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Resumo

Seja F' um corpo algebricamente fechado de caracteristica zero e seja G um grupo ciclico
finito. Neste trabalho, todas as F-algebras sao assumidas como associativas. Dadas F-algebras
G-simples de dimensao finita Ay, ..., A,,, tomadas como subalgebras graduadas de algebras de
matrizes com algumas graduacoes elementares, considere a algebra de matrizes bloco triangular
superior A := (UT(Aq, ..., A, ), @) munida com uma G-graduagao elementar induzida por uma
aplicacdo a (definida “colando” as graduagoes das A;’s). Nesta tese, abordamos dois tépicos
principais: a propriedade de fatorabilidade relacionada ao Tg-ideal Idg(A) das identidades
polinomiais G-graduadas satisfeitas por A e as variedades minimais de PI-dlgebras associativas
G-graduadas sobre F', de posto finito, com respeito a um dado G-expoente.

Mais precisamente, provamos que qualquer F-algebra G-simples de dimensao finita, ante-
riormente descrita por Bahturin, Sehgal e Zaicev (para qualquer grupo arbitrario), pode ser
vista, para grupos ciclicos, como uma subdlgebra graduada de uma &algebra de matriz mu-
nida com uma graduacao elementar. Além disso, se G é um p-grupo ciclico, com p sendo um
primo arbitrério, estabelecemos que Idg(A) é fatoravel se, e somente se, existe no maximo um
indice i € {1,...,m} tal que A; ndo é G-regular se, e somente se, existe uma tnica classe de
isomorfismo de G-graduagoes para A. Isto é uma generalizacao dos resultados apresentados
por Avelar, Di Vincenzo e da Silva, quando G tem ordem 2, que ja contrastavam com o caso
ordinario, investigado por Giambruno e Zaicev. Vale ressaltar que usamos técnicas diferentes
daquelas empregadas em tais casos. Ainda, generalizando o conceito de G-regularidade, intro-
duzimos a definicao de a-regularidade e estabelecemos interessantes relacoes entre tal conceito e
os chamados subgrupos invariantes. Finalmente, quando G nao é necessariamente um p-grupo,
apresentamos condigbes necessérias e suficientes a fim de obter que Idg((UT (A4, Az),@)) é
fatoravel, requerindo que A; e Ay sejam aj-regular e as-regular, respectivamente.

Em relagao as variedades minimais, provamos que elas sao geradas por adequadas algebras
de matrizes bloco triangulares superiores G-graduadas (UT(Aq, ..., An,),@). Por outro lado,
assumindo algumas condigoes sobre essas algebras, provamos que as variedades geradas por
algumas delas sao minimais. Estes problemas foram explorados, no caso ordinério, por Gi-

ambruno e Zaicev, e, quando G é de ordem prima, por Di Vincenzo, da Silva e Spinelli.

Palavras-chave: algebras graduadas, grupos ciclicos finitos, fatorabilidade, variedades mini-

mais.
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Abstract

Let F be an algebraically closed field of characteristic zero and G be a finite cyclic group. In
this work, all the F-algebras are assumed to be associative. Given finite dimensional G-simple
F-algebras Ay, ..., A,,, taken as graded subalgebras of matrix algebras with some elementary
gradings, consider the upper block triangular matrix algebra A := (UT(Ay,..., An), @) en-
dowed with an elementary G-grading induced by a map & (defined by gluing the gradings of
the A;’s). In this thesis, we approach two main topics: the factoring property related to the
Tg-ideal 1dg(A) of the G-graded polynomial identities satisfied by A and the minimal vari-
eties of associative G-graded Pl-algebras over F', of finite basic rank, with respect to a given
G-exponent.

More precisely, we prove that any finite dimensional G-simple F-algebra, previously de-
scribed by Bahturin, Sehgal and Zaicev (for any arbitrary group), can be seen, for cyclic groups,
as a graded subalgebra of a matrix algebra endowed with an elementary grading. Moreover, if
G is a cyclic p-group, with p being an arbitrary prime, we establish that Ids(A) is factorable if,
and only if, there exists at most one index ¢ € {1,...,m} such that A; is not G-regular if, and
only if, there exists a unique isomorphism class of G-gradings for A. This is a generalization of
the results presented by Avelar, Di Vincenzo and da Silva, when G has order 2, which already
contrasted with the ordinary case, investigated by Giambruno and Zaicev. It is worth highlight-
ing that we use different techniques from those employed in such cases. Still, by generalizing
the concept of G-regularity, we introduce the definition of a-reqularity and we establish nice
connections between such concept and the so-called invariance subgroups. Finally, when G is
not necessarily a p-group, we present necessary and sufficient conditions in order to obtain that
Idg((UT(Aq, A), @)) is factorable, by requiring that A; and Ay are a;-regular and as-regular,
respectively.

Regarding the minimal varieties, we prove that they are generated by suitable G-graded
upper block triangular matrix algebras (UT'(A4, ..., A,),@). On the other hand, by assuming
some conditions over these algebras, we show that the varieties generated by some of them are
minimal. These problems was explored, in ordinary case, by Giambruno and Zaicev, and, when

G is of prime order, by Di Vincenzo, da Silva and Spinelli.

Keywords: graded algebras, finite cyclic groups, factorability, minimal varieties.
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Resumo estendido

Nas tultimas décadas, o estudo das algebras satisfazendo identidades polinomiais, nomeada-
mente Pl-dlgebras, tem se desenvolvido em grande escala. Existe um nimero crescente de
pesquisas envolvendo tais dlgebras, o que explicita a importancia dessa teoria no ambito
matematico. Nesse sentido, os resultados apresentados nesta tese contribuem significativamente
com os trabalhos na area de algebra e, particularmente, com aqueles relativos as PI-algebras. E
importante ressaltar que esses resultados foram desenvolvidos em um trabalho conjunto com a
minha orientadora de doutorado, Professora Viviane Ribeiro Tomaz da Silva, e com o Professor
Onofrio Mario Di Vincenzo (Universita degli Studi della Basilicata - Itélia).

Seja F' um corpo algebricamente fechado de caracteristica zero e considere G um grupo
ciclico finito. Ao longo deste trabalho, todas as F-algebras sao assumidas como associativas.
Dedicamos a primeira parte desta tese ao estudo da propriedade de fatorabilidade associada
aos Ti-ideais de identidades polinomiais G-graduadas satisfeitas por algebras de matrizes bloco
triangulares superiores G-graduadas UTg(Ay, ..., Ay), onde Ay, ..., A, sdo dlgebras G-simples
de dimensao finita sobre F'. Nossos resultados obtidos neste parte ja foram publicados e podem
ser encontrados em [22].

Em segundo lugar, o presente trabalho é devotado a explorar as variedades de PI-algebras
associativas GG-graduadas, de posto finito. Mais precisamente, propomos descrever aquelas va-
riedades que sao minimais, de um dado G-expoente, por meio de algebras geradoras adequadas
relacionadas as algebras de matrizes bloco triangulares superiores. Por outro lado, impondo
algumas condigoes extras sobre UT (A1, ..., A,,), provamos que tais algebras de matrizes bloco
triangulares superiores G-graduadas geram variedades minimais. Os resultados obtidos nesta
parte se encontram no artigo [31] submetido para publicacao.

Neste resumo, damos as principais defini¢oes relacionadas a PI-teoria, bem como as notacoes
que serao utilizadas ao longo deste texto. Contextualizamos os topicos abordados, dando mais
detalhes sobre nossos principais objetivos e suas relevancias, e discutimos sobre as ferramen-
tas de estudo empregadas. Finalizamos este resumo listando os assuntos abordados em cada

capitulo desta tese.



Seja A uma algebra associativa sobre um corpo F' de caracteristica zero e seja G um grupo
abeliano finito. Dizemos que A é uma dlgebra G-graduada se A = GyeqA, (soma direta como
espago vetorial), onde, para cada g € G, A, é um subespaco vetorial de A, e AjA, C Ag,
para todo g, h € G. Cada subespaco A, é chamado uma componente graduada de grau g de A.
Além disso, um elemento a € A, é dito ser homogéneo de grau g e o seu grau ¢ denotado por
lal4. Quando a algebra graduada A é unitaria e todos os seus elementos homogéneos nao-nulos
sao invertiveis, dizemos que A é uma dlgebra de divisio graduada. Uma subalgebra (subespago
vetorial, ideal, respectivamente) V' de uma &lgebra G-graduada A que admite a decomposigao
V=@ ,cq(VNAy) é chamada uma subdlgebra graduada (subespago vetorial graduado, ideal
graduado, respectivamente) de A. E notéria a relevancia das algebras graduadas nas pesquisas
dos ultimos 20 anos (veja, por exemplo, [1, 5, 9, 10, 29, 32]). Ainda, dadas duas &lgebras
graduadas A = @gecAy € B = @yea By, se existe um isomorfismo de dlgebras ¢ : A — B tal
que ¢(A,) = By, para todo g € G, entao dizemos que A é G-isomorfa & B, em outras palavras,
A e B sao isomorfas como algebras G-graduadas.

Uma importante e bem conhecida dlgebra com a qual lidamos nesta tese é a dlgebra My (F)
de matrizes k x k sobre F', simplesmente denotada por M. Munimos essa algebra com uma
graduacao adequada, a saber, uma graduacdao elementar da seguinte forma: fixada uma k-
upla § = (g1,...,9x) € G*, tal graduacao consiste em definir, para cada h € G, (M), =
spang{e;; | g; 'g; = h}, onde, para cada i,j € {1,...,k}, e;; denota a (i, j)-matriz unitaria
de Mj,. Note que, para cada i,j € {1,...,k}, a matriz unitdria e;; ¢ homogénea com grau
9; lgj. Por outro lado, em [13], foi afirmado que se as matrizes unitérias e;; sdo homogéneas,
para todo 7,j € {1,...,k}, entdo a G-graduacao sobre M}, é elementar. Vale observar que, no
caso em que I’ é um corpo algebricamente fechado, as graduacoes elementares sao essenciais na
classificagao de todas as G-graduacoes de My, (veja [9]). Ainda, qualquer graduagao elementar
sobre a édlgebra de matrizes My é induzida por uma aplicacao « : {1,...,k} — G, se definimos
leijlar, = a(i)"ta(j), para todo 4,5 € {1,...,k}. Aqui, a notagao (M, ) indica que a dlgebra
M, esta munida da graduacao elementar induzida pela aplicacao «. Finalmente, dada a dlgebra
de matrizes (M, «), definimos a aplicacao peso w, : G — N como wy(h) == [{i | 1 < i <

k, (i) = h}|, e o subgrupo invariante, relacionado a (My, o), como
Heo :={h € G| wa(hg) = wa(g), paratodo g € G}.

Tal subgrupo foi introduzido por Di Vincenzo e Spinelli, em [24], e é uma ferramenta crucial
ao longo do nosso trabalho.

Ressaltamos que, quando F' é algebricamente fechado, as dlgebras de matrizes My sao as
Unicas dlgebras simples de dimensao finita, a menos de isomorfismo. Em relagao ao contexto G-

graduado, dizemos que uma dlgebra G-graduada A é G-simples se A?> # 0 e A nao possui ideais
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graduados nao-triviais. Mesmo neste caso, as dlgebras de matrizes desempenham um papel
fundamental na classificacao das F-algebras G-simples de dimensao finita, onde F' é um corpo
algebricamente fechado. Mais precisamente, em [10], Bahturin, Sehgal e Zaicev trabalhando em
um contexto geral, obtiveram para grupos abelianos finitos que qualquer F-algebra G-simples
de dimensao finita é G-isomorfa a uma &algebra G-graduada dada por um produto tensorial
entre M e uma algebra de divisao graduada.

Além disso, observamos que a classificacao anterior pode ser reescrita quando estamos li-
dando com alguns grupos particulares. Por exemplo, se F' é um corpo algebricamente fechado e
G = Cy, um grupo ciclico de ordem 2, em [35], é estabelecido que as F-algebras G-simples de di-

mensao finita (bem conhecidas como as superdlgebras simples) sdo, a menos de G-isomorfismo,

iguais a:
, A B
(’Z)Mk,liz D ,OHdeZlZO,k#O,AEMk,DGMl,BEMleGCEMle,
A 0 0 B
munida da graduacao (M, = e (M, = :
g cao (Mx.1)o (0 D) (M) (C 0>

(it) M,(F®cF), onde ¢®> = 1, com a graduagao (M, (F®cF)) := M, e (M, (F®cF)), := cM,,.

Vale dizer que, em ambos os casos acima, conforme explicitaremos na Secao 1.1, podemos
ver tais superalgebras simples como subalgebras graduadas de algebras de matrizes munidas de
uma graduacao elementar. Ainda, assumindo que o corpo F' é algebricamente fechado, também
temos uma descricao das F-algebras G-simples de dimensao finita, quando G' é um grupo de
ordem prima p (veja [21]).

Nesta tese, generalizamos tais resultados para o caso em que G = ), é um grupo ciclico finito
de ordem n, exibindo uma caracterizagao das F-algebras G-simples de dimensao finita vistas
como subalgebras graduadas de algebras de matrizes munidas de graduagoes elementares. Além
disso, aplicando resultados de Aljadeff e Haile, apresentados em [3], estabelecemos interessantes
condigoes a fim de obter um G-isomorfismo entre essas dlgebras G-simples.

Neste momento, lidando em um contexto mais geral, dadas subédlgebras graduadas Ay, ..., A,
de dlgebras de matrizes (My,, 1), ..., (Mg, , o), respectivamente, considere a algebra de ma-
trizes bloco triangular superior UT' (A4, ..., A,,). De maneira natural, munimos tal dlgebra
UT(Ay,...,Ay) com a G-graduagao elementar & obtida “colando” as graduagoes elementares
aq, ..., ap, dadas, e escreveremos a algebra G-graduada assim obtida como (UT'(A4, ..., Ap), &)
ou simplesmente UTg (A, ..., Am).

As algebras de matrizes bloco triangulares superiores aparecem em varios trabalhos, sendo
um objeto significativo de estudo para muitos pesquisadores. Por exemplo, Valenti e Za-

icev provaram que, a menos de isomorfismo graduado, todas as G-graduacoes da algebra
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UT(F,...,F) sao, na verdade, G-graduagdes elementares (quando G' é um grupo qualquer,
nao necessariamente finito e abeliano, e F' é um corpo qualquer) (veja [34]). Recentemente, em
[11], Borges e Diniz descreveram as G-graduacoes de dlgebras de matrizes bloco triangulares
superiores adequadas, no caso em que G é um grupo abeliano (ndo necessariamente finito) e
F' é um corpo algebricamente fechado de caracteristica zero. Esta descricao também envolve
as graduagoes elementares. Além disso, em [36], Yasumura estudou as G-graduagoes sobre as
algebras de matrizes bloco triangulares superiores, quando G é um grupo qualquer (nao neces-
sariamente finito e abeliano) e F' é um corpo de caracteristica zero, ou caracteristica grande o

suficiente, nao necessariamente algebricamente fechado.

Seja F' um corpo algebricamente fechado de caracteristica zero. Assumindo que o grupo
G é ciclico finito e considerando nossa descrigao de cada F-algebra G-simples A; de dimensao
finita como uma subdalgebra graduada de uma &algebra de matrizes munida de graduacao el-
ementar, nesta tese, focamos nossos estudos nas élgebras UTg (A4, ..., A,,). Em particular,
propomos investigar propriedades relacionadas ao conjunto de todas as identidades polinomiais
G-graduadas satisfeitas por UTg (A1, ..., Ay). A fim de apresentar esses conceitos e clarificar

nossos objetivos, precisamos estabelecer algumas definigoes e notacoes.

Primeiramente, lembramos que, de maneira natural, podemos definir F'(X;G) como a
dalgebra G-graduada associativa livre unitdria livremente gerada por Xg = UgeqX,y, onde
X, = {af,29,...} s@o conjuntos enumeraveis disjuntos de varidveis ndo comutativas, com
g € G. Dada uma &lgebra graduada A = P,cqA,, um elemento f = f(z]*,... zh")
de F(X;G) é uma identidade polinomial G-graduada de A se f(ai,...,a,) = 0, para todo
ar € Ag, .- an € Ay, . O conjunto de todas as identidades polinomiais G-graduadas de A
serd denotado por Idg(A). E bem conhecido que Idg(A) é um T -ideal (ou um T'-ideal graduado)
de F(X; @), isto é, Idg(A) é um ideal graduado, estével sob todos endomorfismos G-graduados
de F(X;G). Lembramos que o chamado caso ordindrio corresponde & G = {1¢}. Finalmente,
se uma algebra G-graduada A satisfaz uma identidade polinomial ordindria nao-trivial (isto é,
se existe um polindomio nao nulo f(xy,...,x,) € F(X) tal que f(ay,...,a,) = 0, para todo

a; € A), entao A é chamada uma Pl-dlgebra G-graduada.

Fixado um Tg-ideal I de F(X; G), é interessante e 1til coletar todas as dlgebras G-graduadas
A satisfazendo I C Idg(A). Para este fim, definimos a variedade de dlgebras G-graduadas V<,
determinada por I, como V¢ := VY (I) = {A | I C Idg(A)} e denotamos seu Ti-ideal I como
Idg(VE). Se A é uma dlgebra G-graduada tal que Idg(VY) = Idg(A), entdao dizemos que a
variedade V¢ é gerada por A e escrevemos V¢ = varg(A). As variedades exploradas ao longo dos
capitulos desta tese serao aquelas geradas por uma Pl-algebra G-graduada finitamente gerada.
Tais variedades serdo chamadas de posto finito. Lembramos que, como foi mostrado em [5],

sobre corpos algebricamente fechados de caracteristica zero qualquer variedade de dlgebras G-
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graduadas de posto finito é gerada por uma Pl-algebra G-graduada de dimensao finita, quando
G é um grupo finito. Tal fato também foi provado, independentemente, em [33] para grupos

abelianos finitos.

Dentre os elementos da élgebra livre F(X;G), os chamados polinémios multilineares mere-
cem um destaque especial em virtude de suas aplicabilidades na solucao de varios problemas
da Pl-teoria. E bem conhecido que, sobre corpos de caracteristica zero, o Tg-ideal Idg(A)
de uma algebra graduada A é completamente determinado pelos polindomios multilineares que
ele contém. Alguns exemplos de polindmios multilineares sao os polinomios de Capelli e os
polinomios standard, os quais serao utilizados ao longo deste trabalho. Dada uma algebra gradu-

ada A e um inteiro n > 1, se consideramos P% como o F-espaco vetorial gerado pelos polinomios
G

multilineares de grau n de F'(X; G), entao o inteiro nado-negativo ¢S

N Dy
(A) = dlmpm mede
o crescimento das identidades polinomiais G-graduadas de A. Tal inteiro é chamado n-ésima

codimensao G-graduada de A.

No caso em que A é uma PIl-dlgebra G-graduada, {c%(A)},>; é limitada exponencialmente
([28]) e, nesta situagao, definimos exps(A) = 7}1—{20 VG (A) como o G-expoente de A. Em
2011, Aljadeff, Giambruno e La Mattina provaram que o G-expoente existe e é um inteiro
nao-negativo, quando A é uma algebra G-graduada de dimensao finita sobre um corpo algebri-
camente fechado de caracteristica zero (veja [2]). Além disso, neste caso, eles apresentaram um
método de como calcular o G-expoente de A. Mais precisamente, considere a generalizacao da
decomposicao de Wedderburn-Malcev de A, dada por A = A;®---®A,,+J(A),onde Ay,... A,
sao F-algebras G-simples e J(A), o radical de Jacobson de A, é um ideal graduado. Entao, o G-

expoente de A é o nimero ¢ := max dimp(A,, ---®A,,), onde 4,,,..., A, sdo subdlgebras G-
simples distintas do conjunto {Ay, ..., Ay} que satisfazem A,, J(A)A,,J(A)--- A,, | J(A)A,, #
0.

No ambito das variedades V¢ geradas por uma Pl-dlgebra G-graduada A, definimos sua
n-ésima codimensao G-graduada e seu G-expoente como sendo, respectivamente, a n-ésima
codimensdo G-graduada e o G-expoente de A. Em outras palavras, ¢¢ (V%) = c¢(A), para
todo n > 1, e expg(VY) := exps(A). Em particular, neste trabalho, estamos interessados em
estudar as variedades V¢ de Pl-dlgebras G-graduadas de posto finito tais que exp, (V%) = d e
para toda subvariedade prépria U de V¢ é valido que expq(UY) < d. Essas variedades sao

chamadas minimais de G-expoente d.

Em relagao ao caso ordinério, em [27], Giambruno e Zaicev mostraram que uma variedade V
de posto finito, de um dado expoente, é minimal se, e somente se, V é gerada por uma algebra
de matrizes bloco triangular superior UT(dy,...,d,,), de tamanho dy,...,d,. Ainda, neste

mesmo artigo, os autores provaram que o T-ideal de UT'(dy, ..., d,,) satisfaz a propriedade de

Xiv



fatorabilidade, ou seja, Id(UT(dy, . .., d,,)) se decompoe em
IAUT(d,, ..., dy)) = 1d(My,) - - 1d(Mj, ).

Vale enfatizar que a fim de obter a decomposicao acima, os autores aplicaram os significantes
resultados desenvolvidos por Lewin em [30]. Tais resultados sao considerados os passos cruciais
na investigacao do T-ideal de identidades polinomiais de algebras de matrizes bloco triangulares

superiores.

A propriedade de fatorabilidade é também um problema relevante quando consideramos
algebras com algumas estruturas adicionais. Por exemplo, para dlgebras com involugao, Di
Vincenzo e La Scala obtiveram interessantes resultados sobre a propriedade de fatorabili-
dade relacionada aos T,-ideais de algumas algebras de matrizes bloco triangulares superiores
UT.(Ay,...,A,), onde Ay, ..., A, sao algebras #-simples de dimensao finita (veja [20]).

Para um grupo ciclico finito G e dada uma m-upla (4;,...,A,,) de algebras G-simples
de dimensao finita, consideramos a algebra de matrizes bloco triangular superior G-graduada
UTg(Ay, ..., Ay), munida de uma graduacao elementar. Neste trabalho, estamos interessados
em explorar a propriedade de fatorabilidade relacionada ao Tg-ideal 1dg(UTg(Ag, ..., Ap)).
Mais precisamente, pretendemos estabelecer condi¢oes necessarias e suficientes a fim de obter
que o Tg-ideal Idg(UTg (A1, ..., Ap)) se fatore em

da(UTa(Ar, . .., Ay)) = Ide(A) - - Idg(Ay).

Destacamos que o conceito de G-reqularidade, introduzido por Di Vincenzo e La Scala em
[19], é uma importante ferramenta conectada a fatorabilidade do T-ideal de UTg( Ay, ..., Am)-
Este conceito esta relacionado a subélgebras graduadas B de algebras de matrizes (munidas
de graduagoes elementares) e leva em conta aplicagoes adequadas definidas sobre algebras
genéricas G-graduadas associadas a B, bem como todos os elementos do grupo GG. No mesmo
artigo, no caso em que G é um grupo abeliano finito e A1 C (My,, 1), Az C (My,, as) sdo
subalgebras graduadas, os autores provaram que se uma das algebras A; e Ay é G-regular, entao
lde(UTg (A1, As)) = 1dg(Ar)Ide(A2). Além disso, se o grupo G tem ordem prima, eles estab-
eleceram que o T-ideal Idg(UTg (Mg, My,)) é fatoravel se, e somente se, uma das dlgebras My,
ou My, é G-regular. Enfatizamos que os resultados de Lewin, dados em [30], foram essenciais
na obtengao destas afirmacoes. Ademais, vale dizer que a G-regularidade tem sido explorada

em muitos trabalhos recentes (veja, por exemplo, [7, 12, 15, 16, 23]).

No caso em que G = Cy, um grupo ciclico de ordem 2, e Ay, ..., A, sao adlgebras G-simples
de dimensao finita, a fatorabilidade dos Tg-ideais Idg(UT¢ (A1, ..., Ay)) foi desenvolvida, em
[7], por Avelar, Di Vincenzo e da Silva. Foi provado que o Tg-ideal Idg(UTg (A1, ..., An))
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é fatoravel se, e somente se, existe no maximo um indice i € {1,...,m} tal que A; é uma
superalgebra simples nao-G-regular. Além disso, eles mostraram que tais afirmacoes sao equiv-
alentes a existéncia de uma tnica classe de isomorfismo de G-graduagoes para UTg(Ay, ..., Ap).

Nesta tese, generalizamos as equivaléncias acima, obtendo as afirmacoes similares para o
caso em que G é um p-grupo ciclico, onde p é um primo arbitrario. Mais precisamente, provamos

o seguinte resultado:

Teorema A. Seja p um numero primo e seja G um p-grupo ciclico. Dadas dlgebras G-simples
de dimensao finita Ay, ..., Ay, considere A = UTg(Aq, ..., An). As sequintes afirmacgoes sao

equivalentes:
(1) O Tg-ideal de A € fatordvel;

(11) Existe no mdzimo um indice £ € {1,...,m} tal que Ay € uma dlgebra G-simples nao-G-

reqular;
(i19) Ewxiste uma unica classe de isomorfismo de G-graduagoes para A.

Destacamos que, para obter o teorema acima, aplicamos técnicas diferentes daquelas empre-
gadas no caso Cy. Um papel crucial é desempenhado pelos subgrupos invariantes Hg) relaciona-
dos as dlgebras G-simples A; que aparecem nos blocos diagonais de (UT'(A4,...,A,),a). Na
sequencia, diremos algumas palavras sobre a G-regularidade e sua conexao com os subgrupos
invariantes.

Primeiramente, em [19], Di Vincenzo e La Scala caracterizaram as dlgebras de matrizes
(My, o) que sao G-regulares através de propriedades relacionadas as aplicagbes a. Mais pre-
cisamente, é vélido que (M, ) é G-regular se, e somente se, existe ¢ € N* tal que w,(h) = ¢,
para todo h € G. Além disso, eles obtiveram uma caracterizacao das superalgebras simples
Cy-regulares, mostrando que My, é Cy-regular se, e somente se, k = [, enquanto M, (F & cF)
é Cy-regular, para todo n > 1.

Para qualquer grupo ciclico finito G, uma vez que estamos considerando cada &algebra G-
simples de dimensao finita como uma subalgebra graduada de uma algebra de matrizes mu-
nida de uma graduagao elementar, propomos caracterizar as dlgebras G-simples G-regulares
de dimensao finita. Acontece que, neste caso, estabelecemos uma interessante conexao entre
tais algebras G-regulares e os subgrupos invariantes. Mais precisamente, provamos que uma
algebra G-simples de dimensao finita, sobre um corpo algebricamente fechado, é G-regular se,
e somente se, o subgrupo invariante relacionado a essa algebra G-simples coincide com o grupo
G.

Como consequéncia desta caracterizacao, obtemos importantes resultados quando lidamos

com as algebras de matrizes bloco triangulares superiores G-graduadas (UT(Ay, ..., Any), @).
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Em particular, se G é um p-grupo ciclico, com p sendo um nimero primo, provamos que a
G-regularidade de A, ou A, é equivalente a Hgl)Hg)) = (G. Mais ainda, estabelecemos interes-
santes e tuteis relacoes entre os subgrupos invariantes ’Hg), a existéncia de uma unica classe de
isomorfismos de G-graduagoes para UT (A1, ..., A,) e os Tg-ideais indecomponiveis associados
as identidades polinomiais G-graduadas de UTg(Aq, ..., A,,). Consequentemente, tais fatos se
revelaram como pontos cruciais para concluir nossos resultados principais sobre a propriedade

de fatorabilidade de Idg(UTg(Aq, ..., An)), no caso em que G é um p-grupo ciclico.

Contudo, se o grupo ciclico finito G' nao é um p-grupo, entao as equivaléncias relacionadas
a propriedade de fatorabilidade dos Tg-ideais Idg(UTg(Aq, ..., Ay)), descritas anteriormente,
nao sao mais necessariamente validas. Mais precisamente, construimos uma adequada algebra
de matrizes bloco triangular superior G-graduada A = (UT(A;, As), @) tal que Idg(A) é fa-
toravel, mas com ambas A; e Ay nao sendo algebras G-simples G-regulares. Acontece que
embora essas dlgebras nao sejam G-regulares, elas pertencem a uma nova classe de subdlgebras
graduadas de (My, «), a saber, as subdlgebras graduadas a-regulares. Tal conceito generali-
za a definicao de subdlgebras graduadas G-regulares, ja que também consideramos aplicagoes
adequadas definidas sobre algebras genéricas G-graduadas, mas associadas aos elementos per-
tencendo a imagem de « (a0 invés de estarem necessariamente associadas a todos os elementos
de G). Neste contexto, assumindo que G é um grupo ciclico finito, estabelecemos que qualquer
algebra G-simples de dimensao finita (a qual é uma subdlgebra graduada de (M, a)) é a-
regular se, e somente se, a imagem de a coincide com uma classe lateral do subgrupo invariante
relacionado a essa algebra G-simples em G. Além disso, estabelecemos condi¢oes necessarias e
suficientes a fim de obter que o Ti-ideal Idg(UT¢ (A1, Ay)) é fatoravel, no caso em que G é um

grupo ciclico finito e as dlgebras G-simples A; e Ay sao a;-regular e ap-regular, respectivamente.

Voltando a nossa discussao sobre as variedades minimais e as algebras de matrizes bloco tri-
angulares superiores (G-graduadas, vamos pontuar algumas observacoes e resultados. Como ja
mencionamos anteriormente, no caso ordinario, qualquer variedade minimal de PI-4lgebras asso-
ciativas sobre F', de posto finito, com um dado expoente, é gerada por uma algebra de matrizes
bloco triangular superior UT'(dy,. .. ,d,,), e a reciproca ¢ verdadeira (veja [27]). Recentemente,
em [17], para G sendo um grupo de ordem prima, Di Vincenzo, da Silva e Spinelli provaram
que uma variedade de Pl-dlgebras G-graduadas de posto finito é minimal de G-expoente d
se, e somente se, ela é gerada por uma algebra G-graduada UTg(Aq,. .., A,,) satisfazendo
dimp(A; @ -+ ® A,,) = d, onde Ay, ..., A, sdo élgebras G-simples de dimensao finita. Para

algebras munidas de outras estruturas adicionais veja, por exemplo, [18] e [20].

