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“Essencialmente, todos os modelos estão errados, mas alguns são úteis”

George E. P. Box



Resumo

Devido ao monopólio natural existente no setor elétrico brasileiro, são necessários

mecanismos que garantem a proteção dos consumidores contra medidas que os

desfavorecem, como por exemplo a alta de preços exorbitantes. Um destes mecanismos é a

existência de uma agência reguladora, chamada Agência Nacional de Energia Elétrica,

ANEEL. Entre suas várias funções, este órgão realiza a análise de parâmetros de produção de

energia elétrica pelas 61 empresas ao longo do território nacional, chamadas de DSO

(Distribution Service Operator). Atualmente, os parâmetros são utilizados para a realização

de benchmarking das DSO’s, de acordo com o modelo Data Envelopment Analysis (DEA),

onde a eficiência é calculada durante o período de revisão tarifária O modelo atual conta

ainda com um um procedimento ad-hoc, onde bootstrap é usado permitindo que algumas

DSO’s ultrapassem a fronteira de eficiência. Um novo método é proposto, utilizando o

processo de benchmarking chamado Stochastic Data Envelopment Analysis, SDEA, que

propõem uma equação paramétrica para a fronteira de eficiência, e que naturalmente permite

que DSO’s ultrapassem a fronteira, sem a necessidade de procedimentos adicionais. Na

metodologia aplicada, foi proposto um novo modelo SDEA, e simulações demonstraram

convergência entre o modelo atual utilizado pela agência reguladora e o modelo proposto,

mostrando que o SDEA pode ser uma boa opção para o benchmarking no próximo ciclo

tarifário.

Keywords: Análise Envoltória de Dados Estocástica, Análise de Fronteira Estocástica,

benchmarking.



Abstract

Due to the natural monopoly existing in the Brazilian electric sector, the elements that

guarantee the protection of consumers against measures that disadvantage them are used,

disadvantages such as the exorbitant high prices. One of these mechanisms is the existence of

a regulatory agency, called the Agência Nacional de Energia Elétrica, ANEEL. Among its

various functions, this agency carries out the analysis of parameters of electric energy

production by the 61 companies throughout the national territory, called DSO (Distribution

Service Operator). Currently, the parameters are used for benchmarking the DSO's, according

to the Data Envelopment Analysis (DEA) model, where efficiency is obtained during the

tariff review period. The current model also has an ad-hoc procedure, where bootstrap is

used, allowing some DSOs to surpass the efficiency frontier. A new method is proposed,

using the benchmarking process called Stochastic Data Envelopment Analysis, SDEA, which

proposes a parametric equation for the efficiency frontier, and which naturally allows the

DSO to cross the frontier, without the need for additional procedures. In the applied

methodology, a new SDEA model was proposed, and simulations demonstrated convergence

between the current model used by the regulatory agency and the proposed model, showing

that SDEA can be a good option for benchmarking in the next tariff cycle.

Keywords: Análise Envoltória de Dados Estocástica, Análise de Fronteira Estocástica,

benchmarking.
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1. INTRODUÇÃO
O órgão regulador do setor de energia elétrica brasileiro, denominado dea Agência

Nacional de Energia Elétrica, ANEEL, realiza o benchmarking das empresas no Brasil desde

2003, onde utiliza Data Envelopment Analysis e alguns procedimentos adicionais, para

garantir a proteção dos consumidores contra possíveis abusos tarifários e quedas de

qualidade, devido ao monopólio de tais empresas.

1.1 ANÁLISE ENVOLTÓRIA DE DADOS ESTOCÁSTICA
APLICADA AO MODELO DE BENCHMARKING DE
DISTRIBUIÇÃO DE ENERGIA DE 2015

O processo de benchmarking analisa o mercado a alinha às melhores práticas entre

empresas, visando otimizar os resultados. Atualmente, a Agência Nacional de Energia

Elétrica regula o mercado e realiza o benchmarking em ciclos tarifários, que acontecem a

cada 4 ou 5 anos, utilizando o método Data Envelopment Analysis (DEA) com retornos não

decrescentes de escala, utilizando variáveis como número total de consumidores, mercado

ponderado, rede de distribuição de alta tensão, rede de distribuição aérea, rede de distribuição

subterrânea, perdas não técnicas, e tempo sem interrupção de serviço.

Uma alternativa a métodos de benchmarking conhecidos como métodos de fronteira

estocástica (SFA - Stochastic Frontier Analysis) permite que os DSOs cruzem a fronteira de

eficiência. Métodos de fronteira estocástica foram originalmente desenvolvidos por Aigner et

al. (1977) usando uma equação paramétrica para a fronteira de eficiência e a soma de dois

componentes aleatórios independentes. Um componente aleatório representa a ineficiência

técnica e o segundo componente aleatório representa o componente de ruído. O componente

de ruído permite que a fronteira de eficiência seja ultrapassada.

Banker (1986) propôs pela primeira vez um método estocástico não paramétrico

usando DEA, conhecido como Stochastic Data Envelopment Analysis (SDEA), no qual o

analista escolhe o número de pontos que cruzam a fronteira com antecedência, assim, a

fronteira eficiente é estimada usando um modelo de programação linear.

Além da utilização do DEA, o regulador utiliza procedimentos adicionais que de

maneira geral permitem que as eficiências ultrapassem o valor de 100%. Os procedimentos

8
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9

são explicados no Capítulo 2.2, e no Capítulo 2.7 é proposto um novo algoritmo, que utiliza o

Stochastic Data Envelopment Analysis (SDEA) como opção de ferramenta de benchmarking.

Os resultados do Capítulo 3 mostram que o modelo proposto possui alta relação com os

modelos atuais pode ser uma boa opção para os próximos ciclos tarifarios.

9
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Stochastic Data Envelopment Analysis applied to the

2015 Brazilian energy distribution benchmarking model

Abstract

The Brazilian energy regulator has been applying data envelopment anal-
ysis to set operating costs for distribution service operators since 2013. In
addition to data envelopment analysis, further adjustments using Bootstrap
and a reference efficiency, estimated as 79%, allow companies to have cost
efficiencies above their observed costs. Thus, companies are allowed to cross
the efficiency frontier. Similarly, stochastic frontier models also allow compa-
nies to cross the efficiency frontier. This work proposes the use of stochastic
data envelopment analysis as an alternative for estimating efficient costs,
thus providing a much simpler alternative. A new estimation algorithm is
proposed in which the number of companies crossing the frontier comprises
one important parameter. Simulation studies provide convergence evidence
of the proposed model and results using the Brazilian database show that
the stochastic data envelopment analysis is a promising model for upcoming
tariff review cycles.

Keywords: stochastic data envelopment analysis, stochastic frontier
analysis, benchmarking.

1. Introduction

The Brazilian regulator (ANEEL – Agência Nacional de Energia Elétrica)
has been estimating regulatory revenues for energy distribution companies,
such as regulatory operating costs, since 2003, during the first tariff review
cycle (1TRC). Operating costs comprise a small part of the energy tariff and
the regulatory operating cost, or efficient cost, represents the price-cap value
that each company, hereafter named DSO (Distribution Service Operator),
can charge consumers. In 2011, the regulator started to estimate regulatory
operating costs using efficiency frontier methods such as corrected ordinary
least squares (OLS) and data envelopment analysis (DEA). The proposed

Preprint submitted to Omega March 10, 2021
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benchmarking methods estimate the efficient cost based on DSO characteris-
tics such as number of consumers, distribution network length, energy mar-
ket, non-technical losses, observed operating costs, among others. Further
details about the Brazilian DSOs benchmarking models are found in Costa
et al. (2015); da Silva et al. (2019) and Lopes et al. (2016).

In 2015, during the fourth tariff review cycle (4TRC), the regulator pro-
posed only one frontier model, a DEA model, to estimate efficient costs. The
current model is expected to be revised in the upcoming tariff review cycle,
starting in 2020. The current DEA model uses non-decreasing returns of
scale with operating costs as the input variable and number of consumers,
weighted power consumption, high level network extension, low level network
extension, underground network extension, non-technical losses and duration
of interruption of energy as output variables. In addition, weight restrictions
(Podinovski, 2004) are included in the DEA model. The total number of
DSOs is 61 and the database comprises average yearly data observed for
each DSO between tariff review cycles, every 4 to 5 years. Thus, the sample
size is 61. Estimated cost efficiencies vary from 27% to 100%, meaning that
some DSOs must reduce their observed cost by 73%. Cost efficiency is the
ratio between efficient cost and observed cost. Costa et al. (2019); da Silva
et al. (2019); Gil et al. (2017) and Lopes et al. (2016) have argued that the
lower efficiencies are due to the lack of important output variables in the
model and the lack of environmental adjustments.

