
RAID: TOOL SUPPORT FOR

REFACTORING-AWARE CODE REVIEWS

RODRIGO FERREIRA DE BRITO

RAID: TOOL SUPPORT FOR

REFACTORING-AWARE CODE REVIEWS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Marco Túlio de Oliveira Valente

Belo Horizonte

Agosto de 2021

RODRIGO FERREIRA DE BRITO

RAID: TOOL SUPPORT FOR

REFACTORING-AWARE CODE REVIEWS

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Marco Túlio de Oliveira Valente

Belo Horizonte

August 2021

��������	
������������������������� �!"#$�%&'()*�+,-�./0�123456� 7589:;<=�>� ?�@AB�C�D�EF�GHIJKLMNOPQ�HRS�TU�V�W�XYZ[\]̂_̀ abcdef�ghij�klmno�pqrstuvw�xyz�{|}�~�� �¡ ������¢�¢�¢£����¤�¥�¤�����¦�¢���§�£ ��������§̈ �© �����ª«£����¤�¥�¤������¤£�§�¢�ª«£�¬®̄ °�±²�°³́µ°¶·�¹̧º»¼�½¾¾¿�ÀÁÂÂ¾ÃÄ�Å¾Ã�̧ÆÇÈÄ¾ÃÉÊËÌ¹ÍÎÃÆ�Ï¾ÐÆ�̧ÆÑÉÆÍÒ�ÓÔÕÓÖ×Ô�ØÙÓÓÙÖÓÚ�ÕÙ�ÛÓÖÜÔ��ÝÞÞßàáâãäå�æßçèæÝæâ�ß�âéàåêâæâ�éßëâ�ìâèíâ�ßîâïÝèâæåàâ�íåèÞáÝáðñæâ�éßëåÞ��ßèòåàßÞ��§�����������¢�	
����£	��������	���©£àÝßèáâæåà��ßéâàáâïßèáå�æß�¤Ý�èíÝâ�æâ�¤åïéðáâãäå�©��� �§�������������£	�������������ßéâàáâïßèáå�æß��è�àï�áÝíâ��éëÝíâæâ����� ��§�����������¤���	����������ßéâ�áâïßèáå�æß�¤Ý�èíÝâ�æâ�¤åïéðáâãäå�©��� ��ßëå��åàÝ�åèáß�� !�æß��"åÞáå�æß� ! #��

Acknowledgments

Agradeço aos meus familiares, amigos e professores! A presença de vocês foi indispen-

sável para a realização desse sonho. Agradeço em especial:

A Deus, por permitir a conclusão desta etapa.

Aos meus familiares, pelo incentivo durante este curso de mestrado. Espe-

cialmente, aos meus pais Bernadete e José, e à minha irmã Aline, por todo o carinho,

apoio e conselhos recebidos.

Aos meus amigos, pela amizade, suporte e por todos os momentos incríveis

que passamos juntos. Em especial aos meus amigos do Aserg, pela parceria, amizade

e aprendizado.

Aos meus companheiros de trabalho da Studio Sol, pelo companheirismo

e contribuição no meu crescimento profissional e pessoal.

Ao meu orientador, Prof. Marco Tulio Valente, pela paciência, confiança e

todos os ensinamentos passados durante esse período.

Aos meus professores, pelo incentivo e conhecimento compartilhado durante

o mestrado, graduação e ensino básico.

Aos membros da banca, Prof. Ingrid Nunes e Prof. André Hora, pela

disponibilidade em participar deste trabalho.

Ao DCC/UFMG, FAPEMIG e CNPq, pelo suporte financeiro e acadêmico.

vi

“Great things are done by a series of small things brought together.”

(Vincent Van Gogh)

vii

Resumo

Revisão do código é uma importante prática no desenvolvimento de software moderno.

Além de detectar falhas, revisão de código contribui para a qualidade do código e

transferência de conhecimento. No entanto, revisão do código leva tempo e exige uma

análise detalhada e demorada de diffs textuais. Particularmente, detectar refatorações

durante as revisões não é uma tarefa trivial, uma vez que as refatorações não são

representadas em diffs. Nesta dissertação, nós inicialmente estendemos RefDiff – uma

ferramenta de detecção de refatoração multilinguagem - para identificar refatorações

na linguagem de programação Go. Nossa extensão—chamada RefDiff4Go—detecta 13

tipos de refatoração e obteve uma precisão de 92% e um recall de 80% em uma avali-

ação com seis projetos de código aberto populares. Em seguida, como nossa principal

contribuição, nós apresentamos RAID: uma ferramenta de diff inteligente que identi-

fica atividades de refatoração e instrumenta os diffs textuais—particularmente, os diffs

fornecidos pelo GitHub—com informações de atividades de refatoração. Nosso objetivo

é aliviar o esforço cognitivo associado a revisões de código, detectando automaticamente

as operações de refatoração incluídas nas solicitações de pull requests. Além de propor

uma arquitetura para o RAID, implementamos um plug-in para o navegador Chrome

que suporta nossa solução. Também avaliamos RAID em um experimento de campo

por três meses, quando oito desenvolvedores profissionais usaram nossa ferramenta em

quatro projetos Go. Concluímos que RAID reduz o esforço cognitivo necessário para

detectar e revisar atividades de refatoração em diffs textuais. Particularmente, RAID

também reduz o número de linhas necessárias para revisar tais operações. Por exemplo,

o número médio de linhas a serem revisadas diminuiu de 14,5 para 2 linhas no caso de

refatorações envolvendo movimentação e de 113 para 55 linhas no caso de extrações.

Palavras-chave: Refatoração, Refactoring-Aware, Revisão de Código, Diffs Textuais.

viii

Abstract

Code review is a key practice in modern software development. Besides detecting

bugs, code review contributes to code quality and knowledge transfer. However, code

review takes time and demands detailed and time-consuming analysis of textual diffs.

Particularly, detecting refactorings during reviews is not a trivial task, since refactor-

ings are not represented in diffs. In this dissertation, we initially extended RefDiff—a

multi-language refactoring detection tool—to identify refactorings in the Go program-

ming language. Our extension—called RefDiff4Go—detects 13 refactoring types and

achieved 92% of precision and 80% of recall in an evaluation with six well-known open

source projects. Then, as our key contribution, we proposed RAID: a refactoring-

aware and intelligent diff tool for instrumenting textual diffs—particularly, the ones

provided by GitHub—with information about refactorings. Our goal is to alleviate the

cognitive effort associated with code reviews, by automatically highlighting refactoring

operations included in pull requests. Besides proposing an architecture for RAID, we

implemented a Chrome browser plug-in that supports our solution. We also evaluated

RAID in a field experiment for three months, when eight professional developers used

our tool in four Go projects. We concluded that RAID can reduce the cognitive effort

required for detecting and reviewing refactorings in textual diff. Particularly, RAID

reduces the number of lines required for reviewing such operations. For example, the

median number of lines to be reviewed decreased from 14.5 to 2 lines in the case of

move refactorings and from 113 to 55 lines in the case of extractions.

Palavras-chave: Refactoring, Refactoring-Aware Code Review, Code Review, Tex-

tual Diffs.