No caso em que G é um grupo ciclico finito, seja V¢ uma variedade de PIl-algebras G-
graduadas associativas sobre F, de posto finito, de um dado G-expoente d. Nesta tese,

mostramos que se V¢ é minimal, entdo ela é gerada por uma algebra de matrizes bloco trian-
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gular superior G-graduada UTg(A4, ..., A,) adequada satisfazendo dimp(A4A; @ --- B A,,) = d,
onde Ay,..., A, sao dlgebras G-simples de dimensao finita. Por outro lado, dada uma m-upla
(A1,...,A,) de dlgebras G-simples de dimensao finita e considerando A = UTg(Aq, ..., An),

resta provar a reciproca do resultado acima. Neste texto, estabelecemos o seguinte resultado:

Teorema B. Seja G um grupo ciclico finito. Dadas dlgebras G-simples de dimensao finita
Ay, ... Ay, considere A = UTg(Ay, ..., Ap). Assuma que pelo menos uma das sequintes

propriedades € valida:
(1) m=1 ou2;

(17) existe £ € {1,...,m} tal que o subgrupo invariante relacionado a dlgebra G-simples A, €

{10};

(17i) os subgrupos invariantes relacionados as dlgebras G-simples Ay, ..., Ap sao todos (exceto

para no mdxrimo um) iguais a G.

Entao varg(A) é minimal com expg(A) = dimp(A; & -+ © Ay).

Ainda, assumindo pelo menos uma das condic¢oes acima, concluimos também que quaisquer
duas algebras de matrizes bloco triangulares superiores G-graduadas, munidas de graduacoes
elementares, sao G-isomorfas se, e somente se, elas satisfazem as mesmas identidades poli-
nomiais G-graduadas. Neste sentido, contribuimos com o problema do isomorfismo no con-
texto da Pl-teoria. Mais pesquisas relacionadas a este problema podem ser encontradas em
3, 8, 14, 17, 18, 24, 29].

Observamos que obter tais resultados anteriormente citados significa dar um passo impor-
tante no estudo das variedades minimais de Pl-algebras G-graduadas, de posto finito, com G
sendo um grupo abeliano finito arbitrario. Além disso, vale mencionar que para alcancar essas
afirmacoes, uma ferramenta crucial usada sao os chamados polinomios de Kemer associados as
algebras UTg (A, ..., Ay). Esses polinomios desempenham um papel importante na Pl-teoria
(veja, por exemplo, [4, 5, 17]).

Esta tese estd estruturada por meio de cinco capitulos. No Capitulo 1, assumimos que G
é um grupo abeliano finito e lembramos alguns dos principais topicos associados a teoria das
algebras satisfazendo identidades polinomiais. Comecamos definindo algebras G-graduadas e
exibindo alguns exemplos. Em especial, construimos cuidadosamente a algebra de matrizes
bloco triangular superior G-graduada UTg (A, ..., Ay), onde Ay, ..., A, sdo subdlgebras gra-
duadas de algebras de matrizes munidas de graduagoes elementares. Além disso, apresentamos
a definicao dos Tg-ideais de identidades polinomiais G-graduadas, as codimensoes G-graduadas,

o G-expoente, as variedades minimais e as algebras G-graduadas minimais.
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No Capitulo 2, também assumimos que o grupo GG é abeliano finito e lembramos a definicao
de G-regularidade e fatorabilidade dos Tg-ideais Idg(UTg(Aq, ..., Ay)), onde Ay, ..., A, séo
subdlgebras graduadas de algebras de matrizes munidas de graduacoes elementares. Além disso,
investigamos a propriedade de fatorabilidade quando lidamos com algebras de matrizes bloco
triangulares superiores G-graduadas tendo dois blocos, no caso em que A; e Ay sdo subdlgebras
graduadas de algebras de matrizes munidas de graduagoes elementares. Feito isso, introduzi-
mos as subdlgebras graduadas a-regulares de uma algebra de matrizes (M, a) e o conceito de
subgrupos invariantes. Finalizamos este capitulo relacionando as dlgebras de matrizes (Mj, «)

que sao a-regulares com os seus subgrupos invariantes.

No Capitulo 3, assumimos que G é um grupo ciclico finito. A primeira secao deste capitulo
¢ dedicada a caracterizagao das F-algebras G-simples de dimensao finita como subdalgebras gra-
duadas de dlgebras de matrizes munidas de apropriadas graduacoes elementares. Na sequéncia,
estabelecemos interessantes condicoes necessarias e suficientes a fim de existir um isomorfismo
graduado entre duas tais algebras G-simples, bem como importantes resultados técnicos rela-
cionados a elas. Finalmente, abordamos a nocao de G-regularidade e a-regularidade quando
associadas as algebras G-simples de dimensao finita, e também conectamos tais conceitos com

os subgrupos invariantes.

O Capitulo 4 tem como objetivo apresentar um dos principais resultados desta tese. Mais
precisamente, aquele que estabelece condigoes necessarias e suficientes para a fatorabilidade
do Tg-ideal 1dg(UTg(Ay, ..., Ay)), no caso em que G é um p-grupo ciclico, com p sendo um
numero primo, e Ay, ..., A,, sao algebras G-simples de dimensao finita. Apresentamos algumas
condigoes suficientes para a existéncia de uma tnica classe de isomorfismo de G-graduagoes para
UTg(Ay, ..., Ap), bem como para Idg(UTg(A4, ..., Ay)) ser indecomponivel. Tais condigoes
estao intimamente ligadas com os subgrupos invariantes relacionados aos blocos G-simples
Ay, ..., A,,. Finalizamos este capitulo discutindo a propriedade de fatorabilidade dos T-ideais
Idg(UTg(Aq, As)), no caso em que G nao é necessariamente um p-grupo ciclico, e as édlgebras

G-simples A; e Ay sdo aj-regular e as-regular, respectivamente.

No Capitulo 5, o grupo G é ciclico finito e exploramos as variedades minimais de PI-algebras
G-graduadas associativas sobre F', de posto finito, com um dado G-expoente. Na primeira se¢ao,
estabelecemos que tais variedades minimais sao geradas por algebras de matrizes bloco triangu-
lares superiores G-graduadas adequadas. Nas se¢oes seguintes, introduzimos os polinomios de
Kemer para as dlgebras UTg(Ay, ..., Ay). Além disso, usando tais polindmios, estabelecemos

importantes propriedades estruturais entre duas algebras de matrizes bloco triangulares supe-

riores G-graduadas. Finalmente, concluimos que varg(UTg(Aq, ..., Ayn)) € minimal, quando a
algebra UT (A4, ..., A,,) satisfaz pelo menos uma das importantes condigoes dadas por (7), (i)
ou (iii).
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Nas Consideracoes Finais, apresentamos uma revisao geral de alguns dos principais resulta-
dos abordados ao longo desta tese. Em particular, destacamos a caracterizacao das algebras G-
simples de dimensao finita, a propriedade de fatorabilidade do Tg-ideal Idg(UTg(Aq, ..., An)),
no caso em que G é um p-grupo ciclico, e as afirmagoes obtidas quando trabalhamos com
as variedades minimais de PIl-algebras G-graduadas associativas, de posto finito. Além disso,
dedicamos esta parte final para discutir sobre alguns resultados cuja demonstracao foi feita,
nesta tese, diferentemente daquela apresentada em [22]; mencionando ainda outros resultados
obtidos em [22].
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Introduction

In the last decades, the study of the algebras satisfying polynomial identities, namely PI-
algebras, has been developed on a large scale. There is a growing number of researches involving
such algebras, which explicite the importance of this theory in the mathematical ambit. In this
sense, the results present in this thesis contribute, in a positive way, with the works in the area
of algebra and, particularly, with those concerning to Pl-algebras. It is important highlighting
that these results were developed in a joint work with my doctoral advisor, Professor Viviane
Ribeiro Tomaz da Silva, and with Professor Onofrio Mario Di Vincenzo (Universita degli Studi
della Basilicata - Italy).

Let F' be an algebraically closed field of characteristic zero and consider G a finite cyclic
group. Throughout this work, all the F-algebras are assumed to be associative. We dedicate
the first part of this thesis to studying the factoring property associated to the Tg-ideals of G-
graded polynomial identities satisfied by the G-graded upper block triangular matrix algebras
UTg(Ag, ..., Ap), where Ay, ... A, are finite dimensional G-simple algebras over F. Our
results obtained in this part have already been published and can be found in [22].

Secondly, the present work is devoted to exploring the varieties of associative G-graded
Pl-algebras over F, of finite basic rank. More precisely, we propose to describe those varieties
which are minimal, of a given G-exponent, by means of suitable generating algebras related to
upper block triangular matrix algebras. On the other hand, by imposing some extra conditions
on UTg(Ay, ..., Ap), we prove that such G-graded upper block triangular matrix algebras
generate minimal varieties. The results obtained in this part are in the paper [31] submitted
for publication.

In this introduction, we give the main definitions related to the Pl-theory, as well as the
notations which will be used along this text. We contextualize the topics addressed, giving
more details about our main aims and their relevance, and we discourse regarding the study
tools employed. We finish this introduction listing the subjects covered in each chapter of this

thesis.

Let A be an associative algebra over a field F' of characteristic zero and G be a finite

abelian group. We say that A is a G-graded algebra if A = @yeqA, (direct sum as vector
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space), where, for each g € G, A, is a vector subspace of A, and A;A, C Ay, for all g, h € G.
Each subspace Ay is called a graded component of degree g of A. Moreover, an element a € A,
is said to be homogeneous of degree g and its degree is denoted by |a|4. When the graded
algebra A is unitary and all its non-zero homogeneous elements are invertible, we say that A is
a graded skew field. A subalgebra (vector subspace, ideal, respectively) V' of a G-graded algebra
A which admits the decomposition V' = @ ,c(V N A,) is called a graded subalgebra (graded
vector subspace, graded ideal, respectively) of A. It is notorious the relevance of the graded
algebras in researches over the last 20 years (see, for instance, [1, 5, 9, 10, 29, 32]). Given
two graded algebras A = @Ay and B = @yeq By, if there exists an algebra isomorphism
¢ : A — B such that p(Ay) = B,, for all g € G, then we say that A is graded-isomorphic to B,
in other words, A and B are isomorphic like G-graded algebras.

An important and well known algebra which we deal in this thesis is the k x k matrix
algebra My(F') over F, shortly denoted by M. We endow it with a suitable grading, namely,
an elementary grading in the following way: fixed a k-tuple § = (g1,...,9x) € GF¥, such
grading consists in defining, for each h € G, (My,), := spang{e;; | g; 'g; = h}, where, for each
i,j €{1,...,k}, e;; denotes the (i, j)-matrix unit of Mj. Notice that, for each i,j € {1,... ,k},
the matrix unit e;; is homogeneous with degree g, ! gj. On the other hand, in [13], it was proved
that if the matrix units e;; are homogeneous, for all 7,57 € {1,...,k}, then the G-grading on
M. is elementary. It is worth mentioning that in case F' is an algebraically closed field, the
elementary gradings are essential in the classification of all G-gradings of M (see [9]). Still,
any elementary grading on the matrix algebra M}, is induced by a map « : {1,...,k} — G,
if we define |e;;|a, = (i) ta(j), for all 4,5 € {1,...,k}. Here, the notation (M, «) indicates
that the algebra M, is equipped with the elementary grading induced by the map «. Finally,
given the matrix algebra (M, «), we set the weight map w, : G — Nas wq(h) :=[{i |1 <i <

k, (i) = h}|, and the invariance subgroup, related to (Mg, a), as
Ho :=1{h € G | wa(hg) = wa(g), forall ge G}.

Such subgroup was introduced by Di Vincenzo and Spinelli, in [24], and it is a crucial tool
throughout our work.

We highlight that, when F' is algebraically closed, the matrix algebras M are the unique
finite dimensional simple algebras, up to isomorphism. Regarding to G-graded context, we say
that a G-graded algebra A is G-simple if A% # 0 and A has no non-trivial graded ideals. Even
in this case, the matrix algebras also play a fundamental role in the classification of the finite
dimensional G-simple F-algebras, where F' is an algebraically closed field. More precisely, in
[10], Bahturin, Sehgal and Zaicev by working in a context general, obtained for finite abelian

groups that any finite dimensional G-simple F-algebra is graded-isomorphic to a G-graded
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algebra given by a tensor product of M, and a graded skew field.

Furthermore, we remark that the previously classification can be rewritten when we are
dealing with some particular groups. For instance, if F' is an algebraically closed field and
G = Cy, a cyclic group of order 2, in [35], it is proved that the finite dimensional G-simple

F-algebras (also known as the simple superalgebras) are, up to graded isomorphism, equal to:

A B
(Z) Mk’liz (C’ D ,Wh@I‘GkZZlZO,k%O,AEM]C,DGM[,BEkalaDdCEMle,

(it) M,(F@cF), where ¢ = 1, with the grading (M,,(F ®cF))y := M, and (M, (F ®cF)), :=
cM,,.

It is worth saying that, in both above cases, as we will explicit in Section 1.1, we can see
such simple superalgebras as graded subalgebras of matrix algebras endowed with an elementary
grading. Still, by assuming that the field F is algebraically closed, we also have a description
of the finite dimensional G-simple F-algebras, when G is a group of prime order p (see [21]).

In this thesis, we generalize such results for the case G = C,,, a finite cyclic group of order
n, by exhibiting a characterization of the finite dimensional G-simple F-algebras seen as graded
subalgebras of matrix algebras endowed with elementary gradings. Furthermore, by applying
results of Aljadeff and Haile, presented in [3], we establish nice conditions in order to obtain a
graded isomorphism between these GG-simple algebras.

At this moment, dealing in a more general context, given graded subalgebras Ay, ..., A,
of matrix algebras (My,,a1), ..., (Mg, , o), respectively, consider the upper block triangular
matrix algebra UT (A, ..., Ay). Naturally, we endow such algebra UT(Aq, ..., A,,) with the
elementary G-grading a obtained by gluing the given elementary gradings o, ..., a,,, and
we will write the G-graded algebra obtained in this way as (UT(A4, ..., A,), &) or simply by
UTg(Aq, ..., Ap).

The upper block triangular matrix algebras appear in several works, being a significant
object of study for many researchers. For instance, Valenti and Zaicev proved that, up to
graded isomorphism, all the G-gradings of the algebra UT(F, ..., F) are, actually, elementary
G-gradings (when G is an any group, not necessarily finite and abelian, and F' is an any field)
(see [34]). Recently, in [11], Borges and Diniz described the G-gradings of suitable upper block
triangular matrix algebras, in case G is an abelian group (not necessarily finite) and F' is an
algebraically closed field of characteristic zero. This description also involves the elementary

gradings. Moreover, in [36], Yasumura studied the G-gradings on the algebra of upper block
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triangular matrices, when G is an any group (not necessarily finite and abelian) and F' is a field

of characteristic either zero or large enough, not necessarily algebraically closed.

Let F' be an algebraically closed field of characteristic zero. By assuming that the group
G is finite cyclic and considering our description of each finite dimensional G-simple F-algebra
A; as a graded subalgebra of a matrix algebra endowed with elementary grading, in this thesis,
we focus our studies on the algebras UT(Aq, ..., A,,). In particular, we propose to investigate
properties related to the set of all G-graded polynomial identities satisfied by UTg(Aq, ..., An).
In order to present these concepts and to clarify our aims, we need to establish some definitions

and notations.

Firstly, we recall that, in a natural way, we can define F'(X;G) as the unitary free as-
sociative G-graded algebra freely generated by Xg := Ugeg Xy, where X, = {zf{,23,...} are
disjoint countable sets of non-commutative variables, with ¢ € G. Given a graded algebra
A = @yecAy, an element f = (i, ahim) of F(X;G) is a G-graded polynomial identity of
Aif flay,...,a,) =0, for allay € Ay, ,...,a, € Ay, . The set of all the G-graded polynomial
identities of A will be denoted by Idg(A). It is well known that Idg(A) is a Tz-ideal (or a graded
T-ideal) of F(X;G), that is, Id(A) is a graded ideal, stable under all G-graded endomorphism
of F(X;G). We recall that the so-called ordinary case corresponds to G = {1¢}. Finally, if a
G-graded algebra A satisfies a non-trivial ordinary polynomial identity (that is, if there exists
a non-zero polynomial f(z1,...,2,) € F(X) such that f(ai,...,a,) =0, for all a; € A), then
A is called a G-graded Pl-algebra.

Fixed a Tg-ideal I of F(X; G), it is interesting and useful to collect all the G-graded algebras
A satisfying I C Idg(A). To this end, we set the variety of G-graded algebras V¢, determined
by I, as V¢ :=VE(I) = {A | I C1dg(A)} and we denote its Tg-ideal I as Idg(VE). If A is a
G-graded algebra such that Idg(V%) = Idg(A), thus we say that the variety V¢ is generated
by A and we write V¢ = varg(A). The varieties explored along the chapters of this thesis will
be those generated by a finitely generated G-graded Pl-algebra. Such varieties will be called of
finite basic rank. We recall that, as shown in [5], over algebraically closed fields of characteristic
zero any variety of G-graded algebras of finite basic rank is generated by a finite dimensional
G-graded Pl-algebra, when G is a finite group. Such fact also was proved, independently, in
[33] for finite abelian groups.

Among the elements of the free algebra F(X;G), the so-called multilinear polynomials
deserve a great prominence due to their applicability in the solution of several problems of the
Pl-theory. It is well known that, over fields of characteristic zero, the T-ideal Idg(A) of a
graded algebra A is completely determined by the multilinear polynomials it contains. Some
examples of multilinear polynomials are the Capelli polynomials and the standard polynomials,

which will be used throughout this work. Given a graded algebra A and an integer n > 1, if
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we consider P¢ as the F-vector space spanned by the multilinear polynomials of degree n of
G

F(X;G), then the non-negative integer ¢/ (A) := dimpff%im) measures the growth of the
G-graded polynomial identities of A. Such integer is called nth G-graded codimension of A.

In case A is a G-graded Pl-algebra, {cS(A)},>; is exponentially bounded ([28]) and, in this
situation, we define exp,(A) := nh_)rrolo VG (A) as the G-ezponent of A. In 2011, Aljadeff, Gi-
ambruno and La Mattina proved that this G-exponent exists and is a non-negative integer, when
A is a finite dimensional G-graded algebra over an algebraically closed field of characteristic zero
(see [2]). In addition, in this case, they presented a method of how to calculate the G-exponent
of A. More precisely, consider the generalization of the decomposition of Wedderburn-Malcev
of A, givenby A=A ®--- DA, +J(A), where Ay, ..., A, are G-simple F-algebras (need not
be ideals in A) and J(A), the Jacobson radical of A, is a graded ideal given by a direct sum
of vector spaces. Thus, the G-exponent of A is the number ¢ := max dimp(4,, ®--- & 4,,),
where A, ,..., A, are distinct G-simple subalgebras of the set {A4;,...,A,,} which satisfy
A J(A)ALJ(A)--- A, J(A)A,, #0.

Within the scope of the varieties V¢ generated by a G-graded Pl-algebra A, we define
its nth G-graded codimension and its G-exponent as being, respectively, the nth G-graded
codimension and the G-exponent of A. In other words, ¢¢(VY) := ¢%(A), for all n > 1, and
expa(VY) := expg(A). In particular, in this work, we are interested in studying the varieties
VY of G-graded Pl-algebras of finite basic rank such that exps (V) = d and for every proper
subvariety U% of V¢ it is valid that exp; () < d. These varieties are called minimal of
G-exponent d.

Concerning the ordinary case, in [27], Giambruno and Zaicev showed that a variety V of
finite basic rank, of a given exponent, is minimal if, and only if, V' is generated by an upper block
triangular matrix algebra UT(dy,...,dy,), of size di,...,d,,. In this same paper, they proved
that the T-ideal of UT(dy, ... ,d,,) satisfies the factoring property, that is, Id(UT'(dy, ..., dn))
decomposes into

IA(UT(dy,. .., dw)) =1d(My,)---1d(My,,).

It is worth emphasizing that in order to obtain the above decomposition, the authors applied
the important results established by Lewin in [30]. Such results are considered the crucial steps
in the investigation of the T-ideal of polynomial identities of upper block triangular matrix
algebras.

The factoring property is also a relevant problem when we consider algebras with some
additional structures. For instance, for algebras with involution, Di Vincenzo and La Scala
obtained interesting results about the factoring property related to the T,-ideals of some upper
block triangular matrix algebras UT, (A1, ..., A,,), where Ay, ..., A,, are finite dimensional

x-simple algebras (see [20]).
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For a finite cyclic group G and an m-tuple (Aq, ..., A,,) of finite dimensional G-simple alge-
bras, consider the G-graded upper block triangular matrix algebra UTg(Aq, . .., A,,), endowed
with an elementary grading. In this work, we are interested in exploring the factoring problem
related to the Tg-ideal Idg(UTg(Ay, . .., Am)). More precisely, we intend to establish necessary
and sufficient conditions in order to obtain that the Tiz-ideal Idg(UTg(Ay, . .., Ay)) factorizes
into

Idg(UTg(Ax, ..., Ap)) =1dg(Ar) - - Tdg(An)-

We highlight that the concept of G-regularity, introduced by Di Vincenzo and La Scala in
[19], is an important tool connected to the factorability of the Tg-ideal of UTg(Ay, ..., Am).
This concept is related to graded subalgebras B of matrix algebras (endowed with elementary
gradings) and takes into account suitable maps defined on G-graded generic algebras associated
to B, as well as all the elements of the group . In the same paper, in case G is a finite abelian
group and A; C (My,,aq), As € (My,, as) are graded subalgebras, the authors proved that if
one of Ay and Ay is G-regular, then Idg(UTg (A1, As)) = Idg(A1)ldg(Az). Furthermore, if G
has prime order, they stated that the T-ideal Idg(UTg(Mg,, Mg,)) is factorable if, and only
if, one of the algebras My, or M, is G-regular. We emphasize that the results of Lewin, given
in [30], were essential in obtaining these statements. Moreover, it is worth saying that the
G-regularity has been explored in many recent works (see, for instance, [7, 12, 15, 16, 23]).

In case G = (5, a cyclic group of order 2, and Aq,..., A,, are finite dimensional G-simple
algebras, the factorability of the Tg-ideals Idg(UTg (A4, ..., An)) was developed, in [7], by
Avelar, Di Vincenzo and da Silva. They proved that the T-ideal Idg(UTe(Ay, ..., Any)) is
factorable if, and only if, there exists at most one index i € {1,...,m} such that A; is a non-
G-regular simple superalgebra. Moreover, they obtained that such statements are equivalent
to the existence of a unique isomorphism class of G-gradings for UTg (A1, ..., Ay).

In this thesis, we generalize the above equivalences obtaining the similar ones for the case
G is a cyclic p-group, where p is an arbitrary prime. More precisely, we prove the following

result:

Theorem A. Let p be a prime number and let G be a cyclic p-group. Given finite dimensional
G-simple algebras Ay, ..., Ay, consider A = UTg(Ax, ..., An). The following statements are

equivalent:
(1) The Tg-ideal of A is factorable;

(i7) There exists at most one index ¢ € {1,...,m} such that Ay is a non-G-regular G-simple

algebra;
(14i) There exists a unique isomorphism class of G-gradings for A.
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We highlight that, in order the above theorem, we apply different techniques from those em-
ployed in case Cy. A crucial role is played by the invariance subgroups Hg) related to the finite
dimensional G-simple algebras A; appearing in the diagonal blocks of (UT'(Ay,...,Ay),@). In
the sequel, let us say some words about the G-regularity and its connection with the invariance

subgroups.

Firstly, in [19], Di Vincenzo and La Scala characterized the matrix algebras (M}, o) which
are G-regular through properties related to the maps a. More precisely, (Mg, «) is G-regular
if, and only if, there exists ¢ € N* such that w,(h) = ¢, for all h € G. Also, they obtained a
characterization of the Cy-regular simple superalgebras, showing that M, ; is Cy-regular if, and
only if, k = [, whereas M, (F @& cF’) is Cy-regular, for all n > 1.

For any finite cyclic group G, since we are seeing each finite dimensional G-simple algebra as
a graded subalgebra of a matrix algebra endowed with an elementary grading, we characterize
the finite dimensional G-regular G-simple algebras. It turns out that, in this case, we establish
a connection between such G-regular algebras and the invariance subgroups. More precisely, we
prove that a finite dimensional G-simple algebra, over an algebraically closed field, is G-regular

if, and only if, the invariance subgroup related to this G-simple algebra coincides with the group

G.

As a consequence of this characterization, we obtain important results when we deal with
the G-graded upper block triangular matrix algebras (UT(Aq, ..., Any), @). In particular, if G
is a cyclic p-group, with p being a prime number, we prove that the G-regularity of A, or A, is
equivalent to ’Hg)?{gj el Additionally, we establish interesting and useful relations between
the invariance subgroups Hg), the existence of a unique isomorphism class of G-gradings for
UTg(A4, ..., A,) and the indecomposable Tg-ideals associated to the G-graded polynomial
identities of UTg(Ay, ..., Am). Consequently, such facts reveal as crucial points to concluding
our main results about the factoring property of Idg(UTg(A4, ..., An)), in case G is a cyclic
p-group.

However, if the finite cyclic group G is not a p-group, thus the equivalences related to
the factoring property of the T-ideals Idg(UTg(Ay, ..., Am)), described above, are no longer
necessarily valid. More precisely, we build a suitable G-graded upper block triangular matrix
algebra A = (UT' (A1, As), @) such that Idg(A) is factorable, but with both A; and A not being
G-regular G-simple algebras. It turns out that although these algebras are not G-regular, they
belong to a new class of graded subalgebras of (M, ), namely, the a-reqular graded subalgebras.
Such concept generalizes the definition of G-regular graded subalgebras, once we also consider
suitable maps defined on G-graded generic algebras but associated to the elements belonging
to the image of a (instead of being necessarily associated to all the elements of G). In this

context, by assuming that G is a finite cyclic group, we obtain that any finite dimensional
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G-simple algebra (which is a graded subalgebra of (M, a)) is a-regular if, and only if, the
image of a coincides with a coset of invariance subgroup related to this G-simple algebra in G.
Moreover, we establish necessary and sufficient conditions in order to obtain that the Ts-ideal
Idg(UTg(Aq, Ag)) is factorable, in case G is a finite cyclic group and the G-simple algebras A,
and A are aj-regular and as-regular, respectively.

Coming back to our discussion about the minimal varieties and the G-graded upper block
triangular matrix algebras, let us point out some remarks and results. As we have already
mentioned above, in the ordinary case, any minimal variety of associative Pl-algebras over F,
of finite basic rank, with a given exponent, is generated by an upper block triangular matrix
algebra UT(dy,...,d,), and the reciprocal is true (see [27]). Recently, in [17], for G being a
group of prime order, Di Vincenzo, da Silva and Spinelli proved that a variety of G-graded
Pl-algebras of finite basic rank is minimal of G-exponent d if, and only if, it is generated by a
G-graded algebra UTg(Ay, ..., Ay satisfying dimp(A; @ --- @ A,,) = d, where Aq, ..., A, are
finite dimensional G-simple algebras. For algebras endowed with other additional structures
see, for instance, [18] and [20].

In case G is a finite cyclic group, let V¢ be a variety of associative G-graded Pl-algebras
over F, of finite basic rank, of a given G-exponent d. In this thesis, we show that if V¢ is
minimal, thus it is generated by a suitable G-graded upper block triangular matrix algebra
UTg(Ay, ..., Ay satisfying dimp(A; @ -+ @ A,,,) = d, where Ay, ..., A, are finite dimensional
G-simple algebras. On the other hand, given an m-tuple (A;,..., A,,) of finite dimensional
G-simple algebras and by considering A = UTg (A4, ..., An), remains to prove the reciprocal

of the above result. In this text, we establish the following result:

Theorem B. Let G be a finite cyclic group. Given finite dimensional G-simple F-algebras
Ay, .. Ay, consider A = (UT(Ay,...,Apn),a). Assume that at least one of the following
properties hold:

(1) m=1 or2;

(17) there exists £ € {1,...,m} such that the invariance subgroup related to the G-simple
algebra Ay is {1g};

(131) the invariance subgroups related to the G-simple algebras Ay, ..., Ay, are all (except for

at most one) equal to G.

Then varg(A) is minimal with expg(A) = dimp(A; & -+ B Ap).

Still, under at least one of the above conditions we also conclude that any two G-graded up-

per block triangular matrix algebras, endowed with elementary gradings, are graded-isomorphic
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if, and only if, they satisfy the same G-graded polynomial identities. In this sense, we con-
tribute to the isomorphism problem in the context of the PI-theory. More research related to
this problem can be found in [3, 8, 14, 17, 18, 24, 29].

We remark that getting such results previously cited means taking an important step in the
study of the minimal varieties of G-graded Pl-algebras, of finite basic rank, with G being an
arbitrary finite abelian group. Moreover, it is worth mentioning that in order to obtain these
statements, a crucial tool used are the so-called Kemer polynomials associated to the algebras
UTg(Aq, ..., Ay). These polynomials play an important role in Pl-theory (see, for instance,
[4, 5, 17]).

This thesis is structured by means of five chapters. In Chapter 1, we assume that G is a finite
abelian group and we recall some of the main topics associated to the theory of the algebras
satisfying polynomial identities. We start by defining G-graded algebras and by exhibiting
some examples. In particular, we construct carefully the G-graded upper block triangular
matrix algebra UTg(Ay, ..., Ay), where Ay, ..., A, are graded subalgebras of matrix algebras
endowed with elementary gradings. We present the definition of the Tys-ideals of G-graded
polynomial identities, the G-graded codimensions, the G-exponent, the minimal varieties and

the minimal G-graded algebras.

