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Resumo

A globalização e o rápido crescimento do e-commerce têm ajudado na mudança dos
hábitos de compra de bens e serviços, aumentando a complexidade dos ambientes logís-
ticos. Cross-docking é uma solucão logística com o objetivo de mover produtos direta-
mente de diferentes fornecedores ou fabricantes e consolidá-los em destinos de entrega
final comuns sem armazenamento de longo prazo. Essa estratégia permite agilidade
nas entregas e redução dos custos de armazenagem e transporte, além de elevar o nível
do serviço logístico. O sucesso da estratégia depende de uma operação de transbordo
eficiente. Este trabalho realiza um estudo de sequenciamento de caminhões em um cen-
tro de cross-docking. Os objetivos específicos envolvem o desenvolvimento de modelos,
algoritmos e métodos de resolução para o problema de sequenciamento de caminhões
em centros de cross-docking, adicionando aspectos de incerteza. O problema é inicial-
mente modelado como um problema de sequenciamento flow shop de duas máquinas
com restrições de precedência, com o objetivo de minimizar o makespan, e posterior-
mente generalizado para o caso de múltiplas docas paralelas. Propomos um método
híbrido baseado em uma técnica de relaxação Lagrangiana por meio do algoritmo do
volume. Usando informações dos multiplicadores de Lagrange, heurísticas construti-
vas com procedimentos de busca local geraram boas soluções viáveis. Através de uma
série de cortes, a metodologia encontra limites estreitos para tamanhos de instância
pequenos e grandes, superando os resultados atuais. Para aproximar nossa abordagem
da operação real de cross-docking, incorporamos incerteza na data de chegada dos cam-
inhões. Uma abordagem de resequenciamento é fornecida, e um novo algoritmo para
resolver o problema de sequenciamento de caminhões com múltiplas docas sob incerteza
na data de chegada do caminhão é proposto. Estudamos dois problemas de otimização,
o problema de minimizar o Makespan (Problema Cmax) e o problema de minimizar o
Tempo Total de Conclusão Ponderado (Problema WC). Comparamos três metodolo-
gias e mostramos que o método de resequenciamento pode apoiar os gestores em suas
operações diárias de cross-docking, lidando de forma eficiente com dados dinâmicos e
incertos, levando a boas decisões muito rapidamente.
Palavras-chave: Logística. Sequenciamento. Cross-docking. Incertezas.
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Abstract

Globalization and the rapid growth of e-commerce have helped change purchase goods
and service habits, increasing the complexity of logistics environments. Cross-docking
is a logistics solution aiming to move products directly from di�erent suppliers or
manufacturers and consolidate them to common final delivery destinations without
long-term storage. This strategy allows for fast deliveries and reduced warehousing
and transportation costs while increasing logistical service. The success of the strategy
depends on an e�cient transshipment operation. This work undertakes a study of truck
scheduling in a cross-docking center. The specific goals involve developing models, al-
gorithms, and resolution methods for the truck scheduling problem in cross-docking
centers, adding aspects of uncertainty. The problem is first modeled as a two-machine
flow shop scheduling problem with precedence constraints to minimize the makespan
and later generalized it to the parallel-dock case. We propose a hybrid method based on
a Lagrangian relaxation technique through the volume algorithm. Using information
from the Lagrangian multipliers, constructive heuristics with local search procedures
generate good feasible solutions. With a series of cuts, the methodology finds tight
bounds for small and large instance sizes, outperforming current results. To approx-
imate our approach to the real cross-docking operation, we incorporate uncertainty
in truck arrival times. A rescheduling approach is provided, and a novel algorithm
for solving multi-dock truck scheduling problems is proposed under truck arrival time
uncertainty. We discuss two optimization problems, the problem of minimizing the
Makespan (Problem Cmax) and the problem of minimizing the Total Weighted Com-
pletion Time (Problem WC). Extensive experimentation allows us to compare three
methodologies and show that the rescheduling methodology can support managers in
their daily cross-docking operations, e�ciently handling dynamic and uncertain data,
making good decisions quickly.
Keywords: Logistics. Scheduling. Cross-docking. Uncertainties.
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Chapter 1

Introduction

Scheduling is a decision-making process that is very important in various manufacturing
and services industries. It deals with assigning a set of jobs to a set of machines in
a reasonable amount of time to optimize one or more objectives. Scheduling plays an
essential role in most manufacturing and production systems and most information
processing environments. It is also crucial in transportation and distribution settings
and in other types of service industries (Pinedo (2008)).

Scheduling problems can be found in many areas, from production planning to bio-
chemistry problems. Scheduling problems are classified into di�erent types of problems.
One of the scheduling problems that has been extensively studied over the last decades
is the Flow Shop Scheduling Problem (FSP).

The Flow Shop Scheduling Problem (FSP) is a well-known scheduling problem that
can be described as follows: there are m machines in series. A set J of n jobs has to
be processed by a set M of m machines. All jobs have to follow the same operation
sequence, i.e., they have to be processed first on machine 1, then on machine 2, and
so on. In the FSP, the goal is to find a sequence of jobs so that a given criterion is
optimized.

The FSP has applications in di�erent industry sectors: metallurgical, chemical,
textile, steel, etc. More recently, the flow shop scheduling problem is being applied to
e�ective supply chain management and logistics, especially in cross-docking centers.

The actual market environment, characterized by competition, the globalization of
the economy, and an accelerated technological revolution, has led companies to improve
their production, logistics, and distribution systems. Customers demand better and
faster services, direct-to-customers strategies, and many other new requirements that
expect more e�cient and integrated logistic operations. Cross-docking is one logistic
technique that can reduce inventory costs while increasing the goods flow, improving
the e�ciency of the supply chain.

1



1. Introduction 2

Cross-docking (CD) is widespread throughout the world. Several well-known com-
panies such as retail chains (WalMart, Stalk et al. (1991)), mailing companies (UPS,
Forger (1995)), automobile manufacturers (Toyota, Witt (1998)), and logistics providers
(Gue (1999), Kim et al. (2008)) have gained considerable competitive advantages by
using CD.

The main idea behind cross-docking centers is to receive products from di�erent sup-
pliers or manufacturers and consolidate them to common final delivery destinations.
Compared to traditional warehouses, a Cross-docking Distribution Center (CDC) is
managed with minimal handling and little or no storage between the unloading and
loading of goods. This practice can serve di�erent goals, the consolidation of ship-
ments, a shorter delivery lead time, and reducing costs. Readers are referred to Ladier
and Alpan (2016a), for a survey discussing industry practices and CDC problem char-
acterization.

Cross-docks raise numerous optimization questions, either strategic, tactical or op-
erational. In a CDC, scheduling decisions are particularly relevant to ensure a rapid
turnover and on-time deliveries. Due to its real-world importance, several truck-
scheduling works and procedures have been introduced during recent years, treating
specific cross-dock settings.

A schematic representation of processes at a CDC is illustrated in Figure 1.1.
Firstly, incoming trucks arrive at the center’s yard; if the number of trucks is higher
than the number of docks, some of them have to wait in a queue until further assign-
ment. Secondly, after being docked, goods of the inbound trucks are unloaded, scanned,
sorted, moved across the dock, and loaded into outbound trucks for immediate delivery
elsewhere in the distribution chain. Once an outbound (inbound) truck is completely
loaded (unloaded), the truck is removed from the dock, replaced by another truck, and
the course of action repeats.

Five operations are usually carried out in a conventional distribution center when
managing products: receiving, sorting, storing, picking, and shipping operations. All of
which can be done consecutively or in a particular order. As a result of applying a cross-
docking system, can achieve a reduction of the cost of both storage and products picking
by synchronizing the inbound and outbound trucks flows. There are many benefits
with the cross-docking: costs reduction (warehousing, inventory-holding, handling,
and labor costs), shorter delivery lead times (from supplier to customer, an increase of
throughput), improved customer service and customer satisfaction, reduction of storage
space, faster inventory turnover, fewer overstocks, reduced risk of loss and damage,
etc. However, e�cient transshipment processes and careful operations planning become
indispensable within a CDC. Flows need to be synchronized to maintain the stock level
as low as possible and ensure online deliveries. On the other hand, a reduced stock
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Figure 1.1: Schematic representation of a CDC.

increases the risk of shortage under perturbations or disruptions, as we live in many
sectors. Many articles in the literature develop computerized scheduling procedures,
which have achieved good results (See examples in Table 2.1).

Our research considers a time-indexed integer programming formulation for a flow
shop scheduling problem with cross-docking precedence constraints. We first consider
the 2-dock case denoted as F2|CD|Cmax, and strongly NP-hard (See Chen and Lee
(2009)), and later we deal with the parallel dock generalization, F2(P ) |CD|Cmax.
Computational experiments show that the model is e�cient when solving small prob-
lems.

A Hybrid Lagrangian Metaheuristic approach is also proposed and tested. The
work has a similar line of thought than Boschetti and Maniezzo (2009). However, it
emphasizes the use of the information of the Lagrangian Multipliers as discussed in
Pirkwieser et al. (2007), and Paula et al. (2010). The method can e�ciently generate
strong lower and upper bounds. Results are compared to the best heuristics in the
literature introduced by Chen and Lee (2009) (based on Johnson’s algorithm), with
the CDH heuristic developed by Cota et al. (2016) for the scenario of a parallel machine,
and to the best heuristics proposed by Chen and Song (2009) for the multiple parallel
processors (multiple docks) case. Better solutions are consistently obtained for all
instances tested.

For the 2-dock case, although the subproblems of the Lagrangian relaxation are
polynomial, we improve the linear lower bounds through a series of cuts on the makespan
value. The proposed algorithm uses the information obtained from the Lagrangian mul-
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tipliers to construct feasible solutions through an NEH-based heuristic (Nawaz et al.
(1983)) and performs search procedure through a Local Search framework. Further-
more, the proposed hybrid algorithm proves optimality in several instances.

We generalize our approach to the parallel-dock case. In this scenario, the sub-
problems are NP-hard. Focusing on improving the feasible solutions, we solve the
subproblem’s linear relaxations to feed the Lagrangian Metaheuristic. Results show
that the technique outperforms current heuristic methods.

To approximate our approach to the real cross-docking operation, we incorporate
uncertainty in truck arrival times. An e�cient rescheduling approach and a novel al-
gorithm for solving multi-dock truck scheduling problems are proposed under truck
arrival time uncertainty. Two optimization problems, the problem of minimizing the
Makespan (Problem Cmax) and the problem of minimizing the Total Weighted Com-
pletion Time (Problem WC), are presented. Experimental results are discussed by
comparing three di�erent methodologies: with adjustments (RA), without adjustments
(WA), and perfect information (PI). Results show that our methodology can support
managers in their daily cross-docking operations, handle dynamic and uncertain data,
and solve online problems.

The text of this work consists of six chapters. The subsequent chapters are organized
as follows. An overview of related works is presented in 2. The 2-dock cross-docking
flow shop scheduling problem is described in 3, where the mathematical model and
the Hybrid Lagrangian Metaheuristic Framework are described, and the experimental
results are discussed. Chapter 4 generalizes the algorithm for the parallel machine
case. The cross-docking problem is modeled as a hybrid two-stage flow shop scheduling
problem with identical machines and cross-docking constraints. The multi-dock truck
scheduling problem under truck arrival time uncertainty is studied in Chapter 5. We
analyzed two di�erent problems and proposed a novel Rescheduling Approach (RA). To
measure the applicability of the proposed methodology, we proceed with the comparison
of three di�erent methodologies, enabling a series of analyses that we believe will help
CDC managers deal with the uncertainties generated by delays or advances in truck
arrivals. Finally, in Chapter 6 conclusions are drawn.



Chapter 2

Literature Review

The purpose of this chapter is to provide a review of the literature on cross-docking.
We will highlight some works that deal with cross-docking problems and present recent
surveys addressing uncertainties in cross-docking environments.

2.1 Cross-docking
The increasing use of cross-docking techniques has motivated several authors to inves-
tigate new ways to improve CDCs’ design and tactical operations. In the literature,
several decision problems are studied concerning strategic, tactical, and operational
decisions.

Boysen and Fliedner (2010), and Belle et al. (2012) focus on the review of the ex-
isting literature of cross-docking problems. According to Boysen (2010), can allocate
decision problems in a cross-docking center according to the following classification,
ordered from strategic to operational levels: location of cross-docking centers, lay-
out, vehicle routing, dock’s assignments of destinations, truck scheduling, and resource
scheduling inside the center. Here we focus on truck scheduling problems, where the
aim is deciding where and when should process the trucks.

Examples of strategic decisions in a CDC can be found in many works. Location
of a cross-docking is analyzed in Campbell (1994), Klose and Drexl (2005), Chen et al.
(2006), and Chen (2007). The layout of cross-docking centers is studied in Gue (1999),
Bartholdi and Gue (2002), and Lee et al. (2008).

Some other works deal with the vehicle routing as Oh et al. (2006) and Clausen et al.
(2009). Regarding operational decisions, some works consider the dock assignment
problem: Belle et al. (2012), Boysen and Fliedner (2010), Tsui and Chang (1990), Tsui
and Chang (1992), Bozer and Carlo (2008), and Gue (1999).

In a CDC, scheduling decisions are crucial to ensure a rapid turnover and on-time

5
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deliveries. Due to its real-world importance, several truck scheduling works and pro-
cedures have been introduced during recent years, treating specific cross-dock settings.
For that reason, we highlight in Table 2.1 some outstanding works dealing with truck
scheduling problems in a CDC. As proposed by Boysen (2010), a classification scheme
for deterministic truck scheduling problems is presented for each work, as well as their
contribution.

Table 2.1: Previous specific research works for the truck scheduling problems. Based
on Boysen and Fliedner (2010).

Publication Notation Complexity Contribution
Miao et al. (2009) [M |limit, tio|ı] NP-hard MM, HM, P

Chen and Lee (2009) [E2|tj = 0|Cmax] NP-hard B, ES, P
Chen and Lee (2009) [E2|tj = 0|Cmax] NP-hard P

Chen and Song (2009) [E|tj = 0|Cmax] NP-hard MM, HS, B
Boysen (2010) [E|pj = p, no ≠ wait, tj = 0| q

To] Open MM, HM, ES
Boysen and Fliedner (2010) [E|tio, fix| q

WsUs] NP-hard MM, P
Boysen and Fliedner (2010) [E|ti = 0, fix | q

WsUs] NP-hard P
Boysen et al. (2010) [E2|pj = p, change|Cmax] NP-hard MM, HS, HI, ES, P
McWilliams (2010) [E|no ≠ wait|ú] Open HM

Vahdani and Zandieh (2010) [E2|change|Cmax] NP-hard MM, HM
Araújo and Melo (2010) [E|tj = 0|Cmax] NP-hard HM

Arabani et al. (2011) [E2|change|Cmax] Open HM
Larbi et al. (2011) [E2|pmtn|ú] NP-hard MM, ES
Alpan et al. (2011) [E|pmtn|ú] Open MM, ES

Lima (2014) [E2|tj = 0| q
C2

j
] NP-hard MM, HS, HM

Cota et al. (2016) [E|tj = 0|Cmax] NP-hard MM, HS
The notation used in column “Contribution” is stated as: MM (mathematical model), HI (heuristic

improvement procedure), HM (meta-heuristic), B (bound computation), HS (start heuristic for
initial solution), ES (exact solution procedure), P (properties [e.g., complexity] of problem). In the

Boysen’s tuple notation (Boysen (2010)), column “Notation”, the fields are door environment,
operational characteristics and the objective, respectively.

Chen and Lee (2009) study a two-machine cross-docking flow shop scheduling prob-
lem, in which can process a job at the second machine only after finalizing some jobs
at the first one, to minimize the makespan. The authors show the problem is strongly
NP-hard. They develop a polynomial approximation algorithm with an error-bound
analysis and a branch-and-bound algorithm. Computational results show that the
branch-and-bound algorithm can optimally solve problems with up to 60 jobs in a rea-
sonable time. In Chapter 3 we deal with the problem precisely as studied by Chen
and Lee (2009) to expand and improve the results obtained by them. For the case
of two docks, we develop a hybrid framework that uses the information of Lagrangian
multipliers to feed a constructive heuristic. The results show that our method produces
deterministic solutions and surpasses the results of previous work.

Chen and Song (2009) extended the problem defined by Chen and Lee (2009) to
the 2-stage hybrid cross-docking scheduling problem by considering multiple parallel
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processors (multiple docks) per stage (inbound and outbound), allowing simultaneous
loading and unloading operations. Based on Johnson’s rule, they propose a mixed-
integer programming model and four constructive heuristics to investigate the perfor-
mance for moderate and large-scale instances.

Other studies considering multiple dock environments are proposed by Alpan et al.
(2008). Still, with a di�erent aim, a dynamic program-based model is presented to find
the schedule of transshipment operations minimizing the total operations cost, solving
only small-size instances. Larbi et al. (2009) presented some heuristics to obtain near-
optimal solutions for large instances considering the same scenario than Alpan et al.
(2008).

Cota et al. (2016) deals with the operational decision problem of scheduling the
trucks on multiple inbound and outbound docks. That is, they consider the same set-
ting than Chen and Song (2009). They propose a time-indexed mixed-integer linear
programming formulation and a constructive polynomial heuristic. Results are com-
pared to the best heuristics proposed in Chen and Song (2009), Cota et al. (2016)
on the medium and large instance, and better solutions are consistently obtained for
instances with a greater number of machines and jobs. We also present a generaliza-
tion of the hybrid approach to the multiple-docks case (Chapter 4), proving to be very
e�cient when compared against previous works.

The hybrid metaheuristics arise to achieve solutions within a reasonable computa-
tional time in very di�cult combinatorial optimization problems. The hybrid method
consists of a cooperative combination of methods, exact and/or approximated, and
aims to absorb to the limit the potentialities of all the approaches (see surveys Alba
(2005), Puchinger and Raidl (2005), and Blum et al. (2011)).