ix

List of Figures

1.1 Example of Move Function in a textual based diff 2

1.2 Example of Move Function in a refactoring-aware based diff 3

2.1 Example of Go file . 7

2.2 Example of rename and extract function 9

2.3 Flow of a continuous integration pipeline 10

3.1 Refdiff4Go architecture . 16

3.2 Example of call graph representation . 17

3.3 Example of type definition with associated method 18

3.4 Example of Inline Function from Kubernetes project 23

3.5 Example of Move Function refactoring in Hugo Project 24

3.6 Execution time per commit (logarithmic scale) 28

3.7 Execution time of RefDiff4Go by project 28

4.1 Default diff including a Move Function refactoring (m1 is moved from A.java

to B.java) . 31

4.2 Diff instrumented by RAID (an “R” button is added to the diff indicating

the function is the part of a refactoring) 33

4.3 Example of diff including a Move Function, as presented by RAID (this

window is opened after clicking in the “R” button shown in Figure 4.2) . . 34

4.4 Example of window documenting an Extract Function, as presented by

RAID. We can see the lines changes in the original method (top) and also

the code of the extracted method (bottom) 34

4.5 RAID adds a button in the toolbar providing easy access to the list of

refactorings in a pull request . 35

4.6 RAID main components and execution flow 36

4.7 RAID GitHub Action (RGA) modules and workflow 37

4.8 Number of refactorings per pull request . 39

x

4.9 Most frequent refactorings . 40

4.10 Execution time per project . 41

4.11 Most common refactorings with clicks in the “R” buttons 42

4.12 Ratio of clicks in “R" buttons, i.e., number of times the button received a

click divided by number of times it was shown 43

4.13 Number of clicks on the left and right buttons provided by RAID 44

4.14 Time spent reviewing the information provided by RAID (per refactoring

operation) . 44

4.15 Diff Code Churn (DCC) when reviewing Move Function refactorings, when

using RAID and GitHub diff . 46

4.16 Distance of Extract Method refactorings, i.e., initial line of the extracted

method minus initial line of the source method, in absolute terms 47

4.17 Diff Code Churn when reviewing Extract Function refactorings, when using

GitHub Diff and RAID . 47

xi

List of Tables

2.1 Refactorings supported by RefDiff . 8

3.1 Refactorings supported by RefDiff4Go . 18

3.2 Open source projects used in evaluation 19

3.3 Number of refactorings per project . 20

3.4 Number of commits used for evaluating of precision an recall 22

3.5 Evaluation results by refactoring type . 23

3.6 Refactorings compatibility considered in the evaluation 25

3.7 Comparison of results between Refdiff4Go and Java 25

3.8 Comparison of results between Refdiff4Go and JavaScript 26

3.9 Comparison of results between Refdiff4Go and C 27

4.1 Refactorings detected by RefDiff/RAID . 35

4.2 Number of pull requests, commits, and lines of code by project 38

4.3 Distance of Move Function refactorings, i.e., line of the moved code after

the operation minus line of the code before the operation 45

xii

Contents

Acknowledgments vi

Resumo viii

Abstract ix

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.2 Proposed Work . 3

1.3 Contributions . 4

1.4 Publications . 4

1.5 Outline of the Dissertation . 5

2 Background and Related Work 6

2.1 RefDiff . 6

2.2 Go . 9

2.3 GitHub Actions . 9

2.4 Related Work . 10

2.4.1 Detection of Refactoring Activities 10

2.4.2 Code Review . 12

2.4.3 Refactoring-Aware Code Review 13

2.5 Final Remarks . 14

3 RefDiff4Go: Detecting Refactorings in Go 15

3.1 Introduction . 15

3.2 RefDiff4Go . 16

xiii

3.3 Evaluation . 18

3.3.1 Evaluation Design . 18

3.3.2 Computing Precision . 19

3.3.3 Computing Recall . 20

3.4 Results . 22

3.4.1 Comparison with Java, JavaScript, and C 24

3.4.2 Java . 25

3.4.3 JavaScript . 26

3.4.4 C . 26

3.4.5 Execution Time . 27

3.5 Threats to Validity . 29

3.6 Final Remarks . 29

4 RAID: Refactoring-Aware Code Reviews 30

4.1 Introduction . 30

4.2 RAID in a Nutshell . 32

4.3 RAID Architecture . 35

4.3.1 RAID GitHub Action (RGA) 36

4.3.2 RAID Chrome Extension (RCE) 37

4.3.3 RAID Server . 38

4.4 Field Experiment . 38

4.4.1 Methodology . 38

4.4.2 Research Questions . 40

4.4.3 Experiment Results . 41

4.5 Threats to Validity . 48

4.6 Final Remarks . 49

5 Conclusion 50

5.1 Overview and Contributions . 50

5.2 Comparison with Existing Tools and Studies 50

5.3 Limitations . 51

5.4 Future Work . 52

Bibliography 53

xiv

Chapter 1

Introduction

1.1 Motivation

Refactoring is a key software development practice that seeks to improve the internal

structure of the code without changing its external behavior [Fowler, 2018]. Recent

studies show that refactoring is often used in high-quality software systems and plays an

important role in supporting maintenance and code evolution activities [Murphy-Hill

et al., 2009; Murphy-Hill et al., 2012].

In this way, the identification of refactorings has a key relevance for researchers

intended to conduct empirical studies, providing important information about source

code transformations. For example, refactoring data is crucial to understand key as-

pects of software evolution. Therefore, there is a large body of studies on the moti-

vations to perform refactoring operations [Silva et al., 2016; Mazinanian et al., 2017;

Tsantalis et al., 2013; Pantiuchina et al., 2020], on the challenges of refactoring [Kim

et al., 2012, 2014], impact on software quality and evolution [Bibiano et al., 2019; Cha-

parro et al., 2014; Lacerda et al., 2020], and security [Abid et al., 2020; Mumtaz et al.,

2018; amd Kensuke Tokoda, 2008].

Refactoring activities also impact software development practices, such as code

review. In a study presented by Ge et al. [2017]. with 35 developers, the authors

show that 95% of participants consider that refactorings can cause delays in review

of non-refactoring changes. In addition, 91% of respondents mention that automatic

identification of refactorings could help on code review activities.

However, existing diff tools do not automatically detect refactorings in their re-

sults. In Figure 1.1, we have a refactoring that moves a function m5() from file A.java

to file B.java. This move is represented in current state-of-the-practice diff tools as

a set of lines deleted (−) from A.java and by a set of lines added (+) to B.java.

1

1. Introduction 4

• We conducted a field experiment to assess our refactoring-aware code review

solution and to collect metrics to analyze the cognitive effort reduction achieved

when using this solution.

• We conducted a post-experiment survey to understand the participants’ percep-

tion about the use of refactoring-aware tools during code review.

1.3 Contributions

The main contributions of this master’s dissertation are:

• RefDiff4Go, an extension of RefDiff, which identify 13 types of refactoring activ-

ities for Go with 92% of precision and 80% of recall.

• An oracle with over 68K refactoring operations performed in six well-known Go

projects.

• RAID, an open-source tool for instrumenting textual diffs—particularly, the ones

provided by GitHub—with information about refactorings. In a field experiment,

we show that RAID can reduce the cognitive effort required for reviewing refac-

torings when using textual diffs. For example, in the case of move refactorings,

the number of lines decreases from 14.5 to 2 lines (median values); and from 113

to 55 lines in the case of extractions.

1.4 Publications

The dissertation results are published in the following publications and therefore con-

tains parts of them:

• Rodrigo Brito, Marco Tulio Valente. RAID: Tool Support for Refactoring-

Aware Code Reviews. In 29th International Conference on Program Comprehen-

sion (ICPC), pages 1–11, 2021.

• Rodrigo Brito, Marco Tulio Valente. RefDiff4Go: Detecting Refactorings in

Go. In 14th Brazilian Symposium on Software Components, Architectures, and

Reuse (SBCARS), pages 1–10, 2020. 2nd Best Paper Award.

The following publications were produced in preliminary activities conducted as

part of this master’s work.

1. Introduction 5

• Laerte Xavier, Fabio Ferreira, Rodrigo Brito, Marco Tulio Valente. Beyond the

Code: Mining Self-Admitted Technical Debt in Issue Tracker Systems. In 17th

International Conference on Mining Software Repositories (MSR), pages 1–10,

2020.

• Hudson Borges, Rodrigo Brito, Marco Tulio Valente. Beyond Textual Issues:

Understanding the Usage and Impact of GitHub Reactions. In 33rd Brazilian

Symposium on Software Engineering (SBES), pages 1–10, 2019.

• Rodrigo Brito, Aline Brito, Gleison Brito, Marco Tulio Valente. GoCity: Code

City for Go. In 26th International Conference on Software Analysis, Evolution

and Reengineering (SANER), Tool Track, pages 649–653, 2019.

1.5 Outline of the Dissertation

The remaining of this master’s thesis is divided in the following chapters:

• Chapter 2 discuss related work and introduces the main concepts involving

RefDiff, Go, GitHub Actions. Essentially, these are technologies and tool that

will be used in the next chapters.

• Chapter 3 describes RefDiff4Go, an extension of RefDiff to identify refactoring

activities in the Go programming language. In this chapter, we present the

architecture of RefDiff4Go and an evaluation with six projects.

• Chapter 4 presents RAID, a refactoring-aware and intelligent diff tool, a pipeline

tool that assists developers in code review activities. We also discuss the lessons

learned in a field experiment with eight professional developers who used RAID

during three months.

• Chapter 5 concludes this master dissertation, presents the final remarks, limi-

tations, and future work.

Chapter 2

Background and Related Work

In this chapter, we briefly present the technical background needed to understand our

work. First, in Section 2.1, we introduce RefDiff, a refactoring detection tool proposed

by Silva et al. [2021]. RefDiff4Go and RAID presented in Chapters 3 and 4, respectively,

rely on this tool. Next, in Section 2.2, we present Go, a popular programming language,

which is used in both evaluations conducted in this master dissertation (RefDiff4Go’s

evaluation and RAID’s evaluation). In Section 2.3, we describe GitHub Actions, a

pipeline automation tool proposed to execute RAID on GitHub repositories. Finally,

in Section 2.4 we present related work.

2.1 RefDiff

Recently, Silva et al. [2021] proposed a technique and tool for detecting refactorings

called RefDiff. The proposed tool consists of processing two revisions of a system

through static analysis. The extraction process is divided into two main stages: Code

Analysis and Relationship Analysis.

In the first step, RefDiff receives two revisions of the source code as input and

builds a model called Code Structure Tree (CST), which is a tree structure where each

node represents a code element, similar to an Abstract Syntax Tree (AST) but simpler.

For example, CSTs provide information about the main elements of the code, such as

functions, classes, and interfaces. This step is only applied to modified files.

Typically, a CST is created from an AST. The selection of AST elements depends

on the analyzed programming language and a set of rules defined by a RefDiff plugin.

The plugin identifies and converts each node and establishes relationships between

them. For example, from Java ASTs, RefDiff extracts Classes, Interfaces, Enums, and

6

2. Background and Related Work 8

In the second processing stage, RefDiff compares the CST nodes between the two

analyzed revisions. The ultimate goal of this stage is to discover relations between

nodes that denote moves and modifications in the tree of nodes.

The matching algorithm consists of two steps: search and classification. The

first stage executes a recursive search in the node tree, analyzing elements, such as

signature, hierarchy, and similarity of the list of tokens. Subsequently, RefDiff follows

a series of rules to classify the type of the relationship between each pair of nodes. For

example, if two nodes have the same type, name, and parent they are connected by a

Same relationship. Similarly, RefDiff applies a set of rules to identify each of the 13

supported refactorings. For a detailed specification of each of such rules, we refer the

reader to RefDiff’s original paper [Silva et al., 2021].

