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Resumo

Este trabalho trata o problema de convergência e circulação de curvas fechadas por sis-
temas multi-robôs a partir de estratégias baseadas em campos vetoriais. O problema é
tratado sob dois olhares. Na primeira parte, considera-se o problema no qual uma curva
definida no espaço tridimensional, variante no tempo, deve ser circunavegada por um
conjunto de veículos aéreos não tripulados do tipo quadrotor. Para isso, é proposto um
sistema em cascata, em que uma etapa de controle distribuído, em alto nível, garante a
convergência e a circulação da curva através de uma lei baseada em campos vetoriais. O
mesmo controlador garante o evitamento de colisão entre os robôs baseando-se em leis de
prioridade que levam em conta as posições dos robôs vizinhos e que permitem modular
o campo vetorial de forma a evitar colisões. Os sinais de controle de alto nível geram
uma trajetória a ser seguida pelo veículo quadrotor, que é comandado por um controlador
de baixo nível. O projeto do controlador de baixo nível é baseado na técnica de controle
não-linear backstepping, que é incrementada com a ação integral e com uma lei de controle
adicional, baseada na técnica Lyapunov redesign, em que a última torna o sistema robusto
a distúrbios limitados. Na segunda parte deste trabalho, o problema de convergência e
circulação de curvas é endereçado sob outro olhar. Considerando curvas definidas no espaço
2-D, têm-se por objetivo projetar uma estratégia de controle preditivo distribuído em que
as leis de controle baseadas em campos vetoriais são embutidas no problema de otimização.
Assim, em vez de encontrar uma sequência de controle, o problema encontra os parâmetros
da lei de controle de cada robô. A partir disso, o problema de controle ótimo é projetado
de forma a garantir a convergência e circulação da curva alvo e o evitamento de colisões
entre robôs. Depois, o mesmo problema é distribuído pelo método das direções alternadas
de multiplicadores, o que permite a negociação de trajetórias entre robôs vizinhos. A
eficácia das estratégias de controle propostas neste trabalho são avaliadas com resultados
de simulação.

Palavras-chave: Campos vetoriais. Controle backstepping. Controle preditivo distri-
buído. Evitamento de colisões. Sistemas multi-robôs.



Abstract

This work deals with the problem of convergence and circulation of closed curves by
multi-robot systems, through vector field based strategies. The problem is addressed with
two regards. In the first part, the problem of circumnavigating a time-varying curve in the
three-dimensional space with a group of quadrotor aerial vehicles is approached. For that
end, a cascaded system is proposed, in which the high-level, distributed, layer guarantees
convergence and circulation of the aimed curve through a vector field based control law.
The same control layer provides collision avoidance among robots by considering predefined
priority laws that take into account the robots positions, which allow to modulate the
vector field. The high-level control law generates a trajectory to be followed by a quadrotor
vehicle, which is guided by the low-level controller. The design of the low-level controller
is based on the backstepping nonlinear control, improved with an integral action and an
additional control law based on the Lyapunov redesign approach, which provides robustness
against bounded disturbances. In the second part of this work, the problem of convergence
and circulation of curves is addressed under another perspective. Considering curves
defined in the 2-D space, the objective is to design a distributed predictive control strategy
in which the control laws based on vector fields are embedded in the optimization problem.
Therefore, instead of finding a control sequence, the problem finds the parameters of each
robot’s control law. From this, the optimum control problem is designed to ensure the
convergence and circulation of the target curve and avoid inter-robot collisions. Then, the
same problem is distributed by the alternating directions method of multipliers, which
allows the negotiation of trajectories between neighboring robots. The effectiveness of the
control strategies proposed in this work are evaluated with simulation results.

Keywords: Vector fields. Backstepping Control. Distributed predictive control. Col-
lision avoidance. Multi-robot systems.
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Notation

ωi i-th robot.

ri Robot radius.

Ri Perception range.

Ω Set of robots.

N Number of robots.

ξ Position vector.

u Control signal.

α Function that defines surface.

Γ Target curve.

∇(·) Gradient of (·).

µi, λi, ϱi, ιi Modulation functions.

N ([·]) Null-space of [·].

p Feedforward term.

Θi Set of perceived robots.

Dij Euclidean distance between robots ωi and ωj.

δij Collision distance.

r̃ Augmented radius.

Ξi
µ, Ξi

λ, Ξi
ϱ Priority sets.

W (x(t)) Convergence function.

vmax Maximum quadrotor linear velocity.



η Euler angles vector.

ϕ, θ, ψ Roll, pitch, and yaw angles.

I Inertial frame.

B Body-fixed frame.

RI Rotation matrix from B to I .

m Mass of the quadrotor.

vI Velocity of the UAV center of mass.

IB Inertia tensor.

ω Angular velocity vector.

p, q, r Angular velocities.

T Total thrust.

τ Torques vector.

τϕ, τθ, τψ Torques around axes.

S(ω) Skew-symmetric matrix.

b Disturbance.

γ Additional control law.

x State variables.

f State vector field.

κ Predefined control law.

θ Parameters vector.

Lg Global cost.

Li Local cost.

(̄·) Generalized (·) vector.

(·)ij Variable (·)j as computed by the i-th robot.

∆ Prediction horizon.



ρ ADMM penalty parameter.

y Lagrange multiplier vector.

z Global variable.

nite Iteration number.

nmax Maximum iteration number.

J Jacobian matrix.

η Cost weight.

w Collision avoidance cost term.
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1
Introduction

1.1 Motivation

The control of multi-robot systems has been widely studied in the past decades. The
main characteristic that brings attention to this class of systems is the increased ability to
execute certain tasks in relation to a single robot. Consider for example a task of area
coverage (Fazli et al., 2010), in which a set of coordinated robots can cover an area much
faster than a single robot. Another interesting example is the transportation of a heavy
load that cannot be held by a single robot. In this case, a set of coordinated robots can
transport the cargo by distributing the weight among them (Tuci et al., 2018).

As pointed out by Yan et al. (2013), multi-robot systems can have several advantages
over single-robot systems. The most obvious one is the ability to have a better spatial
distribution. The limited spatial aspect of a single robot makes it impossible to accomplish
tasks that require actuation in two different places, at the same time, for example. This
leads to another advantage that can be attained under multi-robot systems, which is the
better overall performance. In tasks in which one robot must actuate in different positions
or in a large area, a multi-robot system will probably outperform a single robot, regarding,
for instance, the total time to execute the task (Burgard et al., 2005). Also, in exploration
tasks using multiple coordinated robots brings a faster area coverage. This is especially
interesting in search and rescue operations, where one wants to find the target in minimum
time (Jennings et al., 1997; Hu et al., 2013).

The multi-robot systems are a natural expansion of the single robot systems. Dealing
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Figure 1.1: Example of perimeter surveillance task.

with several robots to accomplish a task, the overall system has better flexibility and
scalability when compared to a single-robot (Cao et al., 1997; Parker, 1998), as in many
situations it is possible to add or remove robots from the scheme without compromising
the task accomplishment. From this, one might rightly infer that these systems have
a fault-tolerance characteristic. The failure of a robot in a multi-robot system can be
overcome by coordination, while in a single robot strategy the failure of the robot means
the failure of the task. In addition, information sharing between robots, such as the sensed
positions of each other, generally produces a positive impact in the localization efficiency
(Fox et al., 2000). Also, the employ of a group of several simple robots instead of a single
powerful robot to accomplish a certain task might be considerably cheaper.

Among the tasks that can be efficiently performed by multi-robot systems, certain
tasks require convergence and circulation of a desired curve. An intuitive example is the
perimeter surveillance task (Pimenta et al., 2013; Hsieh et al., 2008), illustrated in Figure
1.1, in which a group of robots must patrol over a boundary. Convergence and circulation
approaches also arise when tracking a moving target or in source seeking (Frew et al.,
2008; Briñón-Arranz et al., 2019), and in environmental monitoring problems (DeVries &
Paley, 2012; Michini et al., 2014).

The problem of convergence of a group of robots to predefined curves is not new. In
(Sugihara & Suzuki, 1996), the authors develop an algorithm where the robots move in
the direction of the radius of a circle. Collisions among robots are avoided by considering
predefined avoiding laws, in which the robot only moves in "clear" directions, that is,
straight lines that do not intercept any robot. To converge to limit cycles, vector field-based
control strategies have been applied (Jung et al., 2016; Frew & Lawrence, 2017; Gonçalves
et al., 2010b). The main advantages of this type of strategy are the stability guarantees
and the intrinsic robustness of vector field approaches. In this work, vector field-based
approaches are proposed to achieve convergence and circulation of closed curves. Regarding
multi-robot systems, the same vector fields are modulated to avoid collisions among robots.

For many multi-robot systems, the employment of aerial vehicles is opportune. The
control of unmanned aerial vehicles (UAVs) has been extensively studied in the last
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Figure 1.2: Mavic Pro Platinum by Sven Teschke 1.

years. The use of these unmanned vehicles has first emerged from the necessity of doing
dangerous tasks in military applications, as reconnaissance of an enemy field, target and
decoy for simulating an attack, and combat. Particularly in security missions, aerial vehicles
outperform ground vehicles in various aspects, since they have better maneuverability
and can move in the 3-D space. Besides that, the use of UAVs for civil and commercial
applications, such as logistics, agriculture, data collection, photography, filming, and
recreation has grown enormously in the last few years. The main reason for this growth
is the technological development that allowed the production of small scale cheap UAVs.
Despite having a smaller payload capacity, small size UAVs can execute several tasks
previously performed with large UAVs, with a lower cost. Their versatility and portability
are some of the advantages over standard UAVs. In addition, in some military missions,
small UAVs are considered expendables, which means that recovery of the aircraft is not
attempted in case of imminent risk (Valavanis & Vachtsevanos, 2015).

With regard to aerial vehicles, the control of quadrotor UAVs has been the focus of
many studies. The quadrotor is a multi-rotor aircraft, that flies when propelled by the
force produced by four rotors. The propellers in opposite sides in the same support shaft
spin in the same direction, while one pair turns in the clockwise sense, the other pair turns
in the counter-clockwise sense. This configuration of rotors allows to control the aircraft
yaw angle. Figure 1.2 shows an example of a commercial quadrotor.

In comparison to a fixed-wing aircraft, the quadrotors have an interesting mobility
characteristic. The fixed-wing aircraft velocity is restricted by a first-order nonholonomic
Pfaffian constraint, that is, this aircraft cannot generate lateral velocities instantaneously.
Despite presenting second-order (acceleration) non-holonomic constraints and being under-
actuated, quadrotors have greater maneuvrability than fixed-wing aircraft, since they are
not subject to Pffafian (velocity) constraints. Besides that, differently from the fixed-wing
ones, the quadrotors can hover.

1License: CC BY-SA 3.0-de (https://creativecommons.org/licenses/by-sa/3.0/) via Wikimedia
Commons (https://commons.wikimedia.org/wiki/File:2019-03-23_-_Mavic_Pro_-3941.jpg).

https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:2019-03-23_-_Mavic_Pro_-3941.jpg
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Therefore, quadrotors are opportune vehicles for the application of the multi-robot
vector field strategies to be presented in this work, once that when modulating the vector
field components, the original vector field flow is not maintained, which can lead for
example to stop situations. Several strategies have been used to track trajectories with
quadrotor vehicles (Lee & Kim, 2017). In this work, a robustified version of the integral
backstepping whole-body controller presented by Salierno & Raffo (2017) is proposed.

Regarding multi-robot systems, the ability to optimize the system’s trajectories dis-
tributively has attracted the attention of researchers to distributed model predictive
control (DMPC) approaches. The major advantage of optimal control strategies is the
capability of minimizing (or maximizing) a cost functional, taking into account the system
dynamics and constraints. By considering a receding horizon, MPC provides feedback to
the system, which increases the robustness in front of external disturbances and parametric
uncertainties (Rawlings & Mayne, 2009). In complex and large systems, the employment
of a centralized controller might be infeasible, as high computational burden is involved.
Consequently, it is generally beneficial to implement decentralized or distributed strategies
(Maestre & Negenborn, 2014). Furthermore, computing control signals in a distributed
manner increases robustness in front of system failure, since the optimization does not
depend on a unique central processing unit. In this work, a multi-robot system is guided by
convergence and circulation vector fields linked with a distributed model predictive control
scheme, in which the robots negotiate how to modulate their vector fields to accomplish
the task while avoiding inter-robot collisions.

1.2 Contributions

This dissertation considers the problem of convergence and circulation of curves under
two different perspectives.

In the first moment, a cascaded strategy for achieving convergence and circulation of
curves in the 3-D space by quadrotor vehicles is proposed. The approach is an extension of
the one presented by Pimenta et al. (2013), this time considering time-varying curves. For
controlling the quadrotors based on the high-level control signal as reference, a robustified
version of the backstepping controller with integral action (Salierno & Raffo, 2017) is
proposed. The original controller proposed by Salierno & Raffo (2017) is capable of
rejecting constant external disturbances and parameter uncertainties. The robustness of
this controller is amplified by considering unknown bounded disturbances treated by an
additional robustifying control law, which is based on the Lyapunov redesign procedure
(Khalil, 2002).

In a second moment, the problem of modulating the convergence and circulation fields
is regarded for the first time as an optimization problem, which allows us to pursue
inter-robot collision avoidance through distributed optimal control. For that matter, a
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framework that combines predefined parameterized control laws and distributed model
predictive control is developed, based on the ideas proposed by Droge & Egerstedt (2013).
The framework allows us to consider vector-field based control laws, in which its parameters
are modulated by the model predictive control optimization problem. The optimization
problem is distributed among the neighbouring robots by the alternating direction method
of multipliers (Boyd et al., 2011). Then, a negotiation process is considered to achieve
consensus on the choice of each robot vector field parameters.

1.2.1 Publications

The cascaded strategy presented in this work was published as "Convergência e Circulação
de Curvas Variantes no Tempo com um Conjunto de Quadrotores" and presented in
the "14º Simpósio Brasileiro de Automação Inteligente – SBAI" in Ouro Preto, Brazil
(Pacheco et al., 2019). The distributed model predictive control strategy was accepted
for publication in the International Federation of Automation and Control (IFAC) World
Congress 2020 as "Distributed Parameterized Predictive Control for Multi-robot Curve
Tracking".

1.3 Outline

The remaining of this text is split as follows:

• Chapter 2 introduces the main background of the techniques used in this work.

• Chapter 3 shows the development of a cascaded control scheme to guide a set of
quadrotors to a time-varying curve in the 3-D space.

• Chapter 4 presents the parameterized model predictive control with distributed op-
timization framework, which is applied to the problem of convergence and circulation
of curves in the 2-D space.

• Chapter 5 presents and discusses the numerical simulation results of the strategies
developed through the two previous chapters.

• Chapter 6 draws the main conclusions and highlights possible future works.
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2
Background

This chapter introduces the main background necessary for the development of this
manuscript. First, the vector field approach to convergence and circulation of closed paths
is presented. After that, the quadrotor model considered in this work is introduced, and
then the control of quadrotors is reviewed, focusing on backstepping control strategies.
Besides, the Lyapunov redesign approach to be incorporated in the backstepping process is
also described. Thereafter, a review of model predictive control and its distributed version
in multi-robot systems is presented, and the alternating direction method of multipliers is
described with an application example.

2.1 Vector Field Navigation

The application of vector fields in robot navigation is not a novelty. In the seminal work
(Khatib, 1986), the author presents for the first time the vector field based strategy known
as artificial potential fields. The main idea of the work is to compute a virtual attraction
force that attracts the robot to a desired goal, and virtual repulsion forces that emanate
from the obstacles. A vector field is built by assigning a vector to each point in the space.
In Figure 2.1 one can see two vector fields in the 2-D space. In the case of robotics, these
vector fields generally indicate the velocity or acceleration to be impelled by a robot at a
certain point of the space.

Vector fields are today a well-established tool for obtaining control actions to track
paths with convergence guarantees. In (Frew et al., 2007), Lyapunov guidance vector
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Figure 2.1: Two examples of vector fields for convergence and circulation.

fields are implemented for tracking circular loiter patterns in the 2-D space with an
unmanned aircraft. In that work, the design of the vector field is based on a Lyapunov
function determined by the desired distance from the loiter center and the real distance. In
(Lawrence et al., 2007), the same framework is extended by considering the warping of the
circular shape, preserving global stability guarantees. The framework is extended again
by Frew et al. (2008), now considering a compensation term for tracking moving curves.
In (Frew & Lawrence, 2012, 2017), the authors consider the construction of Lyapunov
vector fields in cylindrical coordinates, which allow to track curves specified only by a set
of control points.

The design of vector fields regarding convergence and circulation is also studied in
(Ceccarelli et al., 2008). In this case, the authors propose a strategy to drive differential
robots to a circular curve around a beacon. More general curves are not considered.
Another interesting approach is presented by Wu et al. (2018), in which the vector field
is encoded by a recently developed tool, namely differential Lyapunov framework for
contraction analysis. The main advantage of the method is the possibility of creating
vector fields in the case of curves with singularities. In addition, the framework allows a
simple representation of curves obtained by interpolation.

This work considers vector fields that are constructed via implicit functions. In
(Chaimowicz et al., 2005), the problem of controlling a swarm of robots to generate
specific geometric patterns described by implicit functions is solved. In the same approach,
repulsion forces between the agents are added into the control law, assuring that the robots
spread out over the geometric formation. A similar problem is addressed by Pimenta
et al. (2013), in which the interaction between robots is modeled using the Smoothed
Particle Hydrodynamics (SPH). Control laws are obtained by assuming the problem as a
simulation of fluids in electrostatic fields. In (Hsieh et al., 2007), the authors propose a
strategy for convergence and circulation of a curve defined by implicit functions in the
2-D space. The control law relies on a convergence term, that attracts the robot to the
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Figure 2.2: Example of vector field convergence and circulation modulation. (a) Conver-
gence prioritized over circulation. (b) Convergence and circulation field have equal priority.
(c) Circulation prioritized over convergence.

curve, and a tangential term, that impels circulation. Collision avoidance is accomplished
by modulating the convergence and circulation parameters based on predefined proximity
functions and priority relations. Figure 2.2 shows an example of vector field modulation.