Paula et al. (2010) propose a variant of the Lagrangian Relaxation to obtain good
bounds to the problem of parallel machines scheduling with sequence-dependent setup
times. In this e�ort, the Lagrangian Relaxation is improved by using a metaheuristic as
an internal procedure of the Lagrangian Relaxation. The heuristic is used to generate
feasible solutions during the execution of the non-delayed relax-and-cut algorithm.

Pirkwieser et al. (2007) present a similar work, using the Lagrangian Relaxation
applied to the Knapsack Constrained Maximum Spanning Tree problem, in which the
Lagrangian Multipliers influence the procedures executed by the Genetic Algorithm.

Boschetti and Maniezzo (2009) propose a Lagrangian Metaheuristic procedure.
Their approach consists in using metaheuristic techniques to obtain feasible solutions
using the information of Lagrangian Multipliers. The solutions obtained tend to be
good bounds. We remark that, in these e�orts, the potential of the information of the
Lagrangian Multipliers is still not completely used. Part of our goal is to improve the
use of this information. Readers are referred to Blum et al. (2011) for a survey on
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hybrid metaheuristics.
As discussed here, a significant number of CDC articles are dedicated to studying

strategic and tactical aspects, not always aligned with industry practice. More recently,
Ladier and Alpan (2016a) discuss the relationship between the industry needs and
academic research topics, pointing out the gap between both worlds. They highlight
some gaps between theory and practice which would need to be filled to get closer to
real-life constraints. For example, researchers should remove simplifying assumptions
that are di�cult to justify in an industrial context. It would be necessary to take
deadlines into account for outbound truck departures.

Aiming to develop new perspectives for research concerning cross-docking opera-
tions, we create a rescheduling approach that can e�ciently solve the cross-docking
truck scheduling problem with truck arrival time uncertainty. We expect to reduce the
gap between academic research and industrial needs, very well highlighted by Ladier
and Alpan (2016a).

2.2 Cross-docking under uncertainty
This section briefly presents the most recent works that address truck scheduling prob-
lems in cross-docking centers. We are particularly interested in related papers about
cross-docking problems and cross-docking under uncertainty.

As mentioned before, the truck scheduling problem plays an essential role in most
cross-docking systems as it a�ects the e�ciency of operations in terms of speed and
reliability of deliveries. In static problems, all data are known a priori, and they do
not change over time (AL-Behadili (2018)). Some authors define a scheduling problem
as static when all machines and jobs are available at time zero (Vieira et al. (2003)),
(Gholami et al. (2009)).

In the literature, it is possible to observe several works that generally assume that all
problem data (e.g., number of jobs, processing times, release dates, due dates, weights)
take constant values. Some of these works are summarized in Table 2.1.

More recently, in Gaudioso et al. (2020) the authors propose a Lagrangian heuristic
algorithm for a cross-docking problem. They consider a multi-door truck scheduling
and transshipment with constant processing time and develop Lagrangian decomposi-
tion in three sub-problems for the integer linear model. The algorithm inserted two
heuristics to solve the Lagrangian Dual and calculate the lower and upper bounds. The
results found were entirely satisfactory.

A novel approach for solving the multi-dock truck-sequencing problem, considering
a parallel machine instead of a flow-shop environment, is presented in Nogueira et al.
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(2020). The authors propose a polynomial constructive heuristic that can generate
primal and dual bounds obtaining good gaps for the makespan objective, outperforming
the time-indexed mathematical formulation and state-of-the-art polynomial heuristics.
Both articles consider static environments.

In dynamic problems, not all the data is known in advance, planning is done, and
once operations are started, changes in the parameters are considered; for example, a
new job may arrive and should be included in the execution, or a machine breaks down
during the operation. In these two cases, the scheduling needs to be redone (Ouelhadj
and Petrovic (2009)). Some authors define dynamic scheduling for the case where jobs
are not immediately available at time zero. They can also classify dynamic problems
in deterministic cases (arrival times are known a priori in the future) and stochastic
(not known, may or may not have a known probability distribution a priori) (Nie et al.
(2013) and Potts and Strusevich (2009)).

Scheduling under uncertain conditions, termed dynamic scheduling, is of great im-
portance for successfully implementing real-world cross-docking systems. Uncertainties
can be related to resources, such as machine breakdown, delay in the arrival or short-
age of materials, and job-related parameters, such as job cancellation, early or late
arrival of jobs, and changes in job processing time. Dynamic scheduling has been de-
fined under three categories: reactive scheduling, predictive-reactive scheduling, and
robust pro-active scheduling. The most well-known e�cient approach used in dynamic
scheduling is the predictive-reactive approach Ouelhadj and Petrovic (2009).

In practice, scheduling decisions at a CDC are subject to several real-time events,
hence the growing need to study alternatives to deal with uncertainties methodologies.
Developing approaches for cross-docking problems have been given considerable e�ort
in the literature in recent years. However, only a few works successfully deal with
real-life cross-docking problems, while most articles rely on theoretical and simplifying
assumptions. Therefore, implementing such approaches is usually impractical for real-
world systems, given the increased complexity we are immersed in. This particular
situation is already pointed out in Ladier and Alpan (2016a). Their work still highlights
some gaps between the literature and industry practices, which would need to be filled
by future research.

Most real cross-docking systems are subjected to perturbations from di�erent sources
of uncertainties. According to Boysen and Fliedner (2010), truck arrival times are very
often subject to unexpected events caused by various reasons, such as accidents, tra�c
jams, truck problems, among others. These unexpected events can cause delays in
the arrival of trucks to the cross-docking centers, and consequently, delays in customer
deliveries. Considering these unexpected situations and possible disruptions motivated
us to develop a rescheduling approach for solving multi-dock truck scheduling problems
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where truck arrival time is uncertain.
In Ladier and Alpan (2016b), the authors propose robust methods for cross-dock

scheduling with time windows. They developed two robust project scheduling methods
and concluded that the resource redundancy methodology gives good results in the
cross-docking problem. The truck scheduling at a cross-dock center in case of uncertain
truck arrival times is studied in Konur and Golias (2013). In their paper, each truck’s
arrival time is unknown, and time windows are considered. They analyze and compare
three approaches: deterministic, pessimistic, and optimistic, and a Genetic Algorithm
is proposed for the single and bi-level problems.

The truck scheduling at a cross-dock facility in case of uncertain truck arrival times
is studied by Konur and Golias (2013). Their study considers that the cross-dock op-
erator only acknowledges the arrival time window of each truck. They analyze and
compare three di�erent approaches: deterministic (which assumes expected truck ar-
rival times are equal to their mid-arrival time windows), pessimistic (which assumes
the worst truck arrivals will be realized), and optimistic approach (which assumes the
best truck arrivals will be realized). A single and bi-level optimization problem is for-
mulated, and a Genetic Algorithm and its modification are discussed for the single and
bi-level optimization problems. Numerical studies show that a hybrid approach regard-
ing the pessimistic and the optimistic approaches may outperform all three approaches
in some instances.

Our purpose with this work is to study cross-docking problems. The specific goals
involve developing models, algorithms, and resolution methods for the truck schedul-
ing problem in cross-docking centers, adding aspects of uncertainty and developing
methodologies that e�ciently solve the problem in a more realistic environment. We
started our studies considering the 2-dock cross-docking flow shop scheduling problem
(Chapter 3). In Chapter 4 we developed a generalization of the hybrid approach to the
multiple-docks case, proving to be very e�cient when compared against previous work.
Finally, in Chapter 5, we reshaped how we look to the future of logistics strategies,
especially to cross-docking problems. Therefore, we propose a rescheduling approach
for the multi-dock truck scheduling problem under truck arrival time uncertainty. We
hope to help fill a critical gap between the current state-of-the-art and the observed
industry practice: scheduling operations under uncertain or late truck arrivals.



Chapter 3

The 2-dock cross-docking flow shop
scheduling problem

3.1 Introduction
Considering a 2-dock cross-docking center, in which n loaded trucks arrive with prod-
ucts demanded by one or more customers. In the center, each truck must unload its
cargo and load it into one or more outbound trucks, responsible for delivery to spe-
cific destinations in the supply chain. Each departing vehicle may leave the center
only after the cargo is fully loaded, and it can begin the loading process only after all
needed products were available in the center. Here we consider the existence of two
docks in the center, one dock dedicated to unload the trucks and the other one for
loading purposes, machine 1 (M1) and machine 2 (M2), respectively. The problem cor-
responds to define the truck sequence in the inbound and outbound dock, minimizing
the completion time of the last job processed by machine 2.

3.2 Mathematical Model
In this section, we present a mathematical formulation for a 2-dock version based on
scheduling problem initially proposed by Chen and Lee (2009). The integer program-
ming model considered in this work adopts a time-indexed formulation proposed by
Lima (2014) but adopting the makespan as objective function, as proposed by Chen
and Lee (2009).

The following parameters, sets and variables are considered:

11
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Input Parameters

• n: number of jobs to be processed on M1.

• m: number of jobs to be processed on M2.

• pij: processing time of job j on machine i.

• Tf : size of time horizon. A first estimate for the time horizon is the sum of the
processing times of all jobs.

• T0 Ø 0: beginning of time horizon for the jobs j œ J2, i.e., minimum starting date
for processing of the output trucks, initially set as T0 = minjœJ2 {q

iœJ1,iœSj
p1i},

then T = {T0, ..., Tf} ’j œ J2.

Sets

The set of periods is defined as T = {0, ..., Tf}. To represent arrivals and truck
departures in cross-docking center, two sets of jobs are created:

• J1 = {j1
1 , j1

2 , ..., j1
n
} , set of n jobs (inbound trucks), which must be processed on

M1.

• J2 = {j2
1 , j2

2 , ..., j2
m

}, set of m jobs (outbound trucks), which must be processed
on M2.

• Sj, set of precedent jobs. For each job j2
j

œ J2, there is a corresponding subset
of J1 that must be completed before beginning its process. It is considered that
each element job j œ J2 has at least one job Sj as precedent.

Decision variables

• xjt (’j œ J1, ’t œ T ), binary variable, xjt is equal to 1 if inbound job j starts its
process at time t and equal to 0 otherwise.

• yjt (’j œ J2, ’t œ T ), binary variable, yjt is equal to 1 if outbound job j starts
its process at time t and equal to 0 otherwise.

• Cmax: makespan. Maximum completion time in M2.
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The complete mathematical model (F) is presented as follows:

(F ) Minimize Cmax (3.1)

subject to

Tf ≠p1jÿ

t=0
xjt = 1, ’j œ J1, (3.2)

Tf ≠p2jÿ

t=T0

yjt = 1, ’j œ J2, (3.3)

ÿ

jœJ1

tÿ

s=max(0;t≠p1j+1)
xjs Æ 1, ’t œ T, (3.4)

ÿ

jœJ2

tÿ

s=max(T0;t≠p2j+1)
yjs Æ 1, ’t œ T, (3.5)

Tf ≠p2jÿ

t=T0

tyjt ≠
Tf ≠p1kÿ

t=0
(t + p1k)xkt Ø 0, ’j œ J2, ’k œ Sj, (3.6)

Cmax Ø p2j +
Tf ≠p2jÿ

t=T0

tyjt, ’j œ J2, (3.7)

xjt œ {0, 1}, ’j œ J1, ’t œ T, (3.8)

yjt œ {0, 1}, ’j œ J2, ’t œ T, (3.9)

Cmax Ø 0. (3.10)

The objective function (3.1) minimizes the makespan. The set of constraints (3.2)
ensures that each job j1

j
œ J1 should start its processing in one and only one period

within the time horizon. The set (3.3) works with the same reasoning on M2. Con-
straints (3.4) ensure that a job j1

j
œ J1 does not start its processing while another job

is being processed in the same machine M1. The constraints set (3.5) works, in the
same way, but applied to jobs j2

j
œ J2. The set (3.6) controls the precedence relation-

ships. For every existing precedence relation, the start date of the job j2
j

œ J2 should
be greater than or equal to the completion time of its precedent j1

k
œ Sj. The set of

constraints (3.7) indicates that the variable Cmax should be the maximum completion
time of jobs in J2. Finally, sets (3.8) to (3.10) define the variables’ domain.
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3.3 Lagrangian Relaxation
Let L(⁄) be the relaxation of formulation F, when constraints 3.6 are dualized and
its violation penalized in the objective function. For each constraint is associated one
Lagrangian multiplier ⁄ representing the weight given to the violation. The set of
Lagrangian multipliers will be represented by ⁄jk, with j œ J2 and k œ Sj. Notice
that, these constraints are the cross-docking precedence relations, coupling decisions
in M1 with decisions in M2. Thus, the subproblem L(⁄) is defined as:

L(⁄) = Minimize Cmax +
ÿ

jœJ2

ÿ

kœSj

⁄jk(
Tf ≠p1kÿ

t=0
(t + p1k)xkt ≠

Tf ≠p2jÿ

t=T0

tyjt) (3.11)

s.t. (3.2) – (3.5), (3.7) – (3.10), ⁄jk Ø 0.
Now we are able to uncouple the problem into two new scheduling problems, one

for each machine. Subproblem X considers M1 while subproblem Y considers M2. The
value of the lower bound is obtained by adding the subproblems objective functions
L(⁄)x and L(⁄)y.

Subproblem X

Isolating the terms of the objective function that contain variables x, we reach to:

L(⁄)x = Minimize
ÿ

jœJ2

ÿ

kœSj

⁄jk

Tf ≠p1kÿ

t=0
(t + p1k)xkt (3.12)

s.t. (3.2), (3.4), (3.8), and ⁄jk Ø 0.
Rewriting the above objective function from the perspective of jobs in J1, we have:

L(⁄)x = Minimize
ÿ

jœJ1

Tf ≠p1jÿ

t=0
(t + p1j)xjtw

1
j

(3.13)

where w1
j

= q
iœJ2 ⁄ij, where ⁄ij = 0 if j /œ Si, .

The problem mentioned above is known as The Total Weighted Completion Time
(Pinedo (2008)), denoted by 1|| q

CjWj. This problem can be solved by the WSPT
rule (Weighted Shortest Processing Time First) proposed by Smith (1956). According
to this rule, the optimal solution is obtained by ordering the jobs in descending order
of w1

j
/ p1j, and can be obtained in O(n log(n)).
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Subproblem Y

With the terms associated to variables y, subproblem Y can be defined as:

L(⁄)y = Minimize Cmax ≠
ÿ

jœJ2

ÿ

kœSj

⁄jk

Tf ≠p2jÿ

t=T0

tyjt (3.14)

subject to

Tf ≠p2jÿ

t=T0

yjt = 1, ’j œ J2, (3.15)

ÿ

jœJ2

tÿ

s=max(T0;t≠p2j+1)
yjs Æ 1, ’t œ T, (3.16)

Cmax Ø p2j +
Tf ≠p2jÿ

t=T0

tyjt, ’j œ J2, (3.17)

yjt œ 0, 1, ’j œ J2, ’t œ T, (3.18)

⁄jk Ø 0, ’j œ J2, k œ Sj, (3.19)

Cmax Ø 0. (3.20)

Defining w2
j

= ≠ q
kœSj

⁄jk ’j œ J2, we can rewrite the problem as follows:

L(⁄)y = Minimize Cmax +
ÿ

jœJ2

Tf ≠p2jÿ

t=T0

t.yjtw
2
j

(3.21)

s.t. (3.15), (3.16), (3.17), (3.18), and (3.20).
The first term of the objective function (3.21) is the makespan. The second term

represents the sum of the weighted starting times of the jobs on M2, also known as
The Total Weighted Starting Time, denoted q

IjWj. Thus, the Y subproblem can be
defined as 1||Cmax + q

IjWj. To solve this subproblem, we proposed a rule named
WSPT-TRD.

The WSPT-TRD rule works as follows. First, the WSPT rule is used to generate
a sequence of jobs on M2. The second step is to define the correct allocation of jobs in
the time horizon. For that, we evaluate the increase of the makespan when the weights
associated with the jobs are negative. When the weights are negative, it creates a
trade-o� situation, as explained next.

Generally, weights w2
j

may have positive or negative values. Let us first consider
schedule decisions for jobs with w2

j
Ø 0, both Cmax and q

IjWj have similar behavior
since the objective function is minimized by allocating the jobs at the beginning of the
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time horizon. In our particular case, as ⁄jk Ø 0, we do not have the case of w2
j

> 0;
however, our algorithm here proposed considers this possibility.

Considering jobs with negative weights (w2
j

< 0), the objective function terms lead
to di�erent solutions. On the one hand, by considering the makespan Cmax one tends
to allocate the jobs at the beginning of time horizon, as the weights do not influence
its final value. On the other hand, when analyzing the q

IjWj one tends to allocate
the jobs as late as possible, taking advantage of the negative weights.

We notice that if we delay all jobs with negative weights one-time unit, the Cmax

increases one unit. Thus, our algorithm computes the sum of the negative weights, if
the sum of the negative weights is less than ≠1, the displacement of the jobs towards
the end of the time horizon compensates the increase of Cmax, defining in this way the
best allocation of jobs.

Pseudocode of algorithm WSPT-TRD:

Step 1: Compute the weights w2
j

on the machine 2 (w2
j

= ≠ q
kœSj

⁄jk ’j œ J2).

Step 2: Sort the jobs in J2 in decreasing order of w2
j

/ p2j.

Step 3: Compute the sum of the negative weights as ” = q
jœJ2 w2

j
’j œ J2 · w2

j
< 0.

Step 4: If w2
j

= 0 ’j œ J2 or ” Ø ≠1, allocate the jobs from t = T0 by sequence
generated by WSPT rule.

Step 5: If there exists w2
j

< 0 and ” Æ ≠1, allocate the jobs from t = Tf by the reverse
sequence generated by WSPT rule.

Considering the problem 1||Cmax + q
IjWj, the algorithm WSPT-TRD obtains an

optimal solution. The proof is provided in Appendix B.