Often, developers do not apply refactorings in isolation, i.e., commits can also

fix bugs or include new features. Therefore, RefDiff also uses a similarity metric to

identify possible variations in function bodies. This metric is computed using a Term

Frequency-Inverse Document Frequency Algorithm (TF-IDF) algorithm, which weighs

less frequent tokens with a higher score and reduces the relevance of common terms,

such as brackets and semicolons [Salton and McGill, 1986].

At the end of the process, RefDiff returns a list of relationships in the form of a

tuple (n1, n2, Rel), where n1 is a CST node in the initial revision, n2 is a node in the

compared revision, and Rel is the relationship identified between them. Table 2.1 lists

the types of relationships, i.e., refactorings detected by RefDiff by default.

Table 2.1. Refactorings supported by RefDiff

Refactoring Description

Same Detection of identical elements in code
Convert Type Transformation of definitions types
Change Signature Changes function signature
Pull Up Method Move a function to a superclass
Push Down Method Move a function to subclasses
Rename Renaming of code components
Move Moving component location
Move and Rename Move operation with renaming
Extract Function Extraction of code to a new function
Extract Supertype Extraction to a new shared superclass
Inline Function Replace of a function call with its content

Figure 2.2 shows an example of relationships identified between two versions of a

Go file. In Revision 1, we have one function named avg, which receives a list of values

and return the average value. Next, we have the Revision 2 with two refactorings. The

2. Background and Related Work 11

IDEs during software development [Negara et al., 2013; Prete et al., 2010; Kim et al.,

2010], metadata analysis of revision control systems [Ratzinger et al., 2008; Krasniqi

and Cleland-Huang, 2020], and static analysis [Silva and Valente, 2017; Silva et al.,

2021; Tsantalis et al., 2013].

The most common approach for detecting refactorings is static analysis. Cur-

rently, we find in the literature several studies that apply this technique. Particularly,

there are tools focused on detecting refactorings in a single programming language [Dig

et al., 2006; Silva and Valente, 2017; Tsantalis et al., 2018, 2020] and approaches for

identifying refactorings in multiple languages [Silva et al., 2021].

Dig et al. [2006] proposed Refactoring Crawler, a static analysis tool that de-

tects seven types of refactoring: Change Method Signature, Rename Package / Class /

Method, Pull Up Method, Push Down Method, and Move Method. The tool is based on

a lightweight static analysis using the Shingle encoding technique combined with a se-

mantic analysis to refine the results. The approach proposed by the authors presented

good results in a study with three relevant projects: EclipseUI, Struts, and JHotDraw,

reporting accuracy of 85%.

Ref-Finder, proposed by Kim et al. [2010], is a tool that covers a wide range of

refactorings. Through an Eclipse plugin, the tool identifies atomic and composite refac-

torings using a template-based refactoring reconstruction approach, covering 63 types

of refactorings from Fowler’s catalog [Fowler, 2018]. The authors evaluated the tool

with examples from Fowler’s book and also with real open-source projects, reporting a

precision of 0.79 and recall of 0.95.

Tsantalis et al. [2013] proposed Refactoring Miner, a tool capable of identifying

14 types of refactoring in Java projects: Move Class / Method / Field, Extract Method,

Inline Method, Rename Package / Class / Method, Pull Up Method / Field, Push

Down Method / Field, and Extract Superclass / Interface. The approach proposed

by the authors consists of a lightweight version of UMLDiff [Xing and Stroulia, 2005]

for analyzing object-oriented models. The tool was applied in an empirical study in

three well-known projects: JUnit, HTTPCore, and HTTPClient. The results include

an accuracy of 96.4% for Extract Method, 97.6% for Rename Class, and 100% accuracy

for the other types of refactorings.

In 2018, Tsantalis et al. [2018] proposed a new tool called RMiner, an evolution

of the approach previously presented. RMiner is based on an AST matching algorithm

and supports 15 different types of refactorings. In a new study, the authors evaluated

the tool with 3,188 real refactorings from an oracle. In this large oracle, RMiner

showed a precision of 98% and a recall of 87%. Currently, RAID does not use this tool.

However, in the future we plan to extend RAID to also work with RefactoringMiner.

2. Background and Related Work 12

In a recent study, published in 2020, Tsantalis et al. [2020] presented Refactoring

Miner 2.0, an evolution of the tool previously presented with improvements in the

matching algorithm. The authors extended the tool to support 40 different types

of refactoring. In a large-scale study, involving 7,226 real instances of refactoring,

Refactoring Miner showed an average precision of 99.6% and recall of 94%, surpassing

the result of six other compared tools, both in accuracy and execution time.

Silva and Valente [2017] proposed a new approach for detecting refactorings ac-

tivities called RefDiff 1.0. The tool uses a combination of heuristics through static

analysis and TF-IDF as a measure of similarity. RefDiff is able to identify 13 types of

refactorings. Besides, the tool was evaluated through an empirical study and compared

with three known tools: Refactoring Miner, Refactoring Crawler and Ref-Finder. The

tool proposed by the authors outperformed the others, recording 100% of precision and

an 88% of recall.

Recently, Silva et al. [2021] proposed a new version of RefDiff, now named RefDiff

2.0, and with multi-language support. The new approach is able to identify 11 different

types of refactoring in three programming languages: Java, JavaScript, and C. The pro-

posed algorithm is based in a Code Structure Tree (CST) that abstracts the structural

representation of the code and, therefore, is independent of the syntax of programming

languages. RefDiff 2.0 also allows extension via plugins to support new languages. In

the study, the authors reported a 96% accuracy and 80% recall. RAID—as proposed

and evaluated in this dissertation—relies on this tool.

2.4.2 Code Review

Code review review is a key practice in software engineering that seeks to improve

software quality [Bacchelli and Bird, 2013; Sadowski et al., 2018]. Since its origins in

the 1970s, when a formal process with strict guidelines was proposed by Fagan [1976],

it is widely discussed in the literature. We found studies about the impact on software

quality [McIntosh et al., 2016], security [McGraw, 2008; Edmundson et al., 2013], and

knowledge transfer [Caulo et al., 2020].

Sadowski et al. [2018] presented an exploratory investigation of code review prac-

tices at Google. The authors performed 12 semi-structured interviews with Google

developers, an internal survey with 44 respondents, and analyzed 9 million reviews

over two years. The results showed that Google performs a lightweight and quick code

review with interactions over small changes. The developers spend 2.6 hours per week

reviewing changes, in median values. The focus of code review is centered in code

readability and maintainability instead of being centered only in problem solving. The

2. Background and Related Work 13

authors also reports a important educational aspect over this practice.

Other studies on modern code review are discussed by Davila and Nunes [2021].

The authors performed a systematic review of 139 papers, where foundational studies,

proposals, and evaluations from four digital libraries were analyzed.

2.4.3 Refactoring-Aware Code Review

Refactoring activities are also used in the context of code review. In the literature,

we found several studies that explored the use of this information to understand the

benefits of this technique and on providing tools to support developers during the

development process [Ge et al., 2017].

The benefits of refactoring-aware code reviews have also been explored in the

literature. For example, Ge et al. [2017] presented a formative study with 35 develop-

ers to investigate the motivation and challenges of reviewing refactorings during code

review. They report that 94% (33) of the study participants consider that refactor-

ings can slow down the review of non-refactoring changes. Furthermore, the automatic

identification of refactorings may assist code reviewers for 91% of the participants (32).

The authors also presented a refactoring-aware tool called ReviewFactor, which pro-

vides a separation of refactorings and non-refactorings changes for the purpose of code

review. This tool separates code reviews in two steps: first, non-refactored code should

be reviewed using a specific interface that is part of an IDE; after that, reviewers should

focus on the refactored code. With RAID we decided to follow a different approach by

seamlessly integrating our tool to a state-of-the-practice code review workflow. For this

purpose, RAID provides the “R” buttons and also the floating windows with detailed

data about refactorings. It is also relevant to mention that refactorings are usually

followed by minor edits in the changed code [Silva et al., 2016, 2021; Tsantalis et al.,

2020], as illustrated in Figures 4.3 and 4.4. However, it is not clear how ReviewFac-

tor handles such interleaved operations, which might for example require a duplicated

effort by code reviewers.

Textual diffs also present issues when merging changes in version control systems.

Shen et al. [2019] proposed a graph-based refactoring-aware algorithm to detect and

resolve refactoring-related conflicts. The algorithm was evaluated with 1,070 merge

scenarios from popular open source Java projects and archived a 58.90% reduction of

merge conflicts comparing with GitMerge and 11.84% over jFSTMerge. Other studies

on refactoring-aware code reviews are summarized in a survey by Coelho et al. [2019].

2. Background and Related Work 14

2.5 Final Remarks

In this chapter, we briefly presented the technical background related to this disserta-

tion. Specifically, we detailed the concepts of RefDiff, presented the motivation in use

and the main features of Go programming language, and described the main concepts

of pipeline automation with GitHub Actions. Finally, we presented related work.

Chapter 3

RefDiff4Go: Detecting Refactorings

in Go

In this chapter, we describe RefDiff4Go, an extension of RefDiff to identify refactoring

activities in the Go programming language. We briefly present our motivations in

Section 3.1. In Section 3.2, we present the architecture of RefDiff4Go. Finally, in

Section 3.3 we describe an evaluation with six projects and the results are reported in

Section 3.4.