Considering a single robot, the work (Gonçalves et al., 2010b) generalizes the conver-
gence and circulation of generic curves specified in n-dimensional spaces. In this more
general framework, the authors propose a vector field composed of three terms: (i) an
attraction gradient to the curve, (ii) a tangential term, orthogonal to the first one, that
guarantees circulation of the curve; and (iii) a term that compensates for the possibly
time-varying characteristics of the curve. For obtaining curves in n-dimensional spaces, it
is necessary to define n− 1 surfaces, with intersection at the target curve. The surfaces
are described by a set of implicit functions αi : Rn+1 7→ R, such that αi(x1, x2, ..., xn, t) = 0,
for i = 1, 2, ..., n− 1. Figure 2.3 shows an example of target curve defined by the intersec-
tion of two surfaces α1(x1, x2, x3) = 0 and α2(x1, x2, x3) = 0 in a 3-D space. After that, a
differentiable positive definite potential function V : Rn−1 7→ R is defined. As αi is function
of x1, x2, ..., xn and t, V (α1, α2, ..., αn−1) is also function of the same variables. When V = 0,
the robot is exactly at the curve. By using the potential function V , the authors derive a
convergence field, based on the gradient of V , and a circulation field, orthogonal to the
gradient.

By following the same reasoning from (Hsieh et al., 2007), the work (Pimenta et al.,
2013) builds upon (Gonçalves et al., 2010b) and proposes a multi-robot scheme for
convergence and circulation of a curve in the 3-D space while avoiding collisions by
modulating convergence and circulation terms of each robot. The same work also applies
the vector field modulated control signals to low-level controllers, which are responsible for
guiding quadrotors vehicles in the vector field flow. In this work, vector field modulation
strategies for convergence and circulation of curves are also developed, based on the
strategies proposed by Pimenta et al. (2013) and Gonçalves et al. (2010b).
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Figure 2.3: Two surfaces intersection.

2.2 Quadrotor Model

Figure 2.4 depicts the quadrotor model, where I = {I⃗1, I⃗2, I⃗3} is the inertial frame, and
B = {B⃗1, B⃗2, B⃗3} is the body-fixed frame, attached to the body of the aircraft. The center
of mass position in the inertial frame is given by ξ = [x y z]T ∈ R3. Considering the Euler
angles parametrization, η = [ϕ θ ψ]T ∈ R3 represents the orientation of the quadrotor in the
Euclidean space with respect to the body-fixed frame B, where RI ∈ SO(3) is the rotation
matrix from B to I . The rotation matrix is obtained by applying three consecutive
rotations to the body-fixed frame. First, assume that the body-fixed frame coincides with
the inertial frame. Now, it is necessary to apply a rotation of ψ around B⃗3, a rotation of θ
around the new B⃗2, and finally a rotation around the new B⃗1. The three movements can
be described by the following rotation matrices

R(B⃗3, ψ)


cosψ sinψ 0

− sinψ cosψ 0
0 0 1

 , R(B⃗2, θ)


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 , R(B⃗1, ϕ)


1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 ,

which describe the rotations starting from the inertial frame to the body-fixed frame.
When applying the three rotations, one can obtain

RB =B RI = R(B⃗1, ϕ) · R(B⃗2, θ) · R(B⃗3, ψ),

RB =


cosψ cos θ sinψ cos θ − sin θ

cosψ sin θ sinϕ− sinψ cosϕ sinψ sin θ sinϕ+ cosψ cosϕ cos θ sinϕ
cosψ sin θ cosϕ+ sinψ sinϕ sinψ sin θ cosϕ− cosψ sinϕ cos θ cosϕ

 .
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Figure 2.4: Quadrotor vehicle model.

The orientation of the body-fixed frame with respect to the inertial frame is obtained by
transposing the RB matrix, and is given by

IRB = RI =


cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ
sinψ cos θ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− cosψ sinϕ

− sin θ cos θ sinϕ cos θ cosϕ

 .

Based on the Newton-Euler formulation, the quadrotor model can be given by (Raffo,
2011)

ξ̇ = vI

mv̇I = −mge3 + RIe3T + b

ṘI = RIS(ω)

IBω̇ = ω × IBω + τa, (2.1)

in which vI is the velocity of the UAV center of mass in the inertial frame I , m is the
mass of the quadrotor, IB is the inertia tensor, b represents the disturbances acting in the
system, and e3 is the column vector [0 0 1]T . The absolute angular velocity vector of the
rigid body expressed in the body-fixed frame B, is defined as ω = [p q r]T . The system
inputs are the total thrust T and τa = [τϕ τθ τψ], which are the applied torques around the
axes in B. Furthermore, S(ω) is the skew-symmetric matrix (Spong et al., 2006), given by

S(ω) =


0 −r q

r 0 −p
−q p 0

 .

Besides, the relationship between the angular rates ω of the body-fixed frame and the
Euler angles can be described by

ω = Wηη̇,
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where Wη is the Euler matrix, given by

Wη =


1 0 − sin θ
0 cosϕ sinϕ cos θ
0 − sinϕ cosϕ cos θ

 .

2.3 Backstepping Control Approach

Since the beginning of this century, several strategies have been proposed for controlling
quadrotor vehicles (Özbek et al., 2016). The design of controllers for quadrotor vehicles
is complex, due to some characteristics of these aircraft. First, the quadrotor dynamics
are highly nonlinear and subject to external disturbances, such as wind and turbulence.
Furthermore, this system is also subject to parametric uncertainties and unmodelled
dynamics, which makes it necessary to design robust controllers (Luque-Vega et al., 2012).
As this kind of UAV can translate in three directions and rotate around three axes, its
motion has six degrees of freedom. On the other side, it has only four control inputs, being
configured as an underactuated system (Dierks & Jagannathan, 2009).

Regarding path following, Mistler et al. (2001) show how to achieve input-output
decoupling by using a dynamic feedback controller, which renders the closed-loop system
linear and controllable. In (Bouabdallah et al., 2004a), the system is decoupled into two
subsystems: one for the angular rotations and the other one for the linear translations. A
controller based on a Lyapunov function to control attitude and altitude is proposed. In
(Bouabdallah et al., 2004b), the PID and LQR control techniques are applied for controlling
the quadrotor attitude. The authors conclude that both techniques give good results, each
one having its limitations. In (Bouabdallah & Siegwart, 2005), attitude control is achieved
by using the same decoupling of the system and by applying the backstepping and sliding
mode nonlinear control techniques. While the sliding mode controller had an acceptable
performance, the backstepping controller handled relatively high perturbations.

In (Madani & Benallegue, 2006), the quadrotor is regarded as three subsystems. The
first subsystem express the horizontal dynamics (x, y) in relation to roll and pitch angles.
The second subsystem gives the dynamics of the height z and the yaw angle. The last
subsystem gives the dynamics of the propellers forces. Using this architecture, the authors
propose a backstepping controller capable of stabilizing the quadrotor position and yaw
angle. The work (Bouabdallah & Siegwart, 2007) presents an integral backstepping strategy
for altitude, attitude, and position control. In this case, the integral action allows the
closed-loop system to reject constant disturbances. For achieving that, the system is again
divided into two subsystems. The work (Raffo et al., 2008) presents a nonlinear robust
path tracking controller for a quadrotor, in which a nonlinear H∞ controller stabilizes the
rotational movements and a control law based on the backstepping approach tracks the
reference trajectory.
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Backstepping approaches are very popular for controlling quadrotor UAVs. In front of
possible external disturbances, as wind and turbulence, the insertion of integral action on
the first step of the backstepping procedure is applied in (Bouabdallah & Siegwart, 2007;
Colorado et al., 2010; Mian & Daobo, 2008; Jasim & Gu, 2015). In Raffo et al. (2015), a
combination between a H∞ controller and a backstepping control law is presented. This
time, an integral action is added in the second step of the backstepping, which means
that the velocity dynamics is integrated. As discussed by Skjetne & Fossen (2004), by
considering an integral action in the first step of the backstepping procedure in a generic
plant, it is possible to guarantee reference stabilization. However, to achieve reference
tracking, it is necessary to introduce the integral action in the second step.

The application of backstepping generally relies on dividing the system dynamics
into subsystems, which can lead to stability issues. The works (Salierno & Raffo, 2017;
Salierno, 2018) address the path tracking problem by applying a backstepping strategy
with integral action in the second step. In addition, rotation matrix properties are used in
the backstepping procedure, so that subdivision of the system is not anymore necessary.
The integral action provides robustness in the presence of parametric uncertainties, un-
modelled dynamics, and constant external disturbances. In Chapter 3, an extension of this
technique is presented by considering also an additional control law, which is responsible
for compensating unknown but bounded disturbances, possibly time-varying.

The basic backstepping procedure can be explained with the help of a simple example,
which is presented here just as described by Khalil (2002). Consider the case of the
integrator backstepping, which the initial system is given by

η̇ = f(η) + g(η)ξ, (2.2)
ξ̇ = u, (2.3)

in which [ηT ξ]T ∈ Rn+1 is the state vector, and u ∈ R is the control input. Also, the
functions f : D −→ Rn and g : D → Rn are smooth in a domain D ⊆ Rn that contains η = 0
and ξ = 0. Suppose that it is possible to stabilize (2.2) can be stabilized by choosing a
smooth state feedback control law ξ = ϕ(η) with ϕ(0) = 0. Suppose also that we know a
smooth and positive definite Lyapunov function V (η) such that

∂V

∂η
[f(η) + g(η)ϕ(η)] ≤ −W (η), ∀η ∈ D, (2.4)

in which W (η) is positive definite. If we add and subtract g(η)ϕ(η) in (2.2), it follows that

η̇ = [f(η) + g(η)ϕ(η)] + g(η)[ξ − ϕ(η)], (2.5)
ξ̇ = u. (2.6)
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After that, by applying the change of variables z = ξ − ϕ(η) yields

η̇ = [f(η) + g(η)ϕ(η)] + g(η)z, (2.7)
ż = u− ϕ̇, (2.8)

and by considering v = u− ϕ̇, the system is given by

η̇ = [f(η) + g(η)ϕ(η)] + g(η)z, (2.9)
ż = v. (2.10)

Note that as z → 0, ξ → ϕ(η). Therefore, (2.9) has an asymptotically stable origin when
z = 0. To stabilize the overall system, consider the following Lyapunov candidate function

Vc(η, ξ) = V (η) + 1
2z

2, (2.11)

and its time derivative, given by

V̇c = ∂V

∂η
[f(η) + g(η)ϕ(η)] + ∂V

∂η
g(η)z + zv ≤ −W (η) + ∂V

∂η
g(η)z + zv. (2.12)

In this step, one must choose v properly in order to stabilize the overall system. By taking

v = −∂V

∂η
g(η) − kz, k > 0, (2.13)

the time derivative V̇c gives
V̇c ≤ −W (η) − kz2, (2.14)

which shows that the origin is asymptotically stable. After that, it is possible to obtain a
control law u = v + ϕ̇ to be applied to the system, which is given by

u = ∂ϕ

∂η
[f(η) + g(η)ξ] − ∂V

∂η
g(η) − k [ξ − ϕ(η)] . (2.15)

The same approach can be applied to more general systems. Consider

η̇ = f(η) + g(η)ξ, (2.16)
ξ̇ = fa(η, ξ) + ga(η, ξ)u, (2.17)

in which fa and ga are smooth. If ga(η, ξ) ̸= 0 over the domain of interest, one can design a
feedback linearization law (Slotine et al., 1991), as follows

u = 1
ga(η, ξ)

[ua − fa(η, ξ)] , (2.18)
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which reduces (2.17) to ξ̇ = ua. From this step, it is possible to design the control law u

with the same approach previously presented.
If we apply the backstepping recursively, it is possible to stabilize strict-feedback

systems

ẋ = f0(x) + g0(x)z1

ż1 = f1(x, z1) + g1(x, z1)z2

ż2 = f2(x, z1, z2) + g2(x, z1, z2)z3

...
żk = fk(x, z1, · · · , zk) + gk(x, z1, · · · , zk)u

in which x ∈ Rn, z1, z2 . . . , zk are scalars, the functions f0, f1, . . . , fk vanish at the origin,
and we assume that

gi(x, z1, . . . , zi) ̸= 0, for 1 ≤ i ≤ k (2.19)

over the domain of interest. The procedure starts by considering the system ẋ = f0(x) +
g0(x)z1, with z1 as control input. First, we determine a stabilizing state feedback control
law z1 = ϕ0(x) and a Lyapunov function V0(x) such that

∂V0

∂x
[f0(x) + g0(x)ϕ0(x)] ≤ −W (x) (2.20)

in which W (x) is positive definite. After that, we proceed the backstepping design by
considering the following system

ẋ = f0(x) + g0(x)z1,

ż1 = f1(x, z1) + g1(x, z1)z2,

and by applying the feedback linearization we can obtain the control law

ϕ1(x, z1) = 1
g1

[
∂ϕ0

∂x
(f0 + g0z1) − ∂V0

∂x
g0 − k1(z1 − ϕ0) − f1

]
, k1 > 0,

and the Lyapunov function

V1(x, z1) = V0(x) + 1
2 [z1 − ϕ0(x)]2

.

Then, we consider the system

ẋ = f0(x) + g0(x)z1

ż1 = f1(x, z1) + g1(x, z1)z2

ż2 = f2(x, z1, z2) + g2(x, z1, z2)z3
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and the recursive procedure is applied until we obtain the overall stabilizing state feedback
control law u = ϕk(x, z1, . . . , zk) and the Lyapunov function Vk(x, z1, . . . , zk). The time
derivative of the final Lyapunov function yields

V̇k ≤ −W (x1) − k1z
2
1 − k2z

2
2 − . . .− kkz

2
k < 0, k1, k2, . . . , kk > 0, (2.21)

which guarantees closed-loop asymptotic stability.

2.4 Lyapunov Redesign

Lyapunov stability analysis is a standard framework for evaluating the stability of nonlinear
systems (Khalil, 2002). As described in (Levine, 2010), the Lyapunov-based control design
is a strategy for robust control that consists of two main steps:

1. A candidate Lyapunov function V (x) is proposed for a closed-loop system.

2. A control law u is designed so that V̇ (x) < 0 considering all uncertainties.

If the selection of the candidate Lyapunov is made with success, that is, the second step is
performed, the function is called control Lyapunov function. In the Lyapunov redesign
technique (Freeman & Kokotovic, 2008; Khalil, 2002), a known Lyapunov function for the
nominal system is used as a control Lyapunov function for the uncertain system. From
this, an additional control law is designed to obtain V̇ (x) < 0.

The Lyapunov redesign is a well-established strategy for robustifying control laws.
In (Hwang et al., 2013) for example, Lyapunov redesign is applied together with a
backstepping controller to achieve path tracking with skid-steer mobile robots. In that
case, the parameter uncertainties and the skidding are regarded as disturbances. In (Raffo
& de Almeida, 2016), a task of load transportation by a quadrotor UAV is proposed. A
Lyapunov redesign control law is added to a H∞ controller so that the swing of the load
is reduced. The work (Soorki et al., 2011) presents a strategy to perform leader-follower
robot formations robustified by Lyapunov redesign. As the velocity of the leader robot is
difficult to measure, its value is considered a model uncertainty.

The classical Lyapunov redesign procedure is described as follows (Khalil, 2002).
Consider the system

ẋ = f(x) + g(x)u+ b(x, t), (2.22)

in which x is the state vector, u is the control input, f(x) and g(x) are known functions
that describe the nominal system, and b(x, t) is an uncertainty term known to be between
bounds, such as ||b(x, t)||∞ ≤ ρ(x). The uncertainty b can also depend on u, but it is
maintained as b(x, t) to simplify the understanding of the procedure. Assume that the
nominal control system is stabilized by a nominal control law unom(x). The nominal
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closed-loop system is given as follows

ẋ = f(x) + g(x)unom(x), (2.23)

in which x = 0 is a globally asymptotically stable equilibrium point. Assume that the
nominal system has a known Lyapunov function V (x) such that

∇V (x)T [f(x) + g(x)unom(x)] < 0 (2.24)

for x ̸= 0, in which ∇V (x) is the gradient of V (x). The main idea is to propose an additional
law urob(x), so that u = unom + urob stabilizes the uncertain system (2.22). Therefore, it is
necessary to guarantee that the Lyapunov function derivative be negative for all uncertainty,
that is

V̇ = ∇V (x)T [f(x) + g(x)unom(x)] + ∇V (x)T [g(x)urob(x) + b(x, t)] . (2.25)

Note that the first part of the Equation (2.25) is negative. By considering that the
disturbance respects the matching condition, expressed by

b(x, t) = g(x) · b̄(x, t) (2.26)

for some uncertain b̄(x, t), and by obtaining the new bound ||b̄(x, t)||∞ ≤ ρ̄(x), one can
choose the additional control law as

urob(x) = −ρ̄(x) sgn(g(x)T∇V (x)), (2.27)

in which sgn(·) is the element-wise signal function. By substituting the control law (2.27)
in (2.25) we obtain

V̇ = ∇V (x)T [f(x) + g(x)unom(x)] + ∇V (x)Tg(x)
[
−ρ̄(x) sgn(g(x)T∇V (x)) + b̄(x, t)

]
, (2.28)

where the second term is lower or equal 0, and therefore V̇ ≤ 0.
In the backstepping approach, the control law provided by the Lyapunov redesign

procedure is added between the steps of the backstepping. As the backstepping technique
constructs the control law by using control Lyapunov functions, an interesting match is
obtained between both techniques.

2.5 Model Predictive Control

Model predictive control (MPC) strategies emerged as a natural extension of the classic
optimal control ideas. In optimal control, the main idea is to define an optimization
problem capable of providing a control law or a control sequence. For doing this, the
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dynamics of the process to be controlled is embedded in the optimization problem as
a constraint (Kirk, 2004). Model predictive control uses the same ideas to construct
optimal control problems, but with a receding time horizon. As described by Camacho &
Bordons Alba (2013), three main ideas characterize MPC strategies:

• use of the explicit model of the system;

• obtaining a control law or sequence for a given optimal control problem; and

• receding horizon, that is, each control problem is solved considering a window of
time, that is displaced in each sampling instant after applying the first control signal.

With this regard, MPC is one way of closing the loop in optimal control, as the optimal
control problem is recomputed after each sampling step considering the new states, which
increases robustness in front of external disturbances and uncertainties (Rawlings & Mayne,
2009). Besides that, the main advantages of the MPC strategies are the easy application
in multivariable systems, the explicit definition of model constraints, and the prediction
characteristics (Camacho & Bordons Alba, 2013). A general MPC strategy is described
in Algorithm 2.1, in which x is the state vector, u is the control input vector, ∆ is the
prediction horizon, L(x,u) is the stage cost, f(x,u) is the system dynamics, x{:} is the
state trajectory, u{:} is the control input trajectory, and x ∈ X and u ∈ U are constraints
on the state and control input, respectively.

