
COMPUTAÇÃO COMPLETA EM TEMPO

SUBQUADRÁTICO DE UM NOVO TIPO DE

BICLUSTER GENÉRICO EM MATRIZES DENSAS

E ESPARSAS

BERNARDO DE ALMEIDA ABREU

COMPUTAÇÃO COMPLETA EM TEMPO

SUBQUADRÁTICO DE UM NOVO TIPO DE

BICLUSTER GENÉRICO EM MATRIZES DENSAS

E ESPARSAS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Loïc Pascal Gilles Cerf

Belo Horizonte

Abril de 2021

BERNARDO DE ALMEIDA ABREU

COMPLETE COMPUTATION IN

SUBQUADRATIC TIME OF A NEW GENERIC

TYPE OF BICLUSTER IN DENSE AND SPARSE

MATRICES

Thesis presented to the Graduate Program
in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of
the requirements for the degree of Master
in Computer Science.

Advisor: Loïc Pascal Gilles Cerf

Belo Horizonte

April 2021

© 2021, Bernardo de Almeida Abreu.
Todos os direitos reservados.

Abreu, Bernardo de Almeida

A162c Complete computation in subquadratic time of
a new generic type of bicluster in dense and
sparse matrices / Bernardo de Almeida Abreu.
— Belo Horizonte, 2021

xviii, 93 f. : il. ; 29cm

Orientador: Loïc Pascal Gilles Cerf.

Dissertação (mestrado) — Universidade Federal
de Minas Gerais, Instituto de Ciências Exatas,
Departamento de Ciência da Computação.

Referências: f. 88-93

1.Computação – Teses. 2. Mineração de dados
Teses. 3. Programação dinâmica – Teses.
4. Problemas de enumeração combinatória –
Teses. 5. Biclustering – Teses. I. Cerf, Loïc Pascal
Gilles. II. Universidade Federal de Minas Gerais,
Instituto de Ciências Exatas, Departamento de
Ciência da Computação. IV. Título.

CDU 519.6*73(043)

Ficha catalográfica elaborada pela bibliotecária Irénquer Vismeg
Lucas Cruz - CRB 6ª Região nº 819.

To family and friends.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior – Brasil (CAPES) – Finance Code 001. Additionally it was also financed

in part by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)

through the project APQ-04224-16 of Multilateral Collaboration FAPEMIG/CNRS,

and by the Fundação de Desenvolvimento da Pesquisa (FUNDEP).

vii

Resumo

Biclustering é uma técnica definida como a clusterização simultânea de linhas e colunas

de uma matriz de dados. Dada uma matriz real m-por-n, esse trabalho define um

novo tipo de bicluster: em qualquer uma de suas colunas, os valores das linhas do

bicluster devem ser estritamente maiores do que os valores em todas as linhas ausentes

do mesmo. As linhas que formam um bicluster não podem ser um subconjunto ou um

superconjunto das linhas contidas em outro bicluster de maior qualidade. A qualidade

de um bicluster é um valor real dado por qualquer função computável, tornando a

definição genérica. “Muscly patterns” são os biclusters que respeitam a definição dada.

Biceps é proposto para listar exaustivamente os muscly patterns em tempo sub-

quadrático, enumerando os biclusters possíveis em um DAG e selecionando aqueles de

maior qualidade. O algoritmo é dividido em três fases: Durante a primeira fase, o DAG

é construído tal que seus vértices representem biclusters e suas arestas representem uma

relação de inclusão entre as linhas dos biclusters conectados. Durante a segunda fase,

programação dinâmica é utilizada para descobrir biclusters melhores que predecessores

ou sucessores que têm necessariamente um subconjunto ou superconjunto de linhas.

Apesar disso, as arestas do grafo não representam todas as possíveis relações de in-

clusão, logo é necessária uma terceira fase para encontrar somente os muscly patterns

entre os biclusters obtidos pela segunda fase.

Os biclusters são listados em tempo O(m2n +mn2), mais o tempo para se com-

putar O(mn) qualidades. Após algumas adaptações, Biceps permanece subquadrático

se sua complexidade é expressada em função de mnon-minn, onde mnon-min é o número

máximo de valores não-mínimos em uma coluna (matrizes esparsas). Experimentos

em três datasets do mundo real demonstram a efetividade da proposta em diferentes

aplicações. Também mostram uma boa eficiência prática: 2 min e 5.27 GB de RAM

são suficientes para listar todos os biclusters em uma matriz densa de 801 × 20,531;

3.5s e 192 MB de RAM para uma matriz esparsa de 631,532× 174,559 com 2,575,425

valores não-nulos.

viii

Palavras-chave: Biclustering, Programação Dinâmica, Enumeração Exaustiva, Bi-

clusters com colunas-exclusivas, Complexidade subquadrática.

ix

Abstract

Biclustering is a technique that is defined as a simultaneous clustering of rows and

columns of a data matrix. Given a m-by-n real matrix, this work defines a new type

of bicluster: in any of its columns, the values on the rows of the bicluster must be all

strictly greater than those on the rows absent from it. The rows that form a bicluster

can’t be a subset or superset of the rows contained in a different bicluster of greater

quality. The quality of a bicluster is a real value assigned from any computable function,

making the bicluster definition generic. “Muscly patterns” are biclusters that comply

with this definition.

Biceps is proposed to exhaustively list the muscly patterns in subquadratic time,

by enumerating possible biclusters in a DAG and selecting those with greater qualities.

The algorithm is divided in three phases: During the first phase, a DAG is built where

the vertices represent biclusters and edges represent an inclusion relationship between

the rows of connected biclusters. During the second phase, dynamic programming is

employed to discover biclusters that are better than any of its predecessor or successors,

which necessarily have a subset or superset of rows. Nonetheless, the edges in the graph

do not represent all possible inclusion relationships, thus a third phase is required to

discover only the muscly patterns among the bicluster obtained by the second phase.

The biclusters are listed within O(m2n + mn2) time, plus the time to compute

O(mn) qualities. After some adaptations, the proposed algorithm, Biceps, remains

subquadratic if its complexity is expressed in function of mnon-minn, where mnon-min

is the maximal number of non-minimal values in a column, i. e., for sparse matrices.

Experiments on three real-world datasets demonstrate the effectiveness of the proposal

in different application contexts. They also show its good theoretical efficiency is

practical as well: two minutes and 5.27 GB of RAM are enough to list the desired

biclusters in a dense 801-by-20,531 matrix; 3.5s and 192 MB of RAM for a sparse

631,532-by-174,559 matrix with 2,575,425 nonzero values.

x

Keywords: Biclustering, Dynamic Programming, Exhaustive Enumeration,

Exclusive-columns Biclusters, Subquadratic Complexity.

xi

List of Figures

1.1 Toy matrix . 2

1.2 Highlighted bicluster in the toy matrix . 3

2.1 Bicluster structures [Madeira and Oliveira, 2004] 8

2.2 An OP-Cluster example . 12

4.1 DAG built from the matrix in Figure 1.1 and k = 1, grades (assigned by q

in Example 3.3.1, with the `1 norm) inside the vertices, set P of candidate

patterns (all colored vertices), including all the muscly patterns (red vertices). 24

4.2 Step by step execution of Algorithm 2. Line 3’s 1st iteration: enumerating

the patterns c1 supports. 32

4.3 Step by step execution of Algorithm 2. Line 3’s 2nd iteration: enumerating

the patterns c2 supports. 32

4.4 Step by step execution of Algorithm 2. Line 3’s 3rd iteration: enumerating

the patterns c3 supports. 33

4.5 Step by step execution of Algorithm 2. Line 3’s 4th iteration: enumerating

the patterns c4 supports. 33

4.6 Step by step execution of Algorithm 2. Line 3’s 5th iteration: enumerating

the patterns c5 supports. 34

4.7 Step by step execution of Algorithm 3. Every vertex v colored orange has

its quality q(v) compared to q′(v). Vertices colored green are in the set P ′.

They represent candidate muscly patterns. 40

4.8 Step by step execution of Algorithm 5. In each subfigure, the vertex in green

represents the tested candidate pattern, the blue vertices represent either

its adequately-sized subpatterns or its adequately-sized superpatterns and

gray vertices are additionally marked as visited. 44

5.1 In each city of the Twitter dataset, distribution of the number of occurrences

per term. 51

xii

5.2 In each city of the Twitter dataset, distributions of the number of nonzero

values per column (blue curve) and of the number of distinct values per

column (green curve). 51

5.3 Locations relating to the columns supporting each of the muscly patterns

with the highest grades in the NYC matrix with k = 2. 55

5.4 Locations relating to the columns supporting each of the muscly patterns

with the highest grades in the LA matrix with k = 2. 58

5.5 Locations relating to the columns supporting each of the muscly patterns

with the highest grades in the London matrix with k = 2. 62

5.6 Locations relating to the columns supporting each of the new muscly pat-

terns obtained with q as in Equation 5.1, among those with the highest

grades in the NYC matrix with k = 2. 65

5.7 Locations relating to the columns supporting each of the new muscly pat-

terns obtained with q as in Equation 5.1, among those with the highest

grades in the LA matrix with k = 2. 65

5.8 Locations relating to the columns supporting each of the new muscly pat-

terns obtained with q as in Equation 5.1, among those with the highest

grades in the London matrix with k = 2. 70

5.9 Two points with the same φ and r coordinates and consecutive θ coordinates,

i. e., differing by δ . 72

5.10 Points with a same θ coordinate sampled around a molecule with δ = 20 . 72

5.11 Statistics about the muscly patterns in the Lennard-Jones matrix in func-

tion of k ∈ {1, . . . , 24}. 74

5.12 Statistics about the muscly patterns in the Coulomb matrix in function of

k ∈ {1, . . . , 24}. 75

5.13 For each QSAR matrix, positions of the points in the support of a muscly

pattern, plotted around one of the molecules in the patterns 76

5.14 For each QSAR matrix, positions of the points in the support of a muscly

pattern, graded with the quality function in Equation 3.2, plotted around

one of the molecules in the patterns . 77

5.15 Similarity between the biclusters Biceps discovers in the matrix obtained

with δ = 2o and those in matrices related to grosser samplings of the space

(δ > 2o). k is 2. 79

5.16 Biceps’ time and space requirements on the Twitter matrices with q as in

Equation 3.1 and k ∈ {1, . . . , 10}. 81

5.17 Decreasing number of candidate patterns along Biceps’ executions on the

Twitter matrices with q as in Equation 3.1 and k ∈ {1, . . . , 10}. 81

xiii

5.18 Biceps’ time and space requirements on the combined Twitter matrix with

q as in Equation 3.1 and k ∈ {1, . . . , 10}. 82

5.19 Runtimes of the dense and sparse versions of Biceps on the QSAR matrices

with q as in Equation 3.1 and k ∈ {1, . . . , 10}. 83

5.20 Peak memory usage of the dense and sparse versions of Biceps on the QSAR

matrices with q as in Equation 3.1 and k ∈ {1, . . . , 10}. 83

5.21 Biceps’ time and space requirements on the gene expression matrix with q

as in Equation 3.1 and k ∈ {50δ + 1 | δ ∈ {0, . . . , 7}}. 85

xiv

List of Tables

4.1 Time complexities. 26

4.2 Space complexities. 26

5.1 Description of the data collected for each city 50

5.2 Description of the matrix built for each city 50

5.3 Statistics of the collections of muscly biclusters in the NYC matrix with

k ∈ {1, . . . , 10}. 52

5.4 Muscly biclusters with the ten highest grades in the NYC matrix with k = 2. 53

5.5 Statistics of the collections of muscly biclusters in the LA matrix with k ∈

{1, . . . , 10}. 56

5.6 Muscly biclusters with the ten highest grades in the LA matrix with k = 2. 57

5.7 Statistics of the collections of muscly biclusters in the London matrix with

k ∈ {1, . . . , 10}. 59

5.8 Muscly biclusters with the ten highest grades in the London matrix with

k = 2. 60

5.9 Statistics of the collections of muscly biclusters in the NYC matrix with

k ∈ {1, . . . , 10} and q as in Equation 5.1. 64

5.10 Muscly biclusters with the ten highest grades in the NYC matrix with k = 2

and q as in Equation 5.1. 66

5.11 Statistics of the collections of muscly biclusters in the LA matrix with k ∈

{1, . . . , 10} and q as in Equation 5.1. 67

5.12 Muscly biclusters with the ten highest grades in the LA matrix with k = 2

and q as in Equation 5.1. 67

5.13 Statistics of the collections of muscly biclusters in the London matrix with

k ∈ {1, . . . , 10} and q as in Equation 5.1. 68

5.14 Muscly biclusters with the ten highest grades in the London matrix with

k = 2 and q as in Equation 5.1. 69

5.15 Number of columns in the matrix for each value chosen for δ 73

xv

5.16 Muscly biclusters, graded with the quality function in Equation 3.2, in the

Lennard-Jones matrix . 77

5.17 Muscly biclusters, graded with the quality function in Equation 3.2, in the

Coulomb matrix . 77

5.18 Numbers of the patterns computed by each of Algorithm 1’s three steps

on the gene expression matrix with q as in Equation 3.1 and k ∈

{50δ + 1 | δ ∈ {0, . . . , 7}}. 84

xvi

Contents

Acknowledgments vii

Resumo viii

Abstract x

List of Figures xii

List of Tables xv

1 Introduction 1

2 Related Work 5

2.1 Biclustering and Its Applications . 5

2.2 Bicluster Structures . 6

2.3 Bicluster Types . 9

2.3.1 Order-Preserving Submatrices (OPSMs) 10

2.3.2 Order Preserving Clusters (OP-Clusters) 10

2.4 Bicluster Algorithms Based on Exhaustive Enumeration 11

2.5 Biclustering Validation . 14

2.5.1 Supervised Validation . 14

2.5.2 Unsupervised Validation . 15

2.6 Summary . 15

3 A New Type of Bicluster Evaluated Through a Generic Function 17

3.1 Pattern and Support . 17

3.2 Adequately-sized Patterns . 19

3.3 Bicluster Quality . 20

3.3.1 Example of a Natural Quality Function 20

3.3.2 Example of an Alternative Quality Function 21

xvii

3.4 Problem Statement . 21

4 Biceps: An Algorithm to Discover Muscly Patterns 23

4.1 Filtering the Muscly Patterns in Three Steps 23

4.2 Filtering the Muscly Patterns in Subquadratic Time 27

4.2.1 First Step: The build_DAG Function 27

4.2.2 Second Step: The find_best_on_paths Function 34

4.2.3 Third Step: The find_best_among_comparable Function 41

4.3 Improvements . 44

4.3.1 Improvement for Dense and Sparse Matrices 44

4.3.2 Improvements for Dense Matrices 45

4.3.3 Improvements for Sparse Matrices 46

4.4 Summary . 47

5 Experiments 48

5.1 Mining Sparse Matrices Originating From Twitter 49

5.1.1 Dataset . 49

5.1.2 Results Using the Quality Function in Equation 3.1 51

5.1.3 Results Using a Quality Function Tailored to the Search of Events 61

5.2 Mining Dense Matrices Originating From a QSAR Model 69

5.2.1 Dataset . 70

5.2.2 Results . 71

5.2.3 Robustness to Changes of the Sampling Granularity 78

5.3 Running Time and Memory Usage . 80

5.3.1 Performance on the Twitter Matrices 80

5.3.2 Performance on the QSAR Matrices 82

5.3.3 Performance on a Gene Expression Matrix 83

5.4 Summary . 85

6 Conclusion 86

Bibliography 88

xviii

Chapter 1

Introduction

Cluster analysis, or clustering, is a fundamental tool in machine learning and data

mining, and has been applied to many different problems and fields over the years. The

task of clustering consists in partitioning a dataset into groups, called clusters, such

that the data points in each cluster are more similar to each other than to the rest of

the data [Mirkin, 1996]. The goal of clustering may vary depending on the application,

sometimes it is used to better understand the data, while in other applications it may

represent a first step in solving a more complex problem.

One class of clustering algorithms is that of biclustering. The goal of biclustering

is to perform a clustering of rows and of columns of a matrix simultaneously, instead of

clustering each dimension separately, thus discovering submatrices. Traditional cluster-

ing techniques can be applied to either the rows or the columns of a matrix separately,

thus deriving a global model. Biclustering, contrastingly, perform clustering on both

dimensions, thus deriving a local model, as the clustering of a set of rows is performed

on a subspace defined by a subset of columns, or vice-versa [Madeira and Oliveira,

2004].

Therefore, biclustering approaches are useful when applied to situations where the

hidden patterns in the data only exist in certain combinations of rows and columns.

One field in which biclustering is much used is gene expression data analysis, in which

a dataset is a matrix of genes by conditions [Cheng and Church, 2000]. Biclustering

supports the identification of some interesting cellular processes which are only active

for some subset of conditions, with the participation of only a subset of genes. Never-

theless, biclustering is not limited to gene expression data analysis. There are multiple

applications, and the methods used to discover biclusters and evaluate their quality

depend on the application.

This work proposes a new type of bicluster. Its definition is simple and relevant in

1

1. Introduction 2

various application contexts: a bicluster in the input m×n matrix is output if and only

if 1) it has between k ∈ N and m−k rows, 2) at least one column, 3) any of its columns

is such that the values in the rows of the bicluster are all strictly greater than those out,

and 4) any other bicluster satisfying the previous conditions and involving a subset or

a superset of rows is worse. To deem a bicluster “worse” than another one, grades are

compared. A user-defined function returns the grade of a bicluster. Consequently, the

proposed bicluster definition is generic, allowing for quality functions that are suitable

to various specific problems.

To more concretely present and motivate the proposed definition, Figure 1.1

shows a toy matrix. Here, every real number in the matrix is an integer that represents

how many times a twitter hashtag (a row, e. g., r3) was sent from a borough of New

York City (a column, e. g., c1) during the data collection. The values of the rows are

r = (#santa, #rockefellercenter, #christmas, #longisland), and the values of the

columns are c = (Manhattan, Bronx, Staten Island, Brooklyn, Queens). For instance,

at the intersection of r3 = #christmas and c1 = Manhattan, the number 55 would mean

that the hashtag #christmas was sent 55 times from devices geolocalized in Manhattan.

c1 c2 c3 c4 c5
r1 45 38 10 9 6
r2 35 6 0 27 11
r3 55 32 4 13 11
r4 5 20 0 23 29

Figure 1.1: Toy matrix

In the informal definition given two paragraphs above, the first two conditions

force any output bicluster to correspond to a nonempty submatrix that splits the rows

of the input matrix into two large-enough clusters, with at least k ∈ N rows each: the

rows in the submatrix and those out of it. In Figure 1.2, the highlighted bicluster

has two rows and three columns. Assuming k = 1, it satisfies the first two conditions,

because 1 ≤ 2 ≤ 4− 1 and 3 ≥ 1.

Given the rows of a bicluster, any of its columns is characterized by the third

point of the definition: if the bicluster has i ∈ {k, . . . ,m− k} rows, then the i highest

values in the column must be in these rows and the ith value must be different from

the (i + 1)th. In the example, i = |{r1, r3}| = 2 and three columns of the matrix have

their two highest values in the first and third row: c1, c2 and c3. They are all the

boroughs where the hashtags r1 and r3 were sent more than the remaining hashtags, r2
and r4. More precisely, in any of those three boroughs, the least-sent hashtag among

1. Introduction 3

c1 c2 c3 c4 c5
r1 45 38 10 9 6
r2 35 6 0 27 11
r3 55 32 4 13 11
r4 5 20 0 23 29

(a) Original toy matrix

c1 c2 c3 c4 c5
r3, 55 r1, 38 r1, 10 r2, 27 r4, 29
r1, 45 r3, 32 r3, 4 r4, 23 r2, 11
r2, 35 r4, 20 r2, 0 r3, 13 r3, 11
r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

(b) Sorted toy matrix

Figure 1.2: Highlighted bicluster in the toy matrix

r1 and r3 was still sent more than the most-sent hashtag among r2 and r4. Because r1

is, like r3, a Christmas-related hashtag (#santa), and the other hashtags are not, c1,

c2 and c3 are probably boroughs where Christmas-related events took place during the

data collection. This work proves that Conditions 2 and 3 define a search space that

contains at most (m− 2k + 1)n candidate biclusters.

The last condition discards from that search space every candidate bicluster whose

grade does not exceed that of another candidate with a subset or a superset of rows. As

mentioned earlier, a user-defined function assigns the grades. It may be any computable

function that, given a bicluster, returns a real number, and it may be tailored to

the particularities of the application. In the example, the locations of the boroughs

in a bicluster may influence its grade, perhaps to favor the biclusters with nearby

boroughs. The grade may depend on the matrix too. To discover biclusters that

stand out, it makes sense, given a bicluster with i rows, to take into account the

differences between the (i + 1)th and the ith highest values in every column of the

matrix that is involved in the bicluster. In fact, the analyst may simply define the

grade as the sum of those differences. If so, the bicluster highlighted in Figure 1.2a

is graded (45 − 35) + (32 − 20) + (4 − 0) = 26 and deemed worse than the bicluster

({r1, r2, r3}, {c1}), which is another candidate (assuming k = 1) with a higher grade:

35 − 5 = 30. Since {r1, r3} ⊂ {r1, r2, r3}, the last condition in the definition would

therefore discard the highlighted bicluster. Because r2 is #rockefellercenter, the

location of the eponymous complex explains why r2 is mostly sent from c1 = Manhattan

and the Christmas tree in the center explains its association with r1 = #santa and r3 =

#christmas, which are not location-specific. The biclusters ({r1, r3}, {c1, c2, c3}) and

({r1, r2, r3}, {c1}) intersect. They partly carry the same information. This work proves

that intersecting biclusters always have nested sets of rows. Condition 4 therefore

eliminates redundancy of information in the output collection of biclusters.

After formally defining the proposed biclusters, it is possible to define an algo-

rithm that exhaustively lists such biclusters. The proposed algorithm, called Biceps, is

1. Introduction 4

complete, as it discovers all the biclusters satisfying the formal definition. Biceps has

a subquadratic running time complexity. The algorithm is divided into three phases:

During the first phase, a direct acyclic graph (DAG) is built, where the vertices rep-

resent biclusters contained in the search space defined by Conditions 1, 2 and 3, and

edges represent an inclusion relationship between the rows of the biclusters. During

the second phase, dynamic programming is employed to discover every bicluster that is

better than any of its predecessors or successors, which necessarily represent biclusters

with a proper subset or superset of rows. Nonetheless, the edges in the graph do not

represent all possible inclusion relationships. A third phase is required to discover only

the biclusters defined by Condition 4.

The proposed definition of a new type of bicluster presents a search space that

is polynomial, contrasting with the bicluster definitions, and its algorithms, existing

in the literature, which typically present decision variations which are NP-Complete

or NP-Hard. Given that the search space is polynomial, the discovery of biclusters is

fast, which is reflected in the proposed algorithm. This type of bicluster also deals with

rows that exhibit the top values for certain columns, and stand out in comparison to

the other rows in this column given a generic quality function. This type of bicluster,

which focuses on top rows that stand out in comparison to rows outside of the bicluster

has not yet been explored in the literature, and the possibilities presented by a generic

quality function allow this new type of bicluster to be used in numerous applications.

This thesis is organized as follows: Chapter 2 presents some biclustering concepts,

a classification of the different types of biclusters, as well as validation techniques and

some existing algorithms. It focuses on algorithms with similar approaches to the new

type of bicluster proposed here. Chapter 3 proves the properties mentioned in this

introduction and formalizes the problem. Chapter 4 mathematically specifies the algo-

rithm’s three steps, and proves they exactly solve the stated problem. It shows as well

that Biceps runs in subquadratic time. Furthermore, it explains adaptations for sparse

matrices and details technical improvements to the algorithm. Chapter 5 demonstrates

Biceps’ effectiveness and efficiency on three real-world datasets dealing with twitter

usage, chemistry and gene expression analysis. Finally, Chapter 6 concludes the work

and suggests future work.

Chapter 2

Related Work

This Chapter presents the concept of biclustering as well as traditional classifications

of types and structures of biclusters, and classifications of the algorithms employed

to discover them. To the best of our knowledge, this thesis proposes a new type

of bicluster. Thus there are no works in the revised literature which cover exactly

that type of bicluster. Nevertheless, there are works with similar classifications to the

one proposed. Section 2.1 presents a general definition of the term biclustering, as

well as some of the applications of biclustering. Section 2.2 presents the traditional

classifications of biclustering structures, regarding how biclusters are organized in the

matrix. Section 2.3 presents the traditional types of biclusters, as defined by Madeira

and Oliveira [2004], which are related to the underlying characteristics of the bicluster.

Section 2.4 presents some algorithms that employ an exhaustive enumeration approach

to discover biclusters. Section 2.5 presents some strategies to validate a biclustering.

Finally, Section 2.6 presents a summary of the chapter, classifying the new type of

bicluster proposed based on the classifications and algorithms presented.

2.1 Biclustering and Its Applications

The term biclustering is defined by Mirkin [1996] as a simultaneous clustering of sets

of rows and sets of columns of a data matrix. More formally, given an m by n matrix,

where X = {x1, . . . , xm} is its set of rows and Y = {y1, . . . , yn} its set of columns, a

bicluster is a pair (I, J) such that I ⊆ X and J ⊆ Y . It is typically required that

the submatrix formed by the pair (I, J) is either over-expressed (i. e., includes values

above the average of the matrix), or presents some sort of homogeneity. However, in

general, the term biclustering may refer to an arbitrarily-defined collection of patterns,

each associating a subset of rows with a subset of columns in any data matrix [Madeira

5

2. Related Work 6

and Oliveira, 2004; Busygin et al., 2008].

The problem of listing biclusters was first introduced in Hartigan [1972]. It has

since been applied to multiple areas. One field in which biclustering is much used is

the analysis of biological data, such as gene expression data. Cheng and Church [2000]

first proposed that application. Since then, multiple algorithms have been developed

for that purpose [Madeira and Oliveira, 2004; Tanay et al., 2005; Padilha and Campello,

2017], i. e., to discover subsets of genes (the rows of the bicluster) that are only expressed

under some specific conditions (its columns). The traditional clustering techniques rely

on similarities computed over all conditions in the matrix, thus they are unable to

discover genes that are only co-expressed in some of the conditions.