3.3.1 Lower Bounds

Besides the lower bound obtained from the Lagrangian relaxation, we consider here
two other lower bounds. The first one, called LB1 is defined as proposed by Chen and
Lee (2009), as follows:

LB1 =
ÿ

iœJ2
p2i + minjœJ2{

ÿ

iœJ1,iœSj

p1i}. (3.22)

LB1 basically computes the sum of processing time on M2, plus the minimum
amount of time necessary to begin the process of the first job in M2, that is, the
minimum set of precedent jobs in M1.
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The second lower bound, LB2, proposed in this work, considers a complementary
condition:

LB2 =
ÿ

iœJ1
p1i + minjœJ1{

ÿ

iœJ2,iœPj

p2i}. (3.23)

Where, Pj represents the successors subsets jobs j œ J1 corresponding to job i œ J2,
i.e., successors are all jobs that must be processed after completion for a given job in
the first stage.

In this case, LB2 computes the sum of processing times in M1 plus the minimum set
of common successors of j œ J1. Finally, the Lower Bound is defined as the maximum
lower bound, LB = max{LB1, LB2}.

It is worth noticing that with a valid LB we can redefine a new date for the
beginning of the processing time of jobs in the WSPT ≠TRD algorithm. Particularly,
in Step 4, T0 = LB ≠ q

iœJ2 p2i, this is valid for the jobs with w2
j

= 0 or for all jobs
when ” Ø ≠1.

3.4 Hybrid Lagrangian Metaheuristic
In the Hybrid Lagrangian Metaheuristic Framework proposed in this work, the La-
grangian Dual is solved by the Volume algorithm, as proposed in Barahona and Anbil
(2000) and Nogueira (2014). Readers are referred to Barahona and Ladányi (2006)
and Fukuda (2007) for a discussion on the Volume algorithm and its performance.
In our case, the Lagrangian Relaxation incorporates heuristics as internal procedures
with a focus on obtaining feasible solutions. These heuristics are based on a construc-
tive method and a Local Search. Both procedures are executed sequentially under the
Lagrangian Relaxation.

The Volume algorithm is an extension of the subgradient algorithm, which produces
a sequence of primal and dual solutions, thus being able to prove optimality. This algo-
rithm has similar computational e�ort than the subgradient algorithm, and it presents
similarities with the Conjugate Subgradient method Lemaréchal (1975), Wolfe (1975)
and the Bundle method Lemaréchal (2001, 572). A discussion of its main features and
a global convergence analysis can be found in Bahiense et al. (2002).

In the proposed algorithm the precedence constraints are dualized. The Lagrangian
multipliers define a penalty to a given job allocated at a given position. If the job has a
large associated value, it means that it has a greater impact on the objective function,
i.e., it is allocated in a disadvantageous position. This information can be used to
decide when to schedule the jobs. Following, we describe two constructive heuristics
used to obtain feasible solutions.



3. The 2-dock cross-docking flow shop scheduling problem 18

3.4.1 Constructive Heuristics

The heuristic H1 uses information from Lagrangian multipliers to sort jobs on M1,
while H2 uses information from Lagrangian multipliers to sort jobs on M2. In the final
step both heuristics use an NEH-like heuristic (Nawaz et al. (1983)) to construct the
feasible solution. For a given list of jobs, the NEH function constructs a solution by
scheduling the jobs on the list one by one, in the best position of the partial schedule.
The two heuristics are described below:

H1

Step 1: For each job on the machine 1 (k œ J1), compute —k =
q

jœJ2 ⁄jk

Npreck

.

In which Npreck corresponds to the number of jobs in the second stage that are
waiting for the completion of job k on M1.

Step 2: Get the sequence on M1 by ordering jobs in decreasing order of —k.

Step 3: Calculate the new release dates (rj, j œ J2) of jobs on M2.

Step 4: Get the sequence on M2 by ordering jobs in non-decreasing order of release
dates rj and apply NEH.

H2

Step 1: For each job on M2 (j œ J2), compute —j =
q

kœSj
⁄jk

Nprecj

.

Where Nprecj corresponds to the number of precedents that job j has.

Step 2: Get the sequence on M2 by ordering jobs in increasing order of —j.

Step 3: Sequence the jobs on the M1 according the sequence on M2, respecting the
precedence relations of cross-docking.

If there is a job on M1 without precedence relationship in the machine 2, schedule
this job last.

Step 4: Calculate the new release dates (rj, j œ J2) of jobs on M2, from the sequence
on M1.

Step 5: Get the sequence on M2 by ordering jobs in non-decreasing order of release
dates rj and apply NEH.
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3.4.2 The Lagrangian algorithm

Let x and y be solutions of subproblems X and Y, respectively, with objective function
value z. Then ⁄ are the Lagrangian multipliers obtained by the Volume Algorithm,
and ‹(⁄, x, y) is the subgradient. Let UB be the upper bound or feasible solution.
The initial UB is generated by a Lagrangian metaheuristic. The algorithm is described
below:

Step 0: We start with a null vector ⁄jk (⁄jk=0). Solve the Lagrangian subproblem to
obtain the initial solution of X subproblem (x0), Y subproblem (y0) and objective
function value (z0). Let UB be the feasible solution obtained by Lagrangian
metaheuristic. Set x̄ = x0, ȳ=y0, z̄ = z0 and k=1.

Step 1: Compute the subgradient ‹(⁄jk≠1, x̄, ȳ) and ⁄jk=⁄̄jk + s‹(⁄jk≠1), the cal-
culation of the step size s is given by the equation (3.27). Solve the Lagrangian
subproblem with the new ⁄jk and let xk, yk and zk be the solutions obtained.
Then x̄ = –xk + (1-–)x̄, ȳ = –yk + (1-–)ȳ and ⁄̄=–⁄k + (1-–)⁄̄, where – is
a number between 0 and 1, defined by convex combination such as defined in
(3.24).

Step 2: If zk > z̄ update ⁄̄=⁄jk and z̄=zk. If z̄ improves by 10% since the last run of
the Lagrangian metaheuristic then go to Step 3. Else go to Step 4.

Step 3: Lagrangian heuristics (H1, H2):

1. UBk Ω Constructive Heuristics (H1 and H2);

2. UBk Ω Local Search (list);

If UBk < UB update UB = UBk and add a cut in order to reduce the time
horizon, improving the limits found (update Tf=UB).

Step 4: Stop criteria: If satisfied stop. Else let k = k + 1 and go to Step 1.

The step size s and the parameter – used to define x̄ and ȳ, are computed as
proposed in Barahona and Anbil (2000) and Fukuda (2007). First, we define –opt as:

–opt = argmin Î –‹ Õk
(⁄jk≠1,xk,yk) + (1 ≠ –)‹k

(⁄jk≠1,x̄,ȳ) Î2 (3.24)

The parameter values fi, MaxWaste, factor, –max, st, –, yellow and green, some
of them yet to be introduced, were defined using the SPOT method, as explained in
Appendix C. The parameters –max and – are initially defined as 0.3034 and 0.0830
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respectively, based on computational tests performed by SPOT. And – is computed
as:

– = –max ú – if –opt < 0 (3.25)

– = min{–opt, –max} if –opt Ø 0 (3.26)

Before setting the value of the step s, we need to define the parameter fi. There-
fore, to set the value of fi we define three types of algorithms iterations as defined in
Barahona and Anbil (2000) and Barahona and Ladányi (2006).

Each iteration with no improvement is named red. Then, the parameter MaxWaste
represents the maximum number of iterations without a lower bound improvement.
If zk > z̄ and ‹ Õk

(⁄jk≠1,xk,yk)‹
k

(⁄jk≠1,x̄,ȳ) < 0, it means that a longer step in the direction
to ‹k would have given a smaller value for zk. Those iterations are denominated
yellow, otherwise, the iteration is denominated green. At each yellow iteration we
would multiply fi by the yellow parameter. At each green iteration we would multiply
fi by the green parameter. After a sequence of 24 consecutive red iterations, we would
multiply fi by factor parameter. Thus, the step size s at iteration k is defined as:

s = fi ú (st ú UB ≠ z̄))
Î ‹(⁄jk≠1,x̄,ȳ) Î2 (3.27)

In the “Lagrangian heuristics step” two constructive heuristics and a Local Search
are executed sequentially. The Local Search is implemented based on the proposals
of Arroyo et al. (2009) and Stutzle (1998). The procedure adopted is composed by
“swap” and “insertion” moves in the sequence on machine 2 generated by H1 and H2.
The former consists of interchanging all pairs of jobs. The latter consists of removing
a job from its original position and inserting it on one of the n≠1 remaining positions.
The local search procedure stops when it is unable to improve the solution further.

Finally, the stop criterion is determined if one of the following criteria is satisfied:

1. Maximum number of iterations, in this case 1000 iterations, or;

2. Relative tolerance GAP defined as: zk ≠ z̄

z̄
< 0.1, or;

3. Null Subgradient module or negligible: Î ‹(⁄jk≠1,x̄,ȳ) Î2Æ 0.000001.

3.4.3 JB Heuristic

We compare the results of heuristics H1 and H2 with the best heuristic introduced
by Chen and Lee (2009), which is based on Johnson’s algorithm. The heuristic JB is
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proposed in two steps. Firstly, for an instance of F2|CD|Cmax, the authors construct
an instance of F2||Cmax with n jobs. The first stage is maintained unchangeable and
the second stage is converted into n jobs. Secondly, Johnson’s algorithm is applied
to obtain a sequence in the first stage, generating a lower bound. From the sequence
in the first stage, jobs j œ J2 at the second stage are sequenced as soon as possible
in the time horizon, respecting the completion time of its predecessors. We run the
above algorithm for the primary problem and its reverse problem and select the best
solution. As a result, an Upper Bound for the problem is generated (See Chen and Lee
(2009) for a more detailed explanation), so we calculated the relative GAP. With the
objective of a fair comparison, the NEH algorithm and Local search are used to refine
the results of JB in the same way than used in H1 and H2.

3.4.4 CDH Heuristic

The proposed H1 and H2 algorithms are also compared with the heuristic in Cota et al.
(2016), called CDH. The CDH heuristic starts by creating a preliminary schedule in
the second machine. With this, a schedule is defined in the first machine and finally
the second machine is rescheduled. The heuristic initially creates fictitious processing
times TFj = (q

iœJ1,iœSj
p1i) + p2j for each job j œ J2. Then, a preliminary schedule on

M2 is obtained by ordering jobs in increasing order of fictitious processing times. Then
the jobs on the M1 are sequence according the preliminary schedule on M2, respecting
the precedence relations of cross-docking. The sequence on M1 imposes release dates
to the jobs in the second machine due to precedence relationships. So, the ERD rule
(earliest release date first) is applied to reschedule jobs in the second machine, obtaining
a sequence on the M2. Let UB be the upper bound obtained with the heuristic and
LB be the lower bound calculated as proposed in Chen and Song (2009), we generate
the percentage GAP for all tested instances.

3.5 Results for the 2-dock problem
To investigate the performance of the Complete Model and Hybrid Lagrangian Meta-
heuristic Framework, artificial instances are generated varying the processing time of
jobs and the number of jobs on machines 1 and 2, according to Chen and Lee (2009).
We ran the tests on a single thread in the Intel Xeon-Silver 4110 (2.1GHz/8-core/85W)
with 64 GB memory and Linux operational system. The programming language used
is C++ with the optimization software CPLEX 12.4.
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Table 3.1: Summary of the artificial benchmark.

Group Jobs Jobs NP TP
M1(n) M2(m)

5 3-4-5-6-7 U(1,4) U(1,10)
10 6-8-10-12-14 U(1,9) U(1,10)

1 20 12-16-20-24-28 U(1,19) U(1,10)
40 24-32-40-48-56 U(1,39) U(1,10)
60 36-48-60-72-84 U(1,59) U(1,10)
5 3-4-5-6-7 U(1,4) U(10,100)
10 6-8-10-12-14 U(1,9) U(10,100)

2 20 12-16-20-24-28 U(1,19) U(10,100)
40 24-32-40-48-56 U(1,39) U(10,100)
60 36-48-60-72-84 U(1,59) U(10,100)

3.5.1 Instances Generation

The instances used in this work are generated through the software MATLAB, following
the description found in Chen and Lee (2009). Table 3.1 presents a summary of the
generated instances and its characteristics. It is divided into two groups, each row
informs the features of a sub-group of instances. n and m indicate the number of jobs
in each stage. (NP ) the discrete uniform distribution to select the number predecessors
of jobs j œ J2 and (TP ) the distribution to generate all processing times.

In each group of instances, n is fixed and the number m is randomly chosen from
the range of [0.6n, 0.8n, 1.0n, 1.2n, 1.4n]. For each n, five instances with di�erent m

values are considered. And for each pair (n, m), we generate 10 di�erent problems,
therefore the benchmark consists of 500 instances, 50 instances per row of Table 3.1 1.

3.5.2 Computational Results

In Table 3.2 we report computational results for the Complete Model (MIP) and heuris-
tics JB, CDH, H1, and H2. Columns n and m show respectively the number of jobs in
the first and second machine. For each instance size (n, m) we report the best result
and the average of 10 cases tested. We also presented the subgroup’s average results.

The GAP(%) is computed as (Upper Bound - Lower Bound)
Upper Bound and the column T(s)

refers to CPU time expended to solve the problem in seconds. The run time is limited
to one hour of CPU time (3.600 seconds), and results are depicted in Table 3.2 are
registered. The dash (-) means that the corresponding value is not found. Finally, after

1all instances and codes are available at https://github.com/GabrielaBragaFonseca/Cross-
docking-Problems
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comparing and analyzing the MIP, JB, CDH, H1 and H2 the best results obtained are
highlighted in the Table.

The GAP is calculated considering the best lower bound found when comparing the
lower bounds of Complete Model and Hybrid Lagrangian Metaheuristic Framework. It
is worth highlighting that the constructive heuristic JB is proposed by Chen and Lee
(2009) and CDH heuristic is proposed by Cota et al. (2016).

The MIP results show that the proposed model is e�cient to solve to optimality
only small instances. Furthermore, for the larger instances the model found no solution.
These results expose the di�culty of solving time-indexed models. In the time-indexed
problems, the number of variables is proportional to the time horizon, and the higher
the number of jobs the greater the horizon of time to sequence them, increasing the
computational e�ort to solve these problems. This fact justifies the proposal of the
hybrid constructive heuristics to solve instances with a greater number of jobs.

Results show that H1 and H2 performs better than heuristics JB and CDH. Based
on the Table 3.2, the heuristic H2 showed GAP results more e�cients. Comparing the
average GAPs we can observe that the heuristic H2 has its better performance when
n < m for small and large instances. When n > m, the heuristic H2 gets better for
small cases, while H1 presents better results for large instances. The same behavior is
noticed when n = m, H2 is best for small cases, and H1 for larger ones. The heuristic
JB had no best GAP in any instance. As for the CDH heuristic, the GAPs found were
high, which was already expected, since the heuristic was developed for a more general
machine’s scenario.
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Table 3.2: Computational results for complete model and constructive heuristics.

Group 1 - Processing time [1, 10] Group 2 - Processing time [10, 100]
n m MIP JB CDH H1 H2 MIP JB CDH H1 H2

GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s)
5 3 Best 0.0% 0.1 0.0% 0.0 15.2% 0.0 0.0% 0.0 0.0% 0.0 0.0% 6.7 0.0% 0.0 7.8% 0.0 0.0% 0.0 0.0% 0.0

Average 0.0% 0.2 6.8% 0.0 26.3% 0.0 4.8% 0.0 4.8% 0.0 0.0% 21.0 2.4% 0.0 28.8% 0.0 2.3% 0.0 2.3% 0.0
4 Best 0.0% 0.1 0.0% 0.0 2.7% 0.0 0.0% 0.0 0.0% 0.0 0.0% 3.9 0.0% 0.0 3.0% 0.0 0.0% 0.0 0.0% 0.0

Average 0.0% 0.3 7.7% 0.0 22.3% 0.0 5.9% 0.0 5.9% 0.0 0.0% 354.9 7.5% 0.0 24.2% 0.0 6.2% 0.0 6.2% 0.0
5 Best 0.0% 0.3 4.5% 0.0 17.1% 0.0 0.0% 0.0 0.0% 0.0 0.0% 32.6 3.8% 0.0 19.3% 0.0 0.0% 0.0 0.0% 0.0

Average 0.0% 0.5 9.8% 0.0 32.8% 0.0 2.5% 0.0 3.3% 0.0 0.8% 1570.1 9.9% 0.0 33.4% 0.0 2.6% 0.0 2.6% 0.0
6 Best 0.0% 0.1 4.8% 0.0 13.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 80.9 5.7% 0.0 13.5% 0.0 0.0% 0.0 0.0% 0.0

Average 0.0% 1.3 16.6% 0.0 29.4% 0.0 5.2% 0.0 5.5% 0.0 11.8% 2388.3 16.1% 0.0 30.7% 0.0 4.8% 0.0 6.2% 0.0
7 Best 0.0% 0.2 0.0% 0.0 16.7% 0.0 0.0% 0.0 0.0% 0.0 0.0% 94.9 0.0% 0.0 16.6% 0.0 0.0% 0.0 0.0% 0.0

Average 0.0% 3.7 14.1% 0.0 36.4% 0.0 6.3% 0.0 5.4% 0.0 13.1% 2882.5 13.9% 0.0 38.0% 0.0 5.1% 0.0 6.7% 0.0
Subgroup Average 0.0% 1.2 11.0% 0.0 29.4% 0.0 4.9% 0.0 5.0% 0.0 5.1% 1443.4 10.0% 0.0 31.0% 0.0 4.2% 0.0 4.8% 0.0
10 6 Best 0.0% 5.1 0.0% 0.0 7.5% 0.0 0.0% 0.0 0.0% 0.0 28.7% 2801.1 0.7% 0.0 8.9% 0.0 0.0% 0.0 0.0% 0.0