In addition to the DEA model, the regulator is applying secondary ad-hoc
adjustments. After estimating the cost efficiencies using DEA, a reference
cost efficiency is estimated using the average of the cost efficiencies above
55%. In the last TRC, the reference cost was estimated as 79%. In addition,
a Bootstrap simulation proposed by Simar and Wilson (1998) and Bogetoft
and Otto (2010), is applied to generate confidence intervals for the cost effi-
ciencies. Finally, the DEA cost efficiencies, the confidence intervals and the
reference cost efficiency are combined generating final cost efficiencies vary-
ing from 37% to 119%. Further details are found in Technical Note 66/2015
(ANEEL, 2015). The regulator argues that fully efficient companies, i.e.,
DSOs with cost efficiencies of 100% estimated using the DEA model, must
be rewarded for being fully efficient. Thus, their final efficiencies can be
greater than 100%. This ad-hoc procedure also increases the minimum value
of the cost efficiencies. The regulator also argues that the ad-hoc procedures
adjusts for potential missing variables in the DEA model. One may argue
that the ad-hoc procedure simply allows DSOs to cross the efficiency frontier.
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An alternative class of benchmarking methods known as stochastic fron-
tier methods (SFA - Stochastic Frontier Analysis) allows DSOs to cross the
efficiency frontier. Stochastic frontier methods were originally developed by
Aigner et al. (1977) using a parametric equation for the efficiency frontier
and the sum of two independent random components. One random compo-
nent represents the technical inefficiency and the second random component
represents the noise component. The noise component allows the crossing of
the efficiency frontier.

Banker (1986) first proposed a non-parametric stochastic method using
DEA, known as Stochastic Data Envelopment Analysis (SDEA) in which
the analyst chooses the number of points crossing the frontier in advance,
thus the efficient frontier is estimated using a linear programming model.
Banker and Maindiratta (1992) presented the use of maximum likelihood to
estimate the SDEA model, and claims that SDEA with multiple-outputs is
somewhat harder to solve. Therefore, we leave the development of efficient so-
lution method to future research. Alternatively, Kuosmanen and Kortelainen
(2012) proposed the Stochastic Non-Smooth Envelopment of Data (StoNED)
which can be seen as an SDEA based on maximum likelihood, but with an
estimation algorithm based on Modified Ordinary Least Squares (MOLS)
(Greene, 1980). The StoNED was adopted to regulate electricity distribu-
tion companies in Finland in 2012 (Kuosmanen et al., 2013), achieving better
performance than DEA and SFA.

Both SDEA and StoNED are semi-parametric frontier models that com-
bine a piecewise linear efficiency frontier and a stochastic homoskedastic com-
posite error. Recently, Jradi and Ruggiero (2019) compared the deterministic
and stochastic DEA frontier using simulations, considering the error compo-
nent as normally distributed and the inefficiency as half-normally distributed.
The authors proposed an algorithm to estimate the efficiency frontier using
maximum likelihood.

The present work proposes the use of SDEA to estimate the Brazilian
DSO cost efficiencies. A new algorithm is presented based on the work of
Jradi and Ruggiero (2019). Simulation studies provide convergence proper-
ties of the proposed algorithm under different returns of scale assumptions.
Results show that the proposed SDEA model achieves similar cost efficiencies
as compared to the ANEEL ad-hoc methodology. Therefore, we advocate the
use of SDEA in upcoming tariff review cycles.

This paper is organized as follows. Section 2 presents the Brazilian elec-
tricity benchmarking model, the literature review and the proposed Stochas-
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tic Data Envelopment Analysis algorithm. Section 3 presents the simulation
results and the case study. Section 4 presents the conclusion.

2. Materials and Methods

2.1. Historical background

The Brazilian electricity distribution sector comprises a monopoly market
with 63 companies. Each company, or distribution service operator provides
service to its own concession area within the 26 Brazilian states. To protect
consumers from abusive tariffs, energy regulation is provided by the regulator
agency (ANEEL). Until 1993, every consumer would paid the same energy
price regardless of the state. Companies with negative revenues would get
subsidies from the federal government. In 1994, different prices were set for
each company, based on their own characteristics such as number of con-
sumers, length of the distribution network and cost of the energy. In 2011,
ANEEL started to apply benchmarking methodologies to regulate prices, so
that the energy costs could be covered by the revenues, while protecting the
consumers from abusive tariffs. The methodology for the estimate of energy
tariffs is reviewed every 4 or 5 years in a process named tariff review cycle
(TRC). In the beginning of the TRC, tariff prices are defined for each com-
pany. Thus, companies can optimize their costs and reach profitability. At
the end of the TRC, tariff prices are revised and new values are defined. The
fourth TRC was concluded in 2015 and the duration of the cycles are set
individually for each company, making the process more effective.

2.2. The 2015 Brazilian electricity distribution regulation model

During the fourth tariff review cycle (2015-2018), the regulator applied a
DEA-NDRS model to calculate cost efficiencies for each DSO. The Brazilian
database is provided by ANEEL and comprises information about 61 elec-
tricity distribution companies. The input variable is operational cost. The
outputs variables are number of consumers, weighted power consumption,
high level network extension, low level network extension (network distri-
bution), underground network extension, non-technical losses (energy loss)
and duration of interruption of energy (amount of time without electricity
service), as previously mentioned. The database comprises mean values from
2014 to 2016. A large number of companies has efficiency equal to one, thus
weight restrictions are imposed on the DEA-NDRS model, limiting upper
and lower values on the trade-offs between inputs and outputs.

13



The DEA-NDRS model, which is currently used by ANEEL (ANEEL,
2015), is shown in Equation 1.

maxu,v,ϕ h0 =
∑m1

j=1 vjy
0
j +

∑m2
i=1 vi(−y0i ) + ϕ

subject to:

u · x0 ≤ 1,∑m1
j=1 vjy

n
j +

∑m2
i=1 vi(−yni ) + ϕ− u · xn ≤ 0, n = 1, 2, ..., N

−vr + αru ≤ 0, r = 1, ..., R
+vt − βtu ≤ 0, t = 1, ..., T
u, vj, ϕ ≥ 0

(1)

where h0 is the efficiency of the DSO under analysis, N is the total number of
DSOs, m1: is the total number of positive outputs, m2 is the total number of
negative outputs, ynj is the j-th output of DSO n, xni is the i-th input of DSO
n, ui is the input parameter, vj is the j-th output parameter, ϕ: is the scale
parameter, αr is the lower bound weight restriction between the parameters
vr and u, βt is the upper bound weight restriction between the parameters
vt and u, R is the total number of lower bound weight restrictions and T is
the total number of upper bound weight restrictions.

Table 1 shows the weight restrictions where u is the input parameter,
related to the operational cost, and v’s are the output parameters. Fur-
ther details about the DEA-NDRS are available in Technical Note 162/2017-
SRM/ANEEL (ANEEL, 2017).

14



Table 1: Trade-offs, i.e., weight restrictions between input and outputs variables imposed
by ANEEL in the 2015 DEA-NDRS model.

Trade-offs Lower and upper bounds
(weight restrictions)

Input versus Network Distribution 580 ≤ vnetdist
u ≤ 2200

Underground Network versus 1.00 ≤ vundernet
vnetdist

≤ 2.00

Network Distribution
High Level Network versus 0.40 ≤ vhighnet

vnetdist
≤ 1.00

Network Distribution
Input versus Total number of consumers 30 ≤ vcons

u ≤ 145
Input versus Delivered MWh 1 ≤ vMWh

u ≤ 60
Input versus Non-Technical Losses 10 ≤ vNonTechLoss

u ≤ 150
Input versus Interrupted services

vinterrupt

u ≤ 2

After calculating the efficiency scores, using the DEA-NDRS model with
weight restrictions, as shown previously, the regulator applies additional steps
to calculate the final cost effciencies (ANEEL, 2017). First, a confidence
interval for the efficiency score is estimated for each DSO using a bootstrap
method. Thus, lower (θiinf ) and upper (θisup) bounds for the efficiencies are
estimated, i.e., θiinf ≤ θi ≤ θisup. Although the cost efficiency methodology
is applied separately for each DSO at different years, under the hypothetical
scenario in which all cost efficiencies (for all DSOs) are estimated in the first
year of the TRC, it can be shown that the final efficiencies are calculated
using Equation 2.

θifinal = min(max(1, θiinf/θref ), θisup/θref ) (2)

where θifinal is the new adjusted efficiency score for the i-th DSO, θiinf is lower
bound of the cost efficiency, θisup: the upper bound of the cost efficiency and
θref is the reference score, estimated in the 4TRC as 0.79 (79%).