3.1 Introduction

Recently, several studies have proposed automated approaches to detect refactorings

activities [Silva and Valente, 2017; Silva et al., 2021; Tsantalis et al., 2018, 2020].

Tsantalis et al. [2020] presented Refactoring Miner 2.0, a tool that identifies 40 types

of refactorings in Java systems with 99.6% of precision and 94% of recall. Other ap-

proaches, such as RefDiff, also present accurate detection measures. The tool proposed

by Silva et al. [2021] follows an extensible architecture, capable of detecting refactorings

for Java, JavaScript, and C languages with 96.4% of precision and 80.4% of recall.

Currently, several studies focus on maintenance activities and the evolution of

Java systems [Brito et al., 2020; Silva et al., 2016; Terra et al., 2018]. Therefore, tools

such as RefDiff allow the expansion of such studies to other popular languages such

as JavaScript and C. Also, RefDiff supports the addition of new programming lan-

guages, through a plugin system, permitting expansion to other relevant programming

languages. Thus, there is a lack of tools that support developers and researchers to

study refactorings in emergent programming languages. To address these challenges,

we present RefDiff4Go, a RefDiff extension that detects 13 types of refactoring ac-

15

3. RefDiff4Go: Detecting Refactorings in Go 19

3.3.2 Computing Precision

To assess the accuracy of the plugin, we ran RefDiff on the commit history of

popular Go open-source projects and computed precision through manual validation.

Specifically, we take the following steps:

Step 1. We selected ten open-source Go projects available on GitHub, ranked by

their number of stars. According to recent research, the number of stars is a reliable

popularity metric [Silva and Valente, 2018; Borges et al., 2016]. Next, we removed

non-software systems like awesome lists, books, and sample repositories. We remained

with six well-known projects, as described in Table 3.2.

Table 3.2. Open source projects used in evaluation

Name Description Commits Stars (K) KLOC

Kubernetes Container scheduling and management 63,726 68.5 4,521
Moby Platform for OS-level virtualization 38,521 57.7 1,398
Hugo Framework for building websites 5,731 45.7 135
Gin Web framework written in Go 1,369 40.3 15
Frp A fast reverse proxy 845 37.7 19
Gogs Self-hosted Git service 5,360 35.1 89

Step 2. Then, we ran RefDiff4Go in the commit history of the six selected projects,

from the most recent to the oldest commit in the main branch. We compared each

revision with its ancestor. As usual when using refactoring detection systems, such

as RefDiff, we also discarded commits with more than one parent, particularly merge

commits (since in this case RefDiff might report the same refactorings multiple times,

after comparing the results with each parent commit).

We also exclude from evaluation test files, automatically generated code, project

dependencies, and testing utilities. We use a regular expression to validate file ex-

tensions and suffixes (e.g. test.go, gen.go, pb.go). We also removed common utility

folders such as test, testdata, and vendor (project dependencies).

Table 3.3 shows the number of refactorings detected in the analyzed projects.

The project with the highest number of refactorings is Kubernetes, with approximately

52K refactorings. Besides that, the most frequent refactoring is Change Signature,

with approximately 37K instances. By contrast, the lowest number of refactorings was

detected in Gin, 203 refactoring instances, and the less frequent type is Rename Type

with 57 refactorings.

3. RefDiff4Go: Detecting Refactorings in Go 20

Refactoring Kubernetes Moby Hugo Gin Frp Gogs Total

Change Signature 30,035 5,241 859 60 245 1,016 37,456
Extract Function 832 395 96 26 17 105 1,471
Inline Function 69 13 8 1 3 4 98
Move Struct 1,525 203 53 18 19 77 1,895
Move Type 524 31 10 5 2 4 576
Move File 5,470 745 68 7 99 307 6696
Move Function 8,924 2,178 675 41 69 330 12,217
Move Interface 80 18 18 1 1 3 121
Rename Struct 580 150 38 4 8 56 836
Rename Type 41 8 7 0 0 1 57
Rename File 451 177 30 6 11 47 722
Rename Function 5,991 1,330 449 38 112 348 8,268
Rename Interface 70 16 7 2 0 1 96

Total 52,907 10,079 2,202 203 559 2,254 68,204

Table 3.3. Number of refactorings per project

Step 3. After creating a list of refactorings detected by RefDiff4Go, we randomly

select a sample of ten refactorings for each type. It is also important to highlight that

we selected at most one refactoring per commit (i.e., to avoid possible bias due to

preferences of a given developer or due to a major maintenance work under progress

in the project).

Once the refactorings list was defined, we manually inspected the textual diff of

each commit to check whether the identified refactoring was a True Positive (TP) or

a False Positive (FP). A TP is a refactoring detected by RefDiff4Go that was indeed

performed in the code, as confirmed in our manual validation. By contrast, a FP is

a source code transformation that was not considered a refactoring in our manual

validation.

Step 4. After completing the manual inspection, we compute precision using the

following formula:

P =
TP

TP + FP
(3.1)

3.3.3 Computing Recall

To measure recall, we relied on the textual description of each commit of each project

searching for possible documented refactorings. We also discarded commits with more

than one parent in this step.

3. RefDiff4Go: Detecting Refactorings in Go 21

For example, to identify refactorings of type Move, we select commit messages

with words such as move, moving, or migrate. The following example represents a

commit message extracted from the Moby/Moby project, describing a Move Struct

refactoring:1

“Move Termios struct to os specific file”

However, some refactorings like Inline Function are not explicitly described in the

commit message, so we decided to use terms with a related meaning, such as simplify

or merge. The following commit message documents an Inline Function refactoring

performed in a commit from Kubernetes:2

“Merge 3 resource allocation priority functions”

We finished our search after finding ten distinct commits for each refactoring

operation supported by RefDiff4Go. In summary, our goal was to create a “ground

truth” (or oracle) of refactoring operations. However, not all types of refactorings had

documented changes. An example is inline functions, from which we only found eight

occurrences. In total, we collected 128 commits to compute recall.

However, it is also possible that a documented refactoring (in a commit descrip-

tion message) was not performed in the code. To discard such cases, we manually

checked each commit in our initial ground truth, searching for the documented refac-

toring in the respective commit diff. To replace these commits, we performed a new

draw with a second manual inspection.

A False Negative (FN) is a refactoring from the ground truth that is not detected

by RefDiff4Go. Finally, to compute the recall score, we use the following formula:

R =
TP

TP + FN
(3.2)

We also combine the precision (P) and recall (R) using a harmonic mean, also

known as F1-Score, as in the following formula:

F1 = 2 ·
P ·R

P +R
(3.3)

Table 3.4 shows the total number of commits analyzed per refactoring type for

the precision and recall evaluation. In total, we relied on 258 refactorings, 130 for

precision and 128 for recall.

1https://github.com/moby/moby/commit/a70dd659
2https://github.com/kubernetes/kubernetes/commit/c65225ee

3. RefDiff4Go: Detecting Refactorings in Go 22

Table 3.4. Number of commits used for evaluating of precision an recall

Refactoring Precision Recall

Change Signature 10 10
Extract Function 10 10
Inline Function 10 8
Move Struct 10 10
Move TypeDef 10 10
Move File 10 10
Move Function 10 10
Move Interface 10 10
Rename Struct 10 10
Rename TypeDef 10 10
Rename File 10 10
Rename Function 10 10
Rename Interface 10 10

Total 130 128

3.4 Results

In this section, we present the results of the RefDiff4Go evaluation. Table 3.5 presents

the results for precision, recall and F1-Score for each type of refactoring. Precision

ranges from 0.70 (Move Function) to 1.0 (Inline Function, Move File, and Rename

Struct). The average precision is 0.92. Recall ranges from 0.5 (Inline Function) to 1.0

(Rename Struct and Rename File), reporting an average of 0.80, which is therefore

slightly lower than precision. Table 3.5 also shows the F1 scores for each refactoring

operation. The average F1 score is 0.86.

As presented in Table 3.5, some refactorings like Inline Function have a low

recall value (0.67). In this way, we investigated some commits related to this class

of refactoring searching for possible causes. By definition, Inline Function replaces a

function call by the function body. However, after the replacement, developers often

modify the inlined code. Since RefDiff4Go has only access to the full modification

performed in the commit (i.e., the tool works in a commit granularity level), it considers

that the new code is very different from the original function body. As a result, the

tool does not detect an Inline Function refactoring operation in such case.

Next, we give a real example. Commit 6a42e1, from the Kubernetes project,

received the FN classification for the Inline Function refactoring.3 The commit mes-

sage documents the refactoring with the following message: “Inline/simplify two used-

3https://github.com/kubernetes/kubernetes/commit/6a42e1

3. RefDiff4Go: Detecting Refactorings in Go 25

possible to compare all refactoring types. For example, Pull Up Method and Push-

Down Method refactorings are only detected by RefDiff for Java.

On the other side, some refactoring types have similarities, allowing a direct

comparison. For example, a Struct component in Go is similar to a Class in Java and

JavaScript. Table 3.6 shows the selection of compatible refactorings for each language.

