C → G
G−C

≈ 1), we could simplify the threshold expression to:

threshold ≈ 2 ∗ C ∗ L (5.9)

We have compared (5.6) to (5.9) in practice, and have noticed that the difference

in the obtained thresholds were smaller than 5%. Further, this difference led to an

insignificant impact on the performance of the system.
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5.4 Asynchronous CPU/GPU data transfers

Finally, we want to mention that we have evaluated the use asynchronous data transfers

between CPU and GPU in our application. The execution of asynchronous CPU/GPU

data transfers, however, requires the availability of a free or reserved space in the GPU

memory for it to take place while computation is carried out in another data chunk

already in the device memory. In our application domain, the asynchronous transfers

makes sense only in the out-of-core case, but in this scenario, the extra space that would

be necessary for the asynchronous transfer occupies an area that would otherwise be

used by the application. Thus, we implemented a double-buffering scheme to evaluate

whether asynchronous data transfers would be worthwhile in our case, and we have

noticed that it does not improve the performance of our application. The limitation

here is that, for instance, when 50% of the data fits in the GPU memory, we would

need to have two partitions of the GPU memory to store 25% of the data that is

being processed while the other is used for data transfer. However, computing multiple

smaller partitions with 25% of the index data is more expensive than processing a

single larger partition with 50% of the data with a single GPU call. This computational

overhead offsets the gains with the data transfer optimization, making asynchronous

data transfers not worthwhile in our case.

5.5 Summary

In this chapter we motivated the need of an out-of-core approach, and explored some

simple approaches: CPU Only, CPU-GPU fixed division and GPU Only. We argued

that the CPU Only approach produces unacceptable response times, and that the CPU-

GPU with fixed division is still bottlenecked by the low throughput of the CPU on high

query rates. We also argued that the GPU Only approach would produce bad response

times at low query rates, since every query would have to a pay the (large) fixed cost

of the (partial) dataset transfer to the GPU. In order to address the limitations of the

GPU Only approach, we introduce our CPU-GPU fixed division with work stealing

approach. The main idea is that, when the query queue of the CPU gets too big, the

GPU steals a data partition from the CPU in order to increase the throughput of the

system. This is done only when we can show that doing so would improve the average

response time. In this way, our system behaves like the GPU-Only when the query

rate is high, and like the CPU-GPU with fixed division when the query rate is low,

achieving the best of both worlds.

In the next chapter, we will put our theories into test, evaluating both our in-core
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and out-of-core approaches under several scenarios, with respect to both throughput

and response time.



Chapter 6

Experimental results

In this chapter, we will describe the machine and cluster configurations used in our

experimental evaluation in Section 6.1, we will compare the performance of the single-

node IVFADC of Faiss against FLANN and exhaustive search in Section 6.2, introduce

the dataset and index configuration used in Section 6.3, and show the performance, in

terms of throughput and response time, of our In-Core and Out-of-Core approaches in

Sections 6.4 and 6.5, respectively. Last, we will analyze the scalability of our approach,

running it in a cluster with up to 256 GPUs and about 30TB of data in Section 6.6.

6.1 Machine and Cluster configuration

Our single node experimental evaluation was carried out on a machine running Linux,

equipped with a NVIDIA P100 GPU, the Intel Broadwell E5-2683 v4 CPU, and 128GB

of RAM. This machine was used in the experiments performed from Section 6.2 up to

Section 6.5. We used OpenMPI version 2.1.2.

Our scalability tests, presented in Section 6.6, were done on 64 computing nodes

interconnected using EDR InfinitBand, each of them equipped with 4 NVIDIA V100

GPUs, 2 IBM Power 9 (AC922) CPUs, and 320 GB of RAM. We used Spectrum

MPI. We tested the scalability of our system with a database with up to 256 billion

SIFT descriptors, but other descriptors, such as VLAD (Jégou et al., 2010), would also

benefit from our optimizations.
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precision. It is also impressive that FLANN uses 600 MB of memory, whereas IVFADC

requires only 26 MB. For 98% precision, the amortized search time per query with

IVFADC is less that 0,00078 sec or 127× faster than the exact k-NN.