As mentioned, the value of θref is calculated as the mean value of the
efficiencies greater than 0.55 (55%), generated by the DEA-NDRS model
with weight restrictions. The complete procedure (DEA-NDRS + Bootstrap
+ Equation 2) generates larger efficiencies as compared to the originals. In
some cases, final efficiencies are greater than 1 (100%), which comprises
DSOs crossing the efficiency frontier. Briefly, a DSO with bootstrap lower
bound greater than the reference score has its efficiency score calculated

as
θiinf

θref
. Consequently, the final efficiency is greater than 1. A DSO with

15



efficiency within the interval θiinf ≤ θref ≤ θisup has its final efficiency equal
to 1. Finally, a DSO with bootstrap upper bound lower than the reference

score, θisup < θref has its efficiency calculated as
θisup
θref

. Consequently, the final

efficiency is greater or equal to the original.
In the last tariff review cycle (2014-2016), the DEA-NDRS resulted in

6 companies with efficiency scores equal to 1. After the recalculation, 11
companies (18.03%) achieved efficiencies greater than 1, and 15 companies
(24.59%) achieved efficiencies equal to 1. Thus, 42.62% of the companies
achieved efficiencies greater or equal to 1. This is illustrated in Figure 1
which compares the cost efficiencies calculated by the DEA-NDRS and using
Equation 2, as proposed by ANEEL. The DSOs were sorted in increasing
order of the DEA-NDRS cost efficiencies. The horizontal line represents the
100% cost efficiency. Thus, DSOs located below the horizontal line comprise
companies with efficiencies below 100%. Points located on the horizontal line
comprise companies with efficiencies of 100%, and points located above the
horizontal line comprise companies with efficiencies greater than 100%. In
this scenario, the Stochastic Data Envelopment Analysis (SDEA) can be a
more suitable option, since the SDEA allows a portion of DSOs to cross the
frontier. Furthermore, SDEA has the advantage of estimating linear equa-
tions to calculate efficiency cost for each DSO. Thus, the analyst can compare
the linear coefficients among DSOs, evaluating the variables affecting their
efficient costs.
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Figure 1: Comparison between cost efficiencies using the brazilian DEA-NDRS model with
weight restrictions and the procedure using DEA-NDRS + Bootstrap + Equation 2.
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2.3. Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a benchmarking tool proposed by
Charnes et al. (1978) and extended by Banker et al. (1984), applied world-
wide, which uses mathematical linear programming to measure the efficiency
of DSOs using input and output variables. In general, DEA can be applied
to minimize inputs or maximize outputs. Using an input-oriented approach,
the DEA evaluates whether a DSO can reach the same outputs with fewer
inputs. Using an output-oriented approach, DEA evaluates whether a DSO
can produce more outputs with the same amount of inputs. In both cases, a
DSO is fully efficient if there is no need either to minimize inputs or maximize
outputs (Cook et al., 2014).

DEA models can assume different returns to scale properties. Constant
returns to scale (CRS) or variable returns to scale (VRS) are the most com-
mon. The choice of the orientation must rely on the data and the objectives
of the research (LaPlante and Paradi, 2015). Furthermore, DEA has a major
advantage which is the non-parametric estimate of the frontier, i.e., without
specifying the parametric equation of the production or cost function. Fur-
ther details about DEA are found in Cook et al. (2014), Bogetoft and Otto
(2010) and elsewhere.

2.4. Stochastic Frontier Analysis

DEA and SFA (Stochastic Frontier Analysis) have been used for both
managerial and economic research, mainly in the last decade. SFA is more
widely used in Economics. Lampe and Hilgers (2015) claim that DEA re-
search activity is not as fast to adopt new concepts as SFA. SFA is a stochastic
frontier model first proposed by Aigner et al. (1977) and Meeusen and van
Den Broeck (1977), which has the advantage of distinguishing two type of
errors: inefficiency and noise. The structure of the compound error for pro-
duction frontier is given by εi = vi − ui, where vi and ui are independent
random variables. vi is normally distributed vi ∼ N(0, σ2

v) and ui follows a
one-sided distribution, such as a half-normal distribution, ui ∼ |N(0, σ2

u)|.
For cost frontier, εi = vi + ui.

In order to apply SFA, the parametric equation of the efficiency fron-
tier must be specified. For production frontier the Cobb-Douglas function
C(yj, ..., ym) = β0y

β
1×...×yβmm (Jondrow et al., 1982) is widely applied, where

yj are the outputs and β0, · · · βm are the parameters of the production func-
tion. In the case of cost function, the Translog function (Christensen et al.,
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1975) can be applied. However, even using the Translog function, the as-
sumption of monotonicity and convexity of the cost function can be violated,
creating perverse incentives to produce less outputs to improve the efficiency
(Kuosmanen et al., 2013). Further details about cost frontier models are
shown in section 2.6.

2.5. Stochastic Data Envelopment Analysis

Let xj = (x1j, ..., xKj) be the vector of inputs, of dimension K, for the
j-th decision making unit (DMU) and yj the respective output, i.e., a single
output. The SDEA model that estimates the production function is given
by Equation 3, as originally proposed by Banker (1986):

min
∑n

i=1 τe1i + (1− τ)e2i
subject to:
yi = αi + β1ix1i + ...+ βkixki
+e1i − e2i ∀i = 1, ..., N
αi + β1ix1i + ...+ βkixki ≤ αj
+β1jx1i + ...+ βkjxkj ∀i,j = 1, ...N
βki ≥ 0 ∀k = 1, ..., K;

i = 1, ..., N
e1i, e2i ≥ 0, ∀i = 1, .., N

(3)

where αi + β1ix1i + ... + βkixki comprises the piecewise linear production
frontier for each DMU i. Similar to SFA models, an SDEA compound error
structure can be written as ei = e1i− e2i. Thus, if ei > 0 then the i-th DMU
have an output above the production frontier. Likewise, if ei < 0 then the
i-th DMU have an output below the production frontier. If ei = 0 the DMU
output is located at the efficiency frontier. τ is the parameter, previously
selected by the analyst, which controls the proportion of points crossing the
production frontier.

Returns to scale properties in the SDEA model are implemented by re-
stricting the value of αi. Constant returns to scale are implemented assuming
αi = 0. Non-decreasing returns to scale are implemented using αi ≥ 0 and
variable returns to scale are implemented using αi ∈ IR.

The SDEA model shown in Equation 3 is similar to a quantile multiple
linear regression model where convexity and monotonicity are assumed (Jradi
and Ruggiero, 2019). The solution of Equation 3 assumes that approximately
100τ percent of the data will be above the production frontier. If τ is equal

18



to 1, the model becomes deterministic and the compound error expresses
technical inefficiency only.

It can be shown that both mathematical representations of error, ei =
e1i − e2i (SDEA) and ei = vi − ui (SFA), are equivalent. Therefore, the
optimal value of τ can be chosen assuming an SFA stochastic compound
error structure, as presented by Jradi and Ruggiero (2019). Equation 4
shows the probability density distribution (pdf ) of the compound error for
the production function.

f(ε) =
2

σ
φ
( ε
σ

)
Φ

(
−ελ
σ

)
(4)

where σ =
√
σ2
u + σ2

v , λ = σu
σv

, φ(.) is the probability density function of
a standard normal random variable and Φ(.) is the respective accumulated
probability function. Jradi and Ruggiero (2019) proposes an algorithm to
estimate the optimal value of τ by searching over a grid of values. For each
value of τ = 0.5 + 0.001(k− 1), k = 1, ..., 491, the frontier and the errors are
estimated using Equation 3. Using the estimated residuals, êi = ê1i− ê2i, and
the statistical properties of the first and second moments of the ε random
variable, values for σ̂2 and λ̂ are computed. The optimal estimate of τ̂ ∗ is the
value of τ that achieves the maximum likelihood value based on Equation 4.

Finally, one may argue that the stochastic estimate of production SDEA
model is the solution of Equation 5, shown below.

max
αi,βi,σ,λ

∑n
i=1 log φ

(
ei
σ

)
+ log Φ

(
−λ ei

σ

)
− log σ

subject to:

yi = αi + β1ix1i + ...+ βkixki + ei, ∀i = 1, ..., N
αi + β1ix1i + ...+ βkixki ≤
αj + β1jx1i + ...+ βkjxkj, ∀i, j = 1, ...N
βki ≥ 0, ∀k = 1, ..., K; ∀i = 1, ..., N.

(5)
Equation 5 was first presented by Banker and Maindiratta (1992). How-

ever, the solution of Equation 5, which comprises a non-linear maximization
problem subject to linear constraints, is still an open topic for research.
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2.6. Comparison of deterministic and stochastic cost frontier models

As mentioned, the present work proposes a new SDEA algorithm to es-
timate the cost efficiencies of the Brazilian DSOs. The main frontier models
for cost regulation are based on Equation 6.

lnx = lnC(y1, ..., yk) + δz + u+ v (6)

where x is the observed cost (inputs), C(.) is the function that characterizes
the efficiency cost frontier, y1, ..., yk are the outputs, z represents exogenous
components, δ is the coefficient associated with the exogenous component, u
is the random variable representing inefficiency and v is the random variable
representing statistical noise. In deterministic models, deviations from the
cost frontier are associated with inefficiency, i.e., v = 0 and u ≥ 0. As
mentioned, the DEA model assumes only inefficiency components and a non-
parametric frontier equation.