Algorithm 2.1 General MPC Strategy
1: repeat
2: t := t+ dt;
3: t0 := t;
4: x0 := x;
5: tf := t0 + ∆;
6: Solve the optimal control problem

min
x{:},u{:}

´ tf
t0
L(x,u)dt

subject to
ẋ = f(x,u),
x(t0) = x0,
x ∈ X, u ∈ U

7: Apply the first control signal computed.
8: until reaches the final time

At first, the MPC strategies were generally applied in systems with slow dynamics,
in which the computation time for solving the optimization problems was reasonable.
As the technological advances enable the production of faster and faster computers, the
application of MPC strategies to control systems with fast dynamics becomes plausible.
Besides that, several low-level techniques for solving optimization problems faster have
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been proposed regarding application in MPC problems, see (Patrinos & Bemporad, 2013;
Jerez et al., 2014; Stella et al., 2017; Alamo et al., 2019).

In robotic systems, the application of MPC strategies has been much studied. Especially
when dealing with navigation problems, MPC strategies provide the possibility of treating
the collision avoidance problem in the optimization problem formulation. In (Kang &
Hedrick, 2006), the authors propose a nonlinear MPC (NMPC) strategy using a kinematic
model of a fixed-wing UAV for tracking lines and avoid obstacles. Regarding obstacle
avoidance, the authors add to the optimization cost functional a repulsion term, written
using exponential functions of the distance between the UAV and the obstacle. Similar
strategies for collision avoidance have been used in (Lee et al., 2011) and (Droge &
Egerstedt, 2013). In (Santos, 2018), the classic potential functions strategy is applied,
in which attractive and repulsive potentials are included in an Economic MPC cost
function. The same work also considers a hard constraint which prevents the generated
trajectory from passing through an obstacle. In (Yoon et al., 2009), an MPC approach for
autonomous ground vehicles (UGVs) is proposed. Two different strategies are considered
for collision avoidance. In the first one, a repulsion term proportional to the velocity and
inversely proportional to minimum distance (from the UGV to the obstacle) is added to
the cost functional. A second strategy uses parallax information from the robot about
the obstacle to construct a repulsion term, which leads to better collision avoidance
characteristics since there is a notion of the form of the UGV. A similar parallax-based
repulsion term is used in (Park et al., 2009) to avoid collisions. In (Richards & How,
2004; Zhao & Go, 2014), Mixed-Integer Linear Programming based collision avoidance
constraints are used in MPC schemes. In (Pereira et al., 2019), collision avoidance is
treated by including a hard constraint on the MPC problem that imposes a minimum
distance between the quadrotor UAV predicted trajectory and the obstacle. In (Nascimento
et al., 2019), a quadrotor equipped with a camera or laser sensor in a unknown environment
is considered. In the proposed strategy, collision avoidance is achieved by decomposing
the safe region into convex polyhedra, which are included as constraints into the MPC
problem. In (Van Parys & Pipeleers, 2017), obstacle avoidance constraints are modeled
as linear constraints by dividing the space using hyperplanes between the robot and the
obstacles. Besides constraining the optimization problem in a simple way, the strategy
is very conservative. Another interesting strategy for collision and obstacle avoidance
in MPC schemes is proposed by Sathya et al. (2018). In that work, the obstacles are
described by the intersection of open sets (a set of nonlinear inequalities), which allows to
separate nonconvex shapes. The same strategy proposed by Sathya et al. (2018) is applied
in (Small et al., 2019) to accomplish trajectory tracking with an inverted quadrotor in
obstructed environments.

In Chapter 4, an MPC scheme is used to guide a set of robots to converge and circulate
a curve in the 2-D space. To achieve that, a vector field based control law with convergence
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and circulation terms is embedded in the optimal control problem, so that we do not
find a control sequence, but the parameters of convergence and circulation for each robot.
As proposed in (Droge & Egerstedt, 2013) and (Droge, 2014), the embedding of control
laws with parameters in the MPC problem has been called parameterized MPC. In this
case, as fewer decision variables are considered, we expect to obtain simpler optimization
problems. Besides, less ability to minimize the cost functional is also expected. In order to
achieve collision avoidance, two methods are implemented in the proposed MPC scheme,
one based in a repulsion exponential term added in the cost function, and the other based
in the strategy proposed in (Sathya et al., 2018).

2.6 Distributed Model Predictive Control

MPC strategies can be implemented in different architectures when applied to multi-agent
systems. Figure 2.5 shows some classical approaches. The first one is the centralized
MPC, in which the MPC controller has knowledge of all the states in the system and can
compute all the control signals. The second architecture is called Hierarchical MPC. In
this architecture, there is an upper control layer that feeds all the agents ω1 to ωN with a
reference signal. The next one is a Distributed MPC architecture. In this architecture,
there is no centralized layer. Each agent computes an MPC problem based on its states
and on the states of some other agents. To achieve global optimization, the agents
must negotiate to achieve consensus about the control inputs to be chosen. The fourth
architecture is the decentralized MPC. In this case, each agent is capable of computing a
control law without a central planner or negotiation among agents. Therefore, each agent
finds a control sequence by considering only its own states and other agents states, without
considering the prediction. This characteristic generally causes loss of performance in the
minimization of a global cost, once that the agents might be competing against each other
(Negenborn & Maestre, 2014).

The main advantage of using distributed architectures in multi-robot systems is the
intrinsic modularity and flexibility of this control structure, which allows for reconfiguration
of the group of robots. Besides, as pointed out by Maestre & Negenborn (2014), some
centralized problems do not scale well with the number of agents, which makes the
distribution of the problem essential for obtaining a reasonable solution regarding the
processing time. Furthermore, when a centralized controller involves communication over
large distances, the distribution of the problem with local coordination can be of great
benefit.

Several strategies have been proposed for providing a negotiation process in distributed
MPC problems. The review book (Maestre & Negenborn, 2014) features 35 approaches for
DMPC. In (Maestre et al., 2011) for example, the authors propose a negotiation scheme
based on a cooperative game. In that approach, the global cost increment of a set of agents
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Figure 2.5: Model Predictive Control Architectures. (a) Centralized MPC. (b) Hierarchical
MPC. (c) Distributed MPC. (d) Decentralized MPC.

is used to define the best control action in a scheme of negotiation proposals. Another
strategy is to formulate DMPC by using distributed optimization. In these cases, coupling
constraints are added to each agent problem so that equality is guaranteed at the end of a
negotiation process. In (Farokhi et al., 2014) for example, the authors propose a DMPC by
using the dual decomposition and the alternating direction method of multipliers (ADMM)
distributed optimization methods.

Droge & Egerstedt (2013) propose a distributed parameterized MPC scheme that uses
the dual decomposition technique. In the same work, the MPC problem is simplified by
embedding a parameterized control law in the optimization problem. The optimization is
carried out using a gradient-based approach, known as Uzawa’s method. A multi-robot
coordination problem also treated with distributed MPC is developed in (Van Parys &
Pipeleers, 2017). The vehicle’s trajectories are parameterized as splines. Besides, the
agents’ dynamics are considered to be differentially flat, which allows enforcing formation
and input constraints via splines. To distribute the optimization, the authors apply one
iteration of the alternating direction method of multipliers per MPC cycle, which lowers
the computational cost. Zheng et al. (2016) address a path following problem for multiple
waterborne automated vessels using DMPC. The local optimization problems are coupled
with the collision avoidance constraints, and the distributed problem is also solved via
ADMM.

In Chapter 4, a multi-robot control system based on a distributed predictive control
strategy is proposed. The strategy considers parameterized control laws, i.e., a control
law with tunable parameters. As the distributed predictive control needs to predict and
agree on the trajectories of the neighboring agents, the use of parameterized control laws
is convenient, assuming that the trajectory may be predicted with the initial state, the
control law parameters, and the agent dynamics.
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To solve the optimization problem, the ADMM distributed optimization method is
adopted. In this technique, each agent has a version of the variables of the neighboring
agents. To aim equality between these variables, the technique uses Lagrange multipliers
and a penalty term that provides more robustness to the distributed optimization. As
described previously, this technique has been implemented in multi-robot distributed
MPC in (Van Parys & Pipeleers, 2017), but instead of spline-based trajectories, we use
parameterized control laws as in (Droge & Egerstedt, 2013). The ADMM has been also
implemented in other works such as (Rey et al., 2018) and (Ferranti et al., 2018) to solve
optimal control problems regarding unmanned vehicle navigation with collision avoidance
constraints. In the next section, a brief description of the ADMM technique with an
elucidative example is given.

2.6.1 Alternating Direction Method of Multipliers

Distributed optimization allows to divide the computational burden among units. In
multi-agent systems, a distributed optimal control scheme renders more robustness, since
the decision is no longer associated with a central processing unit, but with a set of local
negotiations between agents.

Several methods for distributed optimization have been studied in the last decades.
Among the classical distributed optimization methods, the alternating direction method of
multipliers is the one that provides better robustness and generally converges faster (Boyd
et al., 2011). In distributed optimization, a global cost f(x) is split among N processing
units

f(x) =
N∑
i=1

fi(x). (2.29)

If all the processing units decide about the same decision variable, that is, the same
decision variable is present at all the local cost functionals, a case of global consensus
is set. Before properly dividing the optimization burden between agents, it is necessary
to ensure that the solution of each local optimization problem reaches the same global
solution. Hence, the equality constraint must be satisfied, as following

min
∀xi

∑N

i=1 fi (xi)

subject to xi − z = 0, i = 1, . . . , N,
(2.30)

in which xi is the local value of the decision variable and z is the global value of the
decision variable. When the constraint xi − z = 0 holds for each agent, each sub-problem
returns the same value for the decision variable.

In ADMM the coupling constraints are relaxed by adding Lagrange multipliers and an
additional penalty term. This additional term provides more robustness to the distributed
optimization (Boyd et al., 2011). Henceforth, the cost functional (2.29) is augmented as
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follows
fρ (x, z, y) =

N∑
i=1

(
fi (xi) + yTi (xi − z) + ρ

2 ∥xi − z∥2
2

)
, (2.31)

in which yi is the Lagrange multiplier associated to the i-th processing unit, and ρ > 0 is a
penalty constant to be chosen.

Once defined the augmented cost in (2.31), one can apply the ADMM algorithm. Three
basic steps compose the algorithm: i) an x-minimization step; ii) a z-minimization step;
and iii) a dual variable update. The set of iterations for the global consensus problem are
defined as follows (Boyd et al., 2011)

xk+1
i = arg min

xi

(
fi (xi) + (yki )T (xi − zk) + ρ

2 ∥xi − zk∥2
2

)
, (2.32)

zk+1 = 1
N

N∑
i=1

(xk+1
i + (1/ρ)yki ) , (2.33)

yk+1
i = yki + ρ (xk+1

i − zk+1) . (2.34)

Each agent handles only its local objective function, whereas the dual variable update
gathers global information and impels the local problems to obtain the same solution,
achieving consensus. In the first step, the variables z and y are fixed and x is updated.
After that, x and y are fixed and z is updated. In the third step, y is updated while the
other variables are fixed. As pointed out by Boyd et al. (2011), the sequential fashion in
the update of xi and z inspires the name of the method.

From the iteration set (2.32 – 2.34), one can observe that ADMM requires two
communication phases at each cycle. First, each agent computes the x-minimization step,
obtaining xk+1

i . After that, the computed value is transmitted to a central collector (also
named fusion unit) that gathers all the information and computes zk+1. Thereafter, the
zk+1 value is transmitted by the centralizer unit to all the agents, which compute the
Lagrange multipliers yk+1

i .
To make clearer the presentation of the ADMM method, a simple example of distributed

optimization is proposed. Consider an optimization problem given by the minimization of
the cost functional

f(x) = (χ1 − 1)2 + (χ2 − 3)2 + (χ1 − 6)2 + (χ1 − χ2)2 (2.35)

in which x = [χ1 χ2]T . This example is the same presented in (Droge, 2014) to exemplify
the dual decomposition distributed optimization method.

Consider that the optimization problem must be solved in a distributed manner by
three agents connected in a line network, as presented in Figure 2.6. If each agent has a
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Figure 2.6: Three agents in line topology network.

version of the decision variables x, the optimization problem can be described by

min
xi,∀i

3∑
i=1

fi(xi),

subject to
xi − z = 0 ∀i ∈ {1, 2, 3},

in which xi = [χi1 χi2] is the local variable, and fi(xi) is the local cost functional, ∀i ∈ {1, 2, 3}.
The cost functional might be split as follows

f1(x1) = (χ11 − 1)2 + 1
3(χ11 − χ12)2,

f2(x2) = (χ22 − 3)2 + 1
3(χ21 − χ22)2,

f3(x3) = (χ31 − 6)2 + 1
3(χ31 − χ32)2, (2.36)

which are augmented with Lagrange multipliers and with a penalty term, yielding

fρ1(x1) = (χ11 − 1)2 + 1
3(χ11 − χ12)2 + yT1 (x1 − z) + ρ

2 ∥x1 − z∥2
2 ,

fρ2(x2) = (χ22 − 3)2 + 1
3(χ21 − χ22)2 + yT2 (x2 − z) + ρ

2 ∥x2 − z∥2
2 ,

fρ3(x3) = (χ31 − 6)2 + 1
3(χ31 − χ32)2 + yT3 (x3 − z) + ρ

2 ∥x3 − z∥2
2 , (2.37)

where fρi(xi) stands for the augmented cost functional of the i-th agent.
Note that in this topology (Figure 2.6), the agent 2 is the fusion center, once that this

agent is the only that can reunite the information about the local variables xi and compute
the global solution z. The optimization scheme is described by following the ADMM steps
(2.32 – 2.34). In the first step, each agent computes the local solution xi by minimizing
the augmented cost fρi(xi). Between the first and the second steps, the agents 1 and 3
communicate the local values xi and the Lagrange multipliers yi to the fusion center, the
agent 2. In the second step, the agent 2 computes the estimate of the global solution z,
which is transmitted to the other agents. In the last step, each agent computes its new
Lagrange multipliers vector based on the difference between the local solution and the
global solution. The set of iterations is repeated until convergence.

For solving the example here described, the penalty term is initially set to ρ = 1
and every value is initialized as zero. Besides that, 20 iterations of the ADMM method
are executed and the optimization problems are implemented via the Casadi framework
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Figure 2.7: ADMM example, ρ = 1.
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Figure 2.8: ADMM example, ρ = 5.

(Andersson et al., 2019) and the solver Ipopt (Wächter & Biegler, 2006). Figure 2.7a
shows the evolution of the local and global decision variables, and Figure 2.7b shows the
evolution of the Lagrange multipliers. One can note that the variables tend to convergence
and stabilization. As pointed out in (Boyd et al., 2011), the performance of the ADMM is
highly dependent on the choice of the penalty parameter ρ. Figure 2.8 shows the evolution
of the same distributed optimization, but this time considering ρ = 5 and 40 iterations. As
one can abstract, a higher value of ρ forces the local problems to achieve consensus faster.
However, the evolution of the global solution is slow, when compared to the previous
example.
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2.7 Summary

This chapter presented the main tools that compose the strategies proposed in this thesis.
Vector field strategies are applied in the problems dealt in Chapter 3 and Chapter 4
to obtain control laws for convergence and circulation of closed paths. In addition, the
nonlinear control techniques backstepping and Lyapunov redesign are applied in Chapter 3
to obtain a robust controller for a quadrotor vehicle. Finally, a distributed MPC approach
based on the ADMM is developed to solve the problem of Chapter 4.
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3
Cascaded Control Strategy

This chapter deals with the problem of convergence and circulation of a given curve by
a group of quadrotors while avoiding inter-robot collisions. To achieve this, a cascaded
control strategy is proposed. A high-level controller based on vector fields guides the
robots, considered as single integrators, to the curve. Collision avoidance is achieved by
modulating the components of the vector field in the presence of collision risk. In the
low-level strategy, quadrotor UAVs are guided by a robust integral backstepping controller
that takes as reference the vector field controller output. In the next section we state the
problem addressed in this chapter.

3.1 Problem Statement

In this chapter, the problem of convergence and circulation of a group of robots to a curve
embedded in the 3-D space while avoiding inter-robot collisions is addressed. To this end,
a vector field approach based on (Gonçalves et al., 2010b) and (Pimenta et al., 2013) is
proposed.

Consider a set Ω containing N robots ωi represented as spheres, each one with con-
figuration defined by ξi = [xi(t) yi(t) zi(t)]T in an instant of time t, where xi, yi, and zi

are the coordinates of the center of the sphere ωi in relation to a global fixed reference
frame. Each robot has a radius ri that covers its shape, and a visibility range radius Ri

that delimits its sphere of perception. The high-level coordination strategy is developed
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assuming single-integrator dynamics, given by

ξ̇i = ui, (3.1)

where ui is the control input.
To obtain the target curve to which the group of robots must converge and circulate, a

composition of two surfaces is considered. The intersection between these two surfaces
results in the target curve. To represent both surfaces, consider two functions described
by αi(x, y, z, t) : R3 × R 7→ R, i ∈ {1, 2}, which have continuous second partial derivatives.
The parameter t is time, which allows for representing time-varying curves. The function
α1 depends only on x, y, and t, and must produce a closed, simple, and continuous curve
when projected onto any plane parallel to the xy plane for all t. Therefore, any level
surface of α1 (α1(ξ, t∗) = C) at the time instant t∗ and with C constant is cylindric. The
function α2 is defined as

α2(x, y, z, t) = σz − Φ(x, y, t), (3.2)

in which Φ(x, y, t) is a function with continuous second partial derivatives, and σ is a
constant parameter such that σ ̸= 0. From the functions α1 and α2, a curve Γ can be
implicitly defined as

Γ : {ξ ∈ R3, t ∈ R| {α1(ξ, t) = 0} ∩ {α2(ξ, t) = 0}} . (3.3)

As α1(ξ, t) = 0 is cylindric and every point of the plane xy at time t is a projection of only
one point of α2 = 0 then the curve Γ is closed, continuous, and has a single projection onto
the plane xy for all of its points for all t.