Table 3.6. Refactorings compatibility considered in the evaluation

Go Java JavaScript C

Change Sign - - Change Sign
Extract Func Extract Meth Extract Func Extract Func
Inline Func Inline Meth Inline Func Inline Func
Move Struct Move Class Move Class -
Move File - Move File Move File
Move Func Move Meth Move Func Move Func
Rename Struct Rename Class Rename Class -
Rename File - Rename File Rename File
Rename Func Rename Meth Rename Func Rename Func

3.4.2 Java

Table 3.7 shows the comparison between RefDiff4Go and the RefDiff plugin for Java.

We present the F1 score for each refactoring and the number of refactorings used in

the precision and recall analysis. It is also important to observe that the number of

refactorings in Java is greater than in Go. In total, we compared 3,023 refactorings in

Java with 118 refactorings in Go.

Table 3.7. Comparison of results between Refdiff4Go and Java

Refactoring
Go Java

F1-Score # F1-Score #

Extract Function / Method 0.90 20 0.78 1,037
Inline Function / Method 0.67 18 0.82 122
Move Class / Struct 0.85 20 0.98 1,100
Move Function / Method 0.75 20 0.84 319
Rename Class / Struct 1.00 20 0.90 95
Rename Function / Method 0.95 20 0.80 350

All 0.85 118 0.85 3,023

Considering the average F1-score, the results for Go and Java are exactly the

same: F1-score is 0.85 for both languages. RefDiff4Go performed better than the Java

3. RefDiff4Go: Detecting Refactorings in Go 26

plugin for Extract Function, Rename Struct and Rename Function refactorings.

Summary: RefDiff4Go has a similar result to the Java plugin, recording the final

F1-Score of 0.85, which is exactly the one reported by the Java plugin.

3.4.3 JavaScript

We also compared the results obtained by RefDiff4Go with the ones achieved by the

JavaScript plugin. Table 3.8 shows the F1-Score for compatible refactorings. In this

case, the number of refactorings used in the Go results is higher (158 refactorings) than

the ones used for JavaScript (122 refactorings).

Table 3.8. Comparison of results between Refdiff4Go and JavaScript

Refactoring
Go JavaScript

F1-Score # F1-Score #

Extract Function 0.90 20 0.90 20
Inline Function 0.67 18 0.53 15
Move Struct / Class 0.85 20 - 2
Move File 0.82 20 1.00 20
Move Function 0.75 20 0.95 20
Rename Struct / Class 1.00 20 - 5
Rename File 1.00 20 0.89 20
Rename Function 0.95 20 0.85 20

All 0.87 158 0.83 122

JavaScript and Go plugins present similar results. RefDiff4Go presented a

lowest score only in Move Function (0.75) against 0.95 and Move File (0.82) when

the JavaScript plugin presents 1.0 of F1 score. It is worth mentioning that we

could not calculate the F1-Score for Move and Rename Struct/Class obtained by

JavaScript, once the authors did not report (in their original study) the precision value.

Summary: RefDiff4Go presents a better result than the JavaScript plugin, reporting

a F1 score of 0.87 in comparison of 0.83 achieved by JavaScript.

3.4.4 C

Table 3.9 presents the results of the comparison between RefDiff4Go and the C plugin.

Differently from other languages, C and Go have similar types of refactorings. Thus,

3. RefDiff4Go: Detecting Refactorings in Go 27

we did not rely on equivalences when comparing the results. However, although both

languages have Struct as the principal data structure abstraction, the C plugin does

not support refactorings involving this kind of component, such as Move Struct and

Rename Struct.

Table 3.9. Comparison of results between Refdiff4Go and C

Refactoring
Go C

F1-Score # F1-Score #

Change Signature 0.85 20 0.95 20
Extract Function 0.90 20 0.82 20
Inline Function 0.67 18 0.64 20
Move File 0.82 20 1.00 20
Move Function 0.75 20 0.80 20
Rename File 1.00 20 1.00 20
Rename Function 0.95 20 0.90 20

All 0.85 138 0.87 140

In general, both tools achieved similar results. For example, RefDiff4Go has a

better result for Extract Function (0.9), Inline Function (0,67), against 0.82 and 0.64

for the C plugin, respectively. However, Refdiff4Go has a worst result mainly for Move

File, reporting a F1-Score of 0.82 against 1.0 of C.

Summary: RefDiff C plugin presents a slightly better result, reporting an F1 score of

0.87 against 0.85 presented by Go.

3.4.5 Execution Time

Besides comparing recall and precision, we also evaluated the execution time spent by

RefDiff4Go. For this purpose, we started with the 110,728 commits from our initial

dataset. Then, we discarded commits with more than one parent (e.g. merge commits)

and commits that did not contain changes in source code. The final dataset used to

measure the execution time contains 70,645 commits and 68,204 refactorings.

Figure 3.6 presents a graph of the execution time by commit, using a logarithmic

scale. To perform the tests, we used a Core I5-7400 computer with 16 GB of RAM

running Ubuntu 18.04 Linux distribution.

We can notice that RefDiff4Go presented a median execution time of 171 millisec-

onds. However, we also identify a large number of commits (14.9%) that are processed

in less than ten milliseconds, which are basically commits with trivial changes in small

3. RefDiff4Go: Detecting Refactorings in Go 29

3.5 Threats to Validity

Dataset: GitHub has thousands of Go projects and we have built our dataset using

the top-6 code projects by number of stars. Therefore, our dataset represents a small

sample of the entire universe of Go projects. On the other hand, relevant projects

such as Kubernetes and Moby are included in our evaluation. We are also aware that

the analyzed refactorings do not cover the entire code base and is a threat to validity.

Evaluation: Another threat to validity is found in the comparison between language

plugins. The evaluation conducted by Silva et al. [2021] uses an oracle of 3,249

refactorings for Java. However, we have not found an oracle of refactorings for Go that

covered the same order of refactorings. Therefore, as an alternative, we created our

own oracle with much less refactorings (130 refactorings). On the other side, for the C

and JavaScript languages, the study conducted by Silva et al. [2021] relies on a similar

number of refactorings (122 for JavaScript and 140 for C). Finally, we acknowledge

that refactoring classification is a subjective task, particularly when conducted by

comparing commits that include other source code modifications, performed after the

refactoring, as we discussed in Section 3.6.

Go Syntax: To build the CST, it is necessary to identify the functions present in a

source code file and all the function calls made by each one. In Go, it is necessary

to load all the files in a given scope to identify the source of an external function

call. However, due to performance reasons, RefDiff processes only the files modified in

a commit. Consequently, the function call identification supported by RefDiff4Go is

limited to the scope of the modified files, similar to the C and JavaScript plugins.

3.6 Final Remarks

In this chapter, we presented RefDiff4Go, an extension of RefDiff for detecting refac-

torings in Go software projects, which is capable to identify 13 different types of refac-

toring. We evaluated the tool with six well-known open-source projects and compared

them with plugins for other languages: Java, JavaScript, and C. The results report a

precision of 92% and 80% of recall, resulting in an F1 Score of 0.86. Our evaluation

also showed that RefDiff4Go has a similar accuracy than other language plugins and

good execution time, recording a median of 171 milliseconds per commit.

RefDiff4Go is publicly available on GitHub.6

6https://github.com/rodrigo-brito/refdiff-go

Chapter 4

RAID: Refactoring-Aware Code

Reviews

In this chapter, we present RAID, a refactoring-aware and intelligent diff tool. RAID

assists developers in code review activities by automatically detecting refactoring op-

erations included in pull requests. In Section 4.1, we present the motivation and chal-

lenges of diff analysis during code reviews. RAID architecture is presented in Section

4.2. Finally, in Section 4.4 we discuss the lessons learned after a field experiment when

eight professional developers used RAID during three months.

4.1 Introduction

Code review is a widely used software engineering practice [Bacchelli and Bird, 2013;

Sadowski et al., 2018]. It has its origins in the 70s, when it was performed according

to formal and strict guidelines, such as the ones proposed by Fagan [1976]. Over the

years, lightweight code review practices have emerged and gained popularity, in order

to make the process more agile. Nowadays, software companies of all sizes and impact

require their developers to engage in code reviews. For example, “code review is one

of the most important and critical processes at Google” [Winters et al., 2020]. Besides

that, modern version control platforms—such as GitHub and GitLab—are contributing

to popularize code reviews by means of pull/merge requests.

However, code review takes time and may introduce delays in the release of new

versions. The reason is that it is a manual process that requires expertise in the

codebase and careful inspection of textual diffs. In fact, diffs only provide a low level

representation of code changes, which is based on added (+) and deleted lines of code

(-). As a combined consequence of these two factors—manual inspections using line-

30

4. RAID: Refactoring-Aware Code Reviews 32

RAID (or Refactoring-aware and Intelligent Diffs)—seamlessly instruments current diff

tools with information about refactorings. As a result, reviewers can easily inspect the

changes performed in the refactoring code after the operation. Regarding its architec-

ture, RAID is built on the top of recent and automatic refactoring tools. Particularly,

RAID relies on RefDiff [Silva et al., 2021; Silva and Valente, 2017], which is the first

tool that detects refactorings in other programming languages, besides Java. Finally,

RAID operates with a low runtime overhead and it is fully integrated with state-of-

the-practice continuous integration pipelines (GitHub Actions) and browsers (Google

Chrome).

This chapter is divided into three main sections:

1. In Section 4.2, we present RAID main features and Web-based interface.

2. In Section 4.3, we describe RAID internal architecture, including its integration

with third-party tools, such as GitHub (Actions and pull requests) and browsers

(Chrome).