6.3 Datasets and Index Configuration Used in the

In-Core and Out-of-Core tests

For the single node In-Core and Out-of-Core experiments, we used the SIFT500M

dataset, introduced in Jégou et al. (2011), which consists of 500 million 128 dimensional

SIFT vectors. We also tested on the Tiny Images dataset, introduced in the work

of Torralba et al. (2008), which contains roughly 80 million 384 dimensional GIST

descriptors.

For the scalability tests, we replicated the SIFT1B dataset (similar to SIFT500M,

but with 1 billion vectors) across up to 256 GPUs and 64 CPUs, reaching a total of up

to 30TB of data and 256 billion SIFT vectors.

The IVFADC has been configured to use a coarse codebook with 4096 coarse

centroids, 8 subquantizers, and 256 centroids per sub-dimension. This configuration

attained a precision of 76% on the SIFT500M dataset, and 67% on the Tiny Images

dataset. This configuration was used because it achieves a good compromise between

favoring the GPU and favoring the CPU while maintaining a reasonable precision.

We argue that our system would work well with other datasets or IVFADC con-

figurations, but we have not tested them in this work.

6.4 The Performance of the In-Core Response

Time Aware Distributed PQANNS

In this section, we will show the baseline single node throughput of our implementation

on multi-core CPU, GPU, and cooperative CPU-GPU execution on Subsection 6.4.1,

and we will compare our DQPP policy against static block sizes and greedy policies,

with regards to response time, on Subsection 6.4.2.

6.4.1 Throughput

This section presents the baseline single node throughput of our implementation on

multi-core CPU, GPU, and cooperative CPU-GPU executions using our single-node

machine.
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100k queries were sent for execution at the beginning of the experiments, in groups

of 5 queries, one group at a time.

Table 6.1. Throughput (queries/s) with different configs.

Dataset CPU only GPU only CPU-GPU
SIFT 500M 801 7417 8069
Tiny Images 4119 36451 39558

The performance is presented in Table 6.1 according to the system configuration

used in the LI phase of the parallel algorithm: CPU only, GPU only, or CPU-GPU.

The CPU only execution employs the 16 CPU cores available, and the CPU-GPU

maintains a copy of the index in each device and divides queries between CPU and

GPU proportionally to their relative performance, as detailed in Chapter 4. The query

rate attained is very high in all cases with the GPU being about 9× faster than the

CPU. The CPU-GPU execution, in turn, attains a speedup of 1.1× on top of the GPU

on the SIFT500M and Tiny Images dataset. The total throughput is slightly smaller

than the sum of the processors’ throughput because (i) a CPU core is reserved to

manage the GPU; and, (ii) there are inevitable overheads, including load imbalance,

query partitioning, etc.

6.4.2 Response Time

We evaluate GPU and CPU-GPU executions with multiple query processing strategies

in on-line scenarios with fluctuating loads.

Table 6.2. Average query response time (secs.) with varying query rates using
a Poisson distribution (with average Q/s queries per second) on the SIFT500M
dataset with static block sizes using GPU only.

Q/s 025 050 075 100 125 150 175 200
600 0.026 0.046 0.067 0.088 0.108 0.130 0.150 0.172
2200 0.078 0.059 0.050 0.059 0.061 0.069 0.074 0.086
3800 0.365 0.204 0.131 0.139 0.123 0.131 0.128 0.140
5400 1.499 0.822 0.492 0.496 0.362 0.395 0.336 0.361
7000 3.027 1.979 1.216 1.217 0.915 0.983 0.844 0.899

In Table 6.2 we show how the average query response time depends on both the

query rate and block size. As can be seen, the best block size varies as the query rate
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varies. In particular, at 600, 2200, 3800, 5400 and 7000 queries per second, the best

block sizes were, respectively, 25, 75, 125, 175 and 175.

In Table 6.3, our DQPP policy (Section 4.2) is compared to the Best Static (BS)

and Dynamic Greedy Dispatch (DGD) policies.

The BS policy uses a static block size that tries to achieve a good response time

at different query rates. To obtain this block size, we followed a simple algorithm:

given a table like Table 6.2, we attribute to each cell, a number from 1 to n, where n

is the number of block sizes. This value represents how low the response time of that

block size is when compared to the other block sizes at that query rate. For instance,

the cell with query rate 2200 and block size 50, would be filled with the number 2, since

only one other block size (75) produces a smaller response time at that query rate. In

case of a draw, average the involved values. Once this is done, we take the average of

the values in each column, and it will be the score associated with the corresponding

block size. For Table 6.2, the best block size would be 125, with a score of 3.2. While it

is the best only at 3800 queries per second, it produces reasonable results at all query

rates, when compared to other static block sizes.