Stochastic models (Kumbhakar and Lovell, 2003) assume both noise (v)
and inefficiency (u) components. Consequently, the probability distributions
for the v and u components must be specified. In general, the simplest model
consists of assuming a truncated normal distribution (half-normal) for the
inefficiency component, u ∼ |N(0, σ2

u)| and a normal distribution for the
noise component, v ∼ N(0, σ2

v). The compound error is written as ε = u+ v.
Using the probability distributions of u, fu(u) and v, fv(v), the probability
distribution of the compound error ε is written as

fε(ε) =

∫ ∞
0

fv(ε− u)fu(u)du (7)

The solution is given by fε(ε) = 2
σ
φ( ε

σ
)Φ(λ ε

σ
), where σ2 = σ2

u + σ2
v and

λ = σu
σv

. Other probability distributions can also be defined (Meeusen and
van Den Broeck, 1977; Aigner et al., 1977; Stevenson, 1980).

Given the density function of the compound error, the parameters of the
cost function, ln x = lnC(y1, ..., yk), as well as the parameters λ and σ2

can be estimated using the maximization of the likelihood function (Casella
and Berger, 2002). Nonetheless, according to Sartori (2006), the maximum
likelihood estimate for parameter λ can be infinite with a non-zero probability
for smaller samples. Consequently, the SFA model can wrongly identify all
companies as fully efficient. The procedure above provides the estimates of
the frontier or the cost function parameters. The estimates of the efficiency
scores, i.e., the ratio between efficient cost and observed cost, imply the
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estimates of the inefficiency components u. In this case, the conditional
density of u|ε can be calculated as shown in Equation 8.

fu|ε(u|ε) =
f(u, ε)

fε(ε)
=
fu(u)fv(ε− u)

fε(ε)
(8)

Given the conditional density distribution, Jondrow et al. (1982) and
Bogetoft and Otto (2010) present three possible equations to estimate the
efficiency score.

θ̂
[1]
i = e−E(u|εi) (9)

θ̂
[2]
i = E(e−u|εi) (10)

θ̂
[3]
i = e−M(u|εi) (11)

where E(u|ε) =
∫∞
0
u · fu|ε(u|ε)du, E(e−u|εi) =

∫∞
0
e−u · fu|ε(u|ε) and M(u|εi)

is the conditional mode equation. In general, Equation 10 is the most com-
monly applied (Bogetoft and Otto, 2010). However, Equation 10 comprises
an estimate for the mean value of the efficiency scores. Consequently, it
is unlikely that one company will reach an efficiency score equal to one
(100%). Thus, compound error models, in general, do not estimate fully
efficient DSOs. Kuosmanen et al. (2013) mention that “companies regulated
by compound error models and the conditional mean estimator are not able
to reach the efficiency frontier, even if its efficiency is adjusted according to
the amount indicated by the model”.

The StoNED model (Kuosmanen and Kortelainen, 2012) also applies a
compound error structure, but the estimate of the cost function is acom-
plished in the first stage using a non-parametric convex least squares, as
shown in Equation 12

minβ,α,u
∑N

i=1 (lnxi − lnϕi)
2

subject to:
ϕi = αi + β1iy1 + ...+ βkiyi i = 1, ..., N
αi + β1iy1 + ...+ βkiyi ≥ αj
+β1jy1 + ...+ βkjyi j, i = 1, ..., N
βki ≥ 0 i = 1, ..., N

(12)
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StoNED first apply a non-parametric minimum least squares to estimate
the parameters of the frontier and the compound error. In the case of the
StoNED, the compound error estimate is defined by the residual of the model,
i.e., εi = lnxi − lnϕi. In the original proposal, the normal and half-normal
distributions are also used for the noise and the inefficiency components,
respectively (εi = ui + vi). The compound error parameters λ and σ2 are
estimated in a second stage using the method of moments (Kuosmanen and
Kortelainen, 2012). The StoNED resembles a COLS estimate in which the
parameters of the frontier are estimated using minimum least squares. How-
ever, the StoNED uses a non-parametric frontier equation. From the resid-
uals of non-parametric OLS estimate, bias correction of the frontier and the
compound error parameters are estimated. Final estimates of the efficiency
scores, using StoNED is similar to the SFA model, in which the conditional
distribution is required. The SDEA resembles the StoNED and DEA meth-
ods, by assuming a non-parametric form for the efficiency frontier.

It is worth noticing that SDEA, StoNED and SFA allow DSOs to cross
the efficiency frontier. According to Tone (2017), other methods also allow
points to cross the frontier, such as order-m and order-α frontier (Daraio and
Simar, 2007) and chance-constrained programming (Land et al., 1993). Thus,
these methodologies assume directly (as in the case of SFA and StoNED), or
indirectly (in case of SDEA), a compound error structure.

As mentioned by Sartori (2006), da Silva et al. (2019) and Azzalini (2013)
the composed error models, as SFA, StoNED and SDEA, presents serious
problems of convergence, particularly related to the parameter λ . Those
problems can be minimized using a large data base or a smaller number of
variables, as compared to the number of DSOs. Nonetheless, this is not the
case of Brazilian electricity distribution service operators (DSOs). da Silva
et al. (2019) identified convergence problems in the compound error model
using data from the 4TRC. Alternatives to adjust compound error models
are shown in literature, such as the Bayesian approach described by Bayes
and Branco (2007). However, the Bayesian approach requires the use of
MCMC (Markov Chain Monte Carlo) methods which are sensitive to initial
conditions of the algorithm.

In short, compound error models such as SFA and StoNED may present
convergence problems when estimating their parameters, especially the ef-
ficiency scores. In addition, different stochastic assumptions for noise and
inefficiency components may generate different results. Consequently, esti-
mated operational cost efficiencies may be unreliable. Thus, international
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regulation agencies prefer DEA (de Barros Mesquita, 2017).

2.7. Proposed SDEA algorithm

The proposed SDEA estimation algorithm is based on the maximization
of the compound error likelihood, subject to an SDEA piecewise linear cost
frontier model, as shown in Equation 13.

max
αi,βi,σ,λ

∑n
i=1 log φ

(
ei
σ

)
+ log Φ

(
λ ei
σ

)
− log σ

subject to :

C(y1i, ..., yKi) = αi + β1iy1i + ...+ βKiyKi
ei = log xi − logC(y1i, ..., yKi) ∀i = 1, ..., N
αi + β1iy1i + ...+ βKiyKi ≥ αj + β1jy1i + ...+ βKjyKi ∀i, j = 1, ..., N
βki, αi ≥ 0 ∀i = 1, ..., N

∀k = 1, ..., K
σ, λ > 0.

(13)
Equation 13 comprises the original SDEA problem shown in Equation

5, but assuming a cost frontier formulation as described in Equation 12.
Following Jradi and Ruggiero (2019), our proposed algorithm also applies
the proportion of points crossing the frontier as a proxy for the estimation
of λ. Nevertheless, a different representation is proposed as follows: from
Equation 4, the probability of points crossing a production frontier can be
written as a function of the λ parameter, as shown in Equation 14.

P [ε ≤ 0] =
∫ 0

−∞
2
σ
φ
(
ε
σ

)
Φ
(−ελ

σ

)
dε

= 0.5 + 1
π
arctan(λ)

(14)

For the cost frontier, the compound error is written as v + u. Thus, the
probability of points crossing the cost frontier can be written as a function
of the λ parameter, as follows. Let ε1 = v − u and ε2 = v + u, where ε1
comprises the production function compound error and ε2 comprises the cost
frontier compound error. The pdf s of ε1 and ε2 can be written as follows.

fε1(x) =
2

σ
φ
(x
σ

)
Φ

(
−xλ
σ

)
(15)
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fε2(x) =
2

σ
φ
(x
σ

)
Φ

(
xλ

σ

)
(16)

It can be shown that φ(x
σ
) = φ(−x

σ
). Consequently, fε1(x) = fε2(−x) or

fε1(−x) = fε2(x). Thus, it can be shown that,

P [ε1 ≤ 0] = P [ε2 > 0]
P [ε1 ≤ 0] = 1− P [ε2 ≤ 0]
P [ε2 ≤ 0] = 1− P [ε1 ≤ 0]

(17)

From Equation 14, the probability of points crossing the cost frontier can
be written as follows.

P [ε2 ≤ 0] = 1− (0.5 + 1
π

arctan(λ))
= 0.5− 1

π
arctan(λ)

(18)

Finally, from Equation 18, the λ parameter can be written as a function
of P [ε2 ≤ 0], as shown in Equation 19.