In the text mining literature, biclustering is also known as co-clustering. It is

used to identify subsets of words (the rows of the bicluster) associated with subsets of

documents (its columns) [Dhillon, 2001]. The values in the data matrix are weights for

each word in a document. A graph partitioning technique proposed by Dhillon [2001]

and Rege et al. [2006], involves modeling a matrix of words by documents as a bipartite

graph, whose edges are weighted with the frequency of terms in a given document.

The graph is partitioned so as to minimize the weight of the crossing edges between

the partitions. A more common technique minimizes the loss of mutual information

between two random variables that represent the clusters of rows and columns [Dhillon

et al., 2003; Sim et al., 2009; Gao et al., 2006; Greco et al., 2007].

Other applications of biclustering deal with multimedia data processing and re-

trieval. For instance, biclustering techniques were developed for real-time render-

ing [Sun et al., 2011] and video document retrieval [Goyal et al., 2010]. Other uses

include collaborative filtering [Wang et al., 2002; Hofmann and Puzieha, 1999; Ungar

and Foster, 1998] to find subsets of customers with a similar behavior toward a subset

of products and dimensionality reduction [Benczúr et al., 2007].

2.2 Bicluster Structures

Regular clustering techniques result in clusters with a full coverage of the data ma-

trix and no overlap, i. e., when clustering the rows of a matrix, any row will belong

to one and only one cluster. In contrast, biclustering allows for more flexible struc-

tures [Madeira and Oliveira, 2004]. Biclusters can overlap. That overlap, when an-

alyzing gene expression, allows the discovery of a gene present in multiple biclusters

that is not co-active under all conditions for all of these biclusters [Cheng and Church,

2000]. Indeed, genes may appear in more than one bicluster, associated with different

2. Related Work 7

conditions in each bicluster. Furthermore, the biclustering needs not be exhaustive,

i. e., some row or column may belong to no bicluster.

Some biclustering algorithms only try to find one bicluster [Ben-Dor et al., 2003;

Murali and Kasif, 2003], as illustrated in Figure 2.1a. Madeira and Oliveira [2004]

categorize the structures (depicted in Figure 2.1) of biclustering with several biclusters

as follows:

(b) Exclusive row and column biclusters: Each row and column belongs to ex-

actly one bicluster. As in traditional clustering, the biclusters are exhaustive and

do not overlap. For example, Busygin et al. [2002] and Segal et al. [2001] propose

algorithms to discovering bicluster.

(c) Nonoverlapping biclusters with checkerboard structure: The Cartesian

product of a clustering of the rows with a clustering of the columns. As a

consequence, any cell belongs to one and only one bicluster. For example,

Busygin et al. [2002] and Kluger [2003] compute such biclusterings.

(d) Exclusive-rows biclusters: Each row belongs to at most one bicluster, whereas

columns may belong to multiple biclusters. For example, Sheng et al. [2003]

and Chun Tang et al. [2001] focus on that structure.

(e) Exclusive-columns biclusters: Each column belongs to at most one bicluster,

whereas rows may belong to multiple biclusters. That may be seen as exclusive-

rows biclustering of the transposed matrix.

(f) Nonoverlapping biclusters with tree structure: Biclusters are pairs of clus-

ters of rows and clusters of columns. Any two clusters of rows or columns are

disjoint, or one includes the other. The first biclustering algorithm proposed

by Hartigan [1972] lists a collection of biclusters satisfying that property.

(g) Nonoverlapping nonexclusive biclusters: Rows and columns may belong to

more than one bicluster. Unlike the checkerboard structure, the biclusters do

not need to be exhaustive. For example, Wang et al. [2002] find nonoverlapping

nonexclusive biclusters.

(h) Overlapping biclusters with hierarchical structure: Two biclusters are dis-

joint or nested. The checkerboard structure and the tree structure are special-

izations of this structure.

2. Related Work 8

(a) Single biclus-
ter

(b) Exclusive row
and column bi-
clusters

(c) Checkerboard
structure

(d) Exclusive
rows biclusters

(e) Exclusive
columns biclus-
ters

(f) Nonoverlap-
ping biclusters
with tree struc-
ture

(g) Nonoverlap-
ping nonexclusive
biclusters

(h) Overlapping
biclusters with hi-
erarchical struc-
ture

(i) Arbitrarily po-
sitioned overlap-
ping biclusters

Figure 2.1: Bicluster structures [Madeira and Oliveira, 2004]

(i) Arbitrarily positioned overlapping biclusters: The most general structure,

allowing overlaps and nonexhaustive biclusters. There are numerous contribu-

tions that consider that structure [Ben-Dor et al., 2003; Cheng and Church, 2000;

Getz et al., 2000; Lazzeroni and Owen, 2002; Liu and Wang, 2003; Murali and

Kasif, 2003; Tanay et al., 2002; Yang et al., 2002, 2003].

In structures (b), (c), (d) and (e), biclusters are exhaustive, i. e., every row and

every column belong to at least one bicluster. However, that constraint could be

removed. In fact, the biclustering structure defined in this thesis is columns-exclusive

without the exhaustive constraint. For that reason, Sheng et al. [2003] is related.

The author consider the rows-exclusive structure without the constraint, hence the

same structure after transposition of the matrix. They use Gibbs sampling to build a

probabilistic model of the data. The algorithm finds one bicluster at a time, and masks

its rows so that future iterations of the algorithm disconsiders them. Interrelated Two-

Way Clustering (ITWC), by Chun Tang et al. [2001], is related too. Similarly to the

previously discussed algorithm, it finds one bicluster at a time and masks its rows.

2. Related Work 9

2.3 Bicluster Types

Any bicluster relates to a submatrix. Constraints on such a submatrix, i. e. on every

bicluster, depend on the type of problem that is tackled. Madeira and Oliveira [2004]

categorizes the types of biclusters that are usually searched in four major classes.

Biclusters with constant values: All values in a submatrix are equal. In real world

matrices, noise usually prevents the existence of large such biclusters. That is

why quality functions are introduced to score a bicluster. The closer the values

in the related submatrix, the higher the score. One such score function is the

variance based score function, used by Hartigan [1972].

Biclusters with constant values on rows or columns: All values in a given row

(respectively column) of the submatrix are equal. Different rows (respectively

columns) may have different values. Formally, a bicluster with constant rows is a

submatrix such that any of its values ai,j is µ+αi where µ is the typical value of

the bicluster and αi is an adjustment for row i. Alternatively, ai,j can be defined

multiplicatively as µ × αi. A bicluster with constant columns is analogously

defined: ai,j = µ + βj (or ai,j = µ × βj). As for bicluster with constant values,

scores are computed to allow the discovery of bicluster that are close to satisfying

the definition. Nevertheless, this time, computing the variance is not enough.

New strategies are necessary, such as first normalizing the data to transform the

biclusters into constant biclusters [Getz et al., 2000], or modeling every bicluster

in a probabilistic way [Sheng et al., 2003].

Bicluster with coherent values: Biclusters are viewed as either based on an addi-

tive or a multiplicative model. In the additive model, each ai,j is µ+αi+βj, while

in the multiplicative one ai,j is µ× αi × βj. In both approaches, µ is the typical

value in the bicluster, αi is an adjustment for row i and βj is an adjustment

for column j. Cheng and Church [2000] introduces a score called mean squared

residue as a quality function to measure the coherence of rows and columns in

this type of biclusters.

Bicluster with coherent evolutions: Unlike the previous types, which refer to the

numeric values in the submatrix, biclusters tackle the problem of finding co-

herent evolutions regardless of the values in the submatrix. For example, the

order-preserving submatrix (OPSM) algorithm by Ben-Dor et al. [2003] and OP-

Clusters (Order preserving clusters) by Liu and Wang [2003] discover this type

of bicluster.

2. Related Work 10

2.3.1 Order-Preserving Submatrices (OPSMs)

Biclusters with coherent evolutions aim at grouping biclusters not based on how sim-

ilar the values in the related submatrix are, but based in some underlying behavior.

One such type of bicluster are order-preserving submatrices. In an order-preserving

submatrix, there exists a permutation of the columns of the submatrix that orders the

values in any of its rows.

Ben-Dor et al. [2003] first proposed the discovery of order-preserving submatrices.

Formally, given a submatrix with a set of T columns and π = (t1, t2, . . . , t|T |) a linear

ordering of T , the pair (T, π) is a complete OPSM model and a row i supports (T, π)

if and only if ai,t1 < ai,t2 < . . . < ai,t|T |
. The goal of the algorithm is to find the

complete models with the supports that are the most statistically significant. They are

not necessarily the complete models with maximum support. Indeed, the number of

rows that support a model is expected to decrease as its number of columns increases.

The decision version of that problem is proven to be NP-Hard, which asks if there is an

order preserving submatrix of size k-by-s in the matrix. That is why a greedy search

of the biclusters is proposed.

The OPSM model has drawbacks. First, the values in all rows must strictly

follow a same ordering. That constraint may be too strong for some applications.

Then, only one cluster can be found at a time. The resulting quality of the discovered

biclusters is sensitive to the initial selection of the partial models, and also to some

given parameters. Furthermore, it favors biclusters with large supports, which can

obstruct the discovery of significant biclusters with small supports. Since 2003, many

algorithms have been developed to list (approximately) order-preserving submatrices

and deal with the presented drawbacks. Cheung et al. [2007], Xue et al. [2014, 2015,

2016, 2018], Veroneze [2016], Liu et al. [2017] and Trapp et al. [2018] have proposed

complete algorithms.

2.3.2 Order Preserving Clusters (OP-Clusters)

OP-Clusters, proposed by Liu and Wang [2003], generalizes OPSM. In any row of the

input matrix, columns that have similar values, within a user-specified threshold, are

grouped and effectively treated as a single element in the row: their relative ordering is

irrelevant. The elements in the group are therefore sorted in by their column identifiers,

so as to maintain consistency. In this way, a row can more easily support an OP-Cluster

than an OPSM. After sorting the rows and grouping similar values, the proposed

algorithm, which takes inspiration in sequential pattern mining, treats the rows as

sequences of columns where sequential patterns are to be found. Figure 2.2a shows an

2. Related Work 11

example matrix. Its columns are labeled {a, b, c, d}. Under seq, the sorted sequences

for each row are shown. Furthermore, elements that are grouped due to similar values

are put between “()”.

The sequences are stored in a special prefix tree structure called OPC-tree. It is

iteratively grown to finally store all the subsequences. As such, the developed OPC-

tree contains all potential OP-Clusters. Each node represents one column in the row

sequence and each edge connects an element to the next one in the sequence. Fig-

ure 2.2b shows the tree as it is initially built (by inserting each entire sequence of the

matrix), before an iterative algorithm is applied to grow the tree. The numbers after

“ :” in the leaves correspond to the supporting rows of each sequence leading to that

leaf.

The algorithm contains two user-specified parameters, the minimum number of

rows and columns. These parameters allow to prune branches of the tree during its

construction, that would only lead to biclusters violating at least one of the minimum

sizes. The decision version of OP-Cluster being NP-hard, as it is a generalization of

OPSM, enumerating all possible subsequences is usually prohibitive and pruning is

essential. After the tree is grown, the OP-Clusters present in it are discovered. The

columns in an OP-Cluster are found along the paths leading from the root to any node

with depth no less than the minimum number of columns and row support no less than

the minimum number of rows.

2.4 Bicluster Algorithms Based on Exhaustive

Enumeration

The complexity of the biclustering problem depends on its formulation, but a great

part of the existing variants are NP-complete [Madeira and Oliveira, 2004; Cheng

and Church, 2000; Ben-Dor et al., 2003; Dhillon, 2001; Dhillon et al., 2003]. One

simple formulation of the biclustering problem is, given a binary matrix, finding the

maximum edge biclique in the corresponding bipartite graph. The maximum edge

biclique problem, where the number of edges is maximum, is equivalent to finding a

maximum size bicluster in a matrix, such that the number of rows and columns in

the submatrix that is the bicluster is maximum. The decision variant of this problem

is proven to be NP-Complete [Peeters, 2003]. As a consequence, many algorithms

use heuristics in order to find the proposed biclusters. Nevertheless, some algorithms

exhaustively enumerate biclusters but constrain the size of the biclusters in order to

make this strategy feasible in practice [Madeira and Oliveira, 2004].

2. Related Work 12

row a b c d seq
1 4392 284 4108 228 db(ac)
2 401 281 120 298 c(bd)a
3 401 292 109 238 cdba
4 280 318 37 215 cdab

(a) An example matrix

-1

c d

b d b

d a b a

a:2 b:4 a:3 c:1

(b) The OPC-Tree during the initial step of the
algorithm

Figure 2.2: An OP-Cluster example

The OP-Cluster algorithm by Liu and Wang [2003], presented in Section 2.3.2,

exhaustively enumerates biclusters too. Use of user-specified parameters define the

minimum number of rows and columns in a valid bicluster. They allow to prune sub-

trees of the OPC-tree that only contain biclusters that are too small. As previously

mentioned, there are also some exhaustive algorithms proposed to mine OPSMs. Che-

ung et al. [2007] propose an algorithm to find all maximal size-constrained OPSMS,

constrained by size, based on the apriori principles [Agrawal and Srikant, 1994]. An

OPSM is a maximal OPSM if it is not a proper subcluster of any other OPSM, and it

is size-constrained because the number of rows and columns must be larger than two

user-defined thresholds. Several rules to prune inadequate patterns are proposed to list

all OPSMs efficiently. Xue et al. [2014, 2015] propose approaches based on finding all

common subsequences and then applying the apriori principle, Xue et al. [2016] also

propose an approach based on the apriori principle, while Xue et al. [2018] propose and

approach base on sequential pattern mining. Liu et al. [2017] converts the OPSM min-

ing problem into a frequent sequential pattern mining problem, and then uses dynamic

programming to find all common subsquences, storing all common subsequences into a

suffix tree. Then, all OPSMs that meet the threshold values of row and column in the

2. Related Work 13

suffix tree are presented. Trapp et al. [2018] propose two algorithms to mine OPSMs,

formulating the problem as either a minimization or maximization problem, and then

iteratively solving the mathematical programming formulations to global optimality.

The SAMBA (Statistical-Algorithmic Method for Bicluster Analysis) algorithm

proposed by Tanay et al. [2002] employs an exhaustive enumeration strategy for gene

expression analysis. A bicluster is a submatrix where the values change significantly

for a gene (rows) at a condition (columns) with respect to its normal values. That

algorithm models the matrix as a bipartite graph, where edges correspond to a signifi-

cant expression change. They are assigned weights according to a probabilistic model.

In this way, heavy subgraphs, i. e., subgraphs with a large sum of weights, correspond

to biclusters with a high likelihood. The goal of the algorithm is to find the heaviest

subgraphs. In order to avoid an exponential runtime, rows with degree greater than a

user-defined parameter are ignored, thus limiting the sizes of the discovered biclusters.

Wang et al. [2002] proposed pClusters, which also exhaustively enumerates bi-

clusters. The algorithm uses a prefix tree to efficiently enumerate all subsets of rows

and columns that are valid biclusters. The algorithm aims to find coherent biclusters,

in which the score of a bicluster is less or equal than a threshold. The user specifies

that threshold and minimum numbers of rows and columns in a bicluster. They allow

to avoid the enumeration of invalid clusters, what decreases the runtime of the algo-

rithm. Nevertheless, the worst-case runtime and number of biclusters discovered are

exponential in the number of columns.

Serin and Vingron [2011] proposed DeBi, a biclustering algorithm based on Maxi-

mal Frequent Itemset mining [Gouda and Zaki, 2001] that identifies coherent biclusters.

In that work, a bicluster is a submatrix of genes and samples where the genes are homo-

geneously highly or lowly expressed all over the samples in the submatrix. Furthermore,

each gene in the bicluster shows statistical difference in expression between the sam-

ples in the bicluster and the ones not in the bicluster. The data matrix is binarized

according to either up or down regulation in the genes, i. e., genes that are fold up

regulated in a certain sample are 1, otherwise they are 0. They can also be binarized in

the inverse way. The support of a gene set is the fraction of samples for which all genes

in the set are 1. A bicluster is the pair consisting of the gene set and the samples that

support it. Maximal itemsets, discovered by MAFIA [Burdick et al., 2001] are mined

in the matrix after its binarization. In addition to the minimal frequency, a number of

columns of the original matrix, a minimal number of rows allows to further prune the

pattern space.

2. Related Work 14

2.5 Biclustering Validation

The validation of a biclustering is challenging given the different objectives of the algo-

rithms [Zhao et al., 2012]. The validation of traditional clustering is based on distance

measures or on indexes. They aim to measure qualities such as the compactness, the

connectedness, the variance or the robustness of the clustering. However, the various

types of biclustering make the validation more difficult.

2.5.1 Supervised Validation

When the true biclusters in a dataset are known, the quality of the biclustering can

be measured by evaluating how well the found biclusters match the true biclusters.

Consequently, an index based validation, such as the one used in traditional clustering,

may be employed.

The Jaccard index [Jaccard, 1912], also known as Jaccard similarity coefficient,

can be employed when validating traditional clustering. Equation 2.1 defines it for two

clusters A and B.

JacInd(A,B) =
|A ∩ B|

|A|+ |B| − |A ∩B|
(2.1)

The Jaccard index must be adapted to be used with biclustering. Prelić et al.

[2006] modify it. They introduce a match score that Liu and Wang [2007] improved, as

shown in Equation 2.2, where B1 is the set of true biclusters in the matrix and B2 is the

set of detected biclusters. When all biclusters are detected, S(B1, B2) = 1. Every true

bicluster is associated with the most similar bicluster discovered, and then the average

score is obtained. This represents how well each of the true biclusters is discovered by

the algorithm.

S(B1, B2) =
1

|B1|

∑

(X1,Y1)∈B1

max
(X2,Y2)∈B2

|X1 ∩X2|+ |Y1 ∩ Y2|

|X1 ∪X2|+ |Y1 ∪ Y2|
(2.2)

Another supervised type of strategy for evaluating a biclustering uses domain

knowledge, such as prior knowledge about the biological conditions in the biclustering

of gene expression data. For example, known classifications of samples or genes support

the computation of p-values for validation in Cheng et al. [2008]. The p-value used is

the probability of including genes of a given category in a cluster by chance. Thus,

the validation can be done by measuring the percentage of clusters of genes that is

very unlikely to be obtained randomly. Furthermore, some traditional statistic, such

2. Related Work 15

as sensitivity and specificity, can be used for the comparison of the biclustering results

when the true biclusters are known [Gu and Liu, 2008].

2.5.2 Unsupervised Validation

If the true biclusters are not known, there is a need for unsupervised functions to

evaluate the quality of a biclustering. One such function is the mean squared residual

error, proposed by Cheng and Church [2000]. It measures the deviation of the val-

ues of the submatrix associated with a bicluster from its mean value. That strategy

therefore applies to the validation of constant value biclusters. Teng and Chan [2008]

measure the correlation between the rows or the columns of the submatrix to validate

a biclustering with coherent values. Ayadi et al. [2009] proposed a quality index based

on the Spearman’s Rank correlation to measure how similar the order of the rows or

the columns. That validation suits biclusters with coherent evolutions.

A different type of strategy consists in validating through statistical tests. A

biclustering is compared to a random partitioning of the data matrix. Sheng et al.

[2003] randomizes the data according to a uniformly random graph model in order to

perform a statistical test. The idea is that biclusters appearing in randomized data are

irrelevant.

2.6 Summary

To the best of our knowledge, the type of bicluster proposed in this thesis has not

yet been explored in the literature. Nevertheless, the classifications traditional to

biclustering can be employed to also classify this new type. The biclustering proposed

presents a structure of exclusive-columns. Thus, a column can only be present in a

bicluster where the rows with the highest values in that column are also present in

the bicluster. Because there can be no biclusters with a superset or subset of rows of

another candidate bicluster, a column can be a part of at most one bicluster.

None of the types of biclusters presented in Section 2.3 accurately classify the new

type of bicluster proposed. However, the type “Coherent evolutions” presents a similar

idea to the new bicluster. OPSMs, which are of that type, exhibit an underlying

behavior in which the order of the columns must be the same for all rows in the

bicluster. OP-Clusters generalize OPSMs such as to allow the biclusters to have some

of its columns not follow a strict ordering. These algorithms are presented in this

chapter because, although the matrix in them should first be transposed to better

compare them to the new bicluster, their idea is very similar to the one presented in

2. Related Work 16

the new proposed bicluster. But there is still one major difference. The new type of

bicluster contains all rows with values in the columns of the bicluster which are strictly

greater than the values in rows outside of the bicluster. Thus, the ordering of the rows

inside the bicluster is ignored. Meanwhile, in the OPSMs and OP-Clusters only the

ordering of the values inside the biclusters are considered.

Section 2.4 explored some algorithms that employ an exhaustive enumeration

strategy to discover biclusters. That strategy requires that the search space be limited

to make it feasible, usually by constraining the size of the biclusters discovered. The

algorithm which will be proposed to discover the new type of bicluster do not present

such limitations, as the search space of the proposed bicluster does not need to be

reduced.

Finally, Section 2.5 presents some of the strategies used to validate biclusterings,

as this is a challenging problem. In particular, the experiments performed in this thesis

require that an unsupervised validation strategy be employed, as there are no ground

truth to apply a supervised validation.

Chapter 3

A New Type of Bicluster Evaluated

Through a Generic Function

Given a finite set R of row identifiers and a finite set C of column identifiers, this work

deals with the discovery of relevant biclusters in M ∈ R
R×C , a real matrix. All along

this work, m = |R| and n = |C|, i. e., m and n respectively are the numbers of rows

and columns.

Dense and sparse matrices are considered. “Sparse” here means that the num-

ber of non-minimal (typically nonzero for nonnegative matrices) values in every col-

umn is much smaller than m. The largest such number, maxc∈C |{r ∈ R | Mr,c 6=

minr′∈R Mr′,c}|, is denoted mnon-min. Count matrices are common specific sparse ma-

trices. Their values are nonnegative integers. In every column, their distribution

typically follows a power law. As a consequence, in any column, there may be many

small values that are equal. mdistinct denotes the maximal number of distinct values in

a column, maxc∈C |{Mr,c | r ∈ R}|. Clearly, mdistinct ≤ mnon-min + 1 ≤ m.

3.1 Pattern and Support

As usual in the literature, a bicluster in M is a pair of sets: a subset of R and a subset

of C. Nevertheless, in this work, given the subset of rows, one single subset of columns

can be associated with it to form a valid bicluster. That is why, from now on, the term

pattern refers to any subset of R. The associated subset of C is called the support of

the pattern. A column is in the support if and only if the real values in the rows of the

pattern are all strictly greater than those in the remaining rows.

17

3. A New Type of Bicluster Evaluated Through a Generic Function 18

Definition 1 (Support). Given a matrix M ∈ R
R×C , the support of a pattern P ⊆ R,

denoted supp(P), is {c ∈ C | ∀r ∈ P, ∀r′ ∈ R \ P,Mr,c > Mr′,c}.

Example 3.1.1. In Figure 1.2, P = {r1, r3} is a pattern, i. e., a subset of row identifiers.

In that matrix M, min{Mr1,c,Mr3,c} > max{Mr2,c,Mr4,c} if and only if c ∈ {c1, c2, c3},

i. e., supp(P) = {c1, c2, c3}. Indeed, 45 > 35 (in column c1), 32 > 20 (c2), 4 > 0 (c3),

but 9 ≤ 27 (c4) and 6 ≤ 29 (c5). Figure 1.2a highlights the bicluster (P, supp(P)) in

the matrix. Figure 1.2b highlights it too, but in a transformation of the matrix. That

transformation pairs every value in any row of the matrix with the row identifier and

sorts the pairs in every column by decreasing order of value. In this way, highlighting

any bicluster (P, supp(P)) in the transformed matrix is highlighting its cells that are

at the intersection of the |P | first rows and of the columns of supp(P).

The definition of the support entails that intersecting supports necessarily relate

to nested patterns. The following lemma formalizes the logically equivalent contrapos-

itive statement.

Lemma 1. ∀P1 ⊆ R, ∀P2 ⊆ R, (P1 6⊆ P2 ∧ P2 6⊆ P1)⇒ supp(P1) ∩ supp(P2) = ∅ .

Proof. P1 6⊆ P2 and P2 6⊆ P1 mean that ∃r1 ∈ P1 | r1 ∈ R \ P2 and that ∃r2 ∈

P2 | r2 ∈ R \ P1. Assuming, by contradiction, supp(P1) ∩ supp(P2) 6= ∅ is assuming

∃c ∈ supp(P1) ∩ supp(P2). By definition of supp(P1), the inequality Mr1,c > Mr2,c

would hold. However, by definition of supp(P2), the logically incompatible inequality

Mr2,c > Mr1,c would hold as well.

A corollary of Lemma 1 is that a given column supports at most one pattern of

a given size, as formalized and proven below.

Corollary 1. ∀i ∈ N, ∀c ∈ C, |{P ⊆ R | |P | = i ∧ c ∈ supp(P)}| ≤ 1 .

Proof. ∀i ∈ N, ∀c ∈ C, let Si,c = {P ⊆ R | |P | = i ∧ c ∈ supp(P)}, the set whose

size is to be bounded. ∀P1 ∈ Si,c, ∀P2 ∈ Si,c, c ∈ supp(P1) ∩ supp(P2). Lemma 1

applies: P1 ⊆ P2 ∨ P2 ⊆ P1. Moreover |P1| = |P2| = i. As a consequence, P1 = P2 and

|Si,c| ≤ 1.

In conclusion, a pattern is a subset of rows, and the support of a pattern is

the single subset of columns which can be associated to the pattern, such that the

values of the rows in the pattern are strictly greater than the values of the rows in the

complement of the pattern, for the columns in the support. Additionally, a column can

only belong to the support of a single pattern.