3. In Section 4.4, we document the results and lessons learned in a field experiment

with eight professional developers who used RAID during three months. We

concluded that RAID can indeed reduce the cognitive effort required for detecting

and reviewing refactorings. For example, the number of lines that need to be

reviewed decreases from 14.5 to 2 lines (median values) in the case of move

refactorings and from 113 to 55 lines (median values) in the case of extractions.

We also collected the perceptions of the study participants about our tool, using

to this purpose a post-experiment survey.

RAID—our key contribution in this chapter—is publicly available in this URL:

https://github.com/rodrigo-brito/refactoring-aware-diff.

4.2 RAID in a Nutshell

RAID is a tool for instrumenting textual diffs—particularly, the ones provided by

GitHub—with information about refactorings. Typically, refactorings are represented

in textual diffs as a sequence of removed lines in the left (-) and a sequence of added

lines in the right. Therefore, code reviewers must infer by themselves whether this

“difference” represents a refactoring operation, which requires an amount of cognitive

effort. Figure 4.1 shows an example with a Move Function refactoring. In this case,

method m1 is moved from A.java (removed lines, in the left) to B.java (added lines, in

the right).

4. RAID: Refactoring-Aware Code Reviews 35

Table 4.1. Refactorings detected by RefDiff/RAID

Language Refactorings

C Move, Extract Function, Inline Function, Rename, Change Signature
Go Move, Extract Function, Inline Function, Rename, Change Signature
JavaScript Move, Extract Function, Inline Function, Rename, Change Signature
Java Move, Extract Function, Inline Function, Rename, Change Signature, Pull Up,

Push Down

reviewer to locate the source of the performed refactoring, thus reducing the effort to

find the code in the default diff provided by GitHub.

Finally, RAID instruments the default diff’s toolbar with a button that provides

a list with all refactorings detected in the pull request. Figure 4.5 shows an example

of a pull request including 11 refactorings.

Figure 4.5. RAID adds a button in the toolbar providing easy access to the list
of refactorings in a pull request

4.3 RAID Architecture

RAID architecture is composed of three components: (1) RAID GitHub Action (RGA),

which is responsible for detecting and extracting refactorings; (2) RAID Chrome Ex-

tension (RCE), which is a browser extension that instruments GitHub’s default diff

pages with refactoring information; and (3) RAID Server, which provides a REST API

for storing refactoring metadata and to connect the previous mentioned applications.

Figure 4.6 presents RAID’s workflow. First, when a developer submits a pull re-

quest, the RGA component is automatically called to detect the refactorings performed

in the changed code. This data is then transmitted and stored by the RAID server. Fi-

4. RAID: Refactoring-Aware Code Reviews 36

nally, when a developer opens a diff page in his browser, RCE is automatically called to

instrument the page with the refactoring information retrieved from the RAID server.

Figure 4.6. RAID main components and execution flow

In the following subsections, we describe each of these architectural components

in details.

4.3.1 RAID GitHub Action (RGA)

RAID GitHub Action component is responsible for analyzing the source code submitted

by developers as part of a pull request. RGA is implemented in Java and it is exe-

cuted in a Docker container. The main function of RGA is to detect the refactorings

performed in a pull request. To this purpose, RGA fully relies on a third-party tool:

RefDiff [Silva et al., 2021; Silva and Valente, 2017], which is a multi-programming lan-

guage refactoring detection tool. Specifically, RefDiff detects 13 types of refactorings

in four programming languages: Java, JavaScript, C and Go. Consequently, RAID can

be seamlessly used with any of such languages.

Figure 4.7 shows RGA internal modules. As we mentioned, RGA is called after

a pull request event is sent by GitHub Actions. In Step 1, RGA receives information

about the pull request, such as branches, revisions, and commits. After that, the Git

module loads the project and stores the commit history in a temporary directory.

At this point, it is important to remind that GitHub provides two distinct diffs for

a given pull request: (1) the main diff, which compares changes performed in the last

commit of the pull request with the repository HEAD; and (2) individual commit diffs,

4. RAID: Refactoring-Aware Code Reviews 37

Figure 4.7. RAID GitHub Action (RGA) modules and workflow

which compare the changes performed in a given commit Ci with its parent commit.

Therefore, RefDiff is called by RAID to extract the refactorings included in each of

these diffs. To be clearer, assume a pull request with three commits: C1, C2, and C3.

In this case, RAID calls RefDiff four times, with the following pairs of commits: (C3,

HEAD), (C3, C2), (C2, C1), and (C1, HEAD).

Next, the Diff Module computes the internal diffs that are showed in RAID’s

floating windows (see Figures 4.3 and 4.4). For example, in the case of a Move Function

refactoring, RAID highlights the changes performed in the moved method (since move

refactorings might include minor changes in the code after its movement [Silva et al.,

2021; Tsantalis et al., 2020]). Finally, RGA transmits the refactorings data to the

RAID Server.

4.3.2 RAID Chrome Extension (RCE)

The RAID Chrome Extension (RCE) presents the refactoring data provided by the

RAID server. RCE is implemented in JavaScript (∼1.1 KLOC) and it currently sup-

ports Google Chrome browser. The extension is automatically called by Chrome after

a valid GitHub’s pull request URL is opened by the browser. This URL includes in-

formation about the pull request, which is used by RCE to contact the RAID server

and to obtain data about possible refactorings.

For each refactoring, RCE transparently modifies the DOM (Document Object

Model) of the default visualization provided by GitHub and inserts a button, identified

by the letter “R”, at the end of the line where the refactoring was identified, as we

already illustrated in Figure 4.2. The RCE module is also responsible for displaying

the information of refactoring activities, as presented in Figure 4.3. Finally, RCE

assists the reviewer to navigate between the refactored code elements.

4. RAID: Refactoring-Aware Code Reviews 38

4.3.3 RAID Server

The RAID Server acts as a bridge between the RCA and RCE components, i.e., it

receives the refactoring information after each RGA execution and sends the refac-

torings to RCE when requested. To this purpose, the server provides a REST API

implemented in the Go language. Internally, the server stores the refactoring data in

a non-relational database at Google Firebase.1 For open-source projects, RAID pro-

vides a public API. For private repositories, the server supports a custom credentials

configuration to control user access.

4.4 Field Experiment

4.4.1 Methodology

To evaluate RAID, we relied on a field experiment. More specifically, we obtained per-

mission to include the tool in the development workflow of a medium-sized technology

company that develops software for musical products. In this way, two development

teams (with 5 and 3 developers) used the tool during three months, from June to

September 2020. Table 4.2 describes basic information about the software projects

and the pull requests performed during the experiment. All four projects are imple-

mented in the Go programming language.

Table 4.2. Number of pull requests, commits, and lines of code by project

Name Pull Requests Commits KLOC Team

Project A 94 102 370 1
Project B 86 89 196 1
Project C 54 65 34 1
Project D 91 118 154 2

All 325 374 754

In this company, all development teams use GitHub for version control. Develop-

ers also use pull requests followed by code reviews to integrate new code in the projects’

repository. First, developers perform modifications in private forks and submit pull re-

quests to the main repository. Then, a CI server is used to run linters and a suite

of unit tests. Finally, code review is carried out before integrating the change in the

mainline. The code needs to be approved by two team members who did not work in

the change.

1https://firebase.google.com

4. RAID: Refactoring-Aware Code Reviews 45

In this RQ, we provide indicators of the impact on cognitive effort achieved with RAID.

For this purpose, we concentrate on two refactorings: Move and Extract Function, since

they are more complex than simple refactorings, such as a rename.

Move Refactorings. Out of 32 move refactorings performed during the experiment,

11 operations move code between files located in different packages and 21 operations

are performed in files from the same package. Among these, 9 operations are performed

within the same file but between internal structs. Therefore, most of the move refac-

torings impact distinct files (71.8%). We claim it is more difficult to detect and review

such moves when using traditional diffs. The reason is that the default visualization

lacks information about the refactored files. On the other hand, with RAID developers

can easily access this information, as illustrated in Figure 4.3.

We also found nine move refactorings that were performed in the same file. In Go,

an internal move occurs when a function is moved to a new struct or moved between

existing structs located in the same file. In this case, we computed the distance of the

moved code, i.e., suppose a move from line x to line y, the distance in this case is |y−x|.

The rationale is that the higher this distance, the higher the effort for a reviewer to

detect and inspect the move, assuming she is using a non-refactoring aware diff tool.

By contrast, with RAID, this effort does not exist since the tool automatically detects

the refactoring and provides buttons to navigate from its source to target lines (and

back).

Table 4.3 shows the values of the distance metric for the nine move refactorings

restricted to the same file. As we can see, eight refactorings moved the code at least

40 lines above or below the original position. In one case, this distance is zero due to a

coincidence, when multiple refactoring operations ended up aligning the diffs after the

move. Therefore, the effort to locate the moved code—even when it is located in the

same file—is not trivial, assuming code reviewers rely on traditional diffs. For example,

a distance of 41 lines means the function is one page above or below the code under

the reviewer focus in the browser.

Table 4.3. Distance of Move Function refactorings, i.e., line of the moved code
after the operation minus line of the code before the operation

Refactoring 1 2 3 4 5 6 7 8 9

Distance 0 40 40 40 41 466 466 474 4,870

We also computed the Diff Code Churn (DCC) of the move refactorings. We refer

to Diff Code Churn as the number of added (+) and deleted (-) lines showed in the diff

interface to represent a refactoring. Considering the 32 move refactoring performed in

4. RAID: Refactoring-Aware Code Reviews 48

Limitations. We received five responses pointing out limitations in RAID. For exam-

ple, one reviewer reported that RAID did not identify refactorings in specific cases.