Remark 3.1. It is assumed that ∇α1 is different from zero at the curve and almost
everywhere, being equal to zero at specific points named singular points. It is also assumed
that the partial derivatives of α1 and α2 in relation to time are bounded.

The problem addressed in this chapter is stated below:

Problem statement 3.1. Design a control strategy that guides a group of quadrotors to
converge and circulate an implicitly defined curve Γ as described in (3.3) without inter-robot
collisions.

Note that to ensure collision avoidance it is necessary to ensure that

∥ξi(t) − ξj(t)∥2 − (ri + rj) > 0, ∀t ≥ 0, ∀ωi, ωj ∈ Ω, ωi ̸= ωj. (3.4)

In order to solve the stated problem, a cascaded control strategy is proposed, which is
depicted in Figure 3.1. First, a vector field based high-level control law ui is proposed
to ensure the coordination of the group of robots Ω assuming dynamics (3.1), providing
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Figure 3.1: Block diagram of the cascaded system.

convergence and circulation to the target curve Γ and collision avoidance. The control
input provided by the high-level control law is then used to generate trajectories for
each quadrotor, which must be followed by robust low-level controllers. These low-level
controllers are designed via backstepping with integral action and robustified with a
Lyapunov redesign additional control law. In Figure 3.1, the high-level controller takes as
input the parameters of the target curve and the robots positions, and outputs a control
signal. This signal serves as input to the low-level controller, that generates the thrust and
torques [T, τ T ]T to be applied by the quadrotor, subject to disturbances b. The controllers
depend on the quadrotor state vector [ξT , vTI , (vec(RI ))T , ωT ]T , composed of the position,
the linear velocity, the rotation matrix, and the angular velocity, respectively.

3.2 High-Level Control Strategy

The high-level control strategy must guarantee convergence and circulation of a time-
varying curve while avoiding inter-robot collisions. To accomplish this behaviour, the
proposed vector field based control law results from the sum of four terms. The first
two terms are convergence ones that cause the robot to be attracted to the target curve,
the third one is a circulation term, orthogonal to the convergence terms, which impels
circulation, and the last one is a feedforward term considered in time-varying curves, which
allows a robot to follow the evolution of the curve. Then, for each robot ωi, the guidance
control law is given by

ui = −µifα2 (∇ (α2
1)) − λifα1 (∇ (α2

2)) + ϱi∇α1 × ∇α2 + ιip, (3.5)

in which ∇ (α2
k) is the gradient of the square of αk without considering t, i.e. ∇ =[

∂

∂x
, ∂

∂y
, ∂

∂z

]T
, and µi, λi, ϱi and ιi are the modulation functions, which are responsible for

regulating the components of the control law to avoid collisions. The control law (3.5) is a
combination of the ones proposed in (Pimenta et al., 2013) and (Gonçalves et al., 2010b),
as in the former the feedforward term is not considered. More details about each term of
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(3.5) can be found on the aforementioned works.
In Equation (3.5), the terms −∇ (α2

1) and −∇ (α2
2) are vectors that point to the surfaces

α1 (ξ, t) = 0 and α2(ξ, t) = 0, respectively. If the two vectors are competitive, i.e., if they
tend to cancel each other, the function fαk(q) removes the competitive component by
projecting a vector in the null-space of the other. The function fαk(q) : R3 7→ R3 is defined
as

fαk(q) =

 q if [∇ (α2
k)]

T q ≥ 0
π

(
q,N

([
∇ (α2

k)
T

])
otherwise

, (3.6)

in which the operator π computes the orthogonal projection from q onto the null space of
∇(α2

k)T .
In addition, the third term of (3.5) has the same direction of the vector ∇α1 × ∇α2,

thus orthogonal to the two first terms and tangent to the surfaces α1 = 0 and α2 = 0. As
shown by Gonçalves et al. (2010b), the vector corresponding to the feedforward p may be
obtained by the matrix operation

p = −M−1a. (3.7)

The definitions of the matrix M and the vector a are based on M∗ and a∗, respectively,
which are presented next:

Definition 3.1. (Gonçalves et al., 2010b) Let M∗ be a matrix in R2×3 such that its i-th
row is given by the vector ∇αTi for i = 1, 2. Let a∗ be a column vector in R2 such that its
i-th row is given by ∂αi/∂t for i = 1, 2.

In order to compute p as described in Equation (3.7), it is necessary to complete M∗

so that the matrix becomes square, and in the same step complete a∗. This is shown in
the next definition.

Definition 3.2. (Gonçalves et al., 2010b) Let M be a matrix R3×3 such that the first two
rows correspond to the matrix M∗ and its last row is the vector (∇α1 × ∇α2)T . Let a be
the vector in R3 such that its first two rows correspond to the vector a∗ and its last row
element is 0.

The modulation functions ϱi, µi, and λi in (3.5) are defined as in (Pimenta et al., 2013).
The function ιi is an extension of the previous functions and is used to modulate the
feedforward term. These functions are defined as

ϱi
(
ξi, ξΘi

)
: R3(Υ+1) 7→ [0, 1],

µi
(
ξi, ξΘi

)
: R3(Υ+1) 7→ [0, 1],

λi
(
ξi, ξΘi

)
: R3(Υ+1) 7→ [0, 1],

ιi
(
ξi, ξΘi

)
: R3(Υ+1) 7→ [0, 1],
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(a) First instant. (b) Second instant. (c) Third instant.

Figure 3.2: Collision avoidance example.

in which ξΘi
is the set of vectors that indicates the positions of the robots in the perception

range of ωi, and Υ is the cardinality of the set of perceived robots Θi. The set of robots
perceived by ωi is defined as

Θi ≜ {ωj ∈ Ω| {Dij ≤ Ri} , j ̸= i} ,

with Dij ≜ ∥ξi − ξj∥, that is, the Euclidean distance between robots ωi and ωj. Also note
that as each function ϱi, µi and λi assumes values in [0, 1], the robots cannot move away
from the target curve or alternate the circulation direction.

Some further definitions are necessary to describe the modulation functions.

Definition 3.3. (Pimenta et al., 2013) For every robot ωi ∈ Ω, the augmented radius r̃ is
given by r̃ ≜ ri + τi, such that τi is positive and greater than the largest ri among the robots.

In our strategy, robots with different sizes, i.e., heterogeneous robots, might be consid-
ered. The augmented radius defines a region around the robot that can be occupied by
another robot in a collision risk situation, allowing collision avoidance maneuvers. Note
that the augmented radius is the same for all the robots in Ω. Figure 3.2 displays an
example in which two robots circulate over a curve following the tangent component of
the vector field, where the augmented radius is shown in light blue. In the second instant
the augmented radius is invaded, but as the robots keep moving, the intersection between
the augmented spheres is reduced.

Definition 3.4. (Pimenta et al., 2013) The collision distance δij between two robots is
given by

δij ≜


D2
ij

−(2r̃+ϵ)2

R2
i

−(2r̃+ϵ)2 if Dij ≥ 2r̃ + ϵ

0 otherwise
, (3.8)

in which ϵ is a small positive safety value.

The calculation of the collision distance δij is intended to reduce the velocity of a robot
as two robots approach each other, if the distance between them is greater or equal 2r̃ + ϵ

and is within the perception range. Note that the value resulting from (3.8) tends to be
unitary when the distance between ωi and ωj approaches the limit of the perception radius.
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Definition 3.5. (Pimenta et al., 2013) The emergency stop function, defined for a pair
of robots, is given by

δ∗
ij ≜


1 if Dij > (2r̃ + ϵ)
D2
ij

−(2r̃)2

(2r̃+ϵ)2−(2r̃)2 if 0 ≤ Dij − 2r̃ ≤ ϵ

0 otherwise
. (3.9)

The emergency stop occurs when the distance between ωi and ωj is equal to 2r̃, which
indicates imminent collision risk. As will be clear later, the emergency stop will allow one
robot to stop a given motion direction to ensure collision avoidance.

In situations in which a pair of robots have to maneuver and reduce speed, it is
necessary to define movement priorities so that the collision risk situation is solved. In this
scenario, it is assumed that a robot is always capable of avoiding a collision by moving in
the tangential direction of the current level curve at the instant of time t. This assumption
brings the necessity to define the priority to move in the tangent direction.

Definition 3.6. (Pimenta et al., 2013) The tangential priority Λij between a pair of robots
is given by

Λij = Λξiξj
≜ (ξi(t) − ξj(t))T [∇α1 (ξi(t)) × ∇α2 (ξi(t))] . (3.10)

Regarding convergence, the robot that is closer to the αi = 0 surface is considered the
one with higher priority to move in that direction. After defining the priority measurement
methods, each robot builds priority sets considering the robots in its perception range, as
defined below.

Definition 3.7. The priority sets concerning each component of the vector field are given
by

Ξi
µ : {ωj ∈ Θi| |α1 (ξi(t), t) | > |α1 (ξj(t), t) | if α1(ξi(t), t) ̸= α1(ξi(t), t), j < i otherwise} ,

Ξi
λ : {ωj ∈ Θi| |α2 (ξi(t), t) | > |α2 (ξj(t), t) | if α2(ξi(t), t) ̸= α2(ξi(t), t), j < i otherwise} ,

Ξi
ϱ : {ωj ∈ Θi| Λij < Λji if Λij ̸= Λji, j < i otherwise} .

Note that in the cases in which the priority measure is equal, the robot with a smaller
index is assigned with higher priority.

Figure 3.3 shows a 2-D example, in which the function α1 = 0 defines the curve to be
circumnavigated. Consider that the robots are in the perceived range of each other and
that they move to the right over their level curves, in which C ′ > C. As ω1 is farther from
the curve α1 = 0 than the robot ω2, the second has priority to move in the direction of
−∇(α2

1), that is, Ξ1
µ = {ω2} and Ξ2

µ = { }. Regarding the circulation, the distance between
the robots increases when ω2 has tangential priority over ω1, that is Ξ1

ϱ = {ω2} and Ξ2
ϱ = { }.



CHAPTER 3. CASCADED CONTROL STRATEGY 49

Figure 3.3: Priority sets example.

Note that for each pair of robots in perception range there exists only one robot with
movement priority to move in a certain direction, so that there are no deadlock situations
in this sense. Besides that, it is necessary to define the following functions

ξil (Θi) =


∏
ωj∈Ξi

l
|δij| if Ξi

l ̸= ∅

1 otherwise
,

βi (Θi) =


∏
ωj∈Θi

∣∣δ∗
ij

∣∣ if Θi ̸= ∅
1 otherwise

,

in which l stands for µ, λ, or ϱ, and ∏ is the product.
Finally, the modulation functions can be evaluated by computing

µi = ξiµβ
i, λi = ξiλβ

i, ϱi = ξiϱ, ιi = βi. (3.11)

From (3.11), one can note that the two modulation functions relative to convergence terms
take into account the collision distance and the emergency stop function. By the evaluation
of the collision distance, a robot stops moving in a certain direction in the presence of
collision risk with a higher priority robot. Besides, the emergency stop function causes
a robot to stop moving in a certain direction if a critical collision distance is reached,
without considering priorities. To provide collision avoidance, a robot stops circulation
by computing the collision distance, that takes into account only the robots with higher
priority. To avoid undesired possibly dangerous behaviour caused by following the evolution
of the time-varying curve, the feedforward term is disregarded in the presence of collision
risk. It is important to stress that the collision avoidance scheme is effective assuming that
a robot can always avoid collisions by moving in the direction tangent to the current level
curve, when both gradient components are set to zero, i.e. ∥ξi − ξj∥2 = 2r̃. The satisfaction
of this assumption depends on the region in which the robots start, the curvature and
torsion of the integral curves ∇α1 × ∇α2, and the radius of the robots (Pimenta et al.,
2013).

To evaluate the convergence of the robots to the curve, the function W (x(t), t) is used

W (x(t), t) =
N∑
i=1

Vi (ξi(t), t) , (3.12)
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in which x(t) = [ξT1 (t) ... ξTn (t)]T , and Vi(ξi(t), t) = α2
1(ξi(t), t) + α2

2(ξi(t), t). Therefore, W = 0
indicates the convergence of the group of robots to the curve.

Next we show a theorem that guarantees that a single robot following the proposed
control law will be able to converge and circulate the curve as desired. Thus, if no deadlock
situation is verified and the curve is large enough to fit all the robots, the whole group will
be able to converge and circulate the target. In order to support the proof of the theorem
to be presented, we borrow one lemma from (Pimenta et al., 2013).

Lemma 3.1. (Pimenta et al., 2013) Vectors ∇α1(ξ, t) and ∇α2(ξ, t) are linearly independent
for every ξ ∈ R3 and t ∈ R where ∇α1(ξ, t) ̸= 0. Also, if ∇α1(ξ, t) ̸= 0 then α1(ξ, t)∇α1(ξ, t)+
α2(ξ, t)∇α2(ξ, t) ̸= 0 for every point (ξ, t) /∈ Γ.

Proof. From (3.2), we can obtain

∂

∂z
α2(x, y, z, t) = ∂

∂z
[σz − Φ(x, y, t)] = σ.

As σ ̸= 0, it is impossible to have ∇α2 = 0. In addition, as α1 does not depend on z, we
know that

∂

∂z
α1(x, y, t) = 0.

Therefore, the vectors ∇α1 and ∇α2 are linearly independent, since the z-axis component
of α2 is identically null for all (ξ, t), the same z-axis component of ∇α2 is non-null for all
(ξ, t) and ∇α1(ξ, t) ̸= 0 by hypothesis. Also, for (ξ, t) /∈ Γ

α1(ξ, t)∇α1(ξ, t) + α2(ξ, t)∇α2(ξ, t) ̸= 0.

Theorem 3.1. A single robot system with model given by (3.1) under the control input
in (3.5) converges to and circulate the target curve as long as singular points are never
reached.

Proof. Consider the following positive semi-definite Lyapunov candidate function

V = α2
1 + α2

2, (3.13)
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which time-derivative yields

V̇ = 2α1∇αT1 ξ̇ + 2α2∇αT2 ξ̇ + 2α1
∂α1

∂t
+ 2α2

∂α2

∂t

V̇ = 2α1∇αT1 (−fα2(∇(α2
1)) − fα1(∇(α2

2)) + ∇α1 × ∇α2 − M−1a)

+ 2α2∇αT2 (−fα2(∇(α2
1)) − fα1(∇(α2

2)) + ∇α1 × ∇α2 − M−1a)

+ 2α1
∂α1

∂t
+ 2α2

∂α2

∂t

V̇ = −2α1∇αT1 (−fα2(∇(α2
1))) − 2α1∇αT1 (fα1(∇(α2

2))) − 2α2∇αT2 (fα2(∇(α2
1)))

− 2α2∇αT2 (fα1(∇(α2
2))) + 2α1

∂α1

∂t
+ 2α2

∂α2

∂t
− (2α1∇αT1 + 2α2∇αT2 )(M−1a)

V̇ = −2α1∇αT1 (−fα2(∇(α2
1))) − 2α1∇αT1 (fα1(∇(α2

2))) − 2α2∇αT2 (fα2(∇(α2
1)))

− 2α2∇αT2 (fα1(∇(α2
2))) + 2[α1 α2 0] ·


∂α1
∂t

∂α2
∂t

0

 − 2[α1 α2 0] ·


∇αT1
∇αT2

(∇α1 × ∇α2)T

M−1


∂α1
∂t

∂α2
∂t

0


V̇ = −4α1∇αT1 fα2(α1∇α1) − 4α1∇αT1 fα1(α2∇α2) − 4α2∇αT2 fα2(α1∇α1) − 4α2∇αT2 fα1(α2∇α2)

V̇ ≤ 0.

From the definition of fαk(q), the projections α1∇αT1 fα1(α2∇α2) and α2∇αT2 fα2(α1∇α1)
are non-negative, and null whenever [∇(α2

1)]
T ∇(α2

2) ≤ 0. As described in Lemma 3.1,
∇α1 and ∇α2 are linearly independent. Therefore, the projections α1∇αT1 fα2(α1∇α1) and
α2∇αT2 fα1(α2∇α2) are non-negative, and null if and only if α1 = 0 or α2 = 0, respectively,
which yields V̇ ≤ 0.

Note that V̇ = 0 if and only if α1 = 0 and α2 = 0, i.e. if the robot is over the curve,
assuming that singular points are not reached. As V̇ ≤ 0, α1 and α2 are bounded, that is
|α1| ≤ C1 and |α2| ≤ C2. The second time derivative V̈ is composed of the terms α1, ∇α1,
α̇1, ˙∇α1, α2, ∇α2, α̇2, ˙∇α2, which are bounded, since the second partial derivatives are
continuous and the domain is bounded. Therefore, V̇ is uniformly continuous in time. As
V is lower bounded, V̇ is negative semi-definite and uniformly continuous in time, then
from the Barbalat’s "Lyapunov-like Lemma" (Slotine et al., 1991) V̇ → 0 as t → ∞, and
therefore α1 → 0 and α2 → 0.

As ∇α1 × ∇α2 is tangent to the curve without change in its orientation, circulation is
also ensured.

3.3 Low-Level Control Strategy

In this work, we consider a team of quadrotor UAVs to accomplish the task of convergence
and circulation of a given curve. These vehicles have no first-order non-holonomic con-
straints, which allows better maneuverability in comparison with non-holonomic systems,
such as fixed-wing UAVs and differential robots. These UAVs have also the ability to
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hover, which is essential to follow the high-level control strategy proposed in this chapter.
To enforce the vector field to each quadrotor, consider the vector produced by the control
law presented in Equation (3.5). As in (Pimenta et al., 2013), the high-level control vector
is used to generate a reference trajectory for each quadrotor. The output signal generated
by the vector field is used to produce a reference for the low-level controller, which is
obtained by computing

ξr(t) = ξ(t0) + uδt,

ξ̇r = u, ξ̈r =
...
ξ r = 03,1,

ψr = ψ̇r = ψ̈r = 0, (3.14)

in which ξr(t) = [xr(t) yr(t) zr(t)]T is the reference position, ψr is the reference yaw angle, u
is the high-level control signal, δt = t− t0, and t0 is the initial time instant. As the control
laws are implemented in a discrete manner, we consider that the low-level controller runs
much faster than the high-level one and that the vector field is constant between the
high-level controller updates, that is, ξ̈r =

...
ξ r = 03,1. In addition, as the velocity of the

UAV is bounded, the control signal from the vector field is saturated as

ui =


ui, if ||ui|| ≤ vmax,

vmax
ui

∥ui∥ , otherwise,
(3.15)

in which vmax is the maximum linear velocity of a vehicle.
For a quadrotor to follow the trajectory references described in Equation (3.14), a

robust integral backstepping controller is designed. The controller is based on the integral
backstepping approach proposed by Salierno & Raffo (2017), which is a controller capable
of tracking time-varying trajectories of position and yaw angle considering the whole-body
dynamics, that is, without decoupling between translation and rotation dynamics. This is
achieved by using rotation matrices to represent the body rotations in the controller.