3. A New Type of Bicluster Evaluated Through a Generic Function 19

3.2 Adequately-sized Patterns

To truly occur in the matrix M, a bicluster should have at least one row and one

column. In fact, to split the rows of R into two significant clusters (the rows in the

pattern and those out of it), a pattern should contain at least k and at most m − k

rows, for some user-defined k ∈ {1, . . . ,
⌊

m
2

⌋

}. The significance of a cluster depends on

the application and is therefore determined by the user through the choice of k.

Definition 2 (Adequately-sized pattern). Given a matrix M ∈ R
R×C and an integer

k ∈ {1, . . . ,
⌊

m
2

⌋

}, a pattern P ⊆ R is adequately-sized if and only if k ≤ |P | ≤ m− k

and supp(P) 6= ∅.

Example 3.2.1. In Figure 1.2, k must be either 1 or 2, because the matrix has four

rows and
⌊

4
2

⌋

= 2. The pattern {r1, r3} having two rows and a nonempty support (see

Example 3.1.1), it is adequately-sized with either value of k. Indeed, 1 ≤ 2 ≤ 4− 1 (if

k = 1) and 2 ≤ 2 ≤ 4− 2 (if k = 2).

From now on, A denotes the set of all adequately-sized patterns. There are at

most (m− 2k + 1)n such patterns, as formalized and proven below.

Theorem 2. |A| ≤ (m− 2k + 1)n .

Proof. By Definition 2, P ∈ A ⇔ k ≤ |P | ≤ m − k ∧ supp(P) 6= ∅. By Defini-

tion 1, supp(P) 6= ∅ means ∃c ∈ C | c ∈ supp(P). Doing the union over all columns,

A = ∪c∈C{P ⊆ R | k ≤ |P | ≤ m − k ∧ c ∈ supp(P)}. Doing the union over

all valid sizes, A = ∪c∈C ∪
m−k
i=k {P ⊆ R | |P | = i ∧ c ∈ supp(P)}. As a conse-

quence, |A| ≤
∑

c∈C

∑m−k

i=k |{P ⊆ R | |P | = i ∧ c ∈ supp(P)}| and, by Corollary 1,

|A| ≤
∑

c∈C

∑m−k

i=k 1 =
∑

c∈C(m− 2k + 1) = (m− 2k + 1)n.

Additionally, the cardinality of the set of adequately-sized pattern, |A|, is upper-

bounded by (mdistinct − 1)n:

Theorem 3. |A| ≤ (mdistinct − 1)n .

Proof. A = ∪c∈C{P ⊆ R | k ≤ |P | ≤ m − k ∧ c ∈ supp(P)}, as shown in the proof

of Theorem 2. Since k ≥ 1, R /∈ A and A ⊆ ∪c∈C{P ⊂ R | c ∈ supp(P)}. As

a consequence, |A| ≤
∑

c∈C |{P ⊂ R | c ∈ supp(P)}|. By Definition 1, {P ⊂ R |

c ∈ supp(P)} = {P ⊂ R | ∀r ∈ P, ∀r′ ∈ R \ P,Mr,c > Mr′,c}, whose cardinality

equals |{Mr,c | r ∈ R ∧Mr,c 6= minr′∈R Mr′,c}| ≤ mdistinct − 1. That is why |A| ≤
∑

c∈C(mdistinct − 1) = (mdistinct − 1)n.

3. A New Type of Bicluster Evaluated Through a Generic Function 20

In conclusion, an adequately-sized pattern is a pattern with non-null support

and a size defined by k ≤ |P | ≤ m − k. The size of the set of adequately-sized

patterns is upper-bounded by both (m − 2k + 1)n and (mdistinct − 1)n. If a matrix

contains many repeated values, mdistinct should be a lot smaller than m, such that

mdistinct− 1) < (m− 2k+1), and thus the size of the set of adequately-size patterns is

upper-bounded by (mdistinct − 1)n. Otherwise, it is upper-bounded by (m− 2k + 1)n.

3.3 Bicluster Quality

This work assumes the existence of a computable function, q : A → R. It numerically

grades the quality of any adequately-sized pattern. There is no other constraint on

the definition of q. It may be tailored to the particularities of the application. It may

depend on the matrix M and/or on other data.

3.3.1 Example of a Natural Quality Function

A natural quality function, given Definition 1, is shown in Equation 3.1, where ‖.‖ is

any norm on R
n.

q(P) =

∥

∥

∥

∥

(

max

(

min
r∈P

Mr,c − max
r∈R\P

Mr,c, 0

))

c∈C

∥

∥

∥

∥

(3.1)

This function quantifies to what extent a bicluster stands out in the matrix M.

For instance, if ‖.‖ is the `1 norm, then q(P) =
∑

c∈supp(P) minr∈P Mr,c−maxr∈R\P Mr,c.

It sums over the columns of the support the difference between the “worst” row in the

pattern (i. e., with the smallest element, in the column) and the “best” row out of the

pattern (i. e., with the greatest element, in the column).

Example 3.3.1. Evaluating that quality function on the pattern P = {r1, r3} in

Figure 1.2 is summing the differences min{Mr1,c,Mr3,c} − max{Mr2,c,Mr4,c} for all

c ∈ supp(P) = {c1, c2, c3} (see Example 3.1.1). Those differences are 45 − 35 (for

c = c1), 32− 20 (for c = c2) and 4− 0 (for c = c3). The pattern P is therefore graded

10 + 12 + 4 = 26.

3. A New Type of Bicluster Evaluated Through a Generic Function 21

3.3.2 Example of an Alternative Quality Function

Another example of a quality function is shown in Equation 3.2, where Ip is the regu-

larized incomplete beta function of parameter p =
(

m

|P |

)−1
.

q(P) = −Ip(|supp(P)| − 1, n− |supp(P)|) (3.2)

Assuming mdistinct = m (for a simpler example), it quantifies how surprising the

discovery of an adequately-sized pattern with |P | rows and |supp(P)| columns in its

support. It considers, as the null hypothesis, that all
(

m

|P |

)

patterns of size |P | have

the same probability, p =
(

m

|P |

)−1
, of having a specific column in their supports (any

column supports exactly one pattern of size |P |, thanks to the simplifying hypothesis)

and that the columns are uncorrelated. In this way, the size of the support follows the

binomial distribution and
∑n

`=|supp(P)|

(

n

`

)

p`(1−p)n−` = Ip(|supp(P)|, n−|supp(P)|+1)

is the probability that at least |supp(P)| columns support a pattern with |P | rows. q

actually ignores one column of the support. That is because any column supports

m patterns, of sizes 1, 2, . . . , m: q minimally grades them all, −1, unless additional

columns support them.

Example 3.3.2. In Figure 1.2, the pattern P = {r1, r3} having two rows, p =
(

4
2

)−1
=

1
6
. Moreover, |supp(P)| = 3 (see Example 3.1.1). As a consequence, P is graded

−I 1

6

(3− 1, 5− 3) = −I 1

6

(2, 2) ≈ −0.074.

3.4 Problem Statement

This work proposes to completely list muscly patterns. A muscly pattern is an

adequately-sized pattern with a strictly greater quality than any adequately-sized pat-

tern that is a proper subset or superset of it.

Definition 3 (Muscly pattern). Given M ∈ R
R×C , k ∈ {1, . . . ,

⌊

m
2

⌋

} and a function

q : A → R, a pattern P ⊆ R is a muscly pattern if and only if P ∈ A and ∀P ′ ∈ A,

(P ′ ⊂ P ∨ P ⊂ P ′)⇒ q(P ′) < q(P).

Example 3.4.1. In Figure 1.2, assuming k = 1 and q defined as in Equation 3.1

(with the `1 norm), the pattern P = {r1, r3} is not muscly, because it admits a proper

and adequately-sized superpattern with a quality greater or equal to q(P) = 26 (see

Example 3.3.1). Indeed, P ′ = {r1, r2, r3}, whose support is {c1}, is graded q(P ′) =

35 − 5 = 30 ≥ 26. The pattern P ′ is actually muscly. Its only proper superpattern,

{r1, r2, r3, r4}, is not adequately-sized and its subpatterns that are both proper and

3. A New Type of Bicluster Evaluated Through a Generic Function 22

adequately-sized, {r1}, {r2}, {r3} and P = {r1, r3}, are graded below 30: q({r1}) = 12,

q({r2}) = 4, q({r3}) = 10 and q(P) = 26.

From now on, M denotes the set of all muscly patterns. Their definition entails

that two distinct muscly patterns cannot be nested, as formalized below.

Lemma 4. ∀{P1, P2} ⊆ M, P1 6⊂ P2 ∧ P2 6⊂ P1 .

Proof. Assume, by contradiction, that ∃{P1, P2} ⊆ M | P1 ⊂ P2 ∨ P2 ⊂ P1. The

inequality q(P1) > q(P2) would hold because P1 is a muscly pattern and P2 ∈M ⊆ A.

However, the logically incompatible inequality q(P2) > q(P1) would hold as well because

P2 is a muscly pattern and P1 ∈M ⊆ A.

There cannot be more muscly patterns than columns in the matrix.

Theorem 5. |M| ≤ n.

Proof. By Definition 2, ∀P ∈ M ⊆ A, supp(P) 6= ∅. Consequently, ∀P ∈ M,

1 ≤ |supp(P)|. Summing those inequalities: |M| ≤
∑

P∈M |supp(P)| (1). By

Lemmas 4 and 1 (in that order), given two distinct muscly patterns P1 and P2,

supp(P1) ∩ supp(P2) = ∅ and |supp(P1)| + |supp(P2)| = |supp(P1) ∪ supp(P2)|. That

entails
∑

P∈M |supp(P)| = | ∪P∈M supp(P)| (2). Any support being a subset of C

(Definition 1), ∪P∈Msupp(P) ⊆ C and | ∪P∈M supp(P)| ≤ n (3). Putting together (1),

(2) and (3), |M| ≤ n.

In conclusion, we must derive an algorithm to discover the set of muscly patterns

in a matrix. This algorithm must receive as additional input a parameter k, and a

quality function to evaluate the biclusters.

Chapter 4

Biceps: An Algorithm to Discover

Muscly Patterns

In this chapter, Biceps1, the algorithm proposed to completely list the muscly pat-

terns, is described. Section 4.1 describes the general working of the algorithm, which is

divided into three steps. Section 4.2 describes in detail each step of the algorithm. Sec-

tion 4.3 presents improvements made to the implementation of the algorithm. Finally,

Section 4.4 concludes the chapter.

4.1 Filtering the Muscly Patterns in Three Steps

Biceps computes the muscly patterns in three steps, in Algorithm 1. To prove Biceps

is sound, this section formally presents the functions they perform.

Algorithm 1 Biceps

Input: real matrix M ∈ R
R×C , number of rows k ∈ {1, . . . ,

⌊

m
2

⌋

}, function q : A → R

Output: setM of all muscly patterns (Definition 3)
1: (A, E)← build_DAG(M, k)
2: P ← find_best_on_paths(A, E, k, q)
3: find_best_among_comparable(P ,A, E, k, q)

build_DAG(M, k) returns a directed graph. A, the set of all adequately-sized

patterns (Definition 2), is the vertex set of the graph. E ⊆ A × A is its edges set.

The definition of E will be given later. One single property of it matters to prove

Biceps is correct and complete: ∀(U, V) ∈ E, U ⊂ V . Denoting E+ the transitive
1Biceps stands for Biclusters In Columns Exhibiting Prefix-Support, where the prefix refers to

the pattern, the top rows in a sorted column of its support.

23

4. Biceps: An Algorithm to Discover Muscly Patterns 24

closure of the edge set E, i. e., the reachability relation, the transitivity of ⊂ entails

that ∀(U, V) ∈ E+, U ⊂ V . As a consequence, ∀(U, V) ∈ E+, U 6= V , i. e., (A, E) is a

directed acyclic graph (DAG).

Example 4.1.1. Assuming k = 1, the vertices of the DAG in Figure 4.1a correspond

to all the adequately-sized patterns in the matrix in Figure 1.1. The vertices on a

same horizontal level represent patterns having a same number of rows. As explained

above, any path in the DAG stands for a proper inclusion between the patterns the

two ends of the path represent. The converse statement does not hold. For instance,

although {r4} ⊂ {r2, r4}, no path connects the vertices representing the adequately-

sized patterns {r4} and {r2, r4}.

10

{r3}

12

{r1}

4

{r2}

18

{r4}

26{r1, r3} 10{r2, r4}

30

{r1, r2, r3}

14

{r1, r3, r4}

9

{r2, r3, r4}

(a) DAG.

∅

10 12 4 18

26 10

30 14 9

{r1} {r2}{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(b) build_DAG’s encoding of the DAG.

Figure 4.1: DAG built from the matrix in Figure 1.1 and k = 1, grades (assigned by
q in Example 3.3.1, with the `1 norm) inside the vertices, set P of candidate patterns
(all colored vertices), including all the muscly patterns (red vertices).

find_best_on_paths(A, E, k, q) selects every adequately-sized pattern the

function q grades strictly better than any of its successors or predecessors:

P =
{

P ∈ A | ∀P ′ ∈ A,
(

(P, P ′) ∈ E+ ∨ (P ′, P) ∈ E+
)

⇒ q(P) > q(P ′)
}

.

Example 4.1.2. In Figure 4.1a, the number inside any vertex is the grade (as defined

in Equation 3.1, with the `1 norm) q gives to the related adequately-sized pattern. The

4. Biceps: An Algorithm to Discover Muscly Patterns 25

colored vertices stand for the subset P of patterns find_best_on_paths returns,

given the shown DAG. For instance, {r2, r4} ∈ P . Indeed, the grades 4 and 9 received

by its (here single) predecessor ({r2}) and its (single as well) successor ({r2, r3, r4}),

respectively, are strictly below q({r2, r4}) = 10. find_best_on_paths discards the

pattern {r1, r3}, graded 26 (see Example 3.3.1), because {r1, r2, r3} succeeds it and is

graded 30 ≥ 26 (see Example 3.4.1).

Finally, find_best_among_comparable(P ,A, E, k, q) outputs every pat-

tern of P that the function q grades strictly better than any of its proper and

adequately-sized subsets or supersets:

O = {P ∈ P | ∀P ′ ∈ A, (P ′ ⊂ P ∨ P ⊂ P ′)⇒ q(P) > q(P ′)} .

Example 4.1.3. The two red vertices in Figure 4.1a represent the patterns Biceps

outputs. find_best_among_comparable selects them in P , i. e., among the

three patterns corresponding to the colored vertices (see Example 4.1.2). For in-

stance, Biceps outputs {r1, r2, r3}, which is muscly (see Example 3.4.1). Here,

find_best_among_comparable only discards {r2, r4}, for not being graded

better than a proper and adequately-sized (hence in the vertex set) subpattern:

q({r2, r4}) ≤ q({r4}) (see Example 3.4.1).

Biceps, as formalized above, is correct and complete.

Theorem 6. M = O .

Proof. As proven after introducing the directed graph that build_DAG returns,

∀(U, V) ∈ E+, U ⊂ V . As a consequence, for any adequately-sized pattern P ∈ A,

if P ′ ∈ A satisfies (P ⊂ P ′ ∨ P ′ ⊂ P) ⇒ q(P) > q(P ′) then P ′ satisfies as well

((P, P ′) ∈ E+ ∨ (P ′, P) ∈ E+) ⇒ q(P) > q(P ′), i. e., by definitions of M and P ,

M⊆ P and, by definition of the output O,M = O.

Thus, Biceps completely lists the muscly patterns, as long as build_DAG

returns an edge set E that is such that ∀(U, V) ∈ E, U ⊂ V . An obvious solu-

tion is E = ∅. Processing a DAG with no edge, find_best_on_paths would re-

turn A and find_best_among_comparable would check whether each and every

adequately-size pattern is muscly. Following Definition 3, that last step would pair

every adequately-sized pattern with every other and test whether they are nested. For

a dense matrix, such a test takes O(m−k) time, if the patterns are ordered. Assuming

the evaluations of q on all the adequately-sized patterns are precomputed, the last step

would therefore require O(|A|2(m− k)) time, i. e., by Theorem 2, O((m− k)3n2) time.

4. Biceps: An Algorithm to Discover Muscly Patterns 26

dense M sparse M

step 1 O((m− k)2n) O (mnon-min(log(mnon-min) +mdistinct)n)
step 2 O(mn) O (mnon-min log(mnon-min)n)
step 3 O ((m− k)n2) O (mnon-min log(mnon-min)n

2)

Biceps
O((m− k)2n
+(m− k)n2)

O(mnon-minmdistinctn
+mnon-min log(mnon-min)n

2)

Table 4.1: Time complexities.

dense M sparse M

step 1 O((m− k)2n) O(mnon-minmdistinctn)
step 2 O(mn) O(mnon-minn)
step 3 O(mn) O(mnon-minn)
Biceps O((m− k)2n) O(mnon-minmdistinctn)

Table 4.2: Space complexities.

For a sparse matrix, testing whether two patterns are nested would take O(mnon-min)

time and the last step O(|A|2mnon-min), i. e., by Theorem 3, O(mnon-minm
2
distinct

n2).

The next section details Biceps’ three steps. They comply with their for-

mal specifications in this section. Nevertheless, a different definition of E, dynamic

programming and appropriate data structures make the whole algorithm run within

O((m−k)2n+(m−k)n2) time, in the worst case for a dense matrix and assuming that,

given an adequately-sized pattern and its support, evaluating q takes O(m + n) time.

Adaptations for a sparse matrix enable a O(mnon-minmdistinctn+mnon-min log(mnon-min)n
2)

time complexity, assuming that evaluating q takes O(mnon-min + log(mnon-min)n) time.

Those time requirements are significantly lower than those of the naive algorithm in the

previous paragraph, whereas the memory requirements are equal in big O notation: in

the worst case, O((m− k)2n) for a dense matrix and O(mnon-minmdistinctn) for a sparse

matrix. Tables 4.1 and 4.2 show the distributions of the execution time and memory

consumption across Algorithm 1’s three steps, for both dense and sparse matrices. The

next section proves every complexity those tables report.

4. Biceps: An Algorithm to Discover Muscly Patterns 27

4.2 Filtering the Muscly Patterns in Subquadratic

Time

4.2.1 First Step: The build_DAG Function

4.2.1.1 build_DAG for Dense Matrices

Algorithm 2 details build_DAG. Given the real matrix M ∈ R
R×C and the num-

ber of rows k ∈ {1, . . . ,
⌊

m
2

⌋

}, it returns the graph (A, E), but materialized dif-

ferently. Its vertex set, in bijection with A, is partitioned by size of the patterns

the vertices represent. Formally, it is (Vk, . . . ,Vm−k) where ∀i ∈ {k, . . . ,m − k},

Vi = {v representing V ∈ A | |V | = i}.

The returned functions ds and dp redundantly encode the edge set E. They

respectively output the direct successors and the direct predecessors of any vertex u.

More precisely, the output ds(u) (respectively, dp(u)) is a set of pairs of the type (∆, v)

where v is a direct successor (respectively, direct predecessor) of u and ∆ ⊂ R. The set

of rows ∆ can be seen as a label on the edge (respectively, the reverse edge) between u

and v. That is why, from now on, ∆
−→v more meaningfully denotes the pair (∆, v) in a set

that ds or dp outputs. build_DAG returns as well ds(∅), although ∅ is not a vertex.

Any ∆
−→v in ds(∅) satisfies v ∈ ∪m−k

i=k Vi and ∆ ⊂ R. Finally, build_DAG returns the

support supp(v) of the adequately-sized pattern associated with every vertex v.

From a technical point of view, every Vi is an array. Given the position in Vi of

a vertex u representing a pattern of size i, Vi provides a constant-time access to ds(u),

dp(u), supp(u) and, during Biceps’ next two steps, to the quality q(u). In fact, v in

the notation ∆
−→v is the position of the vertex in Vi. On the other hand, ∆ is a set of

rows. More precisely, it is an array of integers identifying rows. supp(u) is an array of

integers too, but they identify columns. Lines 1 and 2 in Algorithm 2 initialize those

structures.

By Definition 2, V ⊆ R is adequately-sized if and only if k ≤ |V | ≤ m − k

and supp(V) 6= ∅. As a consequence, enumerating all the patterns having between k

and m − k rows and being supported by at least one column is enumerating all the

adequately-sized patterns. Line 3 reads, one by one, the columns of the input matrix

M ∈ R
R×C . To list the adequately-sized patterns the column c ∈ C supports, line 4

sorts, in O(m logm) time, the set of rows R in decreasing order of Mr,c:

∀c ∈ C, ∀(r, r′) ∈ R×R, r �c r
′ ⇔Mr,c ≥Mr′,c (4.1)

Example 4.2.1. In any column c of the matrix in Figure 1.2b, the row identifiers from

4. Biceps: An Algorithm to Discover Muscly Patterns 28

Algorithm 2 build_DAG

Input: real matrix M ∈ R
R×C , number of rows k ∈ {1, . . . ,

⌊

m
2

⌋

}
Output: vertices (Vk, . . . ,Vm−k) grouped by number of rows of the patterns they
represent: ∀i ∈ {k, . . . ,m − k}, Vi = {v representing V ∈ A | |V | = i}, di-
rect successors of every u ∈ ∪m−k

i=k Vi: ds(u) = {∆−→v | (U, V) ∈ E ∧ ∆ =
V \ U , where u and v represent U and V }, direct predecessors of every v ∈ ∪m−k

i=k Vi:
dp(v) = {∆−→u |∆−→ v ∈ ds(u)}, “sources” ds(∅), support supp(v) of the pattern repre-
sented by every v ∈ ∪m−k

i=k Vi
1: (Vk, . . . ,Vm−k)← (∅, . . . , ∅) . mnon-min instead of m− k if M is sparse
2: (ds, dp, supp)← (∅, ∅, ∅) . with O(1) access to the head of any edge in ds or dp
3: for all c ∈ C do
4: (r1, . . . , rm)← sort R w.r.t. �c in Equation (4.1) . fewer rows if M is sparse
5: u← ∅
6: V ← ∅ . a bitset of size m (if M is dense) or a sorted array (if M is sparse)
7: for i = k → m− k do
8: if Mri,c 6= Mri+1,c then
9: ∆← {r|V |+1, . . . , ri}

10: V ← V ∪∆
11: v ← get or insert vertex in Vi with key V . through index
12: ds(u)← ds(u) ∪ {∆−→v}
13: dp(v)← dp(v) ∪ {∆−→u}
14: supp(v)← supp(v) ∪ {c}
15: u← v
16: end if
17: end for
18: end for
19: return (Vk, . . . ,Vm−k), ds, dp, supp

top to bottom are sorted w.r.t. �c. To ease the understanding, the figure pairs them

with the related values in the column, hence in decreasing order.

By Definition 1, c supports V ⊆ R if and only if ∀r ∈ V , ∀r′ ∈ R\V , r �c r
′, i. e.,

the pattern V is a prefix of the sequence of rows as ordered by �c and, in the column

c, the element on the last row in the prefix must be different from the element on the

row right after that prefix. Line 8 in Algorithm 2 makes the latter verification for all

prefixes of adequate sizes. Line 7 enumerates those sizes, in increasing order. In this

way, the bitsets of the rows in the adequately-sized patterns supported by a column

can be incrementally built: whenever an adequately-sized pattern supported by c ∈ C

is identified, line 10 only sets the bits corresponding to its rows that were not in the

previous such pattern (line 9) or, for the first adequately-sized pattern that c supports,

all its rows (given line 6).

Every adequately-sized pattern V ∈ A must correspond to one and only one (not

4. Biceps: An Algorithm to Discover Muscly Patterns 29

|supp(V)|) vertex of V|V |. To discover, in line 11, whether a previously considered

column supports V , and create a new vertex (with no direct successor/predecessor

and an empty support) otherwise, a bitwise trie indexes the vertices representing the

adequately-sized patterns of size i ∈ {k, . . . ,m − k} that were found until now. That

data structure enables a worst-case O(m) time complexity to retrieve the vertex identi-

fier of a previously built vertex or, if not found, to insert in the trie the related bitset and

associate it with a new vertex identifier. For each of the n columns, line 11 is executed

at most m−2k+1 times. That maximum is reached if the test in line 8 always passes.

Consequently, the overall time spent at line 11 is O(mn(m− 2k+1)) = O((m− k)2n),

in the worst case. Following the same reasoning, all m−2k+1 tries take O((m−k)2n)

space, in the worst case, every inserted bitset being of size m.

Every edge in the DAG that Algorithm 2 builds links two vertices that represent

adequately-sized patterns that are consecutively found to be supported by some col-

umn. Those patterns contain the rows in larger and larger prefixes of the sorted list

obtained in line 4. The property ∀(U, V) ∈ E, U ⊂ V , required for the algorithm to be

correct (see Section 4.1), is therefore satisfied and any edge whose head is in Vi always

has its tail in some Vj with j < i:

Lemma 7. ∀i ∈ {k, . . . ,m − k}, ∀v ∈ Vi representing the pattern V ∈ A, {u ∈

∪m−k
j=k Vj | u represents U ∈ A ∧ (U, V) ∈ E} ⊆ ∪i−1

j=kVj .

Proof. ∀i ∈ {k, . . . ,m − k}, ∀v ∈ Vi representing V ∈ A, |V | = i, by definition of Vi.

Moreover, ∀(U, V) ∈ E, U ⊂ V . As a consequence, |U | < |V | = i, i. e., the vertex u

representing U is in ∪i−1
j=kVj, by definition of Vj.

In the end, (U, V) ∈ A × A is in the edge set E if and only if U ⊂ V and

∃c ∈ C | ∀u ∈ U, ∀(v, v′) ∈ (V \U)2, ∀w ∈ R \V,Mu,c > Mv,c = Mv′,c > Mw,c. Line 12

adds an edge, from u to v, to ds(u). Line 13 adds the reverse edge, from v to u, to

dp(v). A same set of row identifiers labels an edge and the corresponding reverse edge:

the difference V \U between the patterns U and V the two vertices u and v represent.