I particularly experienced some bugs where RAID did not detect possible refactors. (S7)

Indeed, RAID is based on RefDiff, which has 92% of precision and 80% of recall

for Go [Brito and Valente, 2020]. Particularly, the tool might miss refactorings when

developers, for example, make considerable changes in the code after the operation.

In these cases, the tool might not detect a refactoring although a reviewer might still

consider it as such.

Finally, two reviewers reported the limitation of browser support. Currently,

RAID supports only Google Chrome. As future work, we intend to extend the tool to

other browsers, such as Safari and Mozilla Firefox.

4.5 Threats to Validity

External Validity. In our field experiment, we evaluated four Go language projects

from a medium-sized company. The participants used RAID during three months.

Therefore, on the one hand, we strived to conduct a real experiment, with real-world

systems and professional developers. On the other hand, we acknowledge that our

results may change if we consider more projects, more developers, a longer time box,

and other programming languages.

Construct Validity. First, the refactoring detection module relies on RefDiff [Silva

et al., 2021], which has a precision of 92% and recall of 80%, in the case of Go

projects [Brito and Valente, 2020]. In this way, RAID visualizations might miss refac-

torings (false negatives) or may incorrectly detect refactorings (false positives). Indeed,

the presence of false negatives was mentioned by one of the experiment participants.

However, we highlight that RefDiff accuracy is compatible with the state-of-the art in

refactoring detection tools [Tsantalis et al., 2020, 2018]. Furthermore, to mitigate the

impact of this threat on the field experiments results, we manually evaluated each of

the refactorings used to compute the proxy metrics presented and discussed when an-

swering RQ3. In total, we found 10 false positives (13.2%) among moves and extracts.

Internal Validity. A first possible internal threat to validity can be found in RQ1,

where the size of pull requests (i.e., the number of modified lines) might have an

influence on the execution time. In our third research question, we proposed two

proxies to estimate the amount of cognitive effort reduced by RAID: Diff Code Churn

(DCC) and distance of move refactorings. On the one hand, claim that such proxies

4. RAID: Refactoring-Aware Code Reviews 49

have a positive correlation with the cognitive effort required in code reviews. On the

other hand, they did not allow us to provide a clear measure of the effort reduction.

Therefore, further studies—such as controlled ones—might contribute to clarify the

effort saved with RAID. The inspection time of the float window is also a threat to

validity, since a developer can have left the window opened beyond the time used in

the review.

4.6 Final Remarks

In this chapter, we presented RAID, a refactoring-aware tool that instruments GitHub

diff with refactoring information. We also conducted a field experiment with eight

professional developers during three months and we concluded that RAID can reduce

the cognitive effort required for reviewing refactorings when using textual diffs. In

addition, our study reports a reduction in the number of lines required for reviewing

such operations. In the case of move refactorings, the number of lines decrease form

14.5 to 2 lines (median values); and from 113 to 55 lines in the case of extractions.

RAID is public available at GitHub.2

2https://github.com/rodrigo-brito/refactoring-aware-diff

Chapter 5

Conclusion

In this chapter, we present the conclusion of this dissertation. First, in Section 5.1, we

present the lessons and contributions provided by our work. Next, in Section 5.4, we

present suggestions of future work.

5.1 Overview and Contributions

Our main contributions in this work are RefDiff4Go and RAID, as described next.

RefDiff4Go. In Chapter 3, we presented RefDiff4Go, an extension for RefDiff that

detect refactoring activities for Go projects. The proposed tool identify 13 different

types of refactorings, achieved a precision of 92% and recall of 80% in an evaluation

with six well-known Go projects. Also, RefDiff4Go presented a similar accuracy with

other RefDiff plugins, such as Java, JavaScript, and C.

RAID. In Chapter 4, we proposed a refactoring-aware tool that instrument refactoring

activities in GitHub diffs. We evaluated the tool in a field experiment with eight

developers. This study reported a reduction in the number of lines required to analyze

a code review. For example, in the case of Move refactorings, the number of lines

reduces from 14.5 to 2 in medium values, when using RAID.

5.2 Comparison with Existing Tools and Studies

There are also open source projects proposing refactoring-aware tools supporting vi-

sualization of diff. The tool presented by Tsantalis et al. [2020], called Refactoring

Aware Commit Review, identifies refactorings in open source Java projects and lists

the refactorings activities on GitHub diffs. RefactorInsight is another tool for visu-

50

5. Conclusion 51

alizing refactorings through the history of commits, but within a IDE for Java and

Kotlin.1

Both tools instrument textual diff with a list of refactoring operations, which are

detected by RefactoringMiner [Tsantalis et al., 2020]. In Refactoring Aware Commit

Review, after reviewers click on a given list element that describes a refactoring, they

are directed to its specific line in the right side of GitHub’s diff. Therefore, both tools

do not instrument diff lines with refactoring data, unlike RAID that seamlessly provides

the “R” buttons, which are added to both sides of a diff (see Figure 4.2). Also, these

tools do not provide detailed information about Move Function refactorings—with the

moved code appearing side by side, as in Figure 4.3—or detailed information about

Extract Function refactorings—by highlighting the extracted code and the textual dif-

ferences in the source method, as illustrated in Figure 4.4. Finally, unlike RAID, both

tools are not integrated with a CI server, which is critical to provide refactoring data

right after pull requests are submitted.

5.3 Limitations

The work presented in this dissertation has the following limitations:

• The evaluation of RefDiff4Go was limited to the list of refactorings evaluated

in the initial study presented by Silva et al. [2021]. Furthermore, due to the

incompatibility of programming languages, some refactorings are not directly

comparable due to the lack of inheritance mechanism in languages such as C and

Go.

• Due to limitations of the Go programming language, the field experiment did

not cover all possible refactorings supported by RAID. Go does not have an

inheritance structure, then refactorings such as Pull Up and Push Down, which

were not covered, could also benefit from the diff provided by RAID.

• RAID was designed to instrument refactorings in diffs in the GitHub platform.

However, other popular platforms like Gitlab and Bitbucket can also be used to

perform code reviews.

1https://github.com/JetBrains-Research/RefactorInsight

5. Conclusion 52

5.4 Future Work

In this dissertation we presented RefDiff4Go, an extension for Go programming lan-

guage, and RAID, a refactoring-aware and intelligent diff tool. We suggest as extension

of this work:

• It would be interesting to conduct a survey with developers to better under-

stand their needs and include support to new promising languages to RefDiff.

Consequently, this will also include support for new languages for RAID.

• Configure and evaluate RAID with other refactoring detection tools, such as

RefactoringMiner [Tsantalis et al., 2020].

• Provide plugin support to other browsers, such as Mozilla Firefox and Safari.

• Evaluate RAID using a controlled experiment to better understand the benefits

and impacts of the tool.

Bibliography

Abid, C., Kessentini, M., Alizadeh, V., Dhouadi, M., and Kazman, R. (2020). How does

refactoring impact security when improving quality? a security-aware refactoring

approach. IEEE Transactions on Software Engineering, pages 1--1.

Alizadeh, V., Ouali, M. A., Kessentini, M., and Chater, M. (2019). Refbot: intelligent

software refactoring bot. In 34th International Conference on Automated Software

Engineering (ASE), pages 823--834.

Alves, E. L. G., Song, M., and Kim, M. (2014). RefDistiller: A refactoring aware code

review tool for inspecting manual refactoring edits. In 22nd International Symposium

on Foundations of Software Engineering (FSE), pages 751--754.

amd Kensuke Tokoda, K. M. (2008). Security-aware refactoring alerting its impact on

code vulnerabilities. In 15th Asia-Pacific Software Engineering Conference, pages

445--452.

Bacchelli, A. and Bird, C. (2013). Expectations, outcomes, and challenges of modern

code review. In 35th International Conference on Software Engineering (ICSE),

pages 712--721.

Bibiano, A. C., Fernandes, E., Oliveira, D., Garcia, A., Kalinowski, M., Fonseca,

B., Oliveira, R., Oliveira, A., and Cedrim, D. (2019). A quantitative study on

characteristics and effect of batch refactoring on code smells. In 13th International

Symposium on Empirical Software Engineering and Measurement (ESEM), pages

1--11.

Borges, H., Hora, A., and Valente, M. T. (2016). Understanding the factors that impact

the popularity of GitHub repositories. In 32nd IEEE International Conference on

Software Maintenance and Evolution (ICSME), pages 334--344.

53

Bibliography 54

Bosu, A. and Carver, J. C. (2013). Impact of peer code review on peer impression

formation: A survey. In 7th International Symposium on Empirical Software Engi-

neering and Measurement (ESEM), pages 133--142.

Brito, A., Hora, A., and Valente, M. T. (2020). Refactoring graphs: Assessing refac-

toring over time. In 27th International Conference on Software Analysis, Evolution

and Reengineering (SANER), pages 367–377.

Brito, R., Brito, A., Brito, G., and Valente, M. T. (2019). GoCity: Code city for Go.

In 26th International Conference on Software Analysis, Evolution and Reengineering

(SANER), Tool Track, pages 649--653.

Brito, R. and Valente, M. T. (2020). RefDiff4Go: Detecting refactorings in Go. In

14th Brazilian Symposium on Software Components, Architectures, and Reuse (SB-

CARS), pages 1--10.