P [ε2 ≤ 0] = 1− (0.5 + 1
π

arctan(λ)
1
π

arctan(λ) = 0.5− P [ε2 ≤ 0]
λ = tan[π(0.5− P [ε2 ≤ 0])]

(19)

Equation 19 shows that, using the SDEA cost frontier model, it is possible
to estimate the λ parameter by defining the probability of points crossing the
frontier, P [ε2 ≤ 0]. Given the sample of size N , we propose to estimate the λ
parameter by gradually allowing points to cross the efficiency frontier, thus
approximating the value of P [ε2 ≤ 0] as the observed proportion of points
crossing the frontier, P̂ [ε2 ≤ 0] = k/N , as show in Equation 20

λ̂ = tan[π(0.5− k/N)] (20)

where k = 0, 1, ..., N/2..
In order to estimate the cost efficiency frontier, i.e., the piecewise linear

regression parameters, the SDEA linear model using τ = 1 is applied, as
shown in Equation 21.
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min
∑n

i=1 ei

subject to:
yi = αi + β1ix1i + ...+ βkixki + ei ∀i = 1, ..., N
αi + β1ix1i + ...+ βkixki ≥ αj

+β1jx1i + ...+ βkjxkj ∀i, j = 1, ...N
βki ≥ 0 ∀k = 1, ..., K; ∀i = 1, ..., N
ei ≥ 0, ∀i = 1, .., N

(21)

The proposed algorithm starts by assuming that no points are crossing
the efficiency frontier, thus the frontier is estimated using equation 21 and
P̂ [ε2 ≤ 0] = 0. Next, the points located on the frontier are the candidates
to cross the frontier. Each of these points is temporarily removed from the
data and a new frontier is estimated, also using equation 21. Using the
complete data, the residuals of the cost frontier model are calculated as
ei = log xi− logC(y1i, ..., yKi), as shown in Equation 13. Assuming that λ̂ =
tan[π(0.5−1/N)], the σ2 estimate is calculated using an univariate maximum
likelihood search applying, for instance, the Golden-section search algorithm
(Kiefer, 1953). Therefore, one maximum likelihood value is computed for
each point on the frontier. The point with the maximum value is selected
as the candidate to cross the frontier. The procedure is repeated until a
maximum number of points, defined by the analyst, say N/2, crosses the
frontier.

Briefly, the proposed algorithm comprises the following steps:

1. Set k = 1.

2. Compute λ̂ = tan[π(0.5− k/N)].

3. Solve the SDEA model (Equation 21).

4. Select the points located on the frontier, i.e., ei = 0.

5. For each point located on the frontier,
(a) Remove, temporarily, the point and solve the SDEA model (Equa-

tion 21).
(b) Using the complete dataset calculate the residuals: êi = log xi −

logC(y1i, ..., yKi).
(c) Using the residuals, calculate σ̂2 = arg max

σ
LL(σ),

where LL(σ) =
∑n

i=1

[
log φ

(
êi
σ

)
+ log Φ

(
λ̂ êi
σ

)
− log σ

]
is the like-

lihood function.
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(d) Select the point located on the frontier that achieved the maxi-
mum likelihood value and remove it from the data set.

(e) Set k = k + 1 and return to Step 2.

6. Repeat steps 2 to 5 until a maximum of points, defined by the analyst,
crosses the frontier.

7. The final solution comprises the value of k and the respective efficiency
frontier which achieved the maximum likelihood function value.

Figure 2 illustrates the proposed algorithm. Using Equation 21, the cost
frontier and the points located on the frontier are estimated as shown in
Figure 2(a). The points are gradually evaluated and the candidate with the
maximum likelihood value crosses the frontier, as shown in Figure 2(b). The
procedure is repeated until a maximum number of points crosses the frontier
and the likelihood function is evaluated at each step, as shown in Figure 2(c).
The final solution comprises the proportion of points crossing the frontier and
the estimated cost frontier with the maximum likelihood value, as shown in
Figure 2(d).
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(a) Step 1: The cost frontier and the
points located on the frontier are esti-
mated.
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(b) Step 2: The points crossing the fron-
tier are selected gradually using likeli-
hood maximization.
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(c) Step 3: The optimal proportion of
points is chosen based on the maximum
likelihood value.
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(d) Final cost frontier solution.

Figure 2: Proposed algorithm to estimate the optimal number of points crossing the cost
frontier and the maximum likelihood parameters.

It is worth mentioning that by evaluating each point located on the fron-
tier and gradually increasing the number of crossing points, the proposed
algorithm avoids the estimate of overlapping frontiers or crossing quantiles
(Wang et al., 2014).
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2.8. Simulation study

In this section, a simulation study is presented to evaluate the statis-
tical properties of the proposed SDEA algorithm. The simulation model
is based on the statistical distribution and the statistical correlation be-
tween observed cost (input) and weighted market (ouput) of the Brazilian
DSOs. Data is generated for N = 61 observations (DSOs). The output
log (yi) ∼ Uniform(min = 8; max = 16) and σ2 = σ2

u + σ2
v = 0.7. Dif-

ferent values for λ are evaluated using different numbers of points cross-
ing the frontier. The selected numbers of points crossing the frontier are
k = {1, 3, 5, 8, 15}. Thus, based on Equation 20, the respective values of λ
are λ = {19.4, 6.42, 3.8, 2.29, 1.02}. Consequently, σ2

u = σ2 · λ2/(1 + λ2) and
σ2
v = σ2/(1+λ2). Therefore, ε = v+u with v ∼ N(0, σv) and u ∼ |N(0, σu)|.

The simulated costs are generated as xi = 0.07 · yi × eεi denoting a constant
returns to scale model.

2.9. The use of SDEA to approximate DEA results with weight restrictions

SDEA can be used to estimate DEA-NDRS cost frontier. To illustrate
this approach, an SDEA model using one input (x) and one output (y) is
presented in Equation 22

min
∑n

i=1 ei
s.t.
xi = αi + βiyi + ei ∀i = 1, ..., N
αi + βiyi ≥ αj + βjyi ∀i, j = 1, ..., N
βi, ei, αi ≥ 0 ∀i = 1, ..., N

(22)

As mentioned, for non-decreasing returns to scale property αi ≥ 0. For
each DSO i, the efficient cost is given by x̂i = αi+βiyi and the cost efficiency
(input oriented) is given by x̂i

xi
. It is worth noticing that Equation 22 com-

prises a specific SDEA formulation in which no DSO crosses the frontier, i.e.,
τ = 0. Consequently, both DEA and SDEA results are identical. If the DEA
model applies weight restrictions, as proposed by the Brazilian regulator, one
alternative to estimate a similar SDEA model is to use a data set of fully
efficient DSOs as follows. First, the efficiency score (θi) is calculated using
the DEA model with weight restrictions. Second, the DEA cost efficiency
(θi) is included in the SDEA optimization model as shown in Equation 23.
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min
∑n

i=1 ei
s.t.
θixi = α∗i + β∗i yi + ei ∀i = 1, ..., N
α∗i + β∗i yi ≥ α∗j + β∗j yi ∀i, j = 1, ..., N
β∗i , ei, α

∗
i ≥ 0 ∀i = 1, ..., N

(23)

Briefly, by including DEA efficiencies, which were estimated using weight
restrictions, in Equation 23, the SDEA model is estimated using all DSOs
at the frontier. The SDEA cost frontier with weight restriction is given by
x̂i = α∗i +β∗i yi. Thus, the estimated SDEA models using Equations 22 and 23
allows the analyst to compare the piecewise linear equations of the efficiency
costs with and without weight restrictions for each DSO.

If p outputs are available, then the piecewise cost frontier is written as:

xi = αi + β1iy1i + βpiypi (24)

Equation 24 can also be written as xi = αi + yTi β, where yi is a vector of
outputs yi = [y1i, y2i, ..., ypi].

3. Results

Table 2 presents the simulated results for the estimated number of points
crossing the efficiency frontier. Three SDEA models using different returns
to scale were evaluated. As mentioned, the simulated data sets were gen-
erated assuming constant returns do scale (CRS). Therefore, it is expected
that the SDEA-CRS model achieves better performance. Using the SDEA-
CRS model, the median values indicate that the model was able to detect
the correct number of points crossing the frontier in most cases, except for
simulations with the largest number of points crossing the frontier, k = 15.
In these cases, the estimated number of points was slightly greater. Fur-
thermore, the mean value indicates an estimation bias, i.e., a slightly larger
number of points crossing the frontier. Differences between mean and me-
dian values indicate that the empirical distribution is asymmetric. In fact,
the distribution of the estimated values is truncated at k = 29. It is worth
noticing that the real value of the number of points crossing the frontier is
within the quartile intervals, i.e., between the first and third quartiles, for all
simulated values of k.
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Using the SDEA-NDRS model, in general, the median values were slightly
larger as compared do the SDEA-CRS model and the quartile intervals were
also larger, as shown in Table 2. Nevertheless, simulated results using SDEA-
CRS and SDEA-NDRS are closer.