The row identifiers in V \ U are in a contiguous subsequence (line 9) of the sequence

ordered in line 4. After build_DAG starts processing a column, the first vertex v

that is retrieved or created becomes directly accessible from ∆
−→v, that line 12 adds to

ds(∅). In that situation, given line 6, the label ∆, defined in line 9, identifies every row

in the pattern corresponding to the vertex v. More generally, following edges in ds,

starting with one in ds(∅), and taking the union of their labels provides the pattern

associated with the vertex that is reached.

4. Biceps: An Algorithm to Discover Muscly Patterns 30

Example 4.2.2. Given the matrix in Figure 1.1 and k = 1, build_DAG returns the

graph in Figure 4.1b. In that figure, the ith horizontal level, from top to bottom and

starting at the level right below ∅, contains the vertices in Vi. The reverse edges, in dp,

are not explicitly depicted. They are the depicted edges, all those in ds, but reversed.

In particular, a same set of row identifiers labels an edge and the corresponding reverse

edge: the difference between the nested patterns the two directly connected vertices

stand for. To see it, having Figures 4.1a and 4.1b side by side helps. Indeed, Figure 4.1a

shows the same graph, with the vertices and the edges in the same positions, but with

every vertex labeled with the whole pattern it represents. By looking at the matrix

in Figure 1.1 (or at the sorted matrix in Figure 1.2b), the reader may additionally

verify that the DAG is the union of five chains. They link the vertices standing for

the adequately-sized patterns of increasing size that each of the five columns supports,

e. g., {r3} → {r1, r3} → {r1, r2, r3} for c1 and {r4} → {r2, r3, r4} for c5.

For every column c ∈ C that is processed, at most m− k row identifiers end up

labeling edges in ds: the first ones in the �c order. As many identifiers label edges in

dp. In the end, the returned DAG takes O((m − k)n) space. The edges leaving any

vertex u ∈ ∪m−k
i=k Vi are simply appended to ds(u), without verifying whether they are

already present. The same is done for the reverse edges. Checking the presence of an

edge in ds(∅) is checking the existence of the vertex at its head. As Line 11 does that

verification anyway, duplication of edges in ds(∅) is avoided at no additional cost. In

summary, the time build_DAG takes to populate ds and dp is essentially the time

to write the edge labels, O((m− k)n), and the edge set is actually an edge multiset.

In the worst case, the supports of all adequately-sized patterns take as much

space as the labels of the edges in ds: O((m − k)n). Indeed, whenever the test in

line 8 passes, the set ∆ ⊂ R that labels the edge inserted in ds contains at least one

row identifier (line 9), whereas line 14 stores one and only one column identifier. Over

build_DAG’s whole execution, line 14 populates the supports of all adequately-sized

patterns in O((m− k)n) time.

Given the explanations in the previous paragraphs, line 11 dominates

build_DAG’s time requirements: its time complexity is O((m − k)2n), in the

worst-case. Also, the tries indexing the vertices dominate the space requirements of

build_DAG: its worst-case space complexity is O((m− k)2n). Once the execution of

build_DAG is over, the tries become useless and are deleted.

4. Biceps: An Algorithm to Discover Muscly Patterns 31

4.2.1.2 build_DAG for Sparse Matrices

Any column c ∈ C of a sparse matrix is input as a mapping from a subset R′ ⊆ R

to R. Biceps assumes every value Mr,c with r ∈ R \ R′ to equal minr′∈R′ Mr′,c, the

minimal and most common value in the column, typically 0 if M is nonnegative. In

this way, by definition of mnon-min, inputting mnon-min + 1 pairs of R × R is enough to

specify any column of M. Each of the n executions of line 4 in Algorithm 2 sorts at

most as many rows, in O(mnon-min logmnon-min) time. Given c ∈ C, the definition of �c

(Equation 4.1), used in that line, is extended: ∀(r, r′) ∈ R×R, r �c r
′ if Mr,c = Mr′,c

and the integer identifying r is lesser than that of r′. In this way, any edge label,

defined in line 9, is ordered by increasing row identifier.

That is important because, for sparse matrices, the pattern V initialized in line 6

is an array (rather than a bitset, for dense matrices) that must be ordered by row

identifier: line 11, which verifies whether a previously-considered column supports V ,

requires such a canonical ordering. Whenever executed, line 10 takes O(mnon-min) time

to construct the subsequent pattern, by merging V with the edge label while preserv-

ing the order. The aforementioned verification has a O(mnon-min) amortized cost too.

Indeed, for sparse matrices, a hash map (rather than a trie, for dense matrices) indexes

the vertices standing for the adequately-sized patterns of size i ∈ {k, . . . ,mnon-min} and

hashing an array of size i = O(mnon-min) takes O(mnon-min) time.

The loop in line 7 terminates right before reaching the row that line 4 sorted

last2, i. e., a row mapped to the minimal value in the column. Thanks to the test in

line 8, lines 9–10 are executed O(mdistinctn) times, in the worst case. As explained in

the previous paragraph, executing once lines 10 and 11 takes O(mnon-min) time. Only

line 4 requires more, O(mnon-min logmnon-min) time, but it is only executed n times. As a

consequence, build_DAG’s time complexity is O(mnon-min(log(mnon-min)+mdistinct)n)

for sparse matrices.

As for dense matrices, the indices for the vertices dominate the space complexity.

For sparse matrices, it is O(mnon-minmdistinctn) in the worst case, where each of the

O(mdistinctn) executions of line 11 associates a different array of size O(mnon-min) with

a new vertex. The indices are deleted once the execution of build_DAG is over.

The returned DAG takes O(mnon-minn) space, mostly occupied by the edge labels. By

Theorem 3, it has at most (mdistinct − 1)n vertices. (mdistinct − 1)n upper bounds the

number of edges in ds (including ds(∅)) too. Indeed, only line 12 inserts (one by one)
2All along this chapter, the sections about sparse matrices assume the discussed matrix is indeed

sparse, i. e., mnon-min � m. That enables simpler explanations. For instance, the case mnon-min >

m− k is not discussed here.

4. Biceps: An Algorithm to Discover Muscly Patterns 32

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5

∅

{c1}

{r3}

(a) i = 1 in line 7: new pat-
tern {r3}.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5

∅

{c1}

{c1}

{r3}

{r1}

(b) i = 2 in line 7: new pat-
tern {r1, r3}.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5

∅

{c1}

{c1}

{c1}

{r3}

{r1}

{r2}

(c) i = 3 in line 7: new pat-
tern {r1, r2, r3}.

Figure 4.2: Step by step execution of Algorithm 2. Line 3’s 1st iteration: enumerating
the patterns c1 supports.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5
∅

{c1} {c2}

{c1}

{c1}

{r1}{r3}

{r1}

{r2}

(a) i = 1 in line 7: new pat-
tern {r1}.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5
∅

{c1} {c2}

{c1, c2}

{c1}

{r1}{r3}

{r1} {r3}

{r2}

(b) i = 2 in line 7: pattern
{r1, r3} retrieved.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5
∅

{c1} {c2}

{c1, c2}

{c1} {c2}

{r1}{r3}

{r1} {r3}

{r2} {r4}

(c) i = 3 in line 7: new pat-
tern {r1, r3, r4}.

Figure 4.3: Step by step execution of Algorithm 2. Line 3’s 2nd iteration: enumerating
the patterns c2 supports.

edges in ds, it is executed as many times as line 11 and, in the scenario maximizing

the number of vertices, line 11 always creates a new vertex.

4.2.1.3 build_DAG: Example

Figures 4.2–4.6 illustrate the step-by-step execution of Algorithm 2 on the toy ma-

trix in Figure 1.1. Each Figure represents build_DAG’s outer loop in line 3, which

enumerates each column in the matrix. Each subfigure represents an iteration of

build_DAG’s inner loop (starting in line 7), where, for each column, a vertex of

the DAG is added or retrieved. The related pattern is highlighted in the matrix, and

the vertex itself is highlighted in the DAG.

When a vertex is added, such as in Figure 4.2a, the corresponding support is

shown inside it. When an existing vertex is retrieved, such as in Figure 4.3b, the

related support is updated: the identifiers of the processed column complements it.

4. Biceps: An Algorithm to Discover Muscly Patterns 33

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5 ∅

{c1} {c2, c3}

{c1, c2}

{c1} {c2}

{r1}{r3}

{r1} {r3}

{r2} {r4}

(a) i = 1 in line 7: pattern {r1} retrieved.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5 ∅

{c1} {c2, c3}

{c1, c2, c3}

{c1} {c2}

{r1}{r3}

{r1} {r3}

{r2} {r4}

(b) i = 2 in line 7: pattern {r1, r3} retrieved.

Figure 4.4: Step by step execution of Algorithm 2. Line 3’s 3rd iteration: enumerating
the patterns c3 supports.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5

∅

{c1} {c2, c3} {c4}

{c1, c2, c3}

{c1} {c2}

{r1}{r3} {r2}

{r1} {r3}

{r2} {r4}

(a) i = 1 in line 7: new pattern {r2}.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5

∅

{c1} {c2, c3} {c4}

{c1, c2, c3} {c4}

{c1} {c2}

{r1}{r3} {r2}

{r1} {r3} {r4}

{r2} {r4}

(b) i = 2 in line 7: new pattern {r2, r4}.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5

∅

{c1} {c2, c3} {c4}

{c1, c2, c3} {c4}

{c1} {c2} {c4}

{r1}{r3} {r2}

{r1} {r3} {r4}

{r2} {r4} {r3}

(c) i = 3 in line 7: new pattern {r2, r3, r4}.

Figure 4.5: Step by step execution of Algorithm 2. Line 3’s 4th iteration: enumerating
the patterns c4 supports.

4. Biceps: An Algorithm to Discover Muscly Patterns 34

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5

∅

{c1} {c2, c3} {c4} {c5}

{c1, c2, c3} {c4}

{c1} {c2} {c4}

{r1}{r3} {r2} {r4}

{r1} {r3} {r4}

{r2} {r4} {r3}

(a) i = 1 in line 7: new pattern {r4}.

r3, 55 r1, 38 r1, 10 r2, 27 r4, 29

r1, 45 r3, 32 r3, 4 r4, 23 r2, 11

r2, 35 r4, 20 r2, 0 r3, 13 r3, 11

r4, 5 r2, 6 r4, 0 r1, 9 r1, 6

c1 c2 c3 c4 c5

∅

{c1} {c2, c3} {c4} {c5}

{c1, c2, c3} {c4}

{c1} {c2} {c4, c5}

{r1}{r3} {r2} {r4}

{r1} {r3} {r4}

{r2} {r4} {r3}

{r2, r3}

(b) i = 3 in line 7: pattern {r2, r3, r4} re-
trieved.

Figure 4.6: Step by step execution of Algorithm 2. Line 3’s 5th iteration: enumerating
the patterns c5 supports.

4.2.2 Second Step: The find_best_on_paths Function

4.2.2.1 find_best_on_paths for Dense Matrices

Algorithm 3 details find_best_on_paths. Besides the DAG returned by Algo-

rithm 2 and the user-defined number of rows k, it takes as input the precomputed qual-

ities of all the adequately-sized patterns, which correspond to the vertices of the DAG.

Before the execution of Algorithm 3, q(v) is therefore evaluated for each v ∈ ∪m−k
i=k Vi.

The support, supp(v), is readily available when q(v) is computed: line 14 in Algorithm 2

filled it. If each evaluation of q takes more than O(m+ n) time, the evaluations on all

O((m − k)n) adequately-sized patterns (Theorem 2) have an impact of Biceps’ time

complexity in big O notation.

Some quality functions enable an incremental computation of their evaluations

along the execution of build_DAG. They can take advantage of line 4’s orderings of

the rows too. It is the case of the function in Equation 3.1: right after Algorithm 2’s

line 11, which retrieves or creates a vertex relating to a pattern with i ∈ {k, . . . ,m−k}

rows that the column c ∈ C supports, Mri,c −Mri+1,c is added in constant time to

an initially-null variable. It becomes, after the enumeration of all the columns in the

support, the `1 norm of the vector Equation 3.1 defines. Since there are at most n

columns in the support, evaluating that function q takes O(n) time. The function

in Equation 3.2 only depends on the number of rows of the adequately-sized pattern

and on the number of columns of its support. Between Algorithms 2 and 3, those two

numbers are readily available and evaluating Equation 3.2’s function requires O(m+n)

time.

In Algorithm 3, lines 1–12 identify every vertex v such that q(v) is strictly greater

4. Biceps: An Algorithm to Discover Muscly Patterns 35

Algorithm 3 find_best_on_paths

Input: DAG returned by Algorithm 2, i. e., (Vk, . . . ,Vm−k), ds and dp, number of rows
k ∈ {1, . . . ,

⌊

m
2

⌋

}, precomputed q(v) for all v ∈ ∪m−k
i=k Vi

Output: candidates:
{

P ∈ A | ∀P ′ ∈ A,
(

(P, P ′) ∈ E+ ∨ (P ′, P) ∈ E+
)

⇒ q(P) > q(P ′)
}

,

sinks:
{

R\U
−−→u | u represents U ∈ A ∧ ds(u) = ∅

}

or
{

U
−→u | u represents U ∈ A ∧ ds(u) = ∅

}

,
for a dense M or a sparse M, respectively
1: P ′ ← ∅ . a bitset of size

∑m−k

i=k |Vi|

2: q′ ← {v 7→ −∞ | v ∈ ∪m−k
i=k Vi} . an array of size

∑m−k

i=k |Vi|
3: for i = k → m− k do
4: for all v ∈ Vi do
5: if q(v) > q′(v) then
6: P ′ ← P ′ ∪ {v}
7: end if
8: for all ∆

−→w ∈ ds(v) do
9: q′(w)← max({q′(w), q′(v), q(v)})

10: end for
11: end for
12: end for
13: q′ ← {v 7→ −∞ | v ∈ ∪m−k

i=k Vi}
14: for i = m− k → k do
15: for all v ∈ Vi do
16: if q(v) ≤ q′(v) then
17: P ′ ← P ′ \ {v}
18: end if
19: for all ∆

−→w ∈ dp(v) do
20: q′(w)← max({q′(w), q′(v), q(v)})
21: end for
22: end for
23: end for
24: (P , dp(R))← (∅, ∅)
25: candidates_and_sinks(∅, ∅, ds,P ′,P , dp(R))
26: return (P , dp(R))

4. Biceps: An Algorithm to Discover Muscly Patterns 36

Algorithm 4 candidates_and_sinks

Input: current pattern U ⊂ R (a bitset if M is dense, an array if M is sparse), related
vertex u, explored vertices E ⊆ ∪m−k

i=k Vi (a bitset of size
∑m−k

i=k |Vi|), ds returned by
Algorithm 2, vertices representing the candidate muscly patterns P ′ ⊆ ∪m−k

i=k Vi (a bitset
of size

∑m−k

i=k |Vi|), candidate patterns P ⊆ A found until now, sinks dp(R) found until
now
1: if u ∈ P ′ then
2: P ← P ∪ {U} . P ← P ∪ {sort(U)}, if M is sparse
3: end if
4: if ds(u) = ∅ then
5: ∆← R \ U . ∆← sort(U), if M is sparse
6: dp(R)← dp(R) ∪ {∆−→u}
7: end if
8: for all ∆

−→v ∈ ds(u) do
9: if v /∈ E then

10: E ← E ∪ {v}
11: U ← U ∪∆
12: candidates_and_sinks(U, v,V , ds,P ′,P , dp(R))
13: U ← U \∆
14: end if
15: end for

than the quality associated with any predecessor of v. Lines 13–23 then keep such a

vertex v if and only if q(v) is as well strictly greater than the quality associated with

any successor of v. Those two sub-steps are achieved enumerating the edges in ds,

then the reverse edges in dp. Dynamic programming makes it possible. Line 2 defines

an array q′ of size
∑m−k

i=k |Vi|. It initially associates every vertex with the value −∞.

Lines 3, 4 and 8 enumerate every edge ∆
−→w leaving some vertex v taken in Vk, then

in Vk+1, and so on until Vm−k, and line 9 updates q′(w) to max(q′(w), q′(v), q(v)). In

this way, as formalized below, when any vertex v is enumerated, q′(v) is the greatest

quality among the predecessors of v or −∞ if v is a source of the DAG.

Theorem 8. In line 5 of Algorithm 3:

q′(v) = max{q(u) ∈ R | u and v represents U and V ∧ (U, V) ∈ E+} .

Proof. By Lemma 7, {(U, V) ∈ E | v ∈ Vk represents V } = ∅ (1). As a conse-

quence, for any vertex v ∈ Vk, line 8 enumerates no edge heading to v and line 9

never redefines q′(v). It is −∞ in line 5, unaltered since the initialization of q′

in line 2. (1) also entails that {(U, V) ∈ E+ | v ∈ Vk represents V } = ∅ and

∀v ∈ Vk, max{q(u) ∈ R | u and v represents U and V ∧ (U, V) ∈ E+} is max ∅ = −∞.

4. Biceps: An Algorithm to Discover Muscly Patterns 37

For any vertex line 4 enumerates at the iteration i = k of the loop in line 3,

Theorem 8 therefore holds. Assume the induction hypothesis that for a particular

` ∈ {k, . . . ,m − k − 1}, it holds up to i = `, i. e., ∀v ∈ ∪`
i=kVi, q

′(v) = max{q(u) ∈

R | u and v represent U and V ∧ (U, V) ∈ E+}. By Lemma 7, ∀v ∈ V`+1, {u ∈

∪m−k
j=k Vj | u and v represent U and V ∧ (U, V) ∈ E} is included in ∪`j=kVj (2) and, by

the enumeration order, line 8 enumerates all the edges heading to v before the iteration

i = `+ 1, where v is considered. When line 8 enumerates the last such edge, line 9 ul-

timately defines q′(v) as max{max(q′(u), q(u)) | u and v represent U and V ∧ (U, V) ∈

E}. Moreover, (2) means that the vertex u satisfies the induction hypothesis, i. e.,

q′(u) = max{q(w) ∈ R | w and u represent W and U ∧ (W,U) ∈ E+}. Consequently,

q′(v) = max{q(u) ∈ R | u and v represent U and V ∧ (U, V) ∈ E+} for any v ∈ V`+1

and, by induction, for any v ∈ ∪m−k
i=k Vi.

The same rationale applied to the DAG with the edges reversed proves that

q′(v) = max{q(u) ∈ R | v and u represent V and U ∧ (V, U) ∈ E+} in line 16. That is

why, for each vertex v, lines 5 and 16 respectively test whether the quality associated

with v is strictly greater than that of any of its predecessors and whether it is lesser or

equal to that of any of its successors. If the first test passes, line 6 adds v to the bitset

P ′, which is initially empty (line 1). If the second test passes, line 17 removes v from

P ′. In this way, lines 1–12 compute every vertex that represent an adequately-sized

pattern V satisfying ∀U ∈ A, (U, V) ∈ E+ ⇒ q(V) > q(U) and lines 13–23 additionally

enforce ∀U ∈ A, (V, U) ∈ E+ ⇒ q(V) > q(U). After line 23, P ′ therefore is the set of

vertices standing for the adequately-sized patterns Section 4.1 promised at the output

of find_best_on_paths.

To get the row identifiers in the patterns the vertices in P ′ represent, line 25

calls Algorithm 4 with P ′ in argument. That algorithm traverses the DAG depth-first.

Lines 9 and 10, together with the fact that all vertices can be reached from some edge

in ds(∅), guarantee that every vertex is visited once and only once. An initially-empty

bitset of size m materializes the pattern that the reached vertex represents: line 11 sets

the bits corresponding to the row identifiers labelling the edge to follow and, back from

the recursive call in line 12, line 13 unsets them. Line 2 stores the patterns relating

to the vertices in P ′ (line 1) in an initially-empty structure (line 24 in Algorithm 3).

find_best_on_paths returns it (line 26).

find_best_on_paths returns as well the sinks of the DAG. They are denoted

dp(R) because they are stored as reverse edges that leave what would be a vertex

representing the pattern R. Whenever Algorithm 4’s traversal of the DAG reaches

a sink (line 4), line 5 lists R \ U , the row identifiers not in the pattern U the sink

4. Biceps: An Algorithm to Discover Muscly Patterns 38

represents. They label the reverse edge line 6 stores. Completed with dp(R), dp

allows to follow reverse edges, starting with one in dp(R), while keeping track of the

patterns the reached vertices stand for: following any reverse edge ∆
−→u from the vertex

representing the pattern V ∈ A, the reached vertex u stands for V \∆.

The patterns in P have disjoint supports, as formalized and proven below.

Lemma 9. ∀{P1, P2} ⊆ P , supp(P1) ∩ supp(P2) = ∅ .

Proof. Assume, by contradiction, that P contains two distinct patterns P1 and P2

such that supp(P1) ∩ supp(P2) 6= ∅, i. e., ∃c ∈ C | c ∈ supp(P1) ∩ supp(P2). When

Algorithm 2’s line 3 enumerates c, it would connect the vertices representing P1 and

P2, i. e., (P1, P2) ∈ E+ ∨ (P2, P1) ∈ E+. Since P1 ∈ P , q(P1) > q(P2). However, since

P2 ∈ P , the logically-incompatible inequality q(P2) > q(P1) would hold too.

There are at most n patterns in P .

Theorem 10. |P| ≤ n .

Proof. By definitions of P and A, ∀P ∈ P ⊆ A, supp(P) 6= ∅. As a consequence,

∀P ∈ P , 1 ≤ |supp(P)|. Summing, |P| ≤
∑

P∈P |supp(P)| (1). By Lemma 9,
∑

P∈P |supp(P)| = | ∪P∈P supp(P)| (2). By Definition 1, any support is a subset

of C. Consequently, ∪P∈Psupp(P) ⊆ C and | ∪P∈P supp(P)| ≤ n (3). Putting together

(1), (2) and (3), |P| ≤ n.

In the worst case, it takes O((m−k)n) time to initialize P ′ in line 1 of Algorithm 3

and q′ in lines 2 and 13, because there are at most (m−2k+1)n vertices (Theorem 2).

For the same reason, comparing the quality associated with every vertex to the highest

quality among the predecessors/successors (lines 5 and 16) and updating P ′ (lines 6

and 17) take O((m − k)n) time overall. So does propagating one single quality per

edge (line 8–10) and reverse edge (line 19–21), because there are O((m − k)n) edges

(see Section 4.2.1.1).

In the worst case, Algorithm 4’s traversal of the DAG takes O((m − k)n) time.

Nevertheless, Algorithm 4 writes P and dp(R) too. O(mn) time and space are required

to write P , because |P| ≤ n (Theorem 10) and m bits represent a pattern in P . Writing

dp(R) is equally time-consuming in big O notation, because |dp(R)| ≤ n (in each of the

n iterations of the loop in line 3 of Algorithm 2, only the last iteration of the inner loop

can create a sink) and line 5 reads all m bits representing a sink to list the identifiers of

the O(m − k) unset bits. As a consequence, find_best_on_paths runs in O(mn)

time and space, if the matrix is dense.

4. Biceps: An Algorithm to Discover Muscly Patterns 39

4.2.2.2 find_best_on_paths for Sparse Matrices

For sparse matrices, an array of row identifiers (rather than a bitset for dense matrices)

represents the pattern denoted U in Algorithm 4. As a consequence, any element of P

is such an array, with at most mnon-min row identifiers. Line 5 is modified: it defines

the label on the reverse edge inserted in dp(R) as U itself, rather than R \U for dense

matrices. In this way, writing P and dp(R) takes O(mnon-minn) time and space, in the

worst case. Nevertheless, every pattern inserted in P or in dp(R) is sorted right before

the insertion. That takes O(mnon-min log(mnon-min)n) time over all those O(n) patterns.

In compensation, line 11 needs not produce an ordered array: it simply appends the

edge label and line 13 erases that suffix. Those lines therefore take O(mnon-minn) time

over Algorithm 4’s whole execution.

In the worst case, Algorithm 4’s traversal of the DAG requires O(mnon-minn)

time, because, edge labels included, the DAG occupies O(mnon-minn) space (see Sec-

tion 4.2.1.2). In big O notation, that is more than the time to execute all the

lines in Algorithm 3 that precede line 25’s call to candidates_and_sinks. In-

deed, they entirely ignore the edge labels and (mdistinct − 1)n ≤ mnon-minn upper

bounds both the number of vertices and the number of edges, as the end of Sec-

tion 4.2.1.2 explains. In the end, for a sparse matrix, find_best_on_paths requires

O(mnon-min log(mnon-min)n) time and O(mnon-minn) space.

4.2.2.3 find_best_on_paths: Example

Figure 4.7 illustrate the step-by-step execution of Algorithm 3 given the DAG generated

for the toy matrix in Figure 1.1 and the quality function in Equation 3.1. The supports

associated with each vertex are not reported. They are not used or modified. Instead,

inside every vertex v, Figure 4.7 gives q(v) and q′(v). Figure 4.7a depicts the graph

as it stands right after line 2. Figures 4.7b–4.7e each correspond to an iteration of the

for loop in line 3. After testing q(v) > q′(v) for each vertex v in an horizontal level of

the DAG (colored in orange), and, if the test passes, adding v to P ′ (v is colored in

green), the value of q′ for each of its successors increase to max(q′(v), q(v)) unless it

was already higher.

Figures 4.7f–4.7h analogously depict every iteration of Algorithm 3’s second loop,

which tests the vertices from bottom to top and possibly removes them from P ′ (green

vertices becoming white). Since q′ is then updated for predecessors, those figures show

the reverse edges, in dp, rather than the edges, in ds. In the end, the green vertices in

Figure 4.7i represent the candidate muscly patterns that Algorithm 4 materializes.

4. Biceps: An Algorithm to Discover Muscly Patterns 40

∅

q:10
q’:−∞

q:12
q’:−∞

q:4
q’:−∞

q:18
q’:−∞

q:26
q’:−∞

q:10
q’:−∞

q:30
q’:−∞

q:14
q’:−∞

q:9
q’:−∞

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(a) Initial state in line 2.