Average 0.0% 20.2 11.8% 0.0 24.8% 0.0 1.8% 0.0 1.7% 0.0 28.2% 3509.9 11.3% 0.0 23.0% 0.0 1.4% 0.0 1.4% 0.0
8 Best 0.0% 10.2 2.7% 0.0 9.6% 0.0 0.0% 0.0 0.0% 0.0 23.6% 3597.6 2.3% 0.0 15.0% 0.0 0.0% 0.0 0.0% 0.0

Average 0.0% 167.5 13.3% 0.0 25.8% 0.0 6.0% 0.0 5.4% 0.0 36.7% 3600.0 17.0% 0.0 30.5% 0.0 3.7% 0.0 4.2% 0.0
10 Best 0.0% 14.1 1.4% 0.0 14.8% 0.0 0.0% 0.0 2.2% 0.0 35.7% 3600.0 2.2% 0.0 26.4% 0.0 4.6% 0.0 1.0% 0.0

Average 0.0% 369.6 15.9% 0.0 28.8% 0.0 6.5% 0.0 6.4% 0.0 45.2% 3600.0 18.4% 0.0 36.8% 0.0 7.6% 0.0 7.9% 0.0
12 Best 0.0% 42.1 3.9% 0.0 17.6% 0.0 0.0% 0.0 0.0% 0.0 51.7% 3600.0 3.1% 0.0 19.3% 0.0 0.0% 0.0 0.0% 0.0

Average 5.0% 2440.5 14.0% 0.0 41.0% 0.0 5.4% 0.0 5.3% 0.0 65.2% 3600.0 13.9% 0.0 40.8% 0.0 5.4% 0.0 5.4% 0.0
14 Best 0.0% 21.9 1.3% 0.0 27.9% 0.0 0.0% 0.0 1.0% 0.0 53.2% 3600.0 2.0% 0.0 28.9% 0.0 0.0% 0.0 0.0% 0.0

Average 4.6% 3141.6 10.8% 0.0 45.5% 0.0 7.0% 0.0 8.1% 0.0 73.6% 3600.0 11.4% 0.0 45.2% 0.0 6.7% 0.0 5.8% 0.0
Subgroup Average 1.9% 1227.9 13.1% 0.0 33.2% 0.0 5.3% 0.0 5.4% 0.0 49.8% 3582.0 14.4% 0.0 35.2% 0.0 5.0% 0.0 4.9% 0.0
20 12 Best 1.5% 3600.0 10.0% 0.0 12.4% 0.0 1.5% 0.0 0.7% 0.0 - 3600.0 10.2% 0.0 13.7% 0.0 0.6% 0.0 0.6% 0.0

Average 14.8% 3600.0 18.1% 0.0 26.1% 0.0 6.6% 0.0 7.1% 0.0 - 3600.0 17.9% 0.0 26.0% 0.0 6.4% 0.0 6.5% 0.0
16 Best 14.5% 3600.0 16.4% 0.0 21.4% 0.0 1.6% 0.0 5.4% 0.0 - 3600.0 17.4% 0.0 22.7% 0.0 2.3% 0.0 4.2% 0.0

Average 32.4% 3600.0 23.0% 0.0 32.6% 0.0 9.8% 0.0 10.5% 0.0 - 3600.0 23.3% 0.0 32.6% 0.0 8.2% 0.0 10.4% 0.0
20 Best 24.5% 3600.0 14.3% 0.0 31.9% 0.0 2.5% 0.0 4.4% 0.0 - 3600.0 15.5% 0.0 31.2% 0.0 3.7% 0.0 1.3% 0.0

Average 36.0% 3600.0 24.2% 0.0 38.5% 0.0 11.1% 0.0 10.9% 0.0 - 3600.0 24.8% 0.0 38.0% 0.0 11.4% 0.0 10.3% 0.0
24 Best 19.9% 3600.0 2.4% 0.0 35.0% 0.0 0.0% 0.0 2.6% 0.0 - 3600.0 1.5% 0.0 35.6% 0.0 0.6% 0.0 5.2% 0.0

Average 38.4% 3600.0 21.2% 0.0 44.4% 0.0 12.8% 0.0 14.0% 0.0 - 3600.0 21.7% 0.0 44.1% 0.0 12.2% 0.0 13.0% 0.0
28 Best 19.4% 3600.0 1.6% 0.0 39.2% 0.0 1.1% 0.0 4.9% 0.0 - 3600.0 3.1% 0.0 41.0% 0.0 0.9% 0.0 0.9% 0.0

Average 36.5% 3600.0 16.7% 0.0 49.3% 0.0 15.2% 0.0 15.0% 0.0 - 3600.0 17.4% 0.0 48.9% 0.0 14.4% 0.0 13.5% 0.0
Subgroup Average 31.6% 3600.0 20.6% 0.0 38.2% 0.0 11.1% 0.0 11.5% 0.0 ú 3600.0 21.0% 0.0 37.9% 0.0 10.5% 0.0 10.7% 0.0
40 24 Best 40.2% 3600.0 15.7% 0.0 20.9% 0.0 3.9% 0.0 4.5% 0.0 - 3600.0 2.3% 0.0 50.0% 0.0 0.0% 0.0 1.8% 0.0

Average 46.3% 3600.0 20.7% 0.0 26.2% 0.0 9.6% 0.0 9.0% 0.0 - 3600.0 8.6% 0.0 56.0% 0.0 6.2% 0.0 5.6% 0.0
32 Best 52.6% 3600.0 21.3% 0.0 25.2% 0.0 9.0% 0.0 8.3% 0.0 - 3600.0 22.4% 0.0 27.4% 0.0 6.0% 0.0 6.0% 0.0

Average 57.0% 3600.0 26.5% 0.0 31.8% 0.0 12.8% 0.0 12.5% 0.0 - 3600.0 28.5% 0.0 32.7% 0.0 11.8% 0.0 11.0% 0.0
40 Best 57.3% 3600.0 26.1% 0.0 31.7% 0.0 9.1% 0.0 8.3% 0.0 - 3600.0 24.4% 0.0 32.6% 0.0 9.0% 0.0 10.4% 0.0

Average 69.2% 3600.0 31.1% 0.0 36.1% 0.0 12.5% 0.0 12.3% 0.0 - 3600.0 32.4% 0.0 37.7% 0.0 13.3% 0.0 13.6% 0.0
48 Best - 3600.0 23.9% 0.0 41.6% 0.0 9.5% 0.0 11.6% 0.0 - 3600.0 23.0% 0.0 41.7% 0.0 10.8% 0.0 11.6% 0.0

Average - 3600.0 29.6% 0.0 45.2% 0.0 16.6% 0.0 16.8% 0.0 - 3600.0 29.1% 0.0 45.3% 0.0 16.6% 0.0 16.1% 0.0
56 Best - 3600.0 16.8% 0.0 44.4% 0.0 13.2% 0.0 15.5% 0.0 - 3600.0 18.4% 0.0 44.8% 0.0 13.8% 0.0 14.8% 0.0

Average - 3600.0 23.3% 0.0 48.3% 0.0 19.7% 0.0 19.3% 0.0 - 3600.0 23.3% 0.0 48.3% 0.0 18.7% 0.0 18.1% 0.0
Subgroup Average ú 3600.0 26.2% 0.0 37.5% 0.0 14.2% 0.0 14.0% 0.0 ú 3600.0 24.4% 0.0 44.0% 0.0 13.3% 0.0 12.9% 0.0
60 36 Best - 3600.0 16.9% 0.0 20.9% 0.0 5.5% 0.0 4.5% 0.0 - 3600.0 17.8% 0.0 21.4% 0.0 5.9% 0.0 3.4% 0.0

Average - 3600.0 22.8% 0.0 26.7% 0.0 8.6% 0.0 8.4% 0.0 - 3600.0 22.7% 0.0 26.6% 0.0 8.4% 0.0 7.6% 0.0
48 Best - 3600.0 26.0% 0.0 30.4% 0.0 9.6% 0.0 10.7% 0.0 - 3600.0 26.5% 0.0 30.6% 0.0 9.4% 0.0 8.5% 0.0

Average - 3600.0 29.9% 0.0 33.0% 0.0 12.0% 0.0 12.8% 0.0 - 3600.0 29.6% 0.0 32.9% 0.0 11.2% 0.0 12.0% 0.0
60 Best - 3600.0 26.6% 0.0 35.3% 0.0 14.2% 0.0 13.9% 0.0 - 3600.0 28.0% 0.0 36.1% 0.0 13.3% 0.0 12.9% 0.0

Average - 3600.0 33.5% 0.0 40.6% 0.0 18.2% 0.0 18.3% 0.0 - 3600.0 33.6% 0.0 40.7% 0.0 16.9% 0.0 17.0% 0.0
72 Best - 3600.0 25.7% 0.0 42.6% 0.0 15.5% 0.0 14.8% 0.0 - 3600.0 26.0% 0.0 42.8% 0.0 13.5% 0.0 13.5% 0.0

Average - 3600.0 30.6% 0.0 46.2% 0.0 19.1% 0.0 18.9% 0.0 - 3600.0 30.5% 0.0 46.0% 0.0 18.2% 0.0 17.6% 0.0
84 Best - 3600.0 20.3% 0.0 44.0% 0.0 19.3% 0.0 18.4% 0.0 - 3600.0 20.2% 0.0 44.4% 0.0 17.8% 0.0 17.4% 0.0

Average - 3600.0 26.0% 0.0 50.4% 0.0 21.9% 0.0 21.4% 0.0 - 3600.0 25.9% 0.0 50.3% 0.0 21.4% 0.0 20.5% 0.0
Subgroup Average ú 3600.0 28.6% 0.0 39.4% 0.0 16.0% 0.0 16.0% 0.0 ú 3600.0 28.5% 0.0 39.3% 0.0 15.2% 0.0 14.8% 0.0

Table 3.3 compares the lower bounds obtained for each method. As it is possible to
see, not only the hybrid approach achieves the best upper bounds, but also it system-
atically generates the best lower bounds, proving to be a very e�cient and complete
method. It is important to point out, that the Hybrid Lagrangian approach signifi-
cantly improves the linear-relaxation bounds (column LR), even having polynomially
solvable subproblems. This occurs because each time we improve the upper bound
(makespan) we can transform the original problem, reducing the number of variables,
allowing to improve the previous linear bound.
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Table 3.3: Computational results for Lower Bounds.

Group 1 - Processing time [1, 10] Group 2 - Processing time [10, 100]
n LR LB1 LB2 LBHgR LR LB1 LB2 LBHgR

5 23.7 29.3 33.6 34.7 232.8 288.9 337.4 347.0
10 39.4 60.9 66.2 70.0 379.1 635.9 667.6 706.9
20 70.7 119.7 140.2 143.4 705.7 1203.0 1412.7 1442.4
40 132.9 225.5 293.5 294.9 - 2253.2 2871.8 2883.2
60 193.9 338.0 444.3 444.3 - 3373.5 4452.3 4452.3



Chapter 4

Generalization for parallel-docks
CDC

4.1 Introduction
In this section, we present a time-indexed mixed integer formulation for F2(P )|CD|Cmax

based on the proposal of Cota et al. (2016). The cross-docking problem is modeled as
a hybrid two-stage flow shop scheduling problem with identical machines and cross-
docking constraints, with the objective of minimizing the makespan. The problem is
denoted as F2(P )|CD|Cmax, since F2|CD|Cmax is strongly NP-hard, as showed by
Chen and Lee (2009), it is not di�cult to see that F2(P )|CD|Cmax is also strongly
NP-hard.

4.2 Time-indexed mixed integer linear
programming model for F2(P )|CD|Cmax

For the parallel-docks formulation, we use the following notation:

Input Parameters

• m1: number of parallel processors in stage 1.

• m2: number of parallel processors in stage 2.

• n1: number of jobs (inbound trucks) in stage 1.

• n2: number of jobs (outbound trucks) in stage 2.

• pj: processing time of job j.

26
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• T : Time horizon considered initially. In practice, we used T = q
jœJ1 pj+

q
jœJ2 pj.

Sets

• T = {0, ..., T}, set of discrete periods considered.

• J1 = {1, 2, ..., n1}, set of jobs in stage 1.

• J2 = {1, 2, ..., n2}, set of jobs in stage 2.

• Sj: a set of precedent subset jobs of J1 corresponding to job j œ J2, Sj µ S =
{S1, ..., Sn2}.

Decision variables

• Cmax: makespan.

• xjt = 1, if job j starts to be processed at time t, 0, otherwise.

The multiple dock formulation is defined as:

Minimize Cmax (4.1)

subject to

T ≠pjÿ

t=0
xjt = 1, ’j œ J1, (4.2)

T ≠pjÿ

t=0
xjt = 1, ’j œ J2, (4.3)

ÿ

jœJ1

tÿ

s=max(0;t≠pj+1)
xjs Æ m1, ’t œ T, (4.4)

ÿ

jœJ2

tÿ

s=max(0;t≠pj+1)
xjs Æ m2, ’t œ T, (4.5)

T ≠pjÿ

t=0
txjt Ø

Tÿ

t=0
(t + pi)xit, ’j œ J2, ’i œ Sj, (4.6)

Cmax Ø pj +
T ≠pjÿ

t=0
txjt, ’j œ J2, (4.7)

xjt œ {0, 1}, ’j œ J1 · ’j œ J2, ’t œ T, (4.8)

Cmax Ø 0. (4.9)
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The objective function remains as the minimization of the makespan. Constraints
(4.2) and (4.3) ensure that in every stage, each job should start its processing on
one, and only one, time slot within the time horizon T . Constraints set (4.4) and
(4.5) indicates that the number of jobs that can be process simultaneously is less than
or equal to the number of existing parallel processors in the stage considered. The
constraint set (4.6) represents the cross-docking constraints, in which the release date
of each job j œ J2, must be greater than or equal to the completion date of each
task belonging to its precedence set. Besides that, the constraint set ensures that each
job j œ J2, starts processing only after its release date. Constraints (4.7) compute
the makespan, analyzing the maximum completion time. Constraints (4.8) and (4.9)
specify the domains of each decision variable.

4.3 Lagrangian Relaxation for F2(P )|CD|Cmax

Let LMD(⁄) be the relaxation of multiple dock formulation, when the cross-docking
constraints (4.6) are dualized and its violation penalized in the objective function. We
define the subproblem LMD(⁄) as:

LMD(⁄) = Minimize Cmax ≠
ÿ

jœJ2

ÿ

iœSj

⁄ij(
T ≠pjÿ

t=0
txjt ≠

Tÿ

t=0
(t + pi)xit)) (4.10)

s.t. (4.2) – (4.5), (4.7) – (4.9), ⁄ij Ø 0.
Just as we did for the 2-dock case, we are able to uncouple the problem into two

new scheduling problems, one for each stage.

Subproblem 1

LÕ
MD

(⁄) = Min
ÿ

jœJ2

ÿ

iœSj

⁄ij

Tÿ

t=0
(t + pi)xit (4.11)

subject to

T ≠pjÿ

t=0
xjt = 1, ’j œ J1, (4.12)

ÿ

jœJ1

tÿ

s=max(0;t≠pj+1)
xjs Æ m1, ’t œ T, (4.13)

xjt œ {0, 1}, ’j œ J1, ’t œ T, (4.14)

⁄ij Ø 0, ’j œ J2, i œ Sj. (4.15)
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Subproblem 2

LÕÕ
MD

(⁄) = Min Cmax ≠
ÿ

jœJ2

ÿ

iœSj

⁄ij

T ≠pjÿ

t=0
txjt (4.16)

subject to

T ≠pjÿ

t=0
xjt = 1, ’j œ J2, (4.17)

ÿ

jœJ2

tÿ

s=max(0;t≠pj+1)
xjs Æ m2, ’t œ T, (4.18)

Cmax Ø pj +
T ≠pjÿ

t=0
txjt, ’j œ J2, (4.19)

xjt œ {0, 1}, ’j œ J2, ’t œ T, (4.20)

⁄ij Ø 0, ’j œ J2, i œ Sj, (4.21)

Cmax Ø 0. (4.22)

4.4 Constructive Heuristic for parallel-dock CDC
The first subproblem can be defined as Pm|| q

CjWj, while the second as Pm||Cmax ≠
q

IjWj, therefore, it is not di�cult to see that both subproblem are strongly NP-hard
(see Pinedo (2008)). In this case, we focus on improving the problem’s upper bounds,
thus, in each iteration, we solve the linear relaxations of the subproblems, obtain integer
solutions and then compute their Lagrangian multipliers. The logic of the procedure
is described in Algorithm 1, maintaining the same reasoning proposed in Section 4.

For comparison purposes, we limited the computational time in 60 seconds, and we
compute the LB precisely as proposed by Chen and Song (2009).

4.5 Results for the multi-dock problem
To investigate the performance of the proposed heuristics and the heuristics presented
in literature, we generate artificial instances varying the number of jobs and machines,
as performed in Chen and Song (2009). The heuristics are coded in C++ and solved
using AMPL and CPLEX 12.41. Tests were performed on a single thread in Intel

1all instances and codes are available at https://github.com/GabrielaBragaFonseca/Cross-
docking-Problems
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Algorithm 1 Algorithm MD
1: Set Lagrangian multipliers as null.
2: Compute a Lower Bound (LB), as proposed by Chen and Song (2009).
3: Compute an initial Upper Bound (UB).

UB =
ÿ

iœJ1

pi/m1 ≠ maxiœJ1 pi/m1 + maxiœJ1 pi+

+
ÿ

jœJ2

pj/m2 ≠ maxjœJ2 pj/m2 + maxjœJ2 pj.

4: While Time < TimeLimit
5: Solve the Linear Relaxation.
6: Allocate the job as long as its variable is closer to 1.
7: Calculate the Lagrangian multipliers.
8: Compute the weights —1 and —2 for the heuristics H1 and H2 (the ordered

weights define the entry list for H1 and H2).
9: Apply Heuristics H1 and H2.

