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Resumo

Gait é um tipo de biometria que diferencia os indivíduos pela forma como andam.
Pesquisas relacionadas a essa biometria estão ganhando evidência devido à vantagem
de gait ser discreto e poder ser capturado a distância, o que é desejável em cenários de
vigilância. A maioria dos trabalhos da literatura foca em usar silhueta humana como
representação de gait ; no entanto, elas sofrem de diversos fatores, como movimento de
pessoas nas cenas, condições de carga e uso de roupas diferentes. Para evitar esses pro-
blemas, esse trabalho propõe um método de estimativa de pose, denominado PoseDist,
para recuperar coordenadas de articulações e transformá-las em sinais e histogramas de
movimento. Depois disso, essas informações são processadas usando uma fusão de Sub-
sequence Dynamic Time Warping e distância euclidiana para comparar as sequências
de gait da consulta com as da galeria. Esse método é avaliado em todas as visualiza-
ções de CASIA Dataset A e comparado com trabalhos existentes, demonstrando sua
eficácia. No entanto, como seu custo algorítmico é alto, ele só é adequado para ambi-
entes com poucos indivíduos; e dessa forma, um novo método denominado PoseFrame
é desenvolvido para reconhecimento de gait, treinando uma rede neural multicamadas
para classificar as poses a partir de quadros individuais e agregando os resultados por
votação majoritária. PoseFrame é testado em CASIA Dataset A, tendo precisão acima
dos outros trabalhos baseados em modelo, incluindo PoseDist; e em CASIA Dataset
B, alcançando precisão estado-da-arte quando a amostra tem a mesma visualização da
galeria e tendo alguns dos melhores resultados em validação cruzada. Finalmente, um
estudo de ablação também é realizado para descobrir quais partes do corpo são as mais
importantes para reconhecimento de gait e de acordo com os resultados, os braços e os
pés são as localizações mais importantes.

Palavras-chave: Reconhecimento de Gait, Biometria, Visão Computacional.
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Abstract

Gait is a biometry that differentiates individuals by their walking manner. Research
on this topic has gained evidence since it is unobtrusive and available at distances,
which is desirable in surveillance scenarios. Most of the previous works have focused
on the human silhouette as representation; however, they suffer from many factors
such as movement on scene, clothing and carrying conditions. To avoid such prob-
lems, this work employs a pose estimation method, called PoseDist, to retrieve the
coordinates of body parts and transform them into signals and movement histograms.
These features are processed using a fusion of Subsequence Dynamic Time Warping
and Euclidean distance to compare gait sequences from the probe with those in the
gallery. This method is evaluated on all views of CASIA Dataset A and compared to
existing ones, demonstrating its efficacy. However, as its algorithmic cost is high, it
is only suitable for environments with few individuals; and this way, a new method
called PoseFrame is employed for gait recognition, training a multilayer perception to
classify poses from individual frames and aggregating its results by majority voting.
PoseFrame is tested on CASIA Dataset A, having accuracy above other model-based
works, including PoseDist; and on CASIA Dataset B, achieving state-of-the-art accu-
racy on same-view condition and having some of the best results on cross-view. Finally,
an ablation study is also performed to find which body parts are the most important
for gait recognition and according to the findings, the arms and feet are the most
important locations.

Palavras-chave: Gait Recognition, Biometry, Computer Vision.
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Chapter 1

Introduction

Biometry is characterized as a trait or a personal characteristic that persists over
time and is capable of identifying an individual. It is used on many applications, like
forensics, access control, workers monitoring and identification of shoplifters.

Biometrics such as fingerprint, face and iris are the most used historically. How-
ever, they have limits that prevent them from being applied in some situations. The
first is that some of these biometrics require the cooperation of the person to be identi-
fied, which is not desired in surveillance scenarios. In addition, these biometrics cannot
be extracted remotely, because their information is unavailable or degraded at distance.

An alternative comes with gait, which is a biometry that identifies individuals
by the way they walk. Experiments like Murray [1967] and Johansson [1973] serve as
its basis, where the former work shows that the movement of limbs and joints gives
each person a consistent and unique way of walking, and the latter indicates that
it is possible to visually recognize from bright spots the motion of human walking.
Different of others biometrics, gait has the advantages of being unobtrusive, available
at distances – far before a face can be clearly seen – and can also be collected at night
by infrared cameras [Tan et al., 2006].

The features of gait recognition are created following two approaches, model-
based and model-free, where the former is characterized by modeling the human body
structure or motion and the latter represents the human gait as a whole, without con-
cerning the underlying structure of body or movement. As the methods of model-free
approach are simpler and present a lower computational requirements compared with
the model-based ones (modeling the pattern of human motion is a costly operation),
the former approach is more common on gait literature. However, model-free works are
limited by confounding gait information with the appearance present on silhouettes,
and for this reason just model-based methods are developed on this thesis.

1



1. Introduction 2

Figure 1.1. Silhouettes (left) are the most popular representation for model-free
approach, while poses (right) are the most common for model-based.

The skeleton of poses and silhouettes are the most popular representation for
model-based and model-free approach respectively, being represented on Figure 1.1.
After their creation, they are passed to classifiers for recognition. Some classifiers
used on literature are Euclidean distance [Liu and Sarkar, 2004], Hidden Markov Mod-
els [Chen et al., 2006], Linear Discriminant Analysis [Boulgouris and Chi, 2007], and
more recently, deep learning methods [Chao et al., 2019; An et al., 2020; Elharrouss
et al., 2020].

Although gait has greatly evolved with the use of deep learning, there are still
some challenges that limit its application. Some of them are variation on carrying,
clothing and view: a person walks differently when it carries different weights and
its appearance is also affected, impacting the methods of both approaches; variation
on clothing affects recognition the same way, but in a more accentuated manner; and
variation on view transforms the appearance of the individuals and their direction of
movement. This work aims to improve the results of gait recognition in these condi-
tions, using pose as feature and creating two gait recognition methods.

PoseDist is the first method, following the premise that the gait movement is a
signal with sufficient discrimination for recognition. Without using machine learning
algorithms, PoseDist only fuses two signal processing methods - Subsequence Dynamic
Time Warping and Euclidean distance - to recognize the probe by comparing its signals
with those in the gallery. As it is not based on machine learning techniques, PoseDist
is a ready-to-use method that does not require training, unlike the works on literature.
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It also has the advantage of being based on pose estimation, allowing its application
in environments where most works – which have the silhouette as a resource – cannot
be applied.

The second method, called PoseFrame, considers that the pose in each frame has
enough information for discrimination. This way, different of the works from literature,
that train a classifier for a complete walking sequence or cycle, PoseFrame innovates
by using just the information of individuals frames to train a multilayer perceptron for
recognition. Giving that the focus is to classify an entire walking sequence, the output
of the multilayer perceptron is aggregated by majority voting over multiple frames to
obtain a final result. Compared with other methods, PoseFrame gains in relation to its
simplicity, by using simple features and a very small neural network for training and
inference; and given that it uses individuals frames for classification, PoseFrame can
also be applied on sequences with occlusion by just ignoring the frames with invalid
poses.

Both methods are tested on CASIA Dataset A [Wang et al., 2003] and compared
with existing works. Although PoseDist neither uses machine learning techniques nor
deep learning-based approaches, it can achieve similar accuracy to the best works
on lateral and oblique views and the same accuracy of the best work on the frontal
view. PoseFrame improves the accuracy of PoseDist on all views, having state-of-the-
art results on this dataset for model-based works. Experiments with PoseFrame are
also carried out on CASIA Dataset B [Yu et al., 2006] (PoseDist is not evaluated on
this dataset due to its algorithmic complexity). A cross-view experiment is performed
following the protocol of Chao et al. [2019], showing that PoseFrame is better than
existing works on the small-training configuration with normal sequences. In other
configurations GaitSet [Chao et al., 2019] is better, but this thesis shows that GaitSet
uses the shape of silhouettes, relying on features with information not directly related
to gait. The same-view protocol from Liao et al. [2020] is also evaluated and PoseFrame
is compared with other works achieving state-of-the-art results. Finally, an ablation
study is also performed to understand the role each body plays in gait recognition.

1.1 Motivation

Surveillance systems are increasingly common in our lives, being present in airports,
government buildings, commercial locations and other places. These systems are mostly
operated by humans, but studies show that in a short time the concentration of human
operators is lost, as this activity is routine and monotonous [Smith, 2004]. Because
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of this, these systems are being automated and artificial intelligence technologies are
applied.

The recognition of people by biometrics is an important step in identifying the
actors in surveillance scenes. Face is a popular biometry, however it cannot be identified
at distance and in places with low lighting. Also, masks are often used in criminal
actions and facial information is not available. In these cases, gait can be considered
the ideal biometry to use, as it is consistent, non-obstructive, and available at distance.