In Chapter 2, we also assume that the group G is finite abelian and we recall the definition
of G-regularity and factorability of the Tg-ideals Idg(UTg(A4, ..., An)), where Ay, ... Ay,
are graded subalgebras of matrix algebras endowed with elementary gradings. Moreover, we
investigate the factoring property when we deal with G-graded upper block triangular matrix
algebras having two blocks, in case A; and Ay are graded subalgebras of matrix algebras
endowed with elementary gradings. That done, we introduce the a-regular graded subalgebras
of a matrix algebra (Mj, «) and the concept of invariance subgroups. We finish the chapter by

relating the matrix algebras (My, o) which are a-regular with their invariance subgroups.

In Chapter 3, we assume that G is a finite cyclic group. The first section of this chapter
is dedicated to the characterization of the finite dimensional G-simple F-algebras as graded
subalgebras of matrix algebras endowed with appropriate elementary gradings. In the sequel,
we establish necessary and sufficient conditions in order to have a graded isomorphism between
two such G-simple algebras, as well as important technical results related to them. Finally, we
approach the notion of G-regularity and a-regularity when associated to the finite dimensional
G-simple algebras, and we also connect such concepts with the invariance subgroups.

Chapter 4 aims to present one of the main results of this thesis. More precisely, it presents
one which establishes necessary and sufficient conditions for the factorability of the T-ideal
Idg(UTg(Aq, ..., Ay)), in case G is a cyclic p-group, with p being a prime number, and

Ay, ..., A, are finite dimensional G-simple algebras. We present some sufficient conditions
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for the existence of a unique isomorphism class of G-gradings for UTg(Aq, ..., Ay), as well as
for Idg(UTg(Ay, ..., Ay)) to be indecomposable. Such conditions are closely connected with
the invariance subgroups related to the G-simple blocks Ay, ..., A,,. We finish this chapter
by discussing the factoring property of the Tg-ideals Idg(UTe (A, As)), in case G is not nec-
essarily a cyclic p-group, and the G-simple algebras A; and Ay are a;-regular and as-regular,
respectively.

In Chapter 5, the group G is finite cyclic and we explore the minimal varieties of associative
G-graded Pl-algebras over F', of finite basic rank, with a given G-exponent. In the first section,
we prove that such minimal varieties are generated by suitable G-graded upper block triangular
matrix algebras. In the following sections, we introduce the Kemer polynomials for the algebras
UTg(Ay, ..., Ap). Furthermore, by using such polynomials, we establish important structural
properties between any two G-graded upper block triangular matrix algebras. Finally, we
conclude that varg(UTg(Ay, ..., Ay)) is minimal, when the algebra UT(Ay, ..., A,,) satisfies
at least one of the important conditions given by (i), (i) or (ii7).

In Final Considerations, we present a general review of some of the main results addressed
throughout this thesis. In particular, we talk about the characterization of the finite dimensional
G-simple algebras, the factoring property of the Ti-ideal Idg(UTg(Ay, ..., Am)), in case G is
a cyclic p-group, and about the statements obtained when we work with the minimal varieties
of associative GG-graded Pl-algebras, of finite basic rank. Moreover, we dedicate this final part
to discussing about some results whose proofs were done, in this thesis, differently from those

presented in [22]; also mentioning other results obtained in [22].
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Chapter 1

Preliminaries and the algebras

UTo(Aq, ..., Am)

Let G be a finite abelian group and let F' be a field of characteristic zero. In this chapter,
we shall give a general review of several concepts related to PI-theory. In particular, we will
present the definition of G-graded F-algebras and we will give some important examples, with
special emphasis on the G-graded upper block triangular matrix algebra UTg (A, ..., An),
where Ay, ..., A, are graded subalgebras of matrix algebras endowed with elementary gradings.
Moreover, we will recall the definition of the Tg-ideal of G-graded polynomial identities, the
sequence of G-graded codimensions and the G-exponent of a GG-graded algebra. Furthermore, we
will introduce the minimal varieties and the minimal G-graded algebras, and we will establish
relevant connections between these concepts. We highlight that, throughout this thesis, all

algebras which we consider are associative and over F.

1.1 G-graded algebras

Firstly, for any positive integers u and v such that u < v, let us define
[u,v] :=={u,u+1,...,0—1,v}.

Given a finite set X, we denote by Sym(X) the symmetric group on X, whose elements are
all bijective functions from X to X. If X = [1,u], for some positive integer u, then we write

Sym(X) = Sym(u).
An algebra A is said to be G-graded if, for each g € G, there exists a vector subspace A, of
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A such that A decomposes into a direct sum of vector subspaces

A=A,

gelG

satisfying
AgA, C Ay, forall g, heG.

For each g € G, we refer to the subspace A, as graded component of degree g of A. In particular,

if G = (Y, a cyclic group of order 2, thus the G-graded algebras are known as superalgebras.

Given a G-graded algebra A = @©4cqA, and an element a of A, then a can be written
uniquely as

a:a91+a92+”'+a9n’

where a,, € A, for every i € [1,n| and ¢; # g; for all i,j € [1,n], with ¢ # j. If a = q, for
some g € (G, then we say that a is homogeneous of degree g. In this case, we denote the degree
of a homogeneous element a = a, € A, by |a|4 and thus |a|4 = g. Denoting by 1¢ the identity
element of G, the G-grading of A is called trivial if A, is equal to zero, for all g # 1. Notice
that every algebra A admits at least the trivial G-grading. Moreover, if A is unitary and all

non-zero homogeneous elements of A are invertible, then A is called a graded skew field.

We define the support of a G-graded algebra A as

Supp(A) :={g € G| A, # 0}.

We remark that, in general, Supp(A) is not a subgroup of G.

If a vector subspace V' of A is of the form

V=@V nAa,),

geG

then we say that V' has a G-grading induced from A and we shall refer to the subspace V'
as G-graded (or, shortly, as graded). Similarly, we define G-graded subalgebras and G-graded
two-sided ideals of A.

Let A = @gecly and B = PgeeBy be two G-graded algebras and ¢ : A — B a homo-
morphism of algebras. We say that ¢ is a homomorphism of G-graded algebras (or a G-graded
homomorphism) if p(A,) C By, for all g € G. In particular, ¢ is said to be a G-graded embed-
ding if ¢ is a G-graded injective homomorphism. Moreover, if ¢ is an isomorphism of algebras
and ¢(A,) = B, for all ¢ € G, then ¢ is called an isomorphism of G-graded algebras (or a

G-graded isomorphism) and, in this case, we say that A is graded-isomorphic to B and we write
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A 2 B. Furthermore, the G-graded homomorphisms ¢ : A — A are called G-graded endo-

morphisms, and the G-graded isomorphisms ¢ : A — A are called G-graded automorphisms of
A.

At this point, we present an important example of G-graded algebra, with a suitable grading,
which will be essential throughout this work. Let My (F') be the k x k matrix algebra over F.
When convenient, such matrix algebra will be simply denoted by My, as well as the vector
space M, x,(F') of all matrices, over F', with u rows and v columns, will be denoted by M, .
Moreover, for each i € [1,u] and j € [1,v], we denote by e;; the (7, j)-matrix unit of M,,,. We
notice that My, = M.

Fixed any k-tuple § = (g1,...,gx) € G*, we define a G-grading on A := M, by setting
Ay, = spang{e;; | g; 'g; = h}, for each h € G.

We refer to this G-grading as an elementary G-grading (or, shortly, an elementary grading).
Note that, by the definition, for each ¢,5 € [1,k], the matrix unit e;; is homogeneous with
degree g; 'g;. Conversely, if all matrix units e;; are homogeneous, then the G-grading on A
is elementary (see [13]). We remark that, any elementary grading on A is induced by a map

a: [1,k] = G, by setting the degree of e;; equal to
a(i)ra(y), foralli,j € [1,k].

In this case, we shall denote the matrix algebra A endowed with the elementary grading induced
by the map « (or by the k-tuple g) as (A, a) (or as (A,g)) and we denote by |al, the degree of

the homogeneous element a in A.

Moreover, we denote by Z, the image of «, that is,
T, = a([1,k]),
and we define the weight map w, : G — N as
we(h) = {1 |1 <i<k, a(i) = h}|.

We remark that w,(h) = 0, when h ¢ Z,,. Hence Z, = {h € G | w,(h) # 0}. Moreover, if there
exists ¢ € N* such that
we(h) = ¢, forall h € Z,,

thus we say that all fibers of the map o are equipotent. Finally, a G-grading of a graded

subalgebra B of M is called elementary if it is the restriction of an elementary G-grading of
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M.

A useful and important class of G-graded algebras studied by several authors are the so-
called G-simple algebras. Given a G-graded algebra A = ©gcq Ay, we say that A is G-simple if
A? # 0 and A has no non-trivial graded ideals. Throughout this work, we will deal with these
algebras in several results.

We remember that, if F' is algebraically closed and G = Cy = {0,1}, a cyclic group of
order 2, thus the finite dimensional G-simple algebras, known as the simple superalgebras, are

graded-isomorphic to one of the following superalgebras (see [35]):

A B
(’L) Mk,lI: (C D ,WherekZlZO,k#O,AGM;{,DEM[,BEMleaDdCEMle,

enaowed w 1t t € gradin = and IM : X
g g w10 0 D R C 0

(it) M,(F@®cF), where ¢* = 1, with the grading (M,,(F ®cF))y := M, and (M, (F ®cF)); :=
cM,.

Notice that the superalgebras involved in this classification can be seen endowed with ele-
mentary gradings. In fact, in case (i), its elementary Cy-grading can be induced by the map
a:[1,k+1] — G such that a(i) =0, if i € [1,k], and «(i) = 1, if i € [k +1,k+1]. On the other
hand, in case (i), it is enough to note that we can see such algebra as a graded subalgebra of
M,, , through the application on the elements of M, (F & cF') to M, ,:

C+cD w— ¢ D ,
D C
where C, D € M,

In case G = C, = {0,1,...,p— 1} is a group of prime order p and the field F is alge-
braically closed, Di Vincenzo, da Silva and Spinelli ([17]) obtained a characterization of the
finite dimensional G-simple F-algebras by applying the results established by Bahturin, Sehgal
and Zaicev, in [9], and assertions stated by Di Vincenzo and Nardozza, in [21]. More precisely,
they defined the following graded subalgebra of M, with the elementary grading induced by
the map « : [1,p] — G such that a(i) =i — 1:

4 do dy - dp72 dpf1 )
dy—1 do - dp—o
D, = : : | do,dy,...,dpy € F
d 4
(\d1 dy -+ d,1 dy J




and proved that any finite dimensional G-simple algebra is graded-isomorphic to one of the

following G-graded algebras:

(1) My with an elementary grading;

(77) the graded subalgebra My (D,) of My, endowed with an elementary grading,

for some positive integer k.

In this thesis, when the group G is a finite cyclic group, we will present a characterization of
the finite dimensional G-simple F-algebras as graded subalgebras of matrix algebras endowed
with some elementary gradings (see Section 3.1).

In the sequel, we will construct, for any m-tuple (Ay,...,A,,) of graded subalgebras of
(Mg,,04), ..., (Mg, , &), the G-graded upper block triangular matrix algebra UTg (A1, ..., An).

Firstly, given the matrix algebras My,,..., My, , let U := UT(dy,...,d,,) be the corres-

ponding upper block triangular matrix algebra, of size di, ..., d,,, that is,
Mdl Mdl Xd2 T Mdl anL
UT(dy, ... dp) = | e e
0 0 e My

m

Let us write any of its elements as blocks (a;;), where 7, j € [1, m] and moreover
aij € My, xa, if 1 <¢<j<manda;; =0y, , otherwise.
iXdj

For each [ € [1,m], let us define

l
No 1= O’ n = ZdL and Bll = [nl—l + 17771]'

=1

Still, fixed 1 < u < v <m, for each i € [1,d,], j € [1,d,], we denote the matrix unit of M, ,
corresponding to the position (7, 7) of the block

Uy, = {(as) € U | ast = Oy, ,,, for all (s,t) # (u,v)},

by

(uw)
E’L] T Enu—1+iy77v—l+j7

where E,, ., ,+; is the (n,—1 +4,1,-1 + j)-matrix unit of M, . By a direct computation
we obtain
(u,0) (/") (u,0")
Eij Ei’j/ - 5Uu’6ji’E¢j/ ) (11)
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where d,,, and ;s is the Kronecker delta.

Now, given an m-tuple (A4, ..., A,,) of graded subalgebras of (My,,a1), ..., (Mg,,, ), we
define

UT(Al,. .. ;Am) = {(aij) eU | ap € Al, l e [1,771] and a;; € Mdixdja 1 <1< j < m}
Let A :=UT(Ay,...,Ay). For every 1 <u < v < m, we set the block
A, =ANU,,.

Assume that each A; is a graded subalgebra of M, with respect to the elementary grading
defined by &;. We define the map «a : [1,7,,] — G as

a(i) = a(i —m-1),

where [ € [1,m] is the unique integer such that ¢ € Bl;. Let us consider in the matrix algebra
M, the elementary grading defined by the map a. Clearly A;; and UT(A,, ..., A,,) are G-
graded subalgebras of (M, , &), for all [ € [1,m] and, moreover, A;; is graded-isomorphic to
the given G-graded subalgebra A; of (My,, a;).

We say that an elementary G-grading E on M, is a-admissible if, and only if, A;; is a
graded subalgebra of (M, , E) for all [ € [1,m| and, moreover, A;; (with the grading induced
by E) is graded-isomorphic to the given G-graded subalgebra A; of (Mg, ;). In this thesis,
we are also interested in describing conditions of the existence of a G-graded isomorphism
between (UT(A4,...,An),a) and (UT(Al,...,Am),E), for any a-admissible grading E, in
case Ay, ..., Ay, are finite dimensional G-simple algebras.

Although the grading a depends strongly on the sequence (aq, ..., &, ), when convenient
we will indicate the G-graded algebra A = (UT(A1, ..., An),a) simply by UTg(Ay, ..., Am).

Given 1 < u < v < m, we denote
A[u’v] = (UT(AU, Ce ,Av), CNM[UW]),

where the map . : [1,1y — Nu—1] — G is defined as (i) = a(nu—1 +1).

1.2 (G-graded polynomial identities and T-ideals

In this section, we present some of the main concepts of the PI-theory which will be used

along this work. In particular, we recall the definition of Tg-ideal of G-graded polynomial
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identities satisfied by G-graded algebras.

Consider disjoint countable sets X, := {z{,23,...} of non-commutative variables, with
g € G. Define X 1= UyeaX, and let F(X;G) be the unitary free associative algebra freely
generated by X¢. The algebra F'(X;G) has a natural G-grading, where the variables from X,
have degree g and the unit of F(X;G) has degree 1 in this G-grading. Given a monomial

9iy i in
m =z, zy? x5 in F(X;G), we define the homogeneous degree of m as
’m‘ — |xgill.gi2 R N
F(X;G) = |T1 Ty nIF(X;G) = 9i10iy i, -

We refer to this algebra as the free G-graded algebra over F'.

Let f = f(z]",...,29") be an element in F(X;G). If the variable x?ij appears once in
each monomial of f, then we say that f is a linear polynomial in x?ij. If f is linear in all its
variables x?il, o, adin we call f a multilinear polynomial of degree n.

We say that f = f(z]",...,z0") € F(X;G) is a G-graded polynomial identity of a G-graded
algebra A = ®gyec A, if

flay,...,;a,) =0, foralla; € Ay, ,...,a, € Ay, .

A G-graded ideal I of F(X;@G) is called a T-ideal (or a graded T-ideal) if I is stable under all
G-graded endomorphism of F/(X;G). Moreover, we define Ids(A) as the set of all the G-graded
polynomial identities satisfied by A, or, in shortly,

Idg(A) ={f € F(X;G) | f is a G-graded polynomial identity for A}.

It follows that Idg(A) is a Tg-ideal of F(X;G) and, once F' is a field of characteristic zero,
similarly to the ordinary case, Idg(A) is completely determined by the multilinear polynomials
it contains. Also, we say that A is a G-graded F-algebra with a polynomial identity (or simply
a G-graded Pl-algebra) if A satisfies a non-trivial ordinary polynomial identity, that is, if there
exists a non-zero polynomial f(xy,...,z,) € F(X) such that f(ai,...,a,) =0, for all a; € A.

In the sequel, we present some definitions related to T-ideals, which can be found in [6]
and [7].

Definition 1.2.1. Let I be a T-ideal of the free graded algebra F'(X; G).

(i) We say that I is a verbally prime Tg-ideal if for any T-ideals I; and I of F/(X;G) such
that I1 1o C I, we have Iy C [ or I, C I.

(73) If there exist Tg-ideals I; # I and Is # I such that I = I11,, then I is called a decompos-

able Tg-ideal. Otherwise, we say that I is indecomposable.



The next step will be to prove that the Tg-ideal Idg(A) is indecomposable whenever A is a
G-simple algebra. To this end, we introduce the definition of verbally prime algebras and, in
the sequel, we characterize such algebras by means of some properties related to the suitable
G-graded ideals.

Let A = ®g4eqA, be a G-graded algebra. We say that A is verbally prime if the T-ideal
Idg(A) is verbally prime. Given a Ti-ideal I of F(X;G), we define

I(A)g = {f(ar,...,a,) | f=flx]*,.. . 2% ) c I and a; € Ay an € Ay, }.

It is clear that I(A)q is a G-graded ideal of A. Furthermore, we notice that I(A)s = 0 if, and
only if, I C Idg(A). Given Tg-ideals I; and I of F(X;G), it holds

LI(A) = I(A)e(A)g. (1.2)

As an immediate consequence of the previous definitions and remarks, we obtain the fol-

lowing;:

Lemma 1.2.2. Let A = ®yeqAy be a G-graded algebra. Then A is verbally prime if, and only
if, for any Tg-ideals I and Iy of F(X;G) such that I,(A)gl2(A)g = 0, we have I,(A)g =0 or
I(A)e =0, or both.

Finally, as an application of the above lemma, we can prove the next statement.

Lemma 1.2.3. Let A = @®ycqAy be a G-simple algebra. Then A is verbally prime. Conse-
quently, Idg(A) is indecomposable.

Proof. Consider I; and Iy Tg-ideals of F/(X;G) such that I1(A)clz(A)e = 0. Assume that
Ii(A)g # 0 and I5(A)e # 0. Since A is G-simple, it follows that [;(A)g = [(A)g = A and
then

0# A? = I1(A)gl2(A)g =0,

which is an absurd. Therefore, I1(A)g = 0 or I3(A)g = 0, and, by invoking Lemma 1.2.2, we
have that A is verbally prime, as desired.

The fact that A is verbally prime is enough to obtain that Idg(A) is indecomposable.

We will see in Example 5.3.3 an indecomposable T-ideal which can not be generated by a
finite dimensional G-simple algebra.

In order to finish this section, we present two results. The first is associated to G-graded
embeddings between finite dimensional G-simple F-algebras and it was stated by O. David, in
[14]. The second establishes an important property involving products of T-ideals related to
algebras A = (UT(Ay, ..., Ay), @) seen in Section 1.1.
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Theorem 1.2.4 (Theorem 1 of [14]). Let G be an abelian group and F be an algebraically
closed field of characteristic zero. Consider two finite dimensional G-simple F-algebras A and
B. There exists a G-graded embedding ¢ : A — B if, and only if, Idg(B) C Idg(A).

Lemma 1.2.5. Let Aq,..., A, be graded subalgebras of (Mg, , ), ..., (M, , &), respectively.
Given A =UTg(Ay, ..., Am) and w > 1 an integer, then for any integers ci, ca, . .., ¢, such that
1< << <c, <m,

Idg(ABaDIdg(Alerthely . dgAl«ttmly C Tdg(A).

Proof. Notice that if m = 1, thus the statement is trivial. Assume m > 2 and take graded

polynomials
fr € Wdg(Al), fo € Tdg(AlrFhel), L f, € Tdg(AlHm),

Given i € [1,u], we remark that any graded evaluation p; : F/(X;G) — A, of the polynomial f;

pi(f) =Y al),

1<p<g<m

in A, satisfies

where a,(,z) € A, , are such that a](f(; =0y, forall ¢;_1 +1 <p < q < ¢, with ¢g := 0. Therefore,
since A; jAy y = 0,4 A; s, we conclude that fifs--- f, € Idg(A). 0O

1.3 Kemer polynomials

Let I be a T-ideal of identities of a finite dimensional G-graded algebra. In this section,
we will define the so-called Kemer polynomials for I based on [5]. To this end, assume that
G = {g1,...,9,}. In addition, since F' is a field of characteristic zero, we have that I is
generated by multilinear graded polynomials f which are strongly homogeneous, that is, every

monomial in f has the same homogeneous degree in the G-grading.

Definition 1.3.1. Let f € F(X;G) be a multilinear G-graded polynomial which is strongly
homogeneous. Given g € G, let S, = {z7,...,29,} be a subset of X, and consider Y := X\ S,
the set of the remaining variables. We say that f is alternating in the set S, (or that the
variables of Sy alternate in f) if there exists a (multilinear, strongly homogeneous) G-graded
polynomial h(Sy; Ye) = h(xf, ..., 29,;Ys) such that

fad ot Ye) = Y (1) hlad), o i Ye).

o€Sym(m)



Moreover, if Sy, ,.. .,Sgip are p disjoint sets of variables of X, where Sgij C Xgij, for all

j € [1,p], we say that f is alternating in Sy, ,..., S, if f is alternating in each set Sgi,

Let us consider polynomials which alternate in v disjoint sets of the form Sy, for all g € G.
If the sets S, have the same cardinality, say d,, for every g € G, then we say that f is v-fold
(dg,,...,dg,)-alternating. Moreover, we need to consider polynomials which, in addition to the
alternating in such above sets, they alternate in ¢ disjoint sets K, C X,, and also disjoint to
the previous sets, such that |K,| = d, + 1 (where the elements ¢’s that correspond to the K,’s
need not be different).

Definition 1.3.2. Let X;, = {2f,...,2]} be a set of | variables of degree g and let ¥ =
{y1,...,u} be a set of | ungraded variables. The g-Capelli polynomial ¢, , (of degree 2[) is the

polynomial obtained by alternating the set z¥’s in the monomial z{y,zys - - - z]y;, that is,

Clg = Z (_1)Uxi(1)yl$Z(2)92 T x(g,(l)yl-
o€eSym(l)

The g-Capelli polynomial ¢; 4 is in the Tiz-ideal I if all the G-graded polynomials obtained

from ¢;, through substitutions of the form y; — y, for some h € G, are in I.

Remark 1.3.3. Since [ is a Tg-ideal of identities of a finite dimensional G-graded algebra,
then by Lemma 3.4 of [5], for every g € G, there exists an integer [, such that the Ti-ideal 1

contains ¢, g

Corollary 1.3.4 (Corollary 3.5 of [5]). Let I be a Tg-ideal of identities of a finite dimensional
G-graded algebra. If f is a multilinear G-graded polynomial, strongly homogeneous and alter-
nating on a set Sy of cardinality ly, then f € I. Consequently there exists an integer mg which
bounds (from above) the cardinality of the g-alternating sets in any G-graded polynomial which

1s not in I.
In order to introduce the Kemer polynomials for 7, by considering N* = N x --- x N, let us
———

n times

define a partial order < on N x N. Firstly, given § = (01,...,0,) and p = (p1, ..., pn) elements
of N we write (01,...,0,) < (p1,-..,pn) if, and only if, §; < p;, for all i € [1,n]. Now, given
(0,s) and (p, s’) elements of N* x N, we write (§, s)=<(p, s') if, and only if, either

(i) 0 < p, that is, § < p and, for some j, ; < p;, or
(1i) 6 =pand s < ¢

In the sequel, we will define the Kemer points of I, which will be denoted by Kemer(7).
Such Kemer points will be given by a finite set of points in N® x N. We start by defining the
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set Ind([1)o as:

Ind(/)p := {6 € N" | for each v € N, 3 f ¢ I such that f is v-fold d-alternating}.

In virtue of Corollary 1.3.4, we have that the set Ind(7)y is bounded (finite). Furthermore,
if 0 € Ind(I)o, then 0’ € Ind(])y, for any ¢’ < 0 (see Lemma 3.7 of [5]). Now, given v € N, we

set
A, :={0 € N" |3 f ¢ I such that f is v-fold J-alternating}.

Notice that
myeNAV - Ind(])o

On the other hand, if v < ¢/, thus A,, C A,, and once each A, is finite (see Corollary 1.3.4),
the chain
A DA D

stabilizes, that is, there exists v € N such that
A, =A,, forallv >y, (1.3)

and, hence, Ind([)y = A,.

Let AY be the extremal points of A,, that is, the points § € A, such that for any p € A,
satisfying 6 < p, it is valid that p = 6. Note that A) = A?, for all v > 1.

We also set

Q,={fe F(X;G)| f¢1Iand fisv-fold é-alternating, for some § € A, }.
Clearly 1, = Uscq, 25, where
Qs ={f e F(X;G) | f¢1Iand fis v-fold é-alternating}.

At this stage, fixed v € N, § = (64,...,65,) € A, and f € Qs,, let s;(5,v, f) be the
number of alternating g-homogeneous sets (any g € G) of disjoint variables, of cardinality
0y + 1. We claim that if v satisfies (1.3), then for any fixed pair (4,v) with § € A} and
v >, we have {5;(6,v, f)}seq,, is bounded. Actually, in this case, if {s;(d, v, f)}seq;,, is not
bounded, thus there exists a sequence of polynomials fi, fa, ... in 5, such that s; = s;(6, v, f;)
and lim; .., s; = co. Since the group G is finite we obtain, by the pigeonhole principle, that
there exist g € G and a subsequence f;,, fi,,... such that lim;_,« s;, ; = 00, where s;, 4 is the

number of alternating g-homogeneous sets of cardinality d, + 1 in f;,. However, this implies

11



that the point ¢’ defined as d, = d, + 1 and ), = 0, for h # g, belongs to A, (actually, it is
enough to take k such that s;, , > v and thus f;, is v-fold ¢"-alternating). Once v > 7, we have
6 € AY = A}, and thus since § < ¢" and ¢’ # 4§, we obtain a contradiction.

Let s7(6, v) = max{s;(d, v, )} req;, - Since the sequence s;(d, v) is monotonically decreasing
as a function of v, there exists an integer p = p(I,v) > ~ for which the sequence stabilizes,

that is, s;(d,v) is constant for all ¥ > p. In this sense, we set

sr(6) == limy, 00 $7(0,v) = s7(9, ).

Once the set AY is finite and § € A9, take p to be the maximum of all u’s considered above.
Given a Tg-ideal I of identities of a finite dimensional G-graded algebra, we define the

Kemer set of I as the set of points:
Kemer(I) := {(6,57(6)) | 6 € A}

The elements of Kemer([) are called Kemer points of I.

Finally, we present the definition of Kemer polynomials for a T-ideal 1.
Definition 1.3.5. Let I be a T-ideal of identities of a finite dimensional G-graded algebra.

(1) Let (0,s7(d)) be a Kemer point of the Ti-ideal I. A graded polynomial f is said to be
a Kemer polynomial for the point (6,s7(5)) if f is not in I and it has at least p-folds of
alternating g-sets of cardinality d, (small sets) for all g € G and s;(d) homogeneous sets

of disjoint variables Y, (some ¢ in G) of cardinality §, + 1 (big sets).
(77) A polynomial f is Kemer for the Tg-ideal I if it is Kemer for a Kemer point of I.

Note that a polynomial f cannot be Kemer simultaneously for different Kemer points of I.
In fact, assume that (d,s;(0)) and (&, s7(6")) are both points for a Kemer polynomial f of I,
with § # ¢’. Consider §” defined as §; = max{dy,d;}, for all g € G. Consequently, we have
8" € A,, with 6,0 < ¢" and 0" # § or §” # ¢', and this contradicts the fact that J,d" are
extremal points of A, = A,

Let A be a finite dimensional G-graded F-algebra. We say that (,() is a Kemer point of
A if (4,1) is a Kemer point of Idg(A). Let us finish this section by investigating the Kemer
points of the algebra A. First, we recall that, by the generalization of the Wedderburn-Malcev

Theorem (see [28]), it is valid that

A=A, + J(A),
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where Ay = A1 ®---® A, (direct sum as algebras) is a maximal semisimple graded subalgebra
of A, with Ay,..., A, G-simple algebras. Moreover J := J(A), the Jacobson radical of A, is a
graded ideal.

By denoting the nilpotency index of J by n4, we define the (n 4 1)-tuple

G —Par(A) := (dimp(Ass) gy, - - -, dimp(Ags)g,, na — 1) € N* x N.
In the sequel, we present a relation between the Kemer points of A and G — Par(A).

Proposition 1.3.6 (Proposition 4.4 of [5]). If (0,1) = (Jg,,...,0q,,1) is a Kemer point of A,
then (6,1) = G — Par(A).

As a corollary we obtain that:

Corollary 1.3.7. If G — Par(A) is a Kemer point of A, then it is the unique Kemer point of
A.

Proof. Denote I := Idg(A). Let (6,s7(6)) be a Kemer point of A and assume that G —
Par(A) = (&', s7(d")) is a Kemer point of A. By invoking the above proposition, it follows that
(0,87(0))=(d,s7(0")), that is, either

(i) 6 <&, or
(17) 0 =¢" and s7(9) < s7(9).

Since 6,0’ € AY, it follows that condition (i) is not satisfied. Thus ¢ = ¢’ and hence s;(5) =
s7(¢"), which implies
(,s1(8)) = (0',8/(8")) = G — Par(A).

O

In Chapter 5, we will construct the Kemer polynomials for the G-graded upper block tri-
angular matrix algebra UTg(Aq, ..., Ay), in case G is a finite cyclic group and Ay, ..., A, are

finite dimensional G-simple algebras.

1.4 (G-graded codimension, G-exponent and varieties

We start this section by presenting the concept of G-graded codimension of a G-graded
algebra. To this end, for all n > 1, we consider P¢ as the F-vector space generated by the
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multilinear polynomials of degree n of F(X;G) in the variables zf, for g € G and i € [1,n].
Given a G-graded algebra A, we define

PG

GlAY — i
e (A) = dlmFPnGﬂIdg(A)

n
and we refer to this non-negative integer as the nth G-graded codimension of A.