Using the SDEA-VRS model, an interesting behavior is found. For k = 1,
the SDEA-VRS presented similar results to SDEA-CRS. For k = 3, 5, 8, and
15, the SDEA-VRS model underestimated the number of points crossing
the efficiency frontier. It is worth mentioning that the SDEA-VRS model
is more flexible than SDEA-CRS and SDEA-NDRS. In general, the SDEA-
VRS requires more piecewise linear functions. Consequently, more points are
estimated on the frontier and therefore fewer points crosses the frontier.

Table 2: Summary statistics for the estimated number of points crossing the efficiency
frontier using the simulated data.

Number of points crossing the frontier
RTS k(λ) Min. 1st Qu. Median Mean 3rd Qu. Max
CRS 1 (19.4) 1 1 1 1.4 1 22

3 (6.42) 1 1 3 3.1 4 28
5 (3.8) 1 3 5 5.5 6 29
8 (2.29) 1 6 8 9.8 12 29
15 (1.02) 1 11 17 17.5 25 29

NDRS 1 (19.4) 1 1 1 1.7 2 24
3 (6.42) 1 1 2 3.4 4 29
5 (3.8) 1 3 5 6.5 8 29
8 (2.29) 1 6 9 11.4 15 29
15 (1.02) 1 11 17 17.7 25 29

VRS 1 (19.4) 1 1 1 1.4 1 29
3 (6.42) 1 1 1 2.8 3 29
5 (3.8) 1 1 3 5 6 29
8 (2.29) 1 2 7 9 13 29
15 (1.02) 1 7 14 14.6 22 29

Table 3 presents the simulated results for the estimated λ parameter. As
shown in Equation 20 there is a non-linear correlation between the number
of points crossing the efficiency frontier (k) and the respective λ parameter.
In general, the larger the number of points crossing the frontier, the lower
the value of λ. In our proposed algorithm, the value of λ depends on the
proportion of points crossing the efficiency frontier and, therefore, is sensitive
to the sample size n. Consequently, a finite grid of λ values are evaluated.
Using SDEA-CRS, for fewer points crossing the frontier, the median value of
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the estimated λ are closer to the real value, and the mean value is slightly
larger. Using SDEA-NDRS and SDEA-VRS, the median values are closer to
the real values but the mean values are overestimated. As mentioned, the λ
estimate using maximum likelihood is problematic and usually requires large
data sets. On the contrary, the estimate of the number of points crossing the
efficiency frontier has shown promising results.

Table 3: Summary statistics for the λ parameter using the simulated data.

λ̂ summary statistics
RTS λ Min. 1st Qu. Median Mean 3rd Qu. Max
CRS 19.4 0.47 19.40 19.40 16.86 19.40 19.40

6.42 0.13 4.79 6.42 9.72 19.40 19.40
3.8 0.08 3.13 3.80 5.63 6.42 19.40
2.29 0.08 1.41 2.29 2.96 3.13 19.40
1.02 0.08 0.29 0.83 1.32 1.57 19.40

NDRS 19.4 0.13 9.67 19.40 15.74 19.40 19.40
6.42 0.08 4.79 9.67 10.39 19.40 19.40
3.8 0.08 2.29 3.80 5.94 6.42 19.40
2.29 0.08 1.03 2.00 3.07 3.13 19.40
1.02 0.08 0.29 0.83 1.28 1.57 19.40

VRS 19.4 0.08 19.40 19.40 17.73 19.40 19.40
6.42 0.08 6.42 19.40 13.16 19.40 19.40
3.8 0.08 3.13 6.42 10.05 19.40 19.40
2.29 0.08 1.26 2.65 6.16 9.67 19.40
1.02 0.08 0.47 1.14 3.21 2.65 19.40

Table 4 shows the simulated results for the estimated σ2 parameter. In
general, both the median and mean values are slightly underestimated. Nev-
ertheless, a small bias is expected for small samples. In general, results using
SDEA-CRS, SDEA-NDRS and SDEA-VRS are very close.

To illustrate the effect of the sample size, Tables 5, 6 and 7 shows the
simulation study results for the estimates of λ and σ2 using a large data set
with n = 122 observations. The simulated values of λ are identical to the
simulated values using n = 61. Consequently, the largest the sample size the
larger the number of points crossing the frontier using the same λ value. As
expected, the quantiles using a larger sample size are narrower as compared
to a smaller sample size. Furthermore, the mean and median values are closer
to the simulated true parameters using a larger sample size. Table 4 shows
that using a larger sample size, the mean and median values of the estimated
σ2 parameters are very close to the true value of σ2 = 0.7.
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Table 4: Summary statistics for the σ2 parameter using the simulated data (σ2 = 0.7).

σ̂2 summary statistics
RTS Min. 1st Qu. Median Mean 3rd Qu. Max
CRS 0.33 0.63 0.68 0.72 0.72 0.89

0.36 0.63 0.68 0.68 0.73 0.96
0.32 0.62 0.69 0.68 0.75 0.96
0.33 0.60 0.68 0.67 0.76 1.09
0.43 0.58 0.66 0.69 0.79 1.22

NDRS 0.29 0.61 0.66 0.66 0.71 0.90
0.36 0.62 0.68 0.67 0.74 0.95
0.34 0.58 0.67 0.66 0.74 0.97
0.33 0.55 0.65 0.65 0.75 1.13
0.41 0.58 0.65 0.68 0.76 1.25

VRS 0.34 0.59 0.64 0.64 0.69 0.89
0.34 0.61 0.67 0.66 0.72 0.93
0.31 0.61 0.69 0.67 0.75 0.99
0.34 0.56 0.69 0.68 0.79 1.12
0.42 0.60 0.70 0.74 0.86 1.52

Table 5: Summary statistics for the estimated number of points crossing the efficiency
frontier using the simulated data (n=122).

Number of points crossing the frontier
RTS k(λ) Min. 1st Qu. Median Mean 3rd Qu. Max
CRS 2 (19.4) 1 1 2 2.02 3 15

6 (6.42) 1 4 5 5.60 7 18
10 (3.8) 1 8 10 10.29 12 59
16 (2.29) 2 13 16 17.68 20 60
30 (1.02) 7 24 32 35.54 49 60

NDRS 2 (19.4) 1 1 1 2.1 3 21
6 (6.42) 1 3 5 6.07 8 60
10(3.8) 1 7 10 11.44 14 60

16 (2.29) 1 13 17 19 23 60
30 (1.02) 6 25 37 37.57 51 60
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Table 6: Summary statistics for the λ parameter using the simulated data (n=122).

λ̂ summary statistics
RTS λ Min. 1st Qu. Median Mean 3rd Qu. Max
CRS 19.4 2.45 12.91 19.40 26.03 38.82 38.82

6.42 2.00 5.48 7.72 9.55 9.67 38.82
3.8 0.05 3.13 3.79 4.48 4.78 38.82
2.29 0.02 1.76 2.28 2.44 2.87 19.39
1.02 0.02 0.31 0.92 0.97 1.40 5.48

NDRS 19.4 1.66 12.91 38.82 26.71 38.82 38.82
6.42 0.02 4.78 7.72 10.66 12.91 38.82
3.8 0.02 2.65 3.79 4.87 5.48 38.82
2.29 0.02 1.48 2.13 2.53 2.87 38.82
1.02 0.02 0.26 0.71 0.91 1.33 6.42

Table 7: Summary statistics for the σ2 parameter using the simulated data (n=122, σ2 =
0.7).

σ̂2 summary statistics
RTS Min. 1st Qu. Median Mean 3rd Qu. Max
CRS 0.54 0.65 0.69 0.69 0.72 0.85

0.52 0.65 0.69 0.69 0.73 0.86
0.41 0.64 0.69 0.69 0.73 0.87
0.42 0.62 0.68 0.68 0.74 0.93
0.45 0.60 0.67 0.68 0.75 1.05

NDRS 0.50 0.65 0.68 0.68 0.71 0.83
0.38 0.65 0.69 0.69 0.73 0.92
0.37 0.62 0.68 0.68 0.73 0.97
0.40 0.60 0.67 0.66 0.73 1.03
0.48 0.58 0.64 0.66 0.74 1.13

Using the Brazilian dataset, Table 8 presents SDEA-NDRS models using
different combinations of the outputs. Initially, models using one output
are presented. Results show that using weighted power and underground
network, the estimate of the number of points crossing the frontier is 29,
i.e., close to half of the sample size. Similar results were described in the
simulated study in which the estimate of the number of points crossing the
frontier was 29 (see Table 2), even though the real number of points was lower.
It is worth mentioning that most DSOs have underground network equal to
zero. On the contrary, using number of consumers, high voltage network and
aerial network the estimated number of points crossing the frontier is 4, 7 and

33



5, respectively. By combining two outputs, four models presented 4 points
crossing the frontier, one model with 6 points crossing the frontier, one model
with 14 points crossing the frontier and two models with 24 and 29 points
crossing the frontier. The latter two models have underground network as
one of the outputs. By combining three outputs: weighted power, aerial
network and high voltage network, results show that the estimated number
of points crossing the frontier is 5. By combining four output variables, two
models were adjusted to indicate 5 points and 1 point crossing the frontier,
respectively. By combining five outputs, the estimated number of points
crossing the frontier is 1. This preliminary analysis indicates that the more
outputs included in the model the lower the estimate of the number of points
crossing the frontier. One may argue that the more outputs included in
the model the more points are estimated on the frontier and the lower the
estimate of the number of points crossing the frontier. A similar behavior
was found in the SDEA-VRS simulation study.