Due to the mentioned aspects and the advantages of gait as biometry, this area
has received many contributions in the last decade [Bashir et al., 2010b; Zheng et al.,
2011; Iwama et al., 2012]. However, as many problems have not been solved, gait
recognition has much room for further advances. Model-free works that use silhouettes
are more explored because the creation of model-based representations by modeling the
human movement is expensive computationally, and it is just becoming more common
in recent years after the creation of efficient pose estimators [Cao et al., 2018; Xiu
et al., 2018; Sun et al., 2019]. The problem is that the model-free representations carry
appearance information, and we believe that gait can only evolve using features that
are related to the human movement. For this reason, only model-based methods are
developed in this thesis with the use of recent pose estimators.

1.2 Contributions

This work contributes to the gait literature as follows: the creation of a method based
on signals called PoseDist, which does not require training and can be applied in
challenging environments where silhouettes are not easily extracted; the development
of PoseFrame, which achieves state-of-the-art results for model-based works, using a
much simpler neural network than those found in the literature; the conduction of the
first model-based ablation study that aims to identify which locations of pose are the
most important for gait recognition.

During the development of this work, a technical paper entitled “Gait Recognition
Using Pose Estimation And Signal Processing” containing contributions for this thesis
was published at Iberoamerican Congress on Pattern Recognition (CIARP) [de Lima
and Schwartz, 2019], presenting the PoseDist method. Also, the journal paper “Simple
and Efficient Pose-based Gait Recognition Method for Challenging Environments” was
published at Springer Pattern Analysis and Applications Journal (PAAA) [de Lima
et al., 2020], presenting the PoseFrame method and performing the ablation study
presented in this thesis.
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1.3 Work Organization

The remaining of this work is organized as follows. Chapter 2 introduces some back-
ground concepts that are useful to understand the proposed methods. Chapter 3
provides a review of gait recognition, indicating the results obtained by model-free and
model-based approaches and presenting the novelty of this work. Chapter 4 presents
PoseDist and PoseFrame methods, discusses the extraction and normalization of poses
from walking sequences, and gives the details of the algorithms used for classification.
Chapter 5 compares the methods with existing works and performs an ablation study
to assess which parts of the body are most important for gait recognition. Finally,
Chapter 6 provides conclusions and guidelines for future works.



Chapter 2

Background Concepts

This chapter contains background concepts that are useful to understand the methods
proposed in this thesis. Section 2.1 presents the Subsequence Dynamic Time Warping
algorithm and its cost function, which is used to compare the alignment of two signals
on PoseDist method proposed in Chapter 4. Section 2.2 presents the multilayer per-
ceptron architecture used on PoseFrame (method also proposed in Chapter 4) and how
it is trained, also showing the forward and backpropagation steps. Finally, Section 2.3
describes briefly the pose estimator used on both methods of this thesis to extract
features of gait.

2.1 Subsequence Dynamic Time Warping

Because the distance of body parts to the neck in a walking movement is a time-varying
value, the proposed PoseDist method represents gait as signals, which generally have
different sizes and start at different phases in a walking cycle. For these reasons, the
gait sequences cannot be directly compared using a norm distance, requiring a function
that also considers their alignment. The solution is the use a variant of Dynamic Time
Warping (DTW) [Müller, 2007], called Subsequence Dynamic Time Warping (SDTW),
that is able to calculate the cost of alignment of two sequences.

SDTW works by comparing two sequences: X = (x1, x2, ..., xN) of length N and
Y = (y1, y2, ..., yM) of length M , where N ≤ M . X can be warped and the first
and the last elements of Y can be ignored (Figure 2.1). The sequences X and Y are
represented by features sampled at equidistant points in time and a cost c(xn, ym) is
defined to compare the features xn and ym, for 1 ≤ n ≤ N and 1 ≤ m ≤ M , being
small if xn and ym are similar to each other, and large otherwise.

6
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Figure 2.1. SDTW searches for an optimal alignment of two sequences (the
image was created in this work). The arrows represent the correspondences on
the two signals. The start (on the left of the first arrow) and the end (right of
the last arrow) of the second signal are ignored.

A possible alignment of X and Y is represented by a sequence p = (p1, ..., pL)

of length L, with pl = (n,m) ∈ [1 : N ] × [1 : M ]. p is monotonic (ni ≤ ni+1 and
mj ≤ mj+1), meaning that the alignment follows just one direction on X and Y ;
p1 = (1,m) for m ∈ [1 :M ] and pL = (N,m) for m ∈ [1 :M ], because the path p must
start and end at the first and last elements of X; and pl − pl−1 ∈ {(1, 0), (0, 1), (1, 1)}
for l ∈ [1 : L], forcing that no element of X and Y is ignored while the signals are
being aligned.

The goal is to find the lowest cost tp for a path p that ends in (N,M), where
tp =

∑
(i,j)∈p c(xi, yj). To this end, SDTW creates a matrix D to save the optimal cost

t∗p of alignment, associating D(n,m) with the cost t∗p of the optimal p∗ ending in (n,m).
For the first column, the values ofD can be easily computed by walking on each element
of X and comparing with y1, defining D(n, 1) =

∑n
k=1 c(xk, y1) for n ∈ [1 : N ]. D can

also be easily computed for the first line, by comparing the first element of X with the
mth element of Y , having D(1,m) = c(x1, ym) for m ∈ [1 :M ] (this calculation assumes
that the first m− 1 elements of Y are not used on the alignment). The value of D at
position (n,m) can be found by iterating on D line by line, taking the values on the
neighboring positions (D(n− 1,m− 1), D(n− 1,m) and D(n,m− 1)) and adding the
cost c(xn, ym) of transition to D(n,m) (except on the transition from D(N,m− 1) to
D(N,m), where the last positions of Y are ignored on the alignment). This is presented
below:
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D(n,m) =



min{D(n− 1,m− 1) + c(xn, ym), D(n− 1,m) + c(xn, ym), D(n,m− 1)},

for n = N, 1 < m ≤M

min{D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)}+ c(xn, ym),

for 1 < n < N, 1 < m ≤M.

(2.1)
Using Equation 2.1, it is possible to calculate the cost of aligning two signals

without being influenced by the size of their sequences. In gait application, if two
signals can be aligned at a low cost on D, they must be from the same person. This
fact is used on the PoseDist algorithm on this thesis for comparing the signals of probe
and gallery and give a result for recognition.

2.2 Multilayer Perceptron

A multilayer perceptron is a neural network composed of layers li for 1 ≤ i ≤ L, with
N i neurons on each layer li (Figure 2.2). The layers are fully-connected, meaning that
there is a connection to every pair of neurons of neighboring layers. Each neuron on
layer li is represented by ni

j, with 1 ≤ j ≤ N i. There is an input layer l1, where each
neuron receives a value from the environment, and an output layer lL, whose neurons
represent the values outputted to the environment. A matrix W i also exists for each
layer in 2 ≤ i ≤ L (only the input layer l1 does not have a corresponding matrix), where
each position wi

jk represents a value of influence, that multiplies the value generated
on ni−1

k before it reaches the neuron ni
j.

The multilayer perceptron is trained with the steps of forward propagation, back-
propagation and weights update. In forward propagation, the values inserted on the
input neurons flow toward the outputs, passing through internal neurons. The value
oi−1k transmitted from neuron ni−1

k is multiplied by wi
jk before it reaches ni

j. For the in-
put neurons, o1i is the same value inserted on the i-th neuron by the environment. The
other neurons sum the values obtained from the previous layer sij =

∑N i−1

k=1 wi
jko

i−1
k to

generate oij = f i
j(s

i
j), basing on its activation function f i

j . The values oLi of the output
neurons are compared with the expected results on a cost function c(~e, ~o), where ~o is
the vector with the output values and ~e is the vector with the expected value ei for the
neuron nL

i .
The objective of training is to find the values wi

jk that minimize the cost function
c, which are updated based on their gradients. This way, ∂c/∂wi

jk must be calculated:



2. Background Concepts 9

Figure 2.2. Example of multilayer perceptron (image generated from
http://alexlenail.me), with input layer l1, that receives values from the environ-
ment; and output layer lL, whose resulting values are outputted to the environ-
ment. All layers are fully-connected.

∂c

∂wi
jk

=
∂sij
∂wi

jk

·
∂oij
∂sij
· ∂c
∂oij

= oi−1k ·
∂oij
∂sij
· ∂c
∂oij

,

where ∂oij/∂sij is dependent of the derivative of f i
j for neuron ni

j, so it can easily be
acquired. ∂c/∂oij is calculated directly on the output neurons by the derivative of the
cost function; and for the other neurons,

∂c

∂oij
=

N i+1∑
k=1

∂si+1
k

∂oij
· ∂o

i+1
k

∂si+1
k

· ∂c

∂oi+1
k

=
N i+1∑
k=1

wi+1
kj ·

∂oi+1
k

∂si+1
k

· ∂c

∂oi+1
k

.