Let A be a G-graded Pl-algebra. It is well known that its sequence of G-graded codimensions
{c%(A)},>1 is exponentially bounded (see Lemma 10.1.3 of [28]). We define the G-graded
exponent, or simply G-exponent, of the G-graded Pl-algebra A as

exps(A) := lim {/cG(A).

n—o0

If A is finite dimensional and the field F' is algebraically closed, then such G-exponent exists and
is a non-negative integer (see [2]). In the sequel, we exhibit a way to calculate the G-exponent,

which was presented by Aljadeff, Giambruno and La Mattina in [2].

Given a finite dimensional G-graded F-algebra A, by the previous section, we have A =
As+J =A1®--- D A, +J, where Ay,..., A, are G-simple algebras and J, the Jacobson

radical of A, is a graded ideal. Consider all products
A JAL T A JA, #0, (1.4)
where A,,, ..., A,, are distinct G-simple subalgebras of the set {A;,..., A, }. We define
q := max dimp(4,, ®--- B A4,))

as being the maximum dimension among the dimension of all the subalgebras A,, @ --- ® A,,
such that A,,,..., A, satisfy condition (1.4). Therefore, it holds

q = expg(A). (1.5)
At this stage, given a Tg-ideal I of F'(X;G), we define the variety of G-graded algebras V¢
(determined by I) as the class of all G-graded algebras A such that I C Idg(A). In short,
VO =VE(I) ={A]| I Cldg(A)}.
We denote the Tig-ideal I of F(X;G) associated to V& as Idg(VY). If Idg(VY) = Idg(A), for
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a G-graded algebra A, then we say that the variety V¢ is generated by A and write
VE = varg(A).

Moreover, in this case, if A is a finitely generated G-graded Pl-algebra, then V¢ is called a
variety of finite basic rank. If F' is an algebraically closed field of characteristic zero, we can
assume that any variety V¢ of finite basic rank is generated by a finite dimensional G-graded
Pl-algebra (see [5] or [33]).

In case V¢ = varg(A), the variety generated by a G-graded Pl-algebra A, we set the nth
G-graded codimension and the G-exponent of the variety V¢, respectively, as

(V) := Y(A), for every n > 1, and expg (V) := expg(A).

n

1.5 Minimal varieties and minimal G-graded algebras

In this section, firstly, we recall the concept of minimal varieties of G-graded Pl-algebras
of a given G-exponent. In the sequel, we will give the definition of minimal G-graded F-
algebras, which is a natural generalization of the well known minimal superalgebras, introduced

by Giambruno and Zaicev in [26].

Definition 1.5.1. Let V¢ be a variety of G-graded Pl-algebras. We say that V¢ is minimal
of G-exponent d if exps(VY) = d and for every proper subvariety U of V¢ one has that
expe(UY) < d.

Let V be a variety of associative PI-algebras over F'. In [27], Giambruno and Zaicev described
the minimal varieties V of finite basic rank, of a given exponent, by means of suitable generating
algebras. More precisely, they showed that such variety )V is minimal if, and only if, V is
generated by an upper block triangular matrix algebra UT(dy,...,d,). Denote by C, the
finite cyclic group of order n. If n = p is an arbitrary prime number, in 2019, Di Vincenzo,
da Silva and Spinelli proved that a variety YV of C,-graded Pl-algebras of finite basic rank,
with respect to a given C)-exponent, is minimal if, and only if, V is generated by a C,-graded
algebra UTg, (A, ..., Ap), where Ay, ..., Ay, are finite dimensional Cp-simple algebras (see
17)).

Let F' be an algebraically closed field. In this work, more precisely in Chapter 5, we will
take a new step towards the classification of such minimal varieties in case n is any positive
integer. In particular, we will prove that they are generated by a suitable C),-graded upper
block triangular matrix algebra UTg, (Ay,. .., Ay), with Ay, ... A, being finite dimensional
C,-simple algebras. Moreover, by assuming that UTg, (A1, ..., A,,) satisfies at least one of the
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conditions (7), (i) or (#ii) of Theorem 5.3.7, we also will show that vare, (UTe, (As,. .., Am))

is minimal.

Definition 1.5.2. A G-graded algebra A is said minimal if it is finite dimensional and either
A is a G-simple algebra or A = A, + J(A) where

(1) Ass = A1 @B --- D A, with Ay, ... A, G-simple algebras and m > 2;

(1) there exist homogeneous elements wya, ..., Wy—1,, € J(A) and minimal homogeneous

idempotents e; € Ay, ..., e, € A, such that
€iWi 41 = Wi i+1€i+1 = Wi 11, for all 7 € [l,m — 1]

and

WiaWa3 * * * Wyn—1,m 7 04;
(i19) wia, ..., Wm_1,, generate J(A) as a two-sided ideal of A.

Clearly any minimal G-graded algebra A admits a vector space decomposition given by

A - @ Ai]’,

1<i<j<m

where

Y A Aig - Ajqwiq Ay if i <.

Moreover J(A) = @;<;A;; and A;; Ay = 00 Ay, Still, for all 1 < u < v < m, we define

A[u,v] = @ Aija

u<i<j<v

and, for each 1 < ¢ < m, we set

(Z) L /
AD = P A
1<i<j<m

)

where

. Aiw; i1 Aipr - Apqwey W1 Apgr - - Ajwjo ;A i <l < g,
ij T .
J Aij otherwise.

Example 1.5.3. Let G = C, = {0,1,2,3}, a cyclic group of order 4. Moreover, consider
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Al = (Mg,&l), AQ = (Mz,aQ) and A3 = (Mg,&g), Where

(@1(1),a1(2)) = (0,1), (ax(1),@2(2)) = (1,2) and (a3(1),as(2),as(3)) = (1,2,3).
Finally, let A = (UT'(A;, As, A3), @).
For each [ € [1, 3], take the minimal homogenenous idempotents as
e = Eglil)
and, for each [ € [1,2], take the homogeneous radical elements as

(AR
Wii+1 = E11 .

Clearly A is a G-graded minimal algebra.

Moreover, in this case, the decomposition of A in the form A = P, ., ;.,, Ai; can be given

as

o o olo ol
o o olo ol
© o ol NN
© o ol NN
IR e Bl S B>
IR e B>l S B

ST B e e S e SR o

F F

where, for each 1 < i < j <3, A;; corresponds to the block of the position (¢, 7). For instance,

Ags = spanp{Ess, Ess, Es7, Eg5, Es6, E47}. Furthermore, we have, for instance,

Al — and A® =

o o ol ol M
o o ol ol M
© o ol ™Y
© o ol ™iT Y
o O olo o|lo ©
o o oo o|lo ©
o o oo o|lo ©

o o oloc ol
o o oloc ol
© o o|lo o|lo o
© o o|lo o|o ©
o me ol
o me ol
o me ol

Remark 1.54. Let A=A, +J=A,®---® A, +J be a minimal G-graded algebra. Since,
from Definition 1.5.2, A;JAyJ - -+ Ap_1J A, # 0, we conclude, by invoking (1.5), that

expi(A) = dimp(A; @ --- @ A,,) = dimpAg,.

Finally, we present some important technical results related to minimal varieties and mini-
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mal G-graded algebras. The first is a natural extension of Lemma 8.1.4 given in [28].

Lemma 1.5.5. Let A be a finite dimensional G-graded F-algebra. Then there exists a minimal
G-graded algebra B C A such that expg(B) = expg(A).

Proof. Firstly, we remember that, by the generalization of the Wedderburn-Malcev Theorem,
we have A = Ag+J, where Ags = A1®- - B A, (direct sum as algebras) is a maximal semisimple
graded subalgebra of A, with Ay, ..., A,, G-simple algebras. Moreover J, the Jacobson radical
of A, is a graded ideal.

Consider n < m such that
A JALT - A JA, #0 (1.6)

and dimp(A,, ®-- B A,,) is maximum, where A, ,..., A, are distinct G-simple subalgebras of
the set {Ay,..., A, }. Thus, there exist z1,...,2,-1 € Jand a1 € A,,...,a, € A,, satisfying

12102« * Qp—1Tp—10pn 7 0.

. . _ g . g _ g . g
For each i, we can write x; = 3 o7, with 2} € J,, and a; = }_ _,af, with af € (4;,),.

Hence, there exist €1, m1,...,M,_1,6, € G such that

€1 ..M €2 En—1_"n—-1 €
Ay Ty Ay Ay Ty A" 7é 0.
This means that we can assume the elements zy,...,2,_1,a4,...,a, as being homogeneous.

Let 14,...,1, be the units of the algebras A,,, ..., A,,, respectively. Then,

11(&1!171&2)12(1'2@3)13 s 1n_1(xn_1an)1n 7é 0

Now, we remark that, for each j € [1,n], there exist minimal graded idempotents eji, ..., e, €
(Ar;)1, such that 1; = ey + - - +ejp;. Thus

(e11 + -+ +ew ) (arz1az) (e + - - + eap, ) (T2a3) - - - (Tp_1an)(€n1 + -+ + €np,) # 0,
which implies that there exist minimal graded idempotents e; € A, , ..., e, € A, such that
e1(ar1miaz)es(raag)es - - e, 1(xrn_1a,)e, # 0.
At this stage, we define the following homogeneous elements:

Wig ‘= 61(a1$1a2)62, Wag 1= 62($2G3)€37 W34 = 63(I3a4)$4, R Gn—l(xn—lan)en-
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Since J is a two-sided ideal of A, one has that w; ;11 € J, for all i € [1,n — 1]. Moreover, we
have

€1Wi2 = 6161(a1$1a2)€2 = 61(a11’1a2)€2 = 61((11131612)6262 = Wi2€2,
€iWii+1 = €i€i($iaz’+1)€z’+1 = ei(xz'ai—&-l)ei—i-l = €i($iai+1)€z’+1€z’+1 = Wit1€i41, foralli € [2771—1]7
Wig -+ Wye1,, = €1(a1T102)ea(T2as)es - - - €p_1(Tp_1a,)e, # 0.

Let B:=A,, &---® A, + J(B) be the algebra generated by A,,,..., A, ,wi2,..., Wy_1n.
Notice that B C A and J(B) is generated by the elements wya, . . ., w,—1,. Therefore, according
to Definition 1.5.2, (1.6) and (1.5), we conclude that B is a minimal G-graded algebra such
that expg(B) = expg(A). O

Theorem 1.5.6. Let VY be a variety of G-graded Pl-algebras of finite basic rank. If V¢ is

minimal of G-exponent d, then there exists a minimal G-graded algebra A such that
VE = varg(A).

Proof. The fact that the variety V¢ is of finite basic rank allows us to conclude that, from

Theorem 1.1 of [5], there exists a finite dimensional G-graded algebra B over F' such that
V¢ = varg(B) and expg(B) = d.

By invoking Lemma 1.5.5, it follows that there exists a minimal G-graded algebra A C B such
that expg(A) = expg(B). Thus Idg(B) C Idg(A) and, hence, A € V¥ = varg(B). Once V¢ is

minimal and expg(A) = exp,(B), we conclude the proof of the theorem. 0

As an application of the above theorem, we will see in Section 5.1 that if G is a finite cyclic
group, then any minimal variety of G-graded Pl-algebras of finite basic rank, of G-exponent d, is
generated by a suitable G-graded algebra UTg (A, ..., A,,) satisfying dimp(A;@---® A,,) = d,

where Ay, ..., A, are finite dimensional G-simple algebras.
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Chapter 2
Factorability and a-regularity

In this chapter, F' will denote a field of characteristic zero and G will be a finite abelian
group. Here, we will start the study of one of the main topics of this work. More precisely,
we will define the factoring property of the ideals of graded polynomial identities satisfied by
the graded upper block triangular matrix algebras UTg(Aq, ..., Ay), in case Ay, ..., A, are
graded subalgebras (not necessarily G-simple) of matrix algebras endowed with elementary
gradings, and we will present some results. Moreover, we will introduce the definition of a-
regularity, which is a generalization of the concept of G-regularity, and we will obtain some
relevant connections between these points with the invariance subgroups. It is worth saying
that the new results presented in this chapter have been recently published in [22], in a joint
work with Professor Viviane Ribeiro Tomaz da Silva and Professor Onofrio Mario Di Vincenzo.

Furthermore, some of these results present an alternative proof of that shown in [22].

2.1 (G-regularity and factorability

We start this section recalling the concept of G-regularity, which was introduced by Di
Vincenzo and La Scala in [19]. To this end, let A be a finite dimensional G-graded algebra. We
define a G-graded generic algebra associated to A, which will be denoted by Geng(A), as being
a G-graded algebra isomorphic to F(X;G)/Idg(A). This is the analogous construction of the
generic matrix algebra (see Section 7.2 of [25]).

Consider {vq,...,v,} a linear homogeneous basis of A, that is, a basis of A formed by

homogeneous elements. We define

P(A):=Flz" | ie[1,n] and | > 1]

O]

as the polynomial ring in the countable set of commuting variables z;” and we refer to this
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ring as the polynomial ring associated to the finite dimensional G-graded algebra A. Moreover,
consider the tensor product A ® P(A) with the natural grading induced from that of A, that
is,

A® P(A) = P4, P(A)).

geG

Since P(A) is commutative and F is an infinite field, it is valid that Idg(A ® P(A)) = Idg(A).
At this stage, we consider in A® P(A) the graded subalgebra A generated by the homogeneous
elements

apg = Z x(l)vi, foralll > 1 and g € G.

Remark that we omit the symbol for the tensor product in the above elements. It is well

known that A is a G-graded generic algebra associated to A, that is, A is isomorphic to
FUX;G)/lda(A).

Our next step is to define G-regular graded subalgebras of matrix algebras and then, in
Chapter 3, we will classify the finite dimensional G-simple algebras that are G-regular, in case

G is a finite cyclic group.

Let A be a graded subalgebra of (Mj, ). Given g € G, define the following linear map:

Z Qij€ij — Z Qij€ij, (21)
i,

i,5; a(i)=g

where, for each 4,j € [1,k], e;; denote the (7, j)-matrix unit of M. We remark that 7, is the
zero map in case g ¢ Z, = a([1, k]). It is valid that

A= Geng(A) C A® P(A) C My ® P(A),

and then we define the map
7,0 A — My ® P(A)

as being the restriction of 7, to A.

Similarly, we define the map:

’ Zaijeij — Z Q;5€45, (22)

ij ij; alj)=g
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where 7,5 € [1, k], and we consider

its restriction to A.

Definition 2.1.1. Let A be a graded subalgebra of M) endowed with an elementary grading «.
We say that A is a G-regular subalgebra of (Mj, «) if the maps 7, are injective, for all g € G.

Equivalently one could define G-regular subalgebras of (My, «) requiring that the maps ?r\;
are injective, for all ¢ € G (see Proposition 4.2 of [19]).

The next result establishes when matrix algebras are G-regular.

Theorem 2.1.2 (Theorem 5.4 of [19]). Let G be a finite abelian group. Let (My,«) be a G-
graded matriz algebra. Then (My, «) is G-reqular if, and only if, the map « is surjective and

all its fibers are equipotent.

As consequence of some results of [19], we have also a characterization of the simple super-
algebras that are Cy-regular. More precisely, the authors stated that M;; is Cs-regular if, and
only if, k = [, whereas M, (F & cF) is Cy-regular for all n > 1.

In the sequel, we present two definitions related to the factoring property associated to the

T-ideals of the G-graded upper block triangular matrix algebras.

Definition 2.1.3. Let A = UTg(Ay, ..., A,). We say that the Tg-ideal 1dg(A) is weakly
factorable if there exist 1 < ¢ < ¢y < --- < ¢, < m such that

Idg(A) = Idg(AM)Idg (Al Thel) . Idg (Al
In particular, if Idg(A) satisfies
ldg(A) = Idg(A1)Idg(As) - - - Ide(An),

then we say that Idg(A) is factorable.

There exist some studies involving the factoring property (see, for instance, [7, 12, 15, 19,
27]). Let us start discussing such problem for G-graded upper block triangular matrix algebras
having exactly two blocks.

Let R be the G-graded upper block triangular matrix algebra

R::<A U>7
0 B
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where A C (M,,,«), B C (M,, 3) are graded subalgebras and U = M,,,«,. Denote P := P(R)
as the polynomial ring associated to the finite dimensional algebra R. As in Section 4 of [19],
we consider a linear homogeneous basis of R given by the disjoint union of some homogeneous
basis of A, B and the canonical basis {E;; | i € [1,m],j € [m+1,m+n|} of U. In this way,
the algebra R ® P contains

A = Geng(A), B=Geng(B) and R = Geng(R).

Let us define the following algebra:

10
R* = ({ ,

where U is the graded (A-B)-bimodule contained in R ® P generated by the homogeneous

elements
Uy = Z 7 | DFgSS foralll > 1 and g € G.

i€[1,m],j€[1,n]
|Eim+jlr=9

Notice that R* is a graded subalgebra of R® P. Moreover, from Proposition 4.1 of [19], one
has that

lde(R) =1da(R) C Ida(R).

Still, as a consequence of Lewin’s Theorem (see [30]), the authors proved in [19] the impor-

tant statement:

Lemma 2.1.4 (Corollary 3.2 of [19]). If the set {u; 4} is a countable free set of homogeneous
elements such that |u; 4|p- = |71 pix;qy for all 1 > 1, then Idg(R*) = Idg(A)Idq(B).

The next result states that the G-regularity of only one of the G-graded algebras A or B is
a sufficient condition for the factorability of the Tg-ideal Idg(R).

Theorem 2.1.5 (Theorem 4.5 of [19]). Let G be a finite abelian group. Let R be the G-graded
upper block triangular matriz algebra
AU
R = ,

where A C (M,,,«), B C (M,, ) are graded subalgebras and U = M,,x,. If one of A and B is
G-regular then the Tg-ideal 1dg(R) factorizes as

Idg(R) = 1dg(A)ldg(B).
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In case GG is a group of prime order, with A and B matrix algebras, Di Vincenzo and La

Scala also obtained the following:

Theorem 2.1.6 (Theorem 5.8 of [19]). Let R be the G-graded upper block triangular matriz

algebra
A
R = v ,
0 B

where A = (M,,,«), B = (M,,3) and U = M,«xn. If the finite group G has prime order, then
the Tg-ideal 1dg(R) factorizes as 1dg(R) = Idg(A)ldg(B) if, and only if, one of the algebras
A or B is G-regular.

2.2 Establishing weaker conditions for the factorability

At the end of the previous section, we exhibited some results on the factoring property
which are related to the concept of G-regularity. In this section, we have as main goal to
present new results, concerning also the factoring property, which require weaker conditions
than the G-regularity, but regarding both G-graded algebras A and B. To this end, we will use

the same notations introduced in Section 2.1.

Theorem 2.2.1 (Theorem 3.2 of [22]). Let G be a finite abelian group. Let R be the G-graded
upper block triangular matrixz algebra
AU
R:= ,

where A C (M,,,«), B C (M,, ) are graded subalgebras and U = M, .. Suppose that, for all
g € G, there exist i € [1,m] and j € [1,n] such that

(1) a(i)™'8(j) = g;

(i1) The map ) defined on Geng(A) is injective;
(ii1) The map Tz defined on Geng(B) is injective.
Then the Tg-ideal Idg(R) factorizes as

Idg(R) = 1dg(A)ldg(B).
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Proof. In order to prove the result, it is enough to show that the elements u; , form, for all
[ >1and g € G, a countable free set in the graded (A-B)-bimodule U. If this is the case, by

invoking Lemmas 2.1.4 and 1.2.5, we obtain that
Idg(R) C Idg(R") = 1dg(A)lde(B) = lda(A)lde(B) C lda(R)

and, hence, Idg(R) = Idg(A)ldg(B).

First we remark that, by item (¢), w, # 0, for all [ > 1 and ¢ € G. Suppose that
Zhg’p(algp)ul’g(blgp) = 0, with ay,, € A and by, € B, for all [, g, p. Notice that, for all [ and g,
the non-zero entries of u; , are distinct variables, and thus we need to show that each u; ; =: u
is torsion-free. Therefore, assume that > (a,)u(b,) = 0, with (a,) # 0 and (b,) being linearly
independent, for all p. It holds

Z Z(%)qrum(bp)sv =0,

for any pair of indices (g, v). Since the non-zero entries u,s of u are variables that are different
from those in (a,), and (by)s, and, by definition of u, one has that the position u,s is non-zero
if, and only if, a(r)~13(s) = |u

R, We can suppose that

Z(ap)qr(bp>sv =0, (2.3)

p

for any quadruple (g, r, s, v) such that a(r)™'3(s) = |u|g-.

Let us fix a pair (¢,7) such that ¢ € [1,m], j € [1,n] and the conditions (7), (i), (#3i) are
r+. Then

satisfied for g = |u
a(i)~'B(j) = lu

On the other hand, once (a1) # 0, item (ii) guarantees ,; (a1) # 0 and this implies that there

R*-

exist indices ¢, 7 € [1,m] such that
a(f) =a(i) and (a1)g #0.

In particular, from (2.3), we obtain
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for all indices v € [1,n] and all s € [1,n] such that 5(s) = 5(j). Consequently, it follows that
Z Z(ap)qf<bp)stsU =0,
p1=8G) P

and thus

Z(ap)qf/ﬂ\-ﬁ(j)(bp) =0.

p
Finally, since (by,) are linearly independents, we conclude, by item (7ii), that 7a(;)(b,) are

also linearly independents. But, the fact that (a;)z # 0 give us a contradiction, as desired.

As a consequence of the above theorem we obtain the following;:

Corollary 2.2.2 (Corollary 3.3 of [22]). Let G be a finite abelian group. Let R be the G-graded
upper block triangular matrix algebra
AU
R = ,

where A C (M,,,«), B C (M,, ) are graded subalgebras and U = M, x,,. Suppose that

(i) G={a(i)7'B(j) | i € [1,m] and j € [1,n]};
(1) The maps /7%2(1') defined on Geng(A) are injective, for all i € [1,m];

(iii) The maps Ta(;) defined on Geng(B) are injective, for all j € [1,n].

Then the Tg-ideal Idg(R) factorizes as
Ida(R) = Idg(A)ldg(B).

We notice that the conditions (i), (ii) and (iii) of the above corollary are weaker than the
G-regularity condition. Actually, we select the rows (or the columns) whose indices correspond
only to the values assumed by the maps that define the elementary gradings. Moreover, we
require that the maps 7, (or ;) corresponding to these selections are injective. This motivates

us to introduce a new definition which will be presented in the next section.

2.3 «a-regularity and invariance subgroups

The concept of a-regularity appears as a natural extension of the definition of G-regular

subalgebras. We start by establishing such definition for graded subalgebras of (Mj,«). We
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recall that Z, = «a([1, k]), that is, Z, is the image of the map « : [1,k] — G. Moreover, we
remark that the map 7, is not injective if, and only if, there exists a polynomial f ¢ Idg(A)
such that m,(p(f)) = 0, for every G-graded evaluation p : F(X;G) — A. We can assume
that the polynomial f is homogeneous in the free algebra F'(X;G) and let |f|px,cy = h be its
degree. Then ; (p(f)) = 0 for every G-graded evaluation p and, hence, 7}, is a not injective
either. Clearly g and hg are both elements of the set Z, or both do not belong to Z,. In this

way, we present the following definition:

Definition 2.3.1. Let A be a graded subalgebra of (Mj,«) endowed with an elementary
grading. We say that A is a-regular if the maps 7, are injective, for all g € Z,, or equivalently

if the maps 7, are injective, for all g € Z,.

In the sequel, given A := (M, ), we will prove some results which establish connections
between the maps 7, and 7}, defined on Geng(A), and the image of the map «. We will also
see important relations between these concepts and the so-called invariance subgroups. Such
subgroups were introduced by Di Vincenzo and Spinelli in [24].

By considering (M, ) and the weight map w,, : G — N introduced in Section 1.1, we set
Ho :={h € G| wa(hg) = w,(g), forall g € G}.
The subgroup H,, is the invariance subgroup related to the algebra (My, «).

Proposition 2.3.2. Let G be a finite abelian group and consider A = (M, «). The following

statements are equivalent:

(i) The maps 7y, defined on Geng(A) are injective, for all h € I,,;
(17) The maps 7; defined on Geng(A) are injective, for all h € Z,,;

(1ii) There exist a subgroup H of G and an element g € G such that
I, =gH
and all fibers of the map a are equipotent.

Proof. First, let us prove that (i) implies (ii¢). Suppose that the maps 7, defined on Geng(A)
are injective, for all h € Z,. Then there exist a subset S = {gi,...,9s} of G and an element
g € GG such that

Z,=¢9gS and 1g€ 8.
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Thus, in order to conclude that S is a subgroup of G, it is enough to show that g, 1gj € S, for
all g;,g; € S.

Fix arbitrary elements g;, g; € S. Clearly, there exist indices u, v € [1, k] such that

‘E’U,U|A = gz_lg]

Consequently, there exists a non-zero homogeneous element a’ € Geng(A) such that

a = ZfltElta with f, € P(A).

It
-1
[Ertla=g; 95

Since g € Z,, then 7, is injective, which yields

/ﬁg(a/) = Z fuEy #0

a(l)=g; i
|Ej¢la=9; "9;

and this implies that there exist [, ¢ € [1, k], such that a(l) = g, satisfying
9; 95 = [Eula = a(l) "a(t).

Once a(t) = ggy, for some ¢ € [1,s], we conclude that g;'g; = g» € S, and then S is a
subgroup of G.

Now, let us assume that the fibers of the map a are not equipotent. Then, by denoting, for
each i € [1,s], ¢; := wa(gg;i), let us suppose, without loss of generality, that ¢; > ¢y, for some
¢ € [2, s]. Consider the graded standard polynomial

Sagr = S2q, W1y W20) = Y (=D Yo)) * Yol2a,

o€Sym(2qy)

where y1, ..., Y, are homogeneous variables of degree 1. It follows that if p : F(X;G) — A

is an arbitrary graded evaluation, then p(Ss,,) is a homogeneous element in A of degree 1.

We remark that the following direct sum (as algebras) holds:

AIG — A%Z;gl) @ P A(QQS),

la
where, for each i € [1, 5],
A(ff") = spanp{E,, | a(u) = a(v) = gg;}.
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Then, we can apply Amitsur-Levitzki theorem and conclude that p(Ss,,) has zero component

in A%’Gg’” as direct summand of A, for any graded evaluation p : F(X;G) — A.

On the other hand, since ¢; > ¢y, again by Amitsur-Levitzki theorem, there exists a graded
evaluation p’' : F(X;G) — A such that p/(Sy,) is also a homogeneous element in A of degree
1¢ which has non-zero component in Aﬁgggl). Therefore, the graded standard polynomial Sy,
defines a non-zero element a' in Geng(A) such that 7y, (a) = 0, which implies 7,4, is not
injective.

In order to prove that (#i7) implies (i), assume that there exist a subgroup H = {hy, ..., hs}
of G and an element g € G such that Z, = gH and all fibers of the map « are equipotent.
Then, by denoting, for each i € [1,s], ¢; := w,(gh;), it follows that

Q1:"':q5-

Fix ¢ € [1, s] and an element o’ in Geng(A) satisfying 7y, (a’) = 0. We claim that ¢’ = 0.

In fact, let ¢ : F(X;G) — Geng(A) be the canonical G-graded epimorphism such that
ker(p) = Idg(A). Take f € F(X;G) such that o(f) = a’ and fix p: F(X;G) — A an arbitrary

graded evaluation. Thus, we obtain that

o(f) = ZdijEij, with d,; = 0, for all p € [1, k| satisfying a(p) = ghs.

2
Fix an arbitrary ¢’ € [1, s] and consider
G = hy'hy. (2.4)
Since H is a subgroup of G it follows that g € H. Thus, there exists § € Sym(s) such that
hig = heqy, forallle[1,s],

and, in particular,

o) = ¢.
Moreover, the equalities ¢; = g = - -+ = ¢5 guarantee the existence of o in Sym(k) satisfying
alo()) = ga(e), for all v € [1,k]. (2.5)

Finally, define the map

Euv = Eo(u)a(v) .
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It is clear that I is a graded isomorphism. Furthermore, we remark that I'p : F(X;G) — A is

still a graded evaluation and

L(p(f)) = dijBoiyeis)-
1,
Since Ty, (a’) = 0, by combining (2.4) and (2.5), we obtain that
d,; =0, for all p € [1, k] satisfying a(p) = ghy.

Therefore, once ghy is arbitrary, we conclude that d;; = 0, for every i,5 € [1,k]. Then,
f € 1dg(A) and this implies a’ = 0, as desired.

The proof that the statements (i) and (ii7) are equivalent is analogous. 0O

We remark that, as a consequence of Proposition 2.3.2, if (My,«) is a-regular and we
multiply the elements a(1), ..., a(k) by a suitable element of G, then we obtain an H-grading
on (My, «) such that (Mg, «) is H-regular according with Definition 2.1.1. In particular, in case
H = @, the notion of a-regularity coincides with G-regularity. The next step is to establish a
connection between a-regularity and the invariance subgroup H,. First we state the following

lemma which depends only on the map « : [1,k] — G.

Lemma 2.3.3 (Lemma 3.6 of [22]). Let G be a finite abelian group and consider a map « :
[1,k] — G. Then the following statements are equivalent:

(1) There exist a subgroup H of G and an element g € G such that I, = gH and all fibers of

the map « are equipotent;

(i) There exists an element g € G such that

To = gHa.

Proof. First, suppose that there exist a subgroup H = {hq, ..., hs} of G and an element g € G
such that Z, = gH and all fibers of the map « are equipotent, that is,

wa(ghi) = wa(ghy;), forall i,j € [1,s].
Take an arbitrary element h; € H. Let us prove that h; satisfies
woz(hlg) = wa(ﬁ)a for all ge G7

and consequently h; € H,. If g € Z,, then g = gh;, for some i € [1,s], and since H is a
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subgroup of G it follows that h;h; € H. Thus, since G is abelian,
wa<hl§) = wa(hlghi> = wa(ghlhi) = wa(ghi> = wa(g)‘

On the other hand, if g ¢ Z,,, then w,(g) = 0. In this case, it is easy to verify that w,(h;g) = 0.
Now, take /i € H,. Then, one has that

wa(gh) = wa(hgle) = walgle) # 0 (2.6)

and this allows us to conclude that h € H. Therefore, we obtain that H = H,,.
Reciprocally, assume that Z, = gH,. It is valid that H, is a subgroup of G. Moreover, for
any he He, (2.6) holds. Therefore all fibers of the map « are equipotent. 0

As a consequence of Proposition 2.3.2 and Lemma 2.3.3, we obtain the following nice char-

acterization of the graded matrix algebras (My, ) which are a-regular.