∅

q:10
q’:−∞

q:12
q’:−∞

q:4
q’:−∞

q:18
q’:−∞

q:26
q’:−∞

q:10
q’:−∞

q:30
q’:−∞

q:14
q’:−∞

q:9
q’:−∞

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(b) i = 1 in line 3.

∅

q:10
q’:−∞

q:12
q’:−∞

q:4
q’:−∞

q:18
q’:−∞

q:26
q’:12

q:10
q’:4

q:30
q’:−∞

q:14
q’:−∞

q:9
q’:18

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(c) i = 2 in line 3.
∅

q:10
q’:−∞

q:12
q’:−∞

q:4
q’:−∞

q:18
q’:−∞

q:26
q’:12

q:10
q’:4

q:30
q’:26

q:14
q’:26

q:9
q’:18

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(d) i = 3 in line 3.

∅

q:10
q’:−∞

q:12
q’:−∞

q:4
q’:−∞

q:18
q’:−∞

q:26
q’:12

q:10
q’:4

q:30
q’:26

q:14
q’:26

q:9
q’:18

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(e) State after line 12: green
vertices are better than any
predecessor.

∅

q:10
q’:−∞

q:12
q’:−∞

q:4
q’:−∞

q:18
q’:−∞

q:26
q’:−∞

q:10
q’:−∞

q:30
q’:−∞

q:14
q’:−∞

q:9
q’:−∞

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(f) i = 3 in line 14.

∅

q:10
q’:−∞

q:12
q’:−∞

q:4
q’:−∞

q:18
q’:9

q:26
q’:30

q:10
q’:9

q:30
q’:−∞

q:14
q’:−∞

q:9
q’:−∞

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(g) i = 2 in line 14.

∅

q:10
q’:30

q:12
q’:30

q:4
q’:10

q:18
q’:9

q:26
q’:30

q:10
q’:9

q:30
q’:−∞

q:14
q’:−∞

q:9
q’:−∞

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(h) i = 1 in line 14.

∅

q:10
q’:30

q:12
q’:30

q:4
q’:10

q:18
q’:9

q:26
q’:30

q:10
q’:9

q:30
q’:−∞

q:14
q’:−∞

q:9
q’:−∞

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(i) Final state, after line 23:
green vertices are better than
any predecessor or successor.

Figure 4.7: Step by step execution of Algorithm 3. Every vertex v colored orange
has its quality q(v) compared to q′(v). Vertices colored green are in the set P ′. They
represent candidate muscly patterns.

4. Biceps: An Algorithm to Discover Muscly Patterns 41

4.2.3 Third Step: The find_best_among_comparable

Function

4.2.3.1 find_best_among_comparable for Dense Matrices

Algorithm 5 details find_best_among_comparable. Every iteration of the loop

in line 1 enumerates a candidate pattern P ∈ P that Algorithm 3 returned. Line 3

tests whether there exists a proper subpattern that is adequately-sized and that the

function q grades at least as well as P . If there is, P is removed from the the set of

candidate patterns. Then, every iteration of the loop in line 7 enumerates a candidate

pattern P ∈ P that was not removed in the previous loop. Line 9 tests whether there

exists a proper superpattern that is adequately-sized and that the function q grades at

least as well as P . If not, P is muscly and line 10 outputs it. If line 2 in Algorithm 4 is

modified so that it stores the vertex u along the pattern P it represents, supp(u) and

q(u) can be output too.

Algorithm 5 find_best_among_comparable

Input: P ⊆ A returned by Algorithm 3, DAG returned by Algo-
rithm 2, i. e., (Vk, . . . ,Vm−k), ds and dp, dp(R) returned by Algorithm 3, precomputed
q(v) for all v ∈ ∪m−k

i=1 Vi
Output: {P ∈ P | ∀P ′ ∈ A, (P ′ ⊂ P ∨ P ⊂ P ′)⇒ q(P) > q(P ′)}

1: for all P ∈ P do
2: E ← ∅ . a bitset of size

∑|P |−1
i=k |Vi|

3: if better_pattern?(P, ∅, |P |, E , ds, q) then
4: P ← P \ P
5: end if
6: end for
7: for all P ∈ P do
8: E ← ∅ . a bitset of size

∑m−k

i=|P |+1 |Vi|

9: if ¬better_pattern?(R \ P,R,m− |P |, E , dp, q) then
10: output P
11: end if
12: end for

Algorithm 6 is responsible for searching either a proper subpattern or a proper

superpattern that is adequately-sized and that the function q grades at least as well

as the tested pattern. Algorithm 6 follows edges (respectively, reverse edges) in ds

(respectively, dp) depth-first, starting from those in ds(∅) (respectively, dp(R)). Line 1

enumerates every edge (respectively, reverse edge) leaving the current vertex. Such

an edge, ∆
−→v, is followed only if the vertex v has not been visited yet (test v /∈ E

in line 2) and if it represents a proper subpattern (respectively, superpattern) of the

4. Biceps: An Algorithm to Discover Muscly Patterns 42

Algorithm 6 better_pattern?

Input: tested pattern P ∈ P (a bitset if M is dense, a sorted array if M is sparse) or
its complement R \ P if M is dense and d = dp, vertex u representing a comparable
pattern P ′ ∈ A, ` = |P∆P ′| (where ∆ is the symmetric difference), explored vertices E
(a bitset of size

∑m−k

i=k |Vi|), d ∈ {ds, dp} returned by Algorithm 2, precomputed q(v)
for all v ∈ ∪m−k

i=k Vi
Output: true or false

1: for all ∆
−→v ∈ d(u) do

2: if |∆| < ` ∧ v /∈ E then
3: E ← E ∪ {v}
4: if ∆ ⊆ P ∧ (q(v) ≥ q(P) ∨ better_pattern?(P, v, `− |∆|, E , d, q)) then
5: return true
6: end if
7: end if
8: end for
9: return false

tested pattern P ∈ P . Indeed, line 4 tests whether the edge label is included in

P (respectively, whether the reverse edge label is included in R \ P) after the first

condition in line 2 guaranteed v ∈ Vi with i < |P | (respectively, i > |P |). In particular,

the vertex standing for P itself is never reached. Line 5 returns true as soon as a

vertex representing a pattern with a quality of q(P) or more is reached. If that never

happens, line 9 returns false.

For each of the O(n) candidate muscly pattern (Theorem 10), lines 2 and 8 in

Algorithm 5 take O((m− k)n) time to initialize the bitset E indicating what vertex is

visited, because there are at most (m−2k+1)n vertices (Theorem 2). In the worst case,

in each of the O(n) executions of Algorithm 6, line 1 enumerates all O((m−k)n) edges

(see Section 4.2.1.1) or all O((m−k)n) reverse edges and line 4 checks the inclusion of all

their labels in the tested pattern. Any edge or reverse edge is considered at most once,

thanks to E . The labels in either ds or dp totalize O((m−k)n) row identifiers. Checking

whether a row identifier is in the tested pattern takes O(1) time, that pattern being

stored as a bitset. Overall, find_best_among_comparable therefore requires at

most O((m− k)n2) time. Its space complexity equals that of find_best_on_path,

O(mn), for the same reason: the candidate muscly patterns dominate it.

4.2.3.2 find_best_among_comparable for Sparse Matrices

Section 4.2.2.2 specifies that, for sparse matrices, the set of row identifiers ∆ ⊂ R

labeling any edge ∆
−→v in dp(R) is the pattern the sink v represents, rather than its

complement (for dense matrices). Algorithm 6’s search of a proper superpattern of

4. Biceps: An Algorithm to Discover Muscly Patterns 43

P ∈ P with a quality of q(P) or more (line 9 of Algorithm 5) is given P (instead of

R \ P) as a first argument and is adapted to both changes: when u = R, the first

conditions in lines 2 and 4 respectively become |∆| > |P | and P ⊆ ∆ and the third

argument of the recursive call in line 4 is |∆|− |P |; when u 6= R, line 4 tests ∆∩P = ∅

instead of ∆ ⊆ P 3. The search of a proper subpattern of P ∈ P with a quality of q(P)

or more requires no such adaptations.

Section 4.2.2.2 specifies as well that any candidate muscly pattern P ∈ P is a

sorted array containing at most mnon-min row identifiers. Given ∆ ⊂ R labeling any

edge or reverse edge, testing ∆ ⊆ P or ∆ ∩ P = ∅ in line 4 of Algorithm 6 is achieved

through binary searches in P of every row identifier of ∆. For a given pattern P , all

those searches require O(mnon-min log(mnon-min)n) time, because the edge labels and the

reverse edge totalize O(mnon-minn) row identifiers (see Section 4.2.1.2). As the previous

paragraph explains, line 4 tests as well P ⊆ ∆, where ∆ is a pattern a sink represents.

Since P and ∆ are sorted arrays, each containing at most mnon-min row identifiers, and

since there are at most n sinks, those tests take O(mnon-minn) time for a given pattern

P . In the worst case, there are n such candidate patterns (Theorem 10) and the time

complexity of find_best_among_comparable is O(mnon-min log(mnon-min)n
2). Its

space complexity equals that of find_best_on_path, O(mnon-minn).

4.2.3.3 find_best_among_comparable: Example

Figure 4.8 illustrates the step-by-step execution of Algorithm 5 given the DAG gen-

erated for the toy matrix in Figure 1.1 and the candidate muscly patterns output by

Algorithm 3.

Figures 4.8a–4.8c each correspond to an iteration of the for loop in line 1. The

green vertex represents the tested pattern. The remaining non-white vertices are visited

and those in blue stand for adequately-sized subpatterns. In this example, only one

candidate muscly pattern, {r2, r4}, graded 10, is discarded. It happens in Figure 4.8b

where {r4} is found to be a better-graded adequately-sized subpattern. Two patterns

remain: {r4} and {r1, r2, r3}. Figures 4.7d–4.7e each correspond to an iteration of

the for loop in line 7. Reverse edges, in dp, are shown. They are followed to search

adequately-sized superpatterns that would be at least as good as the tested pattern.

In this example, no such superpattern exists. As a consequence, the two patterns are

output.
3That change is made for dense matrices too. In this way, the first argument of Algorithm 5’s

second call to better_pattern? is P instead of R \ P . Not flipping the m bits representing each

of the O(n) patterns of P saves O(mn) time. Flipping them avoids what would essentially be a

duplication of Algorithm 6 in the text. No complexity in big O notation is altered.

4. Biceps: An Algorithm to Discover Muscly Patterns 44

∅

q:10 q:12 q:3 q:18

q:26 q:10

q:30 q:14 q:9

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(a) No adequately-sized sub-
pattern of {r4} is at least as
good.

∅

q:10 q:12 q:3 q:18

q:26 q:10

q:30 q:14 q:9

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(b) {r4} is a better
adequately-sized subpat-
tern of {r2, r4}.

∅

q:10 q:12 q:3 q:18

q:26 q:10

q:30 q:14 q:9

{r1} {r2}
{r3} {r4}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(c) No adequately-sized sub-
pattern of {r1, r2, r3} is at
least as good.

R

q:10 q:12 q:3 q:18

q:26 q:10

q:30 q:14 q:9

{r4}
{r2} {r1}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(d) No adequately-sized su-
perpattern of {r4} is at least
as good.

R

q:10 q:12 q:3 q:18

q:26 q:10

q:30 q:14 q:9

{r4}
{r2} {r1}

{r1} {r3} {r4}

{r2, r3}

{r2} {r4} {r3}

(e) No adequately-sized su-
perpattern of {r1, r2, r3} is at
least as good.

Figure 4.8: Step by step execution of Algorithm 5. In each subfigure, the vertex in
green represents the tested candidate pattern, the blue vertices represent either its
adequately-sized subpatterns or its adequately-sized superpatterns and gray vertices
are additionally marked as visited.

4.3 Improvements

The previous section presented Biceps in the simplest way we found that still allows

to prove the complexities in Tables 4.1 and 4.2. Nevertheless, the big O notation hides

significant improvements that can be (and were) made.

4.3.1 Improvement for Dense and Sparse Matrices

Memory requirements are lowered by getting rid of dp, except for dp(R). The DAG

is inverted whenever it must be traversed in the opposite direction. To do so, every

vertex u ∈ ∪m−k
i=k Vi is enumerated, starting with those of Vmin(m−k,mnon-min)−1, then of

Vmin(m−k,mnon-min)−2 and so on down to Vk. Every edge ∆
−→v in ds(u) defines the related

4. Biceps: An Algorithm to Discover Muscly Patterns 45

inverted edge ∆
−→u that is inserted in ds(v) and ds(u) is cleared. By Lemma 7, ds(u)

is cleared before any inverted edge is inserted in it. As a consequence, after the last

vertex of Vk is enumerated, ds associates every vertex with its direct predecessors.

To reinvert the DAG, the same procedure is followed but enumerating the vertices of

Vk+1, then of Vk+2 and so on up to Vmin(m−k,mnon-min). Every (re)inversion essentially

takes the time to write all the O((mnon-min − k)n) edge labels. The first inversion and

reinversion occur in Algorithm 3, between lines 12 and 13 and between lines 23 and

25. In Algorithm 5, the DAG is only inverted one more time, between lines 6 and 7.

4.3.2 Improvements for Dense Matrices

Biceps remains correct if the test in line 8 of Algorithm 2 only conditions the execution

of line 14. That test essentially always passes if the matrix is dense, because its values

in any column are usually all distinct. That modification for dense matrices lowers

the memory requirements: any edge label becomes one single row identifier rather

than an array. Because the arrays are dynamic, 3(m − 2k + 1)n pointers are saved,

if there are indeed no repeated value in any column. If there are a few repetitions,

some vertices may relate to patterns with empty supports and q must have its domain

extended with these patterns that it grades −∞. The modification is detrimental if

mdistinct 6≈ mnon-min, typically for count matrices, which are sparse: the data associated

with many patterns with empty supports (the empty arrays for those supports, the

additional patterns in the indices, etc.) take more memory than the saved memory.

build_DAG’s indexation of the vertices dominates Biceps’ space complexity.

For dense matrices, one bitwise trie per number of rows i ∈ {k, . . . ,m− k} indexes the

vertices of Vi. Thanks to an entry table of size m−i, the storage of a bitset representing

a pattern starts with the smallest identifier of a row in it. The trie therefore consists of

one binary tree for each of the m− i possible smallest row identifiers in the patterns.

Any edge in those trees is labeled with a bitset: the largest suffix of the largest bitset

prefixing all the patterns represented by the leaves below the node at the head of the

edge and not prefixing any other pattern represented by the leaves below the node

at the tail of the edge. The storage of a bitset representing a pattern ends with the

largest identifier of a row in it. This is possible because every represented pattern has

the same number of rows, i.

4. Biceps: An Algorithm to Discover Muscly Patterns 46

4.3.3 Improvements for Sparse Matrices

Section 4.2.3.2 explains that the time Algorithm 6 requires to find the sinks representing

proper superpatterns of a candidate muscly pattern is, in the worst case, dominated

by that of finding its other proper and adequately-sized superpatterns. In usual cases

though, where mnon-min � m, only a few sinks stand for superpatterns of the tested

pattern, a small proportion of the DAG is traversed, and figuring out what sinks

represent superpatterns takes most of the time. One easy improvement to reduce

that time is to not store the sinks standing for minimally-sized patterns, by adding

the condition |U | 6= k to Algorithm 4’s line 4. Those sinks are indeed useless to the

discovery proper superpatterns of any P ∈ P ⊆ A, because |P | ≥ k, by Definition 2.

More importantly, an array of size m indexes dp(R). For any ∆
−→u ∈ dp(R),

where ∆ is still an ordered array identifying the rows of the pattern that the sink u

represents, its position in dp(R) is stored |∆| times in the index, at the positions that

are the row identifiers in ∆. In this way, the index is as large as dp(R) itself, hence

no increase of the space complexity in big O notation. Given any candidate muscly

pattern P ∈ P , the index allows to access the sinks that represent patterns involving

one of the rows of P . Doing so takes linear time in the size of that subset of sinks,

usually well below |dp(R)| = O(n). Moreover, by always taking the first row identifier

in the sorted array P , min(P),
∆\{min(∆)}
−−−−−−−−−→u can (and does) substitute ∆

−→u in dp(R) and

P \ {min(P)} ⊆ ∆ \ {min(∆)} is tested instead of P ⊆ ∆. When executed, the two

inclusion tests give the same result. Indeed, either min(∆) ≤ min(P) and they are

equivalent, or min(∆) > min(P) and the test is not executed in the first place, thanks

to the index, because min(P) /∈ ∆.

For the call to better_pattern? in line 3 of Algorithm 5, an analog index pro-

vides a fast access to every ∆
−→v ∈ ds(∅) that is such that ∆ includes a row of the tested

candidate muscly pattern P ∈ P . For that call, line 4 in Algorithm 6 checks ∆ ⊆ P .

That is why the index is accessed |P | = O(mnon-min) times, to retrieve each time the

edges in ds(∅) whose labels include a different row of P . A same edge ∆
−→v ∈ ds(∅),

among O(n) (in each of the n iterations of the loop in line 3 of Algorithm 2, only the

first iteration of the inner loop can add an edge to ds(∅)), may therefore be retrieved

O(mnon-min) times, for any P ∈ P , among O(n) (Theorem 10). However, line 4 tests

∆ ⊆ P only if line 2 finds, in constant time, that v has not been visited yet. Conse-

quently, in the worst case, the indexation of the edges in ds(∅) brings an additional

O(mnon-minn
2) term to find_best_among_comparable’s time complexity, which

is unchanged in big O notation. In usual cases, where mnon-min � m, most of the sets

of row identifiers labelling the edges in ds(∅) do not intersect with the tested candidate

4. Biceps: An Algorithm to Discover Muscly Patterns 47

muscly pattern and the index saves time.

4.4 Summary

This Chapter described a subquadratic algorithm to list muscly patterns in a matrix

which is correct and complete. The proposed algorithm is divided into three steps. In

the first step, the adequately-sized patterns are listed by creating a DAG where they

correspond to the vertices, and the edges represent inclusion relationships between these

patterns. In the second step, dynamic programming is used to list every adequately-

sized pattern that is strictly better, according to the chosen quality function, than

all of its predecessors and successors in the graph. And finally, in the third step, the

muscly patterns are filtered from the output of the second step, resulting in a output

consisting only of muscly patterns and their respective supports.

Chapter 5

Experiments

Biceps’ implementation, in C++, is distributed under the terms of the GNU GPLv3.

Clang++ 9 compiles it, with the O3 optimizations. All the experiments reported in this

section are performed on a GNU/Linux™ system on top of an Intel® Core™ i7-8565U

processor running at 4.1 GHz and 20 GB of RAM.

Three sets of experiments were conducted. The first two sets of experiments show

that the biclusters discovered by Biceps are relevant to the applications in which the

algorithm is employed. In both sets of experiments, the biclusters are validated in

an unsupervised qualitative manner, as validating a biclustering is a challenge on its

own, which is further amplified by the novelty of this type bicluster and the lack of

a baseline for it. The first set of experiments deals with Twitter. Bendimerad et al.

[2019] collected geolocated and timestamped hashtags and mentions sent from New

York City, between 2016/10/08 and 2017/01/07, and from Los Angeles and London,

between 2017/05/17 and 2017/07/27. Muscly biclusters are computed in the matrix

where the rows stand for the hashtags and user mentions and the columns for geo-

graphic subdivisions of the cities associated with 24-hour periods. A cell in the matrix

gives how many times the hashtags and user mentions were sent from the geographic

subdivision during the 24-hour period. The second set of experiment uses a dataset

originating from a Quantitative structure–activity relationship (QSAR) model, which

provides the Coulomb and Lennard-Jones potentials for tens of thousands of points

(the columns of the matrix) sampled around molecules (the rows). The third and final

set of experiments focuses on performance. The runtime and memory consumption of

Biceps are analyzed using the two datasets, and a third one: a large dense matrix

about the expression of genes in different biological samples.

48

5. Experiments 49

5.1 Mining Sparse Matrices Originating From

Twitter

5.1.1 Dataset

Bendimerad et al. [2019] extracted time-stamped geolocated posts from Twitter using

its provided API. These posts were extracted for three major cities in different periods.

Posts for New York City (NYC) were collected between 2016/10/08 and 2017/01/07,

while posts for Los Angeles (LA) and London were collected between 2017/05/17 and

2017/07/27. Tweets from accounts with more than 100 tweets in a 10-day period

(probably bots) are ignored. The Twitter API gives access to less than 1% of the

posted tweets.

One matrix is created for each city in the dataset: NYC, LA and London. The

rows in each matrix are the hashtags and user mentions that were sent at least once in

the corresponding city. The columns are the geographical locations (i. e., squares of a

grid, as defined by Bendimerad et al. [2019]) during a 24-hour time window, starting at

4 a.m. local time. Thus, the spacial and temporal information becomes an unstructured

set of columns and a same location may appear in the support of more than one muscly

pattern, as long as the associated windows differ. Any value in the matrix therefore is

how many times the term (the row it is in) was sent in the square during a 24-hour

period.

In each of the three matrices, the rows with the top-10 sums of values are removed.

They stand for generic hashtags, such as: “#nyc”, “#brooklyn” or “#la”. Keeping

them leads to the discovery that those hashtags are indeed much used all over the city,

whatever the date. Finally, columns that do not contain any term are removed. They

are locations during 24 hours with no tweets. They cannot be in the support of any

adequately-sized pattern, even with k = 1.

Table 5.1 shows, after preprocessing, the number of terms sent from each city, the

number of locations in the grid, as well as the collection period. For each of the three

matrices built from those datasets, Table 5.2 gives the number of rows, which is always

the number of terms, and the number of columns, which is smaller than the product

of the number of locations by the number of days, because some pairs (location, day)

relate to no tweet with terms. mnon-min, mdistinct and the matrix sparsity are reported

too.

Unsurprisingly, in each matrix, some terms occur much more than others. Fig-

ure 5.1 shows how many times each term was sent, in the whole city over the whole

period. The terms are ranked by decreasing count. The curve decreasing faster than

5. Experiments 50

Table 5.1: Description of the data collected for each city

City nb of Terms nb of Locations nb of 24-hour periods

New York City 330,217 1,448 89 (2016/10/08 – 2017/01/05)
Los Angeles 222,494 3,698 71 (2017/05/17 – 2017/07/27)
London 175,477 4,264 71 (2017/05/17 – 2017/07/27)

Table 5.2: Description of the matrix built for each city

City m n mnon-min mdistinct Sparsity

New York City 330,217 53,009 2,344 41 99.993%
Los Angeles 222,494 65,824 1,860 25 99.995%
London 175,477 55,951 1,532 22 99.994%

linearly in the log-log diagram, the distribution is more skewed than a power law.

Figure 5.2 uses the same type of diagram. It shows the distributions of the number

of nonzero values and of distinct values across the columns ordered by decreasing count,

hence a different order, for each of the two distributions. mnon-min and mdistinct therefore

are the ordinates of the leftmost points of the two curves. In the three diagrams, for

each of the three matrices, the number of nonzero values in a column suddenly drops

shortly before reaching the 100th column with the most nonzero values. The columns,

locations associated with 24-hour periods, can therefore be split into two clusters: tens

of columns relating to crowded locations where more than a thousand different terms

are sent in a day and all the remaining columns where the distribution of the number

of different terms is very skewed. Most of the columns in the NYC, LA and London

matrices have at most 972, 712 and 382 nonzero values respectively.

As the beginning of Section 4.2.1.2 explains, sparse matrices are input column by

column as pairs (row, value) and the minimal value, 0 in the Twitter matrices, only

needs to be input once. As a consequence, the size of Biceps’ input and the time to

read it depend on how many nonzero values there are in the matrix.

The number of vertices in Biceps’ DAG depends on the number of distinct values

per column. So does the size of the indices that dominate Biceps sparse requirements.

Indeed, every vertex relates to one single entry in one of the indices. Although every

matrix has approximately 1,000 columns with more than 100 nonzero values, their

number of distinct values is typically more than on order of magnitude smaller and

mdistinct is two orders of magnitude smaller than mnon-min.

5. Experiments 51

100 101 102 103 104 105

Term Rank

100

101

102

103

C
ou

nt

(a) New York City

100 101 102 103 104 105

Term Rank

100

101

102

103

C
ou

nt

(b) Los Angeles

100 101 102 103 104 105

Term Rank

100

101

102

103

C
ou

nt

(c) London

Figure 5.1: In each city of the Twitter dataset, distribution of the number of occurrences
per term.

100 101 102 103 104

Column Rank

100

101

102

103

C
ou

nt

Nonzero values
Distinct values

(a) New York City

100 101 102 103 104 105

Column Rank

100

101

102

103

C
ou

nt

Nonzero values
Distinct values

(b) Los Angeles

100 101 102 103 104

Column Rank

100

101

102

103

C
ou

nt

Nonzero values
Distinct values

(c) London

Figure 5.2: In each city of the Twitter dataset, distributions of the number of nonzero
values per column (blue curve) and of the number of distinct values per column (green
curve).

5.1.2 Results Using the Quality Function in Equation 3.1

This set of experiments uses the natural quality function with the `1 norm presented in

Equation 3.1 to define the muscly biclusters. Biceps for sparse matrices is used. It lists

sets of terms that, in some locations, are standing out in comparison to other terms

sent from the same locations. For each city, a table describes the results for multiple

values of k and the muscly biclusters with ten highest grades that are discovered with

k = 2 are presented and analyzed.

5.1.2.1 Biclusters Discovered in the New York City Matrix

Table 5.3 shows basic statistics of the collections of biclusters Biceps returns given

the NYC matrix and k ∈ {1, . . . , 10}. The average quality and the average support

size of the muscly biclusters for k = 2 are considerably smaller than those of the top-

10 muscly bicluster, shown in Table 5.4. For that value of k, 88.1% of the muscly

patterns are actually minimally-sized, supported by one single column and with the

smallest possible quality, 1. Similar observations are made for the the other values of

k. They are sets of terms all with nonzero counts in one single column of the matrix.

5. Experiments 52

As a consequence, the k terms relating to nonzero values in a column with exactly k

nonzero values are often unique: in any other pair (location, period), at least one of

the k terms is never sent.