As ∂c/∂oij depends on ∂c/∂oi+1
k from the neurons of the next layer, the information

for retrieving the gradients of the neurons flows backwards, in a step called backprop-
agation. First ∂c/∂oLj output values are calculated directly by the derivative on the
cost function, and for the neurons of other layers, ∂c/∂oij is calculated using the partial
derivatives ∂c/∂oi+1

k of the next layer, multiplying them by wi+1
kj · ∂o

i+1
k /∂si+1

k . Having
∂c/∂oi+1

k , the gradient ∂c/∂wi
jk is easily calculated by multiplying this value with the
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derivative of activation function f i
j and oi−1k generated on neuron ni−1

k .
With this information, the next step updates the weights. There are multiple

methods of update that use gradient [Bottou, 2012; Zeiler, 2012; Dozat, 2016]. However,
just the Adam optimizer [Kingma and Ba, 2014] is presented here, given that just this
method is used on this thesis. For its usage, the parameters α (step size), β1 ∈ [0, 1)

and β2 ∈ [0, 1) (exponential decay for the moment estimates) are defined, and ε (update
parameter) is fixed as 10−8. Two variables are also created for each neuron ni

jk and set
to 0 initially: mi

jk that will save the first moment of the gradient ∂c/∂wi
jk and vijk that

will save the second moment. A counter t is also created being incremented on each
iteration of training. These variables are updated at each iteration by:

mi
jk ← β1 ·mi

jk + (1− β1) ·
∂c

∂wi
jk

vijk ← β2 · vijk + (1− β2) ·

(
∂c

∂wi
jk

)2

m̂i
jk ← mi

jk/(1− βt
1)

v̂ijk ← vijk/(1− βt
2)

wi
jk ← wi

jk − α · m̂i
jk/(

√
v̂ijk + ε),

where βt
1 and βt

2 are β1 and β2 to the power t, and m̂i
jk and v̂ijk are temporary variables

that compute bias-corrected first and second moment estimate, respectively.
The variable t is incremented and the training continues, only stopping after

convergence or if a predefined condition (like maximum number of iteration) has been
met. After it, the multilayer perceptron is ready to be evaluated or used for inference
on video sequences to identify individuals by their gait.

2.3 Pose Estimation

The gait recognition methods developed in this thesis use coordinates of body parts
extracted from pose estimation [Cao et al., 2017, 2018]: PoseDist uses this information
to create signals of gait movement, while PoseFrame uses these coordinates as the
features of a multilayer perceptron employed for recognition.

To create pose estimators, two types of information are extracted from the frames.
The first information is the confidence maps, which are defined by a Gaussian function
centered in an annotation, indicating the pixels on the image containing a body part of
some person (Figure 2.3). The maximum value of the confidence maps for each body
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part is used as the ground-truth and non-maximum suppression on confidence maps
is performed to obtain body part candidates. Given a set of detected body parts, the
second type of information is extracted from the frame to indicate if each limb (a pair
of body parts) belongs to the same person, creating a feature vector representation
called part affinity fields, which consists of unit vectors on the locations within a
defined distance threshold from the line segment that connects the body parts of a
limb (Figure 2.4).

Figure 2.3. Example of confidence maps for elbows and shoulders (image from
Cao et al. [2017]).

Figure 2.4. Part affinity fields encoding position and orientation of limbs for
different people (image from Cao et al. [2017]).
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Both confidence maps and part affinity fields are trained by a Convolutional
Neural Network (CNN) [Albawi et al., 2017] with two branches – one for each fea-
ture –, which uses the results of the last prediction and the original image features
on each training stage. Having the information of confidence maps and part affinity
fields from the neural network, the poses are then constructed. Non-maximum sup-
pression [Neubeck and Van Gool, 2006] is applied on the confidence maps to obtain
candidates of body part detection for multiple people. A graph is created, having the
body part candidates as nodes and the possible connections as edges, and weighting
each edge by the part affinity aggregate (a function over part affinity fields that mea-
sures their association). Finding the optimal matching on this graph is be reduced to
the maximum weight bipartite graph matching [West et al., 2001] problem, which is
solved by applying the Hungarian algorithm [Kuhn, 1955]. Finally, the pose of multi-
ple people is found by choosing a minimal number of edges to obtain a spanning tree
skeleton and determine the matching in adjacent tree nodes. With this information,
the connection candidates are obtained and assembled into poses.

PoseDist method of this thesis uses the resulting poses to extract the location
of body parts and normalize them by their distance to the neck position on each co-
ordinate. Signals and histograms of movement are created with this information to
represent gait features. PoseFrame also normalizes the poses to process the frames
individually, also using the confidence of pose extraction to train the multilayer per-
ceptron for gait recognition.



Chapter 3

Related Works

The literature of gait recognition is divided by the way the features are generated from
raw data, having methods from model-based and model-free approaches [Lee et al.,
2014]. The following sections discuss their characteristics and the main works on each
category, also presenting how they try to address the main problems that affect gait
recognition.

3.1 Model-free Approaches

According to Wan et al. [2018], model-free works represent human gait as a whole
without knowing the underlying structure of the human body. Some of these features
are texture information of optical flow [Hu et al., 2012], spatio-temporal histogram of
oriented gradients [Kawai et al., 2012], symmetry of human motion [Hayfron-Acquah
et al., 2003], Fourier descriptors [Mowbray and Nixon, 2003] and silhouettes [Wang
et al., 2003]. This last representation is by far the most used feature, and many works
[Zhang et al., 2007; Bashir et al., 2010b; Preis et al., 2012] refer to model-free works as
the ones based on silhouettes.

The reason for the popularity of silhouettes can be related to the low compu-
tational requirement for their extraction by using background subtraction algorithm
[Gross and Shi, 2001; Wang et al., 2003; Sarkar et al., 2005] and the efficiency of the
intermediate representations that are created by processing the silhouettes, creating
features like Gait Energy Image [Man and Bhanu, 2006], Gait History Image [Liu and
Zheng, 2007] and Gait Entropy Image [Bashir et al., 2009]. By using Gait Energy Im-
age (GEI), which is just the mean of silhouettes over a gait cycle, many works achieved
impressive results on gait recognition.

13
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Figure 3.1. According to Isaac et al. [2017] the head and the feet are the most
important locations inside GEI for gait recognition, due to their robustness on
carrying and clothing conditions.

Bashir et al. [2010a] proposed a cross-view approach that does not require prior
information regarding the probe angle, using a Gaussian process for view angle esti-
mation and correlation strength for canonical correlation analysis. The algorithm was
tested on the CASIA Dataset B [Yu et al., 2006] and performed better than existing
works. However, the results still need to be improved, especially when other conditions
are tested, such as carrying and clothing. A more efficient work was proposed by Isaac
et al. [2017], which employed a genetic template segmentation to select the silhouette
parts more appropriate for classification. For each angle, the genetic algorithm finds
boundary positions and selects the parts to use, from which a view-estimator can de-
termine the probe angle and select the suitable view-specific classifier for recognition.
The results obtained are different from those in this thesis, because according to Isaac
et al. [2017], just the head and the feet must be used to improve the results on clothing
and carrying condition (Figure 3.1), while this thesis concludes that all body parts
must be used and that the arms are also very important. Although this work is not
so recent, it still has the best results on same-view experiments on CASIA Dataset B,
having accuracy above 92% in all cases.

Because of the success of deep-learning in many applications, current model-free
methods are shifting toward using neural networks to directly process the silhouettes of
a gait sequence, not relying on intermediate representations. VGR-Net [Thapar et al.,
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2018] is one of these methods, where a three-dimensional convolutional neural network
(CNN) for multi-view gait recognition is used on stereo images, achieving some of the
best results on the normal sequences of CASIA Dataset B. Another work was proposed
by Chao et al. [2019] creating the GaitSet method, in which a CNN is used to extract
frame-level features from each silhouette of a set independently, achieving some of the
best results on the cross-view situation of CASIA Dataset B.

Despite the high accuracy, the model-free methods carry appearance information,
which is not directly related to gait. This way, the methods from this thesis are model-
based, using coordinates of poses to have only gait information.

3.2 Model-based Approach

Different of model-free, model-based works are characterized by modeling the human
body structure or motion. This way, this approach is computationally more expen-
sive, containing fewer works than the model-free approach. Some of these works are
Wang et al. [2004], that uses as dynamic feature a tracking operation that calculates
joint-angle trajectories of the main lower limbs; and Wagg and Nixon [2004], that uses
anatomical data to generate shape models consistent with regular human body pro-
portions and create a prototype adapted to fit each subject. The former was evaluated
on CASIA Dataset A [Wang et al., 2003], having an accuracy of 87.5% on lateral view;
and the latter on a Southampton HiD [Shutler et al., 2004] database, with accuracy
84% indoors and 64% outdoors.