DGD is a dynamic approach that calls the GPU execution for all queries available

in the query queue whenever the GPU becomes idle. Although DGD would be able to

adapt to fluctuating workloads, it does not include the smart mechanisms of DQPP

that also looks into the near past to decide whether to call or not the GPU for a given

queue size.

The fluctuating query workload is implemented using a Poisson distribution with

an expected average rate Q/s.

Table 6.3. Average query response time (secs.) with varying query rates using
a Poisson distribution (with average Q/s queries per second) for GPU only and
CPU-GPU execution on the SIFT500M dataset.

Q/s
GPU CPU-GPU

BS DGD DQPP BS DGD DQPP

600 0.108 0.011 0.011 0.109 0.013 0.013
2200 0.061 0.034 0.028 0.057 0.027 0.025
3800 0.123 0.151 0.097 0.105 0.114 0.082
5400 0.362 0.876 0.281 0.235 0.392 0.200
7000 0.915 2.856 0.772 0.652 1.502 0.569

The average query response times of the strategies are presented in Tables 6.3

and 6.4.
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Table 6.4. Similar to Table 6.3, but using the Tiny Images dataset. The BS
block size is 125 in this case, with a score of 3.2. Coincidentally, it is the same
result obtained for the SIFT500M dataset.

Q/s
GPU CPU-GPU

BS DGD DQPP BS DGD DQPP

6800 0.0111 0.0021 0.0020 0.0120 0.0030 0.0029
13600 0.0107 0.0103 0.0064 0.0115 0.0083 0.0069
20400 0.0177 0.4830 0.0155 0.0182 0.0375 0.0157
27200 0.0330 0.9637 0.0341 0.0327 0.6698 0.0328
34000 0.0813 1.8714 0.0899 0.0652 0.9280 0.0712

The DGD policy had good results at low query rates, but was unable to deal with

higher query rates. We believe this happens due to it getting stuck in large block sizes

when operating at high query rates, due to the fact that, after some block size, the

time per query stops decreasing, as can be seen in Figure 4.1. This makes the DGD

policy vulnerable to peaks in the query rate.

The BS policy, which in our scenario corresponded to a static block size of 125,

produced good results overall, but couldn’t match the DGD policy at low query rates.

This is due to the fact that, at such low query rates, the DGD policy can simply

process all queries that arrive as soon as they arrive, therefore minimizing both the

queue waiting time and the query processing time. With a block size of 125, the BS

approach has to wait more time before being able to process a block of queries, and,

also, the processing time itself is higher. Therefore, the average response time suffers.

Note that this is only true because we are assuming that the query queue will not be

congested due to the low query rate.

The DQPP approach performed as well as the DGD approach at low query rates,

and as well as the BS approach at high query rates, achieving our goal of working well

at different query rates. Notably, it was as good as the BS and DGD approaches at all

tested query rates in the SIFT500M experiments. We believe it performed better in

the SIFT500M dataset than in the Tiny Images dataset because it is a bigger dataset,

and, therefore, the overhead of the DQPP approach is smaller relatively.

Also, the use of the CPU together with the GPU was able to reduce the average

response time in up to 29% in the DQPP approach, which is higher than the corre-

sponding increase in the throughput of 9%. As expected, the overhead of using the

CPU at low query rates outmatched its benefits. At low query rates, the queue waiting

time is almost 0, and, therefore, the query processing time is more relevant. Since the

processing time of the CPU is higher, it follows that the response time would increase.
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However, while it increased, the increase was so small that we argue that it is irrelevant

in practice.

6.5 The Performance of the Out-of-Core Response

Time Aware Distributed PQANNS

This section evaluates our out-of-core execution scheme with GPU only and CPU-

GPU. It employs the same datasets and IVFADC configuration used in the previous

section. However, for the sake of analyzing the out-of-core effects to the performance,

the amount of data that may be kept in the GPU memory at any time during the

execution is limited. Furthermore, this amount is varied with the purpose of analyzing

multiple GPU memory capabilities and evaluating the performance in different scenar-

ios. The choice of using the same datasets and IVFADC configuration as employed

in the previous section here is intended to compare the out-of-core configurations di-

rectly to the in-core and, consequently, analyze the penalty in performance with this

approach. However, in Section 6.6, we an execute experiment in which a dataset with

1 billion SIFT vectors is used per GPU, while only half of it fits in the device memory.