Table 5.3: Statistics of the collections of muscly biclusters in the NYC matrix with
k ∈ {1, . . . , 10}.

k |M| q(P) |P | |supp(P)|

Max Min Median Max Min Median Max Min Median

1 9,234 2,229.00 1.00 1.00 23 1 2 235 1 1
2 20,895 564.00 1.00 1.00 163 2 4 100 1 1
3 23,458 169.00 1.00 1.00 163 3 6 38 1 1
4 22,891 118.00 1.00 1.00 163 4 7 38 1 1
5 21,255 118.00 1.00 1.00 163 5 9 30 1 1
6 19,428 76.00 1.00 1.00 164 6 11 30 1 1
7 17,817 52.00 1.00 1.00 164 7 12 19 1 1
8 16,334 52.00 1.00 1.00 164 8 14 19 1 1
9 14,990 52.00 1.00 1.00 179 9 16 19 1 1

10 13,852 18.00 1.00 1.00 179 10 18 8 1 1

Table 5.4 lists the muscly patterns with the 10 highest grades. It also gives the

days appearing in the support. Figure 5.3 additionally shows the related locations.

The pattern with the highest grade stand for an event that is precisely located

in time and space: the New York Comic-Con in 20161. It took place from October

6th to October 9th. Most of the quality of this bicluster comes from days 8 and 9,

when the convention was still happening. The terms in the quality that relate to the

following days are small. They show the Comic-Con remained the most commented

topic in the supporting locations shortly after it was over. Figure 5.3a pinpoints the

location in which the event happened, the Jacob K. Javits Convention Center. A few

other locations far from the the convention center appear in the support of the pattern.

Nevertheless, they only contribute to 7.3% of the grade.

The second bicluster does not relate to an event. The time window in which it

occurs is almost the whole period in which tweets for NYC were collected. The pattern

refers to Times Squares, a highly visited place by both tourists and residents alike.

Unsurprisingly, the location including Times Square is the only one involved in the

support. It also makes sense that, in the support, the location is paired with almost

all dates: shows on Broadway, constantly happen.
1https://en.wikipedia.org/wiki/New_York_Comic_Con

5. Experiments 53

Table 5.4: Muscly biclusters with the ten highest grades in the NYC matrix with k = 2.

Pattern id P |supp(P)| Grade Dates appearing in supp(P)

1
#nycc2016,
#nycc

8 564.00
2016/10/08 - 2016/10/11;
2016/10/14

2
#broadway,
#timessquare

44 249.00
Multiple days between
2016/10/08 and 2017/01/03

3
#rockefellercenter,
#christmas

22 191.00
Multiple days between
2016/11/28 and 2016/12/27

4
#lotusflame,
#thank

3 186.00
2016/11/06;
2016/11/20

5
#happyhalloween,
#halloween

31 170.00 2016/10/29 - 2016/10/31

6
#vote,
#imwithher,
#election2016

26 169.00 2016/11/07 - 2016/11/08

7
#teb,
#flightdelay

40 163.00
Multiple days between
2016/10/13 and 2017/01/02

8
#clifton,
#accounting

61 153.00
Multiple days between
2016/10/09 and 2017/01/03

9
#endorphins,
#endomondo

100 145.00
Multiple days between
2016/10/11 and 2017/01/04

10
#lga,
#flightdelay

39 139.00
Multiple days between
2016/10/09 and 2017/01/02

The third and fifth patterns do not stand for specific events either, but for holiday

celebrations. The third pattern refers to the Rockefeller Center, whose location is

displayed in Figure 5.3c. A large Christmas Tree2 is exhibited there every month of

December. That is why the bicluster spans most of that month. The fifth pattern

on the other hand, refers to the Halloween celebration on October, 31st. Its support

involves three days, from the 29th to the 31st, and locations all over the city and its

surroundings, as displayed in Figure 5.3e. Nevertheless, analyzing the terms summing

up to the grade reveals a large concentration of tweets around Lower Manhattan, where

the New York Halloween Parade took place3.

The fourth pattern deals with two events that took place in a restaurant called

Lotus Flame, in the Bronx, as shown in Figure 5.3d. The first was the Diwali4 Mo-

torcade, which occurred on November 5th5 and contributed a gap of 137 tweets to
2https://tinyurl.com/y3qb5l3v
3https://tinyurl.com/yyxww86l
4The Hindu festival of lights
5https://tinyurl.com/yc474ozv

5. Experiments 54

the grade of the pattern. The second one was an event for cancer awareness6, which

contributed a gap of 49 tweets to the grade. A location adjacent to the one containing

the restaurant supports this pattern during the 24-hour period of the first event. This

suggests the Diwali Motorcade extended further than the location of the restaurant.

The support of the sixth pattern involves several locations. The pattern deals with

the US election of 2016 and the New York City support of the Democratic presidential

candidate at the time, Hillary Clinton. The 2016 United States elections were held on

November 8th7, and the discovered bicluster spans from November 7th to the actual

election day.

The seventh and tenth patterns both refer to airports and flight delays. Flight

delays are fairly common, and the patterns span almost the entire data collection

period. The locations appearing in the support of the patterns pinpoint the Teterboro

Airport in New Jersey in Figure 5.3g and the LaGuardia Airport in Figure 5.3j.

The eighth pattern is associated with one single location, in the city of Clifton,

New Jersey, around an accounting firm. The related dates also span almost the entire

data collection period. Tweets sent from this specific place therefore refer to that

accounting firm more than to any other topic. They suggest that the people in the

firm are highly active on Twitter.

The ninth pattern includes the hashtag #endomondo. Endomondo is a now

retired social fitness app that belonged to the company Under Armour 8. It allowed

people to share their workouts on Twitter9. The dates appearing in the support span

almost the entire tweet collection period. The associated places are where people

worked out and posted about it.

5.1.2.2 Biclusters Discovered in the Los Angeles Matrix

Table 5.5 shows the basic statistics of the collections of biclusters Biceps returns given

the LA matrix and k ∈ {1, . . . , 10}. More biclusters are discovered in LA than in NYC,

and a greater proportion receives the grade 1: 92.94% for k = 2. Yet, as in NYC, the

top-10 muscly biclusters, shown in Table 5.6, are graded significantly higher.

Besides the patterns and their grades, Table 5.6 reports the number of columns

in their supports and the smallest time interval containing all dates associated with

their columns. Figure 5.4 shows on maps the related locations.
6https://tinyurl.com/ycpg672x
7https://en.wikipedia.org/wiki/2016_United_States_presidential_election
8https://tinyurl.com/y4ko7dhf
9https://www.hardreset.info/devices/apps/apps-endomondo/share-workout-twitter/

5. Experiments 56

Table 5.5: Statistics of the collections of muscly biclusters in the LA matrix with
k ∈ {1, . . . , 10}.

k |M| q(P) |P | |supp(P)|

Max Min Median Max Min Median Max Min Median

1 13,535 1,871.00 1.00 1.00 20 1 2 245 1 1
2 30,013 454.00 1.00 1.00 82 2 4 104 1 1
3 31,067 207.00 1.00 1.00 117 3 6 40 1 1
4 28,766 87.00 1.00 1.00 129 4 7 40 1 1
5 25,673 87.00 1.00 1.00 129 5 8 40 1 1
6 22,486 87.00 1.00 1.00 166 6 10 18 1 1
7 19,789 87.00 1.00 1.00 166 7 11 18 1 1
8 17,429 87.00 1.00 1.00 166 8 13 14 1 1
9 15,547 87.00 1.00 1.00 166 9 15 14 1 1

10 13,962 10.00 1.00 1.00 214 10 16 5 1 1

The pattern with the highest grades deals with the E310 201711, a trade event

which took place from June 13th to June 15th. The dates in the support span a period

that starts shortly before the expo, and ends almost a week after it was over. Those

before and after the event relate to columns that only contribute to 1.32% of the grade.

The tweets posted after the event and including the hashtags in the pattern are mostly

public reactions to the news presented at the E3. The event took place at the Los

Angeles Convention Center. Figure 5.4a shows its location, unsurprisingly.

The second pattern deals with the Anime Expo 201712, an anime convention

which took place from July 1st to July 4th. The date appearing in the support of the

pattern almost perfectly match those of the event. Differently from a trade event such

as the E3, it is not common for announcements to be made in a convention. That is

probably why the discussion does not go on much after the convention is over. Like

the E3, the convention took place in the Los Angeles Convention Center, and as shown

in Figure 5.4b, the columns in the support all relate to it.

Two biclusters in the top-10 relate to musical events. The third pattern deals

with the FYF Fest13, a three day music event that took place from July 21st to July

23rd. It was held in the Los Angeles Exposition Park, as Figure 5.4c indicates. The

fifth pattern relates to two U2 shows for the Joshua Tree Tour 2017 14. Both shows

took place at the Rose Bowl stadium, and, as expected, Figure 5.4e shows the hashtags
10Electronic Entertainment Expo
11https://en.wikipedia.org/wiki/E3_2017
12https://animecons.com/events/info/7489/anime-expo-2017
13https://www.jambase.com/article/fyf-fest-reveals-2017-lineup
14https://en.wikipedia.org/wiki/The_Joshua_Tree_Tours_2017_and_2019

5. Experiments 57

Table 5.6: Muscly biclusters with the ten highest grades in the LA matrix with k = 2.

Pattern id P |supp(P)| Grade Dates appearing in supp(P)

1 #e3, #e32017 12 454.00
2017/06/10 - 2017/06/17;
2017/06/19; 2017/06/21

2
#ax2017,
#animeexpo,
#animeexpo2017

9 207.00 2017/06/29 - 2017/07/05

3 #fyf, #fyffest 8 165.00 2017/07/21 - 2017/07/25

4
@disneyland,
#disney

50 138.00
Multiple days between
2017/05/17 and 2017/07/26

5
#u2thejoshua-
tree2017, #u2

2 124.00 2017/05/20 - 2017/05/21

6
#venice,
#venicebeach

56 114.00
Multiple days between
2017/05/17 and 2017/07/26

7
@unistudios,
#universalstudios

28 112.00
Multiple days between
2017/05/20 and 2017/07/26

8
#santamonica,
#careerarc

40 108.00
Multiple days between
2017/05/17 and 2017/07/05

9
#endorphins,
#endomondo

104 107.00
Multiple days between
2017/05/17 and 2017/07/26

10

#fuckfakeshit,
#why, #need,
#fuckfakes,
#gardengrove,
#real, #graffiti,
#live, #life

14 87.00
Multiple days between
2017/06/02 and 2017/07/26

in the patterns were sent from that stadium on May 20th and 21st.

The support of every remaining pattern in the top-10 involves dates that almost

span the whole collected period. Patterns 4, 6, 7 and 8 all are sets of terms referring to

specific locations that are unsurprisingly pinpointed in Figures 5.4d, 5.4f, 5.4g and 5.4h

respectively. Pattern 8 also indicates that CarrerArc, a social recruiting application

by the company of the same name15 is massively used in Santa Monica. The ninth

pattern relates to Endomondo, the social fitness app whose usage also explained a

bicluster in NYC. The tenth pattern contains multiple hashtags, including one referring

#gardengrove, a city in California, and other terms that are sent from there. But there

are locations in the support outside of the city, which contribute to 45.98% of the grade.
15https://www.careerarc.com/about-us

5. Experiments 59

5.1.2.3 Biclusters Discovered in the London Matrix

Table 5.7 shows the basic statistics of the collections of biclusters Biceps returns given

the London matrix and k ∈ {1, . . . , 10}. As for the previous two cities, patterns graded

1 and supported by one single column are predominant. Table 5.8 lists the patterns

with the ten highest grades that are discovered for London, their grades and the dates

appearing in their supports. Figure 5.5 complements Table 5.8. It shows the locations

involved in the supports.

Table 5.7: Statistics of the collections of muscly biclusters in the London matrix with
k ∈ {1, . . . , 10}.

k |M| q(P) |P | |supp(P)|

Max Min Median Max Min Median Max Min Median

1 12,567 738.00 1.00 1.00 22 1 2 686 1 1
2 26,705 738.00 1.00 1.00 60 2 4 686 1 1
3 27,275 238.00 1.00 1.00 109 3 6 47 1 1
4 24,405 64.00 1.00 1.00 109 4 7 33 1 1
5 21,367 44.00 1.00 1.00 113 5 8 33 1 1
6 18,696 44.00 1.00 1.00 124 6 10 33 1 1
7 16,321 44.00 1.00 1.00 141 7 11 33 1 1
8 14,312 44.00 1.00 1.00 141 8 13 33 1 1
9 12,722 22.00 1.00 1.00 141 9 15 8 1 1

10 11,342 22.00 1.00 1.00 141 10 16 8 1 1

The first pattern is once again refers to the Endomondo app, and the columns

in its support are widespread in time and space. The second pattern contains terms

referring job hiring. Its support doesn’t involve as many locations as that of the first

pattern, but, as for the first pattern, the related dates are all over the whole data

collection period.

Three of the patterns with the top-10 grades deal with musical events: patterns

3, 6 and 8. Pattern 3 refers to the Wonderland Live16, a concert tour by the British

band Take That. Multiple concerts took place in the O2 Arena in London between

June 6th and June 12th. Besides the O2 Arena, Figure 5.5c pinpoints another location

where extra dates were included in the support. They only account for a some small

contribution to the grade: 2.78%. Pattern 6 deals with the Adele Live 2017 tour17. It

took place on June 28th and June 29th. A couple more concerts were to happen on

July 1st and July 2nd, but they were canceled on June 30th18. Adele’s performances
16https://en.wikipedia.org/wiki/Wonderland_Live
17https://en.wikipedia.org/wiki/Adele_Live_2016
18https://tinyurl.com/y442o2t3

5. Experiments 60

Table 5.8: Muscly biclusters with the ten highest grades in the London matrix with
k = 2.

Pattern id P |supp(P)| Grade Dates appearing in supp(P)

1
#endorphins,
#endomondo

686 738.00
Multiple days between
2017/05/17 and 2017/07/26

2 #hiring, #job 63 399.00
Multiple days between
2017/05/17 and 2017/07/26

3
#wonderland,
#takethat

13 218.00
Multiple days between
2017/06/06 and 2017/06/20

4
#jfgt,
#grenfelltower

34 125.00
Multiple days between
2017/06/17 and 2017/07/26

5
@wimbledon,
#tennis,
#wimbledon

15 89.00
Multiple days between
2017/06/26 and 2017/07/15

6
#adele,
#wembley

4 81.00
2017/06/28 - 2017/06/30;
2017/07/02

7
#londonpride,
#pride

9 58.00 2017/07/08 - 2017/07/09

8
#notinthislifetime,
#gunsnroses

6 50.00 2017/06/16 - 2017/06/20

9
#tasteoflondon,
@tasteoflondon

6 50.00
2017/06/14 - 2017/06/18;
2017/06/21

10

#kentonmandir,
#temple, #sksst,
#sksstharrow,
#swaminarayan,
#mandir,
#dailypic,
#ghanshyam-
mahraj,

33 44.00
Multiple days between
2017/05/17 and 2017/07/25

took place at the Wembley Stadium. Unsurprisingly, the single location appearing in

the support covers that stadium, as Figure 5.5f indicates. Pattern 8 relates to the Not

in This Lifetime... Tour19 from the band Guns N’ Roses. Two concerts took place

on June 16th and June 17th, in the London Stadium, as Figure 5.5h indicates. A

second location north to the stadium, but still inside the Queen Elizabeth Olympic

Park, where the stadium is located, adds a contribution of 20.0% to the grade.

The dates in the support of the fourth pattern almost span the whole data col-

lection period, with the exception of May. The pattern refers to the violent fire that
19https://en.wikipedia.org/wiki/Not_in_This_Lifetime..._Tour

5. Experiments 61

broke out in Grenfell Tower20, a residence building located as shown in Figure 5.5d.

The fire broke out on June 14th, three days before the earliest date appearing in the

support. The online emotional response with the hashtag #jfgt (Justice for Grenfell

Tower), and general discussions went on throughout the whole data collection period

for the city.

The fifth pattern refers to the Wimbledon Qualifying 201721, which happened

from June 26th to June 29th, and to the 2017 Wimbledon Championships22, from July

3rd to July 16th. Both events took place at the “All England Lawn Tennis and Croquet

Club”, located in the Wimbledon Park. Figure 5.5e shows an extra location besides

the park. It only contributes 1.23% of the grade.

The seventh pattern is a set of hashtags associated with the annual LGBT pride

parade in London23. It took place on July 8th. The parade started just north of Oxford

Circus on Regent Street, and it finished in Whitehall. Its location is pinpointed in

Figure 5.5g. An additional location to the north contributes 1.72% of the grade.

The ninth pattern refers to the Taste of London24, an annual restaurant festival

that took place in 2017 from June 14th to June 18th. Figure 5.5i the Regent’s Park,

where the festival took place.

The dates appearing in the support of the tenth pattern are all over the data

collection period. The pattern refers to the Shree Kutch Satsang Swaminarayan Temple

(Mandir) in London25. It is located in the London Borough of Harrow. Every column

in the support is associated with that location, as Figure 5.5j indicates. Many events

and activities, such as IT classes and Yoga, are organized in the temple all year long.

5.1.3 Results Using a Quality Function Tailored to the Search

of Events

The quality function presented in Equation 3.1 and used in the previous experiments

doesn’t favor patterns whose supports relate to short periods over long periods. In other

terms, it is no tailored to the discovery of events. Consequently, biclusters standing

for recurring behaviors, such as tweeting about a touristic place or about working out

with the Endomondo app, receive high grades.
20https://www.bbc.com/news/uk-40301289
21https://tinyurl.com/yxugxbgr
22https://en.wikipedia.org/wiki/2017_Wimbledon_Championships
23https://prideinlondon.org/news-and-views/pride-in-london-2017-date-announced/
24https://tinyurl.com/y3e5wvhu
25https://sksst.org/

5. Experiments 63

In order to specifically discover events, q should take into account the 24-hour

periods associated with the columns in the support. Equation 5.1 proposes such a

quality function. In its definition, ‖.‖ is any norm on R
n, D is the set of days in the

data collection period and date is a function that, given a column in C, returns the

associated date:

q(P) = max
d∈D

∥

∥

∥

∥

∥

(

max

(

min
r∈P

Mr,c − max
r∈R\P

Mr,c, 0

))

c∈supp(P)∧date(c)∈{d,d+1,d+2}

∥

∥

∥

∥

∥

(5.1)

This function is a simple adaptation of the quality function presented in Equa-

tion 3.1. It grades a pattern using only columns in its support that relate to three

consecutive days: the three consecutive days providing the highest grade. In essence,

a 3-day sliding window is added, the previous quality function and the highest grade

obtained with the supporting columns falling into such a window is returned. In this

way, a pattern relating to multiple days receives the same grade as if its support only

contains the columns associated with consecutive days.

By using this new quality, it is expected that the patterns that do not deal

with events receive lower grades. They may even not be muscly anymore and enable

the discovery of subpatterns or superpatterns where complementary terms relate to

an event. For example, given the pattern {#broadway,#timessquare}, let’s suppose

that there is a second pattern {#broadway,#timessquare,#lionking} which relates to

a hypothetical broadway show that took place during one night only. The quality of

the pattern {#broadway,#timessquare} may decrease so much that it gets lower than

the quality of the pattern {#broadway,#timessquare,#lionking}, thus ceasing to be a

muscly pattern, while the latter pattern emerges as a muscly pattern.

5.1.3.1 Biclusters Discovered in the New York City Matrix

Table 5.9 shows basic statistics of the collection of biclusters Biceps outputs given the

NYC matrix, k ∈ {1, . . . , 10} and, this time, q as in Equation 5.1. Comparing it to

Table 5.3, one can observe that the number of muscly patterns is different. With the

new quality function, patterns disappear from the result set, while others took their

places.

Table 5.10 lists the 10 patterns that are given the highest grades by the new

quality function. Five new patterns emerge, while patterns 2, 7, 8, 9 and 10 in Table 5.4

disappear. Figure 5.6 shows the locations appearing in the support of every new

pattern.

5. Experiments 64

Table 5.9: Statistics of the collections of muscly biclusters in the NYC matrix with
k ∈ {1, . . . , 10} and q as in Equation 5.1.

k |M| Quality # of rows (|P |) # of cols (|supp(P)|)

Avg Std Dev Max Min Avg Max Min Avg

1 8,629 2.65 15.17 23 1 2.41 235 1 2.08
2 20,578 1.39 3.64 163 2 5.80 100 1 1.12
3 23,308 1.22 2.00 163 3 8.53 38 1 1.05
4 22,807 1.16 1.42 163 4 10.88 38 1 1.03
5 21,208 1.11 1.14 163 5 13.06 30 1 1.02
6 19,409 1.08 0.91 164 6 15.36 30 1 1.01
7 17,807 1.06 0.66 164 7 17.61 19 1 1.01
8 16,326 1.04 0.53 164 8 19.96 19 1 1.00
9 14,989 1.03 0.41 179 9 22.26 19 1 1.00
10 13,850 1.02 0.29 179 10 24.62 8 1 1.00

Patterns 5, 6 and 9 all refer to holiday celebrations. The locations appearing

in the supports of Patterns 5 and 9 are specific locations: the route of the Macy’s

Thanksgiving Day Parade26, outlined in Figure 5.6a, and Times Square, in Figure 5.6e,

where New Year’s Eve was celebrated27. Pattern 6 deals with a Christmas celebration

that took place throughout the city.

It is not easy to identify the events relating to Patterns 7 and 8. Both occurred

in single locations during small windows of time, but the terms used in the pattern,

while consistent between them, are too generic. Pattern 7 is about style and shopping,

whereas pattern 8 deals with graphic design and contemporary art.

5.1.3.2 Biclusters Discovered in the Los Angeles Matrix

Table 5.11 shows basic statistics of the collections of biclusters Biceps outputs given

the LA matrix, k ∈ {1, . . . , 10}, and the quality function in Equation 5.1. As with the

NYC matrix, fewer biclusters are discovered with the quality function tailored to the

discovery of events.

Table 5.12 lists the muscly patterns getting the ten highest grades. Again, five

new patterns emerge, while patterns 4, 6, 7, 8 and 9 in Table 5.6 disappear. Figure 5.7

shows the locations appearing in the supports of the new patterns, patterns 4, 5, 7, 8

and 9 in Table 5.12.

Pattern 4 deals with VidCon28, a multi-genre online video tech conference that
26https://tinyurl.com/y3r7umya
27https://www.cbsnews.com/news/new-year-celebrations-times-square-2017/
28https://www.crunchbase.com/event/vidcon-2017-2017621

5. Experiments 66

Table 5.10: Muscly biclusters with the ten highest grades in the NYC matrix with
k = 2 and q as in Equation 5.1.

Pattern P |supp| Quality Period

1
#nycc2016,
#nycc

8 303.00
2016/10/08 - 2016/10/11;
2016/10/14

2
#happyhalloween,
#halloween

31 170.00 2016/10/29 - 2016/10/31

3
#vote, #imwithher,
#election2016

26 169.00 2016/11/07 - 2016/11/08

4
#lotusflame,
#thank

3 137.00 2016/11/06 ; 2016/11/20

5
#macysthanksgiving-
dayparade,
#thanksgiving

5 126.00 2016/11/24

6
#merrychristmas,
#christmas

12 106.00 2016/12/23 - 2016/12/25

7

#stylemepretty,
#stylebloggers,
#styleoftheday,
#shopping,
#stylist, #style

3 76.00 2016/12/13 - 2016/12/15

8
#graphicdesign,
#contemporaryart,
#design, #art

1 72.00 2017/01/04

9
#timessquare,
#happynewyear

1 57.00 2016/12/31

10
#rockefellercenter,
#christmas

22 53.00
Multiple days between
2016/11/28 and 2016/12/27

happened from June 21st to June 24th. It was held at the Anaheim Convention Center,

which is the location associated with every column in the support, as Figure 5.7a

indicates.

Pattern 5 relates to the D23 Expo29, a biennial Disney fan event, which took

place from July 14th to July 16th. The Anaheim Convention Center hosted it too.

The related location is again the only one appearing in the support, as Figure 5.7b

indicates.

Pattern 7 refers to the lighting up of the “Bat-signal” in Los Angeles on June

15th. It was a tribute to the late American actor Adam West30, who passed away on

June 9th. The Bat-signal was projected onto the Los Angeles City Hall. One single
29https://d23.com/d23-expo-2017-dates-announced/
30https://tinyurl.com/y5u9b8jz

5. Experiments 67

Table 5.11: Statistics of the collections of muscly biclusters in the LA matrix with
k ∈ {1, . . . , 10} and q as in Equation 5.1.

k |M| Quality # of rows (|P |) # of cols (|supp(P)|)

Avg Std Dev Max Min Avg Max Min Avg

1 12,674 1.81 9.32 20 1 2.44 245 1 1.68
2 29,704 1.18 3.16 82 2 5.59 104 1 1.07
3 30,881 1.10 1.55 117 3 7.83 40 1 1.04
4 28,644 1.07 1.01 129 4 9.91 40 1 1.02
5 25,620 1.05 0.73 129 5 11.94 40 1 1.01
6 22,456 1.04 0.70 166 6 14.01 18 1 1.01
7 19,777 1.04 0.69 166 7 16.23 18 1 1.01
8 17,421 1.03 0.67 166 8 18.44 14 1 1.00
9 15,544 1.02 0.43 166 9 20.68 14 1 1.00
10 13,961 1.01 0.19 214 10 22.98 5 1 1.00

Table 5.12: Muscly biclusters with the ten highest grades in the LA matrix with k = 2
and q as in Equation 5.1.