10: Apply a First-Best Local Search.
11: if UB has improved
12: Update the UB and add a cut to reduce the time horizon.
13: end if
14: end while
15: end algorithm.

Xeon-Silver 4110 (2.1GHz/8-core/85W) with 64 GB memory and Linux operational
system.

4.5.1 Instances Generation

The proposed heuristics H1 and H2 are compared with the best heuristics in Chen
and Song (2009), called JRH and JLPTH, and with the CDH heuristic Cota et al.
(2016). We consider values of n1 equal to 20, 30, 40, 50, 60, 70 and 80, and values of n2

equal to integers in [0.8n1, 1.2n1]. We examine five groups of instances. The first three
groups consider the same number of machines in each stage, 2, 4, and 10. The last
two groups of instances use a random number of machines in each stage, selected from
a discrete uniform distribution U(2, 4) and U(2, 10), respectively. Processing times
were generated with a discrete uniform distribution U(10, 100). A job j œ J1, J1 =
{1, 2, ..., n1} has a probability of 50% to belong to the set Sj of each job j œ J2, J2 =
{1, 2, ..., n2}. We generate 300 instances for each combination of number of jobs and
number of machines, resulting in a total of 10.500 instances.
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4.5.2 Computational Results

In Table 4.1 we report computational results obtained with heuristics JRH, JLPTH,
CDH, H1 and H2 for large instances. We coded the JRH and JLPTH heuristics in
C++ following the description found in Chen and Song (2009). For each combination
of number of jobs and number of machines and for each heuristic we report best,
average and worst percentage Loss over 300 instances, along with standard deviations.
In order to evaluate the heuristics proposed we used ‘Loss’ as the criterion to balance
the quality of each heuristic algorithm, Loss = (makespan-lower bound)/lower bound,
as defined by Chen and Song (2009).

Table 4.1: Computational results for large instances. The best, the average and the
worst percentage Loss values are presented for each instance configuration.

mi n1 n2 Loss(%)

JRH JLPTH CDH H1 H2

2 20 [16,24] Best 16.92 16.76 17.69 9.02 9.76

Average 32.34 30.91 35.37 20.93 22.20

Worst 53.77 51.24 64.08 36.36 35.08

Std Dev 6.73 6.49 8.67 4.84 4.74

30 [24,36] Best 17.83 17.14 21.31 11.62 12.46

Average 33.94 32.98 37.59 24.25 25.88

Worst 46.49 45.84 64.72 37.11 36.38

Std Dev 5.39 5.18 6.96 4.35 4.13

40 [32,48] Best 22.80 22.29 24.60 15.54 17.96

Average 35.29 34.52 38.67 26.75 28.36

Worst 47.91 45.72 59.40 37.13 39.12

Std Dev 4.34 4.25 6.41 3.80 3.62

50 [40,60] Best 25.58 25.18 23.65 19.44 19.36

Average 35.77 35.03 38.94 28.01 29.62

Worst 46.22 45.58 59.36 35.91 38.07

Std Dev 3.96 3.91 6.28 3.32 3.29

60 [48,72] Best 25.93 26.12 26.65 18.83 21.02

Average 36.25 35.67 38.93 29.20 31.01

Worst 46.69 45.47 56.3 36.72 38.43

Std Dev 3.62 3.62 5.33 3.24 3.12

70 [56,84] Best 29.25 28.84 28.02 22.52 23.22

Average 36.52 36.01 39.81 30.35 31.51

Worst 44.62 44.49 56.35 39.09 39.07

Std Dev 3.24 3.20 5.30 3.02 2.88

80 [64,96] Best 28.84 28.07 28.01 22.46 25.42

Average 36.52 36.12 39.58 30.99 32.18

Worst 43.73 43.52 55.55 38.98 39.38

Std Dev 2.97 2.94 5.13 2.89 2.73

Average 2 machines 35.23 34.46 38.41 27.21 28.68

4 20 [16,24] Best 20.90 17.36 17.56 11.57 12.99

Average 39.87 34.38 35.89 24.78 25.31

Worst 61.61 52.48 59.75 35.31 35.00

Std Dev 7.27 6.15 7.43 4.65 4.33

30 [24,36] Best 26.60 24.04 24.02 17.80 17.47

(Continued on next page)
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Table 4.1 (continued)
mi n1 n2 Loss(%)

JRH JLPTH CDH H1 H2

Average 39.92 36.17 37.29 28.05 28.88

Worst 51.71 46.49 59.00 36.70 39.66

Std Dev 5.17 4.54 6.28 3.75 3.67

40 [32,48] Best 26.79 24.49 22.00 19.42 20.38

Average 39.68 36.79 37.64 29.35 30.25

Worst 50.72 46.13 54.92 38.28 39.28

Std Dev 4.31 3.87 5.63 3.47 3.16

50 [40,60] Best 27.85 26.69 21.9 20.73 21.36

Average 39.27 36.71 37.66 30.29 31.25

Worst 49.65 47.95 57.31 39.26 38.59

Std Dev 3.89 3.68 5.43 3.29 3.06

60 [48,72] Best 28.57 27.55 26.52 21.08 24.53

Average 39.01 36.96 37.7 31.07 32.05

Worst 49.20 45.64 51.43 39.82 38.62

Std Dev 3.44 3.35 4.68 2.94 2.83

70 [56,84] Best 30.86 30.08 26.71 23.55 24.86

Average 38.75 36.99 38.21 31.52 32.49

Worst 47.80 44.42 52.69 38.48 38.67

Std Dev 3.14 2.90 4.57 2.82 2.62

80 [64,96] Best 30.27 29.09 27.63 22.95 26.10

Average 38.39 36.94 38.33 32.17 33.12

Worst 44.81 43.51 50.97 38.69 39.38

Std Dev 2.86 2.77 4.47 2.65 2.60

Average 4 machines 39.27 36.42 37.53 29.60 30.48

10 20 [16,24] Best 12.54 11.59 5.69 0.00 4.10

Average 35.38 24.56 28.23 13.50 16.49

Worst 55.41 45.50 61.03 27.01 27.27

Std Dev 7.52 5.74 8.44 4.79 4.24

30 [24,36] Best 26.91 18.44 18.53 12.24 13.86

Average 43.46 32.08 34.65 24.14 24.71

Worst 59.20 45.91 53.51 34.19 35.02

Std Dev 6.31 5.16 6.64 4.60 4.46

40 [32,48] Best 28.06 22.54 27.20 15.96 18.67

Average 49.17 38.74 40.87 31.79 32.10

Worst 63.17 48.35 57.14 41.04 40.96

Std Dev 6.04 4.87 6.21 4.33 4.21

50 [40,60] Best 36.50 28.39 27.36 26.04 25.41

Average 50.62 42.04 42.83 35.96 35.81

Worst 63.10 51.89 57.84 43.15 41.23

Std Dev 4.79 3.77 5.27 3.28 3.20

60 [48,72] Best 38.27 32.56 30.42 27.74 27.91

Average 49.40 41.85 41.97 36.70 36.44

Worst 59.34 48.44 57.24 42.09 41.97

Std Dev 4.04 3.11 4.79 2.71 2.67

70 [56,84] Best 37.66 32.57 29.75 28.49 29.02

Average 47.62 41.21 41.24 36.53 36.24

Worst 59.36 46.98 52.51 42.02 41.12

Std Dev 3.55 2.63 4.57 2.50 2.34

80 [64,96] Best 37.61 33.20 30.17 28.94 28.30

Average 45.92 40.44 40.82 36.34 36.12

Worst 53.71 45.87 51.81 41.30 41.29

(Continued on next page)
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Table 4.1 (continued)
mi n1 n2 Loss(%)

JRH JLPTH CDH H1 H2

Std Dev 3.11 2.50 4.38 2.46 2.32

Average 10 machines 45.94 37.28 38.66 30.71 31.13

U(2, 4) 20 [16,24] Best 4.57 4.25 9.02 3.85 2.32

Average 31.33 27.94 36.48 18.62 19.36

Worst 59.86 46.01 86.91 33.61 35.40

Std Dev 9.89 8.82 14.55 6.75 6.69

30 [24,36] Best 9.57 6.79 10.14 4.82 5.28

Average 32.07 29.70 38.14 21.86 22.68

Worst 51.89 47.81 85.47 38.32 36.28

Std Dev 8.26 7.63 13.76 6.60 6.40

40 [32,48] Best 10.90 9.54 10.61 3.00 6.57

Average 32.33 30.58 38.18 23.72 24.67

Worst 47.42 44.74 79.10 37.64 36.84

Std Dev 7.81 7.34 13.05 6.52 6.57

50 [40,60] Best 13.26 12.21 12.64 8.33 10.21

Average 32.65 31.27 38.69 25.04 26.04

Worst 48.53 45.11 76.62 38.96 37.57

Std Dev 7.70 7.34 12.63 6.53 6.75

60 [48,72] Best 11.15 11.04 11.83 8.34 9.44

Average 32.74 31.51 38.74 25.72 26.84

Worst 47.14 43.42 81.55 36.36 38.58

Std Dev 6.97 6.75 12.09 6.17 6.28

70 [56,84] Best 16.49 14.56 16.39 9.94 11.67

Average 32.36 31.40 39.3 26.16 27.32

Worst 45.60 43.95 77.17 37.74 39.01

Std Dev 6.81 6.58 11.96 6.01 6.19

80 [64,96] Best 15.01 14.13 15.48 11.03 13.05

Average 32.53 31.67 39.57 26.95 27.71

Worst 43.92 43.37 77.62 37.52 37.56

Std Dev 6.57 6.41 12.05 5.94 6.02

Average U(2, 4) machines 32.29 30.58 38.44 24.01 24.94

U(2, 10) 20 [16,24] Best 3.40 3.40 2.11 0.15 0.46

Average 27.78 21.25 35.94 13.15 13.77

Worst 55.42 43.67 103.55 34.38 31.48

Std Dev 11.45 9.18 22.69 7.57 7.24

30 [24,36] Best 4.35 1.97 4.09 1.18 1.18

Average 31.67 26.05 40.02 19.44 19.43

Worst 61.61 45.32 97.89 38.78 37.32

Std Dev 12.13 10.24 21.41 8.95 8.75

40 [32,48] Best 7.67 4.04 4.50 2.14 2.72

Average 33.90 29.08 40.85 23.07 22.96

Worst 60.57 48.93 96.09 40.26 39.74

Std Dev 13.05 10.85 19.21 9.63 9.58

50 [40,60] Best 8.09 6.88 4.61 3.58 3.77

Average 33.64 29.66 41.28 24.30 24.33

Worst 60.51 50.56 100.21 40.83 40.86

Std Dev 12.11 10.53 18.97 9.46 9.41

60 [48,72] Best 8.81 6.33 6.36 4.54 4.45

Average 20.78 29.63 41.03 24.64 24.87

Worst 55.67 47.11 98.85 40.11 41.00

Std Dev 11.55 10.18 18.76 9.38 9.39

(Continued on next page)
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Table 4.1 (continued)
mi n1 n2 Loss(%)

JRH JLPTH CDH H1 H2

70 [56,84] Best 7.49 6.18 6.63 4.98 5.18

Average 32.01 29.25 40.85 24.92 25.08

Worst 51.53 47.36 93.43 40.86 40.08

Std Dev 11.07 9.87 18.56 9.28 9.28

80 [64,96] Best 8.26 7.51 5.94 5.05 6.07

Average 31.49 29.10 41.10 25.16 25.32

Worst 50.58 45.83 92.11 41.67 40.27

Std Dev 10.57 9.63 18.53 9.01 9.10

Average U(2, 10) machines 31.93 27.72 40.15 22.10 22.25

Total average 36.93 33.29 38.64 26.73 27.50

Results show that for all instances sizes, the proposed heuristics H1 and H2 performs
better than the heuristics JRH, JLPTH and CDH, for all tested cases (Best, Average,
Worst and Std Dev). It is noted that the total average Loss value is considerably lower
for H1 and H2.

In this experiment, we are comparing two types of methodologies, on the one hand,
we have simple polynomial time heuristics. They are very easy to code, and they
are very fast. On the other hand, we have a more complicated method, that will
undoubtedly need specific expertise to be implemented. Still, this methodology is very
fast, and able to present an average of 10% of makespan benefit independently of the
instance tested, reaching in some cases near 20%. It is important to quantify that in
an annual operation of 250 days, a 10% di�erence in the makespan could represent a
benefit of 25 days per year.

The heuristic H1 presents a better average result than H2. Furthermore, when
the number of machines increases (easier instances) the H2 heuristic performs slightly
better than H1 (10 machines). However, when the number of machines decreases (more
di�cult instances) the performance of the H1 becomes better.

Figures 4.1 and 4.2 summarizes the results. As previously mentioned, we can see
that H1 and H2 present the lowest values in all cases. In the Figure, it is possible to
see that H1 dominates the results having better Loss values in most cases. Another
interesting point is that the proposed heuristics H1 and H2 have similar behavior to
JRH heuristic, this may be because these heuristics arrange jobs in the second stage
in increasing order of ready times.
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Figure 4.1: Average Loss value of each heuristic considering the same number of
machines at each stage: (a) M = 2, (b)M = 4, (c) M = 10.

Figure 4.2: Average Loss value of each heuristic considering a random number of ma-
chines at each stage: (a) M ≥ U(2, 4), (b) M ≥ U(2, 10).



Chapter 5

Rescheduling approach to
cross-docking truck scheduling
problem with truck arrival time
uncertainty

5.1 Introduction
Globalization and the rapid growth of e-commerce, now accelerated by the COVID-
19 pandemic, have helped change purchase goods and service habits, increasing the
complexity of logistics environments. In addition, logistics operations are plagued by
uncertainties and disruptions that require a constant revision of strategies and tactics
to guarantee the delivery of products within the agreed deadline and in a shorter lead
time.

Cross-docking is a logistics solution aiming to move products directly from di�erent
suppliers or manufacturers and consolidate them to common final delivery destinations
without long-term storage. This strategy allows for fast deliveries and reduced ware-
housing and transportation costs. Cross-docking Distribution Centers (CDC) need to
be flexible and e�cient, with quick and real-time responses, minimizing the negative
impact of uncertainties throughout the process.

In a CDC, scheduling decisions are particularly relevant to ensure the fast delivery of
goods and reduced inventory costs while increasing logistical service, making customers
more satisfied. Due to its real-world importance, several truck scheduling problems and
procedures have been studied in recent years.

A large number of articles have been published on static scheduling. According
to (Gao et al. (2014)), static scheduling assumes that all parameters are deterministic
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and that machines and jobs are always available at the beginning of the time horizon.
However, in the real world, these assumptions are almost always unfeasible.

Researchers have proposed dynamic scheduling to address the uncertain data prob-
lem, of which the most common approach is a predictive-reactive procedure. (Ouelhadj
and Petrovic (2009)) explain that in the predictive-reactive procedure, a schedule is
initially generated, and over time the schedule is dynamically revised every time a new
event happens. For dynamic scheduling, the scheduling problem data (arrival time,
machine availability, due date, processing time, among others) are uncertain, which
would cause scheduling disruptions.

The problem approached in this Chapter is the multi-dock truck scheduling problem
under arrival time uncertainty. The problem is formulated to take into account the
uncertainty. In addition, a promised date is established for each outbound truck, and
the objective is to minimize the deviation over the scheduled delivery. The proposal
aims to integrate existing technologies, such as GPS and algorithms, to define the
scheduling of trucks in real-time, generating a more e�cient real-world approach.

We analyzed two di�erent problems: the first problem is the problem Cmax, which
the goal is to process all jobs as quickly as possible; the second is the problem WC,
which the objective is minimizing the total weighted completion time, taking into ac-
count the relevance of each job j to the other jobs in the system. To both problems, we
proposed a Rescheduling Approach (RA). The key concept of RA involves rescheduling
trucks based on the updated truck arrival date to guarantee the delivery of the goods
on the date promised to the customer. The promised date is defined at the end of the
day before the operation. During terminal operation and as the arrival dates of the
trucks are being updated, the algorithm works to ensure that deliveries are made on
promised dates. The performance measures considered in the RA approach are the
total tardiness (q

Tj), and the total weighted tardiness (q
wjTj) that we believe are

correlated to customer satisfaction.
To validate the proposed RA, we proceed with the comparison of three di�erent

methodologies, enabling a series of analyses that we believe will help CDC managers
deal with the uncertainties generated by delays or advances in truck arrivals, supporting
daily dynamic scheduling decisions at a cross-docking center.

The contributions of the proposed study are summarized as follows:

1. An e�cient rescheduling approach and a novel algorithm for solving multi-dock
truck scheduling problem under truck arrival time uncertainty applied to two
di�erent optimization problems (Cmax and WC);

2. Comparison of three di�erent methodologies to deal with uncertainty;
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3. The combination of existing technologies with e�cient algorithms applicable to
environments with high and low levels of uncertainties achieving good answers;

4. Practical discussion: our methodology can support managers in their daily cross-
docking operations, handle dynamic and uncertain data, and solve online prob-
lems quickly.

The Chapter 5 is organized as follows. The problem statement is described in
Section 5.2, and the mathematical formulation of the problems are described in Section
5.3. In Section 5.4, the details of the proposed RA strategy are presented. Next, the
experimental results are discussed in Section 5.5.

5.2 Problem statement
Our work focus is on solving the multi-dock cross-docking scheduling problem with
truck arrival time uncertainty. Let us consider a CDC that operates between 8 am
and 6 pm, in which each inbound truck has an Estimated Time of Arrival (ETA). The
cross-dock manager only knows the ETA and needs to define the unloading scheduling
of incoming trucks and, consequently, the loading scheduling of outgoing trucks. The
ETA may vary over time, and depending on these values, the discharge sequences at
the cross-docking center can be reorganized to reduce the deviation from the scheduled
delivery. Our approach aims not to deliver faster, but to guarantee delivery on the date
promised to customers. This delivery date is calculated considering the last estimate
of the arrival date of the trucks (before the operation day). In practice, real-time data
can be collected, for example, through the GPS installed in the trucks. The problem is
defining a sequence to unloading the arrival trucks and loading the outgoing trucks at
each check time to guarantee the minimum possible delay in the deliveries previously
agreed with the customers.