In addition to the number of points crossing the frontier, Table 8 shows
the number of piecewise linear functions and the maximum likelihood value
estimated for each model. In general, the more outputs included in the
model the larger the number of piecewise linear functions. One may argue
that a large number of piecewise linear functions indicates a complex frontier,
driven by outliers and specific outputs. Surprisingly, the greater the number
of points crossing the frontier, the lower the estimated number of piecewise
linear functions indicating that allowing points to cross the efficiency fron-
tier reduces the complexity of the frontier. Thus, effects of outliers and the
presence of additional outputs are reduced. Additionally, Table 8 shows the
SDEA-NDRS results using all Brazilian output variables and different num-
bers of points crossing the frontier. If one point crosses the frontier then
57 piecewise linear functions are estimated; whereas, if 12 points cross the
frontier then 41 piecewise linear functions are estimated. Finally, Table 8
also shows the number of piecewise linear functions using the DEA-NDRS
Brazilian models, with and without weight restrictions, with no points cross-
ing the frontier. In this case, the number of piecewise linear functions was
estimated using an SDEA approximation, as described in section 2.9. Results
show that the current DEA-NDRS (ANEEL) model has 61 piece-wise linear
functions. This is the largest number of piece-wise linear functions among
the evaluated models which indicates that the regulator model is highly com-
plex. As mentioned, the ANEEL model includes output variables with a large
proportion of null observations such as the underground network extension.
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Interestingly, the SDEA estimate using the complete set of outputs and one
DMU crossing the efficiency frontier has 57 piece-wise linear functions and
the largest value of the likelihood function. Thus, a slightly simpler model,
as compared to the current ANEEL model, can be achieved letting one DMU
cross the efficiency frontier. On the contrary, the maximum likelihood SDEA
solution may also indicate a saturated model, i.e., a model with too many
output variables.
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Table 8: Estimated SDEA-NDRS models using the Brazilian database with different out-
put combinations.

Number of Number of Number of piece-wise

outputs outputs λ̂ σ̂2 crossing points linear functions Likelihood
Weighted power 0.08 0.36 29 3 -24.68
Number of consumers 4.79 0.54 4 4 -16.17
High voltage network 2.65 1.20 7 3 -74.53

1 Underground network 0.08 1.48 29 3 -110.70
Aerial network 3.80 0.79 5 3 -42.17
Number of consumers
and Weighted power 4.79 0.52 4 5 -14.62
Number of consumers
and High voltage network 4.79 0.52 4 7 -14.50
Number of consumers
and Aerial network 4.79 0.45 4 10 -9.14
High voltage network
and Aerial network 4.79 0.81 4 9 -41.33

2 Weighted power
and Underground network 3.79 0.65 5 8 -28.65
Weighted power
and High voltage network 3.79 0.46 5 7 -10.50
Underground network
and High voltage network 1.76 0.87 10 9 -62.05
Underground network
and Aerial network 3.13 0.67 6 6 -34.93

3 Weighted power,
Aerial network,
and High voltage network 3.80 0.46 5 9 -10.10

4 Weighted power,
Aerial network,
High voltage network
and Underground network 3.80 0.45 5 21 -10.37
Weighted power,
Aerial network,
High voltage network,
and Number of consumers 19.39 0.45 1 14 -4.05

5 Weighted power,
Aerial network,
Weighted power,
Underground network,
and High voltage network 19.40 0.45 1 25 -4.00

7 Full Model 19.40 0.36 1 57 3.87
6.42 0.35 3 55 1.58
3.13 0.34 6 48 0.08
1.40 0.31 12 41 -2.70

7 DEA-NDRS (ANEEL)
without weight restrictions - - 0 60 -
DEA-NDRS (ANEEL)
with weight restrictions - - 0 61 -

Figure 3 shows the Spearman correlation comparing the two models pro-
posed by the regulator (DEA-NDRS and ad-hoc) and the proposed SDEA
models with different number of outputs and different number of points cross-
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ing the efficiency frontier. For example, SDEA 2:1 comprises a SDEA model
with two outputs and one crossing point. As expected, the DEA-NDRS and
the ad-hoc (DEA-NDRS + Bootstrap + Equation 2) models share the largest
correlation of 99%. In sequence, the SDEA model with 2 outputs and one
crossing point (SDEA 2:1) has a correlations of 91% with the ad-hoc model.
Thus, the SDEA 2:1 generates a very similar ranking of the DSOs as com-
pared to the Brazilian regulator proposal, but using a fraction of the outputs.
Nevertheless, the more points crossing the frontier, the lower the correlation
as shown in models SDEA 2:12 and SDEA 2:6. Similarly, the greater the
number of outputs in the SDEA model, the lower the Spearman correlation,
as shown in SDEA 4:1 and SDEA 4:6. Finally, the correlations using the com-
plete number of outputs (7) and using varying numbers of crossing points are
the lowest. Using seven outputs, only the SDEA model with twelve points
crossing the frontier (SDEA 7:12) shows the greatest correlation of 80 %.
As mentioned, the ad-hoc benchmarking model proposed by the Brazilian
regulator applies weight-restrictions in order to manage the large number
of outputs. As shown in Table 8, the ad-hoc model has the greatest num-
ber of piecewise linear functions, therefore, it is the most complex model as
compared to the proposed SDEA models.
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Figure 3: Pairwise Spearman correlation plot of the efficiency costs estimated by the
Brazilian regulator and the proposed SDEA models.
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Figure 4 compares the cost efficiencies of the DEA-NDRS and ad-hoc
models, proposed by ANEEL, and the SDEA model with two outputs and one
crossing point. The latter model achieved the largest Spearman correlation
with the ad-hoc model. Results of DEA-NDRS (ANEEL) and SDEA 2:1 are
very similar. A major difference is shown for the DSO with the largest DEA-
NDRS cost efficiency. As shown in Figure 4, the ad-hoc model generates
greater cost efficiencies with 11 DSOs having efficiencies greater than 100%.
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Figure 4: Comparison between cost efficiencies using the brazilian DEA-NDRS model with
weight restrictions, the procedure using DEA-NDRS + Bootstrap + Equation 2 and the
SDEA model using two outputs and one crossing point.

Figure 5 compares the final benchmarking model proposed by ANEEL
(ad-hoc) and the proposed SDEA model using all the original seven out-
puts and with twelve points crossing the efficiency frontier. In general, the
ANEEL model achieves greater efficiency scores for most DSOs, as compared
to the SDEA 7:12. For two DSOs, the SDEA 7:12 generates cost efficien-
cies greater than using the ANEEL model. One may claim that the two
largest efficiency costs represent outliers. It is worth mentioning that the
proposed SDEA model does not include weight restrictions and most of the
DSOs crossing the frontier do not achieve large cost efficiencies. Finally, Ta-
ble 4 shows the original operational costs and the regulated costs estimated
by the ad-hoc (ANEEL) and the proposed SDEA 7:12 models. Highlighted
cells show regulated OPEX greater than observed OPEX and efficiency costs
greater than 100%. Results show that, using the ad-hoc model, the total
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regulated costs comprise 93% of the total original costs. Whereas, using the
proposed SDEA 7:12 model, the total regulated costs comprise 89% of the to-
tal original costs. The difference comprises a total value of R$ 769,114,635.17
or US$ 236,650,656.97, considering an exchange rate of R$3.25/US$1 in De-
cember 30, 2016, according to the Federal Reserve website. Therefore, the
proposed SDEA 7:12 model rewards a few DSOs with a lower value of the
total regulated costs as compared to the current Brazilian DEA (ad-hoc)
model.
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Figure 5: Comparison between cost efficiencies using the brazilian DEA-NDRS model with
weight restrictions, the procedure using DEA-NDRS + Bootstrap + Equation 2 and the
SDEA model using seven outputs and twelve crossing point.