In the last years, most model-based works are based on poses, creating their pose
estimators or using publicly available methods. In the first group, there is Sokolova
and Konushin [2018], where a pose estimator based on an optical flow of five regions is
created and a residual network is trained for classification. Their method was tested in
side-view sequences of TUM-GAID [Hofmann et al., 2014], CASIA Dataset B [Yu et al.,
2006] and OU-ISIR Large Population Dataset [Iwama et al., 2012], obtaining rank-1
accuracy of 99.78%, 92.95% and 94.9% in normal gait sequences, respectively. Feng
et al. [2016] is another work that created its pose estimator, by using Human3.6M
database [Ionescu et al., 2013]. After extracting the heat-map of pose estimation,
this information is fed to a long-short term memory (LSTM) to classify normal gait
sequences from different angles. Although its results are good when the angles of the
probe and gallery are close, in the case where the angles are distant, their method is
not efficient. A custom pose estimator and a LSTM are also used in Liu et al. [2016]
to create a method that can achieve good results even on the challenging conditions
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of clothing and carrying on CASIA Dataset B. However, its results are not good on
CASIA Dataset A, having mean accuracy of just 89.2%.

On the group of works that use publicly available pose estimators, there is Liao
et al. [2020], which extract pose coordinates using OpenPose, place the neck at the
origin of the plane coordinate system and normalize size of the skeleton. After the
normalization, it extracts three-dimensional poses and passes them to a convolutional
neural network for classification, improving baseline results [Yu et al., 2006]. Other
work is Sheng and Li [2020], which proposes a skeleton-based model called Siamese
Denoising Autoencoder (Siamese DAE), that uses coordinates from OpenPose. Its
method automatically learns to remove noise, recover missing skeleton points and cor-
rect outliers in joint trajectories, achieving good results on TUM-GAID.

Different of Wang et al. [2003, 2004]; Wagg and Nixon [2004]; Shutler et al. [2004]
and following the other aforementioned model-based works, the methods of this thesis
also use features of pose estimation. Similarly to Liao et al. [2020], the coordinates of
the neck are placed on the origin and the size of the skeleton is normalized; however,
just two-dimensional information is used and deep-learning techniques are not applied.
By using only signal processing algorithms and a multilayer perceptron, the methods
of this thesis show that the creation of complex deep-learning architectures is not
necessary, and that gait can be recognized by simple methods.



Chapter 4

Proposed Methods

Currently, most works use silhouettes as input to extract gait representations [Wan
et al., 2018]. However, this representation is limited because it carries appearance in-
formation that affects the results on recognition. Furthermore, it is not robust on cases
that are common on uncontrolled scenes, such as occlusion and different carrying and
weighting conditions. With this in mind, the model-based approach is more promis-
ing [Liao et al., 2020]. Therefore, this work proposes a novel gait recognition method
that uses features from pose estimation.

In this chapter, the proposed approach for gait recognition based on pose is
described. Given a video sequence, pose estimation is first employed to estimate the
coordinates of body parts. Then, pose estimation is used as input for two different
approaches for gait recognition, PoseDist and PoseFrame.

PoseDist, discussed in Section 4.1, extracts feature descriptors from the pose
locations which are then used for nearest neighbor classification with two different dis-
tances, namely, SDTW and Euclidean. PoseFrame, described in Section 4.2, takes the
body part coordinates as input and first normalizes them using the neck coordinate as
reference. These normalized body parts are then presented to a multi-layer perceptron
that learns representations for recognition. Finally, each frame is classified individually
and temporal aggregation is performed to predict the identity of a probe sample.

4.1 PoseDist

The PoseDist method considers the movement of limbs to be a signal that can be used
to differentiate individuals on a gait sequence. This way, it extracts signals and his-
tograms of movements from pose features by calculating the distance of body parts to
the neck position (Figure 4.1) and processes them using two signal processing meth-

17
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Figure 4.1. The pose coordinates are normalized by their distance to the neck
position, creating signals and histograms of movement. These features are used
by Subsequence Dynamic Time Warping and Euclidean distance to compare the
gait sequences on gallery and probe.

ods - Subsequence Dynamic Time Warping and Euclidean distance -, comparing the
sequences of the probe with those in the gallery.

Given the body coordinates extracted using a pose estimator [Cao et al., 2017],
P i
b,t is returned for each frame t on gait sequence i and body part indexed by b. 1 ≤
t ≤ T i, where T i is the total number of frames on sequence i, P i

b,t is a coordinate (x, y)
and x and y values are referenced by P i

b,t.x and P i
b,t.y, respectively. The coordinates

have non-negative values, except when the body part is not found due to occlusion. In
this case, they have the invalid values (−1,−1).

The coordinates returned by the pose estimator are from 18 body parts: neck,
nose, ears, wrists, elbows, hips, knees, ankles, shoulders and eyes. While ears, eyes and
nose are ignored because their positions provide little information for gait recognition,
the remaining 13 body parts, indexed by b ranging from 1 to 13, are used. The index
b for the neck is 1 and P i

1,t is the neck coordinate at the t-th frame and in the i-th
sequence.

The invalid coordinates generated by the pose estimator due to occlusion may
interfere with the results. So, to avoid interference, a tracking of invalid body parts is
performed, creating the noise indexing N i for sequence i, that saves the indexes of all
body parts whose percentage of invalid coordinates is higher than a defined threshold.
It is used on classification to eliminate noisy body parts on the Subsequence Dynamic
Time Warping and the Euclidean distance calculation. N i is defined as

N i =

{
b :

#{P i
b,t.x = −1 ∀t ∈ [1, 2, ..., T i]}

T i
> γ

}
, (4.1)

where γ is a parameter that represents the noise tolerance.
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4.1.1 Feature Extraction

Before recognition, PoseDist first requires to extract features. This work proposes
the extraction of two feature descriptors, namely, body part signals and movement
histograms. The former captures dynamic information, while the latter models static
information to be used by PoseDist.

4.1.1.1 Feature based on body part signals

Body part signals are used to capture dynamic information on gait sequence, differ-
entiating individuals by the way their body locations vary on time relative to neck
position.

Signals to represent gait movement from sequence i are created, represented by
Si. Each b from 2 to 13 (the neck is used on the formula, but signals for it are not
created because they would have only zeros) will generate two lines on Si: one for its x
coordinate value and the other for y. Si has 24 lines and T i columns and it is obtained
using

Si
2b−3,t =

−1, if P i
b,t.x = −1

P i
b,t.x−P

i
1,t.x

maxjP i
j,t.y−P i

1,t.y
, otherwise

and (4.2)

Si
2b−2,t =

−1, if P i
b,t.y = −1

P i
b,t.y−P

i
1,t.y

maxjP i
j,t.y−P i

1,t.y
, otherwise

. (4.3)

According to the Equations 4.2 and 4.3, the person position on frame is not
relevant because the distances are relative to neck position. The denominator of Si

is the vertical distance of the neck to one of the feet, making the signals invariant to
the person distance on the video. This makes the assumption that one foot is always
on the floor (so maximum y is from it), which is based on the observation that the
majority of gait recognition datasets comprise persons in walking pace. However, such
assumption might not hold for other conditions, such as someone running.

After the signal creation, each line of Si has its invalid values removed using
linear interpolation. Median filter is also applied to reduce the noise inherent of pose
estimation that persists after creating the signals. The window width is selected by
randomly choosing ten signals and searching for the size that best decreases the amount
of abnormal peaks and valleys without impacting the characteristic of the signals. With
this experiment, five is selected as the size of window width. Figure 4.2 shows examples
of the signals from three sequences of CASIA Dataset A [Wang et al., 2003] with lateral
(0◦ from the image plane), oblique (45◦) and frontal (90◦) view, respectively.
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Figure 4.2. Examples of signals from the lateral, oblique and frontal view of
CASIA Dataset A, respectively. The lines correspond to x and y distances of body
parts to the neck position on coordinates, which vary with time, changing their
amplitude. The higher two lines are the y coordinates from the feet, which reach
the maximum possible value of 1 when their y coordinates are at the maximum
vertical distance from the neck position. The negative values are from x coordi-
nates of the body parts that are on the left of the neck position on the frame.
Although the signals of the lateral view are more discriminate (their amplitude
varies more comparing with the other views), they are more affected by occlusion
(it will be shown in the experimental section).