Theorem 2.3.4 (Theorem 3.7 of [22]). Let G be a finite abelian group. Then (M, a) is a-

reqular if, and only if, there exists an element g € G' such

Ia - gHoc‘
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Chapter 3
Cp-simple algebras

In Chapter 1, we presented, when G is a group of order 2 and even in case G is a group of any
prime order, the description of the finite dimensional G-simple algebras as graded subalgebras
of matrix algebras endowed with elementary gradings obtained in [35] and [17], respectively. In
this sense, if G = C,, is any finite cyclic group of order n, the first aim of this chapter consists
in describing the finite dimensional G-simple algebras as graded subalgebras of matrix algebras
endowed with some elementary gradings. In the sequel, we will present some necessary and
sufficient conditions in order to obtain a graded isomorphism between such G-simple algebras
and we will study its regularity. The new results establish here count with the collaboration of
Professor Viviane Ribeiro Tomaz da Silva and Professor Onofrio Mario Di Vincenzo, and can
be found in [22]. It is worth highlighting that the proofs of some of these results are different

from those presented in [22].

3.1 The characterization of the (C),-simple algebras

Let G be an arbitrary group. Consider R = F[G] the group algebra over F' and let B =
{ry | g € G} be a basis for R, with the product of its elements being r,r, = rgy,, for all
g,h € G. We endow R with the canonical G-grading R = ®©4caR,y, where, for each g € G,
R, = spanp{r,}. Notice that all homogeneous non-zero elements of R are invertible and, hence,

R is a graded skew field. Assume now that the product of the basis elements of R is defined as
r,rp, = O-(gv h)rgiu

where o(g, h) € F*, forall g, h € G. For such product to be associative the map o : GxG — F*

has to satisfy
o(g,h)o(gh,l) = o(h,l)o(g,hl), forall g,h,l € G.
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In this case, the map o is said a 2-cocycle on G with values in F* and the associative algebra
F?|G] := spang{r, | g € G}

is called the twisted group algebra defined by o. We remark that if o = 1, thus F?[G] is the
ordinary group algebra R.

Such algebras are related with the description of the finite dimensional G-simple F-algebras,
presented by Bahturin, Sehgal and Zaicev, in [10]. In that paper, the authors proved the

following result:

Theorem 3.1.1 (Theorems 2 and 3 of [10]). Let G be an arbitrary group and F' an algebraically
closed field such that either charF' = 0 or charF' = p > 0 is coprime with the order of each finite
subgroup of G. Consider A a finite dimensional F-algebra. Then A is a G-simple algebra if,
and only if, A is graded-isomorphic to My, @ D = My (D), where D = @pey Dy, is a graded skew
field with Supp(D) = H being a subgroup of G, and My, has an elementary G-grading defined
by a k-tuple (g1,...,gr) € G* such that

lei; @ di|agy(p) = 9; hyj,

for each matriz unit e;; € My and each homogeneous element d, € Dy. Moreover, D is
isomorphic to a twisted group algebra F°[H| with canonical H-grading, where o : H x H — F*

15 a 2-cocycle on H.

From now on, unless otherwise is stated, I’ is an algebraically closed field of characteristic
zero and € is a primitive nth root of the unity in F*. Moreover, we consider G := C,, = (€), the
finite cyclic group generated by e.

The aim of this section is presenting, by applying results of [10], a characterization of the
finite dimensional G-simple F-algebras as graded subalgebras of matrix algebras endowed with
some elementary gradings.

First, given a finite dimensional G-simple F-algebra A, from Theorem 3.1.1, one has that
A is graded-isomorphic to My ® D = M (D), where D = ®peg Dy, is a graded skew field with
Supp(D) = H being a subgroup of G. Then |H| =r and H = (¢*) = {1g, €, (¢°)?, ..., (e5)" '},
for some positive integers r, s such that |G| =n =1 s.

According to Lemma 3 of [10], dimp D), = 1, for all h € H. Therefore, we have that

D. = Fa, forsomea€ D,s.
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It is easy to verify that Dy = Fa', for all ¢ > 1. Then, we obtain
FG/T — D(es)r = DIG - F].D

and this implies that there exists v € F™* such that a" = ~. Since F' is algebraically closed,
also there exists 4/ € F* such that (/)" = 7. By setting b := (7')"'a we get b" = 1p and we

conclude that
D=Di,®Des®Dsye @+ ®Disyr-1 =F S FbSFY¥’ & - Fb' !,

with b' being homogeneous of degree (e°)f, for all t € [0,r — 1].

Consider the matrix algebra M, with elementary grading induced by the r-tuple
gr = (1G7 ES, (65)27 . (€s>r71) c Gr

and, for each 4, j € [1,7], denote by E;; the (4, j)-matrix unit of M, (it is worth remarking that
we are using £;; for the matrix units of M, in order to distinguish them of the matrix units e,
of My, introduced in Section 1.1).

Consider the permutation
and set )
E = Z Eaqyce = B2+ Eog + Esa+ -+ Er1 + B
1=0
It holds that E! = ;:—01 Eaq) i), for all t € [0,r — 1] and E” = E°. Furthermore, the set
{E" | teo,r—1]}

is linearly independent and |E*|y;, = (€°)f, for all t € [0,r — 1].

Let us denote by D, the graded subalgebra of (M,,€,) generated by the elements {E" | ¢ €
(0,7 — 1]}, that is, D, is defined as

([(dy di - dy_y dp_y \
dr—y dy - dy—o
D, := N : | do,dy,...,dp—1 €F },
d, g
\Nd & o dy d )

34



with its natural grading induced by the r-tuple €, = (1g, €%, (€¥)%,..., (e¥)" ). Clearly D, is a
finite dimensional graded skew algebra and Supp(D,,€,.) = (€°).
In the next lemma we stated that D is graded-isomorphic to D, and, consequently, we will

obtain that D can be seen as a graded subalgebra of the matrix algebra (M, €,).

Lemma 3.1.2 (Lemma 4.1 of [22]). Let G = (¢) be a cyclic group such that |G| =n =1-s,
for some positive integers r and s. Moreover, let D = @peyg Dy be a graded skew field, with
Supp(D) = H = (€°), and consider the matriz algebra (M,,€,.). Then D is graded-isomorphic
to D, C (M,,€,).

Proof. From the above discussions one has that there exists b € D such that
D=F®FbOFb¥*®---® Fb!

and, for each t € [0,7 — 1], b* is homogeneous of degree (e°)'. Define the map

I: F@Fb@FbQ@...@Fbrfl N D,
do dl dr—l

dy_q dy -+ d._

do+ dib+dob® + -+ d,_ b7 | 1 .0 | | 2

d1 d2 dO

Clearly T is an isomorphism of algebras. Since, for each ¢t € [0,7—1], b* and E* are homogeneous
of degree (¢°)f, and T'(0') = E*, we obtain that I is a graded isomorphism and this concludes

the proof of the lemma. 0O

Now, given the matrix algebra M), with the elementary grading defined by a k-tuple g =
(g1,...,9r) € G*, consider the tensor product My ® D,. The set

B:={e; @ E'|4,j€l,k]tel0,r—1]}

is a basis of M, ® D,, which will be called the canonical basis of M, ® D,, where, for each
i,j € [1,k], e;; denote the (7, 7)-matrix unit of the matrix algebra M;. At light of Theorem
3.1.1, we endow M ® D, with the grading such that

lei; @ By op, = gi_lgj(es)t, for all 4,5 € [1,k],t € [0,r — 1].

In particular, B is a homogeneous basis of M, ® D,.
On the other hand, consider the finite dimensional algebra M (D,) C My, with the elemen-
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tary grading induced by the (kr)-tuple

gOE =(91,€q,..., (es)rflgl, s O € Ry (es)rflgk),

where 7, s are such that |G| =n=1r"-s.
Clearly, since G is an abelian group, M ® D, is graded-isomorphic to (My(D,), g ®€,) and

we can identify any element

nglj) (eij X Et) € Mk & Dr

i,j€[1,k]
te[0,r—1]
with
11 11 11 11 1k 1k 1k k
P B O U R R Rl
11 11 1 1k 1k k
) gt d) it ag d)
dgu) dgn) ‘ délk) dglk)
dgll) d(211) dgal_lf d(()ll) d(lk) d(lk) d7(01_k1) d(lk)
eMk<DT)J

R B T T LR
i R i)
d;kl) L L dgm) ; ; dékk) . . dgkk)
dgkl) dékl) dgkjl) dékl) | Edgkk) dékk) dglikl) d(()kk)

where d\”) € F, for all i, j € [1,k] and ¢ € [0, —1]. We notice that (My(D,),g®F¢,) is a graded
subalgebra of (My,, g ® €,).
Let us divide My, into r x r blocks, labeled with pairs (u,v) such that u,v € [1, k], that is,

My = {(buw)uweni i) | buw € M, for all u,v € [1, k]}
and, for each i, € [1, k], let us define the block
Bij = {(buw)uwepi b | buw = 0, for all (u,v) # (i,5)}.

For each i,j € [1,k|, d,p € [1,7], we denote the matrix unit of My,, corresponding to the
position (d, p) of the block B;;, by

Ec(l;j)r = B 1)yr+d,—1)r+p>
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where E;, is the ([, ¢)-matrix unit of M}, and the index r emphasizes that each block is a r x r
matrix.

We remark that, by taking the permutation
7:=01---7r—1),

if 4,5 € [1,k] and ¢ € [0,r — 1] then, in the block B;; of My(D,) C My,, the elements appearing
at positions (I +1,7!(t) + 1), with [ € [0,r — 1], are the same.
Therefore, with the previously seen identification, we can write each element e;; ® E* of B

as a sum of r distinct matrices in My,

r—1 r—1
(i)r
e @ B' =D BT = D Banrsti G-t (3.1)
=0 =0

We observe that the left (and right) indices of the matrix units E
sum are pairwise distinct. Furthermore, for all iy, j, € [1, kr], there exists an unique canonical
basis element e;; ® E' of B such that E

convenient, we will denote

inj, appearing in the above

appears in the sum of e¢;; ® E*. Then, when it is

tpJp

€i; & E'= E(i—l)r+1,(j—1)r+t+1 == E(ifl)r+r,(jfl)r+7”—1(t)+1- (3.2)

Moreover if r = 1 then M(D,) is My and e;; ® E° = E;;.
We are in position to state the main result of this section, which classifies all finite dimen-

sional G-simple algebras as graded subalgebras of matrix algebras, in case G is a finite cyclic
group.
Theorem 3.1.3 (Theorem 4.2 of [22]). Let F' be an algebraically closed field of characteristic

zero and G = (€) a cyclic group, with € being a primitive nth root of the unity in F*. Then any

finite dimensional G-simple algebra is graded-isomorphic to a graded subalgebra
(Mi(Dr), g ©€) C (M, §© &),

whose grading is induced by the (kr)-tuple

§® fg'r = (91, 58917 RS (GS)T_IQh <oy Gk ngka RS (GS)T—lgk)’

where the tuples § = (g1,...,9:) € G* and & = (1g, €%, (%), ()3, ..., (e)""Y) induce the

elementary gradings in My and M,, respectively, and r,s are such that n =1 - s.

Proof. Let A be a finite dimensional G-simple algebra. From Theorem 3.1.1, it follows that
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there exists a graded skew field D = @pcgy Dy, with Supp(D) = H being a subgroup of G' and
r = |H|, such that A is isomorphic to My ® D, and M}, has an elementary grading induced by
a k-tuple g = (g1, ..., 9x) € G*.

Now, by invoking Lemma 3.1.2, we can suppose that D = D, is a graded subalgebra of
(M, €.). Therefore, by our previous discussions, we can concluded that A is graded-isomorphic

to the graded subalgebra (My(D,),g ®€,) of (Mg, g ®€,). 0

Given a positive integer [ > 1, we define the Capelli polynomial of rank [ (or the Ith Capelli

polynomial) as

. P g
Capy(x1, .. X Tpa1y e, Tyr) 1= E (1) 211 To()Tit2 - * - AT (1) T2t41-
o€Sym(l)

We finish this section by presenting an important property of such polynomial associated to

finite dimensional G-simple algebras.

Lemma 3.1.4. Let G = (€) be a cyclic group and consider A = (My(D,),g ®€.). The Capelli
polynomial Capy(x1, ..., 25T 141, - ., Toe1) 18 an ordinary polynomial identity for A if, and only

if, 1 > k2.

Proof. For each positive integer [ > 1, let us write f; as being the Capelli polynomial of rank
[ and we denote the evaluation of each variable x;, at elements of the canonical basis of A, by
z;.

First, suppose that [ = k2. In this case, assume that Z;, ..., T2 is equal to e @ E°, ..., €1 ®
E° ... e @ E° ... e @ E°, respectively, T2y = 11 @ E°, Topeyy = ex1 @ E°, and for all
remaining z;’s we consider the evaluation such that the monomial of f;2 associated to o =1 is

the unique monomial whose evaluation is non-zero. Thus
— — .= — o 0
Oaka(ZEl, ey T2, L2417, - - - ,J]2k2+1) =enn ® E

and this yields us that fi2 & Id(A). Similarly, we obtain that f; ¢ Id(A) in case | < k.

On the other hand, assume [ > k2. Since the algebra D, is commutative, for each i €
(1,20 + 1], by considering an evaluation by canonical basis elements Z; = e,,,, ® E%, it follows
that

ro_ - = = _ . t
fl - Capl(xla s T T4, - ax2l+1) - Capl(eplqm < g Cpaqigrs - e >6p21+1qm+1) QF )

for some t € [0,r — 1]. The fact that the Capelli polynomial is alternating in the variables
r1,...,7; and multilinear guarantees us that Capi(€p,q.;-- -, €pas Cpraqsrs - -+ Cporpranss) = 0

and, hence, f; € Id(A), as desired. 0O
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3.2 (C,-simple algebras and the isomorphism problem

In this section, we will establish conditions in order to obtain a graded isomorphism between
finite dimensional C,-simple F-algebras. Moreover, we will explore the isomorphism problem

regarding such algebras.

Let A = (My(D,),g ®¢€.). If @ : [1,k] — G is the map corresponding to the elementary
grading g = (g1, . . ., gx) defined on M}, we denote by a®F€, : [1, kr] — G the map corresponding
to the grading g ® €, defined on A, that is,

(0®&)1),....,(a @) kr) = (91, € g1, ., () g1, . Gres €Gs -, (€5) L),

In this case, we write
A= (Mk(DT)>§®gr) = (Mk‘(DT‘)7 «Q ®€r‘)

Analogously to matrix algebras, we set
Lawe, = (@ @ &)([1, kr]),
and we also define the weight map waee, : G — N as
Wacz, (9) = [{i [ 1 <i < kr, (a©&)(0) = g}
Notice that Zyee, = {9 € G | Waez, (g9) # 0}. Moreover, we set
Hooz, :={h € G | Waez, (hg) = Waez, (g), forall g € G}.

The subgroup Haee, is said the invariance subgroup related to the G-simple algebra A. We
remark that
H, = (€’) C Hacz,-

In [3] Aljadeff and Haile established suitable properties which determine G-simple algebras
up to graded isomorphism (for any group G). In the sequel, we present such properties in case

G is finite cyclic.

Let G = (€) be a cyclic group and consider the finite dimensional G-simple algebras
A= (Mk(Dr)v&Ga") and B = (Mh(Dt>7ﬁ®a)

First we remark that the presentation Py, introduced by Aljadeff and Haile in Definition 1.2
of [3], of A = (My(D,),a ®€,) is determined by r and («(1),...,a(k)) = (g1,.-.,gx), because
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H, = (¢°) is the unique subgroup of G of order r and by Lemma 3.1.2 there exists, up to graded

isomorphism, a unique graded skew field D, having H, as a support. Hence we can write
Py = (r;o) = (r; (915 9&)-

In the same way, we can write the presentation Pg of B = (M,(D;), 8®€) as Pg = (t;8) =
(t; (g1, -, 91,)). Moreover, in our case, the basic moves of type (1), (2) or (3), introduced in

Lemma 1.3 of [3], correspond to the actions described in the following items:

(1) Permuting the elements in the k-tuple (gi, ..., gx), that is, consider the presentation

(’I"; Q- V) = (rﬂ (gu(l)a s 7gl/(k)))a

where v is an arbitrary element of the symmetric group Sym(k);

(7i) Given i € [1, k|, replacing the entry g; by any element hg; of H,g;, that is, consider the
presentation (T7 (.917 - i1, h'g’u git+1, - - - 7gk))7

(14i) Given g € G, multiplying the elements in the k-tuple (gi,...,gx) by g, that is, consider
the presentation
(ryly - a) = (r; (991, - -, 99x));

where [, is the left multiplication by g on G.

As in [3], we say that the presentations P, of the G-simple algebra A and Pg of the G-simple
algebra B are equivalent if one is obtained from the other by a finite sequence of basic moves
(items (4),(it) or (izi) above). It follows from Lemma 1.3 and Proposition 3.1 of [3] that the

algebras A and B are graded-isomorphic if, and only if, they have equivalent presentations.

Now let us consider the map @ : [1, k] — G/H, defined by
a(i) == H,a(1).

Let 8 be the map induced by 3 in the corresponding way. We remark that any basic move of
type (ii) on the presentation P4 has no effect on the map @. Therefore the presentations Py
and Pp are equivalent if, and only if, k = h, r = t and there exist g € G, v € Sym(k) such that

p = lp,q - @-v. This last condition is satisfied if, and only if, one has wz = wy, ,a, that is:
wz(H,gr) = wg(H,z), for all x € G.
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Since wg(H,2) = Waee, (z) and wz(H,r) = wser, (), for all x € G, we conclude that
Waee, (97) = Waee, (z), for all z € G.

Finally, the above equality guarantees us that
Tsoe, = 9Lace, and  Hpee, = Hacr,-

We summarize all this information in the following statement:
Proposition 3.2.1 (Proposition 4.3 of [22]). Let G = (€) be a cyclic group and consider the
finite dimensional G-simple algebras

A= (My(D,),a®¢) and B=(My(D,),®&).

Then B is graded-isomorphic to A if, and only if, k = h, r =t and there exists g € G such
that

Waee, (97) = Waee, (z),  forallx € G.

In this case, one has that
Tsoe, = 9Loace, and  Hpoe, = Haoe,-

Furthermore, as consequence of the previous results, we obtain the following:

Corollary 3.2.2 (Corollary 3.3 of [31]). Let G = (€) be a cyclic group. Consider two finite

dimensional G-simple algebras
A= (My(D,),a®€) and B=(Mp(Dy),B0¢)

such that dimpB = dimpA.

The following statements are equivalent:

(i) Ide(B) C ldg(4);
(it) B is graded-isomorphic to A;

(iti) there exists g € G such that wpeg, (97) = Waee, (), for all z € G.

Proof. First, if item (i) is valid, since dimpB = dimgA we obtain, from Theorem 1.2.4,
that B is graded-isomorphic to A. On the other hand, if item (i) holds, thus it is clear that
Idg(B) = Idg(A), and hence we conclude the equivalence between (7) and (i7).
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Now, by invoking Proposition 3.2.1, it follows that item (7i) implies (7i7). Finally, if item
(ii7) is true, then ht = kr. Once h?t = dimpB = dimpA = k*r, one has that h = k and t = r.
Thus, it is enough to apply Proposition 3.2.1 in order to conclude the proof. 0O

Let A = (M,(D,),a ®¢,) with presentation Py = (r; (g1, ..., gr)). We consider T4 C [1, k]
such that Zy = a(T,), with a(i) # a(j) for all 4,5 € Ty, i # j.

Moreover, we consider T4 C [1,kr] such that Z,oz, = (o ©® €.)(T4), with (o ©® €.)(i) #
(0 ®€.)(j) foralli,j € Ta,i# j. Note that we could take, for instance, Ty = {(i—1)r+j | i €
T4, j€([1,7]}. Let us write Zooz, = {h; | i € T4}

Given g € G, by setting

Aggc) = SpaIlF{epq ® El | Hrgp — Hrgq — Hrg and gp_l(es)l‘gq — 1G}7

the following direct sum (as algebras) holds:

o= @ A

i€T 4

We finish this section by presenting a technical lemma and an important remark, which will

be useful in the next chapters.

Lemma 3.2.3 (Lemma 5.1 of [22]). Let G = (¢) be a cyclic group and consider
A= (My(D,), 0 ©¢€),
with presentation Py = (r;(g1,...,9x)). Fiz a € [1,k] such that
Waez, (9a) = max{wacz, (h) | h € Zacg, }-

Then there ezists a homogeneous multilinear polynomial V4 € F(X;G) of degree 1 such that

(i) Wa ¢ 1dg(A) and, for all € € [1, k], such that H.ge = H,g,, there exists a suitable non-zero
graded evaluation p : F(X;G) — A, at elements of the canonical basis of A, with

p(\IfA) = CEyyp X EO.

(13) If p is a graded evaluation of V4, at elements of the canonical basis of A, then

e P AW

1€T 4; 9i€Haoze, 9a
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Proof. Define, for every i € Ty, t; := waez.(ga)Wacz, (h;), and consider the following polyno-

mial
i 3 el
c€Sym(t;)
where the sets {ugi), . ,u,ﬁ”} and {vgi), o ,vg)}, with i € T4, are pairwise disjoint sets of

homogeneous variables of degree
uf? [pxe = g, and [0 |y =y g,
for all [ € [1,t;]. Then define the polynomial
Uy o= e, ¥

Notice that each 1; is a homogeneous multilinear graded polynomial of degree 14 and thus the
same holds for W 4.
Take an integer ¢ € [1, k| such that H,g, = H,g,. We claim that, for all i € T 4, there exists

a graded evaluation p; of 1;, at elements of the canonical basis of A, such that
pi(¥;) = ew ® E°.

Indeed, we remark that there are waez, (gq) elements of the coset H,g, appearing in g,
whereas wqez, (h;) elements of the coset H,h; appearing in g. Thus, just write all the t; =
Waoz, (Ja)Wacse, (h;) elements e, of the basis of My, such that H,g, = H,g, and H,g, = H,h;,
in some sequence €,,q,; - - - ; €, ¢ » With p; = £. Then, by writing, for each | € [1,%], g,, = (¢*)"ga
and g,, = (€*)"h;, consider the following evaluations in the variables ul(i) and vl(i):

ul(i) = epg ® BT for all I € [1,1,],
vl(i) = eqpy, @ BP0 forall [ e [1,t; — 1],
Ut(f) — eqtig@)Ebtfé,

and we obtain p;(¢;) = ey ® E°.

Therefore, by considering, for each i € T4, the above evaluates p; in 1; we get a graded
evaluation p of Wy, at elements of the canonical basis of A, resulting in e, ® E°, and thus we

concluded the proof of item (7).

In order to prove item (ii), we remember that
A, = P A%,
i€T 4
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where, for each i € T, Aﬁgj = spanp{ey ® E' | H.g, = H,g, = H,g; and g, ' (¢°)'g, = 1¢}.
Once ¥, is a homogeneous multilinear polynomial of degree 14, we can suppose that if p is a
non-zero graded evaluation of W4, then p must be in a unique component of the sum in A ,.
Assume that p(U,) € Agng), for some g, such that H,.g, # H,g,. Consequently, each 1; has also
a non-zero graded evaluation in Aﬁg;), and then each product uf:()l)vl(z) appearing in this v; has
non-zero graded evaluations resulting in linear combinations of elements e,, ® E°~¢, such that
Hrgp - Hrgq = Hrgb7 with 9p = (€S)cgp and 9q = (Es)dgb' ‘

Thus, for all i € T 4, we must evaluate the t; = waez, (9a)Waez, (h;) alternating variables ul(z)
of the polynomial v; in

A = spanp{ey @ ECY | g, = (¢') g, and g, = ()" g, i}

We observe that dimF(A;i_bl)hi) = wa(H,gp)wa(H,gvg;, 'hy) = Wacer, (95)Wacz, (959, 'h;) and by
(@)

using the fact that the variables u;’ are alternating and waege, (g,) is maximum, one has that

Waez, (96)Wacz, (9pgs hy) = dimF(A;iffhi) >t = Waee, (9a)Wace, (i) = Waez, (95)wace, (hi),

and hence waez, (959, 'hi) > waee, (hy), for all i € T4. Then

kr> > waoe (992 'hi) = Y waes, (hy) = kr,

1€T 4 €T 4

and this implies that waez, (959, 'hi) = waee, (hy), for every i € T 4. Such equality allows us to
conclude that g,g,' € Haez, and therefore p(V,) € @ A%), as desired. 0
1€T 4; 9i€Haoe, Ya

Remark 3.2.4. By using the same notations which were introduced in the above lemma,
let A = (My(D,),a ®€,) with the following presentation P4 = (r;(g1,...,9x)). Consider
B = (My(D,), B ®€,) and suppose that there exists n € G such that

BOE =1, (a®FE).

This implies that Pg = (7;(ng1,...,ngx)) is a presentation of B, still wg(ng;) = wa(gi),
for all i € [1,k], and Hpez, = Haer,. Moreover, if a € [1,k] is such that waee, (9.) =
max{wyee, (h) | b € Zaee,}, thus wsee (n9.) = max{wgsez. (k) | h € Zsee, } and the corre-
sponding polynomials W4 and Wp coincide. Therefore, if p is any graded evaluation of W, in
B, one has that

p(Va) € D B

i€T 45 9:€Hpoe-9a
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3.3 C(,-simple algebras and (a ® ¢,)-regularity

In Section 3.1, we described the finite dimensional C,,-simple F-algebras as graded subalge-
bras of matrix algebras endowed with some elementary gradings. In this section, we will deal
with the (« @ €,)-regularity of these algebras.

Firstly, given A = (M (D,), @ ®€,), we remember that the maps 7,, 7} : A — M, @ P(A)
are, respectively, the restrictions of 7, and 7%, given by (2.1) and (2.2), to A = Geng(A), where
P(A) is the polynomial ring associated to A (see Section 2.1). In the sequel, we generalize

Proposition 2.3.2 for G-simple algebras, in case G is a finite cyclic group.

Proposition 3.3.1. Let G = (¢) be a cyclic group and consider
A= (Mp(D;),g ©€) = (Mp(D,), 0 ©€),

with presentation Py = (75 (g1, -, gk))-

The following statements are equivalent:

(1) The maps 7, defined on Geng(A) are injective, for all h € Toee, ;
(17) The maps 7;, defined on Geng(A) are injective, for all h € Tyeg, ;
(1ii) There exist a subgroup H of G and an element g € G such that
Loce, = 9H,

and all fibers of the map o ® €, are equipotent, that is, there ewists ¢ € N* such that
Waee, (h) = ¢, for all h € Tk, .

Proof. The proof is analogous to that of Proposition 2.3.2. Here we will only deduce the
implication of item (ii7) to (¢) since it contains important details to be highlighted.

Suppose that Z,0z. = gH, for some subgroup H of G and some element g € G. Moreover,
assume that all fibers of the map o ® €, are equipotent, that is, there exists ¢ € N* such that
Waee. (h) = ¢, for all h € Tz, Then, it follows that wz(H,.h) = ¢, for all h € Z,,.

We claim that, for each | € T4, 7, is injective if, and only if, T(es)tq 18 injective, for every
tel0,r—1].

Indeed, let ¢ : F(X;G) — A = Geng(A) be the canonical G-graded epimorphism such that
ker(p) = Idg(A), and fix p: F(X;G) — A an arbitrary graded evaluation.

Given | € T 4, assume that 7, is injective. Suppose, if possible, that there exists ¢’ € [1,7—1]

such that 7.y, is not injective. Thus there exists a non-zero element a' in A satisfying

a1
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Tesyrg (@) = 0. Take f € F(X;G) such that p(f) = a’. Hence, one has that

p(f) = d7 ey @ BY), 4 € F,
it
with dﬁpj) =0, for all p € [1, k] such that H,g, = H,g;, and for all j € [1,k] and t € [0,r — 1].

In particular, this implies that 7y, (a’) = 0, a contradiction. Therefore, 7T(cs)tg, is injective, for

every t € [0,r — 1]. Since the reciprocal is trivial, we conclude the claim.

Therefore, in order to conclude that (i) is valid, it is enough to show that fixed ¢ € T 4 and

an element @' in A satisfying 7,,(a’) = 0, one has that a’ = 0.

To this end, define, for each v € Ty,
T, ={i€[L,k] | H.g;: = H,g,},

and, for each ¢ € [1, k], set
Bls :=[(0 — 1)r +1,0r].

As above, take f € F(X;G) such that ¢(f) = a’. We obtain that if p: F(X;G) — A is an

arbitrary graded evaluation, then
P(f) = Z dgw)E(ifl)rH,(jf1)r+t+1»
64yt
with

dgm) =0, Vp € [l,k] satisfying H.,.g, = H,.g,,Vj € [1,k],Vt € [0,7 —1].

Fix an arbitrary ¢ € T4 and consider

9= 90 90 (3.3)

Since Zooz, = gH and H is a subgroup of G, it follows that § € H and there exists € Sym(T )
such that

H,g5q) = Hrgg, foralll € Ty,
and, in particular,

(L") = ¢.

Moreover, the fact that all the fibers of the map o ® €, are equipotent guarantees the existence
of 6 € Sym(k) satisfying

H,goq) = H.gg;, foralll e [1,k],
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such that the restriction of 6 to T 4 coincides with 6 and 0(T,) = Toy), for all v € Ty

Now, from the above discussions, we have that there exists o in Sym(kr) satisfying
o(Bls) = Bly), forall § € [1,k], (3.4)

and
(a®e) (o) =g(a®e)(), forall.ell,kr]. (3.5)

Finally, define the map

T (My,a®8) = (My,a®%)
Euv = Eo(u)a(v) .