6.5.1 Throughput

This section presents the baseline single node throughput of our out-of-core implemen-

tation, under several GPU memory capacities using our single-node machine. 100k

queries were sent for execution at the beginning of the experiments, in groups of 5

queries, one group at a time.

Table 6.5. Throughput (queries/s) in an out-of-core execution using the
SIFT500M dataset.

% of data
in GPU

GPU
only

CPU-GPU
Fixed Division

CPU-GPU
Work Stealing

12.5% 4739 914 5353
25% 6627 1066 6367
50% 6987 1586 7679

The throughput of the system is presented in Tables 6.5 and 6.6 as the percentage

of the index that would fit in the GPU memory is varied from 12.5% up to 50%. As

shown, the GPU-only configuration attained significant performance even in cases in
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Table 6.6. Same as Table 6.5, but using the Tiny Images dataset

% of data
in GPU

GPU
only

CPU-GPU
Fixed Division

CPU-GPU
Work Stealing

12.5% 8462 4633 10765
25% 14476 5380 17315
50% 21493 7767 23861

which the amount of the index it can hold up is small (12.5%) and, as expected,

its performance improves as more data fits in memory. The GPU only out-of-core

execution reached a throughput of up to 94% compared to the GPU only in-core

throughput. Also, it is up to 8.7× faster than using only the CPU, which would be

the reference for processing this dataset without the out-of-core strategy.

Further, it is presented the performance of the CPU-GPU execution with a fixed

data division and using work-stealing. In the fixed division case, because the GPU can

only process the index subpartition assigned to it, the CPU becomes the bottleneck and

the cooperative execution is ineffective. However, the CPU-GPU with work stealing

improved the GPU-only in all cases and attained a speedup of up to 1.27× compared

to the GPU-Only approach.

6.5.2 Response Time

In this section, we evaluate our out-of-core approach with respect to the obtained

average response time. Again, we compare it with the CPU+GPU Fixed Division

strategy, the GPU only strategy, and our CPU+GPU Work Stealing strategy.

This section evaluates our out-of-core approach by varying the amount of data

(% of the index) that is stored in the GPU memory, while the query rate is varied in a

similar manner to the previous section. The results are presented in Tables 6.7 and 6.8,

in which the CPU only execution is also included for reference.

As presented, the average response time across the board are higher than in the

case with the in-core data. In general, our approach with work-stealing was the best

performer, followed by the GPU only approach, the CPU-GPU fixed division and the

CPU only.

The CPU-GPU fixed approach generated much better results than the CPU only

approach, however, its overall performance was lackluster. This is due to the low

throughput of the CPU part, which bottlenecked the system, since every query must

be processed in both CPU and GPU.
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Table 6.7. Average query response time (secs.) with varying query rates using
a Poisson distribution (with average Q/s queries per second) for GPU only and
CPU-GPU execution on the SIFT500M dataset.

% of data
in GPU

Q/s
CPU
only

GPU
only

CPU-GPU
Fixed

CPU-GPU
Work Stealing

12.5%

1400 29.35 8.36 29.11 5.48
2800 45.86 10.85 45.63 7.97
4200 50.95 13.19 50.86 10.25
5600 57.70 14.79 53.18 11.84
7000 59.36 15.91 54.89 13.24

25%

1400 29.35 5.56 21.65 3.22
2800 45.86 6.86 39.37 4.68
4200 50.95 8.92 43.19 6.66
5600 57.70 10.20 45.58 8.14
7000 59.36 10.91 47.05 8.75

50%

1400 29.35 4.14 6.50 1.57
2800 45.86 5.67 21.45 3.32
4200 50.95 6.50 26.67 4.45
5600 57.70 8.30 29.32 6.07
7000 59.36 8.18 31.013 7.52

Table 6.8. Same as Table 6.7, but using the Tiny Images dataset

% of data
in GPU

Q/s
CPU
only

GPU
only

CPU-GPU
Fixed

CPU-GPU
Work Stealing

12.5%

6800 6.59 6.68 5.03 3.21
13600 9.88 8.40 8.40 5.17
20400 11.04 9.05 9.60 5.95
27200 11.65 9.46 10.15 6.39
34000 12.00 9.75 10.51 6.54