The conception of the controller by the backstepping technique allows to constructively
design the control law. As shown by Salierno & Raffo (2017), an integral backstepping
controller may be designed to control the states x, y, z and ψ (position and yaw angle) of
a quadrotor by using four control inputs (T , τϕ, τθ, and τψ). The insertion of the integral
step brings robustness to the system in front of modeling errors and constant external
disturbances.

In this work, besides considering constant disturbances, unknown but bounded distur-
bances are also taken into account. To deal with this, a control law based on Lyapunov
redesign is added to the backstepping process. The goal of the additional control law is to
compensate for the unknown but bounded disturbances and to ensure system stability.

In summary, the design of the backstepping controller in this work follows the same
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steps presented in (Salierno & Raffo, 2017), but this time applying an additional control
law. The steps are presented as follows:

• First Step

One of the control objectives is to follow position references. To that end, the translation
error is defined as

E1 = ξ(t) − ξr(t). (3.16)

To drive the translation error to zero, it is necessary to analyse its dynamics, given by

Ė1 = ξ̇(t) − ξ̇r(t). (3.17)

Hereafter the temporal dependence will be suppressed.
To stabilize (3.17), the backstepping procedure can be applied. For this purpose, one

can choose ξ̇ as virtual control input for the system, i.e., ϕ1(ξ) = (ξ̇)d, where the subscript
d means desired. Therefore, the dynamics (3.17) can be regarded as

Ė1 = ϕ1(ξ) − ξ̇r. (3.18)

After that, the following control Lyapunov function is proposed

V1(ξ) = 1
2ET

1 E1, (3.19)

which time derivative yields

V̇1(ξ) = ET

1

(
ξ̇ − ξ̇r

)
= ET

1

(
ϕ1(ξ) − ξ̇r

)
. (3.20)

If the virtual control law ϕ1(ξ) is chosen as

ϕ1(ξ) = ξ̇r − k1E1, (3.21)

in which k1 is a constant positive definite diagonal matrix (k1 > 0), substituting (3.21) in
(3.20) yields to

V̇1 = ET

1 (−k1E1) = −ET

1 k1E1 < 0, (3.22)

which is negative definite. As in the standard backstepping procedure, a system equivalent
to (3.17) can be obtained summing and subtracting (3.21), as follows

Ė1 = −ξ̇r + ϕ1(ξ) +
[
ξ̇ − ϕ1(ξ)

]
= −k1E1 +

[
ξ̇ − ϕ1(ξ)

]
. (3.23)
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In (3.23), the difference between ξ̇ and ϕ1(ξ) is highlighted. This difference must be
zero to stabilize (3.17). Therefore, the new state vector z1 =

[
ξ̇ − ϕ1(ξ)

]
is included into

the system and its dynamics derived from (3.21) and (3.23), as follows

Ė1 = −k1E1 + z1,

ż1 = v̇I − ξ̈r + k1 (−k1E1 + z1) , (3.24)

in which the acceleration vector v̇I comes from the aircraft model.

• Second step

To stabilize z1 in the origin, the error between the real and desired velocities ξ̇ − ϕ1(ξ) is
evaluated. In this step, the integral action Xξ =

´ t
0 z1(τ)dτ is included in the system. This

action guarantees the convergence to time-varying references, besides guaranteeing the
rejection of constant disturbances (Skjetne & Fossen, 2004; Raffo et al., 2015).

By substituting the equations that describe the UAV dynamics (2.1) and by inserting
the integral term, system (3.24) is rewritten as

Ė1 = −k1E1 + z1,

Ẋξ = z1,

ż1 = −ge3 + 1
m
Re3T + b

m
− ξ̈r + k1 (−k1E1 + z1) . (3.25)

In this step, the term (Re3T )d = ϕ2(R, T ) can be chosen as virtual control input. To find
ϕ2(R, T ), consider the following control Lyapunov function

V2 (E1, z1,Xξ) = V1 + 1
2z

T
1 z1 + 1

2X T
ξ kXξXξ, (3.26)

in which kXξ is a positive definite diagonal matrix (kXξ > 0). The time derivative
V̇2 (E1, z1,Xξ) is given by

V̇2 = ET

1 (−k1E1 + z1) + zT1

(
−ge3 + 1

m
ϕ2 + b

m
− ξ̈r + k1 (−k1E1 + z1)

)
+ X T

ξ kXξz1. (3.27)

Therefore, the virtual control law ϕ2(R, T ) is chosen as

ϕ2(R, T ) = m
(
ge3 + ξ̈r − k1 (−k1E1 + z1) − E1 − k2z1 − kχξXξ

)
+ γ, (3.28)

with k2 = kT2 > 0, kχξ = kTχξ > 0, and γ := γ(z1) being an additional control law to robustify
the system in front of unknown but bounded disturbances. The choice of such additional
control law will be discussed later in this chapter.
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Substituting (3.28) in (3.27) yields to

V̇2 = −ET

1 k1E1 − zT1 k2z1 + zT1

(
b

m
+ γ

m

)
. (3.29)

Thus, by choosing an appropriate γ(z1) function the system can be stabilized (Levine,
2010). Remember that as shown in (Salierno, 2018), the states E1 and z1 converge to zero
if there are no time-varying unknown disturbances, while Xξ converges to a value (Skjetne
& Fossen, 2004; Loria et al., 2002).

By summing and subtracting 1
m
ϕ2 from (3.25), one can obtain

Ė1= −k1E1 + z1,

Ẋξ= z1,

ż1= −E1 − k2z1 − kXξXξ + b

m
+ γ

m
+ 1
m

[Re3T − ϕ2] , (3.30)

in which the change of variables z2 = [Re3T − ϕ2] is made.

• Third step

In this step, it is desired to stabilize z2 in zero, that is, to drive the difference between
Re3T and ϕ2 = (Re3T )d to zero. By computing ż2, one can obtain

ż2 = d
Re3T

dt
− d

ϕ2

dt
= Re3Ṫ + RS(ω)e3T −m

...
ξ r +mk1Ë1 +mĖ1 +mk2ż1 +mkXξz1 − γ̇. (3.31)

After that, the term (Re3Ṫ +RS(ω)e3T )d = ϕ3(R, T, Ṫ ,ω) is chosen as virtual control input.
The following control Lyapunov function is proposed

V3 (E1, z1,Xξ, z2) = V2 + 1
2z

T
2 z2, (3.32)

which time derivative yields

V̇3 = E1 (−k1E1 + z1) + zT1

(
−E1 − k2z1 − kχξXξ + b

m
+ γ

m
+ 1
m
z2

)
+ X T

ξ kXξz1

+zT2

(
ϕ3 −m

...
ξ r +mk1Ë1 +m (−k1E1 + z1) +mk2ż1 +mkxξz1 − γ̇

)
. (3.33)

Thus, the virtual control law can be chosen as

ϕ3 = m
...
ξ r −mk1Ë1 −m (−k1E1 + z1) −mk2ż1 −mkXξz1 − 1

m
z1 − k3z2 + γ̇, (3.34)

with k3 = kT3 > 0. By substituting (3.34) in (3.33) one can obtain

V̇3 = −ET

1 k1E1 − zT1 k2z1 − zT2 k3z2 + zT1

(
b

m
+ γ

m

)
, (3.35)
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which is negative definite if an appropriate additional control law γ(z1) is applied.
Thereafter, summing and subtracting (3.34) from (3.31) yields to

ż2 = − 1
m
z1 − k3z2 +

[
Re3Ṫ + RS(ω)e3T − ϕ3

]
, (3.36)

in which one can change the variable z3 = [Re3Ṫ + RS(ω)e3T − ϕ3], as in the previous
steps.

• Fourth step

The difference (Re3Ṫ + RS(w)e3T − ϕ3) must converge to zero for the convergence of z2.
The dynamics of z3 are given by

ż3 = d
Re3Ṫ + RS(ω)e3T

dt
− d

ϕ3

dt
= Re3T̈ − RS (e3) ω̇T + RS(ω)S(ω)e3T + 2RS(ω)e3Ṫ −m

....
ξ r +mk1

...
E 1 +mË1

+mk2z̈1 +mkXξż1 + 1
m
ż1 + k3ż2 − γ̈. (3.37)

In this case, the term
(
Re3T̈ − RS (e3) ω̇T

)
from Equation (3.37) can be simplified by

substituting ω̇ = [ṗ q̇ ṙ]T and by applying the properties of the skew-symmetric matrices
(Spong et al., 2006), which leads to

Re3T̈ − RS (e3) ω̇T = R


0 T 0

−T 0 0
0 0 1



ṗ

q̇

T̈

 . (3.38)

Substituting (3.38) in (3.37) yields to

ż3= R


0 T 0

−T 0 0
0 0 1

 ·


ṗ

q̇

T̈

 + 2RS(ω)e3Ṫ + RS(ω)S(ω)e3T −m
....
ξ r +mk1

...
E 1 +mË1

+mk2z̈1 +mkXξż1 + 1
m
ż1 + k3ż2 − γ̈. (3.39)

From Equation (3.39), one can choose ϕ4 = ([ṗ q̇ T̈ ]T )d as virtual control input.
Consider the control Lyapunov function

V4(E1, z1,Xξ, z2, z3) = V3 + 1
2z

T
3 z3, (3.40)
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which time derivative is given by

V̇4= E1 (−k1E1 + z1) + zT1

(
−E1 − k2z1 − kXξ

Xξ + b

m
+ γ

m
+ 1
m
z2

)
+ X T

ξ kXξz1 + zT2

(
− 1
m
z1

−k3z2 + z3) + zT3

R


0 T 0

−T 0 0
0 0 1



ṗ

q̇

T̈

 + 2RS(ω)e3Ṫ + RS(ω)S(ω)e3T −m
....
ξ r +mk1

...
E 1

+mË1 +mk2z̈1 +mkXξż1 + 1
m
ż1 + k3ż2 − γ̈

)
. (3.41)

In order to cancel the undesired terms, the virtual control input ϕ4 is chosen as

ϕ4=


0 − 1

T
0

1
T

0 0
0 0 1

RT
(
−2RS(ω)e3Ṫ − RS(ω)S(ω)e3T +m

....
ξ r −mk1

...
E 1 −mË1

−mk2z̈1 −mkXξ
ż1 − 1

m
ż1 − k3ż2 − z2 − k4z3 + γ̈). (3.42)

By substituting (3.42) in (3.41), the time derivative of the control Lyapunov function
results in

V̇4 = −ET

1 k1E1 − zT1 k2z1 − zT2 k3z2 − zT3 k4z3 + zT1

(
b

m
+ γ

m

)
. (3.43)

Note that ϕ4 is composed of elements that can be transformed in inputs of the real
system. By substituting the control law ϕ4 in Equation (3.39), it is possible to simplify
the dynamics of z3 in the form of

ż3 = −z2 − k4z3. (3.44)

• Fifth step

To follow the yaw angle reference ψr, consider the difference between real yaw angle
and its reference, given by

Eψ = ψ − ψr, (3.45)

which time derivative leads to
Ėψ = ψ̇ − ψ̇r. (3.46)

By choosing (ψ̇)d = ϕ5 (Eψ) as virtual control input, it is possible to design ϕ5 from the
control Lyapunov function

V5 (Eψ) = 1
2ETψ Eψ. (3.47)

By differentiating V5 (Eψ), it is easy to find that

V̇5 = ETψ
(
ϕ5 − ψ̇r

)
. (3.48)
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Subsequently, to guarantee the asymptotic convergence of Eψ to zero, the virtual control
input ϕ5 is chosen as

ϕ5 (Eψ) = ψ̇r − k5Eψ, (3.49)

with k5 > 0. Note that in this case the constant gain k5 has unitary dimension.
Substituting the virtual control input (3.49) in (3.48) yields to

V̇5 = ETψ (−k5Eψ) = −ETψ k5Eψ < 0, (3.50)

which is negative definite. By summing and subtracting the virtual control law ϕ5 in the
yaw error dynamics Ėψ, it follows that

Ėψ = −ψ̇r + ϕ5 +
[
ψ̇ − ϕ5

]
, (3.51)

in which the change of variables z4 = [ψ̇ − ϕ5] is applied.

• Sixth step

In this step the objective is to stabilize the error related to the derivative of the yaw angle
error. An integral term in the form of Xψ =

´ t
0 z4(τ)dτ is also added in order to ensure

tracking of time-varying trajectories and constant disturbance rejection. Like this, the
system can be written as

Ėψ = −k5Eψ + z4

Ẋψ = z4

ż4 = ψ̈ − ψ̈r + k5Ėψ, (3.52)

in which (ψ̈)d = ϕ6 is a control input.
Consider the following control Lyapunov function

V6 (Eψ,Xψ, z4) = V5 + 1
2z

T
4 z4 + 1

2X T
ψ kXψXψ, (3.53)

which time derivative results in

V̇6 = ETψ (−k5Eψ + z4) + zT4

(
ϕ6 − ψ̈r + k5(−k5Eψ + z4)

)
+ X T

ψ kχψz4, (3.54)

where kXψ > 0. By designing ϕ6 from the time derivative of the Lyapunov candidate
function (3.54), one can obtain

ϕ6 = ψ̈r − k5(−k5Eψ + z4) − k6z4 − Eψ − kXψXψ, (3.55)
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in which k6 > 0. The substitution of (3.55) in (3.54) yields

V̇6 = −ETψ k5Eψ − zT4 k6z4 ≤ 0. (3.56)

As shown by Salierno (2018), the origin (Eψ, z4) = (0, 0) is uniformly globally asymptotically
stable, while Xψ remains with a residual value.

To obtain the quadrotor closed-loop dynamics it is necessary to map the desired yaw
angle acceleration ϕ6 = (ψ̈)d to angular acceleration ṙd. As shown in (Salierno & Raffo,
2017), assuming that the roll and pitch angles are always in the interval (−π/2, π/2), one
can obtain

ψ̈ = −[0 0 1]W −1
η ẆηW

−1
η ω + q̇

sin(ϕ)
cos(θ) + ṙ

cos(ϕ)
cos(θ) , (3.57)

in which Wη is the Euler matrix.
Assuming ψ̈ = (ψ̈)d and substituting ϕ6, it follows that

ṙd=
cos(θ)
cos(ϕ)

(
ψ̈r − k5(−k5Eψ + z4) − k6z4 − Eψ − kXψXψ + [0 0 1]W −1

η ẆηW
−1
η ω −q̇d

sin(ϕ)
cos(θ)

)
.

(3.58)

Finally, the closed-loop system dynamics is described by the following set of equations

Ė1 = −k1E1 + z1

Ẋξ = z1

ż1 = −E1 − k2z1 − kXξXz1 + 1
m
z2 + b

m
+ γ

m

ż2 = − 1
m
z1 − k3z2 + z3

ż3 = R


0 T 0

−T 0 0
0 0 1



ṗ

q̇

T̈


d

+ 2RS(ω)e3Ṫ + RS(ω)S(ω)e3T −m
....
ξ r +mk1

...
E 1 +mË1

+mk2z̈1 +mkXξż1 + 1
m
ż1 + k3ż2 − γ̈

Ėψ = −k5Eψ + z4

Ẋψ = z4

ż4 = −[0 0 1]W −1
η WηW

−1
η ω + q̇

sin(ϕ)
cos(θ) + ṙd

cos(ϕ)
cos(θ) − ψ̈r + k5Ėψ (3.59)

Remark 3.2. In this work, all the states are available and can be measured or estimated.
In addition, in a practical implementation, the linear and angular positions, velocities and
accelerations are measurable variables, with appropriate sensors, and the jerk

...
ξ can be

estimated based on the model and on the measures above.

From the desired control laws, the input signals to be applied to the system are obtained
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by computing

τa = Iω̇d + ω × Iω, (3.60)

T =
ˆ (ˆ

T̈ddt

)
dt, (3.61)

in which ω = [p q r]T is measured. The desired inputs for (3.60) and (3.61) are computed
with (3.42) and (3.58), which give [ṗd q̇d T̈d]T and ṙd, respectively.

To analyze the closed-loop system stability, the sum of all the control Lyapunov
functions chosen during the backstepping process is considered:

V = 1
2ET

1 E1 + 1
2z

T
1 z1 + 1

2X T
ξ kXξ

Xξ + 1
2z

T
2 z2 + 1

2z
T
3 z3 + 1

2ETψ Eψ + 1
2z

T
4 z4 + 1

2XψkXψXψ. (3.62)

By differentiating V and applying the designed control laws, it follows that

V̇ = −ET

1 k1E1 − zT1 k2z1 − zT2 k3z2 − zT3 k4z3 − k5ETψ Eψ − k6z
T
4 z4 + zT1

(
b

m
+ γ

m

)
. (3.63)

As ki > 0 for i = 1, · · · , 6, the following inequality must be ensured to stabilize the system

zT1

(
b

m
+ γ

m

)
≤ 0. (3.64)

Consider that the disturbance b is bounded with known bounds |bi| ≤ ϖ, for i = 1, 2, 3.
The largest value of zT1 b occurs when zT1 and b have the same signal and b has maximum
magnitude ϖ in all its elements. Hence, applying the Lyapunov redesign technique, the
additional control law is used to reject the term zT1 b in the worst case, given by

γ(z1) = −ζ · sgn(z1), (3.65)

in which sgn(·) is the element-wise signal function, and ζ is a constant such that ζ ≥ ϖ.
In spite of rendering the inequality (3.64) true for all value of z1, the additional control

law (3.65) is not continuous and can generate chattering behavior (Khalil, 2002). In
addition, its derivatives are not continuous, what brings impossible the computation of
the virtual control laws that depend on the time derivatives of γ(z1). Therefore, it makes
sense to choose the following continuous approximation of the signal function

γ(z1) = −ζ · tanh(ςz1), (3.66)

in which ς is a positive constant that allows to adjust the slope of the hyperbolic tangent
function, and tanh(·) is the element-wise hyperbolic tangent function. Note that the higher
the value of ς, the closer the function gets to the signal function.