4. Conclusion

The traditional DEA and SFA benchmarking models do not estimate an
efficiency cost greater than 100%. The SFA model applies a compound error
structure, in which the so-called noise component allows points to cross the
efficiency frontier. Nevertheless, the original SFA cost efficiency estimates
are below 100%. The noise component comprises a random variable with
mean of zero and variance of σ2

v . On the contrary, the Brazilian regulator
has proposed an ad-hoc procedure to allow DSOs to achieve cost efficiencies
greater than 100%. As shown in the present paper, the Brazilian ad-hoc
procedure mimics an SDEA model in which the extent to which a DSO
crosses the frontier is counted as an operating cost prize for over-efficiency.
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In practice, the Brazilian regulator assumes that the noise component is
meaningful and should not be counted as pure random error. On the contrary,
it suggests that the compound error structure is the sum of inefficiency and a
symmetric random variable component that allows DSOs to cross the frontier.
As mentioned, for those DSOs crossing the frontier, a reward is given. Thus,
one may suggest that the random noise component should be reevaluated as
random reward component. Finally, the Brazilian cost efficiency model is in
effect and has been applied since 2015 to estimate efficient operating costs
for the Brazilian DSOs.

Finally, the Brazilian regulatory process of electricity distribution ser-
vices must be technically consistent and reliable. Nonetheless, estimating an
efficiency frontier using only a few set of inputs and outputs may generate
biased results since the electricity distribution service is highly complex. One
simple solution is to consider an underlying stochastic component which may
capture misspecifications of inputs and outputs. The Brazilian regulator cre-
ated a complex ad-hoc procedure that can be replaced by a simple stochastic
data envelopment analysis model.
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Table 9: Comparison of observed operational expenditures (OPEX) and regulated OPEX
using the ad-hoc DEA-NDRS model proposed by the Brazilian regulator and the proposed
SDEA model with seven outputs and twelve points crossing the efficiency frontier.

DSO OPEX ad-hoc SDEA 7:12 ad-hoc (OPEX) SDEA 7:12 (OPEX)
NOVA PALMA R$ 5,762,588.20 119% 100% R$ 6,857,479.96 R$ 5,762,590.10
RGE R$ 304,029,938.00 118% 114% R$ 358,755,326.84 R$ 346,274,757.35
MUXFELDT R$ 2,304,748.20 118% 100% R$ 2,719,602.88 R$ 2,304,749.96
PIRATININGA R$ 300,814,764.80 118% 100% R$ 354,961,422.46 R$ 300,814,982.71
COELCE R$ 571,992,827.50 116% 134% R$ 663,511,679.90 R$ 764,280,253.18
CPFL PAULISTA R$ 793,720,878.10 116% 102% R$ 920,716,218.60 R$ 812,695,095.61
JAGUARI R$ 12,324,818.70 116% 100% R$ 14,296,789.69 R$ 12,324,828.53
ELEKTRO R$ 522,991,305.90 116% 100% R$ 606,669,914.84 R$ 522,991,611.85
ETO R$ 250,567,173.30 110% 134% R$ 275,623,890.63 R$ 334,911,539.74
JOAO CESA R$ 2,294,867.00 108% 100% R$ 2,478,456.36 R$ 2,294,867.52
EMT R$ 532,233,923.40 106% 109% R$ 564,167,958.80 R$ 581,588,013.58
COSERN R$ 294,446,203.60 100% 103% R$ 294,446,203.60 R$ 304,032,526.77
BANDEIRANTE R$ 352,211,426.30 100% 101% R$ 352,211,426.30 R$ 355,037,237.00
SANTA MARIA R$ 34,789,487.60 100% 100% R$ 34,789,487.60 R$ 34,789,505.29
EBO R$ 44,780,721.70 100% 100% R$ 44,780,721.70 R$ 44,780,741.40
EMS R$ 345,073,715.70 100% 100% R$ 345,073,715.70 R$ 345,073,844.27
CEMAR R$ 497,342,577.90 100% 100% R$ 497,342,577.90 R$ 497,342,725.16
EPB R$ 304,633,122.60 100% 97% R$ 304,633,122.60 R$ 294,600,010.23
ELETROPAULO R$ 1,457,826,768.00 100% 94% R$ 1,457,826,768.00 R$ 1,371,785,519.80
CPEE R$ 17,364,001.60 100% 93% R$ 17,364,001.60 R$ 16,141,696.20
RGE SUL R$ 325,979,415.40 100% 93% R$ 325,979,415.40 R$ 303,018,731.96
CSPE R$ 21,269,422.30 100% 92% R$ 21,269,422.30 R$ 19,609,508.12
ESCELSA R$ 336,224,538.90 100% 92% R$ 336,224,538.90 R$ 309,024,265.67
MOCOCA R$ 11,970,286.20 100% 90% R$ 11,970,286.20 R$ 10,821,569.86
SANTA CRUZ R$ 52,034,961.60 100% 84% R$ 52,034,961.60 R$ 43,561,323.45
VALE PARANAPANEMA R$ 47,981,646.70 100% 83% R$ 47,981,646.70 R$ 39,844,285.17
LIGHT R$ 922,882,323.90 97% 77% R$ 895,195,854.18 R$ 712,183,553.55
CELESC R$ 837,578,560.50 96% 110% R$ 804,075,418.08 R$ 920,405,774.50
EMG R$ 126,325,482.90 96% 100% R$ 121,272,463.58 R$ 126,325,496.90
CFLO R$ 15,795,965.10 95% 113% R$ 15,006,166.85 R$ 17,844,047.16
COELBA R$ 1,341,275,532.00 95% 90% R$ 1,274,211,755.40 R$ 1,208,668,438.24

CAIUÁ R$ 66,782,170.50 95% 73% R$ 63,443,061.98 R$ 48,982,546.32
NACIONAL R$ 32,718,396.70 95% 72% R$ 31,082,476.87 R$ 23,528,016.88
COPEL R$ 1,326,796,300.00 94% 86% R$ 1,247,188,522.00 R$ 1,138,725,514.49
CEMIG R$ 2,260,483,577.00 92% 86% R$ 2,079,644,890.84 R$ 1,934,428,329.91
CHESP R$ 15,617,197.50 91% 77% R$ 14,211,649.73 R$ 12,008,674.41
ESE R$ 185,887,399.00 87% 90% R$ 161,722,037.13 R$ 167,949,494.89
CEPISA R$ 393,252,856.10 87% 83% R$ 342,129,984.81 R$ 325,748,487.68
CELPE R$ 861,117,202.40 87% 83% R$ 749,171,966.09 R$ 712,486,061.39
CELG R$ 948,403,942.60 87% 82% R$ 825,111,430.06 R$ 780,551,510.86
BRAGANTINA R$ 47,991,957.30 84% 69% R$ 40,313,244.13 R$ 32,898,743.28
CELPA R$ 678,124,176.50 81% 77% R$ 549,280,582.97 R$ 522,941,361.18
AMPLA R$ 658,257,317.10 80% 74% R$ 526,605,853.68 R$ 489,546,050.76
SULGIPE R$ 43,027,634.40 78% 85% R$ 33,561,554.83 R$ 36,706,714.44
COOPERALIANÇA R$ 13,182,982.90 77% 85% R$ 10,150,896.83 R$ 11,140,716.51
CEB R$ 381,490,986.00 76% 100% R$ 289,933,149.36 R$ 381,491,276.67
ELETROCAR R$ 16,210,774.90 76% 63% R$ 12,320,188.92 R$ 10,226,617.49
FORCEL R$ 4,285,406.80 75% 100% R$ 3,214,055.10 R$ 4,285,406.80
HIDROPAN R$ 7,568,700.80 75% 91% R$ 5,676,525.60 R$ 6,924,650.25
IGUAÇU R$ 17,606,347.80 72% 64% R$ 12,676,570.42 R$ 11,224,894.21
DEMEI R$ 11,389,358.80 70% 55% R$ 7,972,551.16 R$ 6,278,634.63
COCEL R$ 20,538,217.80 68% 76% R$ 13,965,988.10 R$ 15,562,344.68
CEAL R$ 324,088,033.60 68% 66% R$ 220,379,862.85 R$ 213,502,896.13
ENF R$ 35,742,431.20 66% 68% R$ 23,590,004.59 R$ 24,426,343.38
ELETROACRE R$ 114,888,672.40 65% 59% R$ 74,677,637.06 R$ 67,973,348.18
URUSSANGA R$ 6,204,356.50 63% 88% R$ 3,908,744.60 R$ 5,451,279.94
CERON R$ 319,505,329.10 63% 61% R$ 201,288,357.33 R$ 194,683,135.06
CEEE R$ 643,515,960.10 57% 52% R$ 366,804,097.26 R$ 333,008,065.07
AMAZONAS R$ 468,120,687.50 44% 43% R$ 205,973,102.50 R$ 200,331,286.43
DMED R$ 46,844,597.20 39% 48% R$ 18,269,392.91 R$ 22,596,279.83
BOA VISTA R$ 91,656,721.10 37% 29% R$ 33,912,986.81 R$ 26,772,653.93
TOTAL: R$ 20,728,123,685.20 R$ 19,192,630,061.65 R$ 18,423,515,426.48
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