To better understand our proposal, we summarize some important information:

• We assume a cross-docking center that operates from 8 am to 6 pm and a se-
quencing checkpoint every thirty minutes. Therefore, twenty-one check times are
considered (HT = 21 check times);

• Each incoming truck has an estimated time of arrival (ETA), defined by the
release date (rdjh).

• The arrival dates (rdjh) are updated every thirty minutes (check times) and an
evaluation of the scheduling is done to verify the need for rescheduling of jobs
(called tolerance ·1, ·2).
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• The arrival date of some trucks can be postponed without increasing the delay
in deliveries. These trucks are called "slack jobs".

• Trucks that cannot have their arrival dates delayed are called critical trucks or
"critical jobs". The Critical Path Method (CPM) is used to obtain these jobs.

• Each outbound truck j œ J2 has a due date (dj), corresponding to the delivery
dates promised to customers, defined at the end of the day before the operation.
The focus is to guarantee deliveries on the promised dates.

• A new scheduling may be generated to minimize the deviation over the pro-
grammed delivery.

It is essential to highlight that it does not justify having the exact method. The
dynamic problems are usually very complex to be solved optimally by exact methods
in a reasonable amount of time. Besides, as we have uncertainty in the arrival times
of the trucks, an optimum result for a specific period does not guarantee an optimal
outcome for the subsequent periods. When performing tests with the exact model,
we observe that it could generate ine�cient sequences compared with the proposed
method. According to AL-Behadili (2018), unlike static problems, dynamic ones cannot
be solved optimally since the optimal schedule depends on future unpredictable real-
time events, which only happen after a schedule has been executed.

To determine the best truck scheduling in each check time, considering the updated
arrival dates, we have developed an algorithm (Algorithm 2) that uses the Critical Path
Method (CPM) logic (see Pinedo (2012) for more information). In contrast to existing
static scheduling strategies, our algorithm adjusts the truck scheduling to fulfill the
delivery schedule according to the updated truck arrival time information, moment by
moment. We define this as ‘Rescheduling Approach’ (RA). Two other methodologies
are generated to compare the performance of the proposed method. A second method-
ology, named ‘without adjustments’ (WA), considered the static case and the most
common approach found in the literature, considers the twenty-one check times. Still,
it does not adjust the sequences to minimize the deviation over the scheduled delivery.
The third methodology, called ‘Perfect Information’ (PI), is a utopic scenario designed
as if it would be possible to predict the exact arrival time of the trucks, see in more
detail in subsection 5.5.2).

One of the di�erentials of our research approach is to consider two di�erent op-
timization problems, the Problem Cmax, and the problem WC. For both problems,
inbound trucks’ arrival time is considered under uncertainty, and the objective is to
generate a schedule that respects the dates promised to customers as much as possible.
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5.3 Mathematical optimization models
This section presents the problem description and two mathematical formulations for
the multi-dock cross-docking scheduling problem with truck arrival time uncertainty.

The CDC scheduling problem that we address in this work is modeled as a hybrid
two-stage flow shop scheduling problem with identical machines and cross-docking con-
straints, as proposed in the Chapter 4; however, we incorporate uncertainty in inbound
trucks arrival times. The first stage consists of unloading the incoming trucks and the
second stage of loading the trucks that leaving the CDC for delivery. There are n1

inbound trucks assigned to any of m1 unloading docks of stage 1. Each inbound truck
j œ J1 has an estimated time of arrival, defined as rdj, and an unloading time p1j.
Similarly, there are n2 outbound trucks assigned to any of m2 loading docks of stage 2.
The processing time of each outbound truck j on stage 2 is defined as p2j. Moreover,
each outbound truck needs to wait to process a subset of inbound trucks of stage 1 to
begin loading. This subset of J1 for each j œ J2 is defined by parameter (Sj).

We studied two di�erent problems with di�erent optimization criteria. In the first
problem, we aim to minimize the total operation time. The total time of a cross-docking
operation is known as makespan, which corresponds to the time interval between the
beginning of the unloading procedure and the end of loading the last cargo. A high
makespan implies that the goods remain for a long time at the CDC, increasing logis-
tical costs and causing delays in delivery.

In the second problem, the optimization objective is to minimize the total weighted
completion time of jobs, which concerns the total duration of the loading and unloading
operation at the terminal, considering each customer’s relevance and the impact of
delays in operations. This measure is crucial in a scenario of uncertainties.

For both formulations, we use the following notation:
Input Parameters

• n1: number of trucks (jobs) on stage 1.

• n2: number of trucks (jobs) on stage 2.

• m1: number of docks (machines) on stage 1.

• m2: number of docks (machines) on stage 2.

• p1j: processing time of truck j on stage 1.

• p2j: processing time of truck j on stage 2.

• Sj : set of predecessors for each outbound truck. For each j œ J2, Sj is a subset
of J1.
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• rdj: arrival date of the inbound truck j.

• T : time horizon length. It is defined as an upper bound for the completion time
of all loading trucks, given by: T = rdj +

q
jœJ1

p1j

m1
≠ p

max
1
m1

+ pmax

1 +
q

jœJ2
p2j

m2
≠

p
max
2
m2

+ pmax

2 , in which pmax

i
is the largest processing time of the truck on stage i.

This equation considers that in the worst case the last truck in the sequence has
the largest process time.

• rmin

j
: minimum date for start the outbound truck j œ J2. It is defined as the

maximum between the sum of the processing times of its predecessor divided by
the number of unloading docks and the largest processing time of its predecessor
(rmin

j
= max{

q
kœSk

p1k

m1
, maxkœSk

{p1k}}).

Sets

• J1 = {1, 2, ..., n1}, set of jobs on stage 1.

• J2 = {1, 2, ..., n2}, set of jobs on stage 2.

• T = {0, ..., T}, set of discrete periods considered.

Decision variables

• xjt(’j œ J1, t œ {rdj, ..., T}), binary variable, xjt is equal to 1 if inbound truck j

is assigned to time t, and 0 otherwise.

• yjt(’j œ J2, t œ {rmin

j
, ..., T}), binary variable, yjt is equal to 1 if outbound truck

j is assigned to time t, and 0 otherwise.

The formulations are defined below.

5.3.1 Problem Cmax

In the Problem Cmax, we aim to minimize the makespan, stands for, the completion
time of the last truck loaded to an unloading dock. We add to the variables mentioned
above, the non-negative decision variable Cmax. The CDC scheduling problem can then
be formulated as follows:
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Minimize Cmax (5.1)

subject to:

T ≠p1jÿ

t=rdj

xjt = 1, ’j œ J1, (5.2)

T ≠p2jÿ

t=r
min
j

yjt = 1, ’j œ J2, (5.3)

ÿ

jœJ1

tÿ

s=max(rdj ,t≠p1j+1)
xjs Æ m1, ’t œ T, (5.4)

ÿ

jœJ2

tÿ

s=max(rmin
j ,t≠p2j+1)

yjs Æ m2, ’t œ T, (5.5)

T ≠p2jÿ

t=r
min
j

tyjt Ø
T ≠p1iÿ

t=rdi

(t + p1i)xit, ’j œ J2, ’i œ Sj, (5.6)

Cmax Ø p2j +
T ≠p2jÿ

t=r
min
j

tyjt, ’j œ J2, (5.7)

xjt œ {0, 1}, ’j œ J1, t œ {rdj, ..., T}, (5.8)

yjt œ {0, 1}, ’j œ J2, t œ {rmin

j
, ..., T}. (5.9)

The objective is to minimize the makespan. Constraint sets (5.2) and (5.3) ensure
that in every stage, each job should start its processing on one, and only one, time slot
within the time horizon T . Constraints set (5.4) and (5.5) indicate that the number of
jobs that can be processed simultaneously is less than or equal to the number of existing
docks on each stage (unloading and loading). The constraint set (5.6) represents the
precedence constraints, in which the start time of the outbound truck must be greater
than or equal to the completion time of each inbound truck belonging to its precedence
set. Constraints (5.7) compute the makespan, analyzing the maximum completion time
of outbound trucks. Constraints (5.8) and (5.9) specify the domains of each decision
variable.

5.3.2 Problem WC

In the WC approach, we focus on working with the importance of each delivery to the
end customer. For this, we introduce a weighting factor for each outbound truck, and
the objective of the problem is to minimize the total weighted completion time (wjCj).
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The total weighted completion time is a crucial factor in reducing inventory costs and
increasing delivery e�ciency (Zhan et al. (2020)). For the formulation, consider:

• wj: weight of each outbound truck j œ J2.

• Cj: completion time of job j œ J2, given by: Cj = q
jœJ2

qT ≠p2j

t=r
min
j

(t + p2j)yjt.

The formulation is:

Minimize
ÿ

jœJ2

wjCj (5.10)

s.t. (5.2) – (5.6), (5.8), and (5.9).

5.4 Rescheduling approach - RA
The RA proposed in this work considers that each inbound truck has an ETA value
at the end of the day before the cross-docking operation (rdj1). A first schedule is
generated based on this information, and the delivery dates promised to customers (Due
Dates, dj) are defined. For each job j œ J2, we calculate their respective Later Start
Date (LSD), defining the jobs with slack or not and the size of the idle spaces. In this
way, we define the Critical Path (CP), which comprises not slack jobs. The algorithm’s
objective is to ensure that deliveries are made on the due dates, dj (customers delivery
dates), minimizing delivery delay. Our method evaluates whether there has been a
delay or advance in the trucks’ arrival forecast and whether this change impacts the
current schedule. Based on this information, the RA rescheduled the jobs to minimize
the delivery dates previously agreed with the customers. The proposed rescheduling
framework is illustrated in Figure 5.1.

The procedure of the rescheduling receives as input data
(n1; m1; rdjh; p1j; n2; m2; p2j; Sj) and can be summarized as follows.

• Step 1: Generate an initial schedule (our methodology applies both to problem
Cmax either WC) and obtain the Due Dates for each job (dj).

• Step 2: Calculate the LSD using CPM, obtaining the values of the slack of the
outgoing and incoming trucks.

• Step 3: Update trucks’ arrival dates (rdjh), considering it’s ETA and compute
the new completion times Cj.

• Step 4: Assess the impact of new dates on the current scheduling.
We define a tolerance (·1, ·2) for the delay or advance of the trucks proportional
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Figure 5.1: Rescheduling scheme.

to the checking instant (h). The closer the trucks’ arrival dates, the lower the
tolerance. If the truck burst the tolerance, go to Step 5; otherwise, go back to
Step 3.

• Step 5: Generate the new schedule to minimize the deviation from the promised
date and obtain the objective function values TD and TWT . The jobs are
rescheduled taking into account the updated arrival date, respecting as much as
possible the sequence defined on the previous day, to keep the minimum deviation
from the delivery date previously promised to customers (dj).
In Problem Cmax we obtain TD = q

jœJ2 Tj = q
jœJ2 max{0, Cj ≠ dj}, where Cj,

dj denote the completion time and due date respectively of job j. In Problem
WC we obtain TWT = q

jœJ2 wjTj, in which Tj is the tardiness of the job j, and
wj is the weighting factor or importance of customers.

Repeat the above procedure (Steps 2-5) for the duration of the chosen scheduling
horizon (in our case, h = {1, 2, ..., HT} in which HT = 21 check times), to obtain the
schedule implemented with this periodic rescheduling scheme. The algorithm for the
proposed RA for handling uncertainty in the arrival time is outlined below.
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Algorithm 2 Rescheduling Algorithm
1: Generate an initial scheduling;
2: Calculate Due Dates (dj) based on rdj1;
3: Set h Ω≠ 1; NTD Ω≠ 0; TD Ω≠ 0; TWT Ω≠ 0;
4: While h Æ HT
5: Update trucks’ arrival dates (rdjh) and compute the new completion times (Cj).
6: Compute the tolerances (·1 and ·2).
7: if rdjh > ·1 or rdjh < ·2
8: Generate the new scheduling to minimize the deviation from the promised

date.
9: Compute the objective function values (TD and TWT ):

TD Ω≠
ÿ

jœJ2

max{0, Cj ≠ dj};

TWT Ω≠
ÿ

jœJ2

wjTj;

10: end if
11: for (j œ J2)
12: if Cj ≠ dj > 0
13: NTD Ω≠ NTD + 1;
14: end if
15: end for
16: h Ω≠ h + 1;
17: end while
18: end algorithm

5.5 Experiments and discussion
This section describes the experiments to test the proposed methodology. First, we
present the dataset. Next, two scheduling approaches are compared with the proposed
rescheduling method. Finally, computational results are discussed. The impact of the
parameters on the performance of the RA is analyzed by conducting a comparative
analysis which is in the appendix of this work. It is essential to mention that all
instances and codes used in this work are available in1 to ensure future safe comparisons.

5.5.1 Instances generation

To investigate the methodology’s performance, we generate artificial instances varying
the number of machines and jobs. Instances are generated for a day of operation (from
8 am till 6 pm) to approximate the methods of a real situation. We examine five groups
of instances: the first three groups consider the same number of machines on each stage,

1https://github.com/GabrielaBragaFonseca/Cross-docking-Problems
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2, 4, and 10. The last two groups of instances use a random number of machines on each
stage, selected from a discrete uniform distribution U(2, 4) and U(2, 10), respectively.
The number of inbound trucks (n1) follows an uniform distribution between 2 and 5
times the number of machines on stage 1 (U(2 ú m1, 5 ú m1)). The number of outbound
trucks (n2) assumes values equal to integers in [0.8n1, 1.2n1]. We also consider instances
with n1 = n2, n1 < n2 and n1 > n2. Processing times were generated with a discrete
uniform distribution U(10, 100).

For the problem WC, we consider di�erent weights for the inbound trucks generated
from a discrete uniform distribution of U(1, 10n2). In the problem Cmax, weights are
considered unitary since, for this problem, the customers are equally important.

Moreover, for each inbound truck j œ J1, we defined the arrival dates (rdjh), based
on it’s ETA. Considering a cross-docking center that operates from 8 am till 6 pm
we generate, for each truck, twenty-one ETAs (h = {1, 2, ..., 21}, in which, h = 1
corresponds to 8 am and h = 21 corresponds to 6 pm). The arrival dates are designed
as follows. The arrival date for the first check time (h = 1, or 8 am) is calculated as
rdj1 = Min(Max(N(10, 5), 8), 17). To determine the remaining 20 arrival estimates,
proceed as follows: if rdjh≠1 < (8 + 0.5 ú (j ≠ 1)) then rdjh = rdjh≠1 else rdjh =
Min(Max(rdjh≠1 ú U(0.95, 1.1), 8), 17.5)).

In total, there are 45 instances for each group of instances, resulting in 225 cases.
The methods are coded in C++ and solved using AMPL and CPLEX 12.4. Tests were
performed on a single thread in Intel Xeon-Silver 4110 (2.1GHz/8-core/85W) with 64
GB memory and Linux operational system.

5.5.2 Comparison of methodologies

To evaluate the performance of the RA, we develop and analyze other two di�erent
scheduling methodologies, namely, Without Adjustments (WA) and Perfect Informa-
tion (PI). The methodology with adjustments refers to the RA described in Algorithm
2. The WA and PI methodologies are described below:

WA methodology
In this static case, the algorithm does not reschedule jobs according to the updated
arrival date. That is, we defined a fixed sequence of the trucks based on the arrival
date for the first check time (rdj1), and given this information, described this sequence
as being the same for the 21 check times. Jobs are allocated given this fixed sequence
respecting the updated arrival time.
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PI methodology
In the PI methodology, we know in advance the information of the 21 check times.
Thus, we define the sequence of the trucks considering the correct arrival date. This
date is computed as: Real rd = Max(rdjh, h), i.e., the maximum date between the
estimated truck arrival date, defined in the problem data set, and the current check
time (h = {1, 2, ..., 21}, in which, h = 1 corresponds to 8 am and h = 21 corresponds
to 6 pm). This is the situation under perfect information.

We already expect that RA will perform better than WA and worst than PI. How-
ever, the distance of the results against these extremes does not change anything (WA),
and knowing everything a priori (PI) will give us an idea of the performance of RA for
the types of instances explored.

5.5.3 Computational results

In Table 5.1 we report computational results obtained to problem Cmax and problem
WC for the three methodologies: WA, RA, and PI. As stated previously in section
5.4, to problem Cmax the performance criteria considered is the minimization of the
Total Tardiness (TD), and to problem WC is the minimization of the Total Weighted
Tardiness (TWT ). In Table 5.1, column OFW A indicates the TD value for the WA
methodology, column OFRA displays the TD value for RA, and column OFP I measures
the impact of perfect information on the TD objective function. Similarly, columns
OFW A, OFRA, and OFP I display the TWT value for the WA, RA, and PI methodolo-
gies, respectively. We use ‘Pfm’ as the criterion to measure the quality of the results.
It is computed as Pfm = 1 ≠ (OFx ≠ Min(OFW A, OFRA, OFP I))/OFx, where OFx

corresponds to the respective value of the objective function (TD or TWT ) for a given
methodology (WA, RA or PI). The experimental results are shown in the Table 5.1,
which contains ‘Pfm’ average value and a 95% confidence interval (CI) for both the
Cmax and WC.

The results from Table 5.1 yield several relevant insights for a cross-docking truck
scheduling problem with truck arrival time uncertainty. First, the rescheduling strategy,
as expected, achieved better results for all instances than the static methodology.