Clearly I' is a graded isomorphism. Furthermore, given i,j € [1,k] and ¢ € [0,r — 1], one has
that

r—1 r—1
C(Eg1)ra1,-1)r+t41) "t r ( Z E(i—l)r+l+1,(j—1)r+7'l(t)+1) = Z Eo((i-1)r+141),0((G-1)r+r1(6)+1)-
’ 1=0 1=0

Since there exist unique ¢; and d, such that, for all [, € [0, — 1],
(i—1)r+1+1€Bls, and (j—1)r+7(t)+1¢€ Bly,
it follows from (3.4) that
o((i = 1)r +1+1) € Blos,y, o((j—1)r+7(t)+1) € Blys, (3.6)

and thus

D(E(—1)r1,-1)r+t4+1) = Eo((i—1)r4+1).0((—1)r+14+1)-
This implies that the map I" induces a graded isomorphism on A.

We notice that I'p: F(X;G) — A is still a graded evaluation and

F(P(f)) =r ( Z dz(fw)E(i—l)r-l-l,(j—l)r+t+1) = Z dz(ew)Ea((i—1)r+1),a((j—1)r+t+1).

it it
Since 7,4, (a’) = 0, by combining (3.3), (3.5) and (3.6), we obtain that
d") =0, Vpe 1, k] satisfying H,g, = H,gs,Vj € [1,k], ¥Vt € [0,r — 1].
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Thus, once gy is arbitrary, we conclude that dgij ) = 0, for every i, 7, t. Consequently, f € Idg(A)

and this implies o’ = 0, as desired. 0O

The next result classifies the G-simple (o ® €, )-regular algebras.

Theorem 3.3.2 (Theorem 4.8 of [22]). Let G = (€) be a cyclic group and consider
A= (My(D,),a®F¢).
Then A is (a ® €.)-regular if, and only if, there exists g € G such that
Loce, = 9Hacw, -

In this case, [Hooz, : Hy] = |Ta| and all fibers of the map o ® €, are equipotent.

Proof. Proposition 3.3.1 and Lemma 2.3.3 guarantee that A is (a ® €.)-regular if, and only
if, Tooz, = gHaoe,- In this case, it follows that |Haee,| = |Zacz,| = 7|Ta| and consequently
[Haoz, © H,] = |Tal. Finally, Proposition 3.3.1 guarantees the existence of ¢ € N* such that
¢ = Waez, (h), for all h € Zep,. 0O

As a direct consequence of the previous theorem, we have the following result.

Corollary 3.3.3 (Corollary 4.9 of [22]). Let G = (¢) be a cyclic group and consider A =
(My(D,),a ®F€.). Then A is a G-reqular subalgebra of the matriz algebra (My,,« ©®'€,) if, and
only if,

Hoce, = G.

Given A = (My(D,),a®F€,) and B = (My(D,), 5®%,), we finish this section by stating that
if B is graded-isomorphic to A, then B is (8 ® €, )-regular if, and only if, A is (o ® €,)-regular.

Moreover, in this case, we establish interesting relations between the images of the maps a ®¥,
and 8 ®F€,.

Proposition 3.3.4 (Proposition 4.10 of [22]). Let G = (€) be a cyclic group and consider
A= (My(D,),a®€) and B = (Mg(D,),BOE€).

Suppose that B is graded-isomorphic to A. Then B is (8 ® €.)-reqular if, and only if, A is
(o ©€.)-regular.
In this case, if go, g3 € G are such that Loz, = gaHaoe, and Lsez, = gsHper,, then g € G
18 such that
Waee, (97) = Waee, (z), for all z € G,
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if, and only if,
9 € 95Hace 90 = 9sHpor gn -

Proof. Since B is graded-isomorphic to A, it follows from Proposition 3.2.1 that there exists
g € G such that
Tsoe, = 9Zace, and  Hpor = Hack,-

By combining the above equalities with Theorem 3.3.2, we conclude that B is ( ® €, )-regular
if, and only if, A is (o ® €,)-regular.
Now, assume that g,,gs € G are such that

Loce, = JaMace, and  Igoz, = gstpor, -
If g € G is such that wgee, (92) = waee, (z), for all x € G, then, in particular,

WREE, (gga) = Waeg, (ga) #0

and this implies that gg, = ggh, for some h € Hez,. Hence, g € gsHace. 95"
Conversely, assume that g € gsHaee g, ", that is, g = gshg, ', for some h € Haee,. In this
case, it is valid that

Waee, (97) = Waee, (z), forall z € G.

In fact, if v € Zyeoz,, then waee, (z) # 0 and o = gaﬁ, for some h € Heoee,- Thus

waer, (9) = Waoz (95hga  gah) = weez, (gshh) # 0.

By using the fact that there exists ¢ € N* such that waee, (v) = wpee, (2) = ¢, for all y € T,qp,
and z € Zgee,, we conclude that wgee, (92) = Waee, (). On the other hand, if ¢ Z,q¢,, it is
easy to verify that wsez, (92) = Waee, () = 0. 0
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Chapter 4

The factorability of the 7. -ideals
[do (UTc (A1, ..., An))

Let F' be an algebraically closed field of characteristic zero. Consider € a primitive nth root
of the unity in F* and G = (¢) = C,,, the finite cyclic group generated by e. Moreover, consider
Ay, ..., A, finite dimensional G-simple algebras. If p is a prime number and G is a p-group,
that is, the order of GG is a power of p, in this chapter, we will present necessary and sufficient
conditions to the factorability of the Ti-ideals Idg(UTg(Ay, ..., Ay)) of the G-graded upper
block triangular matrix algebras UTg (A4, . .., Ap) endowed with elementary G-gradings.

We will see that such factorability is associated to the concept of G-regularity of the G-
simple algebras Ay, ..., A, and the number of non-isomorphic G-gradings on UTg (A1, ..., An).
Such statements are similar to those obtained by Avelar, Di Vincenzo and da Silva, in case
n = 2 (see [7]). Nevertheless, it is worth saying that in our works we use different techniques
from those applied in [7]. In particular, the invariance subgroups associated to the G-simple

blocks Ay, ..., A,, are important and crucial tools in obtaining several results.

Still, if m = 2 and by requiring some assumptions on the G-simple algebras A; and A,,
we also will establish conditions for the factorability of Idg(UTg(A1, A2)), even when G is not
necessarily a p-group. In this case, we will see that the factorability of the Tg-ideal of the
algebra UTg (A1, As) is not necessarily related with the concept of G-regularity.

The results cited above were obtained with the participation of Professor Viviane Ribeiro
Tomaz da Silva and Professor Onofrio Mario Di Vincenzo, and are available in [22]. Further-
more, in order to achieve these results, we will employ, in this chapter, some different tools
from those used in our paper ([22]). In particular, the indecomposable T-ideals allowed us to

exhibit some alternative proofs for our results.
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4.1 The algebra UT¢, (A, ..., A,) and the invariance sub-
groups

In this section, we will focus on the G-graded upper block triangular matrix algebras
UTg(Ay, ..., Ay), where Ay, ..., A, are finite dimensional G-simple algebras. In order to
obtain relations between Idg(UTg (A, ..., Ay)) and the invariance subgroups of the G-simple
components Aq,...,A,,, we will establish some technical results associated to such algebras
UTg(Ay, ..., Ap).

First, fix an m-tuple (Ay,..., A,,) of finite dimensional G-simple F-algebras. In light of

Theorem 3.1.3, we may assume that
A= (Mkz(DTl)agl ng) = (Mkl(DTz)7al ®€Tl) = (Mkz<D7‘z)762l)=

where oy == oy ® €, and g, = (gu1, Gi2, - - -, Gi,) 1s such that Py, = (1;;g;) is a presentation of
A;. We remember that the tuples g; and &, = (1g,€%,...,(¢*)"1) induce, respectively, the
elementary gradings in My, and D,,.
Consider the G-graded upper block triangular matrix algebra A := (UT(A4,..., An), Q)
(see Section 1.1). In this case, for each [ € [1,m], it follows that
1
m=> kr, and Bl :=[g_+1m].

=1

Moreover, for each [ € [1,m], given g € G we set

w(g) == |{i | i € B, and a(i) = g}|

@

and we denote by Hy’ the invariance subgroup of the G-simple algebra A;;, that is,

Hg) ={hed| wg)(hg) = wg)(g), for all g € G}.

Remark 4.1.1. The set formed by the elements

° EZ(;L’U), forall 1 <wu<wv<m,withie [l k.., j€[Lkyml;

e (e; @ BN for all u € [1,m], with 4,j € [1,k,] and ¢ € [0,7, — 1]

is a homogeneous basis of the vector space A, called its canonical basis. Such basis will be
denoted by B. Notice that B is a multiplicative basis of A (since, given by, by € B, if b1by # 04,
then b1by € B).
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The next result resembles Lemma 3.3 of [17] and presents important properties related to

elements of the basis B.
Lemma 4.1.2 (Lemma 3.4 of [31]). Let by,...,b € B and assume that b:=by---b, # 04.

(i) If b € Ay, then b; € Ay for every i € [1,1], and b = (ey; @ EY)D | for some 4,5 € [1, k]
and t € [0,70 — 1]. Moreover, if b := bzqy---brq) # 04 for some m € Sym(l), then
b = (e; @ EY) D when i # j, whereas b™ = (em/ ® BN for some I € [1, k] otherwise.

(13) If b € J(A), then there exist 1 < u < v < m, i € [1,kyr,] and j € [1, k,r,] such that
b= EE;-“]). Moreover if b™ := b1y - - brqy 7 04 for some m € Sym(l), then b™ = Ezu ),

J

Proof. First, remember that B is a multiplicative basis of A. The initial statement given in item
(1) follows directly by applying (1.1) and the fact that A = A ,+J(A), where Ayy = A1 - DA,
is a direct sum as algebras.

Now, for each ¢ € [1,1], by writing b, = (e;,;, ® E%)®) | we have

(e @ BN = b = biby---by = (e, ® EM)D (e, @ E?) 0o (e, @ E)ED

e o b1 +lo+-+1p | (€,0)
(euhezzm €ij; @ B )

1 //

Thus, since (ei/j/ ® Et')(u/’u') (e; 1 jn @ Et“)(u = Sy //(6”// ® EY +t//)(ur a it follows that

ti+to+ -+t =t (mod ry), 17 =14, jy=7 and j, = 4,41, forall e [1,1—1].

Notice that the rows is,...,4; and the columns 71, ..., 71 such that j, =1,,; are appearing in

pairs. This means that if ¢ # j, then
{ee Ll ]i =i} =1+{ee[L,]]j =i} and [{e € [L]j. =} = 1+{e € [1,1] i = j}]

Therefore, if i # j and b™ # 04, we conclude that b™ = (e;; ® E*)49. Similarly, in case i = j,
we have b™ = (eyy @ B9 for some I € [1, k).
Finally, we can argue analogously to what was done above and to conclude the proof of (ii).

UJ
In the sequel, we present a technical lemma which is crucial for our aims.

Lemma 4.1.3 (Lemma 5.4 of [22]). The Capelli polynomial Cap(x1, ..., 25 T4, ..., Topg1) 1S
an ordinary polynomial identity for the upper block triangular matriz algebra UT(Al, o Ag)
if, and only if, | > m+ 7" k. In particular, if m > 2, define t :=m — 1+ 1" k2, for any
u € [1,m] and v € [Nm—1 + 1,nm] there exists an evaluation of Capy(x1, ..., 245 Tev1, .. Tops1)

in UT(Ay,...,A,), at canonical basis elements, equal to EL™.

52



Proof. First, givenl > 1, weset f; := Capy(xy, ..., 25251, ..., Tye1) and A := UT(Aq, ..., Ap).
In order to conclude the proof of the lemma, we will show that f; ¢ Id(A) if, and only if,
[ <tim:=m—1+>" kZ To this end, let us apply an induction on m.

The case m = 1 is guaranteed by Lemma 3.1.4.

Assume that m > 2 and suppose that fi ¢ Id(UT(A;,,...,A;,)), with 1 <4y <idp <--- <
ip <mand 1 <p<m-—1if andonly if, ' <p—-1+ 7", kf We start by assuming that
fi ¢ Id(A). Since f; is multilinear, it follows that there exists a non-zero evaluation of f;, at
canonical basis elements of A, which we will denote by f;.

Notice that, if Z1,..., %oy ¢ J(A), then there exists ¢ € [1,m] such that Zy,..., o € Ay
and, hence, we finish by applying the case m = 1. Therefore, assume that there exists at least
one positive integer ¢ € [1,2[ + 1] such that z, € A, ; C J(A), with ¢ < j.

If ¢ € [1,1], then we can suppose that

D11 818142+ Tt ToTpig1 - TTor41 £ 0

and this implies

Ty 1o Tiqe € Ay, with 1 <4 <

and
p— —_ = . . .,
Tigor1 - TiZoqr € Ajjr,  with j < 53" <m.
— _ _ — 1 — — —_ —
Consequently, we have Z1, ..., %1, Tip1, . Ziee € AP and Zopr, .. %, Tipogt, .- Toig1 €
AT,

We remark that, given o € Sym(l), if either o(¢) # ¢, or there exists ¢ € [1, £ — 1] such that
o(q) € [¢ + 1,m], or there exists ¢ € [¢ + 1,m] such that o(q) € [1,¢ — 1], thus we obtain

Ti1ZTo(1)Tiy2 - - TaZo@Tasr = 0,
since i’ <i < j<j and A, Ay g =5 Ay, for all 7, s,77" 8" € [1,m]. Therefore, we can write
fi= (@1, 1, Ty - Tid)To f1—e(Togns - o3 Tty Tt 1, - - - Targn)s

where 0 # f_1 € A" and 0 # fi_, € AVJ1 Once AV = UT(Ay, ... A;) and AU =
UT(A;,...,Ay), with1 <i—i+1<m-—1and1<j —j+1<m—1, by applying the

induction hypothesis one has that

7 J
(—1<i—i'+> K and 1—(<j —j+) K,

Szil S:j
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and hence ,
(—1<i—i'+> k2 and 1—0<j —j+) k.
s=1 s=j

This allows us to obtain
[—1<j —j+i—i+> K2+> K,
s=1 =J
and, since ¢ — 7 < —1, we conclude that
[<j =i+ K<m—1+Y K,
s=1 s=1

as desired.

On the other hand, if £ € [ + 1,2l + 1], then ¢ = [ + ¢, with ¢ € [1,1 + 1]. We remember

that there exist diagonal elements e; € A;; and e; € A; ;, in the canonical basis of A, such that

7]’
Ty = e;Teej, with ¢ < j, and thus, similarly to the previous case, we can write

fi=fo 1Ty, Te 1, T, T -1, @) T fioo 1 (T, - B €5, Ty, - - Torgn)
and we are done.

Conversely, assume that [ < t1,,. In order to conclude the proof, we show that f; ¢ Id(A).
We define t19 := —1 and, for each ¢ € [1,m], we consider the following evaluation given by k?

distinct elements of the canonical basis of Ay:

(611 ® EO)(Z,Z . (612 ® EO)(M) A (622 ® EO)(Z,Z) X (621 ® EO)(“)-
(613 ® EO)(M . (633 ® EO)(M) . (632 ® EO)(M) . (623 ® EO)(M)_
(631 ® EO)(&Z) . (614 ® EO)(Z,E) . (644 ® EO)(&K) e (6’%1 ® EO)(&E)
(611 ® EO)(Z,@)_

jt1,571+2 o fh,e )
)

Still, for all £ € [1,m — 1], consider Ty, ,41 = E%Hl). Thus, given v € [1,m] and v € [1,—1 +
1,mm], there exist suitable diagonal elements Z;.1, ..., Zg.1, of the canonical basis of A, such
that

(1,m)

uv ?

Ti41T1 142 - - T T4 = E

and, for every o € Sym(l), with o # 1, we have

L1 %) Tig2 - TZo@)Taurr = 0.
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Then fi(Z1, -, Toy1) = EY™ and this means that fi ¢ Id(A). 0

From now on, let us fix an m-tuple (A4, ..., A,,) of finite dimensional G-simple F-algebras
and consider A := (UT(A,...,An),a) and B := (UT(Al,...,Am),E) such that E is a-
admissible. Moreover, for cach [ € [1,m], let us assume that (A;, &) and (A;, 3) have the

following presentations:

Piaay = (s (gn, -, 9w,))  and - Py, 5y = (r; (G- ).

The next result relates the invariance subgroups of the G-simple algebras A;; and the ideals
of G-graded polynomial identities of the algebras A and B. Such result is a generalization of

our Lemma 5.5, stated in [22].

Proposition 4.1.4. Let G = (¢) be a cyclic group. Suppose that m > 2,
El =l,-a; and gm:ln'&ma

for some h,n € G such that h='n ¢ HOHI™ . Then 1da(B) ¢ 1dg(A) and 1dg(A) ¢ 1da(B).

Proof. In order to obtain that Idg(B) € Idg(A), let us construct a suitable graded polynomial
fsuch that f € Idg(B) and f ¢ Idg(A). The proof of Idg(A) ¢ Idg(B) follows in an analogous
way.

First, let us suppose, without loss of generality, that

W, oz, (911) = Mmax{wa, oz, (R) | b € Lo,er,, }

and

Denote ty,, ;= m — 1+ Y ;" k? By invoking Lemma 4.1.3, there exists an evaluation of
the polynomial Capy,, (z1,..., %4, ; Tty +1y - - > T2ty,,+1) 0 the algebra UT (A4, ..., Ay), at its
canonical basis elements, resulting in E,, 1. Now, consider the multilinear graded poly-
nomial Capy,, (U1, ..., Usy, 5 Uy, +1,-- -5 Uty +1) built in a such way that each homogeneous
variable u; has the degree, induced by «, of the canonical basis element used in the above
evaluation. Then Capy,, (u1,..., U, U, +1, - - Ust,,,+1) has a graded evaluation in A equal

to Egllm) =E,,,_,+1- Still, once
‘Egll’m)‘A = ‘Elmm—1+1|A = &(1)71&(nm71 + 1) = gﬂlgml

it follows that Capy,, (U1, ..., U, ; U, +1,- - Usty,,+1) has homogeneous degree being 17! gmi
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as an element of F'(X;G).

Thus, by item (7) of Lemma 3.2.3, there exist homogeneous multilinear polynomials W 4,
and V4, in pairwise disjoint sets of homogeneous variables (and also distinct from those of the
set {uy, ..., Uy, +1}), with evaluations p; : F(X;G) — A and p,, : F(X;G) — A, such that

Pl(\I/Al) = (611 ® EO)(I,I) and pm(\IlAm) — (611 ® EO)(m,m)‘
Therefore, by setting

f = \I]Alca'phm (ula ey Uty s Uty 415 - - - 7u2t1m+1>\11Am7

we have that f ¢ Idg(A).

Our next step is to show that f € Idg(B). We start by remarking that any non-zero graded

evaluation of Capy,, (u,..., Uy, ; U, +1,- -, Usty,,+1) i B must give elements of J(B)™ !

which are linear combinations of matrix units E,, of homogeneous degree equal to gi; g1,
that is, matrices E,, € J(B)™ ! such that

B(p)B(@) = 911" gm1.

Thus, in order to have that f is not a graded identity of B, the homogeneous multilinear

polynomials W4, and ¥,  must be evaluated, respectively, in A; and A,,.

If p; and p,, are graded evaluations, respectively, of W4, and W4,  in, respectively, A; and
A,, (with the grading induced by 5), since B = I - & and B, = ly - G, from Remark 3.2.4,

such evaluations satisfy

e @ AP and pu(Ta)e P (A

s 1 -
i€Ta1; 91 EH(@ ‘o ]GTAm§gmj€H%m)gm1

In particular, the evaluation of W4, results in linear combinations of basis canonical elements
(euw @ E40)D € (AN 5, = B ©&,) such that

p1(u) = h(e)*gy; and [1(v) = h(esl)bgli, for some a,b € [0, — 1],
and once ¢gy; € Hg)gn, we have
f1(u) = h(e)*hy;011 and fy(v) = h(esl)bhlign, for some hy; € ’Hg);

whereas, one has that the evaluation of W,  results in linear combinations of basis canonical
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elements (e, ® E¢)mm) ¢ ((Am)mgmj), B/m = By ®€,,,) such that

la
B (1) = (™) hmjgm1 and By, (v) = n(GSm)dhmjgml, for some h,,; € H(Bm),

with ¢,d € [0, 7, — 1].
Thus, from above discussions, we have that there exist I; € [0,r7; — 1] and [,,, € [0,7,, — 1]
such that

91 gm1 = B(p) ' Blg) = (h(€¥) haigia (7)) (€™ ) P Gona (€57)

which implies that A= = (€)1 hy,(ewm)~Hm)p-1 Since (1) C Hg) and (em) C ’Hg”), we
conclude that h=tn € Hg)’;'-[%m) = HS)HS&m), a contradiction with our hypotheses. Hence, this
forces f € Idg(B), as required, and then Idg(B) ¢ Idg(A). 0

We can generalize the previous proposition in the following manner:

Proposition 4.1.5. Let G = (€) be a cyclic group. Assume that, for 1 <a <b<m,

Ba=1ln-dy and By =1,-ay,

for some h,n € G such that h='n ¢ HYHY . Then 1dg(B) ¢ 1dg(A) and Idg(A) € 1dg(B).

Proof. Firstly, Proposition 4.1.4 guarantees that there exists a multilinear graded polynomial
f such that
f ¢ Idg(Al*?y and f € Idg(BY).

Define t1, == a — 1+ Y%, k? and tp, := m — b+ > -, k?. Tt follows from Lemma 4.1.3

j=1Fj j=b "5
that we can build graded multilinear polynomials f;,, := Capy,, (U1, ..., Uy, Uty 1y -+ Uty +1)
and fi, = Capy,, (Vi,...,04, 50, +1,---,V2t, +1), il pairwise disjoint sets of homogeneous

variables (also distinct from those involved in f), such that f;, ¢ Idg(Al9) and f, ¢
IdG(A[b’m])

Therefore, by considering new distinct variables x4, 2,4, for each g € G, and setting
f=fu. (Z x) f <Z 55) Forms
geG geG

it is easy to see that f ¢ Idg(A).
Finally, we claim that ]76 Idg(B). Indeed, from Lemma 4.1.3, one has

fi.. € Idg(BM), for all | < a,
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and
fr, € Idg(BY™), for all I > b.

Therefore, in order to obtain a non-zero evaluation, we must evaluate the polynomial f,,
in B for some [ > a, whereas f;, in Bl for some I’ < b, and thus (3. 29)f(> %) in
Bl¥] Then, once

B € Bled and  f e 1dg(B™),

we obtain f € Idg(B) and, hence, Idg(B) ¢ Idg(A). Analogously, we conclude that Idg(A4) €
Ida(B). -

Finally, when m = 2, we can also relate, in a special case, the invariance subgroups of the

G-simple algebras A; and A, with the factoring property.

Proposition 4.1.6 (Theorem 5.9 of [22]). Let G = (¢) be a cyclic group. If m = 2 and
(A, &;) is ag-regular, for all i € [1,2], then the Ti-ideal 1dg(A) is factorable if, and only if,
HIHD =G

« (e}

Proof. If 7—[5&1)7-[%2) # (3, by the previous proposition there exists an a-admissible G-grading B

on UT(A;, Ay) such that for the corresponding G-graded algebra B we have Idg(A) € Idg(B).

Hence Idg(A) # Idg(A1)Idg(As), since by Lemma 1.2.5, Idg(A;)Idg(A2) C Idg(B).
Conversely, if HS)H?) = @ the result follows by Corollary 2.2.2 and Theorem 3.3.2. 0O

4.2 The factorability and the indecomposable 7 -ideals

Let Ay, ..., A,, be finite dimensional G-simple F-algebras and consider the G-graded upper
block triangular matrix algebra UTg(Aq, ..., Ayn). In Section 1.2, we presented the definition of
decomposable and indecomposable T;-ideals. These concepts are important tools in obtaining
results related to the factorability of the Tg-ideal Idg(UTg(A4, ..., Ay)). We recall here that
the notion of weakly factorable appears in Definition 2.1.3. The first result associated to

decomposable T-ideals is the following:

Proposition 4.2.1. Let G = (€) be a cyclic group and A = (UT(Aq, ..., A),@). The Tg-ideal
Idg(A) is decomposable if, and only if, m > 2 and 1dg(A) is weakly factorable.

Proof. If m =1, from Lemma 1.2.3, it follows that Ids(A) is indecomposable.
Let us study the case m > 2. If Idg(A) is weakly factorable, then there exist integers
1<c¢ <cy <+ <c¢, <msuch that

Tde(A) = Idg(Aba))Idg(Alerthel) . 1dg(Alewttml),
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By invoking Lemma 1.2.5, we can conclude that
Idg(AbaDIdg(Alertbely o 1dg(Alettmly € 1dg (AP DIdg (A1) C TIdg(A),

and, hence, we obtain
IdG(A) = Idg(A[l’cl])Idg(A[Cl+1’m]).

By combining the facts that A<l = UT4(A;,..., A,,) and Alrtbml = UTG (Al 14, ..., Ap)
with Lemma 4.1.3, one has that

Idg(AM)) £1dg(A) and Idg(AlHhml) £ 1dg(A).

Consequently, Idg(A) is a decomposable Ti-ideal.

Conversely, assume that Idg(A) is decomposable. Thus m > 2 and there exist Ti-ideals
I #1dg(A) and I # Idg(A) such that

Idg(A) = L 5.
We claim that, for any v € [1,m — 1],
either I; C Idg(A[l’”]) or I, C Idg(A[”’m]).
In fact, suppose, if possible, that there exist
fi € L\1dg(AM) and f, € I, \ Idg(AP™),

for some v € [1,m — 1]. This means that there exist graded evaluations p; : F(X;G) — Al
and py : F(X;G) — A" such that

pi(fi) =a#0 and pa(f2) =b#0.

In this case, we remark that there exist w € A such that awb # 0. Then, the polynomial
f1(3_ e ®?) f2 is not a graded polynomial identity for A and also it satisfies fi(}_,cq29)f2 €
I 15 =1dg(A), a contradiction.

Moreover, by using the above claim, it is easy to verify that I; C Idg(AlbY). Consider
¢ :=max{v | I} C Idg(AL")}. Thus I; ¢ Idg(AM“1) and we notice that £ # m. By applying

again the above claim, it follows that I, C Idg(A+'™). Therefore, we have
Idg(A) = L1, C Idg(AMNIdg (ALY C 1dg(A)
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and, hence, Idg(A) = Idg(AM)Idg (A1), Then Idg(A) is weakly factorable, as desired.

The next result presents a sufficient condition for the Tiz-ideal of UT¢ (A4, . .., A,,) be inde-

composable. Such condition is related to the invariance subgroups of the G-simple components
Ay and A,,.

Proposition 4.2.2. Let G = (e) be a cyclic group. If m > 2 and HS)’Hém) #+ G, then the
Te-ideal 1dg((UT (A4, ..., Am),@)) is indecomposable.

Proof. First, let us denote A := (UT'(A4, ..., An),&). Suppose, by contradiction, that Idg(A)

is decomposable. From Proposition 4.2.1, there exist 1 < c¢; < ¢y < --- < ¢, < m such that
Idg<A) = Idg(A[l’cl])Idg(A[cl—H’Cﬂ) s Idg(A[C“—i_l’m}).
Consider the G-graded upper block triangular matrix algebra B = (UT'(A4, ..., An), 5) where

Once E(]) = a(j), for all j € [1,n,,], one has that (UT(A, ... ,Acu),g) =(UT(Ay,...,A),Q)
and hence Idg(Ble—1F1el) = Idg(Als—1+bal) for all i € [1,u], by setting co := 0. Still, the fact

that (UT(Acy41s---5Am), B) = (UT(Acy41s - - - Ap), @) yields us
Idg(B[C“+17m]) _ IdG(A[Cu+17m]).

Therefore, by applying Lemma 1.2.5, we have

Idg(A) = Idg(AReDIdg(Aletiel). . Idq(Aletiml)
— IdG(B[l,a])IdG(B[clﬂ,cz}) .. .IdG(B[cuH,m}) C 1dg(B),

a contradiction with Proposition 4.1.4 (here h = 15 and 1 = €). Then, we conclude that Idg(A)

is indecomposable and the proof of the theorem is complete. 0O

We remark that if (B, ) is a finite dimensional G-simple algebra, then B is G-regular
if, and only if, Hg = G (see Corollary 3.3.3). Thus given m > 2, and considering an m-
tuple (Ay,...,A,,) of finite dimensional G-simple algebras, if Hél)’;’-[ém) # G, where A =
(UT(Aq,...,A,),@), then A; and A, are both non-G-regular G-simple algebras. However,
in general the converse may not be valid. In the sequel, if p is a prime number, we will obtain
that, for p-groups, the condition Hg) ’Hgn) # @ is equivalent to requiring that A; and A,, are
both non-G-regular G-simple algebras.
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Theorem 4.2.3. Let G = (€) be a cyclic p-group, where p is a prime number. Assume that
m>2and A= (UT(Ay,...,An),@). The following statements are equivalent:

(i) MM # G
(1) Ay and A, are both non-G-regular G-simple algebras;

(1ii) The Tg-ideal of A is indecomposable.

Proof. First, the implication of item (i) to (¢7) is trivial, since if A; or A,, is G-regular then,

by Corollary 3.3.3, 7—[2) =G or Hém) = (7, which is contrary to the fact that Hg)?{ém) #+ G.
In order to prove the converse, assume that statement (i) holds, with ”Hg) = (%), for

i € [1,m], and suppose, by contradiction, that H‘&”Hg{”) = (G. Thus e € Hg)Hém), and we can

write

= (e,

for some integers [y, [,,. Since A; and A,, are both non-G-regular G-simple algebras, it follows
that 7—[%1) # G and ’Hg&m) # G, and then p divides ¢; and ¢,,. From the above equality, one
has that p divides (¢1l; + ¢ymy,, — 1), and consequently p divides 1, an absurd. Therefore, we
conclude that statements (i) and (¢i) are equivalents.