4.1.1.2 Feature based on movement histograms

After creating and processing Si, as described in the previous section, the movement
histogram H i is created to also capture the static information on the gait sequence i
and improve the recognition results. Because of normalization by the maximum vertical
distance (the denominators on Equations 4.2 and 4.3), the values on Si are limited on
the interval (−1, 1], having −1 as lower bound and 1 as upper bound. (−1, 1] is divided
on nV als sub-intervals with size 2/nV als. The movement histogram is then created
by having nV als bins that correspond to each of these sub-intervals. Each occurrence
of a value belonging to a sub-interval on Si increments the corresponding bin on the
movement histogram. This is mathematically represented by

H i
l,j =

#

{⌈
nV als(Si

l,t+1)

2

⌉
= j ∀t ∈ [1, 2, ..., T i]

}
T i

, (4.4)

for 1 ≤ l ≤ 24 and 1 ≤ j ≤ nV als. Each value on H i is also divided by T i, making the
values on histogram invariant to the sequence size.

Increasing nV als makes it easier to differentiate individuals. The problem is
that if nV als is extremely high, the bins of H i will be sparse and the recognition
will be affected. Therefore, it is necessary to find an optimum value of nV als that
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Figure 4.3. Histograms with nV als equal to 5, 15 and 30, respectively. Each
line is related to one coordinate of a body part and each column corresponds to a
bin on the histogram. The bins with hot colors (yellow) have more elements than
the ones with cold colors (blue). The images show that increasing nV als increases
the distribution of signal values on the histogram making it more discriminative,
but causing sparsity within some bins.

can differentiate individuals without decreasing recognition (see experimental results
section). Figure 4.3 shows movement histograms for different values of nV als.

4.1.2 Gait Recognition

This section presents the two methods used for recognition and their fusion. They use
the features of body part signals and movement histograms presented on the previ-
ous sections and find their parameters empirically. In this way, no machine learning
techniques are applied.

The individuals are divided in the gallery set, that contains the features extracted
from each known person g; and the probe set, whose each person p is unknown and
will have its features compared with those on the gallery. The goal is to find the
person g from the gallery that minimizes the cost functions Dp,g

sdtw, D
p,g
dist or Dp,g

fusion

(these functions are defined below) for the person p of probe. The union operation is
applied on the indexes of body parts on Np (noise indexing of person p) and N g (noise
indexing of person g), creating Np,g. Si∗, Sp∗, H i∗ and Hp∗ are created from Sg (signals
of person g), Sp (signals of person p), Hg (histogram of person g) and Hp (histogram
of person p), removing the lines corresponding to the body parts indexed on Np,g.

The following paragraphs present how Dp,g
sdtw is calculated using Subsequence

Dynamic Time Warping and Dp,g
dist using Euclidean distance between the movement

histograms, respectively. Finally, the last section discusses the fusion Dp,g
fusion of the
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results.

Subsequence Dynamic Time Warping. On this work, signal matching is applied,
using Subsequence Dynamic Time Warping (SDTW) to find Sg∗ from the gallery where
a subsequence within Sp∗ is optimally fitted using squared distance. This subsequence
is composed of C consecutive columns, where C is the size of a gait cycle, which is
delimited by the time when the same foot starts having the maximum y value. In this
work, the left foot was used as reference and 26 was found as the value for C. The result
of SDTW is also normalized by the number of lines of Sg∗. This operation is important,
giving the variation on number of lines of Sg∗ for different persons from gallery, because
of N g information. The cost function of SDTW is defined in the equation

Dp,g
sdtw =

SDTW (Sp∗
:,t0:tf

, Sg∗)√
num_lines(Sg∗)

. (4.5)

The function is only applied to a interval of frames within Sp∗, ranging from frame C/2
to 3C/2− 1 (13 to 38 in this work). It starts on C/2 to ignore the initial frames, since
their signals are noisy when the person is entering the scene. The interval contains C
frames to have the information of a complete cycle.

Euclidean distance. To recognize gait using movement histograms, the two-
dimensional Hp∗ and Hg∗ are vectorized and passed as features to a distance function.
In this work, Euclidean distance is the only function evaluated, although others are
also possible [Qian et al., 2004; de Souza and De Carvalho, 2004; Samworth, 2012]. It
is defined as

Dp,g
dist =

‖vec(Hp∗)− vec(Hg∗)‖√
num_lines(Hg∗)

. (4.6)

The distance is used to rank the individuals from the gallery based on their
distance from the probe. The result is also normalized according to the number of
lines on Hg∗ because Hg∗ is impacted by N g similarly to Sg∗.

Score fusion. Fusion of score is a common operation used to improve recognition on
biometrics applications [Vatsa et al., 2008; Eskandari et al., 2013; Fakhar et al., 2016],
and in this work it is used to fuse the results from SDTW and Euclidean distance,
creating the PoseDist method.

The score fusion is applied, combining results of the two methods as

Dp,g
fusion = αDp,g

dist + (1− α)Dp,g
sdtw, (4.7)

with 0 ≤ α ≤ 1,
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in which increasing α favors the results of Euclidean distance and decreasing it favors
SDTW.

4.2 PoseFrame

The PoseFrame method considers that the pose in each frame has enough information
for discrimination. This way, different of PoseDist and the works from literature, that
use a complete walking sequence or a gait cycle as the feature, PoseFrame uses just the
information of individual frames to train a multilayer perceptron to recognize gait. This
section presents this method and its steps of normalization, learning and recognition.

4.2.1 Feature Normalization

PoseFrame uses OpenPose [Cao et al., 2018] as the pose estimator, which returns a
matrix F = [x,y, c] for each frame of a video sequence, where x, y and c are column
vectors of dimension (n × 1), with x = (x1, x2, ..., xn−1, xn), y = (y1, y2, ..., yn−1, yn),
c = (c1, c2, ..., cn−1, cn) and n as the number of body parts of the pose estimator. For
the ith body part, xi and yi represent its position on x and y axis, respectively, while
ci is the confidence of the estimator.

Using the matrix F directly is problematic, because the x and y coordinates on a
video sequence can be different while the poses are similar. It can occur when a person
walks on the scene or get closer to the camera, as illustrated on Figure 4.4. Thus, it
is necessary to process F and create a representation where the coordinates of similar
poses are close to each other. Two processing operations are performed to this end. The
first operation uses the neck as reference point and makes the position of all body parts
equivalent to its distance from the neck. Using neck as the index for neck, this operation
creates F (1) = [x(1),y(1), c], where x(1) = (x1−xneck, x2−xneck, ..., xn−1−xneck, xn−xneck)

and y(1) = (y1 − yneck, y2 − yneck, ..., yn−1 − yneck, yn − yneck). Afterwards, the second
operation is performed to normalize the distances. It is done calculating the maximum
vertical difference ymax = max({y(1)i : 1 ≤ i ≤ n}) and producing F (2) = [x(2),y(2), c],
with x(2) = x(1)/ymax and y(2) = y(1)/ymax.

The final representation F (2) has the desired characteristic of similar poses having
close coordinates. This way, F (2) is vectorized and the entries corresponding to the neck
are removed, because they would always be filled with zeros, resulting in a vector v to
be used as feature for the classifier presented on the next section.

It can be noted the described processing step is similar to the one used on
PoseDist, but as PoseFrame processes gait information per-frame basis and not rely
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Figure 4.4. The poses from the first and the second image are almost similar,
although the x location of their body parts are very different. It also occurs with
the third and fourth image, which also have differences on their y location. This
situation evinces the need to process F and create a better representation for the
pose coordinates.

on features to represent a whole walking sequences, signals are not created after the
normalization. Besides that, noise is not indexed as in PoseDist, because neural net-
works (the classifier used on PoseFrame is a multi-layer perceptron) are known for their
robustness to noise.

4.2.2 Learning and Recognition

The gait methods on literature generally use features extracted from a walking cycle or
a video sequence; but this work, instead, make use of information of individual frames
for training and inference. For each frame, the feature vector v is extracted and used
as the input of a neural network, whose output is represented by an one-hot encoding
corresponding to the person who walked on the scene.

The neural network employed is a shallow multi-layer perceptron (MLP), com-
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Figure 4.5. PoseFrame architecture, which is a multi-layer perceptron compris-
ing of an input layer, ReLU and sigmoid hidden layers, and a softmax output
layer.

prising only three dense layers, where the first layer has N neurons with rectified linear
unit [Nair and Hinton, 2010] activation, the second has M sigmoid [Han and Mor-
aga, 1995] neurons and the last layer is a softmax output (Figure 4.5). N and M are
determined on the experimental section.

Although the neural network classifies individual frames, gait recognition applica-
tions are focused on a whole walking sequence. This way, all v vectors of a gait sequence
are classified and temporal aggregation based on majority voting is performed on the
outputs for a final result. During tests, the results of the multilayer perceptron on the
sequences are used to verify the efficiency of this model on gait recognition application.