For Cmax problem, the rescheduling strategy manages to be even better than the
‘perfect information’ methodology. This result is possible because the RA method is
an iterative (approximate) method, executed several times over the horizon of 21 check
times. Besides that, the fact that problem Cmax has a pretty symmetric solution space
(all customers have equal weights), the method can escape a local optimal where the PI
methodology seems to be trapped. Resulting in a more e�cient algorithm (RA works
as a heuristic strategy).
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Table 5.1: Computational results for five groups of instances. The ‘Pfm’ average value
and confidence interval (CI) are presented for each instance group.

mi Pfm(%)

Cmax WC
OFW A OFRA OFP I OFW A OFRA OFP I

2 Average 83.12 97.84 91.70 78.28 96.94 94.42
CI [77.5,88.8] [96.3,99.4] [86.8,96.6] [71.3,85.3] [94.7,99.2] [91.2,97.6]

4 Average 80.54 99.15 93.69 72.20 95.10 96.56
CI [74.7,86.4] [98.5,99.8] [90.9,96.4] [67.1,77.3] [92.9,97.3] [94.3,98.8]

10 Average 77.02 98.84 94.69 67.71 95.43 96.97
CI [71.8,82.2] [97.9,99.8] [92.9,96.5] [63.1,72.4] [93.7,97.2] [94.6,99.4]

U(2, 4) Average 82.63 97.73 89.86 80.95 95.67 95.98
CI [77.0,88.2] [95.1,100.0] [84.9,94.8] [75.6,86.3] [92.9,98.5] [93.8,98.1]

U(2, 10) Average 79.05 97.75 91.34 71.20 93.08 95.75
CI [73.3,84.8] [96.2,99.3] [88.2,94.5] [65.6,76.8] [90.7,95.5] [92.7,98.8]

When considering the WC case, where customers have di�erent weights, the reschedul-
ing strategy exhibits good performance, but, as expected, the possibility of knowing in
advance the delays allows the PI methodology to set a better schedule. However, it is
decisive to point out the quality of the RA results.

It is possible to note that the proposed RA algorithm obtained statistically better
results with tighter confidence intervals. It reinforces the assumption that the RA is a
very e�cient approach.

A second metric is established to investigate the performance of the proposed
methodologies concerning the number of trucks delayed. This analysis helps assess
the ability of methodologies to ensure that deliveries are made on the date agreed
with customers. In Table 5.2 we report computational results obtained to prob-
lem Cmax and WC for the three methodologies: WA, RA, and PI. Again, columns
NTDW A, NTDRA, and NTDP I display the number of trucks delayed for each case.
‘Pfm’ is the criterion to measure the quality of each algorithm, computed as Pfm =
1 ≠ (Nx ≠ Min(NW A, NRA, NP I))/Nx, where Nx corresponds to the respective value
of the number of trucks delayed for the analyzed methodology (WA, RA or PI). The
experimental results are shown in the Table 5.2, which contains ‘Pfm’ average value
and a 95% confidence interval (CI) for both the Cmax and WC.

Analyzing Table 5.2, with this second metric, we can also observe the excellent per-
formance of the RA approach, significantly better than the option without adjustments
and very close to the results obtained by PI methodology. These observations give us
an idea of the performance expected of the RA against these extreme situations, and
we believe it is a flexible alternative to use the available information to make decisions
on the spot in a CDC operation.
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Table 5.2: Computational results for five groups of instances. The ‘Pfm’ average value
and confidence interval (CI) are presented for each instance group.

mi Pfm(%)

Cmax WC
NTDW A NTDRA NTDP I NTDW A NTDRA NTDP I

2 Average 89.49 96.79 93.54 92.62 97.44 99.17
CI [83.9,95.0] [93.8,99.8] [88.2,98.9] [88.0,97.3] [95.3,99.6] [98.0,100.0]

4 Average 86.73 97.43 96.94 87.06 96.08 98.21
CI [83.4,90.0] [95.8,99.1] [95.1,98.8] [83.4,90.7] [93.7,98.4] [97.0,99.4]

10 Average 87.68 98.98 97.61 90.33 98.10 98.89
CI [84.8,90.6] [98.1,99.8] [96.3,98.9] [87.8,92.9] [96.7,99.5] [97.9,99.9]

U(2, 4) Average 92.14 98.02 95.05 92.79 98.04 99.11
CI [87.9,96.4] [96.0,100.0] [90.4,99.7] [88.8,96.8] [96.2,99.9] [98.1,100.0]

U(2, 10) Average 88.82 97.99 96.94 90.59 97.36 98.12
CI [85.4,92.2] [96.7,99.2] [94.0,99.9] [87.1,94.1] [95.6,99.1] [95.5,100.0]

Moreover, plots depict the CPU time for each instance group graphically. Figs. 5.2
and 5.3 show that, in general, the problem Cmax (graphs on the left) requires more
time than the problem WC (charts on the right), although both approaches produce
very competitive results in terms of execution time. Notice that algorithms solve the
problems quickly and reach 120s only for the ‘worst-case’ (RA when mi = 10). The
speed of the resolution method is essential for decisions at the operational level, as is
the case for truck scheduling decisions in cross-docking centers, one more reason that
justifies the use of our proposed methodology.

Our results can be summarized in three main findings. First, the Rescheduling
Approach is an excellent alternative to the static methodology for the simplicity of
their implementation and the quality of their results. Second, due to the existence of
symmetry in the solution space of the Cmax problem, our rescheduling algorithm, which
is an approximate iterative method, achieved better results when compared to the PI
methodology. Finally, our numerical studies show that the rescheduling approach may
be applied to environments with high and low levels of uncertainties.
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Figure 5.2: Average time in seconds of each instance group considering the same number
of machines at each stage: (a) M = 2, (b)M = 4, (c) M = 10.

Figure 5.3: Average time in seconds of each instance group considering a random
number of machines at each stage: (a) M ≥ U(2, 4), (b) M ≥ U(2, 10).



Chapter 6

Conclusions

In this work, we propose methods to solve the cross-docking flow shop scheduling prob-
lem. Our study developed models, algorithms, and resolution methods for the truck
scheduling problem in cross-docking centers, adding uncertainty and delays. Thereby,
we hope to fill a critical gap between the current state-of-the-art and the observed
industry practice.

Initially, we present a time-indexed formulation and a Hybrid Lagrangian Meta-
heuristic Framework. As expected, the performance of the MIP is strongly dependent
on the instances size, being not able to solve the problem with medium and large
dimensions.

For the 2-dock case, even having polynomially solvable Lagrangian subproblems,
through a series of cuts, the method improves the model linear-relaxation bound.
The Hybrid Lagrangian Metaheuristic shows an e�cient performance, obtaining tight
bounds in reduced computational time. The heuristics proved to work very well with
the Lagrangian approach, finding good solutions, and outperforming previous results.
The heuristic H2 gives the best average GAP and Loss results followed by the heuristic
H1.

In the generalized version, the subproblems of the Lagrangian relaxation are NP-
hard, and we work with their linear relaxations. The Lagrangian heuristics obtain
excellent results improving the performance of previous e�orts.

Cross-docking is a distribution strategy that enables consolidation shipments to
manage better the physical flow of products in a supply chain. In real-world settings,
combining existing technologies, like GPS, with e�cient algorithms that achieve good
answers is crucial for the cross-docking system’s daily decisions. Thus, a rescheduling
approach to a cross-docking truck scheduling problem with truck arrival time uncer-
tainty is developed to deal with this new, exciting, dynamic environment. The novelty
of the proposed Rescheduling Approach is the rescheduling strategy to generate e�cient

51
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solutions even when dealing with uncertain arrival dates.
We compared RA against two alternatives (WA and PI) and investigated the impact

of the methods on two di�erent problems (Cmax and WC). From the results, we
conclude that RA exhibits excellent features to support managers in their day-to-
day operations. It is important to note that despite our analysis focusing on the
stochasticity of arrival dates, the same method may be used considering any disruption.
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Appendix A

Resumo Estendido

A.1 Scheduling
Segundo Pinedo (2008), scheduling é um processo de tomada de decisão que desem-
penha um papel crucial nas indústrias de manufatura e serviços. Problemas de se-
quenciamento (Scheduling Problems) lidam com a atribuição de recursos a tarefas ao
longo do tempo. Os recursos e tarefas em uma organização podem assumir muitas
formas diferentes. Os recursos podem ser máquinas em uma fábrica, pistas em um
aeroporto, equipes em um canteiro de obras, docas em um centro de distribuição, den-
tre outros. As tarefas podem ser operações em um processo de produção, decolagens
e aterrissagens em um aeroporto, estágios em um projeto de construção, caminhões a
serem carregados e descarregados em um centro de distribuição, dentre outros exemp-
los. Cada tarefa pode ter um certo nível de prioridade, uma data de início e uma data
de conclusão. Os objetivos também podem assumir muitas formas diferentes. O ob-
jetivo do sequenciamento pode ser, por exemplo, a minimização da data de conclusão
da última tarefa ou pode ser a minimização do número de tarefas concluídas após suas
respectivas datas de conclusão, dentre outros (para mais exemplos de possíveis funções
objetivos, ver Pinedo (2008)).

Um sequenciamento eficaz permite não só a sobrevivência da empresa no mercado
mas também ganho de vantagem competitiva. Em consequência, as empresas precisam
cumprir as datas de entrega que foram prometidas, caso contrário um atraso pode
resultar em insatisfação ou perda significativa de clientes. Elas também tem que usar
os recursos disponíveis (máquinas, pessoas, equipamentos) de uma maneira eficiente,
visando eliminação de disperdícios e perdas (materiais, tempo, espaço, estoques).

O tema sequenciamento começou a ser levado a sério na manufatura no início do
século passado com o trabalho de Henry Gantt e outros pioneiros (Pinedo (2008)).
No entanto, foram necessários muitos anos para que as primeiras publicações sobre
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sequenciamento aparecessem na literatura da engenharia de produção. Algumas das
primeiras publicações apareceram no início dos anos 50. Durante os anos sessenta
uma quantidade significativa de trabalhos foram feitos em programação dinâmica e
em programação inteira. Depois do famoso artigo de Richard Karp sobre a teoria da
complexidade, a pesquisa na década de setenta enfocou principalmente a hierarquia de
complexidade dos problemas de programação. Nos anos 80, as pesquisas na academia
e na indústria tomaram várias direções diferentes, com uma atenção cada vez maior
dada aos problemas de programação estocástica.

Os problemas de sequenciamento podem ser encontrados nas mais diversas áreas,
desde o planejamento e programação da produção à problemas de bioquímica. Um dos
problemas de sequenciamento que tem sido extensivamente estudado durante as últimas
décadas é o Problema de Flow Shop (FSP). Em um FSP, um conjunto de m máquinas
(recursos) tem que processar um conjunto de n jobs (tarefas). Todos os jobs tem a
mesma sequência de operações sobre as máquinas. O FSP tem aplicações em diferentes
setores da indústria, entre outros: metalúrgico, químico, têxtil, siderúrgico, etc. Mais
recentemente, os problemas de sequenciamento flow shop estão sendo aplicados na
gestão efetiva da cadeia de suprimentos e logística, especialmente no gerenciamento de
centros de cross-docking.

A.2 Cross-docking
Centros de Cross-docking (CCDs) são pontos intermediários na rede de suprimentos em
que se realiza o transbordo de cargas, sem intenção de estocagem, recebendo caminhões
com cargas completas de diversos pontos de fornecimento. Dentro dos CCDs, as cargas
são descarregadas dos caminhões de chegada, separadas, classificadas, despachadas e
diretamente recarregadas em caminhões de saída, de acordo com os pedidos específicos
dos clientes. O estoque é reduzido ao mínimo, já que normalmente as mercadorias não
permanecem mais do que 24 horas dentro do CCD.

Uma representação esquemática dos processos em um CCD é ilustrada na Figura
A.1. O CCD opera recebendo caminhões com cargas de diversos pontos de forneci-
mento, cada um dos veículos é recebido em uma doca de entrada específica. Dentro
do centro, as cargas são descarregadas, separadas, classificadas, combinadas e recar-
regadas em caminhões de saída, de acordo com os pedidos específicos dos clientes. Os
caminhões então deixam o CCD com cargas combinadas, composta por produtos de
diversos fornecedores, dedicadas a um cliente ou destino específico.

Os benefícios do cross-docking são muitos: redução de custos (custos de armazena-
mento, manutenção de estoque, manuseio e mão de obra), prazos de entrega mais
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Figure A.1: Rede de distribuição com Cross-docking. - Fonte: Lira (2013)

curtos, melhor atendimento ao cliente e satisfação do cliente, redução do espaço de ar-
mazenamento, rotatividade de estoques, risco reduzido de perdas e danos. No entanto,
processos de transbordo eficientes e planejamento cuidadoso das operações tornam-
se indispensáveis dentro de um CCD, onde os fluxos de entrada e saída precisam ser
sincronizados para manter o armazenamento do centro o mais baixo possível e para
aumentar a confiabilidade das entregas.

Cross-docking é uma técnica de logística amplamente difundida em todo o mundo.
Várias empresas bem conhecidas, como redes de varejo (WalMart, Stalk et al. (1991)),
empresas de entrega (UPS, Forger (1995)), fabricantes de automóveis (Toyota, Witt
(1998)) e provedores logísticos ganharam vantagem competitiva considerável com a
utilização de CCDs. Ladier and Alpan (2016a) apresentam uma pesquisa discutindo
práticas da indústria e caracterização de problemas nos CCDs.

Existem diferentes abordagens a respeito dos CCDs com enfoques nas diversas eta-
pas do processo logístico. Boysen (2010) e Belle et al. (2012) apresentam uma revisão
dos trabalhos presentes na literatura que possuem o tema cross-docking como foco
principal. Segundo Boysen (2010) problemas de decisão em centros de cross-docking

podem ser alocados de acordo com a seguinte classificação: localização dos CCDs,
layout, roteamento de veículos, atribuição de docas, sequenciamento de caminhões e
sequenciamento interno de recursos. O problema tratado nesta pesquisa é o sequencia-
mento de caminhões, onde o objetivo é decidir onde e quando os caminhões devem ser
processados.
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A.3 Motivação
O atual ambiente de mercado, caracterizado por uma concorrência cada vez mais acir-
rada, globalização da economia e uma acelerada revolução tecnológica, tem levado
as empresas a melhorarem seus sistemas logísticos, de distribuição e produção. Além
disso, o aumento populacional e do comércio eletrônico vem exigindo soluções logísticas
mais eficientes e eficazes. Cross-docking é uma importante técnica logística capaz de
reduzir os custos de estocagem enquanto aumenta o fluxo de mercadorias, resultando
em uma cadeia de suprimentos muito eficiente.

A escolha do tema de pesquisa foi motivada pelo impacto econômico dos problemas
de sequenciamento na cadeia de suprimentos e pela sua aplicabilidade em ambientes
industriais e de serviços. Um centro de cross-docking foi tomado como base devido à
sua importância logística para empresas de diferentes setores. Em comparação com os
centros tradicionais de distribuição, um CCD é gerenciado com o mínimo de manuseio
e com pouco ou nenhum armazenamento entre o descarregamento e o carregamento
de mercadorias. Esta prática pode servir objetivos diferentes: consolidação de cargas,
lead time de entrega mais curto e principalmente redução de custos, justificando o
desenvolvimento de estudos neste campo.

Centros de cross-docking levantam inúmeras questões de otimização, sejam elas es-
tratégicas, táticas ou operacionais. Em um CCD, as decisões de sequenciamento são
particularmente importantes para garantir uma entrega rápida e pontual. Devido à
sua importância no mundo real, vários trabalhos e procedimentos de sequenciamento
de caminhões foram introduzidos durante os últimos anos, tratando configurações es-
pecíficas de cross-docking.

Chen and Lee (2009) estudaram o problema de flow shop cross-docking com duas
máquinas, no qual um job na segunda máquina somente pode ser processado após
a conclusão dos seus jobs precedentes na primeira máquina, o objetivo é minimizar
o makespan. Os autores mostram que o problema é fortemente NP-difícil e desen-
volvem um algoritmo de aproximação polinomial e um algoritmo branch-and-bound.
Chen and Song (2009) estendem o problema de Chen and Lee (2009) para o problema
de cross-docking híbrido de dois estágios, considerando vários processadores paralelos
(múltiplas docas) por estágio (entrada e saída), permitindo operações simultâneas de
carregamento e descarregamento. Eles propõem um modelo de programação inteira
mista e quatro heurísticas construtivas, baseadas na regra de Johnson, para investigar
o desempenho de instâncias de escala moderada e grande. Cota et al. (2016) lidam
com o problema de decisão operacional de sequenciar os caminhões em várias docas
de entrada e saída, ou seja, eles consideram a mesma configuração que Chen and Song
(2009). Uma formulação de programação linear inteira mista indexada no tempo e
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uma heurística polinomial construtiva são propostas e testadas em médias e grandes
instâncias.

Seguindo a linha dos trabalhos anteriormente citados, considerando uma formulação
indexada no tempo, este trabalho propõe métodos eficientes para resolver o problema
de sequenciamento de caminhões em um centro de cross-docking. Este problema é
fortemente NP-difícil (Chen and Song (2009)) justificando a relevância do desenvolvi-
mento de métodos e técnicas capazes de resolver o problema para instâncias médias e
grandes.

A.4 Definição do Problema
Considere um centro de cross-docking no qual chegam caminhões, cada um carregado
com produtos que são demandados por um ou vários clientes, deve-se descarregar os
produtos desses caminhões em uma das docas de entrada e carregá-los em caminhões
de saída, em uma das docas de saída, estes caminhões são responsáveis por carregar
vários tipos de produtos para destinos específicos. Cada caminhão de saída só pode
deixar o centro de cross-docking se todos os produtos necessários para aquele caminhão
já tiverem sido descarregados pelos caminhões de chegada correspondentes em algum
momento. O objetivo do problema envolve o sequenciamento dos caminhões de entrada
e saída. O problema é ilustrado na Figura A.2 a seguir.

Figure A.2: Exemplo do Sistema de Cross-docking.