25%

6800 6.59 2.83 3.41 1.68
13600 9.88 3.94 6.79 2.49
20400 11.04 4.54 7.94 3.13
27200 11.65 4.89 8.55 3.68
34000 12.00 5.12 8.81 3.81

50%

6800 6.59 1.40 0.89 0.45
13600 9.88 1.82 3.67 1.02
20400 11.04 2.29 4.75 1.63
27200 11.65 2.50 5.35 1.66
34000 12.00 2.66 5.69 1.89
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While the GPU only approach was able to produce good average response times

at high query rates, it did not perform as well at lower query rates. This is due to the

fact that, for every query, its response time has to include, at least, the time to transfer

the parts of the dataset that are not in the GPU memory from the CPU memory. In

our tests, this meant transferring from 50% of the dataset up to 87.5% of it. Since this

transfer time is rather large, it follows that, at low query rates, the increase on the

response time would be very significant.

The CPU-GPU with work-stealing produced the lowest average response times.

It performed much better than the GPU Only at low query rates, achieving a reduction

of the average response time of up to 3.1×. It performed only slightly better at higher

query rates, due to the fact that, at high query rates, the best choice is to increase the

throughput, which means processing as much as possible on the GPU. Still, since we

are able to use the CPU while the GPU is busy with the data transfer, our CPU-GPU

with work-stealing approach was able to slightly decrease the average response time on

those cases.

In Tables 6.9 and 6.10 we can see how our smart work stealing policy was able to

reduce the amount of data transfers between CPU and GPU, which was fundamental

in reducing the average response time observed in our approach, when compared to

the GPU Only approach. This is specially true when the query rate is small, as in

those cases, doing excessive transfers would have a much higher impact on the average

response time.

6.6 Distributed Memory Scalability: In-core and

Out-of-Core

In this section, we evaluate in-core and out-of-core executions of our systems in a dis-

tributed memory, multi-GPU configuration. Our experiments focus on a weak scaling

scenario in which the dataset and the available computing resources are increased in

the same proportion. We used this experiment design because in this application do-

main, the system is expected to deal with very large and ever-increasing datasets that

would not fit into the memory of a single GPU or computing node. The experiments

were performed by varying the number of computing nodes from 1 up to 64 (each com-

pute node is equipped with 4 GPUs and 44 CPU cores). The dataset used contains

500 million and 1 billion SIFT descriptors per GPU, respectively, for the in-core and

out-of-core tests. As a consequence, we have indexed and searched up to 256 billion

SIFT descriptors in the case of the out-of-core with 64 nodes/256 GPUs, which cor-
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Table 6.9. Average number of dataset partition transfers between CPU and
GPU on the SIFT500M dataset. Each test was executed ten times. The standard
deviation is listed between parentheses.

% of data
in GPU

Q/s
GPU
only

CPU-GPU
Work Stealing

12.5%

1400 61.8 (±2.4) 42.6 (±1.9)
2800 29.2 (±0.4) 25.3 (±0.5)
4200 21.3 (±0.5) 17.2 (±0.4)
5600 17.9 (±0.3) 14.0 (±0.0)
7000 16.0 (±0.0) 12.1 (±0.3)

25%

1400 43.1 (±0.6) 23.9 (±0.7)
2800 20.0 (±0.0) 17.5 (±0.5)
4200 13.5 (±0.5) 11.0 (±0.0)
5600 11.0 (±0.0) 9.0 (±0.0)
7000 9.7 (±0.5) 7.0 (±0.0)

50%

1400 25.1 (±0.7) 7.0 (±0.0)
2800 11.4 (±0.5) 8.7 (±0.5)
4200 7.0 (±0.0) 5.8 (±0.4)
5600 5.9 (±0.3) 4.0 (±0.0)
7000 5.0 (±0.0) 3.0 (±0.0)

Table 6.10. Same as Table 6.9, but using the Tiny Images dataset

% of data
in GPU

Q/s
GPU
only

CPU-GPU
Work Stealing

12.5%

6800 25.0 (±0.0) 17.3 (±0.5)
13600 16.0 (±0.0) 11.0 (±0.0)
20400 13.0 (±0.0) 9.0 (±0.0)
27200 12.0 (±0.0) 9.0 (±0.0)
34000 11.0 (±0.0) 8.0 (±0.0)