Chapter 5

Experimental Results

This chapter describes the experiments performed using PoseDist and PoseFrame meth-
ods on CASIA Dataset A and CASIA Dataset B, focusing on evaluating these methods
in challenging conditions. It starts by presenting these datasets in Section 5.1, show-
ing their challenges for gait recognition and the number of individuals and walking
sequences they contain. Section 5.2 describes the experiments of PoseDist on CASIA
Dataset A, showing the results obtained from different parameters of the methods and
comparing the results with existing works. Section 5.3 presents the experiments of
PoseFrame on CASIA Dataset A and CASIA Dataset B and discusses the ablation
study that was employed to evaluate which body parts are more important for gait
recognition. Finally, Section 5.4 discusses the overall results of the proposed methods
and how they relate to the state-of-the-art works.

5.1 Datasets

The proposed approaches require color images to estimate pose skeletons, which hinders
the usage of large datasets (such as the OU-MVLP [Takemura et al., 2018]), that
contain only information of silhouettes. Thus, the experiments are conducted on two
publicly available datasets which provide images, being them CASIA Dataset A [Wang
et al., 2003] and the CASIA Dataset B [Yu et al., 2006], which are described in the
following subsections.

5.1.1 CASIA Dataset A

CASIA Dataset A is a gait dataset containing 20 individuals, whose walking sequences
are recorded outdoors in three different views: lateral (0◦ from the image plane), oblique

26
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(a) Lateral (b) Oblique (c) Frontal

Figure 5.1. CASIA Dataset A has sequences from 20 individuals on three dif-
ferent views (images from http://www.cbsr.ia.ac.cn). On the lateral view (a), the
individuals walk parallel to the camera plane, in oblique (b) they walk with an
angle of 45◦ with the plane, and in frontal view (c), they walk perpendicular to
the camera.

(45◦), and frontal (90◦). Each individual has four gait sequences for each view, where
two of these sequences have the same walking direction, and on the other half, the
walking direction is reversed. For instance, when the individual is walking on the
lateral view, the direction is from left to right on two of the four sequences, and from
right to left on the others. The dataset has a total of 20×4×3 = 240 video sequences.

5.1.2 CASIA Dataset B

CASIA Dataset B [Yu et al., 2006] is a multiview gait database collected in an indoor
environment, comprising of 124 individuals. Eleven cameras placed 18◦ apart record its
sequences, making the views range from 0◦ to 180◦. The view 0◦ (180◦) is perpendicular
to the image plane and records the individual walking toward (moving away from) the
camera; the view 90◦ records the individuals walking laterally; and the other views
record oblique movement (Figure 5.2). For each view, the individuals are recorded in
six normal (NM) sequences, two sequences with a coat (CL), and two with bag (BG)
(Figure 5.3). It has a total of 124× 11× 10 = 13640 video sequences, being one of the
largest gait datasets available in the literature.

5.2 PoseDist Evaluation

This section presents the experiments of PoseDist on CASIA Dataset A and compares
its results with existing works. For each pair of videos with the same configuration of
person, view, and walking direction, one video is used to find the best parameters of
the method and the other for evaluation. First, the results obtained by varying the
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Figure 5.2. CASIA Dataset B contains 11 different views, ranging from 0◦ to
180◦ (images from Yu et al. [2006]).

(a) Normal (NM) (b) Wearing a coat (CL) (c) Carrying a bag (BG)

Figure 5.3. CASIA Dataset B contains three walking conditions for each indi-
vidual (images from Yu et al. [2006]), which are normal (a), carrying a bag (b)
and wearing a coat (c).

parameters are presented. Then they are compared with the state-of-the-art works
from both gait recognition approaches (model-based and model-free approach).

5.2.1 Noise Tolerance

The noise tolerance γ defines which body parts will not be used with SDTW and Eu-
clidean distance because of occlusion. This parameter is tested on the SDTW method,
varying from 0.05 to 1. According to the results showed in Figure 5.4, occlusion has a
great impact on recognition and the best results are found when γ is between 0.05 and
0.2. Given that lower values remove more body parts on calculations and make the
computation simpler as consequence, 0.05 has been chosen to be used in the remaining
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experiments for PoseDist.

Figure 5.4. Accuracy on Dsdtw varying the noise tolerance γ. The best results
are found when γ is between 0.05 to 0.2.

5.2.2 Number of Intervals

This experiment evaluates the number of intervals nV als on the movement histogram.
It is responsible for the size of intervals, which are used to distinguish gait on sequences.
nV als varies from 5 to 100. According to Figure 5.5, the best results are achieved by
nV als equals to 85, which maximizes accuracy on Ddist. This value is used in the
remaining experiments.

Figure 5.5. Accuracy on Ddist varying the number of intervals nV als. The value
85 gives the best results.

5.2.3 Weight of Score Fusion

The score weight α is used to fuse results from SDTW and Euclidean distance. It
ranges from 0 to 1 and, when α presents higher values, it favors Euclidean distance
and when it has lower values, SDTW is favored. In the experiments α varies from
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0.05 to 1. According to Figure 5.6, the best results are achieved with α equals 0.75,
meaning that the Euclidean distance is more important than SDTW.

Figure 5.6. Accuracy on Dfusion varying the score fusion weight α. The value
0.75 gives the best results.

5.2.4 Comparison with Literature

The best results of PoseDist have been achieved when γ is 0.05, nV als is 85 and α

is 0.75, achieving an accuracy of 92.5%, 97.5%, and 98.75% on lateral, oblique, and
frontal views, respectively. The lower accuracy on lateral view is probably caused by
occlusion, which is more common on that view. Euclidean distance method is more
accurate than SDTW, showing that static information is more accurate than dynamic
on gait recognition. However, the accuracy increases when dynamic and static gait
information from SDTW and Euclidean distance are fused.

The proposed method is compared to others that use the same dataset. It should
be noted that different of PoseDist, all these works use the leave-one-sequence-out
protocol, where one sequence is left for evaluation, and the training occurs on the
others. As PoseDist uses a cost function to compare the sequences from gallery and
probe instead of training a descriptor, the protocol described at the start of this section
is used instead, being equivalent statistically.

According to the results showed in Table 5.1, PoseDist has some of the best results
on lateral, the second-best on oblique, and the best on the frontal view (together with
Kusakunniran et al. [2009]). It is also interesting to note that the method is better than
Liu et al. [2016], which is a recent model-based method that uses deep learning. These
results demonstrate the good performance of PoseDist despite its simplicity, showing
the viability of applying signal processing algorithms for gait recognition.
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Table 5.1. Rank-1 recognition on CASIA Dataset A, comparing the methods
from literature with PoseDist.

View

Lateral Oblique Frontal

Liu et al. [2016] 85% 87.5% 95%
Nizami et al. [2010] 100% - -
Kusakunniran et al. [2009] 100% 100% 98.75%

SDTW distance 85% 95% 95%
Euclidean distance 92.5% 96.25% 97.5%
PoseDist (fusion) 92.5% 97.5% 98.75%

5.3 PoseFrame Evaluation

This section evaluates PoseFrame comparing its results with existing works, and also
performs an ablation study to assess which body parts are the most important for gait
recognition. For each sequence, the poses are extracted using OpenPose and processed
as described in Section 4.2.1. The MLP of PoseFrame is trained using cross-entropy loss
function with Adam [Kingma and Ba, 2014] optimizer on its default settings (α = 0.001,
β1 = 0.9, β2 = 0.999 and ε = 10−8) and batch size set to 4000, which corresponds
to adding the whole dataset in memory, allowing faster convergence. The network
is trained by 512 epochs and fine-tuned by 40 epochs. N (number of neurons on
the rectified linear unit layer) and M (the number of neurons on the sigmoid layer)
were determined through grid-search and 1024 presented the best results for both
parameters.

The evaluation of PoseFrame on CASIA Dataset A follows the leave-one-sequence-
out protocol. On CASIA Dataset B, the protocol from Liao et al. [2020] is used on the
same-view experiment, consisting of training on half the individuals and using the other
half for testing. After the method is trained, fine-tuning occurs in the first four normal
sequences of the individuals in the test set, and evaluation is done in the remaining
sequences.

Cross-view experiments follow the protocol from Chao et al. [2019] using leave-
one-angle-out, which trains on all angles except one, which is left for prediction. Besides
that, the dataset is divided into three different configurations: small-sample (ST),
medium-sample (MT), and large-sample training (LT). The first 24 individuals are
used to train the model on the ST configuration, 62 are used on MT, and 74 on
LT. The remaining individuals are used on evaluation, having their first four normal
sequences used as the gallery (where fine-tuning occurs) and the rest as the probe.
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Table 5.2. Rank-1 recognition on CASIA Dataset A in comparison with model-
based approaches.

View

Lateral Oblique Frontal Average

Liu et al. [2016] 85.0% 87.5% 95.0% 89.16%
PoseDist (ours) 92.5% 97.5% 98.75% 96.25%
PoseFrame (ours) 97.5% 96.25% 100% 97.97%

5.3.1 Evaluation on CASIA Dataset A

PoseFrame is evaluated on CASIA Dataset A and compared with PoseDist and another
model-based method [Liu et al., 2016]. The results are presented in Table 5.2. It
can be seen that both approaches yield better results than Liu et al. [2016], despite
the latter having a more complex architecture that uses a recurrent layer to model
temporal information, while PoseFrame uses a simple temporal aggregation approach
and a shallow MLP.