As the hyperbolic tangent function is bounded between 1 and -1, it is strictly necessary
to consider ζ > ϖ to reject all the disturbances, once that the maximum and the minimum
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(a) Signal versus hyperbolic tangent function. (b) Plot of M(z1,i).

Figure 3.4: Lyapunov redesign: hyperbolic tangent additional law.

occurs only when the argument tends to +∞ or −∞, respectively. This way, ζ must be
chosen to cancel the maximum magnitude of the disturbance by considering the magnitude
of ςz1 finite. Figure 3.4a shows a comparison between the signal function and the proposed
hyperbolic tangent function, in which the points where the functions are coincident are
highlighted. In the same figure, we consider that ζsgn = ϖ and ζtanh > ϖ. By substituting
(3.66) in (3.63), one can find that, in the worst case,

V̇ ≤ zT1

(
b

m
+ γ

m

)
= zT1

(
b

m
− ζ · tanh(ςz1)

m

)
≤ 1
m

3∑
j=1

(|z1,j|ϖ − z1,jζ tanh(ςz1,j)) , (3.67)

in which z1,j is the j-th element of the z1 vector. The behavior of M(z1,j) = |z1,j|ϖ −
z1,jζ tanh(ςz1,j) is depicted on the Figure 3.4b, where the points in which M(z1,j) = 0 for
z1,j ̸= 0 are highlighted. One can compute the maximum value of M(z1,j) by doing

∂M(z∗
1,j)

∂z1,j
= 0, (3.68)

and by considering z1,i > 0, one can find that

e2ςz∗
1,j (ϖ − ζ) + e−2ςz∗

1,j (ϖ + ζ) + 2ϖ − 4ζςz∗
1,j = 0, (3.69)

where the solution z∗
1,j leads to the maximum value M(z∗

1,j) (Farrell & Polycarpou, 2006).
Due to the smoothing in the central range of the γ(z1) function, the effect of the

disturbance is not always completely compensated. Therefore, the additional control law
establishes an attraction region, which is regulated by the choice of ς. Consequently,
the system will be ultimately uniformly bounded, since for large values of z1 the system
converges asymptotically to a region around the origin in which the system remains
bounded. Indeed, the system converges asymptotically to the origin when the inequality
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(3.64) is true and stays bounded in an attraction region, regulated by the slope of the
hyperbolic tangent function.

Chapter 5 presents numerical simulations that compare the performance of the ro-
bustified control law with the former one (Salierno & Raffo, 2017). Besides, simulation
results also attest the functioning of the cascaded control system. Simulation videos of the
cascaded strategy can be watched in https://youtu.be/kvshsF-cojY.

3.4 Summary

This chapter presented a strategy capable of guiding a set of aerial robots to a time-varying
curve in the 3-D space, in which the robots converge and circumnavigate to it. In this
same strategy, a scheme based on modulation functions is applied over the components of
the vector field to accomplish collision avoidance among robots.

Also, the backstepping control with integral action for a quadrotor vehicle was extended
by considering unknown but bounded disturbances, by the addition of a robustifying control
law.

https://youtu.be/kvshsF-cojY


CHAPTER 4. DMPC BASED ON VECTOR FIELD NAVIGATION 63

4
DMPC Based on Vector Field Navigation

This chapter proposes a distributed model predictive control (DMPC) framework for
systems with predefined control laws with parameters to be tuned. Once formalized the
optimization problem to solve a specific task with a multi-robot system, the problem
is distributed considering the communication range of each robot and solved by the
alternating direction method of multipliers (ADMM). The task considered in this work is
the one of circulation and convergence to a curve in the 2-D space taking into account
inter-robot collision avoidance.

4.1 Problem Statement

As in Chapter 3, consider a set Ω that contains N robots ωi, in which i = 1, ..., N . The
state vector of each robot is defined as xi(t). At first, its dynamical model is given by

ẋi = fi(xi,ui), (4.1)

in which ui is the control signal. Then, consider the control law for each robot predefined
as follows

ui = κi(xi,θi), (4.2)

where θi is a set of parameters of the control law.
Each robot ωi has a communication range Ri and position ξi = [xi yi]T . As in Chapter
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3, the set of agents within the perceived sphere of ωi is given by

Θi ≜ {j ∈ {1, ..., N}| {Dij ≤ Ri} , j ̸= i} ,

with Dij ≜ ∥ξi − ξj∥2, that is, the Euclidean distance between robots ωi and ωj. Conse-
quently, if ωi is in the perception range of ωj, ωj is in the perception range of ωi:

i ∈ Θj ⇔ j ∈ Θi. (4.3)

The first goal of this chapter is given as following:

Problem statement 4.1. Given a set of robots Ω, with dynamics (4.1) and control law
(4.2), design a distributed optimal control framework capable of adapting the parameterized
controllers to solve multi-robot coordination tasks.

The second goal is to apply the framework in a task similar to the one in Chapter 3.
In this case, a group of robots navigating in a plane must converge and circulate a curve
implicitly defined by the function α(x, y) = 0. Further assumptions on the choice of α(x, y)
are made in Section 4.4. Besides, it is assumed that the robots are described either by
single integrators, that is

ξ̇i = ui, (4.4)

in which the states are x = ξ, or double integrators

ξ̈i = ui, (4.5)

in which the states are x = [ξT ξ̇T ]T . Note that if the control system of a robot expects
acceleration references, the double integrator must be considered. On the other hand, if
the control system of a robot expects velocity references, the single integrator is used. The
problem to be solved might be stated as following.

Problem statement 4.2. Given a set of robots ωi ∈ Ω for i = 1, ..., N with dynamics
(4.4) or (4.5) and communication range Ri, design a control strategy capable of providing
convergence and circulation of a curve α(x, y) = 0 while avoiding collisions among robots.

One can note that differently from Chapter 3, the curve to which the group of robots
must converge and circulate is not time-varying and is embedded in the 2-D space. This
simplification is considered in order to simplify the solution of the formulated optimization
problem. We stress that the proposed strategy can be directly extended to time-varying
curves in the 3-D space, which would be an interesting future work.
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4.2 The Optimal Control Problem

In order to solve the first problem described in Section 4.1, a parameterized MPC scheme
distributed by the ADMM is proposed. The MPC strategy consists basically in computing
the optimal control sequence that minimizes a cost functional in a prediction horizon
∆, then applying the first control signal and restarting the cycle (Rawlings & Mayne,
2009). In parameterized MPC (Droge & Egerstedt, 2013), parameterized control laws are
embedded in the optimal control problem such that the parameters are decision variables,
constant in a given time horizon.

By implementing parameterized control laws, the number of decision variables in the
optimal control problem is reduced from a control sequence to a small set of parameters.
Besides that, since the problem is solved with a lesser degree of freedom, less ability to
minimize the cost is expected. Regarding distributed multi-robot systems, the parameter-
ized predictive control strategy is convenient, since it allows the computation of agents’
trajectories by their neighboring agents with limited amount of data: the initial state, the
control law parameters, and the dynamics of the agents. In this case, it is not necessary
to compute and communicate the entire control sequence (Droge & Egerstedt, 2013).

With regard to the problem previously stated, an optimal control problem is set.
Considering the entire set Ω, the global optimization problem is given by

min
x̄,θ̄

ˆ tf

t0

Lg(x̄, θ̄)dt

subject to
˙̄x = f̄(x̄, κ̄(x̄, θ̄)),

xi(t0) = xi,t0 ,

θi ∈ P, ∀i ∈ {1, ..., N},

(4.6)

in which x̄ = [xT1 , . . . , xTN ]T is the generalized state vector containing all agents states,
θ̄ = [θT1 , . . . , θTN ]T is the generalized parameters vector, κ̄ is the generalized control law,
xi,t0 is the i-th robot initial state, and θi ∈ P is a constraint in each parameter vector,
where P is a set that must be defined according to the specific task to be solved. The term
Lg(x̄, θ̄) refers to the global stage cost, that must be designed regarding the accomplishment
of the desired task. In the task considered in this chapter, the cost must drive the solution
of the optimization problem to obtain convergence and circulation of a target curve, and
collision avoidance among the agents. Concerning predictive control, the final time is set
to be tf = t0 + ∆, in which ∆ is the continuous time prediction horizon.

To solve the optimization problem (4.6) in a distributed manner, the global cost must
be split among agents. Considering in this split of (4.6) the communication ranges, one
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can obtain
min

x̄,θ̄

N∑
i=1

ˆ tf

t0

Li(x̄i, θ̄i)dt

subject to
˙̄xi = f̄i(x̄i, κ̄i(x̄i, θ̄i)), ∀i ∈ {1, ..., N},

θ̄ij = θ̄jj, ∀j ∈ Θi,

x̄ij(t0) = x̄jj,t0 ,

θ̄ij ∈ P, ∀j ∈ Θi ∪ {i},

(4.7)

in which the generalized vectors x̄i and θ̄i contain the positions and parameters of the
agents j such that j ∈ Θi ∪ {i} as computed by the i-th agent. Furthermore, θ̄ij is the
parameter vector of the j-th agent as computed by the i-th agent. Remember that the
i-th agent computes its own parameter and trajectory and the parameters and trajectories
of the agents in the perception set Θi.

To split the global cost considering the communication range, the global cost, and,
consequently, the individual costs must be varying. At each MPC cycle, the sets of agents
inside the communication range Θi ∀i may change. Indeed, if the i-th agent does not
communicate with an agent j, there must be no coupling between these agents in the
optimal control problem.

Section 4.3 describes the distributed optimization scheme used to solve the optimal
control problem (4.7). Section 4.4 provides a set of vector field based control laws that are
used in the framework to accomplish the task of convergence and circulation of a curve.

4.3 ADMM-based parameterized DMPC

In this work, an agent can only communicate with agents in a certain range. Therefore,
there is no global consensus of variables, instead a set of local consensus problems in which
the i-th agent is the fusion center of the θi variable is executed. This problem is named as
general consensus (Boyd et al., 2011), and the solution is similar to the one of the global
consensus. As the decision variables of the i-th agent are determined by the agent network
defined by the communication range, each local consensus problem is equivalent to a global
one, considering only the shared decision variables and the agents in the communication
range. Figure 4.1 illustrates the optimization scheme with a four agents example, in which
the agents and their communication ranges are drawn. Agent ω1 connects only with ω2;
therefore, only ω1 and ω2 influence the choice of θ̄11. As ω2 connects to ω1 and ω3, the three
agents negotiate to achieve consensus on θ̄22 value. Similarly, as ω4 does not connect to
any agent, there is no influence of other agents.
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Figure 4.1: Communication range example and local optimization problems.

As shown in Section 4.2, the optimal control problem is given by

min
x̄,θ̄

N∑
i=1

ˆ tf

t0

Li(x̄i(t), θ̄i)dt

subject to
˙̄xi = f̄i(x̄i, κ̄i(x̄i, θ̄i)), ∀i ∈ {1, ..., N},

θ̄ij = θ̄jj, ∀j ∈ Θi,

x̄ij(t0) = x̄jj,t0 ,

θ̄ij ∈ P, ∀j ∈ Θi ∪ {i},

, (4.8)

where the generalized vectors x̄i and θ̄i are formed accordingly to Θi. Remember that
the generalized vectors x̄i are formed by stacking the states x̄ij such that j ∈ Θi ∪ {i}, in
which x̄ij is the state vector of the j-th agent as computed by the i-th agent. Likewise,
the θ̄i vectors are constructed by stacking the parameters θ̄ij such that j ∈ Θi ∪ {i}. Note
that the global problem (4.8) can be split by the ADMM technique already described in
Chapter 2.

The costs Li(x̄i(t), θ̄i) are augmented as in the ADMM distributed optimization, yielding

Lρ,i(x̄i(t), θ̄i, ȳi, z̄i) =
ˆ tf

t0

Li(x̄i(t), θ̄i)dt+
∑

j∈Θi∪{i}

(
ȳTij(θ̄ij − z̄ij) + ρ

2
∥∥∥θ̄ij − z̄ij

∥∥∥2

2

)
, (4.9)

in which z̄i is the generalized vector that contains z̄ij = zj ∀j ∈ Θi∪{i}, ȳi is the generalized
vector that contains the Lagrange multipliers ȳij, ∀j ∈ Θi ∪ {i} as computed by the i-th
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agent, and ρ is the ADMM penalty parameter.
Algorithm 4.1 aims to compute the control laws’ parameters. In that algorithm, an

external loop is responsible for incrementing the MPC horizon, while an internal loop is
responsible for finding the optimal problem solution in a distributed manner. One can
note that in the internal loop the sets of agents in range Θi are taken into account. In
addition, a constraint on the parameters values is also applied, which will be discussed
in the next sections. As in (Van Parys & Pipeleers, 2017) and (Ferranti et al., 2018),
the number of ADMM iterations per MPC cycle nite is limited by nmax, aiming to reduce
the communication exchange and the computational burden. In addition, after the first
ADMM iteration in each MPC cycle the optimization problems are warm started, i.e., the
problems are initialized with the previous computed solutions. With this approach, we
start the optimization problem from a solution that we expect to be near to the current
optimization problem solution, which makes the optimization process faster. Furthermore,
one can note that the ADMM requires synchronization among the agents, since each of
the three steps occurs in parallel and must be complete before the next step. Therefore,
the ADMM iterations are subject to the "straggler" problem, in which the update velocity
depends on the processing time of the slowest worker (Zhang & Kwok, 2014). Besides,
during each MPC cycle, we assume that the communication network is maintained.

Convergence of the ADMM regarding convex problems is a well established result
(Boyd et al., 2011). Besides that, a number of nonconvex problems have been successfully
approached by ADMM, and recently its convergence has been shown for consensus and
sharing problems (Hong et al., 2016) and for more general problems (Wang et al., 2019).

4.4 Vector Field Navigation

The strategy used to guide multiple robots to converge and circulate a curve is based on
those presented by Gonçalves et al. (2010a) and Gonçalves et al. (2010b), with some slight
modifications. At first, consider that the i-th robot is described by the single integrator

ξ̇i = ui, (4.10)

in which ξi ∈ R2 is the position. Note that we use x to represent general state vectors and
ξ to represent positions.

In this chapter, consider simple planar curves that can be implicitly described by a
function α(x, y) : R2 → R as the constraint α(x, y) = 0, in which x and y are coordinates
in a Cartesian system ξ ∈ R2 such that ξ = [x y]T . To produce the desired behavior, the
function α(x, y) must be positive when evaluated outside of the desired curve, and negative
inside. Furthermore, consider the constants C1 and C2 such that C1 > C2. The contour
lines α = C1 and α = C2 must be closed and the contour line α = C2 must be inside the
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Algorithm 4.1 Distributed Parameterized Model Predictive Control
1: repeat
2: t := t+ dt;
3: t0 := t;
4: tf := t0 + ∆;
5: nite := 0;
6: ȳki = 0, ∀i;
7: z̄ki = 0, ∀i;
8: Each agent communicates θ̄ii and xii(t0) to the agents in range.
9: repeat

10: In parallel, each agent solves an optimization problem
θ̄k+1
i = arg min

θ̄i

Lρ,i(x̄i(t), θ̄i, ȳki , z̄ki )

subject to
˙̄xi(t) = f̄i(x̄i, κ̄i(x̄i(t), θ̄i))
x̄ij(t0) = x̄jj,t0 ,

θ̄ij ∈ P, ∀j ∈ Θi ∪ {i}.
11: Each agent communicates θ̄ii, θ̄ij and ȳij.
12: In parallel, the i-th agent computes zk+1

i

zk+1
i := 1

|Θi|+1

∑
j∈Θi∪{i}

(
θ̄k+1
ji + (1/ρ)ȳkji

)
.

13: Each i-th agent transmits the zk+1
i value.

14: In parallel, each agent computes the Lagrange multipliers
ȳk+1
i := ȳki + ρ

(
θ̄k+1
i − z̄k+1

i

)
.

15: nite = nite + 1
16: until nite == nmax
17: Apply the first control signal computed.
18: until reaches the final time

Figure 4.2: Vector field navigation example.

contour line α = C1. Figure 4.2 shows an example with 4 robots, in which the solid curve
is the target and α(xi, yi) = αi .

The task of convergence and circulation can be solved separately. After that, the
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solutions are joined, generating a vector field in the form of

v(x, y) = N(x, y) + T (x, y), (4.11)

in which N (x, y) is a field component normal to the contour curve at (x, y), and T (x, y) is
a field component tangent to the same contour curve. The first term is responsible for
providing convergence to the aimed curve, while the second is responsible for driving the
circulation of the curve. In Figure 4.2 one can note the direction of the described fields for
four robots in different positions.

To achieve convergence, one can observe the contour lines. In a given position [x y]T ,
the agent is in the contour line α(x, y) = C1. To guide the agent to the desired curve
(α(x, y) = 0), one can consider a velocity component in the direction of the gradient ∇α(x, y).
Therefore, if an agent is inside the curve, that is α(x, y) < 0, the gradient points in the
direction of the desired curve. On the other hand, if the agent is outside the curve, that
is, α(x, y) > 0, the gradient points in the opposite sense. Moreover, if the agent is on the
curve, the convergence component must be zero. To obtain the desired behavior from
N (x, y), a function that describes the change in the velocity sense must be designed. Thus,
the convergence term can be obtained by computing

N (x, y) = ϑ (x, y) ∇α (x, y) , (4.12)

where the function ϑ(x, y) is multiplied to produce the desired behavior of N(x, y). The
function ϑ(x, y) can be defined as

ϑ(x, y) = G(α(x, y)), (4.13)

such that G(b) > 0 for b < 0, G(b) < 0 for b > 0, and G(0) = 0. The simplest function that
presents this behavior is given by G(b) = −b.