25%

6800 20.5 (±0.5) 14.0 (±0.0)
13600 11.0 (±0.0) 7.9 (±0.3)
20400 8.0 (±0.0) 6.0 (±0.0)
27200 7.0 (±0.0) 5.0 (±0.0)
34000 7.0 (±0.0) 5.0 (±0.0)

50%

6800 16.1 (±0.3) 2.0 (±0.0)
13600 8.0 (±0.0) 5.3 (±0.5)
20400 5.0 (±0.0) 4.0 (±0.0)
27200 4.0 (±0.0) 3.0 (±0.0)
34000 4.0 (±0.0) 2.0 (±0.0)







Chapter 7

Conclusions and future directions

This dissertation addresses the problem of indexing very large multimedia datasets with

an efficient distributed-memory implementation of the IVFADC for hybrid distributed

memory machines equipped with CPU and GPU. Because these datasets are continually

growing at an unprecedented rate, we have also developed mechanisms to support out-

of-core GPU executions to enable the use of GPUs in the execution when the index

can not fit in its memory. Along with the IVFADC ability of describing the data

descriptors using small quantization codes, this parallel system can handle very large

databases while, at the same time, delivering high throughput and achieving good

parallel efficiency.

We have also developed strategies to adapt the system during the execution in

order to minimize response times under fluctuation workloads, as observed in online

multimedia services. For instance, our DQPP approach that adapts the system at run-

time has been able to reduce the average response time in 7× compared to a trivial

greedy policy. The improvement in the out-of-core execution with our optimizations

was able to reduce the response time in about 1.6× on average with work-stealing.

The distributed memory execution in a machine with 256 GPUs and 2816 CPU cores

attained a parallel efficiency of about 0.99. At the same time, this distributed memory

execution using all 256 GPUs consumed a small network bandwidth (≈7 MB/s), which

indicates our system should be able to scale to even larger machines.

In future works, we intend to evaluate our techniques using other ANN algo-

rithms. We believe that our proposed strategies are robust enough to handle most

algorithms without needing a lot of changes, but this needs to be evaluated in an ex-

perimental setting. Also, it might be useful to study the possibility of using different

ANN algorithms in the CPU and GPU. For instance, we might use the HSNW algo-

rithm in the CPU. This might help to reduce the gap between the performance of the

59
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GPU and CPU. However, one aspect that must be considered in this context is that the

accuracy of the query results might change depending on which device it was executed,

due to the approximate nature of the algorithms. Therefore, it will be necessary to

add a theoretical layer to the system to bound the difference between algorithms and

devices to an acceptable level. Otherwise, the user may experience query results that

may significantly diverge depending on how the system executes them.

While in this work we explored the use of CPUs and GPUs, these are not the

only devices available. Recently, Zhang et al. (2018) proposed an FPGA (Field Pro-

grammable Gate Array) based implementation of the product quantization approxi-

mated nearest neighbor search. According to them, it significantly outperforms state-

of-the-art methods on CPU and GPU. Studying how our approach would map to

FPGAs might be a worthwhile endeavor, since their innate characteristics are very

different from CPUs and GPUs.

We might even take this further, and create a general framework that can au-

tomatically decide what would be the best configuration and algorithms, given the

devices in the system, the desired accuracy etc.

While the GPU implementation of the IVFADC algorithm in Faiss is very well

optimized, it focuses on achieving maximum performance in batch scenarios, with a

large number of queries to be processed at once. According to Johnson et al. (2019),

they use one warp of the GPU per query. Clearly, when the number of queries is small,

this will not use the full processing power of the GPU. So, one possible future work

would be to adapt Faiss’s algorithm to better use the available GPU resources when

the number of queries is small.

One of the most expensive steps in the out-of-core execution is the constant

transfers of the database to the GPU. Studying how to reduce this cost, maybe with

the use of new data structures, might increase significantly the performance of the

out-of-core algorithm.

Our experiments ran in a very fast network. What if the network was slower?

What if the current traffic in the network was a significant factor? Exploring this

scenario might produce worthwhile results.

Last, one interesting project would be to, when the workload is low, increase the

accuracy of the searches, instead of simply becoming idle. Conversely, if the workload

becomes too high, maybe decreasing the accuracy of the searches might be a viable

alternative.
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