PoseFrame is more accurate than PoseDist on lateral and frontal views, while
only 1.25% worse in oblique view. In addition to having better accuracy, PoseFrame
is also faster than PoseDist, given that the latter requires the comparison of templates
from gallery and probe using Subsequence Dynamic Time Warping, which is a costly
operation with a time complexity of O(NM) for sequences of length N and M . This
way, PoseFrame is more suitable than PoseDist to be applied on gait recognition, and
this fact is valid even on datasets with few walking sequences like CASIA Dataset A.

5.3.2 Evaluation on CASIA Dataset B

This section describes the experiments conducted on the CASIA Dataset B. As the
PoseFrame approach performs better in most scenarios and PoseDist is not feasible
to be tested on CASIA Dataset B due to its algorithmic complexity, just PoseFrame
is evaluated. Its robustness on same-view and cross-view conditions is analyzed. An
ablation study is also performed to evaluate the importance of each joint of a pose.

5.3.2.1 Same-view Recognition

Table 5.3 presents the results obtained by PoseFrame when it is evaluated on normal
sequences and compares it with recent works that follow the same protocol. According
to the table, PoseFrame achieves state-of-the-art accuracy, having the best results for
the most angles. It is interesting to note that it improves the results obtained by
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Table 5.3. Accuracy of different works on normal sequences under same-view.

Angle\Work Elharrouss et al. [2020] Liao et al. [2020] PoseFrame

0◦ 94 96.0 99.2
18◦ 95 96.8 99.2
36◦ 97 96.0 99.2
54◦ 97 96.8 98.4
72◦ 98 96.0 96.8
90◦ 98 97.6 97.6
108◦ 98 97.6 98.4
126◦ 98 94.4 99.2
144◦ 97 96.8 96.8
162◦ 95 97.6 97.6
180◦ 93 97.6 99.2

Table 5.4. Accuracy of PoseFrame and Liao et al. [2020] on carrying and clothing
sequences under same-view.

BG sequence 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

Liao et al. [2020] 74.2 75.8 77.4 76.6 69.4 70.2 71 69.4 74.2 65.3 60.5 71.3
PoseFrame 83.1 88.7 91.1 89.5 90.3 87.0 87.0 83.9 83.9 85.5 80.7 86.4

CL sequence 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

Liao et al. [2020] 46.8 48.4 57.3 61.3 58.1 56.5 59.7 54.8 55.7 58.1 39.5 54.2
PoseFrame 41.9 59.7 64.5 61.3 58.9 50.0 53.2 40.3 45.2 37.9 45.2 50.7

Liao et al. [2020], which is a deep-learning model-based work that uses 3D coordinates
calculated from the 2D coordinates of OpenPose, showing that it is not necessary to
have a complex method to achieve good results on recognition. Because PoseFrame is
also better than the recent model-free work of Elharrouss et al. [2020], it can be seen
that the developed method is state-of-the-art for same-view recognition on normal
sequences for works from both approaches.

PoseFrame is compared further to Liao et al. [2020], evaluating both methods on
carrying and clothing condition (Elharrouss et al. [2020] is not evaluated because it
does not report its results on these conditions). Table 5.4 shows that the developed
method is much better at carrying, increasing the mean accuracy by 15.1 percentage
points, but a little worse on clothing, losing 3.5 percentage points.

5.3.2.2 Cross-view Recognition

Table 5.5 presents the results for cross-view recognition, reporting each experimental
setting with ST, MT and LT. Results reported by other approaches that follow the
same experimental setup [Hu et al., 2013; Kusakunniran et al., 2014; Wu et al., 2016;
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Table 5.5. Cross-view recognition on CASIA-B. Average rank-1 accuracies under
three experimental settings (ST, MT, LT) using leave-one-angle-out. PoseFrame
is compared with ViDP [Hu et al., 2013], CMCC [Kusakunniran et al., 2014],
CNN-LB [Wu et al., 2016], AE [Yu et al., 2017], MGAN [He et al., 2019], CNN-
3D [Wu et al., 2016], CNN-Ens [Wu et al., 2016] and GaitSet [Chao et al., 2019].

Gallery NM#1-4 leave-one-angle-out

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ mean

ST
(24)

NM

ViDP − − − 59.1 − 50.2 − 57.5 − − − −
CMCC 46.3 − − 52.4 − 48.3 − 56.9 − − − −
CNN-LB 54.8 − − 77.8 − 64.9 − 76.1 − − − −
GaitSet 64.6 83.3 90.4 86.5 80.2 75.5 80.3 86.0 87.1 81.4 59.6 79.5
PoseFrame (Ours) 62.5 97.9 87.5 64.6 93.8 95.8 93.8 97.9 70.8 91.7 75.0 84.7

BG GaitSet 55.8 70.5 76.9 75.5 69.7 63.4 68.0 75.8 76.2 70.7 52.5 68.6
PoseFrame (Ours) 52.1 70.8 58.3 43.8 79.2 81.2 77.1 77.1 66.7 77.1 52.1 66.9

CL GaitSet 29.4 43.1 49.5 48.7 42.3 40.3 44.9 47.4 43.0 35.7 25.6 40.9
PoseFrame (Ours) 22.9 29.2 35.4 33.3 39.6 62.5 52.1 52.1 33.3 43.8 33.3 39.8

MT
(62)

NM

AE 49.3 61.5 64.4 63.6 63.7 58.1 59.9 66.5 64.8 56.9 44.0 59.3
MGAN 54.9 65.9 72.1 74.8 71.1 65.7 70.0 75.6 76.2 68.6 53.8 68.1
GaitSet 86.8 95.2 98.0 94.5 91.5 89.1 91.1 95.0 97.4 93.7 80.2 92.0
PoseFrame (Ours) 66.9 90.3 91.1 55.6 89.5 97.6 98.4 97.6 89.5 69.4 68.5 83.1

BG

AE 29.8 37.7 39.2 40.5 43.8 37.5 43.0 42.7 36.3 30.6 28.5 37.2
MGAN 48.5 58.5 59.7 58.0 53.7 49.8 54.0 61.3 59.5 55.9 43.1 54.7
GaitSet 79.9 89.8 91.2 86.7 81.6 76.7 81.0 88.2 90.3 88.5 73.0 84.3
PoseFrame (Ours) 45.2 66.1 60.5 42.7 58.1 84.7 79.8 82.3 65.3 54.0 50.0 62.6

CL

AE 18.7 21.0 25.0 25.1 25.0 26.3 28.7 30.0 23.6 23.4 19.0 24.2
MGAN 23.1 34.5 36.3 33.3 32.9 32.7 34.2 37.6 33.7 26.7 21.0 31.5
GaitSet 52.0 66.0 72.8 69.3 63.1 61.2 63.5 66.5 67.5 60.0 45.9 62.5
PoseFrame (Ours) 13.7 29.0 20.2 19.4 28.2 53.2 57.3 52.4 25.8 26.6 21.0 31.5

LT
(74)

NM
CNN-3D 87.1 93.2 97.0 94.6 90.2 88.3 91.1 93.8 96.5 96.0 85.7 92.1
CNN-Ens 88.7 95.1 98.2 96.4 94.1 91.5 93.9 97.5 98.4 95.8 85.6 94.1
GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
PoseFrame (Ours) 66.2 93.9 88.5 56.1 79.7 98.0 98.6 99.3 81.8 80.4 70.3 83.0

BG CNN-LB 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
PoseFrame (Ours) 48.6 69.6 56.1 41.9 56.8 84.5 80.4 83.1 65.5 58.1 48.0 63.0

CL CNN-LB 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
PoseFrame (Ours) 16.2 28.4 21.6 23.6 28.4 50.7 54.1 49.3 28.4 25.0 20.3 31.4

Chao et al., 2019] are also included.
First considering the ST setting, it can be seen that PoseFrame performs better

for NM, with an average of 84.7% across all angles. The angles that provide the best
results are 18◦, 72◦, 90◦, 108◦ and 126◦. Except for 18◦, it is believed it occurs because
the lateral view is more robust, and its information can be easier recovered by the
surrounding angles. PoseFrame also obtains competitive results in comparison with
GaitSet on BG and CL, especially on angles 90◦, 108◦ and 126◦. In the MT setting,
the proposed method is better on 90◦, 108◦ and 126◦ in normal sequences (NM) and
on 90◦ in carrying (BG). Similarly, PoseFrame has the best accuracy on these angles
in NM and BG in the LT setting. Overall, PoseFrame is not accurate on clothing
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Table 5.6. Accuracy of GaitSet using the original and the pose-based silhouettes.