The circulation term can be designed to point tangentially to the contour line in which
the agent is located. Thus, the tangential term can be obtained as follows

T (x, y) = β (x, y)
[
−∂α

∂y

∂α

∂x

]T
, (4.14)

in which β(x, y) is a continuous function non-null at α(x, y) = 0, and
[
− ∂α

∂y

∂α

∂x

]T
is the vector

orthogonal to the gradient, denominated Hamiltonian vector field ∇Hα. If β(x, y) is defined
as

β(x, y) = H(α(x, y)), (4.15)

then H(α) is constant in a contour line and must be non-null in H(0), so that the circulation
is guaranteed when the agent is on the curve. A trivial example function is H = 1.
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Finally, a vector field-based control law for the i-th agent can be defined as

κi(ξi) = G(α)∇α +H(α)∇Hα, (4.16)

in which α is evaluated in ξi.
Similarly to (Pimenta et al., 2013) and to Chapter 3, it is desired to avoid collisions

with other robots, and this can be done by modulating the parameters of the vector
field. In this work, a parameter vector θi ∈ R2 such that θi = [θi,1 θi,2] is considered, in
which the first is multiplied by the convergence term and the second is multiplied by the
circulation term. To achieve convergence and circulation of the curve in the desired sense,
the θi elements must be positive. However, if we allow only positive values in θi, the
maneuverability is restricted, since the robot can circulate the curve in just one sense,
and cannot move away from the target curve. To guarantee better maneuverability in
front of collision risk situations, we allow negative values for the θi elements. Besides that,
the same values are limited by ±θmax, so that the maximum velocity is limited. With the
introduced parameters, a parameterized control law is given by

κi(ξi,θi) = θi,1G(α)∇α + θi,2H(α)∇Hα. (4.17)

As one can observe in (4.17), the vector field magnitude in each point (x, y) depends
on the choice of the function α. This characteristic can generate huge control signals
through optimal control solved discretely, since it can cause large displacements between
two samples when assuming unbounded velocities, making collision detection difficult. In
front of this, the vector field components are normalized

κi(ξi,θi) = θi,1G(α) ∇α
||∇α||

+ θi,2H(α) ∇Hα

||∇Hα||
. (4.18)

Using (4.18) in (4.10) we obtain the system dynamics considered in the optimization
problem in the case of single integrators.

As in (4.18) the gradient is zero only on singular points and we are assuming those
points to be at the center of the curve, there are no divisions by zero if the agents’ initial
position is considered to be different from that point, since the center of the curve is
repulsive. For θi,1 ≥ 0 and θi,2 ≥ 0, the proof of convergence and circulation for this field is
done as presented in (Gonçalves et al., 2010a). To illustrate the influence of tuning θi,1

and θi,2 on the vector field, Figure 4.3 shows three tuning situations for a given vector
field. As expected, when the convergence parameter dominates the vector field, the vectors
point almost directly to the curve. Conversely, when the circulation parameter dominates,
the vectors are disposed almost tangentially to the curve.

Now, the control law just described can be modified to suit in double integrator systems
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Figure 4.3: Example of vector field modulation by the control law parameters.

(Gonçalves et al., 2010b). In this case, it is also desired to obtain

ξ̇i = κi(ξi,θi), (4.19)

where κi(ξi,θi) is given by (4.18). To guarantee (4.19), consider the following Lyapunov
candidate function

V = 1
2(ξ̇i − κi)T (ξ̇i − κi), (4.20)

in which the arguments of κi are omitted. By disregarding the θi variation, the time
derivative of the Lyapunov candidate function yields

V̇ = (ξ̇i − κi)T
(
ξ̈ − Jξi

(κi)ξ̇i
)
, (4.21)

where Jξi
(κi) is the Jacobian matrix of κi in relation to ξi.

Therefore, the following control law can be applied

ξ̈i = Jξi
ξ̇i + σ(ξ̇i − κi), (4.22)

in which σ is a control law to be chosen, capable of stabilizing systems in the form of
ṗ = σ(p).

Equation (4.22) is the system dynamics to be considered in the optimization problem
when a double integrator model is assumed.

4.5 Problem Formulation and Collision Avoidance

4.5.1 Scheme 1

To aim at convergence and circulation of the curve while avoiding collisions, a natural
proposition is to consider desired parameters θd = [θd,1 θd,2] for convergence and circulation,
and to add a repulsion term between agents. For the control law (4.18), a robot converges
to the curve if θi,1 > 0, and maintains a certain circulation sense if θi,2 > 0. Therefore,
it makes sense to choose positive θd,1 and θd,2 desired parameters. Besides, if G(α) and
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H(α) are limited, the maximum vector field magnitude is regulated by the same desired
parameters.

Consider the position vectors present in the state variables given by ξij, that is, the
j-th robot position as computed by the i-th robot, ∀j ∈ Θi. Therefore, the i-th agent stage
cost might be chosen as

Li(x̄i(t), θ̄i) = η1(θ̄ii,1 − θd,1)2 + η2(θ̄ii,2 − θd,2)2 + η3

∑
j∈Θi

exp
(
−ζ

(
∥ξii(t) − ξij(t)∥2

2 − ϵe
))
,

(4.23)

in which η1, η2 and η3 are weighting parameters, ζ > 0 is a constant, ϵe > 0 is a safety
distance, and θ̄ii = [θ̄ii,1 θ̄ii,2]T is the parameter vector of the i-th agent computed by itself.
The terms (θ̄ii,1 −θd,1)2 and (θ̄ii,2 −θd,2)2 penalize the cost based on the desired convergence
and circulation parameters, θd,1 and θd,2, respectively. The sum of exponential functions
provides repulsion between agents as its value increases when agents get closer to each
other.

As the elements of the parameter vectors are limited between −θmax and θmax, the three
terms in (4.23) are bounded. Therefore, collision avoidance can be aimed by choosing η1,
η2, η3, ζ and θmax properly.

4.5.2 Scheme 2

An interesting way of describing obstacle avoidance constraints in optimization problems
is presented in (Sathya et al., 2018). By this approach, an obstacle can be described by an
intersection of nonlinear inequalities

O = {ξ ∈ Rnd : hi(ξ) > 0, i ∈ N[1,m]}, (4.24)

where nd is the number of position variables, m is the number of nonlinear inequalities, and
hi : Rnd → R are continuously differentiable functions with Lipschitz-continuous gradient
(C1,1). The hard-constraint for collision avoidance ξ /∈ O is satisfied if and only if

hi0(ξ) ≤ 0, for some i0 ∈ N[1,m], (4.25)

that is, there exists at least one function hi0(ξ) that indicates that the position ξ is out of
the obstacle. The same condition can be expressed by using the operator [v]+ = max{v, 0},
for v ∈ R. If [hi0(ξ)]2

+ = 0, then hi0(ξ) ≤ 0. Therefore, the constraint (4.25) can be
formulated as

αO(ξ) = 1
2

m∏
i=1

[hi(ξ)]2
+ = 0. (4.26)

In order to simplify the optimization problem, the hard constraints in the form of
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(4.26) can transformed in soft constraints by using the quadratic penalty method, yielding

h̃(ξ) = η
m∏
i=1

[hi(ξ)]2
+. (4.27)

In the case proposed in this work, a robot is considered to be an obstacle to another
robot. If each robot is an obstacle in the form of a sphere with radius r, the i-th robot
can be described by

Oi = {ξ ∈ Rnd : (2r + ϵs)2 − ∥ξ − ξi∥2
2 > 0} (4.28)

in which r is the robot radius, and ϵs is safety distance. Note that only one inequality is
necessary to represent a ball.

By considering each robot as an obstacle, the optimization problem to be solved by
the i-th robot is given by

Li(x̄i(t), θ̄i) = η1(θ̄ii,1 −θd,1)2 +η2(θ̄ii,2 −θd,2)2 +η3

∑
j∈Θi

[
(2r + ϵs)2 − ∥ξii(t) − ξij(t)∥2

2

]2

+
. (4.29)

Chapter 5 presents several numerical results obtained with the framework just described,
in which single and double integrator dynamics are implemented with the two obstacle
avoidance schemes. One of the proposed simulations can be watched in https://youtu.
be/e2ERo_HfDpA.

4.6 Summary

This chapter proposes an MPC based strategy to drive a set of agents to converge and
circulate a curve while avoiding inter-robot collisions. The strategy is based on embedding
a control law with parameters in a predictive optimal control problem. Hence, the agent
dynamics are restricted to the control law behavior, in which the control law parameters
are the decision variables. A similar strategy is presented in (Droge & Egerstedt, 2013),
in which a dual decomposition scheme is applied to distribute the optimization. In this
Chapter, the optimal control problem was distributed using the ADMM method, which
generally converges faster and is more robust than the dual decomposition. Besides, this
chapter presents an extension of the vector field navigation framework by regarding the
problem of modulating the convergence and circulation fields as an optimization problem,
which allows us to pursue collision avoidance through distributed optimal control.

https://youtu.be/e2ERo_HfDpA
https://youtu.be/e2ERo_HfDpA
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5
Results

This chapter presents the numerical simulation results used to validate the strategies
proposed in this dissertation. Section 5.1 presents a comparison between a backstepping
controller with integral action and a robust backstepping controller, also with integral
action, regarding trajectory tracking by a quadrotor vehicle. The same section presents
numerical results of the cascaded system, in which the high level strategy is given by a vector
field modulated law and the low level strategy is given by the proposed robust backstepping
control law. Section 5.2 presents several simulations of the parameterized DMPC framework
considering single and double-integrator dynamics, two collision avoidance approaches,
and some variation of the prediction horizon of the optimal control problem.

5.1 Cascaded Control

5.1.1 Robust Backstepping Controller with Integral Action

In Chapter 3 (Section 3.3), a trajectory tracking controller for a quadrotor subject to
unknown but bounded disturbances is proposed. The strategy is based on a backstepping
controller with integral action, in which a robustification law is added in the backstepping
procedure. In this section, the proposed strategy is compared with a previous strategy,
given in (Salierno & Raffo, 2017), in which the additional control law is not considered.

To analyze the proposed controller, consider an eight-shaped reference trajectory
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Table 5.1: Quadrotor parameters.

Parameter Symbol Value
Mass of the quadrotor UAV m 2.24 kg
Distance between the rotors and the vehicle’s center of gravity l 0.332 m
Thrust coefficient of the rotors b 9.5e− 6 Ns2

Drag coefficient of the rotors kτ 1.7e− 7 Nms2

Maximum propeller force fimax 12.2 N
Gravitational acceleration g 9.81 m/s2

Moment of inertia around the x-axis Ixx 0.0363 kg.m2

Moment of inertia around the y-axis Iyy 0.0363 kg.m2

Moment of inertia around the z-axis Izz 0.0615 kg.m2

parameterized in time as

xr = 1
2 cos

(
πt

40

)
m,

yr = 1
2 sin

(
πt

20

)
m,

zr = 2 − 1
2 cos

(
πt

40

)
m,

in which the yaw angle follows the direction of the curve

ψr = arctan
(
ẏr
ẋr

)
rad.

The quadrotor parameters are the same used in (Raffo, 2011) and are given in Table
5.1. A saturation of the control signals is applied, according to Table 5.2, and the force
produced from each propeller in the aircraft model is also saturated between the limits 0
and 12.2 N . Furthermore, the controller of each vehicle is adjusted by try and error in the
same sequence that the parameters appear on the backstepping process, while aiming at
fast convergence to the target trajectory and robustness to disturbances. The parameters
are adjusted to the following values:

k1 = diag(3, 3, 4.6), k2 = diag(5, 5, 5), kXξ = diag(10, 10, 10), k3 = diag(6, 6, 6),

k4 = diag(10, 10, 10), k5 = 10, k6 = 6, kXψ = 20, ς = 20, ζ = 4.5, (5.1)

in which diag(·) is a diagonal matrix populated by the elements (·).
The simulations in this section are implemented in a computer equipped with an intel

i5-3210M processor and Ubuntu 16.04 Xenial operating system. We emphasize that the
same simulations are not performed in real time, and the computer can take as long as
needed to compute the solution.

The numerical simulation is carried out by integrating the quadrotor dynamics in
1000Hz, while the backstepping controller runs at 100Hz. Besides that, the system is
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Table 5.2: Saturation of the control signals.

Input Minimum value Maximum value
T 0.01N 48.0N
τϕ −4.0N.m +4.0N.m
τθ −4.0N.m +4.0N.m
τψ −0.425N.m +0.425N.m

Table 5.3: External disturbances actuation.

Coordinate Shape Time (s)
x 4 sin(2πt) N 20 < t ≤ 50
y 4 sin(2πt) N 40 < t ≤ 70
z 4 sin(2πt) N 60 < t ≤ 90

affected by time-varying disturbances described in Table 5.3. The total simulation time is
80s, and the initial position is defined as ξ = [0.5 0.5 0.5]T and ψ = 0.

Figure 5.1 shows the reference trajectory and the actual trajectory performed by the
quadrotor, applying the standard backstepping approach and the robust one. One can
note in Figure 5.1a that the effect of the disturbances in the trajectories of the quadrotor is
much more relevant than in Figure 5.1b. If we observe separately at the evolution of each
controlled variable, in Figure 5.2, it is possible to note the direct influence of disturbances
in the trajectory oscillations. Once again, one can observe the better performance achieved
by the robust backstepping controller. Next, Figure 5.3 presents the evolution of tracking
error for both controllers during the simulations, in which the superiority of the robust
controller is confirmed. Besides, note in Figure 5.3a that the error obtained in the z-axis
is lesser than the ones in the x and y-axis. Indeed, as the quadrotor vehicle can control
more easily its position in the z-axis, due to its construction characteristics, the integral
action is fast enough to soften the effects of the disturbance in this direction.

Finally, Figure 5.4 shows the control signals evolution for both simulations. One can
note that the control signal is more aggressive when considering an additional Lyapunov
redesign control law, which allows better trajectory tracking in front of time-varying
disturbances.

5.1.2 Multi-layer Control

To attest the functioning of the cascaded control strategy proposed in Chapter 3, it is
presented a simulation with a group of quadrotors. The group of vehicles must converge
and circulate a time-varying curve in the three-dimensional space, given by

α1 = a(x+ νt)4 − b(x+ νt)2y2 + cy4 − 1 = 0, (5.2)
α2 = z − d (y2 + (x+ νt)2) + e = 0, (5.3)
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Figure 5.1: Reference and actual trajectories.
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(b) Robust backstepping control with integral action.

Figure 5.2: Evolution of states.
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Figure 5.3: Error evolution.
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Figure 5.4: Control signals evolution.

Figure 5.5: Surfaces α1 = 0 and α2 = 0.

in which α1 defines a cylindrical surface and α2 defines a slightly modified paraboloid.
Initially, the constants are chosen as: a = 0.3, b = 0.03, c = 0.3, d = −0.5 and e = −1,
with a velocity of 0.04 m/s in the positive sense of the x-axis, in this case, ν = −0.04m/s.
Regarding the collision avoidance strategy, r = 0.3m, r̃ = 0.6m, R = 1.4m and ϵ = 0.1m
are considered. Figure 5.5 shows the surfaces defined by α1 and α2 when t = 0. In the
same figure, the target curve Γ is highlighted, given by the intersection of both surfaces.

To compose the cascaded system, the loops are executed at different frequencies. The
outermost loop, which corresponds to the high-level control, runs at the frequency of 10Hz.
The innermost loop, which corresponds to the low-level controller, runs at the frequency
of 100Hz. The dynamics of each aerial vehicle is integrated in 1ms steps.

For the simulated aircraft, a maximum speed of vmax = 0.4m/s is considered. As in the
Section 5.1.1, the low-level controller of each vehicle is adjusted by try and error in the
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Table 5.4: External disturbances actuation.

Coordinate Shape Time (s)
x 4 sin(2πt) N 20 < t ≤ 30
y 4 sin(2πt) N 30 < t ≤ 40
z 4 sin(2πt) N 40 < t ≤ 50

sequence in which the parameters appear on the backstepping process, while regarding
fast convergence to the curve and robustness to disturbances. The controller is adjusted
to the following values:

k1 = diag(3, 2, 4.5), k2 = diag(5, 5, 5), kXξ = diag(25, 25, 25), k3 = diag(5, 5, 5),

k4 = diag(35, 35, 35), k5 = 15, k6 = 60, kXψ = 25, ς = 20, ζ = 4.5. (5.4)

Besides, the UAVs have the same parameters presented in Table 5.1, and the control
signals are saturated as described in Table 5.2.

In the first simulation, presented in Figures 5.6a and 5.6b, a set of 4 quadrotors
is guided by the vector field produced from the functions presented in Equations (5.2)
and (5.3), with the parameters already mentioned. In this particular simulation, the
backstepping controller actuates without the additional control law designed. In a second
simulation, presented in Figures 5.6c and 5.6d, the same vector field is considered, but the
robustification control law is activated. In all the simulations the system is affected by
time-varying force disturbances with maximum magnitudes of 4N , as shown in Table 5.4.
The simulations performed can be watched in https://youtu.be/kvshsF-cojY.

Note that the trajectories performed in Simulation 2 (Figures 5.6c and 5.6d) present
fewer oscillations than the trajectories performed in Simulation 1 (Figures 5.6a and 5.6b).
Also, the oscillations introduced in the convergence function due to external disturbances
are reduced by using the robust controller. It is also worth noting that in both simulations
the system behaves similarly to oscillations introduced in the z-axis (between 40 and 50s).
As remarked previously, altitude control of a quadrotor vehicle is more easily accomplished
due to the arrangement of thrusters.

Even with the addition of the robustification control law, it can be seen from Figure
5.6d that spikes in the convergence function periodically occur. Such peaks are caused by
changes of direction in the reference trajectories and are accentuated by the disturbances.

In a second moment, a third simulation with a set of 8 robots is addressed, and its
simulation results are presented in Figures 5.6e and 5.6f. For the curve to support a
larger number of robots, the parameters of the α functions are adjusted as: a = 0.15,
b = 0.03, c = 0.15, d = −0.3 e e = −1.25. In addition to the disturbances shown in Table
5.4, a variation of the quadrotor mass and inertia parameters of +20% is included. In
this simulation, the robots are started in close positions to verify the effectiveness of the

https://youtu.be/kvshsF-cojY
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collision avoidance strategy.
It can be seen from Figure 5.6e that the robots perform irregular trajectories at the

beginning of the simulation, converging to the desired curve over time. Figure 5.6f shows
an increase in convergence function in the first few seconds of simulation. The proximity
between robots does not allow most robots to move, causing the distance to the curve
to grow, since the curve moves in the positive direction of the x-axis. However, as the
collision avoidance situations are solved, the robot set converges to the curve.

5.2 Parameterized Distributed Model Predictive Con-
trol

In Chapter 4, a distributed parameterized MPC strategy is proposed. In this strategy, a
parameterized control is embedded in an optimal control problem, which is solved in a
distributed way with the ADMM. In the same chapter, an application of the developed
control strategy is proposed, in which a group of robots must converge and circulate a
simple curve while avoiding collisions. This section presents numerical results for the
proposed application with the distributed parameterized MPC framework.