Pattern P |supp| Quality Period

1 #e3, #e32017 12 419.00
Multiple days between
2017/06/10 and 2017/06/21

2
#ax2017, #animeexpo,
#animeexpo2017

9 198.00 2017/06/29 - 2017/07/05

3 #fyf, #fyffest 8 160.00 2017/07/21 - 2017/07/25

4
#vidconus, @vidcon,
#vidcon2017, #vidcon

5 83.00 2017/06/21 - 2017/06/25

5
#d23expo2017, #d23,
#d23expo, #disney

4 83.00
2017/07/14 - 2017/07/16;
2017/07/18

6
#u2thejoshuatree2017,
#u2

2 65.00 2017/05/20 - 2017/05/21

7
#adamwest,
#batman

1 63.00 2017/06/15

8
#hollywoodbowl,
#lalaland

3 51.00 2017/05/26 - 2017/05/28

9

#myphoto, #mypic,
#natureaddict, #flower,
#flowerslovers, #flowers,
#blossoms, #nature

12 48.00
Multiple days between
2017/05/20 and 2017/06/08

10

#fuckfakeshit, #why,
#fuckfakes, #need,
#gardengrove,#real,
#graffiti, #live, #life

14 42.00
Multiple days between
2017/06/02 and 2017/07/26

5. Experiments 68

Table 5.13: Statistics of the collections of muscly biclusters in the London matrix with
k ∈ {1, . . . , 10} and q as in Equation 5.1.

k |M| Quality # of rows (|P |) # of cols (|supp(P)|)

Avg Std Dev Max Min Avg Max Min Avg

1 11,828 1.76 4.88 22 1 2.34 686 1 1.63
2 26,473 1.17 1.60 60 2 5.47 686 1 1.07
3 27,179 1.10 0.84 109 3 7.67 47 1 1.02
4 24,340 1.07 0.70 109 4 9.63 33 1 1.01
5 21,330 1.05 0.56 113 5 11.55 33 1 1.01
6 18,674 1.04 0.42 124 6 13.55 33 1 1.01
7 16,306 1.03 0.38 141 7 15.63 33 1 1.01
8 14,307 1.02 0.32 141 8 17.78 33 1 1.01
9 12,720 1.01 0.27 141 9 19.85 8 1 1.00
10 11,340 1.01 0.21 141 10 21.96 8 1 1.00

column support the pattern. It associates the day signal was lit up with the location

of the City Hall, as expected and shown in Figure 5.7c.

Pattern 8 deal with the La La Land in Concert: A Live-to-Film Celebration31, an

event that featured the live orchestra accompanying the 2017 film La La Land ’s voice

recording. The concert premiered on May 26th. A second screening happened on May

28th. Supporting columns associated with both days contributed to the grade, because

they are in a 3-day window. All those columns relate to the locations of the Hollywood

Bowl, as indicated by Figure 5.7d. Both presentations took place there.

Pattern 9 does not refer to a specific event we could identify. As with pattern 10,

which remains in the top-10 despite the new quality function. Multiple days appear in

its support and the pattern itself contains generic terms. They are, however, consistent

among themselves.

5.1.3.3 Biclusters Discovered in the London Matrix

Table 5.13 shows basic statistics of the collections of bicluster Biceps outputs given

the London matrix, k ∈ {1, . . . , 10}, and the quality function in Equation 5.1. The

same conclusions as in the previous experiments are drawn comparing Table 5.13 to

Table 5.7.

Using the new quality function tailored to the discovery of events, patterns 4 and

10, in Table 5.8, leave the top-10. Some false positive patterns remain, patterns 3, 5

and 9. Only two new patterns appear in the top-10: patterns 9 and 10 in Table 5.14.
31https://tinyurl.com/y2g9ntsp

5. Experiments 69

Table 5.14: Muscly biclusters with the ten highest grades in the London matrix with
k = 2 and q as in Equation 5.1.

Pattern P |supp| Quality Period

1
#wonderland,
#takethat

13 134.00
Multiple days between
2017/06/06 and 2017/06/20

2
#adele,
#wembley

4 77.00
2017/06/28 - 2017/06/30;
2017/07/02

3
#endorphins,
#endomondo

686 69.00
2017/05/17 - 2017/05/31;
2017/06/03 - 2017/07/26

4
#londonpride,
#pride

9 58.00 2017/07/08 - 2017/07/09

5 #hiring, #job 63 51.00
Multiple days between
2017/05/17 and 2017/07/26

6
#notinthislifetime,
#gunsnroses

6 48.00 2017/06/16 - 2017/06/20

7
@wimbledon,
#tennis, #wimbledon

15 38.00
Multiple days between
2017/06/26 2017/07/15

8
#tasteoflondon,
@tasteoflondon

6 37.00
2017/06/14 - 2017/06/18;
2017/06/21

9
#prayforlondon,
#londonbridge

3 37.00 2017/06/03 - 2017/06/04

10
#u2thejoshuatree2017,
#u2

3 36.00
2017/07/08 - 2017/07/09;
2017/07/11

Pattern 9 refers to the 2017 London Bridge attack32. That terrorist attack tar-

geted the aforementioned bridge on June 3rd. The supporting columns are associated

with that day and the day after, when the public was still strong. The two locations

highlighted in Figure 5.8a correspond to both the London Bridge and the center of the

city.

Pattern 10 relates to two U2 shows for the Joshua Tree Tour 2017. In London,

the shows took place on July 8th and July 9th, at the Twickenham Stadium, covered

by the highlighted locations in Figure 5.8b.

5.2 Mining Dense Matrices Originating From a

QSAR Model

This set of experiments uses datasets generated from a Quantitative structure–activity

relationship (QSAR) model. QSAR models are used to study the relationship between
32https://www.bbc.com/news/uk-england-london-40147164

5. Experiments 71

et al., 2012]. Every molecule is associated with two scalar fields: at each point of

the tridimensional space, the Lennard-Jones potential models repulsive (at very short

distance) and attractive (at moderate distance) interactions, considering the molecule

is electronically neutral, whereas the Coulomb potential models the interactions due

to the electric charges in the molecule. The potential at a given point is measured

as the interaction between the molecule and a probe, which can be an atom, an ion,

or a functional group. Muscly biclusters are searched in two matrices, corresponding

to the two types of interactions. The rows and columns respectively stand for the 49

molecules and for a finite set of tridimensional points where the potentials (the values

in the matrices) are measured.

Tenório et al. [2017] proposes a new way to sample the tridimensional space

around the molecule. That method takes into consideration the shape of the molecule.

The molecules sharing a same core, they are easily aligned. Given the position of

the atoms in a molecule, the convex hull is computed. The sampled points, hence

the columns, are defined in a spherical coordinate system. Its origin is the center of

the molecule. Every pair (θ, φ) of angles enumerated between 0 and 360 − δ degrees

in steps of δ degrees are associated with seven radial distances. Those distances are

defined from that of the intersection between the surface of the convex hull and the line

passing by the origin with the direction given by (θ, φ). The first radial distance is 2.5Å

greater, because the molecule and the protein it interacts with can hardly be closer.

Every subsequent radial distance increases the previous one by 1Å, until 8.5Å away

from the convex hull, where both interactions become negligible. Tenório et al. [2017]

have shown that way of sampling the space around the 49 molecules supports more

accurate predictions, by regression, of their biological activities than using a Cartesian

grid, as originally proposed by Martins et al. [2009].

Figure 5.9 shows two vectors that each end in a point where the Coulomb potential

and the Lennard-Jones potential are computed. Figure 5.10 represents in blue the

sampled points with a same θ coordinate. The red polygon is the surface of the convex

hull of the molecule.

The number of columns in the matrix depends on δ. Table 5.15 shows the number

of columns for all values of δ that are used during the experiments with this dataset.

Whatever that value, mnon-min = 48, mdistinct = 49 and the resulting matrix is dense.

5.2.2 Results

Muscly patterns are mined in the two matrices (relating to the two types of potential)

that are obtained with δ = 2o. Each matrix therefore has 112,154 columns, in accor-

5. Experiments 72

x

y

z

r

r

φ

θ
δ

Figure 5.9: Two points with the same φ and r coordinates and consecutive θ coordi-
nates, i. e., differing by δ

Figure 5.10: Points with a same θ coordinate sampled around a molecule with δ = 20

dance with Table 5.15. In each experiment the quality functions in Equations 3.1 and

3.2 are employed, hence Biceps for dense matrices is executed twice on each matrix.

5.2.2.1 Muscly Biclusters Graded With the Function in Equation 3.1

Equation 3.1 defines quality function used in this experiment. That quality function

quantifies to what extent a bicluster stands out in the matrix. As a consequence,

muscly patterns are subsets of the molecules for which the potentials at the points in

the support stand out when compared with those of the remaining molecules. More

precisely, at the point relating to any column in the support, any molecule in the muscly

pattern generates a higher potential than any molecule not in the muscly pattern. The

grade is the sum over every such point of the difference between the smallest potential

generated by a molecule in the muscly pattern and the highest potential generated by a

molecule not in in the muscly pattern. It is almost proportional to the approximation

by the midpoint rule of the integral over the region of the space encompassing the

5. Experiments 73

Table 5.15: Number of columns in the matrix for each value chosen for δ

δ n

2 112,154
3 49,574
4 27,734
5 17,654
6 12,194
7 9,114
8 6,944
9 5,334

10 4,298

points of the difference between the min of the scalar fields generated by the molecules

in the pattern and the max of the scalar fields generated by the molecules out of it. It

is “almost” proportional because the voxels centered on points farther away from the

molecules are larger.

The biclusters discovered in the Lennard-Jones dataset are summarized in Fig-

ure 5.11 for all possible values of k. The choice of k, i. e., the minimum number of rows

in a muscly pattern, has a great influence on the qualities of the discovered biclusters.

Figure 5.11b the median quality decreases when k increases and the ratio between the

maximum and minimum increases.

By Definition 2, the highest grade is necessarily nonincreasing with k. Indeed, a

greater k always defines a subset of adequately-sized patterns. Highly graded patterns

in the difference disappear from the output and subsets with lower grades replace them.

Usually, several subsets or supersets per disappearing pattern, as the increase of |M|,

the number of muscly patterns in function of k indicates.

Although a muscly pattern P , or its complement R \ P , containing one single

molecule may receive a high grade q(P), such a pattern is irrelevant for this applica-

tion. It aims to discover larger sets of molecules that may bind with a protein for the

same reason: a low Lennard-Jones potential in the same region around them. Fig-

ure 5.11d shows that with this matrix, a higher k brings smaller supports. At k = 12

or more, there is always at least on muscly pattern supported by one single columns.

Nevertheless, there are always remains muscly patterns with much larger supports.

The analogous results for the Coulomb matrix are shown in Figure 5.12. Fig-

ure 5.12a shows that the number of muscly patterns obtained in this matrix is smaller

than in the Lennard-Jones matrix, whatever k. Besides that, the general conclusions

drawn from the statistical analysis of the collections of muscly patterns in the Lennard-

5. Experiments 74

1 3 5 7 9 11 13 15 17 19 21 23
k

0

1000

2000

3000

4000

5000

6000

|
|

(a) Number of muscly biclusters discovered

1 3 5 7 9 11 13 15 17 19 21 23
k

10−3

10−1

101

103

105

107

q(
P)

Max
Median
Min

(b) Minimum, median and maximum grade

1 3 5 7 9 11 13 15 17 19 21 23
k

100

101

|P
|

Max
Median
Min

(c) Minimum, median and maximum muscly
pattern sizes

1 3 5 7 9 11 13 15 17 19 21 23
k

100

101

102

103
|s
up

p(
P)

|

Max
Median
Min

(d) Minimum, median and maximum support
sizes

Figure 5.11: Statistics about the muscly patterns in the Lennard-Jones matrix in
function of k ∈ {1, . . . , 24}.

Jones matrix for k ∈ {1, . . . , 24} apply to the Coulomb matrix.

Biceps implicitly outputs the complementary patterns of the muscly patterns:

every R\P such that P ⊆ R is a muscly pattern. supp(P) contains the columns where

the values in the rows of R \ P are all strictly smaller than those on the remaining

rows, in P . When smaller values are meaningful, it makes more sense to discuss the

biclusters (P ⊆ R, supp(P)) than to discuss (P, supp(P)). It is the case for the matrices

containing Lennard-Jones potentials: regions of the space where that potential is more

negative are regions of interest. In matrices with Coulomb potentials, the muscly

pattern P is interpreted when supp(P) relates to points around the molecule where

positive potentials are measured and the complementary pattern, P ⊆ R, is interpreted

instead if negative potentials are measured at those same points.

Using domain knowledge, a chemist, João Paulo Ataide Martins, interpreted the

5. Experiments 75

1 3 5 7 9 11 13 15 17 19 21 23
k

0

200

400

600

800

1000

1200

1400

1600

|
|

(a) Number of muscly biclusters discovered

1 3 5 7 9 11 13 15 17 19 21 23
k

10−2

10−1

100

101

102

103

104

105

q(
P)

Max
Median
Min

(b) Minimum, median and maximum grade

1 3 5 7 9 11 13 15 17 19 21 23
k

101

|P
|

Max
Median
Min

(c) Minimum, median and maximum muscly
pattern sizes

1 3 5 7 9 11 13 15 17 19 21 23
k

100

101

102

103

104

|s
up

p(
P)

|)

Max
Median
Min

(d) Minimum, median and maximum support
sizes

Figure 5.12: Statistics about the muscly patterns in the Coulomb matrix in function
of k ∈ {1, . . . , 24}.

16 (respectively, 2) biclusters Biceps outputs given the Lennard-Jones (respectively,

Coulomb) matrix and k = 2. Although he affirms all 18 biclusters are relevant, this

thesis, focusing on computer science, only reports below his interpretation of two bi-

clusters, one per matrix. Only one molecule of the pattern is displayed, but the analysis

is valid for all molecules in said bicluster.

It is worth noticing that the points in the supports of any of the 18 muscly patterns

are clustered in regions. The scalar fields being continuous, it chemically makes sense.

Nothing in the definition of the muscly patterns favors the discovery of whole regions

of the space. That discovery is purely data-driven. A different quality function could

however be designed to focus on biclusters involving clustered points. It may even only

use the potentials in the most significant region of the space to compute the grade.

A total of 16 biclusters were found for the Lennard-Jones matrix. In Figure 5.13a,

bromine atoms (pink), which are big, are responsible for the very negative Lennard-

5. Experiments 76

(a) Lennard-Jones (b) Coulomb

Figure 5.13: For each QSAR matrix, positions of the points in the support of a muscly
pattern, plotted around one of the molecules in the patterns

Jones potentials measured in the region on the right of the Figure. The points of the

support that are in the smaller regions on the left are close to alkyl groups that may

interact with a protein through hydrophobic bonds.

A total of 2 biclusters were found for the Coulomb matrix. Figure 5.13b shows

one of the molecule of a muscly pattern in the Coulomb matrix and the points of

the support. Those points correspond to a region close to the clorine atoms (green)

that may be interacting with amino acids through dipole-dipole interactions or halo-

gen bonds, i. e., polar interactions. The same interpretation holds for the remaining

molecules in the pattern.

5.2.2.2 Muscly Biclusters Graded With the Function in Equation 3.2

In this experiment, the quality function defined in Equation 3.2 grades the adequately-

sized patterns. It only depends on the number of molecules (rows) and points (columns)

in the graded bicluster. For a same number of points, the grade exponentially grows

with how close the number of molecules is to 49
2
= 24.5. That is why, in the following

results, every muscly pattern P , and its complement R \ P , contains at least three

molecules, although Biceps is called with k = 1. Calling it with k = 2 or k = 3

therefore provides the same output.

Tables 5.16 and 5.17 report the size and qualities of the one single bicluster in the

Lennard-Jones matrix and two muscly biclusters in Coulomb matrix. Both the numbers

of molecules and of points are large. Given the choice of quality function, that was

expected. As before, for each dataset, the analysis of single bicluster is provided. Also,

a single molecule per muscly pattern is displayed, but the given explanations are valid

for all its molecules.

5. Experiments 77

(a) Coulomb (b) Lennard-Jones

Figure 5.14: For each QSAR matrix, positions of the points in the support of a muscly
pattern, graded with the quality function in Equation 3.2, plotted around one of the
molecules in the patterns

Figure 5.14b represents the only muscly bicluster in the Lennard-Jones matrix.

The points in the support belong to three distinct regions. Two of them are close to

nitrogen atoms (blue). The last one, in the opposite side of the molecule, may relate

to nitrogen atoms as well as to oxygen atoms (red).

Table 5.16: Muscly biclusters, graded with the quality function in Equation 3.2, in the
Lennard-Jones matrix

P q(P) |P | |supp(P)|

P1 236,091 45 17,273

Figure 5.14a depicts one of the two biclusters in the Coulomb matrix. The points

of the support are all in a region around aromatic rings in the ligand that may be

interacting with an amino acid through π-stacking interactions.

Table 5.17: Muscly biclusters, graded with the quality function in Equation 3.2, in the
Coulomb matrix

P q(P) |P | |supp(P)|

P1 175,693 18 4,698
P2 141,860 46 14,386

According to João Paulo Ataide Martins, although they can be interpreted, the

biclusters Biceps outputs given the quality function in Equation 3.2 are far less relevant

to QSAR than those obtained with the function in Equation 3.1. In particular, there

5. Experiments 78

are too few muscly patterns and their supports cover too much of the space around

the molecules. The function in Equation 3.2 favors large biclusters. It does not take

into account the values in the matrix, i. e., the same muscly patterns are defined in the

matrix where every value is replaced by its ranking in the column. For those reasons,

the lack of relevance and, in particular, of specificity, were expected.

5.2.3 Robustness to Changes of the Sampling Granularity

The smaller δ, the finer the sampling of the space around the molecules and the more

columns in the matrix. The results in Section 5.2.2 are obtained with δ = 2o, a rather

high granularity. It allows to relate the support of a pattern to precise regions of

the space around the molecules. This section studies the robustness of the collection

of muscly biclusters with respect to δ. Larger values of δ are defined, hence grosser

samplings of the space, resulting in matrices with fewer columns. A similarity between

the muscly biclusters in each of those matrices and the muscly biclusters in the matrices

obtained with δ = 2o is reported. The latter biclusters therefore play the role of a

ground truth. Given two patterns in two different matrices, computing how similar

their supports are requires to map every column of the matrix M obtained with the

larger δ to a set of columns of the matrix M
′ obtained with the smaller δ (always 2o

in the experiment). To do so, the Voronoi diagram of the set of points corresponding

to the columns of M is considered. In this way, any column c of M is associated with

a Voronoi cell. c is mapped to the set of columns of M′ that corresponds to points

belonging to the Voronoi cell. Given the regularity of the considered samplings of

the space, the mapping can be formalized more simply. Let C be the set of spherical

coordinates identifying the columns of M, C ′ the analogous set for M′ and δ the angle

step used to define C, the mapping is:

map : C −→ 2C
′

(r′ =, θ, φ) 7→

{

(r′, θ′, φ′) ∈ C ′ | (r = r′) ∧ (θ −
δ

2
≤ θ′ ≤ θ +

δ

2
) ∧ (φ−

δ

2
≤ φ′ ≤ φ+

δ

2
)

}

In order to compare the set of muscly patterns M in a matrix to the set M′ in

the matrix obtained with δ = 2o, the match score in 2.2, proposed by Liu and Wang

[2007], is adapted in Equation 5.2: the columns in the support of any P ∈ M are

5. Experiments 79

replaced by
⋃

c∈supp(P) map(c).

s(M,M′) =
1

|M′|

∑

P ′∈M′

max
P∈M

|P ∩ P ′|+ |
⋃

c∈supp(P) map(c) ∩ supp(P ′)|

|P ∪ P ′|+ |
⋃

c∈supp(P) map(c) ∪ supp(P ′)|
(5.2)

That score averages the similarity, based on the Jaccard index, between every

bicluster discovered in the matrix obtained with δ = 2o and the most similar bicluster

discovered in the other matrix. The value of k is set to 2, the quality function to that

of Equation 3.3.1 with the `1 norm.

Figure 5.15 shows the similarity score tends to decrease, when δ increases by steps

of 1o from 2o to 10o, as grosser samplings of the space around the molecules lead to

smaller similarities. Indeed, the shape of the regions encompassing the points in the

supports are more and more poorly defined. Nevertheless, the similarity remains high

up to δ = 10 degrees, especially for the biclusters dealing with Coulomb potentials.

The similarity measure does not penalize the presence of more muscly patterns than

in the ground truth. However, whatever the tested sampling granularity δ, there are

exactly two muscly patterns in the matrices dealing with Coulomb potentials and at

most two supernumerary (i. e., at most 18) muscly patterns in the matrices whose

values are Lennard-Jones potentials. The small former number, two, explains why, at

δ = 3 degrees in Figure 5.15b, one single molecule missing from one single pattern

with three molecules (in the ground truth) is mostly responsible for a large drop of the

similarity.

2 3 4 5 6 7 8 9 10
δ

0.0

0.2

0.4

0.6

0.8

1.0

s(

,
′)

(a) Lennard-Jones potential

2 3 4 5 6 7 8 9 10
δ

0.0

0.2

0.4

0.6

0.8

1.0

s(

,
′)

(b) Coulomb potential

Figure 5.15: Similarity between the biclusters Biceps discovers in the matrix obtained
with δ = 2o and those in matrices related to grosser samplings of the space (δ > 2o). k
is 2.

5. Experiments 80

5.3 Running Time and Memory Usage

This section analyzes Biceps’ runtime and memory usage. For all datasets, the re-

ported measures are averages over 30 executions of the algorithm.

5.3.1 Performance on the Twitter Matrices

As stated before, the Twitter matrices are sparse. That is why Biceps for sparse

matrices is used. Figure 5.16a shows how long Biceps’ execution takes when given each

of the three Twitter matrices, the quality function in Equation 3.1 and k ∈ {1, . . . , 10}.

Most of the time is spent reading the matrix from the input file, and Algorithm 1’s

last step fills most of the remaining time.

The time required to build the DAG is low: 0.13 seconds for the NYC matrix,

0.10 seconds for the LA matrix and 0.08 seconds for the London matrix, when k = 1.

It decreases when k increases. The peak memory usage, shown in Figure 5.16b and

always reached at the end of the construction of the DAG, is low as well: 84.80 MB for

the NYC matrix, 69.13 MB for the LA matrix and 57.92 MB for the London matrix,

when k = 1. It also decreases with k. To understand those observations, Figure 5.17

helps. In it, the number of adequately-sized patterns |A|, which is equal to the number

of vertices
∑m−k

i=k |Vi| in the DAG, is rather small and decreasing with k. That number,

|A|, depends on the area under the green curve in Figure 5.2 (without the logarithmic

scales). That is why, in Tables 4.1 and 4.2, the complexities associated with the DAG

construction involve mdistinct, which is 41 for the NYC matrix, 25 for the LA matrix

and 22 for the London Matrix (see Table 5.2). The computational requirements for

that step would be significantly higher if Biceps for sparse matrices would not take

advantage of the many repetitions of values in every column of the Twitter matrix: they

would depend on the area under the blue curves in each subfigure in Figure 5.2 and,

in Tables 4.1 and 4.2, the related complexities would involve mnon-min = 2,344 instead

of mdistinct = 40 for the NYC matrix, and mnon-min = 1,860 and mnon-min = 1,532

for the LA and London matrices, respectively. Biceps for dense matrices requires

more than the available 20 GB of RAM to build the DAG from the Twitter matrix,

because it creates far more vertices for assuming few repeated values per column (see

Section 4.3.2) and indexing each vertex takes m bits (see Table 5.2) in a compressed

bitwise trie, instead of at most mnon-min row identifiers (integers) in a hash map.

Given any of the three matrices, Biceps’ overall runtimes are small. Using k = 2,

as in Section 5.1.2, Biceps takes 1.41 seconds (0.56 s disconsidering the parsing) to

list the muscly biclusters in the NYC matrix, 1.03 s (0.5 s disconsidering the parsing)

5. Experiments 81

1 2 3 4 5 6 7 8 9 10
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
un

tim
e

(s
)

Matrix reading
build_DAG
find_best_on_paths
find_best_among_comparable

NYC
LA
London

(a) Runtime

1 2 3 4 5 6 7 8 9 10
k

0

20

40

60

80

M
em

or
y
(M

B
)

NYC
LA
London

(b) Peak memory usage

Figure 5.16: Biceps’ time and space requirements on the Twitter matrices with q as
in Equation 3.1 and k ∈ {1, . . . , 10}.

1 2 3 4 5 6 7 8 9 10
k

0

10000

20000

30000

40000

50000

60000

70000

80000

P
at
te
rn
s

||
||
||

(a) New York City

1 2 3 4 5 6 7 8 9 10
k

0

10000

20000

30000

40000

50000

60000

70000

80000

P
at
te
rn
s

||
||
||

(b) Los Angeles

1 2 3 4 5 6 7 8 9 10
k

0

10000

20000

30000

40000

50000

60000

70000

P
at
te
rn
s

||
||
||

(c) London

Figure 5.17: Decreasing number of candidate patterns along Biceps’ executions on the
Twitter matrices with q as in Equation 3.1 and k ∈ {1, . . . , 10}.

5. Experiments 82

1 2 3 4 5 6 7 8 9 10
k

0

1

2

3

4

5

6

7

R
un

tim
e
(s
)

Matrix reading
build_DAG
find_best_on_paths
find_best_among_comparable

(a) Runtime

1 2 3 4 5 6 7 8 9 10
k

0

25

50

75

100

125

150

175

200

M
em

or
y
(M

B
)

(b) Peak memory usage

Figure 5.18: Biceps’ time and space requirements on the combined Twitter matrix
with q as in Equation 3.1 and k ∈ {1, . . . , 10}.

in the LA matrix, and 0.78 s (0.38 s disconsidering the parsing) in the London matrix.

In an attempt to get larger time and space requirements, the three input files are

concatenated. The resulting matrix has m = 631,532 rows, n = 174,559 columns and

2,575,425 nonzero values. mnon-min is 2,339 and mdistinct = 40. As Figure 5.18 shows,

Biceps still given the quality function in Equation 3.1 and k ∈ {1, . . . , 10}, requires

between 3.46 and 5.092 seconds and between 139 MB and 192 MB to compute the

muscly patterns. For k = 2, as in Section 5.1.2, the muscly patterns receiving the

ten highest grades are present in Table 5.4, 5.6 or 5.8. Among them, {#endorphins,

#endomondo} is top-graded, because locations in all three cities appear in its support.