Features NM BG CL

Original silhouettes 95.6 89.0 73.2
Pose-based silhouettes 97.2 82.2 70.0

conditions. The reason for this is that the coat and jacket affect the pose estimation,
making it difficult to search for the location of body parts.

In general, GaitSet is more accurate in most of the challenging environments of
CASIA Dataset B when compared with PoseFrame. However, it must be noted that the
former method uses silhouettes that contain attributes (e.g. the shape of the head) not
directly related to gait and that are invariant to carrying and clothing condition [Isaac
et al., 2017]. To evaluate that, an experiment is performed to verify the performance
of GaitSet when it uses features without appearance information. To this end, a new
feature called pose-based silhouette is developed on this thesis, being represented as a
binary image whose body parts are built joining the coordinates from OpenPose and
ignoring the head (Figure 5.7). GaitSet is evaluated following the LT configuration,
having as inputs the original silhouettes for one test and the pose-based on another
test. Just sequences with 0◦ are considered because the sequences from other angles
contain many poses with occlusion and their pose-based silhouettes could affect the
method. The results are presented in Table 5.6, where it is visible that GaitSet is
more accurate when the original features are used, containing appearance information.
When pose-based silhouettes are used, GaitSet is affected by having results close to
the ones obtained by model-based methods (already presented in Table 5.4).

It also shows that the results of PoseFrame can be improved if appearance infor-
mation is also used, but as the focus of the present work is just using gait information,
the methods of this thesis are limited to features from pose estimation. Although only
GaitSet is evaluated, it is believed that the conclusions are valid for all model-free
works because they also use appearance information.

5.3.2.3 Ablation Study

Experiments are conducted to determine the role each body part plays in model-based
gait recognition and different combinations of joints are tested, as depicted in Fig-
ure 5.8. The combinations that use joints from just one kind of limb are considered
simple, while the others (except the configuration that uses all joints) are considered
mixed. The experiments are conducted in the MT setting, training and testing on all
angles.
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Figure 5.7. Example of a pose-based silhouette.

(a) (b) (c) (d) (e) (f) (g)

Figure 5.8. Joint configurations of the ablation study. Filled circles represent
the joints used: (a) all joints; (b) nose and shoulders; (c) arms (shoulders, elbows,
wrists); (d) legs (hips, knee, ankles); (e) beginning-joints (nose, shoulders, hips);
(f) middle-joints (nose, elbows, knees); and (g) end-joints (nose, wrists, ankles).
The configurations (b), (c) and (d) are considered simple, because they use joints
from just one kind of limb, different of (e), (f) and (g), that are considered mixed.

According to the results presented in Table 5.7, for simple configuration, arms
are the most important joints for recognition, having an accuracy of 97.65%, which
is 9.17 percentage points greater than the one achieved using legs. However, as the
individuals of CASIA Dataset B use the arms to carry bags, the legs are less affected
on carrying conditions, with an accuracy of 18.04 percentage points higher than the
arms. Nose and shoulders are inaccurate compared to other locations, highlighting the
importance of limbs on gait recognition.

Regarding mixed configuration, the end-joints are the most robust. It is believed
that this is related to the fact these joints have more variation on gait sequences,
allowing the methods to have better discrimination. However, they are less accurate
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Table 5.7. Rank-1 accuracy of the ablation study, evaluating the importance of
joints on recognition.

Joint NM BG CL

a. All joints 99.36 85.91 49.09
b. Nose and shoulders 61.65 44.57 15.76
c. Arms 97.65 49.26 20.89
d. Legs 88.48 67.30 23.24
e. Beginning-joints 86.14 60.77 15.61
f. Middle-joints 96.33 66.78 31.96
g. End-joints 97.21 62.31 43.10

than middle-joints on carrying conditions, because the bags affect the movement of
the arms, as discussed in the last paragraph. The beginning joints have the worse
results on all conditions, given that they contain less information of movement (nose
and shoulders are almost static on gait sequences after normalization). They are also
the most affected by the usage of coat/jacket because it is harder to find the correct
position of covered hips and shoulders.

The results obtained by this ablation study are different from previous model-free
works. Isaac et al. [2017] found that just the location of head and feet on silhouettes
must be used to recognize gait on clothing and carrying variations; but differently, the
present work shows that recognition is impacted if some parts are removed. According
to Sarkar et al. [2005], the lower 30% of the silhouette is the most important location,
being responsible for 75% of accuracy on identification. Table 5.7 shows that the
arms are also very important, being the only part with accuracy above 90% on normal
sequences with both sides and having results above the feet on a single side. These facts
show that the conclusions for the model-free approach are not valid on model-based
works, evincing the importance of the performed experiment.

5.4 Discussion

PoseDist and PoseFrame were tested on CASIA Dataset A and CASIA Dataset B. The
experiments with noise tolerance of PoseDist showed that the inherent noise of pose
estimation affects the recognition results. This way, noisy body parts must be filtered,
or a method robust to noise, such as the MLP used on PoseFrame, must be used.
Besides that, the best results are found using the histogram of movement for PoseDist
on CASIA Dataset A, showing that static information is more accurate than dynamic.
This fact is reinforced by the results of PoseFrame, which is intrinsically static for not
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using any feature of movement.
PoseFrame is much faster than PoseDist, whose complexity is O(NM). Because

of this fact, just the former method was tested on CASIA Dataset B. Despite its
simplicity, PoseFrame is very accurate compared with existing works. In same-view
recognition, PoseFrame achieved state-of-the-art results for most situations, except on
some views on clothing condition, where it is worse than the three-dimensional model
of Liao et al. [2020]. In the cross-view experiment, PoseFrame had the best results
for the ST setting, showing that this method is better than the state-of-the-art when
the number of walking sequences for training is limited. For other settings, its results
were worse than model-free methods, specially GaitSet. However, another experiment
demonstrates that it occurs because these methods use the appearance information of
silhouettes, and their accuracy decreases when this information is removed.



Chapter 6

Conclusions

This work presented two approaches for gait recognition based on 2D pose informa-
tion, namely, PoseDist and PoseFrame. PoseDist is composed of hand-crafted feature
descriptors that encode spatial and temporal information for each pose, which is then
subsequently presented to Subsequence Dynamic TimeWarping and Euclidean distance
to compare probes with the gallery. PoseFrame is a multi-layer perceptron (MLP) with
only three layers that take as input pose coordinates normalized by the neck coordi-
nate and vertical distance. Classification is then performed per-frame basis, whose
predictions are aggregated temporally using majority voting.

Experiments were performed on all views of CASIA Dataset A and the current
methods achieved state-of-the-art results for model-based works, in which PoseDist ob-
tained an accuracy of 92.5%, 97.5%, and 98.75% on lateral, oblique, and perpendicular
view, respectively; while PoseFrame yielded an accuracy of 97.5%, 96.25%, and 100%.

PoseFrame was evaluated for cross-view recognition on CASIA Dataset B to un-
derstand how it performs for unseen angles, and it was observed that it was better
for angles closer to 90◦, which are the most common on gait literature. The results
also showed its efficiency in normal and carrying walking sequences under small-sample
training settings, but low accuracy on other others in comparison with existing meth-
ods. To justify why it happens, an experiment was performed on GaitSet to show that
model-free methods are more robust in other settings because they use the shape of
silhouettes besides gait, and when this information is removed they are also affected.

Same-view recognition was also evaluated on CASIA Dataset B using PoseFrame
and following the protocol from Liao et al. [2020]. According to the results, PoseFrame
achieved state-of-the-art accuracy on normal sequences compared with methods from
both approaches. It was further compared with Liao et al. [2020] on other condi-
tions, indicating that PoseFrame is better on recognition by 15.1 percentage points on
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carrying, but 3.5 percentage points worse on clothing.
Ablation experiments were also performed, showing the importance of redun-

dancy of joints to avoid the negative influence of object and clothing distractors – such
as bags, coats, and jackets. It was seen that end-joints – parts in the body extrem-
ities such as wrist and ankle – yield better results since they are more visible even
under a jacket or a coat, which allows a more accurate pose estimation. Finally, the
results of the ablation experiment were compared with model-free works, showing that
the conclusions for one approach are not valid for the other, and thus justifying the
importance and novelty of this experiment.

In general, the achieved results from this work and literature show that gait is
limited, especially on carrying and clothing conditions, requiring the use of appearance
to improve recognition as it is done in model-free works. For this reason, it is intended
in a future work to test the use appearance on PoseDist and PoseFrame. Furthermore,
as gait was only tested in controlled environments, its results can greatly decrease in
real case scenarios, and other biometrics might be necessary to have good recognition.
To verify this fact, a new challenging dataset with outdoor sequences will be created
to verify the robustness of gait methods in uncontrolled environments and how their
recognition is improved using other biometrics.
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