In order to observe the complete system operation, a simulation with twelve agents is
proposed. As target, consider the quartic plane curve described implicitly by the function

α1 (x, y) = ax4 + bx2y2 + cy4 − 1 = 0, (5.5)

in which a = 0.5, b = −0.6 and c = 0.3. Figure 5.7 displays the target curve.
The agents are guided by the control law presented in (4.18) in the form of

κi(ξi,θi) = θi,1 tanh(−α1)
∇α1

||∇α1||
+ θi,2

∇Hα1

||∇Hα1||
, (5.6)

in which the parameters θi,1 and θi,2 are chosen according to the optimization problem to
be set. The control laws’ parameters are bounded by −1 ≤ θi,1 ≤ 1 and − 1 ≤ θi,2 ≤ 1, ∀i,
which allows the definition of a maximum velocity. Remember that by allowing negative
values for θi,1 and θi,2, a robot can get away from the curve and alternate the circulation
sense in the presence of collision risk. In order to measure the convergence of the robots
to the curve, consider W (x(t))

W (x(t)) =
N∑
i=1

α2
1 (ξi(t)) , (5.7)

in which x(t) = [ξT1 (t) ... ξTn (t)]T .
In the first moment, the MPC problem is solved in a centralized way, in order to

validate the task formulation as an optimal control problem. Consider the OCP described



CHAPTER 5. RESULTS 82

-0.6

-0.4

-0.2

0

-1

10

01

-12

(a) Simulation 1 – Trajectories.

0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Simulation 1 – Function W .

-0.6

-0.4

-0.2

0

-1

10

01

-12

(c) Simulation 2 – Trajectories.

0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(d) Simulation 2 – Function W .

0.5

1

-2

1.5

-1

0 1

1 0

2 -1
3

(e) Simulation 3 – Trajectories.

0 10 20 30 40 50 60 70

0

2

4

6

8

10

12

14

(f) Simulation 3 – Function W .

Figure 5.6: Trajectories and convergence functions W in the simulations.
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Figure 5.7: Target curve.

in the Section 4.5, in which the error between the real and the desired parameters θd

and a collision avoidance term are taken into account. For a set of robots Ω, the global
optimization problem is given by

min
xi,θi∀i

N∑
i=1

ˆ tf

t0

η1(θi,1 − θd,1)2 + η2(θi,2 − θd,2)2 + η3

∑
j∈Θi

w(ξi(t), ξj(t))

 dt

subject to
ξ̇i = κi(ξi,θi),

x̄i(t0) = x̄i,t0 ,−1
−1

 ≤

θi,1
θi,2

 ≤

1
1

 , ∀i ∈ {1, ..., N}.

(5.8)

in which the i-th state vector is given by xi = ξi and tf = t0 + ∆. The collision avoidance
term w(ξi(t), ξj(t)) might be given by

Scheme 1: we(ξi(t), ξj(t)) = exp
(
−ζ

(
(ξi(t) − ξj(t))T (ξi(t) − ξj(t)) + ϵe

))
, (5.9)

or by

Scheme 2: ws(ξi(t), ξj(t)) = [(2r + ϵs)2 − (ξi(t) − ξj(t))T (ξi(t) − ξj(t))]2
+. (5.10)

The total simulation time is set 40 s with step size dt = 0.1 s, and the prediction horizon
is set ∆ = 1 s. The optimization problems are implemented with the symbolic framework
CasADi (Andersson et al., 2019) and solved with the Ipopt package (Wächter & Biegler,
2006), an interior-point solver. In this case, the optimization problem is solved in its
discrete form given by the Euler approximation. Each robot has radius r = 0.3m and
perception range of R = 1.5m. In addition, the optimization weights and variables are
chosen as η1 = 1, η2 = 2, η3 = 50, ζ = 10, ϵe = 4r2, ϵs = 0.2m, and θd,1 = θd,2 = 0.5. It is
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(a) Exponential repulsion.
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(b) Set-based avoidance.

Figure 5.8: Trajectories of the centralized problem with single-integrator dynamics.

important to remark that the weights and parameters were tuned by choosing the maximum
weight on the collision avoidance that does not compromise the solver convergence. The
centralized problem simulations can be watched in https://youtu.be/6OZmkQErPhI.

The first two simulations are presented in Figure 5.8, in which Figure 5.8a shows
the trajectories performed using the exponential-based repulsion and Figure 5.8b the
trajectories performed using the set-based collision avoidance. These figures also show
the initial and ending position of each robot. The trajectory evolution indicates that the
convergence with the set-based avoidance might be slightly faster, since all robots end over
the curve. Besides, a better distribution over the curve is expected from the exponential
method, since a repulsion force appears when a robot sense another one. Note that the
exponential method tends to be harder to tune, because it has one additional parameter.

Regarding the evolution of the convergence of the set of robots to the curve in both
simulations, Figure 5.9a shows that convergence with the set-based method is slightly
faster, but it is mostly equivalent from 10 s to the end time. A comparison between the
solving time of the optimization problems for both collision avoidance schemes is shown in
Figure 5.9b. The first MPC cycle optimization problem is the one that takes longer to
be solved. After that, the problems are warm started with the solution of the previous
optimization problem. As one can note, there is no much difference between the processing
time using both techniques. Disregarding the time to solve the first OCP and computing
the average of the remaining values, the problem with exponential repulsion is solved in
0.0493s and the set-based is solved in 0.0585s, which corresponds to a difference of 18.5%.

https://youtu.be/6OZmkQErPhI
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(a) Convergence function evolution.
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Figure 5.9: Single-integrator centralized problem comparison: exponential repulsion and
set-based avoidance.

Furthermore, in the worst case, the problem with exponential repulsion took 0.1456s to
be solved and the set-based took 0.2296s. Remember that in the implementation of the
centralized problem simulation, a unique optimization problem is solved per MPC cycle.

Next, the double-integrator dynamics are considered. As discussed in Section 4.4, the
vector field control law might be chosen as

ξ̈i = Jξi
ξ̇i + σ(ξ̇i − κi). (5.11)

Therefore, the optimal control problem can be written as

min
xi,θi∀i

N∑
i=1

ˆ tf

t0

η1(θi,1 − θd,1)2 + η2(θi,2 − θd,2)2 + η3

∑
j∈Θi

w(ξi(t), ξj(t))

 dt

subject to
ξ̈i = Jξi

ξ̇i − kv(ξ̇i − κi),

x̄i(t0) = x̄i,t0 ,−1
−1

 ≤

θi,1
θi,2

 ≤

1
1

 ∀i ∈ {1, ..., N}.

(5.12)

in which xi = [ξTi ξ̇Ti ]T , kv > 0 is a constant, and w(ξi(t), ξj(t)) is given by (5.9) or (5.10).
For the problem with double-integrator dynamics, consider kv = 2 and the same parameters
of the single-integrator problem. Figure 5.10 shows the centralized problem trajectories
using the exponential repulsion and the set-based avoidance. One can note that for each
simulation, two robots are out of the curve in the end time. Figure 5.11a shows that
the set-based method is again slightly faster in convergence. Regarding processing time,
presented in Figure 5.11b, the two collision avoidance approaches do not present visually
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(a) Exponential repulsion.
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(b) Set-Based Avoidance.

Figure 5.10: Trajectories of the centralized problem with double-integrator dynamics.
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(b) Processing time per optimization problem.

Figure 5.11: Double-integrator centralized problem comparison: exponential repulsion and
set-based avoidance.

much difference. If we look at the averages, disregarding the first optimization problem,
the problem with exponential repulsion takes 0.2049s to be solved, and the problem with
set-based avoidance takes 0.2162s to be solved, which is a 5.5% difference. Looking for
the worst cases, the problem with exponential repulsion took 0.4793s to be solved and the
problem with set-based avoidance took 0.3682s. Note that, in general, the double-integrator
problem requires more processing time to be solved in relation to the single-integrator,
due to the increased number of variables in the problem.
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Next, the global problems are distributed using the ADMM strategy described in
Section 4.3. To obtain a better perception of the system performance, a set of simulations
is proposed. In each simulation, twelve robots are placed in random initial positions in
the space limited by −4 < x < 4 and −4 < y < 6, in which a small safe distance between
the robots is respected. We test the system using the exponential repulsion and the
set-based avoidance, while choosing the prediction horizon as ∆ = 0.3s, ∆ = 0.5s, and
∆ = 1s. The parameters of each simulation are the same described previously, and ADMM
penalty parameter is set ρ = 4 with the number of iterations per MPC cycle nmax = 5. For
the single-integrator dynamics, 30 simulation trials are executed for each combination
of strategies, and for the double-integrator dynamics, 15 trials are performed for each
combination. The value of the convergence function in the final time tf = 40s and the
time to solve each local optimization problem are stored and presented in boxplots. In the
first case, the same curve previously presented is considered (Equation (5.5)), with a = 0.5,
b = −0.6 and c = 0.3.

Figure 5.12 presents the stored data for the single and double-integrator dynamics
simulations. When considering single-integrator dynamics, no collision happened. In Figure
5.12a, the value of the convergence function at the end time for each set of simulations is
presented with boxplots. One can note that the set-based avoidance performs considerably
better in these cases. Regarding the processing time, Figure 5.12b shows that its values
grow with the prediction horizon. No visually relevant difference is observed between
exponential and set-based avoidance processing time. When solving the problem with
double-integrator dynamics, collisions happened with the set-based avoidance in 15 out
of 15 simulations with ∆ = 0.3s, and in 5 out of 15 simulations with ∆ = 0.5s. Figures
5.12c and 5.12d show the stored data of the successful simulations with double-integrator
dynamics. One can note that the end value of the convergence function with ∆ = 1s with
exponential repulsion is the greatest among the presented groups of simulations, which
indicates that the parameters could be possibly better tuned regarding such horizon. As
one could expect, more time is necessary to compute the double-integrator problem in
relation to the single-integrator one.

The problem in which twelve robots must converge and circulate the curve previously
described is considerably hard to solve, since the robots are tight over the curve. To
observe the system operation in an easier to solve condition, a curve with a = 0.125,
b = −0.15 and c = 0.075 is proposed. Figure 5.13 shows the end time positions of a 12
robots simulation in the new, bigger curve, where the robots are more widely spaced than
in the previous case. Besides, Figure 5.14 shows the results obtained with this curve. For
the single-integrator dynamics, once more no collision happened. In Figure 5.14a, one can
note that in all simulations the convergence value at the end time is close to zero. For
the double-integrator dynamics, which convergence end values are shown in Figure 5.14c,
collisions happened in 14 out of 15 simulations with ∆ = 0.3s with set-based avoidance.
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Figure 5.12: Distributed problem – small curve.
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Figure 5.13: 12 robots simulation with a bigger curve – End position.

The processing time, presented in Figures 5.14b and 5.14d, scales with the prediction
horizon. Note that for both curves, the set-based avoidance did not perform well for
∆ = 0.3s when considering double-integrator dynamics.

In front of the presented results, one can note that the exponential repulsion presents a
more robust behavior for collision avoidance. As the repulsion force starts to actuate when
a robot enters the perception range of another robot, the method is more conservative
than the set-based avoidance, that only deals with imminent collision risk. Therefore, the
tuning of the cost functional weights when considering set-based avoidance must be done
carefully. Another important aspect to note is that the processing time of the optimization
problems must be reduced in order to make practical experiments with the scheme. As in
the cases presented nmax = 5, for a practical implementation each agent must compute five
optimization problems and carry out ten communication steps per control cycle. Among
the simulations presented, the minimum average processing time is about 0.02s, which
would sum in average 0.1s of processing time per control cycle, without considering the
communication time. Therefore, the scheme is not fast enough for considering 0.1s control
cycles in practical problems. Note that this study did not take into account the worst case
scenario for the solving time of each optimization problem, since no real time simulation
was considered and no care was taken in order to guarantee maximum priority for solving
the optimization problem in the machine. However, by gathering the processing time of
each optimization problem in box plots, we expect to obtain a notion of the applicability
of the DMPC scheme in a real time simulation or experiment.

The next simulation is an attempt of stressing the system with a number of robots
that do not fit over the curve. For doing that, consider 20 robots and the same small curve
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Figure 5.14: Distributed problem – big curve.
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(a) Single-integrator dynamics.
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(b) Double-integrator dynamics.

Figure 5.15: 20 robots simulation – End position.

previously proposed, with a = 0.5, b = −0.6 and c = 0.3. Note that number of robots that
fit over a curve depends on the radius of the robots and on the geometric properties of
the curve. The robot initial positions are random and the set-based avoidance is applied.
Figure 5.15 shows the end position of each robot for single and double-integrator dynamics.
One can note that in both simulations a set of robots do not fit in the curve and keep
circulating around the layer of robots over the curve. In Figure 5.16 one can observe
the evolution of the convergence function. As presented in Figure 5.16a, the convergence
function values rapidly decays. Figure 5.16b shows that after 20s of simulation, the
convergence function oscillates around a value. As one can note in the same figure, the
convergence function value is not monotonic decreasing, since negative values for the
parameters are allowed, so that a robot can move away from the target curve in a collision
risk situation. The simulation video can be watched in https://youtu.be/nOdIeVToHGw.

Numerical simulations are also performed considering localization errors. For that, at
each time step the real position of a robot is disturbed by a white Gaussian noise, with
power of −23 dB, −18 dB and −13dB. The simulation video can be watched in https:
//youtu.be/zGQfJV-OepM. Collisions and optimization errors occurred when disturbing
the positions with the greatest noise. One can also note that the trajectories performed
by the double-integrator agents are smoother than the ones performed by the single-
integrators, once that the actuation on the acceleration level works as a filter in this
case.

https://youtu.be/nOdIeVToHGw
https://youtu.be/zGQfJV-OepM
https://youtu.be/zGQfJV-OepM
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Figure 5.16: 20 robots simulation — Convergence function evolution.

The same system is also tested with a star-shaped curve, defined implicitly by

α2 (x, y) = a0y
6 + a1x

2y4 + a2x
4y2 + a3x

6 − c6 = 0, (5.13)

in which a0 = 0.05, a1 = 4, a2 = 4, a3 = 0.05 and c = 1.7. Figure 5.17 shows the
trajectory performed by the robots considering single and double-integrator dynamics.
In this case, an exponential based repulsion is applied. An important point to note is
that as the complexity of the curve increases, the optimization problem might become
harder, therefore taking longer time to solve. The simulation video can be watched in
https://youtu.be/e2ERo_HfDpA.

https://youtu.be/e2ERo_HfDpA
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Figure 5.17: Star shaped curve – Trajectories.



CHAPTER 6. CONCLUSION 94

6
Conclusion

6.1 Summary

This dissertation addressed the problem of multi-robot coordination applied to convergence
and circulation of closed paths by two different strategies. In the first part, a decentralized
strategy for coordination of multiple agents with predefined collision avoidance laws was
studied. The parameters of the vector field control law are tuned in each time step in order
to avoid inter-robot collisions, based on predefined priority rules known by every agent.
Besides considering closed curves in the 3-D space, the proposed approach considers also
time-varying curves. To implement the high-level strategy in quadrotor UAVs, a low level
controller based on the backstepping technique is proposed. By applying the Lyapunov
redesign technique, the backstepping controller robustifies the closed loop system in front
of unknown but bounded disturbances.

The second part of this work presents the development of a distributed and parameter-
ized model predictive control framework. The main characteristic of this framework is to
take advantage of predefined, well established control laws for certain systems. Besides, the
distribution of the optimal control problem allows trajectory negotiation between agents,
with the aim of minimizing a global cost. Numerical results show the applicability of the
framework in a convergence and circulation problem of curves in 2-D spaces considering
inter-robot collision avoidance with two different schemes.

The strategy discussed in the first part of this work is very efficient in providing collision
avoidance, and as the problem structure is decentralized, minimum communication is
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required. However, the same strategy requires the strong assumption that a robot can
always avoid collisions by moving in the direction tangent to the aimed curve. Besides, no
notion of optimality on performing the task is taken into account.

In the strategy presented in the second part, collision avoidance and task accomplish-
ment are measured with a cost functional and the dynamics of each robot are taken into
account as constraints. Besides presenting interesting results, the optimal control strategy
also suffer of some drawbacks. First, to guarantee stability, it is necessary to assure that
every optimization problem converges to a solution, which is not treated in this work. The
vanilla ADMM procedure also requires synchronous communication between the agents.
Therefore, a distributed optimization problem is subject to the response time of the slower
processor in the distributed scheme, which can complicate practical implementations and
brings the necessity of fast optimization methods. In fact, when dealing with real time
systems, we ideally need solvers with good worst case estimates of the execution time
(Bemporad & Patrinos, 2012), which is not treated in the present work. In view of this,
there are many possibilities for extending the current work, and the field of distributed
MPC for multi-robot systems in general.

6.2 Future Works

To corroborate the proposed strategies in this work, experimentation with real robots would
add great value on their evaluation. In both approaches, we assume perfect communication,
that is, the communication is synchronous and there is no packet loss. Implementing
robuster strategies regarding communication might be important for the realization of real
experiments.

To perform experiments with the cascaded strategy, it is first necessary to implement
the backstepping controller and high-order state estimators in a processing board to be
embedded in the quadrotor. To experiment with the complete system, it is also necessary
to guarantee that each robot updates the position of the neighboring robots in reasonable
frequency for avoiding collisions.

Regarding the parameterized DMPC framework, future works might also focus on the
stability proof of the scheme and in the collision avoidance approach, looking forward to es-
tablish clear directions to define cost weights to achieve collision avoidance via optimization.
Besides, the work can also be extended by implementing low-level optimization approaches
that can render the system faster, as well as by exploring asynchronous solutions to
distributed optimization problems, which would make practical implementations simpler.

Furthermore, both strategies can be extended by considering collision avoidance with
obstacles. In the case of the cascaded system, this could be implemented by augmenting
the high-level control law with repulsion fields emanating from the obstacles. For the
DMPC scheme, obstacle avoidance can be achieved by augmenting the stage cost the same
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way as we did for inter-robot collision avoidance. Another approach would be to consider
hard-constraints on the optimal control problem.

Also, it would be interesting to investigate distributed strategies for tracking curves
with groups of fixed-wing aircraft. During the development of this work, we implemented
a minimum velocity constraint on the DMPC strategy, in order to obtain a trajectory
suitable for a fixed-wing aircraft. However, in most situations the optimization solver was
not able to find a solution for the OCP.
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