5.3.2 Performance on the QSAR Matrices

The QSAR matrices are dense. Anyway, for comparison, both the dense and sparse

versions of Biceps are executed, always using the quality function in Equation 3.1.

Figure 5.19 shows their runtimes for all possible values of k. As expected, Biceps for

dense matrices is here faster than the version for sparse matrices. Significantly faster

if the time to read the input from the disk is deducted. Indeed, reading the input

takes most of the time. After the data are read, whatever k, the dense version of

Biceps computes the muscly biclusters in less than 1 second for the Coulomb matrix;

less than 2 seconds for the Lennard-Jones matrix. With Biceps for sparse matrices,

those times are respectively 2.36 seconds and 3.80 seconds, hence around three and two

times greater, respectively. Figure 5.20 shows the memory peak usages of the same

executions. Biceps for sparse matrices requires between 2 and 5 times more space than

the version for dense matrices, which suits the QSAR matrices.

5. Experiments 83

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
k

0

1

2

3

4

5

6

7

R
un

tim
e
(s
)

Matrix reading
build_DAG
find_best_on_paths
find_best_among_comparable

dense
sparse

(a) Coulomb

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
k

0

2

4

6

8

R
un

tim
e
(s
)

Matrix reading
build_DAG
find_best_on_paths
find_best_among_comparable

dense
sparse

(b) Lennard-Jones

Figure 5.19: Runtimes of the dense and sparse versions of Biceps on the QSAR ma-
trices with q as in Equation 3.1 and k ∈ {1, . . . , 10}.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
k

0

100

200

300

400

500

600

M
em

or
y
(M

B
)

sparse
dense

(a) Coulomb

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
k

0

100

200

300

400

500

600

M
em

or
y
(M

B
)

sparse
dense

(b) Lennard-Jones

Figure 5.20: Peak memory usage of the dense and sparse versions of Biceps on the
QSAR matrices with q as in Equation 3.1 and k ∈ {1, . . . , 10}.

5.3.3 Performance on a Gene Expression Matrix

Biceps’ computational requirements on the QSAR matrices are low, as they only

contain 49 rows. Moreover, with δ = 2 degrees, the four seconds to read the matrix

from the hard disk dominate the reported run times. To more meaningfully study

the performances of Biceps for dense matrices, muscly patterns are mined in a larger

dense matrix. A gene expression matrix is chosen, for being an ubiquitous benchmark

dataset to assess the performance of biclustering algorithms. The muscly patterns in

that matrix are not interpreted because we do not have the necessary knowledge in

genomics to do so. Any value in the matrix is the expression level of a gene (a column

among n = 20,531) measured for a patient (a row, among m = 801) affected by a

tumor [Weinstein et al., 2013]33. The matrix is dense: m = 801, mdistinct = 801. That

is why, Biceps for dense matrices is used. In addition to the matrix, it is given the

quality function in Equation 3.1 and k ∈ {50δ + 1 | δ ∈ {0, . . . , 7}}.

In addition to the matrix, Biceps for dense matrices is given the quality function
33https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq

5. Experiments 84

Table 5.18: Numbers of the patterns computed by each of Algorithm 1’s three steps on
the gene expression matrix with q as in Equation 3.1 and k ∈ {50δ + 1 | δ ∈ {0, . . . , 7}}.

k
∑m−k

i=k |Vi| |P| |M|

1 14,043,871 95 2
51 12,363,298 19,484 98

101 10,609,029 19,122 3,644
151 8,847,799 18,827 12,577
201 7,082,452 18,596 16,123
251 5,313,696 18,372 16,899
301 3,543,742 18,157 17,258
351 1,772,153 17,935 17,522

in Equation 3.1 with the `1 norm and k ∈ {1, . . . , 15}. For each execution, Figure 5.21a

shows how long it takes to read the matrix from the hard disk and to complete each of

Algorithm 1’s three steps. Building the DAG requires most of the time. Given Table 4.1

and, for that matrix, m� n, the small duration of the last step may come as a surprise.

The reported time complexity is actually very pessimistic: in practice, for each pattern

Algorithm 5 tests, reaching its adequately-sized subpatterns and superpatterns only

requires traversing a small proportion of the DAG, not all of it as in the worst-case

scenario.

Figure 5.21b depicts the peak memory consumption (always reached at the end of

the construction of the DAG) in function of k. In the tested settings, Biceps for dense

matrices takes about two minutes and less than 5.3 GB of RAM to list the muscly

patterns. In contrast, Biceps for sparse matrices requires more than the available

20 GB of RAM. That is mainly because, for dense matrices, using hash maps for

the vertex indices, which dominate the space complexity, is much worse than using

compressed bitwise tries.

Table 5.18 reports
∑m−k

i=k |Vi|, |P| and |M|, i. e., the number of patterns at the

output of each of Algorithm 1’s three steps. Given the first improvement Section 4.3.2

presents, the space the DAG occupies is essentially proportional to its number of ver-

tices
∑m−k

i=k |Vi|. Since k � m, its slow decreasing is unsurprising. It explains why the

time to build the DAG and the memory usage slowly decrease too. With k = 100, they

are respectively 60.91 seconds and 4.06 GB. With k = 200, 41.21 seconds and 2.73 GB.

Biceps for sparse matrices variation of the algorithm causes the memory usage

to exceed the 20 GB available. The reason for that is that, the data, especially the

bitsets in the tries used in the sparse version, dominate the memory requirements, not

the structure to hold them.

5. Experiments 85

1 51 101 151 201 251 301 351
k

0

20

40

60

80

100

120

R
un

tim
e
(s
)

Matrix reading
build_DAG
find_best_on_paths
find_best_among_comparable

(a) Runtime

1 51 101 151 201 251 301 351
k

0

1

2

3

4

5

M
em

or
y
(G

B
)

(b) Peak memory usage

Figure 5.21: Biceps’ time and space requirements on the gene expression matrix with
q as in Equation 3.1 and k ∈ {50δ + 1 | δ ∈ {0, . . . , 7}}.

5.4 Summary

This Chapter presented three sets of experiments. The first set of experiments was

conducted on sparse matrices of Twitter terms. The quality function in Equation 3.1

was used first, and then adapted to become the tailored quality function presented

in Equation 5.1, which better takes explores the underlying event detection charac-

teristic presented in the results for this dataset. The second set of experiments was

conducted on dense matrices generated from a Quantitative structure–activity rela-

tionship (QSAR) model. For this experiment, the quality functions presented in both

Equation 3.1 and Equation 3.2 were used. The results were analyzed by a chemist,

to ensure the discovered biclusters were relevant. Finally, the third set of experiments

explored the runtime and memory usage performance of the algorithm, in both dense

and sparse matrices.

Chapter 6

Conclusion

In this work, we proposed a new type of bicluster, namely the muscly bicluster. In any

of its columns, the values in the rows of the bicluster must be all strictly greater than

those in the rows absent from it. Moreover, the rows of the bicluster must not be a

subset or a superset of the rows of another bicluster of greater or equal quality. Any

computable function can be chosen so assign qualities to the biclusters. In that respect,

the proposed definition is generic. This type of bicluster, while similar to existing

classifications of biclusters, had not yet been explored in the literature. In addition to

the defining the muscly biclusters, the thesis has detailed an algorithm, namely Biceps,

to efficiently discover them. Biceps relies on dynamic programming. It is complete,

which brings certainty: Biceps exhaustively lists all the muscly biclusters, and only

them. The thesis has described two versions of Biceps, one for dense matrices and one

for sparse matrices. They mainly differ in their choices of data structures. The time

complexity of either version is subquadratic in mnon-min, where mnon-min is the maximal

number of non-minimal values in a column, hence essentially the total number of rows

if the matrix is dense, but possibly much less if it is sparse.

The simplicity and the genericity of the definition make it useful in various ap-

plications dealing with the analysis of dense or sparse matrices. The experimental

chapter has shown it, by interpreting biclusters discovered in datasets originating from

very different domains. The biclusters discovered by Biceps were relevant to the ap-

plications in which the algorithm was used. Furthermore, the speed to compute the

biclusters and the completeness of the output are great advantages derived from its

polynomial nature. In the first set of experiments, geolocated and timestamped hash-

tags and user mentions published on Twitter from New York City, Los Angeles and

London have been analyzed. Using a general-purpose quality function, the top-graded

biclusters have been found to mostly indicate events happening in those cities. That

86

6. Conclusion 87

has motivated a modification of the quality function that penalizes biclusters that

are widespread in time. After the modification, essentially all the well-graded muscly

biclusters relate to events, hence an example of how Biceps is adaptable to specific

pattern discovery. The second set of experiments has dealt with a very different domain

of application, chemistry, or more precisely, Quantitative structure–activity relation-

ship. An expert has found the muscly biclusters in matrices containing either Coulomb

or Lennard-Jones potential to be relevant. Moreover, they have been shown robust

to changes in the granularity with which the space around the molecules is sampled.

The last set of experiments has focused on Biceps’ time and memory consumption

using the Twitter and QSAR matrices, as well as an additional large and dense matrix.

Biceps’ low theoretical requirements have been shown practical too, as long as the

adequate version, for either spare or dense matrices, is chosen.

The subquadratic complexity and the limited size of the output, which cannot

reach that of the input, enable large-scale uses. Those uses are still largely to be

invented. The article has not much explored the possibilities that the genericity of the

definition opens up. Since any computable function can grade the biclusters, it may

take into account information not necessarily present in the mined matrix and process

it in an arbitrary complex way, maybe tailored to the particularities of the application.

For example, in a supervised setting, where the rows or the columns of the matrix

are either partitioned into classes (for instance the cities in the Twitter matrix) or

associated with the values of a target variable (for instance quantifying the biological

activities of the molecules in a QSAR matrix), the function could favor biclusters that

appear as relevant features for classification or regression.

The completeness of the collection looks particularly useful for future work that

would post-process Biceps’ output. In particular, it may help the computation of

less constrained patterns, perhaps of every muscly pattern P with a δ-noise-tolerant

support, which could be every column of the matrix where the top-(|P | + δ) values

include all those in P ’s row. To feed biclusters to a larger system, several collections

obtained with different minimal numbers of rows, k, may be desired. Biceps’ low time

requirements and the fact that its first step would only have to run once facilitate such

future usages.

Bibliography

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in

large databases. In Proceedings of the 20th International Conference on Very Large

Data Bases, VLDB ’94, page 487–499, San Francisco, CA, USA. Morgan Kaufmann

Publishers Inc.

Ayadi, W., Elloumi, M., and Hao, J.-K. (2009). A biclustering algorithm based on a

Bicluster Enumeration Tree: application to DNA microarray data. BioData Mining,

2(1):9. ISSN 1756-0381.

Ben-Dor, A., Chor, B., Karp, R., and Yakhini, Z. (2003). Discovering Local Structure

in Gene Expression Data: The Order-Preserving Submatrix Problem. Journal of

Computational Biology, 10(3-4):373--384. ISSN 1066-5277.

Benczúr, A., Bíró, I., Brendel, M., Csalogány, K., Daróczy, B., and Siklósi, D. (2007).

Cross-modal retrieval by text and image feature biclustering. In Nardi, A., Peters,

C., and Ferro, N., editors, Working Notes for the CLEF 2007 Workshop, volume

1173, Budapest, Hungary. ISSN 1613-0073.

Bendimerad, A., Plantevit, M., Robardet, C., and Amer-Yahia, S. (2019). User-driven

geolocated event detection in social media. IEEE Transactions on Knowledge and

Data Engineering, 33(2):796--809. ISSN 1041-4347.

Burdick, D., Calimlim, M., and Gehrke, J. (2001). MAFIA: a maximal frequent itemset

algorithm for transactional databases. In Proceedings 17th International Conference

on Data Engineering, pages 443--452, Heidelberg, Germany. IEEE Comput. Soc.

ISSN 1063-6382.

Busygin, S., Jacobsen, G., Kramer, E., Krämer, E., and Ag, C. (2002). Double Conju-

gated Clustering Applied to Leukemia Microarray Data. In Proceedings of the 2nd

SIAM ICDM, Workshop on clustering high dimensional data.

88

Bibliography 89

Busygin, S., Prokopyev, O., and Pardalos, P. M. (2008). Biclustering in data mining.

Computers & Operations Research, 35(9):2964--2987. ISSN 0305-0548.

Cheng, K.-O., Law, N.-F., Siu, W.-C., and Liew, A. (2008). Identification of coherent

patterns in gene expression data using an efficient biclustering algorithm and parallel

coordinate visualization. BMC Bioinformatics, 9(1):210. ISSN 1471-2105.

Cheng, Y. and Church, G. M. (2000). Biclustering of Expression Data. Proceedings.

International Conference on Intelligent Systems for Molecular Biology, 8:93--103.

ISSN 1553-0833.

Cheung, L., Cheung, D. W., Kao, B., Yip, K. Y., and Ng, M. K. (2007). On mining

micro-array data by order-preserving submatrix. International Journal of Bioinfor-

matics Research and Applications, 3(1):42--64.

Chun Tang, Li Zhang, Aidong Zhang, and Ramanathan, M. (2001). Interrelated two-

way clustering: an unsupervised approach for gene expression data analysis. In

Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bio-

engineering (BIBE 2001), pages 41--48. IEEE. ISSN 0250-4162.

Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph

partitioning. In Proceedings of the seventh ACM SIGKDD international conference

on Knowledge discovery and data mining - KDD ’01, pages 269--274, New York,

New York, USA. ACM Press.

Dhillon, I. S., Mallela, S., and Modha, D. S. (2003). Information-theoretic co-clustering.

In Proceedings of the ninth ACM SIGKDD international conference on Knowledge

discovery and data mining - KDD ’03, page 89, New York, New York, USA. ACM

Press.

Ferreira, M. M. C. (2002). Multivariate QSAR. Journal of the Brazilian Chemical

Society, 13(6):742--753. ISSN 0103-5053.

Gao, B., Liu, T.-y., and Ma, W.-y. (2006). Star-Structured High-Order Heterogeneous

Data Co-clustering Based on Consistent Information Theory. In Sixth International

Conference on Data Mining (ICDM’06), pages 880--884. IEEE. ISSN 1550-4786.

Getz, G., Levine, E., and Domany, E. (2000). Coupled two-way clustering anal-

ysis of gene microarray data. Proceedings of the National Academy of Sciences,

97(22):12079--12084. ISSN 0027-8424.

Bibliography 90

Gouda, K. and Zaki, M. (2001). Efficiently mining maximal frequent itemsets. In

Proceedings 2001 IEEE International Conference on Data Mining, pages 163--170.

IEEE Comput. Soc. ISSN 1550-4786.

Goyal, A., Ren, R., and Jose, J. M. (2010). Feature Subspace Selection for Efficient

Video Retrieval. In Boll, S., Tian, Q., Zhang, L., Zhang, Z., and Chen, Y.-P. P., ed-

itors, Advances in Multimedia Modeling, pages 725--730. Springer Berlin Heidelberg,

Berlin, Heidelberg.

Greco, G., Guzzo, A., and Pontieri, L. (2007). An Information-Theoretic Framework

for Process Structure and Data Mining. International Journal of Data Warehousing

and Mining, 3(4):99--119. ISSN 1548-3924.

Gu, J. and Liu, J. S. (2008). Bayesian biclustering of gene expression data. BMC

Genomics, 9(Suppl 1):S4. ISSN 1471-2164.

Harada, K., Kubo, H., Tanaka, A., and Nishioka, K. (2012). Identification of oxa-

zolidinediones and thiazolidinediones as potent 17β-hydroxysteroid dehydrogenase

type 3 inhibitors. Bioorganic & Medicinal Chemistry Letters, 22(1):504--507. ISSN

0960-894X.

Hartigan, J. A. (1972). Direct Clustering of a Data Matrix. Journal of the American

Statistical Association, 67(337):123--129. ISSN 0162-1459.

Hofmann, T. and Puzieha, J. (1999). Latent class models for collaborative filtering. In

IJCAI International Joint Conference on Artificial Intelligence. ISSN 1045-0823.

Jaccard, P. (1912). THE DISTRIBUTION OF THE FLORA IN THE ALPINE

ZONE.1. New Phytologist, 11(2):37--50. ISSN 0028-646X.

Kluger, Y. (2003). Spectral Biclustering of Microarray Data: Coclustering Genes and

Conditions. Genome Research, 13(4):703--716. ISSN 1088-9051.

Lazzeroni, L. and Owen, A. (2002). Plaid Models for Gene Expression Data. Statistica

Sinica, 12(1):61--86. ISSN 1017-0405.

Liu, J. and Wang, W. (2003). OP-Cluster: Clustering by Tendency in High Dimensional

Space. In Third IEEE International Conference on Data Mining, pages 187--194.

IEEE Comput. Soc. ISSN 1550-4786.

Liu, X. and Wang, L. (2007). Computing the maximum similarity bi-clusters of gene

expression data. Bioinformatics, 23(1):50--56. ISSN 1367-4803.

Bibliography 91

Liu, Z., Xue, Y., Li, M., Ma, B., Zhang, M., Chen, X., and Hu, X. (2017). Discovery of

deep order-preserving submatrix in dna microarray data based on sequential pattern

mining. International Journal of Data Mining and Bioinformatics, 17(3):217--237.

Madeira, S. and Oliveira, A. (2004). Biclustering algorithms for biological data analysis:

a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics,

1(1):24--45. ISSN 1545-5963.

Martins, J. P. A., Barbosa, E. G., Pasqualoto, K. F. M., and Ferreira, M. M. C. (2009).

LQTA-QSAR: A New 4D-QSAR Methodology. Journal of Chemical Information and

Modeling, 49(6):1428--1436. ISSN 1549-9596.

Mirkin, B. (1996). Mathematical Classification and Clustering, volume 11 of Nonconvex

Optimization and Its Applications. Springer US, Boston, MA. ISBN 978-1-4613-8057-

3.

Murali, T. M. and Kasif, S. (2003). Extracting Conserved Gene Expression Motifs

From Gene Expression Data. Pacific Symposium on Biocomputing, 8:77--88. ISSN

2335-6928.

Padilha, V. A. and Campello, R. J. G. B. (2017). A systematic comparative evaluation

of biclustering techniques. BMC Bioinformatics, 18(1):55. ISSN 1471-2105.

Peeters, R. (2003). The maximum edge biclique problem is NP-complete. Discrete

Applied Mathematics, 131(3):651--654. ISSN 0166-218X.

Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hen-

nig, L., Thiele, L., and Zitzler, E. (2006). A systematic comparison and evaluation

of biclustering methods for gene expression data. Bioinformatics, 22(9):1122--1129.

ISSN 1460-2059.

Rege, M., Dong, M., and Fotouhi, F. (2006). Co-clustering Documents and Words

Using Bipartite Isoperimetric Graph Partitioning. In Sixth International Conference

on Data Mining (ICDM’06), pages 532--541. IEEE. ISSN 1550-4786.

Segal, E., Taskar, B., Gasch, A., Friedman, N., and Koller, D. (2001). Rich probabilistic

models for gene expression. Bioinformatics, 17(Suppl 1):S243–S252. ISSN 1367-4803.

Serin, A. and Vingron, M. (2011). DeBi: Discovering Differentially Expressed Biclusters

using a Frequent Itemset Approach. Algorithms for Molecular Biology, 6(1):18. ISSN

1748-7188.

Bibliography 92

Sheng, Q., Moreau, Y., and De Moor, B. (2003). Biclustering microarray data by Gibbs

sampling. Bioinformatics, 19(Suppl 2):ii196–ii205. ISSN 1367-4803.

Sim, K., Gopalkrishnan, V., Chua, H. N., and Ng, S.-K. (2009). MACs: Multi-Attribute

Co-clusters with High Correlation Information. In Buntine, W., Grobelnik, M.,

Mladeniç, D., and Shawe-Taylor, J., editors, Machine Learning and Knowledge Dis-

covery in Databases, pages 398--413, Berlin, Heidelberg. Springer Berlin Heidelberg.

Sun, X., Hou, Q., Ren, Z., Zhou, K., and Guo, B. (2011). Radiance Transfer Bi-

clustering for Real-Time All-Frequency Biscale Rendering. IEEE Transactions on

Visualization and Computer Graphics, 17(1):64--73. ISSN 1077-2626.

Tanay, A., Sharan, R., and Shamir, R. (2002). Discovering statistically significant

biclusters in gene expression data. Bioinformatics, 18(Suppl 1):S136–S144. ISSN

1367-4803.

Tanay, A., Sharan, R., and Shamir, R. (2005). Biclustering Algorithms: A Survey.

Handbook of Computational Molecular Biology, 9(May):1--20.

Teng, L. and Chan, L. (2008). Discovering Biclusters by Iteratively Sorting with

Weighted Correlation Coefficient in Gene Expression Data. Journal of Signal Pro-

cessing Systems, 50(3):267--280. ISSN 1939-8018.

Tenório, J. V. S., Cerf, L., and Ataide, J. P. (2017). A new approach for sampling

descriptors in 4D-QSAR methodology using computational geometry. In SBQT’17:

Atos do XIX Simpósio Brasileiro de Química Teórica, pages 4--5.

Trapp, A. C., Li, C., and Flaherty, P. (2018). Recovering all generalized order-

preserving submatrices: new exact formulations and algorithms. Annals of Oper-

ations Research, 263(1):385--404.

Ungar, L. H. and Foster, D. P. (1998). A Formal Statistical Approach to Collabora-

tive Filtering. Proceedings of the conference on automated learning and discovery

(CONALD’98).

Veroneze, R. (2016). Enumerating all maximal biclusters in numerical datasets. PhD

dissertation, Universidade Estadual de Campinas.

Wang, H., Wang, W., Yang, J., and Yu, P. S. (2002). Clustering by pattern similarity in

large data sets. In Proceedings of the 2002 ACM SIGMOD international conference

on Management of data - SIGMOD ’02, page 394, New York, New York, USA. ACM

Press. ISSN 0730-8078.

Bibliography 93

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A.,

Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J. M. (2013). The Cancer Genome

Atlas Pan-Cancer analysis project. Nature Genetics, 45(10):1113--1120. ISSN 1061-

4036.

Xue, Y., Li, T., Liu, Z., Pang, C., Li, M., Liao, Z., and Hu, X. (2018). A new approach

for the deep order preserving submatrix problem based on sequential pattern mining.

International Journal of Machine Learning and Cybernetics, 9(2):263--279.

Xue, Y., Li, T., Zhang, H., Wu, X., Li, M., and Hu, X. (2016). An apriori-based al-

gorithm for mining semi-order-preserving submatrix. International Journal of Com-

putational Science and Engineering, 13(1):66--79.

Xue, Y., Li, Y., Deng, W., Li, J., Tang, J., Liao, Z., and Li, T. (2014). Mining order-

preserving submatrices based on frequent sequential pattern mining. In Proceedings

of the 3rd International Conference on Health Information Science, pages 184--193.

Xue, Y., Liao, Z., Li, M., Luo, J., Kuang, Q., Hu, X., and Li, T. (2015). A new ap-

proach for mining order-preserving submatrices based on all common subsequences.

Computational and Mathematical Methods in Medicine, 2015.

Yang, J., Wang, H., Wang, W., and Yu, P. (2003). Enhanced biclustering on expres-

sion data. In Third IEEE Symposium on Bioinformatics and Bioengineering, 2003.

Proceedings., pages 321--327, Bethesda, MD, USA. IEEE Comput. Soc.

Yang, J., Wang, W., Wang, H., and Yu, P. (2002). δ-Clusters: Capturing Subspace

Correlation in a Large Data Set. In Proceedings 18th International Conference on

Data Engineering, pages 517--528, San Jose, CA, USA. IEEE Comput. Soc. ISSN

0305-0548.

Zhao, H., Wee-Chung Liew, A., Z. Wang, D., and Yan, H. (2012). Biclustering Analysis

for Pattern Discovery: Current Techniques, Comparative Studies and Applications.

Current Bioinformatics, 7(1):43--55. ISSN 1574-8936.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	2.1 Biclustering and Its Applications
	2.2 Bicluster Structures
	2.3 Bicluster Types
	2.3.1 Order-Preserving Submatrices (OPSMs)
	2.3.2 Order Preserving Clusters (OP-Clusters)

	2.4 Bicluster Algorithms Based on Exhaustive Enumeration
	2.5 Biclustering Validation
	2.5.1 Supervised Validation
	2.5.2 Unsupervised Validation

	2.6 Summary

	3 A New Type of Bicluster Evaluated Through a Generic Function
	3.1 Pattern and Support
	3.2 Adequately-sized Patterns
	3.3 Bicluster Quality
	3.3.1 Example of a Natural Quality Function
	3.3.2 Example of an Alternative Quality Function

	3.4 Problem Statement

	4 Biceps: An Algorithm to Discover Muscly Patterns
	4.1 Filtering the Muscly Patterns in Three Steps
	4.2 Filtering the Muscly Patterns in Subquadratic Time
	4.2.1 First Step: The build_DAG Function
	4.2.2 Second Step: The find_best_on_paths Function
	4.2.3 Third Step: The find_best_among_comparable Function

	4.3 Improvements
	4.3.1 Improvement for Dense and Sparse Matrices
	4.3.2 Improvements for Dense Matrices
	4.3.3 Improvements for Sparse Matrices

	4.4 Summary

	5 Experiments
	5.1 Mining Sparse Matrices Originating From Twitter
	5.1.1 Dataset
	5.1.2 Results Using the Quality Function in Equation 3.1
	5.1.3 Results Using a Quality Function Tailored to the Search of Events

	5.2 Mining Dense Matrices Originating From a QSAR Model
	5.2.1 Dataset
	5.2.2 Results
	5.2.3 Robustness to Changes of the Sampling Granularity

	5.3 Running Time and Memory Usage
	5.3.1 Performance on the Twitter Matrices
	5.3.2 Performance on the QSAR Matrices
	5.3.3 Performance on a Gene Expression Matrix

	5.4 Summary

	6 Conclusion
	Bibliography