Este problema foi modelado inicialmente a partir da proposta de Chen and Lee
(2009) considerando uma formulação de programação inteira indexada no tempo para
o caso com duas docas (F2

---CD
---Cmax), ou seja, um problema de flow shop com duas

máquinas, com restrições de cross-docking (restrições de precedência), no qual a função
objetivo é minimizar a data de conclusão do último caminhão processado pela máquina
2 (makespan). Nessa abordagem, consideramos a existência de duas docas no centro,
uma doca dedicada a descarregar os caminhões e outra para carregamento, máquina 1
(M1) e máquina 2 (M2), respectivamente.
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Posteriormente desenvolvemos uma formulação inteira mista indexada no tempo
para o problema com múltiplas docas (F2(P )|CD|Cmax), proposto inicialmente por
Chen and Song (2009). O problema foi modelado de forma análoga a um problema de
flow shop híbrido de dois estágios com máquinas idênticas e paralelas e com restrições
que determinam um conjunto de caminhões precedentes para os caminhões do segundo
estágio, chamadas de restrições de cross-docking. Assim, as máquinas paralelas são
análogas às docas de entrada e saída dos caminhões no CCD e os jobs são associados
aos caminhões. Os tempos de processamento dos jobs no primeiro e no segundo es-
tágio correspondem às atividades de descarregamento e carregamento dos caminhões,
respectivamente.

Com o objetivo de desenvolver novas perspectivas de pesquisa em relação às oper-
ações de cross-docking e reduzir o gap entre a pesquisa acadêmica e as necessidades
industriais, muito bem destacado por Ladier and Alpan (2016a), desenvolvemos uma
abordagem de resequenciamento que pode resolver de forma eficiente o problema de
sequenciamento de caminhões em um centro de cross-docking com incerteza no horário
de chegada.

A.5 Contribuições
A fim de compreender melhor a estrutura dos problemas de sequenciamento iniciamos
nossas pesquisas considerando primeiramente o problema com duas docas (máquinas),
denotado por F2

---CD
---Cmax (NP-difícil, Chen and Lee (2009)). Posteriormente estende-

mos os estudos para o caso genérico com múltiplas docas, denotado por F2(P )|CD|Cmax.
Além de estudar e propor os modelos matemáticos para cada caso, desenvolvemos
também uma metaheurística híbrida Lagrangiana. O algoritmo proposto usa as infor-
mações obtidas dos multiplicadores de Lagrange para construir soluções viáveis através
da heurística NEH, proposta por Nawaz et al. (1983), e executa o procedimento de
pesquisa por meio de uma Busca Local estruturada. Os subproblemas Lagrangianos
são resolvidos em tempo polinomial, porém a cada iteração, se o makespan é mel-
horado, a formulação indexada no tempo muda e, com isso, melhoramos seu limite
inferior linear. Como resultado, podemos provar a otimalidade em vários casos e gerar
pequenos gaps em muitos outros. A metodologia é generalizada para lidar com o caso
de múltiplas docas, com a finalidade de aproximar o problema de um sistema de cross-

docking real, alcançando resultados que superam os atuais apresentados na literatura.
É importante ressaltar que, o algoritmo híbrido proposto demonstra otimalidade em
várias instâncias.

Uma abordagem de resequenciamento eficiente e um novo algoritmo para resolver
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o problema de sequenciamento de caminhões com múltiplas docas sob incerteza no
tempo de chegada dos caminhões é proposta e testada. Dois problemas de otimização
diferentes são estudados e três metodologias comparadas a fim de comprovar a apli-
cabilidade da estratégia proposta. Os resultados demonstram que nossa metodologia
pode apoiar os gerentes em suas operações diárias de cross-docking, uma vez que lidam
com dados dinâmicos e incertos e resolvem problemas online.

A principal contribuição deste trabalho é o desenvolvimento de abordagens al-
tamente eficientes que resolvem várias instâncias de tamanhos pequenos, médios e
grandes, superando, até onde sabemos, todos os trabalhos publicados anteriormente.

A.6 Organização do Texto
Este trabalho é composto por seis capítulos. No capítulo 1 é introduzido o tema da
pesquisa e apresentado os objetivos e contribuições do trabalho. O capítulo 2 apresenta
um estudo teórico de trabalhos relacionados ao tema cross-docking e as principais publi-
cações que lidam com sequenciamento de caminhões em um centro de cross-docking. O
capítulo 3 trata o problema de sequenciamento com duas docas, no qual apresentamos
o modelo matemático, a relaxação Lagrangiana, a metaheurística híbrida Lagrangiana
proposta, resultados e conclusões. O problema de sequenciamento é generalizado no
capítulo 4 para o caso de múltiplas docas, onde apresentamos a formulação proposta,
relaxação Lagrangiana, algoritmo de resolução, assim como os resultados alcançados e
as conclusões. No capítulo 5 uma abordagem de resequenciamento para o problema de
sequenciamento de caminhões com múltiplas docas sob incerteza no tempo de chegada
dos caminhões é detalhada e um novo algoritmo de resequenciamento eficiente é pro-
posto e testado. Por fim, as conclusões dos trabalhos desenvolvidos são apresentadas
no capítulo 6.

A.7 Publicações
Durante o primeiro ano do doutorado foi apresentado o trabalho completo intitulado:
O problema de sequenciamento de caminhões em um centro de cross-docking com duas
máquinas, no XLIX SBPO - Simpósio Brasileiro de Pesquisa Operacional, realizado na
FURB - Fundação Universidade Regional de Blumenau, em Blumenau, SC, de 27 a 30
de agosto de 2017.

Em 2018, foi submetido o artigo intitulado ‘A hybrid Lagrangian metaheuristic

for the cross-docking flow shop scheduling problem’, na revista European Journal of



A. Resumo Estendido 65

Operational Research (revista a qual o qualis é A1 para engenharias III), tendo sido
este artigo aceito e publicado em novembro de 2018 (Apêndice D.1).

Submetemos um segundo artigo que trata o problema de sequenciamento con-
siderando incerteza no tempo de chegada dos caminhões em um centro de cross-docking

com múltiplas docas. Em contraste com as estratégias de sequenciamento existentes,
uma nova abordagem de resequenciamento é proposta, testes computacionais foram
realizados para comprovar a aplicabilidade em ambientes dinâmicos e com incertezas.



Appendix B

Considerations about WSPT-TRD

Considering the problem 1||Cmax + q
IjWj, the algorithm WSPT-TRD obtains an

optimal solution.
The objective function has two criteria, Cmax and q

IjWj. Regardless of the situation,
Cmax, will always aim to allocate the jobs as soon as possible. However, the q

IjWj

depend on the weights values. Therefore, the proof is divided into two parts.

Part I: If w2
j

Ø 0 (see Figure B.1).
In this case, the two criteria of the objective function are not in conflict. The criteria
Cmax and q

IjWj aims to schedule the jobs as soon as possible. As there is no idle
time between jobs, for Cmax any sequence starting at beginning of time horizon (ti) is
optimal. In this way, the only existing criteria becomes q

IjWj and its optimal WSPT
rule is optimal for the problem.

Part II: If w2
j

< 0.
In this case, the criteria are in conflict. Cmax aim to schedule the jobs at beginning
(ti) of the time horizon, while q

IjWj at the end (tf ). Consider an optimal sequence
generated by WSPT rule with one subset S Õ of jobs with ≠1 <

q
w2

j
< 0. Suppose, by

contradiction, that this subset must be allocated at the end (tf ) of the time horizon.
Initially the sequence is all allocated at the beginning (ti) of the time (see Figure B.2a).
When the schedule S Õ with ≠1 <

q
w2

j
< 0 is moved in one unit of the time horizon, its

Cmax increase one unit, but q
IjWj decrease q

w2
j
. As Cmax - q

w2
j

> 0 the objective
function increase and the optimality is contradicted. Therefore, the q

w2
j

must be less
or equal to 1 for allocate the jobs at the end (see Figure B.2b). It should be noted that
for the case q

w2
j

= ≠1, these jobs are indi�erent.
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Figure B.1: Sequence with positive weights

(a) Initial Schedule

(b) Optimal Schedule

Figure B.2: Sequence with negative and positive weights



Appendix C

Sequential Parameter Optimization
Toolbox (SPOT)

Due to its high e�ciency, the Sequential Parameter Optimization Toolbox (SPOT) is
the defined method to determine the parameters vector of Volume Algorithm. A param-
eters vector comprises the values of di�erent parameters of the Volume Algorithm, i.e.
it represents a candidate solution of a parameter setting. SPOT is an implementation
of the Sequential Parameter Optimization (SPO), which is an iterative model-based
method of tuning algorithms. The tuning process is based on the parameters’ data,
and their utility delivered by the performance of the volume algorithm. SPO performs
a multi-stage procedure where the model is updated at each iteration with a set of new
vectors and new predictions of utility in order to improve the algorithm’s e�ciency.

The goal of SPOT is the determination of good parameters settings for heuristic
algorithms. It provides statistical tools for analyzing and understanding algorithm’s
performance. SPOT is implemented as a R package, and is available in the R archive
network at http://cran.r-project.org/web/packages/SPOT/index.html. Further
explanation about SPOT can be obtained from Bartz-Beielstein (2010), which provides
an exemplification on how SPOT can be used for automatic and iterative tuning. Bartz-
Beielstein and Zae�erer (2012) also give an introductory overview about tuning with
SPOT.

The key elements of the SPOT methodology are algorithm design (Da) and problem
design (Dp). The first one defines ranges of parameter values that influence the behavior
of an algorithm, such as crossover rate. These parameters are treated as variables
pa œ Da in the tuning algorithm, where pa represents the vector of parameters settings.
Dp refers to variables related to the tuning optimization problem, e.g. the search space
dimension.

SPOT is composed by two phases: the build of the model and its sequential im-
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provement. Phase 1 determinates an initial designs population from the algorithm’s
parameter space. The observed algorithm is run k times for each design, where k is
the number of repetitions performed for each parameter setting and is increased in
each run. Phase 2 leads to the e�ciency of the approach and is characterized by the
following loop:

• update the model given the obtained data;

• generate design points and predict their utility by sampling the model;

• choose the best design vectors and run k+1 times the algorithm for each of them;

• new design points are added to the population and the loop restarts if the ter-
mination criteria is not reached.

The loop simulates the use of di�erent parameters settings, it is subject to interac-
tions between parameters and random e�ects into the experiment. SPOT uses results
from algorithm runs to build up a meta model to tune algorithms in a reproducible
way.

C.0.1 Experimental setup

Classical works about SPOT define three di�erent layers to analyze parameter tuning.
The first one is the application layer, considered in our case as the two-machine flow
shop problem with cross-docking constraints. The objective function and the problem
parameters are defined at this layer. The algorithm layer, is related to the representa-
tion of the heuristic algorithm and its required parameters are the ones that determine
the algorithm’s performance. And finally, the design layer, where is the tuning method,
tries to find good parameter settings for the algorithm layer.

In this way we face two optimization problems: problem solving and parameter
tuning. The problem solving covers the application layer and the Volume Algorithm
of the algorithm layer and aims to find an optimal solution for the problem. The
parameters tuning uses a tuning method to find the best parameter values for the
Volume Algorithm based on lower bounds found. The fitness value is the quality
measure of the first optimization, which depends on the problem instance to be solved.
Utility is the quality measure for parameter tuning, which reflects the performance of
the Volume Algorithm for a vector of parameters.

Thereby, the experimental setup consists of an application layer represented by
twenty instances of the two-machine flow shop problem, showed on Table C.1. To
define the region of interest (ROI) of the tuning algorithm, the type and the lower and
upper bounds of the volume algorithm’s parameters are summarized on Table C.2.
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Table C.1: Sampling of instances

Type Instances
Y1 5-3-4-1
Y2 5-4-4-1
Y3 5-5-4-1
Y4 5-6-4-1
Y5 5-7-4-1
Y6 10-6-9-1
Y7 10-8-9-1
Y8 10-10-9-1
Y9 10-12-9-1
Y10 10-14-9-1
Y11 5-3-4-2
Y12 5-4-4-2
Y13 5-5-4-2
Y14 5-6-4-2
Y15 5-7-4-2
Y16 10-6-9-2
Y17 10-8-9-2
Y18 10-10-9-2
Y19 10-12-9-2
Y20 10-14-9-2

Table C.2: Parameter bounds for tuning the Volume Algorithm

Parameter Lower bound Upper bound Type
fi 0.0005 0.0100 FLOAT

MaxWaste 5 30 INT
factor 0.1 1.0 FLOAT
–max 0.20 0.95 FLOAT

st 0.6 1.8 FLOAT
– 0.05 0.90 FLOAT

yellow 0.20 0.95 FLOAT
green 1.0 2.0 FLOAT

C.0.2 Results of the experiment

The SPOT algorithm, implemented in R package, is connected with the volume algo-
rithm implemented on C++ with the aid of one callString, as presented below. The
computer used in the tests is an Intel (R) Xeon (R) CPU X5690 @ 3.47GHz with 24
processors, 132 GB of RAM, and Ubuntu Linux operating system.
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callString Ω paste(“./HgR ”, fi, MaxWaste, factor, –max, st, –, yellow, green)
call Ω≠ system(callString, intern = TRUE)
#read the results

y = read.table(“Results.txt”)

The Table C.3 presents the four best results found by SPOT method for the vol-
ume algorithm. The first column indicates the iteration of SPOT, the second one
presents the indicated parameters vector and the third column indicate the solution
value obtained by the tested instances (lower bounds).

The best parameters vector indicated for the volume algorithm, that generated
the best lower bounds is fi=0.00679, MaxWaste=24, factor=0.87753, –max=0.30337,
st=1.41179, –=0.08300, yellow=0.48159 and green=1.56487.
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Appendix D

Publication

Figure D.1: Article published in European Journal of Operational Research.
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Appendix E

Complementary analysis of
subsection results 5.5.3

Figures E.1 and E.2 summarizes the results in terms of average tardiness objective
function value. On the left are the results for the Cmax problem. On the right, the
WC problem. As previously mentioned, we can see that the RA presents the lowest
values in all cases for Cmax problem. For WC problem, RA presents excellent results
for environments with high and low levels of uncertainties.

Figures E.3 and E.4 reinforce the results indicated in Table 5.2. The graphs on
the left (Cmax problem) show that the average number of trucks delayed is lower for
all instances groups in RA. On the right, the WC problem graphs show that the
average number of trucks delayed in RA is also very low. The results presented above
demonstrate the benefits of our rescheduling algorithm. The smaller the number of
trucks delayed, the greater the number of customers who had their deliveries made
on the promised date, increasing customer satisfaction and consequently the level of
logistical service.
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Figure E.1: Average objective function value of each instance group considering the
same number of machines at each stage: (a) M = 2, (b)M = 4, (c) M = 10.

Figure E.2: Average objective function value of each instance group considering a
random number of machines at each stage: (a) M ≥ U(2, 4), (b) M ≥ U(2, 10).
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Figure E.3: Average number of trucks delayed of each instance group considering the
same number of machines at each stage: (a) M = 2, (b)M = 4, (c) M = 10.

Figure E.4: Average number of trucks delayed of each instance group considering a
random number of machines at each stage: (a) M ≥ U(2, 4), (b) M ≥ U(2, 10).



Appendix F

Comparative analysis of the
parameters of the multi-dock truck
scheduling problem under arrival
time uncertainty

In this appendix, we present a comparative analysis of the parameters of the multi-dock
truck scheduling problem under arrival time uncertainty. We present the results for
Cmax and WC problems, for the five groups of instances (mi = {2, 4, 10, U(2, 4), U(2, 10)}).
Five metrics are discussed to evaluate the impact of di�erent metrics on the average
number of trucks delayed in the three methodologies studied. The study on di�erent
metrics comes from the fact that the complexity of the operation usually challenges the
manager, and di�erent perspectives on the quality of the solution can shed light on the
situation. The first metric considers the number of outbound trucks per the number
of inbound trucks (n2/n1); the second metric considers the number of inbound trucks
per outbound trucks (n1/n2); the third metric is based on the average rd. The fourth
is the average Real rd, as defined in the subsection 5.5.2. Finally, the last metric is
based on the standard deviation of the release dates for the inbound trucks.

The analysis considers the same number of machines at each stage (case in which
mi = 2), as an example, are graphed in Figures F.1 and F.2. In the first analysis
(n2/n1), when the number of outbound trucks is greater than inbound trucks in a CDC,
the average number of trucks delayed grows. As expected, the greater the number of
outbound trucks, the more significant di�culties the methods encounter in maintaining
deliveries on the promised dates, especially for the WA methodology. However, when
the number of inbound trucks per outbound trucks (n1/n2) is considered, we observed
that the average number of trucks delayed tends to decrease as the fraction increases.
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The decrease in the number of outbound trucks makes delivery within their due dates
more possible.

By analyzing the metrics average rd and average Real rd, it is possible to see that
the average number of trucks delayed increases drastically over the first hours of CDC
operation (rd ranging from 480 to 720), afterward, it tends to stabilize. This fact
occurs probably since truck arrivals can concentrate between 8 am and 12 pm, causing
further delays in this period. The last analysis shows that there is more flexibility in
scheduling the trucks when the standard deviation is null. On the other hand, as the
standard deviation increases, the di�culty of scheduling trucks increases, generating a
more significant impact on the number of delayed trucks.

We further observe that regardless of the metric evaluated, the proposed algorithm
RA has very similar behavior to PI, proving the advantage of using a rescheduling
methodology. Another interesting point is that the behavior of the data in the graphs,
for both the Cmax and WC problems, are very similar, which indicates that the metrics
seem to have the same impact on both problems.
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Figure F.1: Average number of trucks delayed for di�erent metrics to the Cmax problem,
considering the same number of machines at each stage: (a) M = 2.

Figure F.2: Average number of trucks delayed for di�erent metrics to the WC problem,
considering the same number of machines at each stage: (a) M = 2.