We remark that Proposition 4.2.2 guarantees that (i) implies (éi7). Thus, in order to finish
the proof of the theorem, let us show that (iii) implies (i7). For such, it is enough to notice

that if A; is G-regular, then, by applying Theorem 2.1.5, we have
ldg(A) = lda(A)lde(UTe(As, . . ., An)).
Similarly, we concluded if A,, is G-regular. O

In the sequel, we give a generalization of Theorems 4.6 and 4.9 of [7]. We highlight that its

proof is a direct consequence of Proposition 4.1.5 and Theorems 2.1.5 and 4.2.3.

Theorem 4.2.4. Let G = (€) be a cyclic p-group, where p is a prime number, and consider
an m-tuple (A, ..., Ay,) of finite dimensional G-simple algebras. Let A = UTg(Ay, ..., An).
Then, either 1dg(A) is an indecomposable Tg-ideal (related to minimal graded algebras) or
Idg(A) can be written as a product of indecomposable T -ideals.
More precisely, if there exists at most one index ¢ € [1,m] such that A, is a non-G-regular
G-simple algebra, then
ldg(A) = Ide(A1)lde(Az) - - - Idg(Am).
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Otherwise, we can set u and v as the first and the last index (with 1 < u < v < m), respectively,
such that A, and A, are non-G-reqular G-simple algebras. In this way, the decomposition of

Idg(A) as a product of indecomposable Tg-ideals is given by
Idg(A) = 1dg(Ay) - - - 1dg(Au—1)ldg(UTe(Ay, - - ., A)Ida(Apsr) - - - Ida(An).

As a consequence, we obtain:

Corollary 4.2.5. Let G = (¢) be a cyclic p-group, where p is a prime number, and consider
an m-tuple (Ay, ..., Ay) of finite dimensional G-simple algebras. Let A = UTg(Ay, ..., An).
The Tg-ideal 1dg(A) is factorable if, and only if, there exists at most one index ¢ € [1,m| such

that Ay is a non-G-reqular G-simple algebra.

4.3 The factorability and the isomorphism

Let Ay, ..., A,, be finite dimensional G-simple F-algebras. We start this section by giving a
result which establishes a relation between the invariance subgroups associated to Ay, ..., A4,,
and the number of non-isomorphic G-gradings on UTg (A4, ..., Ay). Moreover, we present
necessary and sufficient conditions to the factorability of the T-ideals Idg(UTg(Aq, ..., Am)),
in case GG is a cyclic p-group, with p an arbitrary prime. Such statement is one of the main
results of this thesis. Finally, we explore the factorability of Idg(UTg (A, As)), where G is not
necessarily a cyclic p-group.

Here, we also consider A := (UT(Ay,...,An),@) and B := (UT(Ay, ..., An), B) such that
3 is a-admissible. For each | € [1,m], we assume that (4;,q) and (A;, §) have the following
presentations: P4, a,) = (713 (g1, - - -, giw,)) and P(Azﬁz) = (ri; (Guns - -5 Guy))-

Proposition 4.3.1. Let G = (¢) be a cyclic group. If Hgl)’}-[g) # G for some 1l <a<b<m,
then there exists at least an &-admissible G-grading B such that A = (UT (A1, ..., Ap), @) and
B = (UT(A4,... ,Am),ﬁ) are non-isomorphic as G-graded algebras.

Proof. Since HS;)HS) # G, for any h,n € G such that h™1n ¢ Hgl)?-lg)), let gbe the G-grading
defined on UT (A4, ..., A.,) satisfying

ﬁa:lh'&a and Bb:ln-b?b.

By invoking Proposition 4.1.5, it follows that Idg(B) € Idg(A4) and Idg(A) € Idg(B).

Consequently, A and B are non-isomorphic as G-graded algebras. 0O

The next lemma gives us an important condition in order to obtain a graded isomorphism
between the algebras A = (UT(Ay, ..., Ap), @) and B = (UT (A1, ..., An), B).
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Lemma 4.3.2 (Lemma 3.6 of [31]). Let G = (€) be a cyclic group. If there exists g € G such
that
wg)(ga:) = wg)(q:), forall l € [1,m] and = € G,

then B is graded-isomorphic to A.

Proof. For each [ € [1,m], the hypothesis guarantees us that there exists a permutation
0, € Sym(k;) such that
H,, i1y = Hy, 991, for alli € [1, k.

Given ¢ € [1, k], let us define Bljs := [(6 — 1)r; + 1,9r;]. Then, for each [ € [1,m], there
exists o; € Sym(k;r;) such that

Jl(Blh’) = Bll‘gl(i), for all 7 € [1, k‘l],

and
BI(UI(L» = gay(¢), forall v € [1,kr].

Define the map N
F : (Mnrrﬂ&) — (M"]mMB)

E(u»v) — E(u»v‘)

ij ou(i)ow (i)’
It is easy to verify that I' is a graded isomorphism which induces a graded isomorphism between

the algebras A and B, as desired. O

Now, by dealing with the concept of G-regularity, we have the following result about the

uniqueness of G-gradings on A up to isomorphisms of G-graded algebras.

Proposition 4.3.3 (Proposition 5.7 of [22]). Let G = (¢) be a cyclic group. If there exists
at most one index ¢ € [1,m] such that A, is a non-G-reqular G-simple algebra, then for all
a-admissible G-grading B, the corresponding algebra (UT(Aq, ..., An), B) is graded-isomorphic
to A.

Proof. If E is a-admissible, we will show that B = (UT(Aq, ..., An), 5) is graded-isomorphic
to A= (UT(Ay,...,An), Q).

First, suppose that A; is a G-regular G-simple algebra, for all [ € [1,m]. Then, for all
[ € [1,m] and = € G, the following equality

l l
wg(gz) = wg (@)

is valid for any choice of g € G.

Consequently, fixed a such element g € GG, the assertion comes from Lemma 4.3.2.
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It remains to study the case in which there exists an unique ¢ € [1,m] such that A, is a
non-G-regular G-simple algebra. In this case, since (A, Eg) is graded-isomorphic to (A, ay),

by Proposition 3.2.1 there exists g, € G such that
wg)(ggx) = wg)(x), for all z € G.

Therefore, once A; is G-regular, for all [ € [1, m], with [ # ¢, we obtain that

wg)(ggx) = wg)(x), for all [ € [1,m] and x € G.
Then, by considering g := gy, by invoking Lemma 4.3.2, we conclude that B is graded-
isomorphic to A. 0O

At this stage, as a consequence of the results presented in this work, we state the gener-
alization of Theorem 4.9 of [7] for the case where G is a finite cyclic p-group, with p being a

prime number.

Theorem 4.3.4 (Theorem 5.8 of [22]). Let p be a prime number and let G = (€) be a cyclic
p-group. Given A = (UT(Ay,...,An), @), the following statements are equivalent:

(1) The Tg-ideal of A is factorable;
(i7) There exists at most one index ¢ € [1,m] such that Ay is a non-G-reqular G-simple algebra;

(17i) For all a-admissible G-grading E, the algebra (UT(Ay, ..., An), B) is graded-isomorphic
to A.

Proof. From Corollary 4.2.5 one has the equivalence of (i) and (i7). Moreover, Proposition
4.3.3 guarantees that item (i7) implies (7ii).

In order to prove that (i) implies (i7), notice that if there exist indices 1 < a < b < m such
that the G-simple algebras A, and A, are both non-G-regular, then by Corollary 3.3.3 we have
Hg) #+ G # ’Hg’ ). Since G is a cyclic p-group, as in the proof of Theorem 4.2.3, it follows that
”HS)HS ) # (G. Then, Proposition 4.3.1 guarantees that there exist at least an a-admissible G-
grading B , such that the corresponding algebra (UT (A1, ..., An), 5) is not graded-isomorphic
to A. 0O

In the sequel, we examine the case when m = 2, and (4;, &;) is a;-regular for all ¢ € [1,2]. In
this situation, we can characterize the factoring property for Idg(A) removing the hypothesis

that G is a cyclic p-group.
Theorem 4.3.5 (Theorem 5.9 of [22]). Let G = (€) be a cyclic group and A = (UT(A4, As), @).

If (A;, ;) is ag-regular, for alli € [1,2], then the following statements are equivalent:
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(1) The Tg-ideal Idg(A) is factorable;

(131) For all a-admissible G-grading 5, the algebra (UT (A1, As), 5) is graded-isomorphic to A.

Proof. First, by invoking Proposition 4.1.6, it follows that items (i) and (i7) are equivalent.
Now, assume that statement (i7) holds and let B = (UT' (A4, As), B) such that £ is G-admissible.
Let us prove that B is graded-isomorphic to A and, hence, we obtain item (7).

Since (A;, a;) is a;-regular, for all ¢ € [1,2], one has, from Proposition 3.3.4, that (AZ»,E-) is
gi—regular, for all ¢ € [1,2]. Thus, by applying Proposition 3.2.1 and Theorem 3.3.2, it follows
that there exist elements gz, , 93, 9a,, 95, € G such that, for each i € [1,2], Z5, = gang) and
1z = ggi’l-[g), still ’HS) = ’Hg). Suppose, without loss of generality, that gz, = 95, = le-

From Proposition 3.3.4, for any elements g; € ’Hg) and g, € gEQ’H((;)
i€ [l,2], wg)(gig) = wg)(g), for all g € G. Since HS)H? = @, there exist h; € Hg), hy € Hg)
such that 93, ggzl = hihs and thus

gg;, we have, for each

—1 - 1 2) —

Therefore, it follows that wg)(hlg) = wg) (g), for all [ € [1,2] and g € G. Finally, such equality
yields that B is graded-isomorphic to A (see Lemma 4.3.2).
Conversely, if item (7i7) is valid, then, by Proposition 4.3.1, one has that ’Hg)H@ =G.

«

We finish this section by remarking that if G is not a p-group, then Theorem 4.3.4 is not
valid. More precisely, items (i) and (iii) of Theorem 4.3.4 may not be equivalent to item (iz).
Indeed, assume, for instance, that G = Cj, a cyclic group of order 6. Let A; = (D2, &) and
Ay = (D3, az), where

(@(1),d8(2) = (1e,€®) and  (Ga(1), @2(2), 2(3)) = (1g, €, €b).

Moreover, consider A = (UT' (A1, As), @).
It is easy to verify that

Ta, = HY = (%) and Iz, = HY = ().

This means that the G-simple algebras (A;, @;) are a;-regular, but not G-regular, for all i € [1, 2]
(see Theorem 3.3.2 and Corollary 3.3.3). Finally, once 7—[»(&1)7{%2) = G, by invoking Theorem
4.3.5, one has that the Tg-ideal Idg(A) is factorable and for all a-admissible G-grading E , the
algebra (UT (A1, Ay), B) is graded-isomorphic to A.
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Chapter 5

Minimal varieties and the algebras

Ulc (A1, ..., Ap)

Throughout this chapter, F' will denote an algebraically closed field of characteristic zero.
Moreover, we consider € a primitive nth root of the unity in F* and G = (¢) = C,,, the cyclic
group generated by €. We dedicate the last chapter of this thesis to studying the minimal
varieties of G-graded Pl-algebras of finite basic rank, with respect to a given G-exponent. We
will show that they are generated by suitable G-graded upper block triangular matrix algebras.
Moreover, given finite dimensional G-simple F-algebras Ay, ..., Ay, let A :=UTg(Ay, ..., An).
By imposing some conditions on A, we will prove that, in this case, varg(A) is minimal. The
new results established in this chapter count with the collaboration of Professor Viviane Ribeiro

Tomaz da Silva and are in the paper [31] submitted for publication.

5.1 Minimal C,-graded algebras and minimal varieties

In this section, we will prove that any minimal variety of G-graded Pl-algebras of finite basic
rank, of a given G-exponent, is generated by a suitable G-graded upper block triangular matrix
algebra. To this end, we fix an m-tuple (A, ..., A,,) of finite dimensional G-simple F-algebras
and we consider the G-graded upper block triangular matrix algebra A := (UT'(A4,..., Apn), &)

(as in Section 4.1). Let us start proving that A is a minimal G-graded algebra.

Proposition 5.1.1 (Proposition 4.3 of [31]). Let G = (€) be a cyclic group. The G-graded
upper block triangular matriz algebra A = (UT(A4, ..., Ap), @) is a minimal G-graded algebra,

whose lth G-simple component of its mazximal semisimple graded subalgebra is isomorphic to
(Mk’l (DT1)7 al)

Proof. If m =1, then A is a G-simple algebra and we are done.
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Suppose m > 2. In this case, for each [ € [1,m], it is enough to take the minimal homoge-
nenous idempotents as

(!
e = (611 X EO)(U) = Egl) = Egll’l) + .o+ E(lvl)

i

and, for each [ € [1, m — 1], take the homogeneous radical elements as

wyggr = ESTY. O
Let A = A,s + J(A) be a minimal G-graded algebra, where its maximal semisimple subal-
gebra Ags = A1 @ --- @ A, with Ay, ..., A, being G-simple algebras, and J(A), the Jacobson
radical of A, is a graded ideal. For each ¢ € [1,m], there exist positive integers k; and r; such
that A, is graded-isomorphic to a graded subalgebra of Mjy,,,, endowed with an elementary
grading given by a suitable map &; : [1, k;r;] — G (see Theorem 3.1.3).
Consider the G-graded upper block triangular matrix algebra (UT(Ay,...,An),@). By
using the same notations for the homogeneous radical elements, which appear in Definition
1.5.2, define the map

&A: [an] — G

1 o Jwigwas w1 acy (1) a(i),

where [ € [1,m] is the unique integer such that i € Bl; and |wp|4 := 16.

In the sequel, we shall assume that UT(Aq,..., A,,) is endowed with the grading induced
by the map a 4. In this case, let us denote such graded algebra by (UT'(A4, ..., A),@a), where
the index A emphasizes that the grading on UT'(A4, ..., A,,) depends of that of A.

Definition 5.1.2. The G-graded algebra (UT(A4,...,An),a@4) is said to be the upper block
triangular matriz algebra related to the minimal G-graded algebra A = A; & --- & A, + J(A).

Now, we can state the following result which relates the varieties generated by a minimal
G-graded algebra A= A1 & --- & A, + J(A) and by (UT (A4, ..., An),d4).

Proposition 5.1.3 (Proposition 4.8 of [31]). Let G = (€) be a cyclic group and A = Ags+ J(A)
be a minimal G-graded algebra such that Ass = Ay @ -+ @ Ap. Then (UT(Aq, ..., Ap),04)

belongs to varg(A). In particular, if varg(A) is minimal, then
varg(A) = varg(UT (A1, ..., Am), a)).

Proof. First, we write A := (UT(A4,...,A),a@4). In order to conclude the result it is enough
to show that Idg(A) C Idg(.A). To this end, let us apply the process of induction on m.
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If m =1, then A= UT(A,) is graded-isomorphic to A; = A and we are done.

Assume that m > 2 and suppose that, for every d € [0,m — 1], one has Idg(Alb4d) C
Idg(AM) (remember that the algebras A4 and AM4 were defined in Section 1.5). In this
case, let us to prove that the inclusion F(X;G)\Idg(A) C F(X;G)\Idg(A) is valid. Take
a polynomial f = f(xf',...,27") € F(X;G)\Idg(A). Since charF' = 0 we can assume that
f is multilinear. Moreover, there exist elements by, ...,b,, in the canonical basis of A, with
|bi|4 = g;, for all i € [1,p], such that f(by,...,b,) # 04.

Considere ¢ :=|{i | b; € J(A), i € [1,p]}|- The fact that J(A) is a nilpotent ideal of index
m — 1, yields us £ < m — 1.

First, let us study when ¢ < m — 1. In this case, there exists i € [1,m — 1] such that, for
every j € [i + 1,m], follows that b, ¢ A, ;, for all [ € [1,p].

Notice that, if there exists ¢ € [1, p] such that b, € A, ;, for some u € [1, ], thus the elements

bi,...,b, are in

P A =UT(A ... A)

1<u<v<i

with the induced G-graded. Otherwise, the elements by, ..., b, are in

P A ZUT(A.. Ay, A, A)

1<u<v<m
uFEIFEY

with the induced G-graded. Hence, either
f ¢ IdG(UT(Al Ce ,Al)) or f ¢ IdG(UT(Al . ,Aifl, Ai+1: Ce ,Am))

In both cases, once the G-graded algebras UT(A; ..., A;) and UT(Ay ..., A1, Aiv1, ..., An)
are related, respectively, to the graded subalgebras AL1 and A® of A (see the notation intro-
duced in Section 1.5), we conclude, by the induction hypotheses, that f € F(X;G)\Idg(A), as

desired.

Now, assume that ¢ = m — 1. Then there exist ¢1,...,¢,_1 € [1,p] such that

bt1 - E(172) . 7btm—1 - E(m_l’m),

112 7 " m—1Jm

where i; € [1, k| and jiyq € [1, kjpqrppa], for all L € [1,m — 1], and all the elements of the set
{b1,...,b,}\{b¢,, ..., by, ,} are in the diagonal blocks of A. Since f is multilinear, by invoking
Lemma 4.1.2, one has that

f(bl, R 7bp) — ,YEEJI,m)

for some i € [1,kyr1], j € [1,kpmrm] and v € F*. Assume, without loss of generality, that
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(L)

11

b:="0---b, = Efjlm) Still, by setting j; := ¢ and i,, := j, let us consider by := E and

bpt1 = Elem) Thus, by denoting t; := 0 and t,,, := p+ 1, it follows that

by 1 by =BV, forall I € [1,m],

e

and
—=(1,1 m)\ g m,m m
bof(bi,...,by)bpy1 = Egz )('YEQ’ ))E(‘ = VEG™.

i 71

At this point, for each [ € [1,m — 1], consider v; € A; and z.; € Ay the elements

(11 l+1)

corresponding to EZ 1 and E in the graded isomorphisms A; = A;; and Ay = Ajq 41,

respectively (see Proposition 5.1.1). Define

Ay, = VWL 412141,

where w41 is the [th homogeneous radical element of A. Then, it follows that, for each
lel,m—1],

ll 1 l+1l+1 ll 1
|ay |4 = |vi]alwigii]alziia|a = |Eul LA[EfTY \AlElel 4 |Emil)|A= |04, | 4-

Thus, one has that b; € A, for all i € [t;_; + 1,, — 1]. Similarly to what was done above, let
us consider a; € A;; to be the element corresponding to b; € A;;, 21 := ag corresponding to by
in A; 1 and vy, := a,41 corresponding to b,yq in Ay, .

Now, we remark that, for all 7 € Sym(p), it is valid
Aolr(1) -+ Ar(p)pt1 7 04 if, and only if, bra) -« brp) # 04.

Indeed, let us suppose first that apar)- - arpyapr1 7 0a. In this case, 7(t;) = t;, for all
[ € [1,m —1]; and, for each I' € [1,m], if ty_y < < tp, then ty_; < w(l) < ty. Therefore

04 # AoGr(1) * * * Ar(p)Ap+1 = 210x(1) * * * Qr(p)Um
= Zlafﬁ(l) e afﬁ(tlfl)atla‘ﬂ'(tl%*l) T aﬁ(tgfl)atz e atm_law(tm,1+l) e aﬂ'(p)vm

= Z10x(1) * " Ar(t;—1)V1W122207(t14+1) * * * Ar(ty—1)V2W2323 * * - Un—1Wm—1,mEmbr(t,,_14+1) * * * Qr(p)Um-
Such fact implies the following equivalent statements:

(1) 216, y41) " Gr—1)v1 7 04, forall I € [1,m];

1l —(1
(i7) By boge 1) bﬂ(tz—l)Egll) # 04, foralll e [1,m];

15
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(i0) bager_y 1) b1y = B, for all [ € [1,m];

Jue?
=L 1,2 m—1,m =(m,m) 1,m)
(i) By beqry - ba-n Bl - B b gy ba By = B

<U> bﬂ'(l) T bﬂ'(p) 7& O.A'

Reciprocally, if b1y - - - br(p) 7# 0.4, thus by using the above statements (i) — (v), it follows
that zjar¢,_,11) - ar@—1yvr # 04, for all [ € [1,m]. Once, from Proposition 5.1.1, for each
[ € [1,m], the minimal homogeneous idempotent e¢; € A; corresponds to Eﬁ”), we have that the

product 2jx(, ,4+1) - Gr,—1)v coincides with e, for all [ € [1,m]. Hence

ApQr(1) ** * Ar(p)Ap+1 = 210z (1) * * * Ap(p)Um = €1W12€2 * * * Em—_1Wim—1,mEm = W12 * " " Wm—1,m # 04,

as desired.

Therefore, by applying the previous claim, we can conclude that agf(as, ..., ap)apr1 # 04,
and this implies in f € F(X;G)\Idg(A). Then, in case £ = m — 1, we conclude also that
A € varg(A).

Finally, the fact that exps(A) = exps(A) guarantees us varg(A) = varg(A), in case varg(A)

is minimal, and the proof is completed. 0

We finish this section by presenting the following important result:

Theorem 5.1.4 (Theorem 4.9 of [31]). Let G = () be a cyclic group and V€ be a variety of
G-graded Pl-algebras of finite basic rank. If V€ is minimal of G-exponent d, then it is generated

by a G-graded upper block triangular matriz algebra UTg (A, . .., Ay) such that dimp(A; & - - &
Ap) =d.

Proof. It is enough to apply Theorem 1.5.6 and Proposition 5.1.3. 0O

5.2 Kemer polynomials for the algebras UT¢ (A, ..., An)

The so-called Kemer polynomials, seen in Section 1.3, are important tools in the solution
of many problems of Pl-theory. Fixed an m-tuple (Ay,..., A;,) of finite dimensional G-simple
F-algebras, let us consider A := UT(Ay, ..., A,) (as in Section 4.1). In this section, our main
aim is constructing such Kemer polynomials for the G-graded algebra A.

First, in order to simplify the notation, for each I € [1,m] and g € G, let us define

d = dimpA;, d, = dimp(A), and d, = dimp(A,), = Y d,

le[1,m]
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At this moment, we presented some preliminary constructions involving the product of the

canonical basis elements of A.

Assume that m = 1. In this case, A is a G-simple algebra and, by invoking Theorem 3.1.3,
A is graded-isomorphic to My(D,) C My,

We consider, firstly, the case r = 1, that is, A =5 M. We remark that it is possible to
write the canonical element ey; from a product of the k? distinct canonical basis elements of
A of the form e;;. Fixed a such product, we shall refer to it as the standard total product (of

basis elements) of A.

Now, assume that r > 2. For each t € [0,r — 1], we obtain a product of all the k* distinct
basis elements of A of the form e;; ® E' resulting in e;; ® (Et)k2, where the elements e;; compose
the standard total product of M. Realizing this same process for all ¢ € [0,r — 1], we obtain

the following product from all the rk? distinct canonical basis elements of A:

Hte[O,rfl](ell ® (Et)k2) = e ® (Ezte[o,r—l]t)kz
B {611 ® E"/? if r is even and k is odd,

e11 ® E°  otherwise.

We also refer to this product as the standard total product (of basis elements) of A. Moreover,

we can write e;; @ E"/? = Ejr;and e ® E°=E;.

Now, let us define a suitable monomial of F(X;G), where all its variables are distinct,
constructed in a such way that each element appearing in the standard total product of A is
replaced by a variable of X of the same degree. We denote such monomial by my4. Observe
that m 4 has rk? variables. If we evaluate in m 4 the same canonical basis elements of A which
were used for its construction, then we say that such an evaluation is standard total and we

denote it by m 4.

For any « > m > 1 and [ € [1,m], consider ¢ copies of m,, in pairwise disjoint sets of graded
variables. For each i € [1, ], denote by m% the ith copy of m,,. Moreover, we denote by S(l,7)
the set of the variables of m(j? and by S(l,i,g) the set of the variables of degree g in S(I,1).
Observe that S(I,i) = UgeaS(l, 1, g) and

Sl =df and [S(i.g)] = df,.
For all i € [1,:] and g € G, define T'(i, g) := Uie1,m)S(1, 7, g) and, thus, it follows that

T(i,g) = > dff, =di,

le[1,m]
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We observe that

1,241
.o 2
Mgy ey, = )

M E") if r; is even and k; and ¢ are both odd,
E§1 otherwise.

In first case we shall say that (I,¢,7) is an exception.

Now, for each j € [1,m — 1], take the homogeneous radical element E(ﬂ]]+ +11i of Aif (j,¢,7;)

2
is an exception, and Eﬁ” H), otherwise. Let us denote the homogeneous degree of such radical

element by g;. Now, consider a variable z; with degree g; such that the set (Uiep1,,je01,m)S (1, 7)) U
(Ujenm—11{%;}) is formed by elements which are all distinct. Define Z; := T'(j, g;) U {2;} and,
clearly, | Z;| = d4  + 1. Still, setting

85,95

() () 1) () 1) ()
ﬂ‘A,L = mAl ...mAIZImA2 .--mA2Z2...zm_1mAm...mAm7

it is easy to observe that there exists a graded evaluation of w4, by canonical basis elements of
1,m)

A, giving Eg rm g if (M, e, 7) is an exception, and Eﬁ’m), otherwise.
72
Consider the monomial 74, obtained from 74, by putting ¢(dimpA,,s) +m pairwise different

variables of degree 1¢, which do not appear in 74 ,, bordering each variable of my4,.

For each [ € [1,m] and i € [1,], define Y'(I,7) to be the set of all the variables which were
placed on the left of the variables of the set S(l,%), and consider y; the variable placed on the
right of the monomial m%l). Finally, for each | € [1,m], define ¥} := U;ep1 Y (1,7) U{y}, and for
each j € [1,m — 1] we alternate in the monomial 74, the variables of the set Z; and, for each
i € [m,i] and g € G, those of T'(i, g), respectively.

When we finish this process, let us denote by f4, the graded polynomial obtained and we
will call it the Kemer polynomial for A. Actually, we will show that f4, is not a graded identity
for A =UTg(As, ..., An) and thus G — Par(A), defined in Section 1.3, is a Kemer point of A

and, hence, is the unique Kemer point of A by Corollary 1.3.7.

Lemma 5.2.1 (Lemma 5.1 of [31]). Let G = (¢) be a cyclic group and A = UTg(Ay,. .., An).
For every « > m the graded polynomial fa, is not a G-graded polynomial identity for the
G-graded algebra A.

Proof. First, for all [ € [1,m] e i € [1,¢], let us consider the standard total evaluation S(l, %)
of the monomial mX? in A.
We remark that, for each variable v{” € S(1,4), it is valid 3 = (e, ® E")D for some

p,q € [1,k] and t € [0,r, — 1]. Thus, evaluate the variable g e Y (l,4), appearing on the left
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(1) =(3)
arVap

of v8, by (epp ® E2)D . Since the evaluation yﬁ%ﬁ“ ] is equal to

(e11 ® E%)(l’l) = EYQH if r; is even and k; is odd,
(ep ® B = Eﬁl{l otherwise,

we evaluate the variable y; by E(r;lil UNSY

Notice that Eggl,%’ﬂ = Eﬁ” = (eny ® E°)D. Finally, for all j € [1,m — 1], consider z; =

(L0
1

if 7 is even and k; is odd, and by Ej; , otherwise.

AT otherwise. Therefore, we have an
2 )

Eﬁ’jﬂ), if (j,¢,7;) is not an exception, and Z;

evaluation of 74, in A being:

E(lvm)

1,50 41 otherwise.

{ EU™ if (m, 1, 7,,) is not an exception,
Denote such evaluation by Sy4.

Given i € [m, (] and g € G, consider a permutation o of the variables of 74, which possibly
moves only the variables of T'(i, g). It is valid that, if the evaluation of the monomial o(74,) in
A by S 4 is non-zero, then o is the identity permutation. In fact, we notice first that aa’ = 04
foralla € A;jand @’ € Ay, withl # 1’ and 21, ..., z,,_1 are not moved by o. Hence, o permutes
only the variables of the set S(l,1i,g), for each | € [1,m]. Still, o does not move the variables
of ¥;. In other words, in each monomial of f4, the variables of the set ¥; appear in the same
order. This implies that, once we have fixed, by the above choice, the elements in Y, then, by
using the fact that the evaluation of the monomial o(74,) in A by S, is non-zero, it follows
that the evaluation E(f) is uniquely determined by such choice of elements in Y, as well the
homogeneous degree of o, Consequently, this discussion guarantees us that o is the identity
permutation.

Moreover, given j € [1,m — 1], we can argue analogously and obtain also that, if v is a
non-trivial permutation of the variables of Z; in 74 ,, then the evaluation v(74,) by S 4 is zero.
Consequently, 74, is the unique monomial of f4, which is non-zero under the evaluation by
S 4, and this implies that f4, ¢ Idg(A), as desired. 0

5.3 Minimal varieties of C)-graded PI-algebras

Let VY be a variety of G-graded Pl-algebras of finite basic rank. We stated in Theorem
5.1.4 that if V¥ is minimal of G-exponent d, then V¢ is generated by a suitable G-graded
algebra UTg(Ay, ..., Ay) satisfying dimg(A; @ --- @ A,,) = d. On the other hand, in this

section, we present some important classes of G-graded upper block triangular matrix algebras
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UTg(Ay, ..., Ay) which generate minimal varieties. To this end, fix two tuples (Ay,..., A,)

and (B, ..., B,y) of finite dimensional G-simple F-algebras and consider
A=UTs(A,...,Ay) and B =UTs(B,..., Bw).

In our first result, we will establish some conditions related to the structures of A and B, in
case expg(B) = dB < d% = exps(A).

Lemma 5.3.1 (Lemma 6.1 of [31]). Let G = (€) be a cyclic group and consider two G-graded
upper block triangular matriz algebras A = UTg(Aq,...,An) and B = UTg(By, ..., By).
Assume that dB < d2, and consider 1 :==m +m/ — 1. If fa, is not a G-graded identity for B,
then the following properties hold:

(i) dB = d}

58,9 $8,97

for all g € G;
(it) m' =m;

(iii) df, = df,, for alll € [1,m] and g € G.

Proof. By hypothesis, the multilinear graded polynomial fa, ¢ Idg(B). Thus we can assume,
without loss of generality, that there exists a non-zero graded evaluation Sp, by canonical basis
elements of B, in the monomial 74, of f4,.