Caulo, M., Lin, B., Bavota, G., Scanniello, G., and Lanza, M. (2020). Knowledge trans-

fer in modern code review. In 28th International Conference on Program Compre-

hension (ICPC), pages 230––240, New York, NY, USA. Association for Computing

Machinery.

Chaparro, O., Bavota, G., Marcus, A., and Penta, M. D. (2014). On the impact of

refactoring operations on code quality metrics. In 30th International Conference on

Software Maintenance and Evolution (ICSME), pages 456--460.

Coelho, F., Massoni, T., and L. G. Alves, E. (2019). Refactoring-aware code review: A

systematic mapping study. In 3rd International Workshop on Refactoring (IWoR),

pages 63--66.

Davila, N. and Nunes, I. (2021). A systematic literature review and taxonomy of

modern code review. Journal of Systems and Software, 177:1--36.

Dig, D., Comertoglu, C., Marinov, D., and Johnson, R. (2006). Automated detection

of refactorings in evolving components. In 20th European Conference on Object-

Oriented Programming (ECOOP), pages 404--428.

Donovan, A. A. and Kernighan, B. W. (2015). The Go programming language. Addison-

Wesley Professional.

Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., and Wagner,

D. (2013). An empirical study on the effectiveness of security code review. In

Bibliography 55

International Symposium on Engineering Secure Software and Systems, pages 197--

212. Springer.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program devel-

opment. IBM Systems Journal, 15(3):182--211.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley

Professional.

Ge, X. and Murphy-Hill, E. (2011). Benefactor: a flexible refactoring tool for eclipse.

In International Conference Companion on Object Oriented Programming Systems

Languages and Applications Companion (OOPSLA), pages 19--20.

Ge, X., Sarkar, S., Witschey, J., and Murphy-Hill, E. (2017). Refactoring-aware code

review. In IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), pages 71--79.

Kim, M., Gee, M., Loh, A., and Rachatasumrit, N. (2010). Ref-finder: Arefactoring

reconstruction tool based on logic query templates. In 8th Symposium on Foundations

of Software Engineering (FSE), pages 371--372.

Kim, M., Zimmermann, T., and Nagappan, N. (2012). A field study of refactoring

challenges and benefits. In 20th International Symposium on the Foundations of

Software Engineering (FSE), pages 50:1--50:11.

Kim, M., Zimmermann, T., and Nagappan, N. (2014). An empirical study of refactoring

challenge and benefits at Microsoft. IEEE Transactions on Software Engineering,

40(7):633--649.

Krasniqi, R. and Cleland-Huang, J. (2020). Enhancing source code refactoring detec-

tion with explanations from commit messages. In 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER), pages 512--516.

Lacerda, G., Petrillo, F., Pimenta, M., and Guéhéneuc, Y. G. (2020). Code smells and

refactoring: a tertiary systematic review of challenges and observations. Journal of

Systems and Software, page 110610.

Lahiri, S. K., Hawblitzel, C., Kawaguchi, M., and Rebêlo, H. (2012). SYMDIFF: A

Language-Agnostic Semantic Diff Tool for Imperative Programs. In Madhusudan,

P. and Seshia, S. A., editors, Computer Aided Verification, pages 712--717, Berlin,

Heidelberg. Springer Berlin Heidelberg.

Bibliography 56

Mazinanian, D., Ketkar, A., Tsantalis, N., and Dig, D. (2017). Understanding the use

of lambda expressions in Java. Programming Languages, 1(85):85:1--85:31.

McGraw, G. (2008). Automated code review tools for security. Computer, 41(12):108-

-111.

McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2016). An empirical study of

the impact of modern code review practices on software quality. Empirical Software

Engineering, 21(5):2146--2189.

Mumtaz, H., Alshayeb, M., Mahmood, S., and Niazi, M. (2018). An empirical study to

improve software security through the application of code refactoring. Information

and Software Technology, 96:112--125.

Murphy-Hill, E., Parnin, C., and Black, A. P. (2009). How we refactor, and how we

know it. In 31st International Conference on Software Engineering (ICSE), pages

287--297.

Murphy-Hill, E., Parnin, C., and Black, A. P. (2012). How we refactor, and how we

know it. IEEE Transactions on Software Engineering, 38(1):5--18.

Negara, S., Chen, N., Vakilian, M., Johnson, R. E., and Dig, D. (2013). A Comparative

Study of Manual and Automated Refactorings. In 27th European Conference on

Object-Oriented Programming (ECOOP), pages 552--576.

Pantiuchina, J., Zampetti, F., Scalabrino, S., Piantadosi, V., Oliveto, R., Bavota, G.,

and Penta, M. D. (2020). Why developers refactor source code: A mining-based

study. ACM Transactions on Software Engineering and Methodology (TOSEM),

37(4):1--32.

Pike, R. (2012 (accessed June 25, 2021)). Go at Google: Language design in the

service of software engineering. In Golang Talks. http://talks.golang.org/2012/

splash.article.

Prete, K., Rachatasumrit, N., Sudan, N., and Kim, M. (2010). Template-based re-

construction of complex refactorings. In 26th International Conference on Software

Maintenance (ICSM), pages 1--10.

Ratzinger, J., Sigmund, T., and Gall, H. C. (2008). On the relation of refactorings

and software defect prediction. In 5th Working Conference on Mining Software

Repositories (MSR), pages 35--38.

Bibliography 57

Sadowski, C., Söderberg, E., Church, L., Sipko, M., and Bacchelli, A. (2018). Modern

code review: A case study at Google. In 40th International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP), pages 181--190.

Salton, G. and McGill, M. J. (1986). Introduction to Modern Information Retrieval.

McGraw-Hill, Inc., USA. ISBN 0070544840.

Shen, B., Zhang, W., Zhao, H., Liang, G., Jin, Z., and Wang, Q. (2019). Intel-

liMerge: A refactoring-aware software merging technique. Programming Languages,

3(170):170:1--170:28.

Silva, D., da Silva, J. P., Santos, G., Terra, R., and Valente, M. T. (2021). RefDiff

2.0: A multi-language refactoring detection tool. IEEE Transactions on Software

Engineering, 1(1):1--17.

Silva, D., Tsantalis, N., and Valente, M. T. (2016). Why we refactor? confessions

of GitHub contributors. In 24th International Symposium on the Foundations of

Software Engineering (FSE), pages 858--870.

Silva, D. and Valente, M. T. (2017). RefDiff: Detecting refactorings in version histories.

In 14th International Conference on Mining Software Repositories (MSR), pages 1-

-11.

Silva, H. and Valente, M. T. (2018). What’s in a GitHub star? understanding repository

starring practices in a social coding platform. Journal of Systems and Software,

146:112--129.

Terra, R., Valente, M. T., Miranda, S., , and Sales, V. (2018). JMove: A novel heuristic

and tool to detect move method refactoring opportunities. Journal of Systems and

Software, 138:19--36.

Tsantalis, N., Guana, V., Stroulia, E., and Hindle, A. (2013). A multidimensional

empirical study on refactoring activity. In Conference of the Centre for Advanced

Studies on Collaborative Research (CASCON), pages 132--146.

Tsantalis, N., Ketkar, A., and Dig, D. (2020). RefactoringMiner 2.0. IEEE Transactions

on Software Engineering, pages 1--21.

Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., and Dig, D. (2018).

Accurate and efficient refactoring detection in commit history. In 40th International

Conference on Software Engineering (ICSE), pages 483--494.

Bibliography 58

Winters, T., Wright, H., and Manshreck, T. (2020). Software Engineering at Google:

Lessons Learned from Programming over Time. O’Reilly Media.

Xing, Z. and Stroulia, E. (2005). UMLDiff: An algorithm for object-oriented design

differencing. In 20th International Conference on Automated Software Engineering

(ASE), pages 54--65.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Proposed Work
	1.3 Contributions
	1.4 Publications
	1.5 Outline of the Dissertation

	2 Background and Related Work
	2.1 RefDiff
	2.2 Go
	2.3 GitHub Actions
	2.4 Related Work
	2.4.1 Detection of Refactoring Activities
	2.4.2 Code Review
	2.4.3 Refactoring-Aware Code Review

	2.5 Final Remarks

	3 RefDiff4Go: Detecting Refactorings in Go
	3.1 Introduction
	3.2 RefDiff4Go
	3.3 Evaluation
	3.3.1 Evaluation Design
	3.3.2 Computing Precision
	3.3.3 Computing Recall

	3.4 Results
	3.4.1 Comparison with Java, JavaScript, and C
	3.4.2 Java
	3.4.3 JavaScript
	3.4.4 C
	3.4.5 Execution Time

	3.5 Threats to Validity
	3.6 Final Remarks

	4 RAID: Refactoring-Aware Code Reviews
	4.1 Introduction
	4.2 RAID in a Nutshell
	4.3 RAID Architecture
	4.3.1 RAID GitHub Action (RGA)
	4.3.2 RAID Chrome Extension (RCE)
	4.3.3 RAID Server

	4.4 Field Experiment
	4.4.1 Methodology
	4.4.2 Research Questions
	4.4.3 Experiment Results

	4.5 Threats to Validity
	4.6 Final Remarks

	5 Conclusion
	5.1 Overview and Contributions
	5.2 Comparison with Existing Tools and Studies
	5.3 Limitations
	5.4 Future Work

	Bibliography