It is easy to check that, since J(B) is nilpotent of index m/, there exists ¢ € [m, ¢| such that
all the variables of the sets UgecT'(4, 9) = Uit m)S(1, £) and Uiep Y (I, £) are evaluated only
by semisimple elements in Sg. Thus, once f 4, alternates the variables in the set T'(¢, g), for all
g € G, one has that d2 = |T(¢,g)| < dZ , for all g € G. Then

55,9 88,97

A A B B A
dss = Z dss,g < sts,g = dss < dss’

geG geG

which implies that d2 = dZ . for all g € G.

55,9 58,97

We remark that UgeeT' (€, 9) = UepmS(1,€) is an evaluation of the product m%i o -m%)

which involves all, and only, the canonical basis elements of By, and each one of this elements
)

1

of Byy =By & ---&® B,,. Consequently, we obtain that m' < m.
Furthermore, by remembering that, for each j € [1, m — 1], the polynomial f4, alternates in

the set Z;, whose cardinality is dZ. + 1, by applying item (i) it follows that |Z;] =d4 +1=

58,95 58,95

df;gj + 1. This implies that we must have at least m — 1 canonical basis elements of J(B) in

Sp. Since J(B) is nilpotent of index m’, we have m — 1 < m’ and thus m < m/. By combining

exactly once. Thus, for each [ € [1,m], the monomial mff must be evaluated in a unique block

such inequality with m’ < m we conclude that m’ = m.

74



6)

At this stage, we notice that, for all [ € [1,m], the monomial m(Al must be necessarily

evaluated in B;. Thus, the fact that S(,¢) is a total evaluation of mffl), by canonical basis
elements of B, allows us to conclude that, for all ¢ € G, the number of variables in m(fl)
of degree g coincides with the number of canonical basis elements in B; of degree g, that is,

dfg = dlf‘g, for all I € [1,m] and g € G. Hence the proof of the lemma is completed. 0O

As a consequence, we have the following:

Proposition 5.3.2 (Proposition 6.2 of [31]). Let G = (€). Consider the G-graded upper block
triangular matriz algebras A = (UT (A1, ..., An), @) and B = (UT(By, ..., Buw), ) such that
expg(B) = expg(A).

If Idg(B) C Idg(A), then m' = m and dP = di*, for all 1 € [1,m]. Moreover, 1dg(B;) C
Idg(A;), for all 1 € [1,m], and, consequently, (BI,E,) is graded-isomorphic to (A, &), for all
[ €[l,m].

Proof. Since Idg(B) C Idg(A), it follows, by applying Lemma 5.2.1, that f4, ¢ Idg(B), for
all © > m. Thus, taking ¢ := m +m’ — 1, once dZ = exps(B) = expg(A) = d4

‘., by Lemma
5.3.1, one has that

m'=m and dp, =d;

1g» foralll €[l,m]and g € G,

which implies
dP =df, forallle(l,m)]

Now, if m = 1, then the inclusion Idg(B;) C Idg(A;) it is clear.
Assume that m > 2. Consider the graded subalgebras A1 and BI™=1 of the G-graded
algebras A and B, respectively. We claim that Idg(BM™1) C Idg(AM™1). Indeed, let us

suppose that there exists a polynomial
fi € Idg(BY™ 1\ Tdg (A1),

Consider the Kemer polynomial fsm-1.m o, Whose variables can be assumed to be pairwise

disjoint from those involved in f;. By invoking Lemma 5.2.1, it follows that

Faim-1m o & Idg(Am=1m),

Moreover, it is valid that

m—1,m

P=dA 4 dh=dP 4 dP > dB =l

ss )

Al
dSS
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which allows us to conclude, in virtue of Lemma 5.3.1, that
fA[m—l,m]’g c Idg(Bm)

Now, by considering new graded variables x9, for each g € GG, and setting

T

geG

we obtain that f ¢ Idg(A). On the other hand, we have that
f € 1dg(BYN1dg(B,) C 1da(B).

By combining the above inclusion with the fact that Idg(B) C Idg(A), we get a contradiction.
Similarly, we conclude that Idg(B2™) C Idg(A?™). In this way, by applying the above

same arguments, we obtain that
Idg(BM) C 1dg(AL]),  forall 1 <1<1 <m, (5.1)

and this implies that Idg(B;) C Idg(4,), for all I € [1,m], as desired.

The final part follows in virtue of Theorem 3.2.2, once d? = d!, for all [ € [1,m). 0O

Example 5.3.3. Considere G = Cy = (€), a cyclic group of order 4, and let A; = (D9, @) and
Ay = (Ds, az), where
(@1(1),81(2)) = (@2(1),32(2)) = (16, €7).

Moreover, consider A = (UT' (A1, As), @).
It is easy to verify that
HY 2 @

and this implies ’HS)H? # G. Then, by Theorem 4.2.3, one has that Idg(A) is indecomposable.
We claim that varg(A) can not be generated by a finite dimensional G-simple algebra.

Indeed, let us suppose that there exists a finite dimensional G-simple algebra A’ such that
varg(A) = varg(A’). Hence, we have Idg(A) = Idg(A’) and exps(A) = exps(A’). Therefore,
since A = (UT(A1, A2), @) and A’ is a G-simple algebra, we obtain a contradiction from Lemma
5.3.1.

At light of Proposition 5.3.2; given two tuples (Ay,..., A,,) and (B, ..., B,,) of finite di-
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mensional G-simple F-algebras, in our next results, we will always assume that

A= (UT(A,...,Apn),@) and B:=(UT(Bi,...,Bp),B)

are such that
expa(B) = expe(A) and Idg(B) C Idg(A). (5.2)

Hence, by invoking also Proposition 3.2.1, for each I € [1,m], (B, 3,) = (My, (Dy,), B3,) is graded-
isomorphic to (A;, o) = (Mg, (D,,),q) and Hg) = Hg). Still, let us assume that (A;, ;) and
(B, ;) have the following presentations:

P(Ahal) = (Tl; (gllv SR 7glk1)) and P(BZ,EZ) = (7”1; (:gvlla S 75”@))'

We remark that, in particular, B is graded-isomorphic to A in case m = 1. In the next
result, we will show that if m = 2, then the above graded algebras B and A are also graded-
isomorphic. To this end, the main strategy is guaranteeing that there exists ¢ € G such that
wg) (gr) = wg) (x), for all I € [1,m] and x € G (see Lemma 4.3.2).

Proposition 5.3.4 (Proposition 6.3 of [31]). Let G = (€) be a cyclic group. Consider the

G-graded upper block triangular matriz algebras

A= (UT(A,Ay),@) and B = (UT(By,B),[)

satisfying exps(B) = exps(A) and Idg(B) C Idg(A). Then B is graded-isomorphic to A.

Proof. First, let us suppose, without loss of generality, that

wOCl@grl (gll) = ma’X{wOﬂ@grl (h) | h € If)él@grl} and wOQ@grQ (921) = ma’X{wOQ@grQ (h) | h € ‘,Z'.OCQQETQ}'

Set t19 := 1+ k + k2. 1In virtue of Lemma 4.1.3, there exists an evaluation of the
polynomial Capy, (1, ..., Tty Teipits-- -5 Tar,41) 10 the algebra UT(A;, Ag), at its canoni-
cal basis elements, resulting in E;, ;;. Let us consider the multilinear graded polynomial
Capy,, (Ury .oy Upyy; gy, - - - Uaty,41) Duilt in a such way that each homogeneous variable u;
has the degree, induced by @, of the canonical basis elements used in the above evaluation.
Then Capy,, (Ury ...y Upyy; Utygt1, - - -, Uatp+1) has a graded evaluation in the algebra A equal to

E§1172) = E1,771+1' Since
E\ Y4 = [E =a()tam +1) = g1
\ 11 ‘A ‘ 1,n1+1|A 04() 04(771+ ) 911 921,

one has that Capy,, (U1, ..., U, Ui, - - -, Uszi,41) has homogeneous degree equal to gi;'ger as
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an element of F(X;G).

Thus, by item (i) of Lemma 3.2.3, there exist homogeneous multilinear polynomials W 4,
and W 4,, in pairwise disjoint sets of homogeneous variables (and also distinct from those of the
set {uy, ..., Uz ,+1}), with evaluations p; : F(X;G) — A and ps : F(X;G) — A, such that

—(1,1
p(Uay) = (e ® E)OD = BV

and

—(2,2
pa(Wa,) = (e11 ® E)*2) = E§1 :

In this way, by setting

f = \IjAlgapt12 (ula cony Utyos Upgo 41y - - - 7u2t12+1>\IjA2a

we get that f has homogeneous degree equal to ;7' go1 as an element of F(X; G) and f ¢ Idg(A).
At this stage, notice that the hypothesis Idg(B) C Idg(A) yields that f ¢ Idg(B). Any

non-zero graded evaluation of the polynomial Capy,,(u1, ..., Uyy; Utypt1, - - -5 Ustyp+1) D B must
give elements of J(B). Hence, the homogeneous multilinear polynomials W4, e ¥4, must be

evaluated, respectively, in By and Bs.

Now, from Proposition 5.3.2 and Corollary 3.2.2, it follows that, for each [ € [1,2], there

exists an element g; € G such that
(OFF RN ()
w3 (qizr) = wg'(x), forallzed. (5.3)

In this situation, we consider the new graded algebra B’ = (UT(Bj, B), 5’ ) such that B} = B,
and 3] := lg - oy, for all [ € [1,2]. We remark that wg,)(a:) = wg)(m), foralll € [1,2] and x € G,
and by Lemma 4.3.2 it follows that B’ is graded-isomorphic to B. Thus, in the sequel, we may
assume that B = B’, that is,

El =l -y, foralll e[l,2].

Then, if p; and p, are graded evaluations, respectively, of U 4, and WU 4, in, respectively, B; and

By (with the grading induced by B), from Remark 3.2.4, such evaluations satisfy

n(Pa)e P (B2 and  py(Wa,) € ) (By) {22,

€T arigu € Hg)g“ TET Ay 92 Gﬂg)gzl

In particular, the evaluation of W 4, results in linear combinations of basis canonical elements
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(euwl & Eal_b1>(1’1) S ((Bl)(glg“), 51 = 61 ©O) gm) such that

la
B1(ur) = g1(e®*)"gy; and Bi(vy) = gl(esl)blgli, for some ay,b; € [0, — 1],

and once ¢gy; € Hg)gu, we have

Br(ur) = g1(e”)* hy;g11 and Si(v1) = §1(€81)b1h1z‘g11, for some hy; € Hg);

whereas, one has that, the evaluation of W4, results in linear combinations of basis canonical
elements (e,,,, ® £%272)22) ¢ ((Bg)%%), By = B3 ©&,) such that

Ba(us) = Go(€°2)hgjgar and Ba(vy) = Go(€%2)?hyjgo1, for some hy; € 7—[(52),

with ¢, d € [0, — 1].

Thus, from the above discussions, once f ¢ Idg(B) and its homogeneous degree, as an
element of F(X;G), is g;;'ga1, it follows that there exist I, € [0,7; — 1] and Iy € [0,75 — 1] such
that

gﬂ1921 = B((U1—1)7“1+l1+1)71§<(U2—1)7“2+12+1) = (gl(ﬁsl)alhlign(681)11)71572(652)b2h2j921(652)l2-

Hence
gi(e) g = ga(e*) " 2 hy;.
Define g := g1 (%) 1 hy; = go(e52)*22hy;. By using that (e*1) C 7-[%1), (€72) C ’Hg) and (5.3),
it is easy to verify that
wg)(gx) = wg)(m), foralll € [1,2] and = € G,

and, consequently, B is graded-isomorphic to A (see Lemma 4.3.2). 0

At this stage, we present a new important condition in order to obtain a graded isomorphism
between A and B.

Proposition 5.3.5 (Proposition 6.4 of [31]). Let G = (¢) be a cyclic group and let A =

(UT(Ay,...,Ay),a) and B = (UT(By,. .., By), B) satisfying expgs(B) = expg(A) andIde(B) C
Idg(A).
If there exists ¢ € [1,m| such that

WO = = (1),
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then B is graded-isomorphic to A.

Proof. Once exps(B) = exps(A) and Idg(B) C Idg(A), by Proposition 5.3.2 and Corollary
3.2.2, for each [ € [1,m], there exists g, € G such that

wg)(glx) = wg) (), forallzed.

We claim that
(@) 'gr € HOHY) ) forall 1<l <l <m.

In fact, suppose that there exist 1 <1 < I’ < m such that (g,) gy ¢ 7-[ . Moreover, let us
assume, without loss of generality, that El =l - a; and Ep = lg, - . Thus, from Proposition
4.1.4, one has Idg(B") ¢ Idg(AlT) and Idg(ABY) € 1dg(BH), a contradiction with what
was established in (5.1).

Now, we remark that if £ > 1, then

@) 'ge e HOHY = 1Y forall i e [1,0—1],
whereas if ¢ < m, thus

@) "gr € HOHY =1 forall I' € [0 + 1, m).

«

Therefore, for each [ # ¢, there exists h; € Hfj) = ’Hg) such that g; = gsh;. Hence,
wg)(gﬂ) = wg)(x), for all [ € [1,m] and = € G,
and, from Lemma 4.3.2, B is graded-isomorphic to A. 0O

We remark that Propositions 5.3.4 and 5.3.5 generalize Theorem 3.3 of [24], where the
authors deal with the G-graded upper block triangular matrix algebras UTg(Aq, ..., Ay,), with
A; = My, for all i € [1,m].

Now, we will prove that if there exists at most one index ¢ € [1,m] such that B, and A, are

non-G-regular G-simple algebras, then B is graded-isomorphic to A.

Proposition 5.3.6 (Proposition 6.5 of [31]). Let G = (€). Consider the G-graded upper block
triangular matriz algebras A = (UT(Ay, ..., Ap),@) and B = (UT(By, ..., By), ) satisfying
expg(B) = expg(A) and Idg(B) C Idg(A).

If ’Hg) = ”HS) = @G, for all (except for at most one) | € [1,m], then B is graded-isomorphic
to A.
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Proof. The result follows by applying Corollary 3.3.3 and Proposition 4.3.3. 0

Note that as a consequence of Propositions 5.3.5 and 5.3.6, in order to have that B =5 A,
in addition to (5.2), it is enough to require that the invariance subgroups ’Hg) and Hg) are {15}
or G (not all necessarily the same), for all [ € [1,m]. In particular, if G = C,,, with p being a
prime number, thus we have that B is graded-isomorphic to A. Such case was developed by Di
Vincenzo, da Silva and Spinelli, in [17].

Finally, we are in position to announce the main result of this section. It represents our
contribution to the study of the minimal varieties of associative GG-graded Pl-algebras, of finite
basic rank, with respect to a given G-exponent, when G is a finite cyclic group. More precisely,
we exhibit some important conditions, related to the structure of A = (UT(Ay,...,An), @)
and the invariance subgroups Hg), which are sufficient to concluding that varg(A) is minimal.

We remark that, in view of the diversity of the possibilities for the invariance subgroups
when we work with arbitrary finite cyclic groups (which are not of prime order), determining
if var(A) is minimal or not is an engaging problem that still remains open. Nevertheless, the

next theorem completely solves such problem for instance in the following cases:

e A has two blocks;
e all (except for at most one) the G-simple components of A are G-regular;

e G = C,, with p being a prime number (in this case, see also [17]).

Theorem 5.3.7 (Theorem 6.6 of [31]). Let F' be an algebraically closed field of characteristic
zero and G = (€) be a cyclic group, with € being a primitive nth root of the unity in F*. Given
finite dimensional G-simple F-algebras Ay, ..., A, let A == (UT(Ay,...,Ay),q). Assume
that at least one of the following properties hold:

(1) m=1or2;
(i7) there exists { € [1,m] such that Hg) ={l¢};

) Hg) = @, for all (except for at most one) | € [1,m].
Then varg(A) is minimal with exps(A) = dimp(A; @ -+ D Apy).
Proof. In order to conclude that varg(A) is minimal, take a subvariety U¢ C varg(A) such
that expg(UY) = expg(varg(A)).
First, the fact that varg(A) satisfies some Capelli identities (see Lemma 4.1.3) allows us to

state, from Section 7.1 of [5], that % has finite basic rank. As consequence, by Theorem 1.1

of [5], one has that U“ is generated by a finite dimensional G-graded algebra A.
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Now, we notice that, in virtue of Lemma 1.5.5, there exists a minimal G-graded algebra A
such that Idg(A) C Idg(A) and expg(A) = expy(A). In particular, by invoking Proposition
5.1.3, it follows that there exists a G-graded algebra B := (UT(By,. .. ,Bm/),g) such that

Idg(A) C Idg(B) and expg(B) = expg(A). Consequently,
Idg(A) CIdg(B) and expg(A) = expq(B).

Therefore, in this situation, Propositions 5.3.2 and 3.2.1 give us that m’ = m and Hg) = ”Hg),
for all [ € [1,m]. Then, if one of statements (i) — (iii) it is valid, Propositions 5.3.4 to 5.3.6
guarantee us that B is graded-isomorphic to A. Hence, Idg(A) = Idg(B) and thus we obtain

that varg(A) is minimal. O

We finish this chapter by highlighting that the results obtained in this section contribute to
the isomorphism problem when associated with the theory of the G-graded Pl-algebras. More
precisely, given finite dimensional G-simple F-algebras Ay, ..., A,,, we have that any G-graded
upper block triangular matrix algebras UTg(Aq,. .., A,,) satisfying conditions (i) — (idi) of
Theorem 5.3.7 are graded-isomorphic if, and only if, the T;-ideal of their G-graded polynomial

identities is the same.
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Final Considerations

Throughout this thesis, we have addressed several important topics of Pl-theory. In par-
ticular, in case F' is an algebraically closed field of characteristic zero and G = C,, = (€) is a
finite cyclic group of order n, we explored the G-graded upper block triangular matrix algebras
UT¢(Ay, ..., Ay) and the Tg-ideal Idg(UTg (A, ..., Am)) of its G-graded polynomial identi-
ties, when Aj, ..., A,, are finite dimensional G-simple F-algebras. Regarding this study, the
first and crucial step realized was the description of the finite dimensional G-simple F-algebras

as graded subalgebras of matrix algebras endowed with some elementary gradings.

Moreover, if the cyclic group G is a p-group, with p being an arbitrary prime number,
we investigated the factoring problem related to the Tg-ideal Idg(UTg(Ay,. .., An)), by es-
tablishing necessary and sufficient conditions in order to have that Idg(UTg(Aq, ..., An)) =
Idg(Ay) - - - Idg(Ar). More precisely, we proved that Idg(UTg(Aq, ..., Ay)) is factorable if, and
only if, there exists at most one index ¢ € [1, m] such that A, is a non-G-regular G-simple alge-

bra if, and only if, there exists a unique isomorphism class of G-gradings for UTg(Ay, ..., An)-

As previously seen throughout the text, the invariance subgroups related to the finite dimen-
sional G-simple algebras Ay, ..., A,, played an essential role in obtaining the above equivalences.
It is worth saying that these statements were published in [22] together with some new results
and alternative proofs from those presented in this thesis. In the sequel, in order to explicite

some of these differences, let us recall some definitions and notations.

Firstly, given a finite dimensional G-simple F-algebra (My(D,),a ® €,) endowed with an
elementary grading, we recall that a : [1,k] — G is the map which induces the elementary
grading on the matrix algebra M. Moreover, by remembering that H, = (¢°), with r - s = n,

we consider the map @ : [1,k] — G/H, as
(i) = Hya(i), forallie |1,k

It turns out that the G/ H,-graded matrix algebra (M}, @) has important and useful connec-
tions with the G-graded algebra (My(D,), «®¢€,). We start by comparing the graded multilinear
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polynomial identities of (My, @) and (My(D,), «@F€,). To this end, given any graded multilinear

polynomial

flzy,xe, .. Tp) = Z Colo()Ta(2) " Tom) Of F(X;G), with ¢, € F,

o€Sym(m)

let us define in the free G/H,-graded algebra F'(X;G/H,) the following graded polynomial

fr, (T, %2, .., 0) = Z CoTo(1)To(2)  * " La(m),
o€Sym(m)

where [&;] g x.q/m,y = Helilr(x.c), for all i € [1,m].
In the next statement, we enunciate the nice relation, obtained in [22], between the graded
ideals Idg(My(D;), a« ®€.) and Idg, g, (M, @).

Proposition 1 (Proposition 4.6 of [22]). Let G = (€) be a cyclic group and let f and f be graded
multilinear polynomials in the free algebras I (X ;G/H,) and F(X;G), respectively, such that
fu, = f. Then

f €lda(My(D,),a ©€) <= [ € ldgu, (M, a).

Therefore, at light of the above result, investigating the G/ H,-graded multilinear polynomial
identities of the matrix algebra (Mj, @) allows us to obtain information about the elements of
the Ti-ideal of G-graded polynomial identities of (My(D,),a ® €.). In this sense, with the
appropriate adaptations, we prove Lemma 3.2.3 in [22] by working with the matrix algebra
(M, @) and by invoking results given by Di Vincenzo and Spinelli, in [24], where the authors
deal with matrix algebras endowed with elementary gradings.

In addition, we remark that, while in this thesis we prove some of the results directly for the
finite dimensional G-simple F-algebras My(D,), in the paper [22] we chose to prove suitable
results only for the matrix algebras (My, «) and, once done, we work with the algebras My(D,)
(by dealing with (M, @)).

It is worth highlighting another interesting bridge between the G-simple algebras (M, @)
and (My(D,),a ®€,.), which explores the regularity of these algebras and was crucial for our

alms.

Theorem 1 (Proposition 4.7 of [22]). Let G = (€) be a cyclic group. The G-graded algebra
(My(D,),a ©®€,) is (o @ €.)-reqular if, and only if, (My, @) is a-reqular.

Now, we would like to point out some remarks and results about the minimal varieties
of associative G-graded Pl-algebras over F', of finite basic rank, of a given G-exponent. We

recall that such subject was approached in Chapter 5. There we showed that these varieties
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are generated by suitable G-graded upper block triangular matrix algebras. On the other
hand, given finite dimensional G-simple F-algebras A, ..., A,,, we considered the G-graded
upper block triangular matrix algebra UTg(Aq, ..., A,,). By imposing some extras conditions
on UTg(Ay, ..., Ay), we proved that, in this case, varg(UTg(A1, ..., Ay)) is minimal. More
precisely, if UTg(Ay, ..., A,,) satisfies at least one the following conditions:

(1) m=1or 2;

(77) there exists £ € {1,...,m} such that the invariance subgroup related to the G-simple
algebra A, is {1g};

(74i) the invariance subgroups related to the G-simple algebras A, ..., A,, are all (except for

at most one) equal to G,

then it is valid that UTg (A4, ..., A,,) generates a minimal variety.

It is worth remembering that, in order to achieve the above results, we proved first that any
two G-graded upper block triangular matrix algebras endowed with elementary gradings, sat-
isfying one of the above conditions, are graded-isomorphic if, and only if, they satisfy the same
G-graded polynomial identities. Moreover, we emphasize that when we deal with a finite cyclic
group G (which is not of order p, with p prime), obtaining that the varg(UTg(A1, ..., An)) is
or not minimal, for any G-graded upper block triangular matrix algebra UTg(A1, ..., A,), it
is an engaging problem, which is still open. In this case, our results indicate that the behavior
of the invariance subgroups related to the finite dimensional G-simple algebras Aq,..., A,, is a
crucial and important point in solving a such problem.

Since the factorability and the minimal varieties were the main topics addressed in this
thesis, we would like to end by asking us what connections can be obtained between these
concepts from our results. In this sense, we highlight the case G is a cyclic p-group, with
p being a prime number. We remark that if the Tg-ideal Idg(UTg(Ay, ..., Ay)) decomposes
into Idg(UTg(Ax, ..., Ap)) = Idg(Ay) -+ - 1dg(An), then, from Theorem 4.3.4, there exists a
unique isomorphism class of G-gradings for UTg(Ay, . .., Ay). Consequently, in this situation,
we conclude that the factorability of Idg(UTg(Ay, ..., Ay)) is a sufficient condition in order to
have that varg(UTg (A1, ..., Ap)) is minimal.

On the other hand, the reciprocal is not true. Indeed, for instance when G is a group of
prime order, any varg(UTg (A1, ..., Ay)) is minimal (see [17] or items (ii) and (iii) above).
However, whenever there exist 1 < a < b < m such that the G-simple algebras A, and A, are
both non-G-regular, by invoking Theorem 4.3.4, it follows that Idg(UTg(Ay, ..., Ay)) is not

factorable.

85



Bibliography

1]

8]

[9]

[10]

[11]

E. Aljadeff, A. Giambruno, Multialternating graded polynomials and growth of polynomial
identities, Proc. Amer. Math. Soc. 141 (2013), 3055-3065.

E. Aljadeff, A. Giambruno, D. La Mattina, Graded polynomial identities and exponential
growth, J. Reine Angew. Math. 650 (2011), 83-100.

E. Aljadeff, D. Haile, Simple G-graded algebras and their polynomial identities, Trans.
Amer. Math. Soc. 366 (2014), 1749-1771.

E. Aljadeff, G. Janssens, Y. Karasik, The polynomial part of the codimension growth of
affine PI algebras, Adv. Math. 309 (2017), 487-511.

E. Aljadeft, A. Kanel-Belov, Representability and Specht problem for G-graded algebras,
Adv. Math. 225 (2010), 2391-2428.

E. Aljadeft, Y. Karasik, Verbally prime T-ideals and graded division algebras, Adv. Math.
332 (2018), 142-175.

D. V. Avelar, O. M. Di Vincenzo, V. R. T. da Silva, The factorability of Ts-ideals of
minimal supervarieties, Comm. Algebra 47 (2019), 1595-1607.

D. V. Avelar, O. M. Di Vincenzo, V. R. T da Silva, On the classification of a family of
minimal superalgebras, Comm. Algebra 48 (2020), 733-758.

Yu. A. Bahturin, S. K. Sehgal, M. V. Zaicev, Group gradings on associative algebras, J.
Algebra 241 (2001), 677-698.

Yu. A. Bahturin, M. V. Zaicev, S. K. Sehgal, Finite-dimensional simple graded algebras,
Sb. Math. 199 (2008), 965-983.

A. R. Borges, D. Diniz, Graded identities and isomorphisms on algebras of upper block-
triangular matrices, J. Algebra 523 (2019), 201-216.

86



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[25]

L. Centrone, T. C. de Mello, On the factorization of Tg-ideals of graded matriz algebras,
Beitr. Algebra Geom. 59(3) (2018), 597-615.

S. Dascalescu, B. Ion, C. Nastasescu, J. Rios Montes, Group gradings on full matrix rings,
J. Algebra 220 (1999), 709-728.

O. David, Graded embeddings of finite dimensional simple graded algebras, J. Algebra
367 (2012), 120-141.

O. M. Di Vincenzo, V. R. T. da Silva, E. Spinelli, Minimal supervarieties with factorable
ideal of graded polynomial identities, J. Pure Appl. Algebra 220 (2016), 1316-1330.

O. M. Di Vincenzo, V. R. T. da Silva, E. Spinelli. Minimal superalgebras generating
minimal supervarieties, Math. Z. 288 (2018), 383-400.

O. M. Di Vincenzo, V. R. T. da Silva, E. Spinelli, A characterization of minimal varieties
of Z,-graded PI algebras, J. Algebra 539 (2019), 397-418.

O. M. Di Vincenzo, V. R. T. da Silva, E. Spinelli, Minimal varieties of Pl-superalgebras
with graded involution, Israel J. Math. (2021). https://doi.org/10.1007/s11856-021-2119-

Z.

O. M. Di Vincenzo, R. La Scala, Block-triangular matriz algebras and factorable ideals of
graded polynomial identities, J. Algebra 279 (2004), 260-279.

O. M. Di Vincenzo, R. La Scala, Minimal algebras with respect to their x-exponent, J.

Algebra 317 (2007), 642-657.

O. M. Di Vincenzo, V. Nardozza, On the existence of the graded exponent for finite
dimensional Z,-graded algebras, Canad. Math. Bull. 55 (2012), 271-284.

O. M. Di Vincenzo, M. A. S. Pinto, V. R. T. da Silva, On the factorability of polynomial
identities of upper block triangular matrix algebras graded by cyclic groups, Linear Algebra

Appl. 601 (2020), 311-337.

O. M. Di Vincenzo, E. Spinelli, On some minimal supervarieties of exponential growth,
J. Algebra 368 (2012), 182-198.

O. M. Di Vincenzo, E. Spinelli, Graded polynomial identities on upper block triangular
matriz algebras, J. Algebra 415 (2014), 50-64.

V. Drensky, Free Algebras and PI-Algebras, Springer-Verlag, Singapore, 2000.

87



[26]

[27]

[28]

[29]

[32]

[33]

[34]

[35]

[36]

88

A. Giambruno, M. Zaicev, Codimension growth and minimal superalgebras, Trans. Amer.
Math. Soc. 355 (2003), 5091-5117.

A. Giambruno, M. Zaicev, Minimal varieties of algebras of exponential growth, Adv.

Math. 174 (2003), 310-323.

A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, AMS Mathe-
matical Surveys and Monographs, Vol. 122, Providence R.I., 2005.

P. Koshlukov, M. V. Zaicev, Identities and isomorphisms of graded simple algebras, Linear
Algebra Appl. 432 (2010), 3141-3148.

J. Lewin, A matriz representation for associative algebras I, Trans. Amer. Math. Soc.
188 (1974), 293-308.

M. A. S. Pinto, V. R. T. da Silva, On the minimal varieties of Pl-algebras graded by finite

cyclic groups, submitted.

V. R. T. Silva, Zs-Codimensions of the Grassmann Algebra, Comm. Algebra 37 (2009),
3342-3359.

I. Sviridova, Identities of PI-Algebras Graded by a Finite Abelian Group, Comm. Algebra
39 (2011), 3462-3490.

A. Valenti, M. Zaicev, Group gradings on upper-triangular matrices, Arch. Math. 89
(2007), 33-40.

C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1963), 187-199.

F. Y. Yasumura, Group gradings on upper block triangular matrices, Arch. Math. 110
(2018), 327-332.



